

Formal Models for Consent Management in Healthcare

Software System Development

Miss Neda Peyrone

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Computer Engineering

Department of Computer Engineering

FACULTY OF ENGINEERING

Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University

แบบจ ำลองเชิงรูปนยัส ำหรับกำรจดักำรควำมยนิยอมในกำรพฒันำระบบซอฟตแ์วร์กลุ่มใหบ้ริกำร
ทำงสุขภำพ

น.ส.เนดำ้ เปอิโรเน

วิทยำนิพนธ์น้ีเป็นส่วนหน่ึงของกำรศึกษำตำมหลกัสูตรปริญญำวิศวกรรมศำสตรดุษฎีบณัฑิต

สำขำวิชำวิศวกรรมคอมพิวเตอร์ ภำควิชำวิศวกรรมคอมพิวเตอร์
คณะวิศวกรรมศำสตร์ จุฬำลงกรณ์มหำวิทยำลยั

ปีกำรศึกษำ 2565

ลิขสิทธ์ิของจุฬำลงกรณ์มหำวิทยำลยั

3

Thesis Title Formal Models for Consent Management in Healthcare

Software System Development

By Miss Neda Peyrone

Field of Study Computer Engineering

Thesis Advisor Associate Professor DUANGDAO WICHADAKUL,

Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University

in Partial Fulfillment of the Requirement for the Doctor of Philosophy

Dean of the FACULTY OF

ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN, D.Eng.)

DISSERTATION COMMITTEE

Chairman

 (Assistant Professor Chanon Dechsupa, Ph.D.)

Thesis Advisor

 (Associate Professor DUANGDAO WICHADAKUL,

Ph.D.)

Examiner

 (Associate Professor CHOTIRAT

RATANAMAHATANA, Ph.D.)

Examiner

 (Associate Professor TWITTIE SENIVONGSE, Ph.D.)

Examiner

 (Associate Professor WIWAT VATANAWOOD, Ph.D.)

 iii

ABST RACT (THAI)

 เนดำ้ เปอิโรเน : แบบจ ำลองเชิงรูปนยัส ำหรับกำรจดักำรควำมยินยอมในกำรพฒันำระบบซอฟตแ์วร์กลุ่มให้บริกำร
ทำงสุขภำพ. (Formal Models for Consent Management in Healthcare Software

System Development) อ.ท่ีปรึกษำหลกั : รศ. ดร.ดวงดำว วิชำดำกุล

ในยุคแห่งโอกำสของกำรขบัเคลื่อนดว้ยขอ้มูล ธุรกิจจ ำนวนมำกเผชิญควำมทำ้ทำยดำ้นกำรจดักำรดูแลขอ้มูลส่วน
บุคคล ซ่ึงน ำไปสู่ควำมเส่ียงในกำรปกป้องขอ้มูลของลูกคำ้ เพ่ือให้บุคคลทัว่ไป (data subjects) มีอ ำนำจในกำรควบคุม
ขอ้มูลของตน สหภำพยุโรปไดอ้อกกฎหมำยคุม้ครองขอ้มูลส่วนบุคคล หรือ จีดีพีอำร์ โดยก ำหนดให้ธุรกิจหรือองค์กร (data

controllers) จะต้องปกป้องข้อมูลของแต่ละบุคคล (personal data) ภำยใต้กฎหมำยคุ ้มครองข้อมูลส่วนบุคคล

อย่ำงไรก็ตำม ธุรกิจจ ำนวนมำกยงัคงประสบปัญหำในกำรปรับปรุงและพฒันำระบบซอฟตแ์วร์ของตนให้สอดคลอ้งกบัจีดีพีอำร์
เน่ืองจำกเป็นกำรยำกท่ีจะตีควำมและน ำไปใชเ้ป็นแนวทำงในกำรพฒันำซอฟตแ์วร์ นอกจำกน้ีกำรประมวลผลขอ้มูลส่วนบุคคล
จะเร่ิมขึ้นได้ ก็ต่อเมื่อเจ้ำของขอ้มูลส่วนบุคคลจะตอ้งให้ควำมยินยอมโดยชัดแจง้แก่ผูค้วบคุมขอ้มูลส่วนบุคคล ซ่ึงท ำให้กำร
จดักำรควำมยินยอม (CM) มีควำมจ ำเป็นส ำหรับกำรจดักำรวงจรชีวิตของขอ้มูลส่วนบุคคล วิทยำนิพนธ์น้ีมีวตัถุประสงคเ์พ่ือ
เติมเต็มช่องว่ำงน้ีโดยกำรเสนอแบบจ ำลองเชิงรูปนัยและกำรแปลงไปเป็นแผนภำพคลำสส ำหรับกำรจดักำรควำมยินยอมในระบบ
รวมศูนย ์และกำรแบ่งปันขอ้มูลในระบบกระจำย เพ่ือเป็นแนวทำงส ำหรับวิศวกรซอฟต์แวร์ นอกจำกน้ีแบบจ ำลองเชิงรูปนัยท่ี
เสนอไดรั้บกำรตรวจสอบและอธิบำยพฤติกรรมโดยใชเ้มธอดอีเวนตบี์

สำขำวิชำ วิศวกรรมคอมพิวเตอร์ ลำยมือช่ือนิสิต ..
ปีกำรศึกษำ 2565 ลำยมือช่ือ อ.ท่ีปรึกษำหลกั

 iv

ABST RACT (ENGLI SH)
6371021321 : MAJOR COMPUTER ENGINEERING

KEYWOR

D:

General Data Protection Regulation, GDPR, Privacy by Design,

Consent Management, Formal method, Event-B, Smart Contracts

 Neda Peyrone : Formal Models for Consent Management in Healthcare

Software System Development. Advisor: Assoc. Prof. DUANGDAO

WICHADAKUL, Ph.D.

In the era of data-driven opportunities, many businesses are missing the

data-privacy challenge, which leads to risks in safeguarding their customers’ data.

To empower individuals (data subjects) to control their data, the General Data

Protection Regulation (GDPR) mandated businesses or organizations (data

controllers) to protect individuals’ data (personal data) within data protection law.

Nevertheless, many businesses still struggle to enhance and develop their software

systems to comply with the GDPR because it is difficult to interpret and apply to

software development practices. Besides, the processing of personal data begins

when the data subject provides explicit consent to the data controller, which makes

consent management (CM) essential for conducting the personal data lifecycle. This

thesis aims to fill this gap by proposing formal models and translating them into

class diagrams for consent management in centralized systems and data sharing in

distributed systems as guidelines for software engineers. Moreover, the proposed

models have been verified and described behavior using the Event-B method.

Field of Study: Computer Engineering Student's Signature

...............................

Academic

Year:

2022 Advisor's Signature

..............................

 v

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

Firstly, I w ould like to thank m y advisor, A ssoc. Prof. D r. D uangdao

Wichadakul. She encouraged me to pursue research interests in data protection and

privacy for health information and helped me develop good research practices.

Whenever I lose confidence or face problems, my advisor is always there to listen and

give me sincere advice.

I am deeply grateful to Assoc. Prof. Dr. Wiwat Vatanawood, Assoc. Prof. Dr.

Chotirat Ratanamahatana, Assoc. Prof. Dr. Twittie Senivongse, and Asst. Prof. Dr.

Chanon Dechsupa for being my thesis committee and giving all valuable comments and

suggestions.

I thankfully acknowledge the support and inspiration from my teachers,

especially Assoc. Prof. Dr. Vara Varavithya for instilling the courage and diligence to

achieve my ambitious goals.

Lastly, I would express a deep sense of gratitude to my family and friends for

their unconditional love and support. This dissertation could not have been completed

without them.

Neda Peyrone

vi

TABLE OF CONTENTS

 Page

ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) ... iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES ... xii

LIST OF FIGURES ... xiii

CHAPTER I INTRODUCTION .. 1

1.1. Objective of the Work ... 7

1.2. Contributions .. 7

1.3. Research Methodology ... 7

CHAPTER II RELATED WORK .. 8

CHAPTER III BACKGROUND ... 34

3.1. Consent Management ... 34

3.2. Event-B ... 39

3.3. Blockchain Technology .. 43

3.4. Smart Contract .. 44

CHAPTER IV FORMAL MODELS FOR CONSENT MANAGEMENT IN

CENTRALIZED SYSTEMS ... 46

4.1. CM State Machines in Centralized Systems ... 48

4.2. Formal Development in Event-B .. 52

4.2.1. Restricted Processing State Machine (RPSM) .. 52

4.2.2. Withdrawal Approval State Machine (WASM) 57

4.2.3. Portable Approval State Machine (PASM) .. 59

4.2.4. Consent Renewal State Machine (CRSM) .. 61

4.3. Model Evaluation in Event-B ... 64

4.4. Event-B Model Transformation to Class Diagram ... 64

 vii

CHAPTER V A FORMAL MODEL FOR BLOCKCHAIN-BASED CONSENT

MANAGEMENT IN DATA SHARING .. 67

5.1. CM State Machine for Data Sharing in Distributed Systems 71

5.2. Formal Development in Event-B .. 73

5.2.1. Data Sharing State Machine (DSSM) ... 74

5.2.1.1. Invariants in DSSM ... 74

5.2.1.2. Events in DSSM .. 76

5.3. Model Evaluation in Event-B ... 84

5.4. Event-B Model Transformation to Class Diagram ... 84

5.5. SmartDataTrust Implementation ... 87

CHAPTER VI ANALYSIS AND INTERPRETATION OF RESULTS 90

6.1. Test Cases in CM for Centralized Systems ... 90

6.1.1. Test Cases in the RPSM Model ... 90

6.1.1.1. The RP1 Test Case ... 91

6.1.1.2. The RP2 Test Case ... 92

6.1.1.3. The RP3 Test Case ... 93

6.1.1.4. The RP4 Test Case ... 94

6.1.1.5. Test RP5 Test Case .. 95

6.1.2. Test Cases in the WASM Model .. 96

6.1.2.1. The WA1 Test Case ... 97

6.1.2.2. The WA2 Test Case ... 98

6.1.2.3. The WA3 Test Case ... 99

6.1.2.4. The WA4 Test Case ... 100

6.1.3. Test Cases in the PASM Model ... 101

6.1.3.1. The PA1 Test Case ... 102

6.1.3.2. The PA2 Test Case ... 103

6.1.3.3. The PA3 Test Case ... 104

6.1.3.4. The PA4 Test Case ... 105

6.1.4. Test Cases in the CRSM Model ... 106

 viii

6.1.4.1. The CR1 Test Case .. 107

6.1.4.2. The CR2 Test Case .. 108

6.1.4.3. The CR3 Test Case .. 109

6.1.4.4. The CR4 Test Case .. 111

6.1.4.5. The CR5 Test Case .. 112

6.2. Test Cases in CM for Distributed Systems in Data Sharing 113

6.2.1. Test Cases in the DSSM Model ... 113

6.2.1.1. The DS1 Test Case .. 114

6.2.1.2. The DS2 Test Case .. 115

6.2.1.3. The DS3 Test Case .. 117

6.2.1.4. The DS4 Test Case .. 117

6.2.1.5. The DS5 Test Case .. 118

CHAPTER VII DISCUSSION AND CONCLUSION .. 126

7.1. Discussion ... 126

7.2. Conclusion .. 127

APPENDIX A EVENT-B MODELS FOR CONSENT MANAGEMENT IN

CENTRALIZED SYSTEMS ... 128

1. The RPSM Model .. 128

1.1. The RPCX Context ... 128

1.1.1. Sets in RPCX .. 129

1.1.2. Constants in RPCX ... 129

1.1.3. Axioms in RPCX .. 129

1.2. The RPSM Machine ... 130

1.2.1. Invariants in RPSM .. 130

1.2.2. Events in RPSM ... 132

1.2.2.1. The INITIALISATION Event .. 132

1.2.2.2. The Login Event .. 133

1.2.2.3. The AddPatient Event .. 133

1.2.2.4. The AddConsent Event .. 134

 ix

1.2.2.5. The CreateInquiry Event .. 134

1.2.2.6. The CheckAuthorizeConsent Event 135

1.2.2.7. The ExecuteQuery Event ... 135

1.2.2.8. The Logout Event .. 136

2. The WASM Model ... 136

2.1. The WACX Context ... 137

2.1.1. Sets in WACX ... 137

2.1.2. Constants in WACX ... 137

2.1.3. Axioms in WACX ... 138

2.2. The WASM Machine .. 138

2.2.1. Invariants in WASM ... 138

2.2.2. Events in WASM .. 139

2.2.2.1. The INITIALISATION Event .. 140

2.2.2.2. The Login Event .. 140

2.2.2.3. The CreateWithdrawal Event ... 141

2.2.2.4. The ApproveWithdrawal Event 141

2.2.2.5. The RejectWithdrawal event.. 142

2.2.2.6. The Logout event ... 142

3. The PASM Model .. 143

3.1. The PACX Context ... 143

3.1.1. Sets in PACX .. 143

3.1.2. Constants in PACX ... 144

3.1.3. Axioms in PACX .. 144

3.2. The PASM Machine ... 144

3.2.1. Invariants in PASM .. 144

3.2.2. Events in PASM.. 146

3.2.2.1. The INITIALISATION Event .. 146

3.2.2.2. The Login Event .. 146

3.2.2.3. The CreatePortable Event .. 147

 x

3.2.2.4. The ApprovePortable Event ... 147

3.2.2.5. The RejectPortable Event .. 148

3.2.2.6. The Logout Event .. 148

4. The CRSM Model .. 149

4.1. The CRCX Context .. 149

4.1.1. Sets in CRCX ... 149

4.1.2. Constants in CRCX .. 150

4.1.3. Axioms in CRCX .. 150

4.2. The CRSM machine ... 150

4.2.1. Invariants in CRSM .. 150

4.2.2. Events in CRSM ... 152

4.2.2.1. The INITIALISATION Event .. 152

4.2.2.2. The Login Event .. 153

4.2.2.3. The CreateConsentRenewRequest Event 153

4.2.2.4. The NotifyPatient Event .. 154

4.2.2.5. The ExtendConsentExpiration Event 155

4.2.2.6. The DeletePatientData Event ... 155

4.2.2.7. The Logout Event .. 156

APPENDIX B AN EVENT-B MODEL OF CONSENT MANAGEMENT FOR

DISTRIBUTED SYSTEMS IN DATA SHARING ... 157

1. The DSSM Model .. 157

1.1. The DSCX Context... 158

1.1.1. Sets in DSCX .. 158

1.1.2. Axioms in DSCX .. 158

1.2. The DSSM Machine ... 159

1.2.1. Invariants in DSSM .. 159

1.2.2. Events in DSSM ... 162

1.2.2.1. The INITIALISATION Event .. 162

1.2.2.2. The AddConsent Event .. 163

 xi

1.2.2.3. The AddDataSubjectConsent Event 163

1.2.2.4. The CallbackRequester Event .. 164

1.2.2.5. The SubmitRequest Event ... 164

1.2.2.6. The CallbackResponder Event 165

1.2.2.7. The SubmitResponse Event ... 166

1.2.2.8. The CallbackDataTransfer Event 166

1.2.2.9. The TransferData Event ... 167

1.2.2.10. The InsufficientBalance Event 168

1.2.2.11. The CheckConsentExpiration Event 169

1.2.2.12. The UnauthorizedAccess Event 169

1.2.2.13. The RevokeConsent Event .. 170

1.2.2.14. The RenewConsent Event .. 170

REFERENCES .. 171

VITA .. 180

xii

LIST OF TABLES

 Page

Table 1: Consent management-related issues as requirements for centralized systems.

.. 5

Table 2: Consent management-related issues as requirements for data sharing in

distributed systems. .. 6

Table 3: Comparison with related works in the context of data privacy and consent

management. .. 33

Table 4: The comparison between classes and object attributes of existing ontologies

in consent context. ... 36

Table 5: The competency questions for consent management in which relevant to

GDPR articles, extended from Kurteva et al. [92] (cont’d). .. 37

Table 6: List of proposed state machines and GDPR articles they covered. 47

Table 7: The summary of proof statistics by the Rodin platform for the proposed four

consent management state machines based on Event-B models. 64

Table 8: Data sharing-related issues as requirements for blockchain-based consent

management. .. 68

Table 9: The proposed model and GDPR articles it covered (cont’d). 69

Table 10: The summary of proof statistics by the Rodin platform for the proposed

state machine based on the Event-B model. .. 84

Table 11: The mapping between competency questions for consent management and

our study (cont’d). .. 120

xiii

LIST OF FIGURES

 Page

Figure 1: Demonstrating the architecture of the Matwin et al.’s model (Figure 1 of

[53]).. 9

Figure 2: The P-RBAC model architecture (Figure 3 of Ni at el. [57])...................... 10

Figure 3: The architecture of big data testing areas (Figure 2 of Blake & Saleh [36])

.. 11

Figure 4: The architecture of disclosure-processing (Figure 1 of Abe & Simpson

[59]).. 12

Figure 5: Conceptual diagram of privacy-awareness clinical workflows (Figure 1 of

Besik & Freytag [63]). ... 14

Figure 6: The CMA framework and its APIs interaction comply with GDPR and

MyData approach (Figure 1 of Hyysalo et al. [66]). .. 17

Figure 7: The interaction between a user and a PII manager (Figure 1(d) of

Marillonnet et al. [70]). .. 19

Figure 8: The sequence diagram of user authentication and consent collection on the

PII manager (Figure 3 of Marillonnet et al. [70]). ... 20

Figure 9: System architecture of personal data management on the blockchain (Figure

1 of Daudén-Esmel et al. [72]). .. 22

Figure 10: The layered system architecture of SC-DCMS (Figure 3 of Merlec et al.

[74]).. 25

Figure 11: The ADvoCATE architecture (Figure 1 of Rantos et al. [83]). 27

Figure 12: The CM component’s workflow (Figure 3 of Rantos et al. [83]). 28

Figure 13: The interaction between smart contracts and service providers in MedRec

(Figure 1 of Azaria et al. [86]). .. 29

Figure 14: The PVR-centric contract structure in CrowdMed-II (Figure 2 of Hu et al.

[87]).. 31

Figure 15: The PPVR-centric contract structure in CrowdMed-II (Figure 3 of Hu et

al. [87]). .. 31

Figure 16: The consent lifecycle within consent-based approaches (Figure 1 of

Kurteva et al. [92]). .. 35

 xiv

Figure 17: The process of refinement in Event-B (Figure 1 of Jarrar & Balouki

[101]).. 40

Figure 18: The process of model checking in ProB (Figure 1 of Ligot et al. [111]).

(A) demonstrating the generation of proof obligations in compliance with the abstract

and concrete models. .. 41

Figure 19: The example of generating INV proof obligation from the Login event. . 42

Figure 20: The example of generating GRD proof obligation from the AddPatient

event. .. 42

Figure 21: List of blocks of transactions in a blockchain data structure, modified from

Figure 1 of Chinnasamy et al. [115]. ... 44

Figure 22: Class diagram demonstrating how a software platform for cancer precision

medicine manages roles and permissions to restrict users’ access to screens. (A) an

authentication module associated with users, roles, and screens. (B) new classes added

to RUN-ONCO for supporting dynamic access attributes within role-based consent.

(C) relevant classes needed to be enhanced to support consent management. 49

Figure 23: Restricted Processing State Machine (RPSM) describing the transition

states and events used to restrict the processing of personal data. 50

Figure 24: Withdrawal Approval State Machine (WASM) describing the transition

states and events used to manage a consent revocation request. 50

Figure 25: Portable Approval State Machine (PASM) describing the transition states

and events used to manage a data transferring request. ... 51

Figure 26: Consent Renewal State Machine (CRSM) describing the transition states

and events used to manage a data retention request. ... 51

Figure 27: A class diagram transformed from the proposed consent-based models in

Event-B. ... 65

Figure 28: Data sharing sequence diagram illustrating the request-response

interaction between ServiceA (responder) and Service B (requester). 71

Figure 29: Data sharing sequence diagram continued from the previous diagram

(Figure 28), which illustrates the request-response interaction between ServiceA and

ServiceB. .. 72

Figure 30: Data Sharing State Machine (DSSM) illustrating the transition states and

events used to share personal data between a requester and a responder through

blockchain. ... 73

Figure 31: Class diagram resulted from mapping the proposed model in Event-B to

code for supporting consent management in the context of data sharing. 85

 xv

Figure 32: Class diagram continued from the previous diagram (Figure 31)

demonstrating how to transform the proposed model in Event-B for supporting

request-response interactions. .. 86

Figure 33: Overview of SmartDataTrust API framework. ... 88

Figure 34: Class diagram demonstrating how a software platform for cancer precision

medicine handles GDPR-compliant blockchain-based consent management in data

sharing. (A) relevant classes needed to be enhanced to support data sharing. (B) new

classes added to RUN-ONCO for supporting managed consent into the blockchain

and handling the requester and responder callbacks made by the blockchain. 89

Figure 35: The simulation of the RP1 test case. (A) the Login event and its variables

are produced by ProB, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS3 to perform for the next event execution. 92

Figure 36: The latest value of the variable sessions corresponds to event execution in

the RP1 test case. ... 92

Figure 37: The simulation of the RP2 test case. (A) the CreateInquiry event and its

variables are produced by ProB, which has been executed in the history panel. (B) the

choice of events allows AUTHORIZED_USERS3 to perform for the next event

execution. ... 93

Figure 38: The latest value of the variable queries corresponds to event execution in

the RP2 test case. ... 93

Figure 39: The simulation of the RP3 test case. (A) the CheckAuthorizeConsent

event and its variables are produced by ProB, which has been executed in the history

panel. (B) the choice of events allows AUTHORIZED_USERS1 to perform for the

next event execution. ... 94

Figure 40: The latest value of the variable authorizedConsent corresponds to event

execution in the RP3 test case. ... 94

Figure 41: The simulation of the RP4 test case. (A) the ExecuteQuery event and its

variables are produced by ProB, which has been executed in the history panel. 95

Figure 42: The latest value of the variable pf corresponds to event execution in the

RP4 test case. ... 95

Figure 43: The simulation of the RP5 test case. (A) AUTHORIZED_USERS1 adds

PATIENTS1 and his/her given consent. (B) AUTHORIZED_USERS2 creates query

to access the information of PATIENTS1 under CONSENTS2. 96

Figure 44: The latest value of the variable pf corresponds to event execution in the

RP5 test case. ... 96

 xvi

Figure 45: The simulation of the WA1 test case. (A) the Login event and its variables

are produced by ProB, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS3 to perform for the next event execution. 98

Figure 46: The latest value of the variable sessions corresponds to event execution in

the WA1 test case. .. 98

Figure 47: The simulation of the WA2 test case. (A) the CreateWithdrawal event and

its variables are produced by ProB, which has been executed in the history panel. (B)

the choice of events allows AUTHORIZED_USERS1 to perform for the next event

execution. ... 99

Figure 48: The latest value of the variable withdrawState corresponds to event

execution in the WA2 test case. ... 99

Figure 49: The simulation of the WA3 test case. (A) the ApproveWithdrawal event

and its variables are produced by ProB, which has been executed in the history panel.

.. 100

Figure 50: The latest values of withdrawState and markAsDeleted variables

correspond to event execution in the WA3 test case. ... 100

Figure 51: The simulation of the WA4 test case. (A) the RejectWithdrawal event and

its variables are produced by ProB, which has been executed in the history panel. .. 101

Figure 52: The latest value of the variable withdrawState corresponds to event

execution in the WA4 test case. ... 101

Figure 53:The simulation of the PA1 test case. (A) the Login event and its variables

are produced by ProB, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS3 to perform for the next event execution. .. 103

Figure 54: The latest value of the variable sessions corresponds to event execution in

the PA1 test case. ... 103

Figure 55: The simulation of the PA2 test case. (A) the CreatePortable event and its

variables are produced by ProB, which has been executed in the history panel. (B) the

choice of events allows AUTHORIZED_USERS1 to perform for the next event

execution. ... 104

Figure 56: The latest value of the variable portableState corresponds to event

execution in the PA2 test case. ... 104

Figure 57: The simulation of the PA3 test case. (A) the ApprovePortable event and its

variables are produced by ProB, which has been executed in the history panel. 105

Figure 58: The latest value of the variable portableState corresponds to event

execution in the PA3 test case. ... 105

 xvii

Figure 59: The simulation of the PA4 test case. (A) the RejectPortable event and its

variables are produced by ProB, which has been executed in the history panel. 106

Figure 60: The latest value of the variable portable corresponds to event execution in

the PA4 test case. ... 106

Figure 61: The simulation of the CR1 test case. (A) the Login event and its variables

are produced by ProB, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS3 to perform for the next event execution. .. 108

Figure 62: The latest value of the variable sessions corresponds to event execution in

the CR1 test case. ... 108

Figure 63: The simulation of the CR2 test case. (A) the CreateConsentRenewRequest

event and its variables are produced by ProB, which has been executed in the history

panel. (B) the choice of events allows AUTHORIZED_USERS to perform for the

next event execution. ... 109

Figure 64: The latest values of consentRenewalState and isConsentExpired variables

correspond to event execution in the CR2 test case. .. 109

Figure 65: The simulation of the CR3 test case. (A) the NotifyPatient event with

“Approved” status, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS1 to perform for the next event execution. .. 110

Figure 66: The latest values of consentRenewalState and markAsReceived variables

correspond to event execution in the CR3 test case. .. 110

Figure 67: The simulation of the CR3 test case. (A) the NotifyPatient event with

“Rejected” status, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS1 to perform for the next event execution. .. 111

Figure 68: The latest values of consentRenewalState and markAsReceived variables

correspond to event execution in the CR3 test case. .. 111

Figure 69: The simulation of the CR4 test case. (A) the ExtendConsentExpiration

event and its variables are produced by ProB, which has been executed in the history

panel. .. 112

Figure 70: The latest value of the variable isConsentExpired corresponds to event

execution in the CR4 test case. .. 112

Figure 71: The simulation of the CR5 test case. (A) the DeletePatientData event and

its variables are produced by ProB, which has been executed in the history panel. .. 113

Figure 72: The latest value of the variable markAsDeleted corresponds to event

execution in the CR5 test case. .. 113

 xviii

Figure 73: The simulation of the DS1 test case. (A) the AddConsent and

AddDataSubject events and their variables are produced by ProB, which has been

executed in the history panel.. 114

Figure 74: The latest values of consents, dataFields, and dataSubjectConsents

variables correspond to event execution in the DS1 test case. 115

Figure 75: The simulation of the DS2 test case. (A) the CallbackRequester and

SubmitRequest events, which have been executed in the history panel. (B) the

CallbackResponder and SubmitResponse events, which have been executed in the

history panel. (C) the CallbackDataTransfer and TransferData events, which have

been executed in the history panel. .. 116

Figure 76: The latest values of all state variables in the DSSM model correspond to

event execution in the DS2 test case. ... 116

Figure 77: The simulation of the DS3 test case. (A) the RevokeConsent event and its

variables produced by ProB, which have been executed in the history panel. (B) the

list of unsatisfied and satisfied event guards corresponds to current state variables. 117

Figure 78: The simulation of the DS4 test case in the history panel. 118

Figure 79: The latest values of all state variables in the DSSM model correspond to

event execution in the DS4 test case. ... 118

Figure 80: The simulation of the DS5 test case. (A) the InsufficientBalance event and

its variables produced by ProB, which have been executed in the history panel. 119

Figure 81: RPSM demonstrating how to restrict access to personal data according to

data subjects’ consent. .. 128

Figure 82: WASM demonstrating how to conduct the withdrawal approval process.

.. 137

Figure 83: PASM demonstrating how to conduct the portable approval process. 143

Figure 84: CRSM demonstrating how to conduct the consent renewal process....... 149

Figure 85: DSSM demonstrating blockchain-based consent management in data

sharing .. 157

1

CHAPTER I

INTRODUCTION

Data privacy concerns have become more critical since the General Data Protec-

tion Regulation (GDPR) went into effect on May 25, 2018. The GDPR is the data pri-

vacy law in the European Union (EU) that empowers people (‘data subjects’) with

various rights to control their personal data [1]. It motivates people to be aware of

how their data is being used. On the other hand, businesses must rethink and redesign

their software systems to embrace data protection. However, the GDPR is written in

natural language, and most data protection articles are described in generic terms.

Therefore, it causes many businesses to struggle with identifying appropriate tech-

nical solutions for their development process to demonstrate GDPR compliance [2-4].

Nevertheless, developers find the GDPR difficult to interpret and adopt into software

systems [5, 6]. Besides, the lack of clear guidelines on how to implement data protec-

tion as a component of software systems leads to risks of confidentiality and privacy

breaches [7, 8]. Moreover, software systems that fail to comply with GDPR require-

ments face heavy penalties and fines, which becomes a significant research challenge

[9].

Most modern software systems (e.g., banking, online shopping, social media) re-

ly on customers’ data. Moreover, they may probably share customers’ data among

third-parties services to improve their products and services. The growth of data cre-

ated and processed by software systems continues increasing, as businesses should be

concerned about customers’ privacy to handle their data with ethical and legal integri-

ty. By designing a data protection mechanism for software systems, developers need

to transform GDPR requirements into software specifications. However, the develop-

ers should incorporate data privacy by design to guarantee that all software systems

embed a data protection mechanism. Privacy by Design (PbD) is an approach to de-

velopers that considers data protection upfront and integrates it as a core functionality

into software systems [10-12]. The benefit of incorporating PbD is to make compli-

ance with GDPR requirements easier [13].

Based on Article 6 GDPR, there are the six legal bases for data processing as

follows: 1) the consent indicates the data subject’s agreement that he/she has given

clearly approval for personal data processing, 2) the contract indicates that the pur-

pose of the data processing is essential to perform a contract with data subjects, and

data controllers need to examine which provisions regarding the legal basis of pro-

cessing personal data, e.g., the contract between customers of payment services, 3) the

legitimate interest indicates that data processing is essential in manners data subjects

commonly expect, and organizations use their personal data to meet its objectives,

e.g., fraud prevention, 4) the vital interest indicates that data processing is essential to

 2

protect individuals’ life, e.g., emergency medical treatment, 5) the legal requirement

indicates that data processing is essential to perform with a legal obligation, e.g., con-

sumer transaction law, and 6) the public interest indicates that data processing is es-

sential to perform public functions undertaken by public authorities, e.g., a public

body’s tasks.

The consent under GDPR ensures data subjects’ freedom to make decisions

about their personal data. Hence without data subjects’ consent, a software system

conducts their personal data unlawfully or unauthorized. From a practical perspective,

scientific communities, private companies, and the Cyber Security Network of Com-

petence Centres for Europe (CyberSec4Europe) are pointing out that the consent and

security services successfully enforce the data protection regulation [14]. Daoudagh et

al. [2] concurred that the consent service enables organizations to manage personal

data lifecycles. In contrast, security services such as authorization modules ensure that

only the authorized user can access a specific resource (i.e., Access Control (AC)),

which brings personal data into protection within a regulatory regime (e.g., data usage

purpose, user consent, data retention period). Therefore, incorporating consent and

security services overcomes the challenge of designing software systems to support

GDPR requirements. Sforzin et al. [15] revealed that there are many research studies

for defining and implementing privacy knowledge and rules, but there is still no ge-

neric solution.

Consent management (CM) is a software component used to manage the entire

personal data lifecycle [16]. With its capability, consent management helps build

software systems that meet the GDPR requirements [17]. The key roles involved in

consent management under the GDPR are as follows: 1) the data controller is the enti-

ty, e.g., person or organization, responsible for defining policies on collecting and

processing data (Articles 4(7) & 24 GDPR), and 2) the data processor is the entity,

e.g., person, organization, responsible for collecting and processing data upon the data

controller’s policies (Articles 4(8) & 28 GDPR). Furthermore, based on the data sub-

ject’s consent (Articles 6(1a) & 7 GDPR), which are composed of four elements: 1)

the data subject shall give his/her consent voluntarily, 2) the purpose of processing

data must be specific and transparent, 3) the data controller must inform the data sub-

ject for the purpose before gathering and processing his/her personal data, and 4) the

data subject gives explicit consent for enabling the processing of his/her personal da-

ta.

Nevertheless, the GDPR expects organizations to implement privacy into tech-

nology solutions at their earliest stages of process development [18], as stated in Arti-

cle 25. At its core, the GDPR mandates only a baseline set of guidelines, not how to

embed data protection into software design [19]. To ensure consent management

 3

mechanism as a primary component in software systems, we thus adopt privacy by

design (PbD). PbD is a concept that emphasizes how to integrate data protection into

technology as default settings, but PbD cannot be accomplished solely by data protec-

tion laws [19]. It is the philosophy proposed by Cavoukian. Besides, PbD outlines the

seven Foundational Principles, which define a set of the following guidelines: 1) it is

crucial to incorporate data protection as part of software design, 2) data protection

must be embedded as core functionality in software systems by default, 3) the system

must adopt a data protection mechanism into its architecture, 4) the system must con-

duct personal data accurately and securely without decreasing the system’s ability, 5)

the system must keep personal data and destroy it for an appropriate retention period,

6) the system must provide privacy notices for fulfilling the purpose, and it should be

clear and transparent to individuals about their personal data, and 7) the system must

respect and protect individuals’ data with regard to a high level of security.

In addition, we have addressed key issues and requirements of consent man-

agement for centralized systems (Table 1) and data sharing in distributed systems

(Table 2) related to GDPR. This study aims to fulfill the requirements derived from

the literature partially. Data controllers can gather consent from different types of

channels, including websites, mobile applications, web forms, and various marketing

platforms, which makes it difficult to process the collecting of informed consent from

the data subject [20]. In this thesis, we focus on constructing formal models divided

into two primary purposes: 1) consent management for centralized systems and 2)

consent management for data sharing in distributed systems. These two types of con-

sent management are essential for businesses collecting, processing, and sharing per-

sonal data. Centralized consent management enables privacy processes centralization

to conduct the lifecycle of individuals’ data concerning data protection regulations. In

contrast, distributed consent management enables secure data sharing by limiting ac-

cessing personal data within given consent and capturing audit logs for every activity.

We thus adopt blockchain technology to conduct data-sharing processes with higher

reliability and security. In doing so, we set out primitive CM operations to fulfill is-

sues and requirements for both centralized and distributed consent management, in-

cluding manipulating data subjects’ consent, restricting access to authorized personal

data based on the data subject’s consent, enabling data subjects to revoke consents,

enabling data subjects to request portable their personal data, and allowing data sub-

jects to renew their consent for continued use of services and products offered by ser-

vice providers.

Formal methods are essential and reliable for achieving data protection. They

use a mathematical approach to model and verify a software system specification to

guarantee its correctness [21, 22].

 4

To guarantee the correctness of the models, we used the Event-B formal method
[23, 24]. The benefit of using Event-B is that it provides an automated tool called Ro-

din Platform, which supports developing and checking various models [25]. The Ro-

din Platform is a model development tool based on Eclipse-IDE that offers useful

plugins such as a proof obligation generator, provers, a model-checker (ProB), etc
[26]

5
 T

ab
le

1
:

C
o
n
se

n
t

m
an

ag
em

en
t-

re
la

te
d
 i

ss
u
es

 a
s

re
q
u
ir

em
en

ts
 f

o
r

ce
n
tr

al
iz

ed
 s

y
st

em
s.

T

o
p

ic

Is
su

e
R

eq
u

ir
em

en
t

R
u

le
s

fo
r

co
ll

ec
ti

o
n

 a
n
d

 p
ro

ce
ss

in
g

o
f

p
er

so
n

al
 d

at
a

b
as

ed
 o

n
 a

 s
p
ec

if
ic

p
u

rp
o

se

T
h

e
la

ck
 o

f
m

an
ag

em
en

t
o
f

th
e

p
er

so
n

al
 d

at
a

li
fe

cy
cl

e
p

o
ss

ib
ly

 v
io

la
te

s
in

-

d
iv

id
u

al
s’

 r
ig

h
ts

 [
1

7
,
2

7
,
2

8
].

T
h

e
sy

st
em

 s
h

al
l

d
ef

in
e

th
e

co
n

se
n

t
m

an
ag

em
en

t
fu

n
c-

ti
o

n
al

it
y

 m
an

d
at

ed
 f

o
r

fu
rt

h
er

 c
o

ll
ec

ti
n

g
 a

n
d

 p
ro

ce
ss

in
g

o
f

p
er

so
n

al
 d

at
a.

T

h
e

d
at

a
su

b
je

ct
 c

an
 c

o
n

tr
o

l
an

d
 c

o
n

se
n

t
o

v
er

 h
is

/h
er

 p
er

so
n
al

 d
at

a
b

ei
n

g

co
ll

ec
te

d
 a

n
d

 p
ro

ce
ss

ed
 [

2
9

-3
1

].

A
cc

es
s

co
n

tr
o

l
T

h
e

am
b

ig
u

o
u

s
ro

le
 a

n
d

 r
es

p
o
n

si
b

il
it

y
 o

f
th

e
en

ti
ti

es
 i

n
v

o
lv

ed
 i

n
 t

h
e

co
ll

ec
t-

in
g

 a
n

d
 p

ro
ce

ss
in

g
 p

er
so

n
al

 d
at

a
b

ey
o

n
d

 o
ri

g
in

al
ly

 s
p

ec
if

ie
d

 p
u

rp
o

se
s

m
ay

le
ad

 t
o

 r
is

k
s

an
d

 f
re

ed
o
m

s
fo

r
in

d
iv

id
u

al
s

[3
2

-3
4

].

T
h

e
sy

st
em

 s
h

al
l

al
lo

w
 a

 d
at

a
co

n
tr

o
ll

er
 t

o
 a

ss
ig

n

st
ak

eh
o

ld
er

s
in

v
o

lv
ed

 a
cc

o
rd

in
g

 t
o

 t
h

ei
r

ro
le

s
an

d
 r

e
-

sp
o

n
si

b
il

it
ie

s
o

f
co

ll
ec

ti
n

g
 a

n
d
 p

ro
ce

ss
in

g
 p

er
so

n
al

d
at

a
w

it
h

in
 a

 g
iv

en
 c

o
n

se
n

t.

R
es

tr
ic

te
d

 r
ec

o
rd

s
d

at
a

re
tr

ie
v
al

T

h
e

ri
sk

 o
f

in
d

iv
id

u
al

 r
ig

h
ts

 v
io

la
ti

o
n

s
h

as
 i

n
cr

ea
se

d
 w

it
h

 t
h

e
co

ll
ec

ti
o

n
 a

n
d

p
ro

ce
ss

in
g

 o
f

u
n

n
ec

es
sa

ry
 p

er
so

n
al

 d
at

a
[3

5
].

T
h

e
sy

st
em

 s
h

al
l

d
ef

in
e

a
o
n

e
-t

im
e

re
q

u
es

t
p

er
 a

n
 i

n
d

i-

v
id

u
al

’s
 d

at
a,

 a
n

d
 i

t
w

il
l

b
e

co
ll

ec
te

d
 a

n
d

 p
ro

ce
ss

ed

ac
co

rd
in

g
 t

o
 p

re
d

ef
in

ed
 d

at
a

fi
el

d
s

w
it

h
in

 a
 g

iv
en

 c
o

n
-

se
n

t.

T
h

e
ri

sk
 o

f
a

d
at

a
b
re

ac
h

 h
as

 i
n

cr
ea

se
d

 w
it

h
 t

h
e

re
tr

ie
v

al
 o

f
a

m
as

si
v

e

am
o

u
n

t
o

f
p

er
so

n
al

 d
at

a
[3

6
,
3
7

].

W
it

h
d

ra
w

al

T
h

e
d

at
a

su
b

je
ct

 h
as

 t
h

e
ri

g
h

t
to

 w
it

h
d

ra
w

 h
is

/h
er

 c
o

n
se

n
t

at
 a

n
y

 t
im

e
(A

rt
i-

cl
e

7
(3

)
G

D
P

R
)

[3
8
,

3
9
].

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

w
it

h
d

ra
w

al
 a

p
p
ro

v
al

 m
ec

h
-

an
is

m
.

T
h

e
d

at
a

co
n

tr
o

ll
er

 m
u

st
 d

em
o
n

st
ra

te
 t

h
at

 s
er

v
ic

es
 a

n
d

 p
ro

d
u
ct

s
ca

n
 b

e
re

-

fu
se

d
 o

r
w

it
h
d

ra
w

n
 w

it
h

o
u

t
an

y
 d

et
ri

m
en

ta
l

co
n

se
q

u
en

ce
s

to
 t

h
e

d
at

a
su

b
je

ct

(R
ec

it
al

 4
2

 G
D

P
R

)
[3

9
].

If
 t

h
e

p
er

so
n

al
 d

at
a

is
 u

n
n

ec
es

sa
ry

 a
ft

er
 w

it
h

d
ra

w
al

,
th

en
 t

h
e

d
at

a
co

n
tr

o
ll

er

sh
o

u
ld

 r
em

o
v

e
p
er

so
n

al
 d

at
a

fr
o

m
 t

h
e

sy
st

em
 [

1
7

,
3
8

,
3
9

].

P
o

rt
ab

le

T
h

e
d

at
a

su
b

je
ct

 h
as

 t
h

e
ri

g
h

t
to

 r
ec

ei
v

e
a

co
p

y
 o

f
th

ei
r

p
er

so
n

al
 d

at
a

(A
rt

i-

cl
e

2
0

 G
D

P
R

)
[1

8
,
3

3
,
4

0
].

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

p
o
rt

ab
le

 a
p

p
ro

v
al

 m
ec

h
a
-

n
is

m
.

T
h

e
d

at
a

co
n

tr
o

ll
er

 i
s

al
so

 a
ll

o
w

ed
 t

o
 r

ef
u

se
 a

 d
at

a
su

b
je

ct
’s

 r
eq

u
es

t
o

n
ly

 i
f

th
e

re
fu

si
o

n
 c

an
 b

e
ju

st
if

ie
d

 t
o
 t

h
e

d
at

a
su

b
je

ct
 (

A
rt

ic
le

 1
2

(5
)

G
D

P
R

)
[4

1
].

R
en

ew
al

T

h
e

d
at

a
co

n
tr

o
ll

er
 m

ay
 o

ff
er

 a
 d

at
a

su
b

je
ct

 t
o

 e
x

te
n

d
 t

h
e

re
te

n
ti

o
n

 p
er

io
d

 t
o

co
n

ti
n

u
e

u
si

n
g

 t
h

e
p
ro

d
u

ct
s

an
d

 s
er

v
ic

es
 [

2
0

].

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

co
n

se
n

t
re

n
ew

al
 m

ec
h

a
-

n
is

m
.

T
h

e
d

at
a

su
b

je
ct

 h
as

 t
h

e
ri

g
h

t
to

 o
b

je
ct

 t
o

 t
h

e
d

at
a

co
n

tr
o

ll
er

 f
o

r
co

n
ti

n
u

in
g

to
 p

ro
ce

ss
 h

is
/h

er
 p

er
so

n
al

 d
at

a
(A

rt
ic

le
 2

1
 G

D
P

R
)

[4
1

].

T
o

 r
e-

co
n

se
n

t
th

e
d

at
a

su
b

je
ct

,
an

 i
n

v
es

ti
g

at
o

r
m

ay
 n

o
ti

fy
 t

h
e

d
at

a
su

b
je

ct
 i

n

p
er

so
n

 o
f

th
e

ci
rc

u
m

st
an

ce
s.

 I
n

 t
h

e
ca

se
 o

f
re

-s
ig

n
in

g
 c

o
n

se
n

t,
 t

h
er

e
w

as
 n

o

co
n

fl
ic

t
o

r
le

g
al

 p
ro

b
le

m
 w

it
h

 t
h

e
o

ri
g

in
al

 c
o

n
se

n
t

[4
2

].

If
 t

h
e

p
er

so
n

al
 d

at
a

is
 u

n
n

ec
es

sa
ry

 a
ft

er
 r

ej
ec

ti
o

n
 t

o
 e

x
te

n
d

 t
h

e
re

te
n

ti
o

n
 p

e-

ri
o

d
,

th
en

 t
h

e
d

at
a

co
n

tr
o

ll
er

 s
h

o
u

ld
 r

em
o

v
e

p
er

so
n

al
 d

at
a

fr
o

m
 t

h
e

so
ft

w
ar

e

sy
st

em
 [

1
7

,
3
8

,
3
9

].

6
 T

ab
le

2
:

C
o
n
se

n
t

m
an

ag
em

en
t-

re
la

te
d
 i

ss
u
es

 a
s

re
q
u
ir

em
en

ts
 f

o
r

d
at

a
sh

ar
in

g
 i

n
 d

is
tr

ib
u
te

d
 s

y
st

em
s.

T

o
p

ic

Is
su

e
R

eq
u

ir
em

en
t

R
u

le
s

fo
r

sh
ar

in
g

 o
f

p
er

so
n

al
 d

at
a

b
as

ed
 o

n
 a

 s
p

ec
if

ic
 p

u
rp

o
se

T
h

e
ch

al
le

n
g

e
o

f
co

n
se

n
t

m
an

ag
em

en
t

in
 d

at
a

sh
ar

in
g

 i
s

to
 o

b
ta

in
 a

n
d

 m
ai

n
-

ta
in

 c
o

n
se

n
t

an
d
 p

er
so

n
al

 d
at

a
in

 a
 d

is
tr

ib
u

te
d

 e
n

v
ir

o
n

m
en

t
se

cu
re

ly
,

ef
fe

c
-

ti
v

el
y

,
an

d
 t

ra
n

sp
ar

en
tl

y
 [

2
0
,

4
3

-4
5

].

T
h

e
sy

st
em

 s
h

al
l

d
ef

in
e

th
e

co
n

se
n

t
m

an
ag

em
en

t
fu

n
c
-

ti
o

n
al

it
y

 e
n

ab
li

n
g
 d

ec
en

tr
al

iz
ed

 s
ec

u
ri

ty
 a

n
d

 t
ra

n
sp

ar
-

en
cy

 o
f

re
co

rd
in

g
 a

n
d

 s
h

ar
in

g
 d

at
a

w
it

h
in

 a
 n

et
w

o
rk

.

T
h

e
d

at
a

su
b

je
ct

 c
an

 c
o

n
tr

o
l

an
d

 c
o

n
se

n
t

o
v

er
 h

is
/h

er
 p

er
so

n
al

 d
at

a
b

ei
n

g

sh
ar

ed
 [

2
0

,
4
3

,
4
5

,
4
6

].

A
cc

es
s

co
n

tr
o

l
T

h
e

d
at

a
su

b
je

ct
 s

h
al

l
p

ro
v

id
e

h
is

/h
er

 c
o

n
se

n
t

to
 t

ra
n

sf
er

 p
er

so
n

al
 d

at
a

b
e
-

tw
ee

n
 d

at
a

co
n

tr
o

ll
er

s
[2

0
,
4

3
].

T
h

e
sy

st
em

 s
h

al
l

en
ab

le
 p

ar
ti

ci
p

an
t

d
at

a
co

n
tr

o
ll

er
s

to

re
q

u
es

t
an

d
 s

h
ar

e
p

er
so

n
al

 d
at

a
w

it
h

in
 a

 g
iv

en
 c

o
n

se
n

t.

R
es

tr
ic

te
d

 r
ec

o
rd

s
d

at
a

re
tr

ie
v
al

T

h
e

ri
sk

 o
f

in
d

iv
id

u
al

 r
ig

h
ts

 v
io

la
ti

o
n

 h
as

 i
n

cr
ea

se
d

 w
it

h
 t

h
e

sh
ar

in
g

 o
f

u
n

-

n
ec

es
sa

ry
 p

er
so

n
al

 d
at

a
[3

5
,

4
7

].

T
h

e
sy

st
em

 s
h

al
l

d
ef

in
e

a
o
n

e
-t

im
e

re
q

u
es

t-
re

sp
o

n
se

in
te

ra
ct

io
n

 p
er

 a
n

 i
n
d

iv
id

u
al

’s
 d

at
a,

 a
n

d
 i

t
w

il
l

b
e

sh
ar

ed
 a

cc
o

rd
in

g
 t

o
 p

re
d

ef
in

ed
 d

at
a

fi
el

d
s

w
it

h
in

 a
 g

iv
-

en
 c

o
n

se
n

t.

T
h

e
d

at
a

co
n

tr
o

ll
er

 o
n

ly
 s

h
ar

es
 t

h
e

m
in

im
u

m
 a

m
o

u
n

t
o

f
p

er
so

n
al

 d
at

a
[3

6
,

3
7

,
4
3

].

W
it

h
d

ra
w

al

T
h

e
d

at
a

su
b

je
ct

 c
an

 r
ev

o
k

e
h

is
/h

er
 c

o
n

se
n

t
to

 s
to

p
 s

h
ar

in
g

 p
er

so
n

al
 d

at
a

at

an
y

 t
im

e
[2

0
,

4
8

].

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

co
n

se
n

t
re

v
o

ca
ti

o
n

 m
ec

h
a
-

n
is

m
 b

y
 w

h
ic

h
 t

h
e

d
at

a
su

b
je

ct
 c

an
 w

it
h

d
ra

w
 h

is
/h

er

co
n

se
n

t.

R
en

ew
al

T

h
e

d
at

a
co

n
tr

o
ll

er
 m

ay
 a

sk
 t

h
e

d
at

a
su

b
je

ct
 t

o
 e

x
te

n
d

 t
h

e
re

te
n

ti
o

n
 p

er
io

d
 t

o

co
n

ti
n

u
e

sh
ar

in
g

 h
is

/h
er

 p
er

so
n

al
 d

at
a

[2
0

,
4
8

].

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

co
n

se
n

t
re

n
ew

al
 m

ec
h

an
is

m

b
y

 w
h

ic
h

 t
h
e

d
at

a
su

b
je

ct
 c

an
 r

en
ew

 h
is

/h
er

 c
o
n

se
n

t.

A
u

d
it

 l
o

g
s

tr
ac

k
 a

ct
iv

it
ie

s
S

h
ar

in
g

 p
er

so
n

al
 d

at
a

b
et

w
ee

n
 t

h
e

p
ar

ti
ci

p
an

ts
 a

s
d

at
a

co
n

tr
o
ll

er
s

re
co

rd
ed

at
 e

ac
h

 t
ra

n
sm

is
si

o
n

 s
ta

g
e

sh
o
u

ld
 b

e
im

m
u

ta
b

le
 a

n
d

 t
ra

n
sp

ar
en

t
o

n
 t

h
e

h
is

to
-

ry
 o

f
tr

an
sa

ct
io

n
s

[2
0
,

4
3
,

4
7
].

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
an

 a
u

d
it

 m
ec

h
an

is
m

 t
o

 r
ec

o
rd

a
re

q
u

es
t-

re
sp

o
n

se
 i

n
te

ra
ct

io
n

 a
m

o
n

g
 t

h
e

d
at

a
co

n
tr

o
l-

le
rs

 o
n

 e
v

er
y

 s
h

ar
ed

 d
at

a.

T
h

e
d

at
a

su
b

je
ct

 s
h

al
l

b
e

ab
le

 t
o

 p
er

fo
rm

 a
u
d

it
s

b
as

ed
 o

n
 a

cc
es

s
to

 h
is

/h
er

p
er

so
n

al
 d

at
a

w
it

h
in

 t
h

e
g

iv
en

 c
o

n
se

n
t

[2
0

,
4
3

,
4
6

].

P
er

so
n

al
 d

at
a

T
h

e
ri

sk
 o

f
d

ir
ec

t
id

en
ti

fi
ca

ti
o
n

 i
n

 d
at

a
sh

ar
in

g
 m

ay
 l

ea
d

 t
o

 r
ec

o
g

n
iz

in
g
 i

n
d

i-

v
id

u
al

s
[4

7
,
4

9
-5

1
].

T
h

e
sy

st
em

 s
h

al
l

u
se

 p
se

u
d

o
n
y

m
iz

ed
 d

at
a

to
 m

in
im

iz
e

th
e

ri
sk

 a
ss

o
ci

at
ed

 w
it

h
 u

si
n

g
 p

er
so

n
al

 d
at

a.

7

1.1. Objective of the Work

The objectives of this study are as follows:

1.1.1. To construct formal models used as guidelines for software development

on the aspects of consent management based on centralized systems to ful-

fill GDPR requirements.

1.1.2. To construct formal models used as guidelines for software development

on the aspects of consent management based on data sharing in distributed

systems to fulfill GDPR requirements.

1.2. Contributions

• This study reduces the ambiguity of software design in consent management

functionality according to the GDPR, which can lead to broader and more con-

sistent adoption of the standards outlined in the law.

• This study provides class diagrams as clear guidance on how to incorporate

consent management functionality into healthcare systems.

• This study provides a Python REST API accessible to smart contracts for ena-

bling consent management in data sharing, called SmartDataTrust.

1.3. Research Methodology

• Conduct a literature review.

• Identify recent literature trends related to formal consent management models

according to GDPR compliance.

• Study related works in formal models for consent management, GDPR require-

ments, and use cases cover the lifecycle of consent management.

• Set up the Rodin Platform for the Event-B method and practice how to construct

a model to verify its correctness.

• Define state machines and identify GDPR articles that they covered.

• Develop complete formal models for the research question.

• Verify formal models’ correctness using the Rodin Platform with no invariant

violations and deadlocks found.

• Transform formal models into class diagrams.

• Publish two journal articles relating to the work.

• Prepare and engage in a thesis defense.

8

CHAPTER II

RELATED WORK

Data privacy is becoming increasingly important to consumer data protection as

technology gathers so much data. One significant privacy issue is that developers lack

an understanding of GDPR and PbD concepts, which leads to software systems not

being designed and developed from the perspective of data protection requirements

[5, 6]. There are numerous studies on the challenge of implementing data protection

into software systems from the perspective of laws [4, 9, 18, 19], computer science [3,

16, 17], and software engineering [2, 5-8]. Schupp [52] pointed out that formal meth-

ods play a significant role in supporting PbD, but half of the academic papers pro-

posed formal methods without demonstrating the implementation of their approach.

As for the other half, they demonstrated a few examples that could guide developers

to implement privacy-preserving systems. Hence, there remains a lack of clear soft-

ware development guidelines for implementing data protection.

Several relevant publications on using formal methods in data privacy did not

consider GDPR and consent management as part of their models. To begin with,

Matwin et al. [53] proposed an approach that empowers individuals to take control of

their privacy in data-mining programs. This privacy-preserving data mining approach

used the Coq theorem prover [54] to prove the properties of data-mining programs,

e.g., Weka [55]. The Coq is an interactive formal proof to assist in developing mathe-

matical theories and formalizing the system’s correctness. The authors first translated

programs into logic expressions of theorem provers to specify the privacy properties.

Then, they constructed a model and defined a set of permissions for limiting access to

a program’s properties according to the owner permissions. Figure 1 shows the archi-

tecture of their proposed model. It begins with the user C assigning permissions Pc(D,

A) to an algorithm A for determining whether actions can take with his/her data D.

When the developer modifies A with its source code S and builds it into a binary exe-

cutable B, the trusted organization Veri checks whether R(Pc, S) is a proof of a theo-

rem T(Pc, S). B is the executable of S with respect to the user’s permissions by the or-

ganization responsible for processing the user’s data. The limitation of the approach is

that it cannot express data properties syntactically in formal logic. However, this pro-

posed model can be used as a starting point for verifying privacy policies in data-

mining programs.

Stouppa & Studer [56] revealed that the main challenge of data privacy is to

share a portion of data while protecting personal data. The authors proposed a theoret-

ical framework to protect personal data exposed to public views by restricting the

privileges of all users in relational databases and ontology-based information systems.

They defined the query answering problems in first-order ontologies under the logical

 9

entailment and explained how to apply their model in a telecommunication company.

To begin with, the company offers end-users to find phone numbers through search

engines, but some customers want to keep their phone numbers private. Therefore, the

model should define a set of queries Owns(custi, Tel), where Owns indicates the rela-

tionship between a customer custi and his/her phone number Tel. Then, when a user

executes a query to retrieve a customer’s phone number, no result is returned by the

query for every possible interpretation, indicating that the customer’s phone number

has been protected. However, the proposed framework does not cover the case of

boolean queries because it does not apply to ontology.

Figure 1: Demonstrating the architecture of the Matwin et al.’s model (Figure 1 of

[53]).

According to Ni at el. [57] data privacy has become increasingly important for

consumers, organizations, researchers, and legislators. The study aimed to address the

problem of using traditional access control over data privacy. The authors proposed

Privacy-aware Role Based Access Control (P-RBAC) to enable the authoring and

conducting of privacy-aware access control policies. The P-RBAC extended from

RBAC to provide fully supporting complex privacy-related policies. The RBAC is a

security approach restricting system access to all users with their roles to perform on

specific resources but does not endorse privacy protection requirements. As for P-

RBAC, the privacy policies were mapped as permission assignments (PAs) which be-

longed to roles (Figure 2). However, the relationships between PAs and roles are

many-to-many and may cause conflicts among PAs within user roles in various condi-

tions. The authors then provided an algorithm to solve the conflict of PA by improving

the rules of Enterprise Privacy Authorization Language (EPAL) [58].

In the data-driven age, big data has become one of the major areas of data man-

agement to deal with massive data sets for supporting analysts and decision-makers.

The organizations involved in processing vast amounts of data are concerned with

 10

privacy issues, and data breaches may affect their businesses. Blake & Saleh [36]

suggested that formal methods significantly impact privacy-preserving in big data and

its applications. The authors argued that the challenge of protecting sensitive data in

big data is that misconduct with pieces of data causes to violate users’ privacy. Data

integration is the essential process in big data for combining heterogeneous data from

multiple sources into a data warehouse using the Extraction, Transformation, and

Loading (i.e., ETL) process. In the data integration staging area (Figure 3), the au-

thors suggested adding test procedures based on formal methods to validate the con-

formance of data protection in four specific areas: 1) Pre-Hadoop process validation,

which determines what data is sensitive and how long to keep data in the data prepro-

cessing step, 2) Map-Reduce process validation, which lowers the risk of a data

breach by retrieving massive data and limits sharing only the minimum amount of da-

ta among processes where is necessary, 3) ETL process validation, which verifies pri-

vacy-related policies and unlinks personally identifiable information before loading

into a data warehouse and, 4) Report testing process, which verifies the visibility

permission of sensitive data in report forms based on particular purposes.

Figure 2: The P-RBAC model architecture (Figure 3 of Ni at el. [57]).

In another study, Abe & Simpson [59] pointed out that the concept of privacy

has captured more attention in people’s lives but needs to be more specific. The au-

thors argued that formal methods play a significant role in certifying a variety of data

privacy contexts. They proposed a formal model to protect against unauthorized ac-

cess for sharing data among processes in distributed systems based on the United

Kingdom’s Data Protection Act (DPA) 1998 [60]. They first defined the disclosure

processing based on a single system that works internally related to a data controller.

 11

Figure 3: The architecture of big data testing areas (Figure 2 of Blake & Saleh [36])

The model was composed of five processes (Figure 4):

1. Parameterisation (PAR) defines the parameters as a guideline in each aspect

of individuals’ data processing designated by the data controller, e.g., extract

parameter (extparam), render parameter (renparam), test parameter (tes-

param), and disseminate parameter (disparam).

2. Extraction (EXT) extracts personal data according to the variable extparam,

e.g., the data source’s location, the characteristics of data extraction, the

workload applied during the extraction, and the method used for extraction.

After the processing task, the result produces the extraction of personal data

and holds in the variable extdata.

3. Rendering (REN) controls the visibility permission in personal data based on

the variables extdata and renparam (e.g., the methods used for rendering and

intensity visible and the characteristics of visible data). After processing, the

result produces the personal data visible and held in the variable rendata.

4. Testing (TES) evaluates the data quality according to the data controller’s pol-

icies and uses the extdata, rendata, and tesparam variables as inputs. The tes-

param is used to control the testing process for determining the risk of violat-

ing individuals’ privacy. After the processing task, the result produces the

testing results that perform on the extdata or rendata variables.

5. Dissemination (DIS) performs the data transmission based on the extdata,

rendata, and disparam variables. The disparam is used to determine the data

transfer location and mode of transfer. After the processing task, the result in-

dicates that personal data has been transferred.

 12

Figure 4: The architecture of disclosure-processing (Figure 1 of Abe & Simpson

[59]).

The authors added security constraints into the model, which were composed of

three major parts:

1. Determining permissions to prevent inappropriate disclosure, which combines

the relationship between actions, resources, and process identifiers (PID).

2. Restricting system access to authorized users based on Role-Based Access

Control (RBAC).

3. Determining a designated source of personal data to be processed.

In doing so, the authors formalized the model using Z notation and verified its

model with ProZ. The Z notation is a modeling-oriented method used to describe the

behavior of systems in mathematical terms [61], while ProZ is a model checker to

generate test cases, and check reachability, deadlock-free and invariant violations

[62]. Therefore, the model result indicated that the data controller’s obligations were

satisfied by system specifications.

Consent is one of the primary lawful bases for processing personal information

under the GDPR. Many studies have shown that consent is essential to allow individ-

uals to track their personal data being used and revoke consent at any time they desire.

Besides, there are numerous publications about consent management on centralized

and distributed systems, but most of the studies do not apply formal methods. On the

other hand, several studies incorporated consent management into software systems

using formal methods to ensure correct behavior. For example, Besik & Freytag [63]

focused on healthcare privacy and utilized Business Process Model and Notation

(BPMN) to model clinical workflows. This study aimed to employ privacy-preserving

mechanisms in existing non-privacy-aware workflows for a newborn screening sce-

nario. In the model, privacy awareness was defined as privacy rules of workflows

 13

based on privacy concepts, e.g., GDPR principles, privacy policies, and privacy pref-

erences.

Figure 5 demonstrates the overview of their proposed solution, which divided

into three parts:

1. Creating ontology based on privacy concepts that represents knowledge-based

systems. The BPMN is used to connect activities, events, and gateways of

clinical workflows related to the privacy ontology. In this study, there are

three sources of privacy concepts:

1.1. The GDPR principles, which cover some articles, e.g., purpose limitation

(Article 5(1b)), data minimization (Article 5(1c)), consent validation

(Article 6(1a)), and data retention (Article 5(1e)).

1.2. Privacy policies, in the context of software design, a statement that speci-

fies the data to be processed, for what purpose, who is responsible for

processing data, and how long data can be obtained.

1.3. Privacy preferences, which allows patients to grant who can or cannot

access their data based on given consent. Besides, patients can determine

their consent duration.

2. Formalizing privacy rules based on privacy policies and privacy preferences.

2.1. Formalizing privacy rules, which states as follows:

2.3.1. Privacy policies of consent PC, which contains consent rules de-

fined as 2-tuple (purpose, requiresConsent). The purpose indicates

the objective of data processing, while requiresConsent is a mem-

ber of the boolean (i.e., true, false) indicating whether the pro-

cessing of personal data requires consent.

2.3.2. Privacy policies of retention PR, which contains rules of retention

upon specific purpose defined as 4-tuple (user, purpose, data, re-

tention). The purpose is defined the same as consent privacy poli-

cies, while the other three variables represent as follows: 1) the

user indicates end-users which can be either individuals or organi-

zations, 2) the data indicates a set of data objects, and 3) the reten-

tion indicates the duration of data to be stored.

2.3.3. Privacy policies of data minimization PD, which contains data

minimization rules defined as 4-tuple (user, purpose, data, condi-

 14

tion). The first three variables are defined as retention privacy pol-

icies, while the condition indicates additional constraints regard-

ing the data-usage objective.

2.2. Formalizing privacy preferences rules

Privacy preferences R, which contains data subjects’ preferences

defined as 8-tuple (dataSubject, user, purpose, data, condition, duration,

status, entryDate). The variables user, purpose, data, and condition are

defined the same as data minimization privacy policies; while the other

four variables define as follows: 1) the dataSubject indicates a set of in-

dividuals whose personal data is being used, 2) the duration indicates the

period of the data subjects’ preference, 3) the status indicates whether

the data subject allows the user to access his/her personal data, and 4) the

entryDate indicates the creation date of the privacy preference.

3. Verifying compliance with GDPR principles and integrating privacy aware-

ness into existing clinical workflows.

Figure 5: Conceptual diagram of privacy-awareness clinical workflows (Figure 1 of

Besik & Freytag [63]).

The authors first formalized data-aware workflows in process modeling nota-

tions of BPMN. The data-aware workflow is a directed graph with vertices (compo-

 15

nents) C and edges (sequence flows) F. The C represents a set of components and

contains disjoint sets of tasks T, events E, data objects D, and gateways G, while the F

is a subset of C × C, representing the connection between source and destination

components. Besides, each task T is linked to a data object D, and every access is re-

quired to verify the given purpose p, representing an ordered pair (D, p). Finally, the

authors created algorithms written by formal annotations to fulfill privacy concepts.

In the study conducted by Tokas & Owe [64], they proposed a formal frame-

work for consent management that enables data subjects to modify their privacy pref-

erences through a distributed system. In addition, the framework partially covered

some of the GDPR articles, which comprise data protection principles (Article 5

GDPR), lawful bases for processing (Article 6 GDPR), data protection embedded into

design (Article 25 GDPR), and data subjects’ right to request access to their personal

data (Article 15 GDPR). The authors defined the relationship between a data subject

and a specific purpose as a 2-tuple (subject, purpose), called data tagging. Data tag-

ging was defined to restrict personal data based on purpose in methods associated

with privacy-preserving. The privacy policy is a statement written in natural language.

However, it is difficult for machines to understand. So, it needs to be transformed into

program entities or machine-readable code with the policy and consent specification

defined as the relationship between principals P, purposes R, and access rights A as 3-

tuple (P, R, A). First, the P represents a principal that denotes personal data that can be

accessible, and its object or interface corresponds to a principal. An interface is a con-

tract among classes with the inheritance hierarchy to be publicly exposed. Second, the

R represents the purpose of conducting personal data. Third, The A represents an ac-

cess right that denotes permission to perform a specific operation (e.g., read, write,

modify, full control) on the object.

For example, consider the personal health data with a tag {(Lilly, treatm)}, and

consented policies in the object Lilly are (pos(Doctor, treatm, full control);

neg(Sompong, treatm, read)). However, in the positive policy, this setting indicates a

Doctor has complete control of Lilly’s health data within the treatm purpose. On the

other hand, in the negative policy, Sompong is a Doctor and cannot read Lilly’s health

data.

Therefore, the policy and consent specification is a set of rules that aim to pro-

tect individuals by limiting the use of their personal data, written in Backus-Naur

(BNF) notation [65]. The framework provided classes and interfaces to obtain indi-

viduals’ privacy settings. The developers are required to implement the interfaces and

classes to incorporate consent management into the system. In addition, the frame-

work ensured that each access request to personal data corresponds to the current con-

sent policies.

 16

For other aspects of research consent management, Hyysalo et al. [66] proposed

Consent Management Architecture (CMA) which provides authorization context of

different data sources for securing access to health services following the strategy and

principles of MyData [67, 68]. The CMA was designed to fill the gap in the following

requirements: 1) data subjects own the right to control their personal data, 2) data

should be easily accessible and usable, 3) there should be a means to transform busi-

ness entities exposed to a useful resource as new services that are identified via URIs,

4) the infrastructure shall provide personal data sharing and guarantee that personal

data can be shared safely between public and private organizations comply with the

GDPR, and 5) data subjects can switch service providers.

Figure 6 describes the CMA framework and its APIs, which is divided into

three major parts:

1. Operator(s) are responsible for managing accounts composed of Authoriza-

tion and Protection APIs. The Operator(s) here provides interfaces for ac-

count verification across different data sources, service providers, and indi-

viduals. The Authorization API provides an interface for Data sink API to

generate/refresh the proof key of the authorization based on active consent,

while the Protection API provides an interface for Data source API to validate

consent.

2. Sink(s) provides the Data sink API as an interface for end-users to manage

consent and access their personal data. For any request, the Data sink API

shall be executed, after verifying the proof key of the authorization via Au-

thorization API.

3. Source(s) are responsible for managing consent and personal data composed

of Data and Data source APIs. The Data source API provides an interface for

other data sources to manage consent, while the Data API enables an inter-

face for Data sink API to retrieve personal data from the source with the re-

source identifier.

Therefore, the authors implemented minimum operations for proof of concept of

CMA. The framework was developed using Flask in Python to build REST API and a

web application. As for data management, they used the SQLAlchemy toolkit for

managing connectivity and mapping table columns to object properties in an SQLite

[69] database.

 17

Figure 6: The CMA framework and its APIs interaction comply with GDPR and

MyData approach (Figure 1 of Hyysalo et al. [66]).

Similarly, Marillonnet et al. [70] proposed human-centric architecture for sup-

porting consent management by accessing e-government services of the Territorial

Collectivities and Public Administration (TCPA). These TCPA are local and national

government officials that provide e-government services for their citizens. Citizens

shall submit some regulated document requests, e.g., renewing official documents,

requesting allowance documents, and registering for local services. The benefit of e-

government services is to provide citizens the ability to ease access to digital public

services. In doing so, citizens shall give Personally Identifiable Information (PII) to

TCPA with the required data for personal data processing. The authors argued that ex-

isting solutions did not address issues related to PII in the context of TCPA. Such is-

sues are that the user’s consent must be strictly considered regardless of PII’s original

location. In addition, the solutions must address the heterogeneous system cooperation

with various sources, and the verification of remote sources needs to be determined if

sources are reliable in providing users’ PII. This study aimed to design consent man-

agement incorporating the PII data lifecycle to fulfill TCPA requirements.

The authors defined the system model with four major parts:

1. Actors in the use case are defined along with their roles in an involved envi-

ronment, which is divided into four actors:

1.1. The citizen with a user account can submit regulated document requests

to TCPA online services. In addition, the user can keep track of his/her

request through the platform.

1.2. The PII manager is responsible for enforcement of the user’s consent and

verifying the trusted sources.

 18

1.3. The TCPA User-Relationship Management (URM) is a service provider

to help create trust among users and PII managers.

1.4. TCPA or third-party service providers maintain the data sources.

2. Environment Hypotheses indicate the use of experiments for enforcing data

protection regulations based on production environments. The authors sepa-

rated into two different hypotheses:

2.1. There should be rules and policies for accessing PII operators, which

many PII managers host. Besides, the users would be asked voluntarily

to select the operator of their PII manager.

2.2. The TCPA should arrange PII managers’ authority using a public-key in-

frastructure (PKI).

3. Functional Requirements describe the product features that systems shall of-

fer. In this study, they defined a list of non-exhaustive functional require-

ments related to PII management as follows:

3.1. Usage definition allows the data subject to specify the purposes designat-

ing the PII collection.

3.2. Consent management allows the PII manager to monitor access to PII

only if users provide their consent.

3.3. Usage monitoring allows the data subject to designate his/her own met-

rics for PII consumption on any TCPA service. This monitoring provides

a view of users’ PII usage on any TCPA service.

3.4. Delegation capabilities provide the PII manager to decide whether to

grant access to the PII based on the user’s consent, even if the user does

not connect to the platform.

3.5. PII location abstraction allows the PII manager to assure the manage-

ment of PII regardless of the actual source of the PII.

3.6. Protocol standardization enables the PII manager inquiries with a generic

interface leaning on standard protocols of PII management.

3.7. Access uniformization facilitates data access from multiple PII data

sources in the same manner.

 19

3.8. Authorization protocol interoperability provides identity management

protocols based on access mechanisms and authorization schemes by en-

abling multiple remote sources.

4. Technical Hypotheses indicate the use of experiments for technical support in

platform development, which considers four types of sources:

4.1. Plain OAuth 2.0 provides a user to authorize TCPA services to load the

PII from remote sources.

4.2. SAML 2.0 identity providers enable a mechanism for passing user au-

thentication and authorization across multiple secure domains along with

Single Sign On (SSO).

4.3. HTTP basic authentication is used to restrict access to REST sources by

an identified user.

4.4. Kerberos protocol is a network authentication protocol that verifies the

identity of resource servers using a basis of tickets.

Figure 7 and Figure 8 demonstrate the design of a multi-service-based architec-

ture for consent management. To begin with, a user has access to a user-centric PII

management zone (Figure 7) to manage his/her PII, authorized sources, and their

consent for any URM platform. The user first gets a ticket granted from the PII man-

ager (Figure 8). When the user’s identity and consent are specified, the PII manager

issues the access token by the ticket, which scopes on the requested resource. The au-

thors implemented a prototype design of the PII manager in a URM platform with

minimum operations for proof of concept using the Django web framework in Python.

Figure 7: The interaction between a user and a PII manager (Figure 1(d) of

Marillonnet et al. [70]).

 20

Data accountability is crucial for data sharing in distributed systems.

Nevertheless, data access and sharing come with the risk of privacy breaches.

According to the IBM Security Report [71], the global average cost of data breaches

has risen to a new high of $4.35 million, a climb of 13% over the past two years. The

increased data breaches cause people to question existing personal data collection

techniques. In addition, each audit record can potentially point to the causes of data

breaches. The difference between distributed systems and blockchain is that

distributed systems require trusted machines that administrators control, while

blockchain technology enables a distributed ledger that records and shares immutable

transactions between untrusted parties in a verifiable way and is permanently visible

to all parties.

Figure 8: The sequence diagram of user authentication and consent collection on the

PII manager (Figure 3 of Marillonnet et al. [70]).

Numerous studies are based on blockchain-enabled smart contracts to fulfill the

privacy gap and mitigate trust concerns in consent management. Daudén-Esmel et al.

[72] argued that the text of legislation regulations does not demonstrate how

transparently the data subjects have signed this consent. Besides, most data subjects

are unaware of their rights, nor do regulations provide guidelines to respond when

their privacy has been violated. The authors proposed a lightweight blockchain-based

GDPR-compliant personal data management system to fill this gap. This study

focused on a human-centric approach, which allows data subjects to determine data

 21

usage permissions based on their consent leveraged using smart contracts in

blockchain. Smart contracts are programs live on the blockchain, which execute once

specific objective criteria are met [73]. Therefore, the authors presented a conceptual

design and system architecture for personal data management under GDPR

requirements. Hence, this proposed architecture enables open-access permanent

evidence that records the agreement between data subjects and service providers

relevant to personal data usage.

Three requirements drive the proposed architecture:

1. GDPR requirements cover some articles, e.g., data controllers and data

processors need data subjects’ consent to begin processing personal data

(Articles 6 and 12), systems need to identify who is responsible for

processing the personal data (Article 13), data controllers must be able to

prove that they obtain data subjects’ valid consent (Article 7), data subjects

shall be able to adjust which personal data can be collected (Article 18), data

subjects shall be able to revoke their consent at any time (Articles 21 and 22),

and data subjects shall be able to request for deleting their personal data

(Article 17).

2. Functional requirements consist of three elements: 1) the architecture shall

decrease the number of interactions between the system and its actors (i.e.,

lightweight interactions), 2) the architecture shall support consent

management on distributed systems, and 3) the consent agreement has been

activated and cannot be deleted except for modification.

3. Security and Privacy Requirements consist of six elements: 1) no actors can

process any personal data without permission from data subjects, 2) actors

have to prove themselves who they are, 3) active consent agreements cannot

be unaltered, 4) no actors can disclaim their action on the system, 5) the

system must enable audit logs of all events and provide unmodifiable logs to

demonstrate its transparency, and 6) the system shall not obtain personal data

and neither provide any information leading to identifying data subjects.

Figure 9 shows the system architecture overview. First, a data subject

subscribes to a data controller to use its services. The data controller then creates a

new consent smart contract indicating whose personal data can be collected and how

long to keep it. As for access to the service, the data subject has to grant his/her

permission to the data controller to collect personal data via the consent smart

contract. The data controller then has permission to obtain this personal data in off-

chain data storage. After receiving the request from a data processor, the data

controller creates a new purpose smart contract. If the data subject accepts the

 22

agreement of processing purpose via the created smart contract, then the data

processor has permission to process personal data. Finally, the supervisory authority

shall be able to look into the audit logs to check whether the data controller and data

processor have violated data protection regulations.

Figure 9: System architecture of personal data management on the blockchain (Figure

1 of Daudén-Esmel et al. [72]).

Therefore, the authors implemented a prototype of the proposed architecture by

using smart contracts and deploying them on the local blockchain.

Similarly, Merlec et al. [74] worked on a human-centric approach to design

dynamic consent management to enable data subjects to control their personal data

usage purposes through smart contracts on a blockchain. Besides, the authors pointed

out that centralized systems lack trusted data provenance, transparency, and

accountability. The main contribution of this study is the proposed smart-contract-

based dynamic consent management system (SC-DCMS) that adheres to the legal use

of personal data under GDPR requirements. The proposed architecture covered some

articles, e.g., the definition of personal data (Article 4(1) GDPR) indicates a piece of

information that could lead to identifying a living person, the operations performed on

personal data must rely on the basic principles for processing personal data (Article 5

GDPR). Moreover, consent is a legal basis that empowers data subjects to control

their personal data (Articles 4(11) and 7 GDPR).

 23

Figure 10 shows the system architecture overview, which is divided into three

layers:

1. Personal data layer enables decentralized applications (Dapps) to provide a

user interface for end-users to manage personal data and easily interact with

smart contracts. Dapps are applications that have their own smart contracts

operating on peer-to-peer blockchain networks [75].

2. Dynamic consent management layer is a smart contract-based middleware for

managing dynamic consent, including four main components:

2.1. User profile management manages user identities, profiles, and roles. As

such, it separates modularity purposes into two sub-components: 1) the

identity and profile manager is responsible for managing the identity and

profile of participant users, and 2) the profile role manager is responsible

for managing user roles in request, approval, and revocation processes.

2.2. Consent agreement management manages data subjects’ consent all over

the personal data life cycle, which divides into four sub-components: 1)

the consent requester handles the request for the collecting and pro-

cessing of personal data, 2) the consent agreement allows data subjects

to manage their consent agreement on each requested personal dataset, 3)

the consent tracker enables traceable consent transaction logs on the

blockchain, and 4) the consent updater provides data subjects to modify

their consent agreement preferences (i.e., consent withdrawal) upon the

processing purpose.

2.3. Smart contract code generator is used to generate smart contracts upon

predefined contract templates (i.e., through JSON policy format for the

XACML), which comprise four sub-components:

2.3.1. The data/transaction format examines data provision and common

transactional structures.

2.3.2. The source code generator translates consent agreement policies

into smart contracts source code, which indicates one consent

agreement per one smart contract.

2.3.3. The code verifier and validator are used to validate the correctness

of generated smart contracts without errors and security exploits.

2.3.4. The compliance checker is used to verify generated smart con-

tracts against privacy policies and GDPR compliance before

deploying them on the blockchain.

 24

2.4. Security and privacy management are divided into four components:

2.4.1. The security manager enables protection mechanisms for protect-

ing the system’s resources, e.g., authentication, authorization, and

accountability.

2.4.2. The access control manager restricts access to personal data within

privacy and access control policies specified in smart contracts.

2.4.3. The privacy manager facilitates data subjects to manage their pri-

vacy preferences.

2.4.4. The audit manager handles the logging of all events regarding who

requested access to personal data, when personal data was pro-

cessed, and by whom.

3. Distributed ledger technology and a secure storage layer provide a Quorum

blockchain and off-chain data storage using InterPlanetary File System

(IPFS) protocol. The Quorum [76] is a permissioned blockchain implemented

from the Ethereum [77] codebase, while the IPFS protocol is a peer-to-peer

file sharing in decentralized storage [78]. In addition, this layer provides

blockchain oracle service (BOS) to expose a secure channel to exchange data

between the outside world and blockchain [79].

According to its design, a data subject or a third-party organization first creates a

dataset profile which obtains a hashed index. The hashed index directs personal data

to off-chain data storage. Second, peer data controllers receive the request for dataset

profile publication. Finally, peer data controllers approve the request and publish the

data profile into the blockchain.

 25

Figure 10: The layered system architecture of SC-DCMS (Figure 3 of Merlec et al.

[74]).

Therefore, the authors implemented a prototype of the proposed architecture by

using smart contracts and deploying them on the local blockchain, smart contracts

written in Solidity language [80], and the local blockchain using the Cakeshop

sandbox. As a performance evaluation, the authors examined the impact of workload

transactions between IBFT [81] and RAFT [82] consensus protocols. The evaluation

results indicate that the proposed system gained high transaction throughputs and

minimal latencies for utilizing storage network bandwidth and moderate resources.

The growth of the Internet of Things (IoT) affects individuals’ lives, and some

devices gather personal data, including behavioral, fingerprint, or biometric data, e.g.,

gait characteristics and voice. According to Rantos et al. [83], applying GDPR to the

IoT is a real challenge. Therefore, the authors proposed the ADvoCATE using a

human-centric approach to enable data subjects to manage privacy preferences in the

IoT ecosystem upon GDPR requirements.

Their proposed architecture, demonstrated in a cloud service platform (Figure

11), comprises three components:

1. Consent management (CM) component provides data subjects to manage

their consent and privacy preferences, including creation, modification, and

revocation. ADvoCATE used an ontology to model data protection

requirements for ease of data controllers fulfilling GDPR compliance.

 26

2. Consent notary (CN) component offers data integrity and data versioning of

data subjects’ consent by adopting digital signatures and blockchain

technology. This component is responsible for mediating the CM component

and blockchain infrastructure. It guarantees consent agreements are complete,

accurate, and up-to-date with protection against unauthorized changes. The

ADvoCATE focused on the Ethereum blockchain for smart contracts

implementation. Figure 12 shows the CN component’s workflow. First, the

CN component received a new entry consent agreement from the CM

component. This consent agreement could be for adding a new one, editing

an existing one within policies among the parties, or revocation. Next, the

data controller and processor are independently requested to sign the data

subject’s consent. These digital signatures or hashes are obtained in the

blockchain and used when detecting unauthorized modifications. The smart

contract (SC) interacts with both the data controller and data processor for

initiating, updating, or withdrawing a specific consent agreement regarding a

particular IoT device. Moreover, this SC is responsible for managing changes

to a consent agreement from consent initiation to final withdrawal, while the

various consent versions are represented as data contracts. To check consent

integrity, this logic of the SC restricts only the latest version of the consent

agreement. Finally, the CN component returns the latest signed consent with

its signatures and the SC’s address to the CM component.

3. Intelligence component enables conflict detection and suggestion of data

subjects’ policies incorporated with ontology, which consists of two

mechanisms:

3.1. Intelligent policies analysis mechanism (IPAM) offers conflict detection

on data subjects’ privacy statements using Fuzzy Cognitive Maps

(FCM). The FCM is a learning method used to represent knowledge of

systems and causal inference [84].

3.2. Intelligent recommendation mechanism (IReMe) offers suggestions

based on personalized policies to safeguard the privacy of data subjects

in real-time using Cognitive Filtering (CF). The CF is rule-based

collaborative filtering with the contents of the items and the data

subject’s consent to avoid any privacy violations [85].

 27

Figure 11: The ADvoCATE architecture (Figure 1 of Rantos et al. [83]).

By its design, a data subject first registers his/her IoT device via the ADvoCATE

platform. Then, the data controller places a request on the data subject. Afterward, the

data controller and data subject independently send the request to intelligence policies

analysis, except for the data controller sending the signed request. The result of the

privacy policies analysis is represented as a consent agreement. This consent

agreement will be informed to the data subject. If the data subject accepts the

condition, then both the data subject and data controller independently sign consent

using the SC to obtain his/her consent agreement in the blockchain. Thus, for each

access to data collected in an IoT device, the data controller and data processor must

verify the data subject’s consent validity.

The authors implemented the device registration, consent management

component, and smart contract using Node.js, MongoDB database, and Solidity.

The challenge of data sharing receives heightened attention in academic

research and business sectors.

Specifically, research in blockchain-based medical data sharing and many

studies have been published. For instance, Azaria et al. [86] proposed MedRec as a

decentralized electronic medical record (EMR), allowing service providers to share

data with others through smart contracts on the Ethereum blockchain. The authors

mentioned that the challenge of healthcare interoperability is managing fragments of

health records. Data sharing brings much to medical research, such as discovering

new treatments, specifying public health issues, and enabling personalized medicine.

To bring trust and encourage patients to cooperate by disclosing their medical records,

the authors thus designed MedRec to achieve these issues. The use of blockchain

 28

provides a secure way for sharing and auditing data in a distributed manner. Based on

MedRec, smart contracts are programmed to manage access privilege control of

patients’ EMRs. Figure 13 shows MedRec smart contracts and interactions between

service providers.

Figure 12: The CM component’s workflow (Figure 3 of Rantos et al. [83]).

The system first creates Ethereum addresses and maps to participants’

identification via Registrar Contract (RC) to exchange the data between participants

(i.e., patients and service providers). Then, the system executes Patient-Provider

Relationship Contract (PPR) to establish a peer-to-peer data exchange between

patients and service providers. Besides, the PPR determines the pointer of data that

specifies where a patient’s EMRs are collected and manages the restriction of service

providers who wish to access data. The latter is the Summary Contract (SC) employed

to track the engagement of participants in data exchange. Therefore, the authors

implemented a prototype of the proposed system to prove its functionality.

 29

Figure 13: The interaction between smart contracts and service providers in MedRec

(Figure 1 of Azaria et al. [86]).

Similarly, Hu et al. [87] stated that the lack of managing fragmented data causes

the problem of patient information retrieval from various service providers. Therefore,

the authors introduced CrowdMed-II as a framework for managing and sharing data in

healthcare by utilizing the Ethereum blockchain. CrowdMed [88] improved this

proposed framework to support large-scale adoption.

CrowdMed-II allows patients to maintain ownership over their health data by

providing and revoking consented permission. In addition, blockchain in this

framework enables transparency, auditability, and incentives, which motivates patients

to incorporate into research by sharing their valuable data to improve health

outcomes.

The authors separated the proposed framework into three layers:

1. The data storage layer is responsible for managing existing providers’

healthcare databases.

2. The central management layer is responsible for conducting a user’s identity

by mapping the original identity (ID) into a digital signature represented as a

virtual ID. This virtual ID is used in blockchain transactions and helps mini-

mize the risk of exposing the patient’s real identity. The central management

layer is composed of two components:

2.1. The central query manager handles the query execution on the user’s lo-

cal database and the data storage layer.

 30

2.2. The blockchain obtains patients’ permissions and logs every activity that

they perform on health data.

3. The user layer comprises four participant roles: patients, data creators, data

viewers, and data reviewers.

The proposed framework was designed with two smart contract structures:

1. Patient-Viewer Relationship (PVR)-Centric contract (Figure 14) has a

structure similar to the PPR in MedRec [86]. The difference between the PPR

and the PVR structures is the number of smart contracts at which to be

executed for gathering a patient’s health records. For example, the PPR must

execute multiple smart contracts to retrieve a patient’s health records among

service providers. As a result, it causes high gas consumption and low

efficiency. On the other hand, the PVR structure has to execute only a PVR to

retrieve all health records for one patient.

2. Provider-Patient-Viewer Relationship (PPVR)-Centric contract structure

(Figure 15) improves from the PPR and PVR structures. Moreover, the

proposed framework designed two more smart contracts:

2.1. The Provider Contract (PC) is used by a medical service provider and

obtains health records for all patients which providers give.

2.2. The ReViewer Contract (RVC) has a function similar to PC; the

responsible role is data reviewer, who acts as a provider to review

remarks on the health data of each provider to improve its quality.

However, there are no databases for data reviews because all remarks

have been stored in the health data-sharing system.

3. In addition, the proposed framework enables assigning a role to a group of

users (i.e., group-based access) instead of assigning a role to a user, which

eases management access rights. As a performance evaluation, the authors

determined two experiments. First, they evaluated gas consumption in every

transaction after executing transactions sequentially on six smart contracts

into a personal Ethereum network. The six smart contracts of this experiment

are as follows: 1) the PPR-centric, 2) the PPR-centric with group-based

access, 3) the PVR-centric, 4) the PVR-centric with group-based access, 5)

the PPVR-centric, and 4) the PPVR-centric with group-based access. The

first experiment results indicated that the PVR-centric contract structures

with group-based access consumed the lowest gas. As for the second

 31

experiment, the authors then executed the PVR-centric with group-based

access in the same sequence as the first experiment by measuring throughput

and latency, while the second experiment results indicate that the registration

transactions caused latency significantly higher than average.

Figure 14: The PVR-centric contract structure in CrowdMed-II (Figure 2 of Hu et al.

[87]).

Figure 15: The PPVR-centric contract structure in CrowdMed-II (Figure 3 of Hu et

al. [87]).

Table 3 demonstrates the difference between related works within data privacy

and consent management contexts. The first six studies used formal methods for

modeling the system’s behavior according to desired privacy policies [53, 56, 57, 59,

 32

63, 64]. They formalized a portion of the process, which makes it unclear how to

implement an entire process. Besides, two of the first six studies used model checking

to verify model correcstness.

On the other hand, the rest of the studies focused on conceptual and architectural

frameworks rather than logical ones, which makes it difficult to build software

systems based on these frameworks; more than half of the studies considered GDPR

as part of software design [63, 64, 66, 70, 72, 74, 83], but it is still unclear which

GDPR articles they covered. Furthermore, studies have separated into two groups:

centralized and distributed systems; most of the studies proposed frameworks based

on distributed systems (e.g., microservices, blockchain).

The distributed system is a group of software components that are located on

different networked computers [89], while the centralized system is one unified

system that maintains the entire operation [89, 90]. Both systems are managed by a

central authority, except for blockchain. The studies that employed blockchain

technology [70, 72, 74, 83, 86, 87] have integrated off-chain data storage for

collecting personal data instead of on-chain, so they can delete personal data where

necessary. As for a security service, most studies determined access control based on

the notion of purpose or consent, which help identify the security access of an

individual data within the purpose or given consent; less than half of the studies

integrated consent service as part of software design, which comprises only two

functionalities, such as manipulation and withdrawal consents [63, 64, 70, 72, 74, 83].

Indeed, the audit trail is essential for data protection to defend against data breaches,

and several studies included audit logs as part of their proposed frameworks [70, 72,

74, 83, 86, 87]. Finally, no studies specify the records restriction of data retrieval for

minimizing data breaches.

3
3

 T

ab
le

3
:

C
o
m

p
ar

is
o
n
 w

it
h
 r

el
at

ed
 w

o
rk

s
in

 t
h
e

co
n
te

x
t

o
f

d
at

a
p
ri

v
ac

y
 a

n
d
 c

o
n
se

n
t

m
an

ag
em

en
t.

[5
3
]

[5
6
]

[5
7
]

[5
9
]

[6
3
]

[6
4
]

[6
6
]

[7
0
]

[7
2
]

[7
4
]

[8
3
]

[8
6
]

[8
7
]

O
u

r
st

u
d

y

F
o

rm
a

l
m

et
h

o
d

√

√

√

√

√

√

√

E
n

d
-t

o
-E

n
d

 p
ro

ce
ss

√

√

√

√

√

D
a

ta
 p

ro
te

c
ti

o
n

 r
eg

u
la

ti
o

n

G
D

P
R

√

√

√

√

√

√

√

√

D
P

A

√

T

a
rg

et
 s

y
st

em

C
en

tr
al

iz
ed

√

√

√

√

√

D
is

tr
ib

u
te

d

√

√

√

√

√

√

√

√

√

√

S
ec

u
ri

ty
 s

er
v

ic
e

A
cc

es
s

co
n

tr
o

l
b

as
ed

 o
n

 t
h

e
n
o

ti
o

n
 o

f
p

u
rp

o
se

o
r

co
n

se
n

t

√

√

√

√

√

√

√

√

√

√

√

√

C
o

n
se

n
t

se
r
v

ic
e

M
an

ip
u

la
ti

o
n

√

√

√

√

√

√

√

√

W
it

h
d

ra
w

al

√

√

√

√

√

√

√

√

P
o

rt
ab

il
it

y

√

√

R
en

ew
al

√

A
u

d
it

 l
o

g
s

tr
a

ck
 a

ct
iv

it
ie

s

√

√

√

√

√

√

√

R
es

tr
ic

te
d

 r
e
co

rd
s

d
a

ta
 r

e
tr

ie
v

a
l

√

34

CHAPTER III
BACKGROUND

The relevant theories of this thesis include consent management (CM), Event-B,

blockchain technology, and smart contract.

3.1. Consent Management

According to the literature, consent management represents a software compo-

nent that provides a mechanism for managing consent and controlling personal data

lifecycle based on a given consent under data protection regulations. However, stand-

ardizing consent management is a complex challenge. Consent is the legal basis for

personal data processing activities and is used in most cases [91]. The GDPR man-

dates that data controllers must be able to prove the validity of data subjects’ consent

and could face a fine of up to 20 million euros or 4% of annual revenue (Article 83

GDPR) if they fail to comply. In the survey research conducted by Kurteva et al. [92],

they presented solutions based on ontologies to improve an understanding of consent

management implementation. The use of ontology provides the knowledge ground

upon which the consent and personal data lifecycle relate to GDPR requirements. The

present study introduced a model of the consent lifecycle (Figure 16), which derives

from the approaches related to consent.

The consent lifecycle describes the process of conducting consent in CM, which

comprises four key steps:

3.1.1. Manipulation of consent, e.g., consent has been changed, confirmed, and

reaffirmed.

3.1.2. Checking consent validity, if the data subject’s consent is invalid (i.e.,

consent is revoked, expired, invalidated, or refused), then the CM system

sends a consent request to inform the data subject. Otherwise, the data

controller or data processor is allowed to process personal data.

3.1.3. Comprehension of informed consent represents the data subject must have

adequate information to understand the consent agreement of what he/she

agrees.

3.1.4. Decision-making on informed consent indicates that the data subject has

the right to accept or refuse the consent agreement to process his/her per-

sonal data.

 35

To help better understand the context of consent, the authors summarized the

classes and attributes essential for modeling consent from existing ontologies [17, 93-

95]. We thus analyzed and recategorized these classes and object attributes according

to Table 1 and Table 2, used as a guideline for our study, presented in Table 4. Fur-

thermore, based on the list of competency questions for consent management (Table

5) defined by the authors, used as the comparison of baseline between existing studies

[17, 93, 95-99], we added additional questions to Table 5. These questions are repre-

sented in our work, including question numbers 7, 8, 14, 16, 20 and 21.

Figure 16: The consent lifecycle within consent-based approaches (Figure 1 of

Kurteva et al. [92]).

3
6

 T
ab

le

4
:

T
h
e

co
m

p
ar

is
o
n

 b
et

w
ee

n
 c

la
ss

es
 a

n
d
 o

b
je

ct
 a

tt
ri

b
u
te

s
o
f

ex
is

ti
n
g
 o

n
to

lo
g
ie

s
in

 c
o
n
se

n
t

co
n
te

x
t.

[1
7

]
[9

3
]

[9
4

]
[9

5
]

C
la

ss

A
tt

ri
b

u
te

C

la
ss

A

tt
ri

b
u

te

C
la

ss

A
tt

ri
b

u
te

C

la
ss

A

tt
ri

b
u

te

C
o

n
se

n
t

se
rv

ic
e

M
an

ip
u

la
ti

o
n

C
o
n

se
n

t,

C
o
n

se
n

ti
n

g
P

ar
ty

,

C
o
n

se
n

tO
b

li
g

at
io

n
,

C
o
n

se
n

tF
o

rm
at

g
iv

en
_

at
,

g
iv

en
_

b
y

,

g
iv

en
_

fo
r,

d

at
a_

h
as

_
fo

rm
at

C
o
n

se
n

t
is

C
o

n
se

n
tF

o
rD

at
aS

u
b

je
ct

,

fo
rP

er
so

n
D

at
a,

fo
rP

u
rp

o
se

,
fo

rP
ro

ce
ss

in
g
,

h
as

S
ta

tu
s,

h
as

E
x
p

ir
y

C
o
n

se
n

tA
ss

er
ti

o
n

C
o
n

se
n

t
h

as
C

o
n

se
n
tN

o
ti

ce
,

h
as

E
x
p

ir
y

,

h
as

E
x
p

ir
y

T
im

e,

h
as

E
x
p

ir
y

C
o
n

d
it

io
n

,

is
E

x
p
li

ci
t,

h
as

P
ro

v
is

io
n

B
y

C
o
n

se
n

ti
n

g
P

ar
ty

g

iv
es

_
co

n
se

n
t

D
at

aS
u

b
je

ct

h
as

C
o
n

se
n
t

D
at

aS
u

b
je

ct

D

at
aS

u
b
je

ct

P
u

rp
o

se

is
P

u
rp

o
se

F
o

rC
o
n

se
n
t

P
u

rp
o

se
s

D
at

a
ca

te
g
o

ry

P
er

so
n

al
D

at
a

is
P

er
so

n
al

D
at

aF
o

rC
o

n
se

n
t

D
at

aE
v

en
t

sp
lo

g
:i

n
st

an
ce

D
at

a

C
o
n

se
n

tO
b

li
g

at
io

n

ac
ti

v
it

y

P
ro

ce
ss

in
g

is
A

ct
io

n
F

o
rP

u
rp

o
se

P

ro
ce

ss

sp
lo

g
:p

er
fo

rm
ed

B
y

,

sk
o

s:
m

em
b
er

A
ct

iv
it

y

A

ct
iv

it
y

sp
lo

g
:p

er
fo

rm
ed

B
y

S
ta

tu
s

is
S

ta
tu

sF
o

rC
o
n

se
n

t

W
it

h
d

ra
w

al

C
o
n

se
n

t,

C
o
n

se
n

ti
n

g
P

ar
ty

g
iv

en
_

at
,

g
iv

en
_

b
y

C
o
n

se
n

t
h

as
S

ta
tu

s
C

o
n

se
n

tR
ev

o
ca

ti
o
n

sp

lo
g

.r
ev

o
k

e
C

o
n

se
n

t
h

as
W

it
h

d
ra

w
al

M
et

h
o
d

,

h
as

W
it

h
d

ra
w

al
T

im
e

P
o

rt
ab

il
it

y

R
en

ew
al

S
ec

u
ri

ty
 s

er
v

ic
e

A
cc

es
s

C
o

n
-

tr
o

l

P
er

m
is

si
o
n

v
al

id
it

y
_

ti
m

e
g

iv
en

_
to

g
iv

en
_

fo
r_

d
at

a,

g
iv

en
_

ac
ti

o
n

,
g

iv
en

_
fo

r_
co

n
d

it
io

n

L
o

g
g
in

g

A
ct

iv
it

y

au
d

it
 l

o
g

L
o
g

E
n

tr
y

sp
l:

h
as

D
at

a,

sp
l:

h
as

P
ro

ce
ss

in
g

,

sp
l:

h
as

P
u

rp
o

se
,

sp
l:

v
al

id
it

y
T

im
e,

sp

lo
g

:d
at

aS
u

b
je

ct
,

sp
lo

g
:a

ct
iv

it
y

,

sp
lo

g
:i

m
m

u
ta

b
le

R
ec

o
rd

Im
m

u
ta

b
le

R
ec

o
rd

sp

lo
g

:c
o
n

te
n
tH

as
h

,

sp
lo

g
:u

se
rH

as
h

,

sp
lo

g
:h

as
h

A
lg

o
ri

th
m

3
7

 T
ab

le

5
:

T
h
e

co
m

p
et

en
cy

 q
u
es

ti
o

n
s

fo
r

co
n

se
n

t
m

an
ag

em
en

t
in

 w
h

ic
h

 r
el

ev
an

t
to

 G
D

P
R

 a
rt

ic
le

s,
 e

x
te

n
d
ed

 f
ro

m
 K

u
rt

ev
a

et
 a

l.
 [

9
2
]

(c
o

n
t’

d
).

N
o

.
Q

u
es

ti
o

n

R
el

e
v

a
n

t
en

ti
ty

/p
ro

ce
ss

G

D
P

R
 a

rt
ic

le

Q
u

es
ti

o
n

s
re

g
a

rd
in

g
 c

o
n

se
n

t

1

W
h

o
 i

s
re

sp
o

n
si

b
le

 f
o

r
g

at
h

er
in

g
 c

o
n

se
n

t
ag

re
em

en
ts

?

D
at

a
C

o
n

tr
o

ll
er

,
D

at
a

P
ro

ce
ss

o
r

A
rt

ic
le

s
4

(7
),

 6
(1

a)
 a

n
d

 2
8

2

F
o

r
w

h
at

 p
u

rp
o

se
s

d
o

es
 a

 c
o
n

se
n

t
ag

re
em

en
t

co
v

er
?

P
u

rp
o

se

A
rt

ic
le

s
4

(4
),

 6
(1

a)
 a

n
d

 7

3

H
o

w
 t

o
 r

ev
o
k

e
co

n
se

n
t

ag
re

em
en

t?

C
o

n
se

n
t

W
it

h
d

ra
w

al

A
rt

ic
le

 7

R
ec

it
al

s
6

3
 a

n
d

 6
6

4

H
o

w
 l

o
n

g
 d

o
es

 a
 c

o
n

se
n

t
ag

re
em

en
t

la
st

?

C
o

n
se

n
t

R
et

en
ti

o
n

/V
al

id
it

y
/E

x
p

ir
at

io
n

A

rt
ic

le
 5

(1
)

R
ec

it
al

s
3

2
 a

n
d

 4
2

5

W
h

en
 h

as
 c

o
n

se
n

t
b

ee
n

 g
ra

n
te

d
?

C
o

n
se

n
t

R
et

en
ti

o
n

A

rt
ic

le
s

4
(1

1
),

 7
 a

n
d

 6
(1

a)

6

W
h

en
 h

as
 c

o
n

se
n

t
b

ee
n

 w
it

h
d

ra
w

n
?

C
o

n
se

n
t

W
it

h
d

ra
w

al

A
rt

ic
le

s
1

7
 a

n
d

 1
9

7

W
h

en
 i

s
co

n
se

n
t

p
er

m
it

te
d

 d
at

a
to

 b
e

p
o

rt
ab

le
?

C
o

n
se

n
t

D
at

a
P

o
rt

ab
il

it
y

A

rt
ic

le
 2

0

8

W
h

en
 h

as
 c

o
n

se
n

t
b

ee
n

 r
en

ew
ed

?

C
o

n
se

n
t

R
et

en
ti

o
n

/V
al

id
it

y
/E

x
p

ir
at

io
n

A

rt
ic

le
s

4
(1

1
),

 7
 a

n
d

 6
(1

a)

Q
u

es
ti

o
n

s
re

g
a

rd
in

g
 p

er
so

n
a

l
d

a
ta

9

W
h

at
 i

s
re

g
ar

d
ed

 a
s

p
er

so
n

al
 d

at
a?

C

at
eg

o
ri

es
 o

f
P

er
so

n
al

 D
at

a

A
rt

ic
le

s
4

(1
)

an
d
 9

1
0

H
o

w
 h

as
 p

er
so

n
al

 d
at

a
b

ee
n

 u
se

d
?

D
at

a
P

ro
ce

ss
in

g

A
rt

ic
le

 4
(2

)

1
1

H
o

w
 h

as
 p

er
so

n
al

 d
at

a
b

ee
n

 g
at

h
er

ed
?

D
at

a
C

o
ll

ec
ti

o
n

A

rt
ic

le
s

1
2

,
1

3
 a

n
d

 1
4

R
ec

it
al

s
3

9
,

5
8

,
6

2
 a

n
d

 7
3

1
2

T
o

 w
h

o
m

 p
er

so
n

al
 d

at
a

is
 d

is
cl

o
se

d
?

R
ec

ip
ie

n
t,

 D
at

a
S

h
ar

in
g

A
rt

ic
le

s
4

(7
),

 6
,
an

d
 2

8

1
3

W
h

o
 i

s
in

 c
h

ar
g

e
o

f
p

er
so

n
al

 d
at

a?

D
at

a
C

o
n

tr
o

ll
er

A

rt
ic

le
 2

4

R
ec

it
al

s
7

4
 a

n
d

 7
9

1
4

H
o

w
 t

o
 m

in
im

iz
e

th
e

d
at

a
co

ll
ec

ti
o

n
?

D
at

a
C

o
ll

ec
ti

o
n

A

rt
ic

le
 5

(1
c)

1
5

W
h

er
e

h
as

 p
er

so
n

al
 d

at
a

b
ee

n
 o

b
ta

in
ed

?
D

at
a

S
to

ra
g

e
A

rt
ic

le
 5

(1
e)

1
6

W
h

en
 s

h
o

u
ld

 p
er

so
n

al
 d

at
a

b
e

p
se

u
d

o
n
y

m
iz

ed
?

P
se

u
d

o
n

y
m

iz
at

io
n

A

rt
ic

le
 4

(5
)

R
ec

it
al

 2
6

Q
u

es
ti

o
n

s
re

g
a

rd
in

g
 t

h
e

d
a

ta
 c

o
n

tr
o

ll
er

1
7

W
h

o
 h

as
 b

ee
n

 i
d

en
ti

fi
ed

 a
s

th
e

d
at

a
co

n
tr

o
ll

er
?

D
at

a
C

o
n

tr
o

ll
er

A

rt
ic

le
s

4
(7

)
an

d
 2

8

1
8

H
o

w
 t

o
 r

ea
ch

 o
u

t
to

 t
h

e
d

at
a

co
n

tr
o

ll
er

?
D

at
a

C
o

n
tr

o
ll

er
,

C
o

n
ta

ct
 I

n
fo

rm
at

io
n

A

rt
ic

le
s

4
(7

),
 1

4
 a

n
d

 2
8

1
9

W
h

at
 i

s
th

e
d

at
a

co
n

tr
o

ll
er

 i
n
 c

h
ar

g
e

fo
r?

D

at
a

C
o

n
tr

o
ll

er
,

R
es

p
o

n
si

b
il

it
ie

s,
 O

b
li

-

g
at

io
n

s
A

rt
ic

le
s

4
(7

),
 1

4
,

2
8
 a

n
d

 3
7

2
0

H
o

w
 t

o
 e

m
b

ed
 d

at
a

p
ro

te
ct

io
n
 a

s
a

d
ef

au
lt

 s
et

ti
n

g
 f

o
r

p
ro

ce
ss

in
g

 p
er

so
n

al

d
at

a?

D
at

a
C

o
n

tr
o

ll
er

A

rt
ic

le
 2

5

3
8

T
ab

le
 5

:
T

h
e

co
m

p
et

en
cy

 q
u
es

ti
o
n
s

fo
r

co
n
se

n
t

m
an

ag
em

en
t

in
 w

h
ic

h
 r

el
ev

an
t

to
 G

D
P

R
 a

rt
ic

le
s,

 e
x
te

n
d
ed

 f
ro

m
 K

u
rt

ev
a

et
 a

l.
 [

9
2
].

N
o

.
Q

u
es

ti
o

n

R
el

e
v

a
n

t
en

ti
ty

/p
ro

ce
ss

G

D
P

R
 a

rt
ic

le

Q
u

es
ti

o
n

s
re

g
a

rd
in

g
 t

h
e

d
a

ta
 p

ro
ce

ss
o

r

2
1

W
h

o
 h

as
 b

ee
n

 i
d

en
ti

fi
ed

 a
s

th
e

d
at

a
p

ro
ce

ss
o

r?

D
at

a
P

ro
ce

ss
o

r
A

rt
ic

le
 4

(8
)

Q
u

es
ti

o
n

s
re

g
a

rd
in

g
 t

h
e

d
a

ta
 s

u
b

je
c
t

2
2

W
h

o
 h

as
 b

ee
n

 i
d

en
ti

fi
ed

 a
s

th
e

d
at

a
su

b
je

ct
?

D
at

a
S

u
b

je
ct

A

rt
ic

le
 4

(1
)

Q
u

es
ti

o
n

s
re

g
a

rd
in

g
 t

h
ir

d
 p

a
rt

y

2
3

W
h

o
m

 t
o

 r
ea

ch
 o

u
t

to
?

C
o

n
ta

ct
 I

n
fo

rm
at

io
n

,
T

h
ir

d
 P

ar
ty

A

rt
ic

le
s

1
2

,
1

3
 a

n
d

 1
4

39

3.2. Event-B

Event-B is a formal model development method in mathematical terms to prove

that a formal model fulfills a set of defined specifications [23, 24]. Event-B is separat-

ed into two parts: 1) contexts, the static specification is used to define static properties

of the model, containing carrier sets s, constants c, and axioms A(s, c), and 2) ma-

chines, the dynamic specification is used to define behavioral properties of the model,

containing state variables v, invariants I(s, c, v), and events evt. The refinement pro-

cess in Event-B is a crucial feature for modeling a complex system [100, 101], as pre-

sented in Figure 17.

It begins with an abstract model and gradually adds features one at a time until a

concrete model is completed [102, 103]. This technique makes the model more

straightforward to prove than modeling an entire system at once. This technique

makes the model more straightforward to prove than modeling an entire system at

once. However, the Event-B model’s consistency requires proof obligations, which

must be proved to guarantee that all invariants are preserved within every event oc-

currence [102, 103].

The Event-B constructs Proof obligations (POs) from the invariants I, the local

concrete invariants J (i.e., gluing invariants), and the specifications of abstract and

concrete operations (Figure 18 A). There are various types of proof obligations [104].

For example, Invariant Preservation (INV) ensures that each invariant is preserved

within each event occurrence. Event-B produces an INV when an action modifies var-

iable values directly into a specific invariant. For example, Figure 19, shows that the

Login event comprises three guards and one action, as shown on the left-hand side of

the figure. The guard grd1 indicates that the current session has not been created. The

guard grd2 means a user must be authorized to access the system and is not currently

logged on. Finally, the guard grd3 guarantees that inserting an ordered pair (s ↦ u)

into the variable sessions must satisfy inv1. If all guards are valid, the action act1 in-

serts an ordered pair (s ↦ u) to the sessions directly to inv1, Event-B thus generates

Login/inv1/INV to ensure that the values of the session change preserve inv1, as

shown on the right-hand side of the figure.

Well-Definedness of an event Guard (GRD) ensures that a guard has been for-

mulated well-defined. Event-B generates GRD when there are some potentially ill-

defined expressions (e.g., partial, modulo, and max-min functions) in a guard condi-

tion. For example, Figure 20 shows that the AddPatient event comprises four guards

and one action, as shown on the left-hand side of the figure.

 40

Figure 17: The process of refinement in Event-B (Figure 1 of Jarrar & Balouki

[101]).

The guard grd1 indicates the user is an authorized user and is currently logged

on. The guard grd2 indicates the user must have a NursingStaff role, while the guard

grd3 means a new patient has not been added to the system. Finally, the guard grd4

guarantees that this event must be deactivated if any states that enter query states. If

all guards are valid, the action act1 inserts the patient p into the variable patients.

However, guards grd1 and grd4 are involved in the sessions as a potentially ill-

defined expression. To ensure that these two guards are Well-Definedness (WD) con-

ditions, Event-B thus generates AddPatient/grd1/WD and AddPatient/grd4/WD, as

shown on the right-hand side of the figure.

The generated POs must be discharged to prove the correctness of the given

properties in the Event-B model. The guards are a set of predicates indicated as pre-

conditions that should be true before executing the event. An event consists of local

variables l, guards, and actions. Each state machine event may have one or more

guards G(l, s, c, v). When guards are valid, the actions S(l, s, c, v) will modify the

state variable v, as shown in equation (1).

evt ≙ any l when G(l, s, c, v) then v :| S(l, s, c, v) end

(1)

The POs in the Event-B model guarantee that each event must be shown to

preserve the model invariants, where v′ is the state variables after executing the event,

and BA(l, c, v, v′) is the before-after predicate of the assignment event, as shown in

equation (2).

 41

I(s, c, v) ∧ A(s, c) ∧ G(l, s, c, v) ∧ BA(l, c, v, v′) ⇒ I(s, c, v′)

(2)

For each event, the post-condition will automatically be derived from its guards

and actions [105-107]; an Event-B model is deadlocked if all events are disabled in a

particular state [100, 108, 109]. Besides, there is an open-source tool that supports

Event-B, called Rodin Platform [24]. The Rodin Platform is an Eclipse-based IDE

that enables a variety of plug-ins for developing models, such as a proof obligation

generator, provers, model-checker (ProB), etc. Nevertheless, Event-B does not pro-

vide deadlock detection [110, 111]. So, we must plug ProB into the Rodin Platform to

enable deadlock detection, test-case simulation, and state reachability [110-112].

Figure 18 demonstrates the process of model checking in ProB to prove whether a

given model satisfies given specifications. If the output is true, a given model is valid.

Otherwise, ProB produces a counterexample.

To start developing an Event-B model, we need to install Java and Rodin Plat-

form following these instructions: http://www.event-b.org/install.html. To enable a

model checker, it needs to install the ProB plug-in. First, open the Help menu and

click "Install new software." Then, select the update site project, which begins with

the title "ProB - " and click on "ProB for rodin2". Finally, enter the Next button and

complete the installation.

Figure 18: The process of model checking in ProB (Figure 1 of Ligot et al. [111]).

(A) demonstrating the generation of proof obligations in compliance with the abstract

and concrete models.

To begin developing Event-B models, we recap some set notations used in our

study. We thus determine set predicates by P and Q, set expressions by S, T, and E,

single variables by x and y, a list of variables by z, and the relation by r, r1, and r2. The

set notations are as follows: 1) the predicate logic, e.g., conjunction (P ∧ Q), disjunc-

http://www.event-b.org/install.html

 42

tion (P ∨ Q), and existential quantification ((∃z·P) ∧ Q), 2) the pre-defined sets, e.g.,

booleans (BOOL), i.e., TRUE or FALSE, and empty set (∅), 3) the set operators, e.g.,

membership (E ∈ S), union (S ∪ T), intersection (S ∩ T), powerset (ℙ(S)), a subset (S

⊆ T), not a subset (S ⊈ T), ordered pairs (x ↦ y), set difference (S \ T), cartesian prod-

uct (S × T), and 4) the relations identifying the connection between sets, e.g., relations

(S ⟷ T), domain (dom(r)), range (ran(r)), partial functions (S ⇸ T), partial injections

(S ⤔ T), domain restriction (S ◁ T), domain subtraction (S ⩤ T), range restriction (S ▷

T), range subtraction (S ⩥ T), relational image (r[S]), and overriding r1 r2. More de-

tailed information regarding Event-B notation is publicly accessible at [113].

Figure 19: The example of generating INV proof obligation from the Login event.

Figure 20: The example of generating GRD proof obligation from the AddPatient

event.

 43

3.3. Blockchain Technology

Blockchain technology is the innovation of distributed ledger technology, which

enables the secure transfer and storage of digital assets without central authority man-

agement [114-116]. On the other hand, blockchain provides potential solutions to

safeguard data owners from unauthorized or unlawful collecting and processing of

personal information [48, 114, 115]. For instance, blockchain enables security and

tamper-proof transactions among untrusted participants, eliminates the management

of center entities, and utilizes cryptographic hash functions to protect the integrity of

data stored in the distributed ledger [117, 118]. The blockchain structure lists ordered

transactions [115, 119, 120] called blocks (Figure 21). To begin with, adequate partic-

ipants have confirmed the transaction, it is permanently inserted into the list of blocks,

and each block is securely attached using cryptography. The elements of a block are

as follows: 1) the data which contains information depends on the objective of using

blockchain, 2) the hash is a unique identifier in which generated by a nonce (i.e., a

nonce is a random 32-bit number for ensuring the validity of the block hash), 3) the

previous hash is a hash value of the parent block except for a genesis block that does

not contain a previous hash, and 4) the metadata contains descriptive information

about data, e.g., block number, and timestamp.

The consensus mechanism in blockchain represents a set of methodologies used

to verify and confirm the legitimacy of a new transaction before being added to a dis-

tributed ledger to ensure fault tolerance and security [73, 120, 121]. Besides, it in-

volves the assignment of participants to work on tasks or activities to maintain block-

chain infrastructure by devoting necessary resources, e.g., crypto-asset and energy.

Indeed, there have been two common consensus mechanisms: Proof of Work (PoW)

and Proof of Stake (PoS). The PoW is a mechanism that outlines the difficulty or rules

(e.g., the cryptographic math problem) to which the mining competitors must dedicate

their computing resources to process transactions. The mining competitors who first

solve math problems receive a fee for mining as a reward, while the PoS is similar to

PoW but the better version. The PoS is a mechanism that allows participants who own

cryptocurrency and are randomly selected to validate transactions and earn rewards.

Therefore, the differences between PoW and PoS are the means they determine who

gets the privilege to validate transactions and energy usage.

The PoS is more energy efficient than PoW because it eliminates duplicate tasks.

Furthermore, the blockchain is divided into three types [121-123]:

3.3.1. The private blockchain requires participants to be granted before entering

the network ecosystem, e.g., Hyperledger Fabric (HF) [124]. It is a cen-

tralized system with a central authority to manage user access control and

 44

permissions. Besides, it may offer a token or not, depending on block-

chain preferences.

3.3.2. The public blockchain is publicly accessible and has no restrictions on

particular participants and existing validators in the network, e.g., Bitcoin

and Ethereum. It guarantees that no central authority controls the network

and is a fully distributed system.

3.3.3. The consortium or hybrid blockchain comprises two types: 1) some nodes

are partially private, and 2) all the rest are public. This characteristic is

called a hybrid blockchain, e.g., the Ripple network [125], and there are

two types of users: 1) the users who have complete control over the

blockchain and determine the access privileged for individual users, and

2) the others who only have access to the blockchain.

In our study, we focus on the Ethereum blockchain. Ethereum is an open-

source, public, and blockchain-based distributed system. It supports the PoS consen-

sus mechanism and smart contract functionality. The Ethereum blockchain enables a

peer-to-peer network with a trusted ledger of transactions and facilitates smart con-

tracts to share data securely.

Figure 21: List of blocks of transactions in a blockchain data structure, modified from

Figure 1 of Chinnasamy et al. [115].

3.4. Smart Contract

Smart contracts are programs based on certain logic and agreements that auto-

matically execute transactions if conditions are met [73, 126, 127]. They are hosted on

a blockchain network, and all participants can access results without third parties in-

volved. Moreover, smart contracts are composed of three types [128]: 1) smart legal

contracts are used to create legally binding agreements on the parties which derive

from legal requirements, 2) decentralized autonomous organizations (DAOs) are used

to create a set of rules by a group of people to self-govern themselves, and 3) applica-

 45

tion logic contracts are used to contain an application-specific code in cooperation

with other blockchain contracts.

In real-world development, smart contracts may need to retrieve information

outside the blockchain, but they cannot accomplish that [79, 129]. So, the oracle has

been introduced to solve this problem. The oracle is a middleware that constructs a

secure connection between the blockchain and various resources outside the chain,

called off-chain. There are five types of the oracle as follows [129]: 1) the hardware

oracle is used to collect data from physical devices (e.g., heat sensors, geolocators)

and push it to smart contracts, 2) the software oracle is used to retrieve information

from online resources, such as public transport, temperature, and supply up-to-date

information to smart contracts, 3) the inbound oracle enables a function for receiving

external data and forwarding it to smart contracts, 4) the outbound oracle allows smart

contracts for sending data to external data sources outside the chain, and 5) the con-

sensus-based oracle provides the query of multiple oracle sources to reduce the risks

of using only one source and combines the outcome based on their consensus.

46

CHAPTER IV

FORMAL MODELS FOR CONSENT MANAGEMENT IN

CENTRALIZED SYSTEMS

This chapter is a slightly modified version of a manuscript published in the

Journal of Logical and Algebraic Methods in Programming, Volume 128, August

2022, and has been reproduced here with the permission of the copyright holder.

To develop CM for centralized systems, we reviewed GDPR articles from a sys-

tem design perspective to build GDPR-aware system models related to PbD [130].

The key roles in GDPR include 1) data subject, 2) data controller, and 3) data pro-

cessor. A data subject has full control of his/her data [Article 4(1) describes personal

data as information that leads to the recognition of an individual]. The data controller

is the organization or person who establishes policies for managing a life cycle of per-

sonal data processing, as described in Article 4(7). Finally, the data processor is the

organization or person who manipulates individual data according to the policies giv-

en by the data controller, as described in Article 4(8). We then defined a set of primi-

tive state machines that cover the basics of consent management functionality, con-

sisting of four state machines: 1) the restricted processing state machine (RPSM), 2)

the withdrawal approval state machine (WASM), 3) the portable approval state ma-

chine (PASM), and 4) the consent renewal state machine (CRSM). Moreover, we

mapped each state machine to GDPR articles (Table 6), which helps developers better

understand how to translate GDPR articles into system requirements and design.

To define a set of states and transitions in RPSM, we determined the logic in-

volved in processing activities by following privacy methods included in Article 5.

This article outlines the context of personal data processing that respects six data pro-

tection principles as follows: 1) it requires that personal data are stored and processed

legitimately (‘lawfulness, fairness and transparency’), 2) the purpose of data pro-

cessing must be clearly defined before beginning the process (‘purpose limitation’), 3)

personal data should only include a minimum amount of data that is strictly necessary

to accomplish a specific purpose (‘data minimization’), 4) personal data must be

complete and kept up-to-date (‘accuracy’), 5) the data controller must ensure that per-

sonal data will be only retained for a necessarily limited period (‘storage limitation’),

and 6) personal data must be ensured with consistency and confidentiality over its life

cycle (‘integrity and confidentiality’). The responsibilities of the data controller must

comply with these fundamentals.

4
7

 T

ab
le

6
:

L
is

t
o
f

p
ro

p
o
se

d
 s

ta
te

 m
ac

h
in

es
 a

n
d
 G

D
P

R
 a

rt
ic

le
s

th
ey

 c
o
v
er

ed
.

M
a
ch

in
e

n
a
m

e
G

D
P

R
 a

rt
ic

le

S
u

m
m

a
ry

R
P

S
M

A
rt

ic
le

 4
(1

)
P

er
so

n
al

 d
at

a
is

 a
n
y
 i

n
fo

rm
at

io
n
 (

e.
g
.,
 f

u
ll

 n
am

e,
 s

o
ci

al
 s

ec
u
ri

ty
 n

u
m

b
er

,
m

ed
ic

al
 r

ec
-

o
rd

s)
 t

h
at

 c
an

 d
ir

ec
tl

y
 o

r
in

d
ir

ec
tl

y
 i

d
en

ti
fy

 a
 p

er
so

n
.

A
rt

ic
le

 4
(1

1
)

T
h
e

d
at

a
su

b
je

ct
’s

 c
o
n
se

n
t

in
d
ic

at
es

 t
h
at

 t
h
e

d
at

a
su

b
je

ct
 g

iv
es

 h
is

/h
er

 u
n
am

b
ig

u
o
u
s

co
n
se

n
t.

A
rt

ic
le

 5

A
n
y
 p

ro
ce

ss
in

g
 o

f
p
er

so
n
al

 d
at

a
m

u
st

 b
e

d
o
n
e

fo
ll

o
w

in
g
 t

h
e

G
D

P
R

’s
 s

ix
 l

eg
al

 b
as

es
 i

n

A
rt

ic
le

 5
,

in
cl

u
d
in

g
 1

)
p

er
so

n
al

 d
at

a
p
ro

ce
ss

in
g
 m

u
st

 a
lw

ay
s

b
e

le
g
it

im
at

e
,

ex
p
li

ci
t,

 a
n
d

g
en

u
in

e
w

it
h
 d

at
a

su
b
je

ct
s,

 2
)

p
er

so
n
al

 d
at

a
m

u
st

 b
e

co
ll

ec
te

d
 a

n
d
 p

ro
ce

ss
ed

 f
o
r

a
sp

e
-

ci
fi

c
p
u
rp

o
se

,
3
)

p
er

so
n
al

 d
at

a
m

u
st

 b
e

co
ll

ec
te

d
 o

n
ly

 t
h
e

d
at

a
n
ec

es
sa

ry
 u

p
o
n
 t

h
e

co
n

-

se
n
t,

 4
)

p
er

so
n

al
 d

at
a

m
u

st
 b

e
ac

cu
ra

te
 a

n
d
 k

ep
t

u
p

-t
o
-d

at
e,

 5
)

p
er

so
n

al
 d

at
a

m
u
st

 b
e

co
l-

le
ct

ed
 f

o
r

a
sp

ec
if

ic
 p

u
rp

o
se

 u
p
o
n
 e

x
p
ir

at
io

n
 o

f
th

e
ti

m
e

p
er

io
d
,

an
d
 6

)
p
er

so
n
al

 d
at

a

m
u
st

 b
e

ac
cu

ra
te

 a
n
d
 c

o
n

si
st

en
t

o
v
er

 i
ts

 e
n
ti

re
 l

if
ec

y
cl

e.

W
A

S
M

A

rt
ic

le
 7

(3
)

D
at

a
su

b
je

ct
s

h
av

e
th

e
ri

g
h
t

to
 r

ev
o

k
e

th
ei

r
co

n
se

n
t

fo
r

p
ro

ce
ss

in
g
 a

t
an

y
 t

im
e.

A
rt

ic
le

s
1
7
 a

n
d
 1

9

D
at

a
su

b
je

ct
s

h
av

e
th

e
ri

g
h
t

to
 r

eq
u

es
t

to
 e

ra
se

 t
h
ei

r
p
er

so
n
al

 d
at

a.

P
A

S
M

A

rt
ic

le
 2

0

D
at

a
su

b
je

ct
s

h
av

e
th

e
ri

g
h
t

to
 r

eq
u

es
t

a
p
o
rt

ab
le

 c
o
p
y
 o

f
th

ei
r

p
er

so
n
al

 d
at

a.

C
R

S
M

A

rt
ic

le
 6

(1
)

D
at

a
su

b
je

ct
s

n
ee

d
 t

o
 s

ig
n
 c

o
n
se

n
t

b
ef

o
re

 p
ro

ce
ss

in
g
 t

h
ei

r
p
er

so
n
al

 d
at

a.

48

Furthermore, we built WASM as a model dealing with the right to withdraw

consent. Article 7(3) describes that the data subjects are able at all times to revoke

consent for the processing of their data. After revoking the consent, personal data

should be erased automatically [39]. This revoking is also known as the right to eras-

ure (‘right to be forgotten’) under Articles 17 and 19.

The right to data portability, GDPR Article 20, permits data subjects to control

their data by receiving and transferring personal data in a machine-readable format

across controllers. We modeled this discrete behavior through the state transitions in

PASM.

For the renewal of consent effects within GDPR Article 6(1), the data controller

may offer a data subject to extend the retention period to continue using the products

and services. If the data subject accepts the retention offer, the data controller or the

data processor can legitimately process his/her data.

However, if the data subject declines the retention offer, the data controller must

revoke the data subject’s consent. We also modeled this discrete behavior through the

state transitions in CRSM.

4.1. CM State Machines in Centralized Systems

This thesis proposes a set of formal models integrating privacy concerns into

software development under the GDPR. According to Article 4(11) GDPR, consent is

a data subject’s voluntary agreement to permit either a data controller or a data pro-

cessor to process his/her personal data under specific conditions. We considered con-

sent management an essential component of the system design [131, 132]. This means

a system must not process personal data without the validity of a data subject’s con-

sent. In this thesis, we built state machines to depict the dynamic behavior of privi-

leged permissions based on the relationships of the data subject’s consents, user roles,

and data subject’s data fields.

Following PbD concepts and GDPR guidelines present in Table 6, demonstrated

via a software platform for cancer precision medicine called RUN-ONCO [133].

RUN-ONCO allows users (i.e., oncologists, nurses, researchers) to manage and ana-

lyze patient clinical and genetic data, which assists oncologists in designing treatment

plans for patients with cancers. Patients need to sign consent before an authorized user

enters their clinical and genetic data into the platform. Figure 22A shows how RUN-

ONCO supports authentication based on roles but lacks the consent management

functionality. The informed consent process for clinical trials has been paper-based

and outside the platform. Without built-in consent management functionality, a plat-

form is difficult to control and maintain patients’ privacy preferences. To implement a

 49

consent management functionality for an existing system without clear guidelines,

developers will need to spend much time analyzing and redesigning the system with-

out knowing if the redesigned platform covers GDPR requirements. To enhance

RUN-ONCO support consent management (Figure 22B and Figure 22C), by follow-

ing RPSM, we first need to alter the Patient class structure to support dynamic access

attributes within role-based consent. Second, we further create the PatientConsent

class to hold patients’ consent. To manage the right to withdraw consent (WASM), the

right to data portability (PASM), and consent renewal (CRSM), we then update the

PatientConsent class by adding methods that obtain the logic of the following state

machines. Third, we must modify logic in the AuthenticationService class to manage

the authorized access patients’ attributes within role-based consent. Fourth, the Pa-

tientService class needs to modify the logic for restricting patient information retrieval

according to given authorization.

Figure 22: Class diagram demonstrating how a software platform for cancer precision

medicine manages roles and permissions to restrict users’ access to screens. (A) an

authentication module associated with users, roles, and screens. (B) new classes added

to RUN-ONCO for supporting dynamic access attributes within role-based consent.

(C) relevant classes needed to be enhanced to support consent management.

We provided four state machines that cover the main aspects of consent man-

agement. First, the RPSM explains the behavior of restricting unauthorized user ac-

cess from storing and processing personal data (Figure 23). Based on RPSM, a user

 50

must first login to access the platform. By logging in, the user with the NursingStaff

role will be able to add a new patient and informed consent. Moreover, to access the

patient’s personal data, a user has been granted a role based on the patient’s consent.

Figure 23: Restricted Processing State Machine (RPSM) describing the transition

states and events used to restrict the processing of personal data.

Second, WASM explains the behavior of approval for withdrawing a data sub-

ject’s consent and deleting his/her personal data (Figure 24). Based on WASM after a

patient requests to withdraw consent, the user with the LegalStaff role login to the

platform and initiates a withdrawal process. A user with the LegalApprover role will

then review a withdrawal request based on the initiated process The platform allows

patients to withdraw consent at any time, as long as the patient has the adequate ca-

pacity to make decisions about medical treatment. After assessing a patient’s capacity,

if a patient can make his/her own treatment decisions, the approver will approve to

revoke consent and submit a delete request to erase the patient’s personal data. Oth-

erwise, the approver will reject the withdrawal request.

Figure 24: Withdrawal Approval State Machine (WASM) describing the transition

states and events used to manage a consent revocation request.

 51

Third, PASM explains approval behavior for transferring a data subject’s per-

sonal data (Figure 25). Based on PASM, after a patient requests a portable copy of

the personal data, the user with the LegalStaff role login to the platform and initiates a

portable process. The platform offers data portability that allows patients to request all

relevant health and genetic data, as long as the patient accepts prerequisite conditions

(e.g., a fee for preparing and transmitting personal data to other data controllers). The

approver will approve the portable request if the patient accepts prerequisite condi-

tions. Otherwise, the request will be rejected.

Figure 25: Portable Approval State Machine (PASM) describing the transition states

and events used to manage a data transferring request.

Fourth, CRSM explains approval behavior for extending the retention period of

a data subject’s consent (Figure 26). Based on CRSM, the user with the LegalStaff

role login to the platform and initiates a renewal process. The patient will then review

a renewal request based on the initiated process.

Figure 26: Consent Renewal State Machine (CRSM) describing the transition states

and events used to manage a data retention request.

 52

The platform offers a mechanism that allows patients to increase the retention

period for keeping the personal data it collects and processes. After the patient replies

accept status (i.e., approve, reject) to the platform, the legal staff responds, followed

by accept status. If the patient approves, the legal staff increases the retention period

within informed consent. Otherwise, the legal staff submits a delete request to erase

the patient’s personal data.

4.2. Formal Development in Event-B

We created an Event-B context and defined necessary sets, constants, and axi-

oms that are relevant to health information privacy as follows: 1) PATIENTS is a set

of data subjects, 2) SESSIONS represents a set of sessions associated with an author-

ized user (i.e., AUTHORIZED_USERS), 3) ROLES (e.g., NursingStaff, Oncologist,

LabStaff) specifies a set of user permissions to prevent unauthorized access attempts,

4) FIELDS is a set of patient data fields (e.g., HN, Name, Age, Gender), and 5) STA-

TUSES is a set of workflow statuses (e.g., Void, Approved, Rejected). The state ma-

chines will refer to this context, which contains global static variables to construct the

states and transitions. We built the state machines and defined preserved invariants as

the properties of the states using common naming, e.g., inv1, inv2. Events represent

state transitions in Event-B. For each event, we defined guards as preconditions and

actions as state variable assignments using the common naming, e.g., grd1, grd2, and

act1, act2, respectively.

4.2.1. Restricted Processing State Machine (RPSM)

The RPSM (Figure 23) created based on the Event-B method, describes

the dynamic behavior of restricted data processing in terms of events. For this

state machine, we defined invariants that hold all possible states as follows:

inv1: sessions ∈ SESSIONS ⤔ AUTHORIZED_USERS
inv2: userRoles ∈ AUTHORIZED_USERS ↔ ROLES
inv3: pc ∈ PATIENTS ↔ CONSENTS
inv4: patients ∈ ℙ(PATIENTS)
inv5: crf ∈ CONSENTS ⇸ (ROLES ↔ FIELDS)
inv6: queries ∈ AUTHORIZED_USERS ⇸ (QUERIES ↔ PATIENTS)
inv7: pf ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ FIELDS)
inv8: authorizedConsent ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ CONSENTS)

The variable sessions holds the one-to-one relationship between SES-

SIONS and AUTHORIZED_USERS, which means a single session can contain

only one user. To limit the data breach risk, we applied role-based access control

(RBAC) in the model and defined the userRoles as a relationship between AU-

THORIZED_USERS and ROLES. It indicates that each user can have multiple

roles. The variable patients contains the set of PATIENTS during the refinement

 53

process. According to GDPR, we need a patient’s consent to process data.

Hence, we declared the pc as a set of ordered pairs (p ↦ c) where p ∈ PA-

TIENTS and c ∈ CONSENTS. The use of pc here specifies that a patient can

have more than one consent. The crf defines (c ↦ rf) as a set of ordered pairs

where c ∈ CONSENTS, rf ∈ ROLES ↔ FIELDS, which combines the relation-

ships of consents, roles, and data fields to restrict user’s access over the specific

fields of data based on the given consent of data subjects. The model allows a

data controller or a data processor to execute a query per data subject to mini-

mize the risk of retrieving large amounts of personal data by creating the varia-

ble named queries. The queries defines (u ↦ qp) as a set of ordered pair where u

∈ AUTHORIZED_USERS, qp ∈ QUERIES ↔ PATIENTS to hold personal data

inquiries. We stored the result of a query in variable pf, which is a set of ordered

pairs (u ↦ pf) where u ∈ AUTHORIZED_USERS and pf ∈ PATIENTS ↔

FIELDS. The pf represents the final output of RPSM that describes how the

model provides consent-based permission for each user to perform on specified

data fields. We defined authorizedConsent (u ↦ pc) as a set of ordered pairs

where u ∈ AUTHORIZED_USERS and pc ∈ PATIENTS ↔ CONSENTS, indi-

cating the valid consent for the authorized user.

The INTIALISATION is an event that was fired first. It allows the initiali-

zation of arbitrary values and establishes invariants before other events are exe-

cuted. Listing 1 introduces the Login event. The guards are defined with three

preconditions. First, the guard grd1 ensures that any session s is a member of

SESSIONS and s does not exist in the domain of sessions. Second, the guard

grd2 ensures that any user u is a member of AUTHORIZED_USERS and u does

not exist in the range of sessions. Third, the guard grd3 ensures that adding an

ordered pair (s ↦ u) into sessions must satisfy the invariant inv1. Whenever all

guards of the Login event are valid, the action act1 adds an ordered pair (s ↦ u)

to the sessions, which indicates that the user has successfully logged in.

Login ≙
Any s,u Where
 grd1 : s ∈ SESSIONS ∧ s ∉ dom(sessions)
 grd2 : u ∈ AUTHORIZED_USERS ∧ u ∉ ran(sessions)
 grd3 : sessions ∪ {s ↦ u} ∈ SESSIONS ⤔ AUTHORIZED_USERS
Then
 act1 : sessions ≔ sessions ∪ {s ↦ u}
End

Listing 1: The Login event.

Listing 2 shows how we formally modeled the adding of a new patient us-

ing Event-B. The guards are defined with four preconditions. First, the guard

grd1 ensures that the user successfully got the session and the user role is within

 54

the domain userRoles. Second, the guard grd2 ensures that one of the user roles

is a nursing staff. Third, the guard grd3 ensures that the patient does not exist in

the variable patients. Fourth, the guard grd4 ensures that the AddPatient event

does not fire after entering the inquiry states. Whenever all guards are valid, the

action act1 adds the patient p to the patients.

AddPatient ≙
Any s,p Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = NursingStaff
 grd3 : p ∈ PATIENTS ∧ p ∉ patients
 grd4 : sessions(s) ∉ dom(queries)
Then
 act1 : patients ≔ patients ∪ {p}
End

Listing 2: The AddPatient event.

Listing 3 shows the formal model of how a new patient’s consent is added

to the system. The guards are defined with six preconditions. First, the guard

grd1 ensures that the user is successfully logged in with the user role known by

the system. Second, the guard grd2 ensures that one of the user roles is a nursing

staff. Third, the guard grd3 ensures that any patient p is a member of patients

and consent c is a member of the domain crf. Fourth, the guard grd4 ensures that

a new ordered pair (p ↦ c) does not exist in the pc. Fifth, the guard grd5 ensures

that adding an ordered pair (p ↦ c) into variable pc must satisfy the invariant

inv3. Sixth, the guard grd6 ensures that the AddConsent event does not fire after

entering the inquiry states. Whenever all guards are valid, the action act1 adds

an ordered pair (p ↦ c) to the pc.

AddConsent ≙
Any s,p,c Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = NursingStaff
 grd3 : p ∈ patients ∧ c ∈ dom(crf)
 grd4 : p ↦ c ∉ pc
 grd5 : pc ∪ {p ↦ c} ∈ PATIENTS ↔ CONSENTS
 grd6 : sessions(s) ∉ dom(queries)
Then
 act1 : pc ≔ pc ∪ {p ↦ c}
End

Listing 3: The AddConsent event.

Listing 4, Listing 5, and Listing 6 show how we formally model the han-

dling of a user inquiry, starting from creating an inquiry (Listing 4), verifying

the consent validation (Listing 5), and executing the inquiry (Listing 6). The

 55

CreateInquiry event (Listing 4) is used to prepare a new query under the current-

ly logged on user. The guards are defined with three preconditions. First, the

guard grd1 ensures that the user is successfully logged in with the user role

known by the system. Second, the guard grd2 ensures that any query q is a

member of QUERIES, patient p is a member of the domain pc, and session(s)

does not exist in the domain queries. Third, the guard grd3 ensures that when

adding an ordered pair (q ↦ p) to the queries(sessions(s)), the invariant inv6

must be satisfied. Whenever all guards are valid, the action act1 adds an ordered

pair (q ↦ p) to the queries(sessions(s)).

CreateInquiry ≙
Any s,q,p Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : q ∈ QUERIES ∧ p ∈ dom(pc) ∧ sessions(s) ∉ dom(queries)
 grd3 : queries {sessions(s) ↦ {q ↦ p}s} ∈
 AUTHORIZED_USERS ⇸ (QUERIES ↔ PATIENTS)
Then
 act1 : queries(sessions(s)) ≔ {q ↦ p}
End

Listing 4: The CreateInquiry event.

The CheckAuthorizeConsent event (Listing 5) is used to verify if the pa-

tient’s consent does not expire. The guards are defined with six preconditions.

First, the guard grd1 ensures that the user is successfully logged in and the user

has created queries. Second, the guard grd2 ensures that consentExpired is a

member of the boolean and consentExpired is FALSE. Third, the guard grd3 en-

sures that the consent c is a member of pc[{p}] and c is a member of the domain

crf. Fourth, the guard grd4 ensures that one of the user roles of the logged on us-

er is a member of the domain crf(c). Fifth, the guard grd5 ensures that a new or-

dered pair (p ↦ c) does not exist in the domain authorizedConsent. Sixth, the

guard grd6 ensures that when adding an ordered pair (p ↦ c) to the author-

izedConsent(sessions(s)), the invariant inv8 must be satisfied. Whenever all

guards are valid, the action act1 adds an ordered pair (p ↦ c) to the author-

izedConsent(sessions(s)).

CheckAuthorizeConsent ≙
Any s,p,c,consentExpired Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(queries)
 grd2 : consentExpired ∈ BOOL ∧ consentExpired = FALSE
 grd3 : c ∈ pc[{p}] ∧ c ∈ dom(crf)
 grd4 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r ∈ dom(crf(c))
 grd5 : sessions(s) ∉ dom(authorizedConsent)
 grd6 : authorizedConsent {sessions(s) ↦ {p ↦ c}} ∈
 AUTHORIZED_USERS ⇸ (PATIENTS ↔ CONSENTS)
Then

 56

 act1 : authorizedConsent(sessions(s)) ≔ {p ↦ c}
End

Listing 5: The CheckAuthorizeConsent event.

The ExecuteQuery event (Listing 6) is used to get the result of a query.

The guards are defined with five preconditions. First, the guard grd1 ensures

that the user is successfully logged in and the user has created queries. Second,

the guard grd2 ensures that any patient p is a member of the range of que-

ries(sessions(s)) and c is a member of the domain crf. Third, the guard grd3 en-

sures that sessions(s) is a member of the domain authorizedConsent and an or-

dered pair (p ↦ c) is a member of authorizedConsent(sessions(s). Fourth, the

guard grd4 ensures that sessions(s) does not exist in a domain pf. The grd4 rep-

resents that the query has not yet been executed within the user session. Fifth,

the guard grd5 ensures that when adding a cartesian product {p} × ran(
userRoles[sessions[{s}]] ◁ crf(c)) to the pf(sessions(s)), the invariant inv7 must

be satisfied. The variable pf represents the result of the query based on consent-

permission which is defined in the variable crf. Whenever all guards are valid,

the action act1 adds a cartesian product {p} × ran(userRoles[sessions[{s}]] ◁

crf(c)) to the pf(sessions(s)).

ExecuteQuery ≙
Any s,p,c Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(queries)
 grd2 : p ∈ ran(queries(sessions(s))) ∧ c ∈ dom(crf)
 grd3 : sessions(s) ∈ dom(authorizedConsent) ∧ p ↦ c ∈
 authorizedConsent(sessions(s))
 grd4 : sessions(s) ∉ dom(pf)
 grd5 : pf {sessions(s) ↦ {p} × ran(userRoles[sessions[{s}]] ◁
 crf(c))} ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ FIELDS)
Then
 act1 : pf(sessions(s)) ≔ {p} × ran(userRoles[sessions[{s}]] ◁
 crf(c))
End

Listing 6: The ExecuteQuery event.

The Logout event (Listing 7) is fired when a user signs out of the system.

The guards are defined with five preconditions. First, the guard grd1 ensures

that the user is successfully logged in. Second, the guard grd2 ensures that re-

moving sessions(s) from queries must satisfy the invariant inv6. Third, the guard

grd3 ensures that removing sessions(s) from authorizedConsent must satisfy the

invariant inv8. Fourth, the guard grd4 ensures that removing sessions(s) from pf

must satisfy the invariant inv7. Fifth, the guard grd5 ensures that removing ses-

sions(s) from sessions must satisfy the invariant inv1. Whenever all guards of

the Logout event are valid, the action act1 removes sessions(s) from queries, ac-

 57

tion act2 removes sessions(s) from authorizedConsent, action act3 removes ses-

sions(s) from pf, and action act4 removes sessions(s) from sessions.

Logout ≙
Any s Where
 grd1 : s ∈ dom(sessions)
 grd2 : {sessions(s)} ⩤ queries ∈ AUTHORIZED_USERS ⇸
 (QUERIES ↔ PATIENTS)
 grd3 : {sessions(s)} ⩤ authorizedConsent ∈
 AUTHORIZED_USERS ⇸ (PATIENTS ↔ CONSENTS)
 grd4 : {sessions(s)} ⩤ pf ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ FIELDS)
 grd5 : sessions ⩥ {sessions(s)} ∈ SESSIONS ⤔ AUTHORIZED_USERS
Then
 act1 : queries ≔ {sessions(s)} ⩤ queries
 act2 : authorizedConsent ≔ {sessions(s)} ⩤ authorizedConsent
 act3 : pf ≔ {sessions(s)} ⩤ pf
 act4 : sessions ≔ sessions ⩥ {sessions(s)}
End

Listing 7: The Logout event.

4.2.2. Withdrawal Approval State Machine (WASM)

The WASM (Figure 24) was created based on the Event-B method to

describe the dynamic behavior of the model for revoking an individual consent

and automatically deleting personal data. We defined the invariants for the

WASM model as follows. The first three invariants are the same as of RPSM.

inv1: sessions ∈ SESSIONS ⤔ AUTHORIZED_USERS
inv2: userRoles ∈ AUTHORIZED_USERS ↔ ROLES
inv3: pc ∈ PATIENTS ↔ CONSENTS
inv4: withdrawalState ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES
inv5: markAsDeleted ∈ PATIENTS ↔ CONSENTS

Additionally, we declared two more variables in the context to support the

refinement of WASM. First, the withdrawalState defines (pc ↦ status) as a set

of ordered pairs, where pc ∈ PATIENTS ↔ CONSENTS, and status ∈ STA-

TUSES that holds the status of the withdrawal request. Second, the markAsDe-

leted contains the relationship between PATIENTS and CONSENTS that repre-

sents the patient as deleted under the consent.

The INTIALISATION event gets fired first to initialize the variables. Then

the Login event starts to get a new session which holds a user role. The Cre-

ateWithdrawal event (Listing 8) is used to initiate a withdrawal request. The

guards are defined with four preconditions. First, the guard grd1 ensures that the

user successfully got the session and the user role is within the domain

userRoles. Second, the guard grd2 ensures that one of the user roles is a legal

 58

staff. Third, the guard grd3 ensures that any patient p is a member of the domain

pc, where consent c is a member of the range pc, and the ordered pair (p ↦ c)

does not exist in the domain withdrawalState. Fourth, the guard grd4 ensures

that when adding Void status to the withdrawalState({p ↦ c}), the invariant inv4

must be satisfied. Whenever all guards are valid, the action act1 adds a status

Void to the withdrawalState({p ↦ c}), which will trigger the approval workflow.

CreateWithdrawal ≙
Any s,p,c Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : p ∈ dom(pc) ∧ c ∈ ran(pc) ∧ {p ↦ c} ∉ dom(withdrawalState)
 grd4 : withdrawalState {{p ↦ c} ↦ Void} ∈
 (PATIENTS ↔ CONSENTS) ⤔ STATUSES
Then
 act1 : withdrawalState({p ↦ c}) ≔ Void
End

Listing 8: The CreateWithdrawal event.

Listing 9 shows the formal model of how to approve the consent with-

drawal. The guards are defined with six preconditions. First, the guard grd1 en-

sures that the user successfully got the session and the user role is within the

domain userRoles. Second, the guard grd2 ensures that one of the user roles is a

legal approver. Third, the guard grd3 ensures that pc1 is a member of the domain

withdrawalState and the status of the withdrawalState(pc1) is Void. Fourth, the

guard grd4 ensures that when updating Void to Approved status must satisfy the

invariant inv4. Fifth, the guard grd5 ensures that canWithdraw is a member of a

boolean and canWithdraw is TRUE. The TRUE boolean here indicates that all

required activities before withdrawal were done. Sixth, the guard grd6 ensures

that when adding pc1 to the markAsDeleted, the invariant inv5 must be satisfied.

Whenever all guards are valid, the action act1 updates the withdrawalState({p ↦

c}) from Void to Approved status, and act2 adds pc1 to markAsDeleted.

ApproveWithdrawal ≙
Any s,pc1,canWithdraw Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalApprover
 grd3 : pc1 ∈ dom(withdrawalState) ∧ withdrawalState(pc1) = Void
 grd4 : withdrawalState {pc1 ↦ Approved} ∈
 (PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd5 : canWithdraw ∈ BOOL ∧ canWithdraw = TRUE
 grd6 : markAsDeleted pc1 ∈ PATIENTS ↔ CONSENTS
Then
 act1 : withdrawalState(pc1) ≔ Approved
 act2 : markAsDeleted ≔ markAsDeleted pc1

 59

End
Listing 9: The ApproveWithdrawal event.

Otherwise, the RejectWithdrawal event (Listing 10) will be fired if the var-

iable canWithdraw is FALSE, assuming that some required activities were not

completed. The status of withdrawalState(pc1) will then be changed from Void

to Rejected according to the action act1. In both cases, the request must be ap-

proved or rejected by the legal approver. Especially in the ApproveWithdrawal

event, we defined the markAsDeleted to hold the deleted patients for the ap-

proved cases. The Logout event is fired to indicate that the user is no longer in

the system.

RejectWithdrawal ≙
Any s,pc1,canWithdraw Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalApprover
 grd3 : pc1 ∈ dom(withdrawalState) ∧ withdrawalState(pc1) = Void
 grd4 : withdrawalState {pc1 ↦ Reject} ∈
 (PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd5 : canWithdraw ∈ BOOL ∧ canWithdraw = FALSE
Then
 act1 : withdrawalState(pc1) ≔ Rejected
End

Listing 10: The RejectWithdrawal event.

4.2.3. Portable Approval State Machine (PASM)

The PASM (Figure 25) created based on Event-B describes the dynamic

behavior of the model allowing patients to port their personal data. The first

three invariants of the model are the same as the previous two models and a new

variable named portableState was introduced to hold the status of data portabil-

ity request.

inv1: sessions ∈ SESSIONS ⤔ AUTHORIZED_USERS
inv2: userRoles ∈ AUTHORIZED_USERS ↔ ROLES
inv3: pc ∈ PATIENTS ↔ CONSENTS
inv4: portableState ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES

The behavior of PASM is similar to the WASM but is used for different

purposes. After initializing the variables and creating a new session, the Create-

Portable event (Listing 11) will be started. The guards are defined with four pre-

conditions. First, the guard grd1 ensures that the user successfully got the ses-

sion and the user role is within the domain userRoles. Second, the guard grd2

ensures that one of the user roles is a legal staff. Third, the guard grd3 ensures

that any patient p is a member of the domain pc, consent c is a member of the

 60

range pc, and the new ordered pair (p ↦ c) does not exist in the domain porta-

bleState. Fourth, the guard grd4 ensures that when adding Void status to the

portableState({p ↦ c}), the invariant inv4 must be satisfied. Whenever all

guards are valid, the action act1 adds the status Void to the portableState({p ↦

c}).

CreatePortable ≙
Any s,p,c Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : p ∈ dom(pc) ∧ c ∈ ran(pc) ∧ {p ↦ c} ∉ dom(portableState)
 grd4 : portableState {{p ↦ c} ↦ Void} ∈
 (PATIENTS ↔ CONSENTS) ⤔ STATUSES
Then
 act1 : portableState({p ↦ c}) ≔ Void
End

Listing 11: The CreatePortable event.

After the CreatePortable event is done, the ApprovePortable event (Listing

12) will be fired if the variable canPortable is TRUE. The status of portableS-

tate(pc1) will then be changed from Void to Approved according to the action

act1.

ApprovePortable ≙
Any s,pc1,canPortable Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalApprover
 grd3 : pc1 ∈ dom(portableState) ∧ portableState(pc1) = Void
 grd4 : portableState {pc1 ↦ Approved} ∈
 (PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd5 : canPortable ∈ BOOL ∧ canPortable = TRUE
Then
 act1 : portableState(pc1) ≔ Approved
End

Listing 12: The ApprovePortable event.

Otherwise, the RejectPortable event (Listing 13) will be fired to change the

status from Void to Rejected. In both cases, the portability request must be de-

termined by the legal approver.

RejectPortable ≙
Any s,pc1,canPortable Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalApprover
 grd3 : pc1 ∈ dom(portableState) ∧ portableState(pc1) = Void
 grd4 : portableState {pc1 ↦ Rejected} ∈
 (PATIENTS ↔ CONSENTS) ⤔ STATUSES

 61

 grd5 : canPortable ∈ BOOL ∧ canPortable = FALSE
Then
 act1 : portableState(pc1) ≔ Rejected
End

Listing 13: The RejectPortable event.

4.2.4. Consent Renewal State Machine (CRSM)

The CRSM model (Figure 26) created by Event-B describes the dynamic

behavior of the model to extend the renewal period of a consent. The first three

invariants of the model are the same as the previous three models. We also de-

fined four more invariants and variables to cover the refinement of CRSM as

follows.

inv1: sessions ∈ SESSIONS ⤔ AUTHORIZED_USERS
inv2: userRoles ∈ AUTHORIZED_USERS ↔ ROLES
inv3: pc ∈ PATIENTS ↔ CONSENTS
inv4: isConsentExpired ∈ (PATIENTS ↔ CONSENTS) ⤔ BOOL
inv5: markAsDeleted ∈ PATIENTS ↔ CONSENTS
inv6: markAsReceived ∈ PATIENTS ↔ CONSENTS
inv7: consentRenewalState ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES

The first variable isConsentExpired is a set of ordered pairs represents by

one-to-one relationship (pc ↦ expired) where pc ∈ PATIENTS ↔ CONSENTS,

and expired ∈ BOOL (i.e., TRUE or FALSE). The second variable markAsDe-

leted contains the relationship between PATIENTS and CONSENTS that repre-

sents the patient as deleted under the consent. The third variable mar-

kAsReceived contains the relationship between PATIENTS and CONSENTS that

keeps track of the patient’s incoming response to the renewal request. The fourth

variable is consentRenewalState, which has held the status of consent renewal. It

is a set of ordered pairs (pc ↦ status), where pc ∈ PATIENTS ↔ CONSENTS,

and status ∈ STATUSES that holds the status of patient’s consent.

By default, the INTIALISATION event is fired to initialize the variables

before executing a renewal request. The Login event is triggered to retrieve the

user login information, and the session has started. The CreateConsentRenew-

alRequest event (Listing 14) is used to initiate a consent renewal request. The

guards are defined with seven preconditions. First, the guard grd1 ensures that

the user successfully got the session and the user role is within the domain

userRoles. Second, the guard grd2 ensures that one of the user roles is a legal

staff. Third, the guard grd3 ensures that any patient p is a member of the domain

pc, consent c is a member of the range pc, and a new ordered pair (p ↦ c) does

not exist in the domain consentRenewalState. Fourth, the guard grd4 ensures

that expired is a member of a boolean and expired is TRUE. Fifth, the guard

 62

grd5 ensures that isWithdrawn is a member of a boolean and isWithdrawn is

FALSE. Sixth, the guard grd6 ensures that when adding Void status to the con-

sentRenewalState({p ↦ c}), the invariant inv7 must be still satisfied. Seventh,

the guard grd7 ensures that when adding TRUE to the isConsentExpired({p ↦

c}), the invariant inv4 must be satisfied. Whenever all guards are valid, the ac-

tion act1 adds a status Void to the consentRenewalState({p ↦ c}), and act2 adds

TRUE to the isConsentExpired({p ↦ c}).

CreateConsentRenewalRequest ≙
Any s,p,c,expired,isWithdrawn Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : p ∈ dom(pc) ∧ c ∈ ran(pc) ∧ {p ↦ c} ∉ dom(consentRenewalState)
 grd4 : expired ∈ BOOL ∧ expired = TRUE
 grd5 : isWithdrawn ∈ BOOL ∧ isWithdrawn = FALSE
 grd6 : consentRenewalState {{p ↦ c} ↦ Void} ∈
 (PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd7 : isConsentExpired {{p ↦ c} ↦ TRUE} ∈
 (PATIENTS ↔ CONSENTS) ⤔ BOOL
Then
 act1 : consentRenewalState({p ↦ c}) ≔ Void
 act2 : isConsentExpired({p ↦ c}) ≔ TRUE
End

Listing 14: The CreateConsentRenewalRequest event.

The NotifyPatient event (Listing 15) is used to notify the patient about ex-

tending the time period of consent. The guards are defined with five precondi-

tions. First, the guard grd1 ensures that the user successfully got the session and

the user role is within the domain userRoles. Second, the guard grd2 ensures that

one of the user roles is a legal staff. Third, the guard grd3 ensures that pc1 is not

a subset of markAsReceived, pc1 is a member of the domain consentRenewal-

State, and consentRenewalState(pc1) is equal to Void. Fourth, the guard grd4 en-

sures that the acceptStatus is a member of STATUSES but excludes Void. Fifth,

the guard grd5 ensures that when updating the acceptStatus to the consen-

tRenewalState(pc1), the invariant inv7 must be satisfied. Whenever all guards

are valid, the action act1 adds the acceptStatus to the consentRenewalState(pc1),

and act2 adds pc1 to the markAsReceived.

NotifyPatient ≙
Any s,pc1,acceptStatus Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : pc1 ⊈ markAsReceived ∧ pc1 ∈
 dom(consentRenewalState) ∧ consentRenewalState(pc1) = Void
 grd4 : acceptStatus ∈ STATUSES ∖ {Void}
 grd5 : consentRenewalState {pc1 ↦ acceptStatus} ∈

 63

 (PATIENTS ↔ CONSENTS) ⤔ STATUSES
Then
 act1 : consentRenewalState(pc1) ≔ acceptStatus
 act2 : markAsReceived ≔ markAsReceived ∪ pc1
End

Listing 15: The NotifyPatient event.

After receiving the patient’s response, the ExtendConsentExpiration event

(Listing 16) will be fired if the variable consentRenewalState(pc1) is Approved

and isConsentExpired(pc1) is TRUE. The isConsentExpired(pc1) as a boolean

will then be changed from TRUE to FALSE according to the action.

ExtendConsentExpiration ≙
Any s,pc1 Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : pc1 ∈ dom(consentRenewalState) ∧
 consentRenewalState(pc1) = Approved
 grd4 : pc1 ⊆ markAsReceived ∧ pc1 ∈ dom(isConsentExpired) ∧
 isConsentExpired(pc1) = TRUE
 grd5 : isConsentExpired {pc1 ↦ FALSE} ∈
 (PATIENTS ↔ CONSENTS) ⤔ BOOL
Then
 act1 : isConsentExpired(pc1) ≔ FALSE
End

Listing 16: The ExtendConsentExpiration event

Otherwise, the DeletePatientData event (Listing 17) will be fired to add the

pc1 to markAsDeleted. In both cases, the consent renewal request is determined

by the legal staff.

DeletePatientData ≙

Any s, pc1 Where
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : pc1 ∈ dom(consentRenewalState) ∧
 consentRenewalState(pc1) = Rejected
 grd4 : pc1 ⊆ markAsReceived ∧ pc1 ∈ dom(isConsentExpired) ∧
 isConsentExpired(pc1) = TRUE
 grd5 : markAsDeleted ∩ pc1 = ∅
Then
 act1 : markAsDeleted ≔ markAsDeleted ∪ pc1
End

Listing 17: The DeletePatientData event.

 64

4.3. Model Evaluation in Event-B

The refined models are formalized and proved correct using the Rodin Platform.

The Rodin Platform generates the POs that can be proved automatic or manual.

Moreover, it guarantees that all events preserve invariants whenever state variables

have changed. The proving results (Table 7) demonstrate that all models were proved

automatically by Atelier B provers. Moreover, there were no invariant violations or

deadlocks found. The Event-B models are presented in APPENDIX A.

Table 7: The summary of proof statistics by the Rodin platform for the proposed four

consent management state machines based on Event-B models.

Machine name Number of proof

obligations

Automatic (%) Manual (%)

RPSM 42 42 (100%) 0 (0%)

WASM 16 16 (100%) 0 (0%)

PASM 16 16 (100%) 0 (0%)

CRSM 22 22 (100%) 0 (0%)

4.4. Event-B Model Transformation to Class Diagram

The proposed models implemented by Event-B can be used as a guideline for

software development on the aspects of consent management. According to the ob-

ject-oriented approach, a class diagram is a static structural model which describes the

system’s classes, attributes, operations, and associations. It helps developers under-

stand a system’s overall structure. Here, we give an example of how to transform our

Event-B models into a class diagram. First, identify the primary classes of the system

which appear in static variables of Event-B (e.g., sets, constants, variables, and defini-

tions). Second, identify the relation between self or other sets which appear in invari-

ants, which indicate the association between classes. Third, identify events as opera-

tions in classes. Also, notice that a transition can be fired, and only if guard conditions

are true, an event occurs. Each guard condition must be implied as a precondition of a

method in a class. The globally declared static variables can be mapped to concrete

classes (e.g., AuthorizedUser, Role, Consent, DataSubject, DataSubjectConsent), as

shown in Figure 27. The set of PATIENTS represents data subjects under GDPR. We

could define a DataSubject associated with DataField, and DataValue classes to hold

patient personal data. Moreover, GDPR requires the systems to get consent from data

subjects before processing data. So, the Consent class needs to be created with a set of

properties (e.g., consentDetail, dataRetention (in months), consentVersion, created-

Date). In the CheckAuthorizeConsent event of RPSM, the variable consentExpired is

a flag indicating if the data’s age exceeds the applicable data retention, defined inside

the ConsentPolicyAccess class. We need to create a DataSubjectConsent class to hold

the properties required for calculating the consentExpired flag. For example, suppose

that we define properties as follows: 1) the acceptedFlag indicates a data subject’s

response to the consent extension, which can be either approved (“Y”) or rejected

 65

(“N”), 2) the createdDate represents the data subject’s last response date, 3) the

dataSubject object indicates this data subject, and 4) the consent object indicates the

consent that has been approved or rejected by the data subject.

Figure 27: A class diagram transformed from the proposed consent-based models in

Event-B.

To calculate the consentExpired flag, we need to retrieve the DataSubjectCon-

sent object associated with a specific data subject and consent. After getting the ob-

ject, check if the acceptedFlag = “Y” and getSystemDate() > addMonths(createdDate,

consentObject.dataRetention), then set the expiredFlag = “Y”, otherwise set the ex-

piredFlag = “N”. Our proposed models based on Event-B method are designed to be

simple and applicable, which could be easily mapped to the real codes. In the case of

RUN-ONCO, a web-based application, we adopted the functionality from the Con-

sentPolicyAccess class (Figure 27) and enhanced it into AuthenticationService and

PatientService classes (Figure 22) to make clean and reusable codes.

In addition, particular businesses or systems can also use these models. Accord-

ing to the class diagram in Figure 27, the DataSubject class represents an individual

that can recognize a person’s uniqueness (e.g., customers, patients, employees). Hence

a system has to define a set of data fields of personal data on which can dynamically

 66

be added into the DataField class (e.g., full name, social security number, birthdate).

Since data fields have been defined, a stakeholder who is involved in a software sys-

tem (e.g., an individual, team, organization) needs to add consent into the Consent

class and establish a relationship between these data fields. To limit data access pre-

cisely, a stakeholder needs to assign suitable user roles based on consent data. When

collecting personal data, a system needs to obtain the value of personal data in the

DataValue class followed by predefined data fields according to a given consent. This

thesis showed that our formal models support the commonly used features of consent

management.

67

CHAPTER V

A FORMAL MODEL FOR BLOCKCHAIN-BASED CONSENT

MANAGEMENT IN DATA SHARING

This chapter is a slightly modified version of a manuscript published in the

Journal of Logical and Algebraic Methods in Programming, Volume 134, 2023,

100886, and has been reproduced here with the permission of the copyright holder.

Sharing data can lead to a potential loss of control over personal data, as data are

across boundaries between software services. The use of blockchain technology ena-

bles to manage of data subjects’ informed consent for data sharing to build trust,

transparency, and traceability to share data across software services. Nevertheless,

cooperation between data privacy and blockchain technology benefits protecting data

against manipulation.

To develop CM for distributed systems in data sharing, we reviewed data-

sharing issues (Table 8) from the view of system design to build a GDPR-aware sys-

tem model on blockchain related to PbD [20, 36, 43-46].

In this thesis, we defined the data sharing state machine (DSSM) upon require-

ments in Table 8 that covered blockchain-enabled consent management in data shar-

ing and created a mapping of GDPR articles relevant to DSSM in Table 9. This state

machine aims to help developers address GDPR requirements in software engineering

practices.

To define a set of states and transitions in DSSM, we determined the logic with-

in consent management functionality comprises the following fundamental features:

1) the consent authorization feature is used to restrict access to share personal data

based on the given consent (Articles 5 & 20 GDPR), 2) the consent withdrawal fea-

ture is used to revoke permission to share personal data (Articles 17 & 19 GDPR), and

3) the consent renewal feature is used to keep data sharing functionality available (Ar-

ticle 6(1a) GDPR). The consent authorization feature is essential in data-sharing pro-

cessing activities to check whether consent is expired or withdrawn based on the data

subject’s consent. If consent is expired or removed, data transfer is not permitted.

Otherwise, the system can proceed with data-sharing activities, i.e., transfer data to

another service.

6
8

 T

ab
le

8
:

D
at

a
sh

ar
in

g
-r

el
at

ed
 i

ss
u
es

 a
s

re
q
u
ir

em
en

ts
 f

o
r

b
lo

ck
ch

ai
n

-b
as

ed
 c

o
n
se

n
t

m
an

ag
em

en
t.

T

o
p

ic

Is
su

e

R
eq

u
ir

em
en

t

R
u

le
s

o
f

d
at

a
sh

ar
in

g
 u

p
o
n

 a
 p

ar
ti

cu
la

r
p

u
rp

o
se

T

h
e

ch
al

le
n

g
e

o
f

co
n

se
n

t
as

so
ci

at
ed

 w
it

h
 s

h
ar

in
g

p
er

so
n

al
 d

at
a

is
 t

o
 m

an
ag

e
co

n
se

n
t

an
d

 p
er

so
n

al
 d

at
a

ef
fe

ct
iv

el
y

 a
n
d

 t
ra

n
sp

ar
en

tl
y

 [
2

0
,

4
3

-4
5

].

R
Q

1
:

T
h

e
sy

st
em

 s
h

al
l

d
et

er
m

in
e

th
e

co
n

se
n

t
m

an
-

ag
em

en
t

fu
n

ct
io

n
al

it
y

 b
as

ed
 o

n
 d

ec
en

tr
al

iz
ed

 s
ec

u
ri

-

ty
,

w
h

ic
h

 e
n

ab
le

s
an

 i
m

m
u

ta
b

le
 a

u
d

it
 l

o
g

 a
n

d
 t

ra
n

s-

p
ar

en
t

d
at

a-
sh

ar
in

g
 o

v
er

 a
 n

et
w

o
rk

.
T

h
e

d
at

a
su

b
je

ct
 c

an
 c

o
n

tr
o

l
an

d
 p

ro
v

id
e

h
is

/h
er

 c
o

n
-

se
n

t
o

v
er

 p
er

so
n

al
 d

at
a

b
ei

n
g

 s
h

ar
ed

 [
2
0

,
4
3

,
4
5

,
4
6

].

A
cc

es
s

re
st

ri
ct

io
n

 b
as

ed
 o

n
 t

h
e

p
u

rp
o

se
 o

r
co

n
se

n
t

T
h

e
d

at
a

su
b

je
ct

 h
as

 t
h

e
ri

g
h

t
to

 g
iv

e
h

is
/h

er
 c

o
n

se
n

t

to
 t

ra
n

sm
it

 p
er

so
n

al
 d

at
a

am
o
n

g
 d

at
a

co
n

tr
o

ll
er

s
[2

0
,

4
3

].

R
Q

2
:

T
h

e
sy

st
em

 s
h

al
l

al
lo

w
 d

at
a

co
n

tr
o

ll
er

s
to

 r
e
-

q
u

es
t

an
d

 d
is

cl
o

se
 i

n
d

iv
id

u
al

s’
 d

at
a

o
n

ly
 i

f
th

e
d

at
a

su
b

je
ct

 h
as

 p
ro

v
id

ed
 h

is
/h

er
 c

o
n

se
n

t.

L
im

it
ed

 n
u

m
b

er
 o

f
re

co
rd

s
in

 d
at

a
se

le
ct

io
n

T

h
e

sh
ar

in
g

 o
f

u
n

n
ec

es
sa

ry
 p

er
so

n
al

 d
at

a
p
u

ts
 t

h
e

co
n

fi
d

en
ti

al
it

y
 a

n
d

 p
ri

v
ac

y
 o

f
in

d
iv

id
u

al
s

at
 r

is
k

 [
3

5
,

4
7

].

R
Q

3
:

T
h

e
sy

st
em

 s
h

al
l

d
et

er
m

in
e

th
at

 o
n

e
re

q
u

es
t-

re
sp

o
n

se
 i

n
te

ra
ct

io
n

 i
s

o
n

ly
 p

ro
v

id
ed

 f
o

r
o

n
e

in
d

i-

v
id

u
al

’s
 d

at
a

an
d

 i
t

w
il

l
b

e
d

is
cl

o
se

d
 i

n
 a

cc
o

rd
an

ce

w
it

h
 p

re
d

ef
in

ed
 d

at
a

fi
el

d
s

in
 t

h
is

 g
iv

en
 c

o
n

se
n

t.

T
h

e
d

at
a

co
n

tr
o

ll
er

 i
s

re
st

ri
ct

ed
 t

o
 s

h
ar

in
g
 o

n
ly

 t
h

e

m
in

im
u

m
 a

m
o

u
n

t
o

f
p

er
so

n
al

 d
at

a
n

ec
es

sa
ry

 [
3
6

,
3
7

,

4
3

].

C
o

n
se

n
t

w
it

h
d

ra
w

al

T
h

e
d

at
a

su
b

je
ct

 h
as

 t
h

e
ri

g
h

t
to

 r
ev

o
k

e
co

n
se

n
t

to

d
is

co
n

ti
n

u
e

sh
ar

in
g

 p
er

so
n

al
 d

at
a

as
 h

e/
sh

e
w

is
h

es

[2
0

,
4

8
].

R
Q

4
:

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

m
ec

h
an

is
m

 f
o

r

co
n

se
n

t
re

v
o

ca
ti

o
n

 i
n

 w
h

ic
h

 t
h
e

d
at

a
su

b
je

ct
 c

an

re
v

o
k

e
co

n
se

n
t

at
 a

n
y

 t
im

e.

C
o

n
se

n
t

re
n

ew
al

T

h
e

d
at

a
co

n
tr

o
ll

er
 m

ay
 r

eq
u

es
t

th
e

d
at

a
su

b
je

ct
 a

n

ex
te

n
si

o
n

 o
f

th
e

re
te

n
ti

o
n

 p
er

io
d

 f
o
r

co
n

ti
n

u
in

g
 t

o

sh
ar

e
h

is
/h

er
 p

er
so

n
al

 d
at

a
[2

0
,

4
8

].

R
Q

5
:

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

m
ec

h
an

is
m

 f
o

r

co
n

se
n

t
re

n
ew

al
 i

n
 w

h
ic

h
 t

h
e

d
at

a
su

b
je

ct
 c

an
 r

en
ew

co
n

se
n

t.

A
u

d
it

ab
il

it
y

T

h
e

sh
ar

in
g

 o
f

p
er

so
n

al
 d

at
a

am
o

n
g

 d
at

a
co

n
tr

o
ll

er
s

sh
o

u
ld

 b
e

d
o

cu
m

en
te

d
 a

t
ea

ch
 t

ra
n

sm
is

si
o

n
 s

te
p

 i
n

im
m

u
ta

b
le

 a
n

d
 t

ra
n

sp
ar

en
t

d
at

a
st

o
ra

g
e

[2
0

,
4
3

,
4
7

].

R
Q

6
:

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

m
ec

h
an

is
m

 f
o

r

au
d

it
 l

o
g

g
in

g
 t

o
 d

o
cu

m
en

t
a

re
q

u
es

t-
re

sp
o

n
se

 i
n

te
r-

ac
ti

o
n

 b
et

w
ee

n
 p

ar
ti

ci
p

an
t

d
at

a
co

n
tr

o
ll

er
s

o
n

 e
v

er
y

d
is

cl
o

su
re

.
T

h
e

d
at

a
su

b
je

ct
 s

h
al

l
h

av
e

ac
ce

ss
 t

o
 a

u
d

it
 l

o
g

 a
ct

iv
i-

ti
es

 f
o

r
tr

ac
k

in
g
 a

t
ea

ch
 t

ra
n

sm
is

si
o

n
 s

te
p

 b
as

ed
 o

n

th
e

co
n

se
n

t
th

at
 h

e/
sh

e
p

ro
v

id
ed

 [
2

0
,

4
3
,

4
6
].

P
er

so
n

al
 d

at
a

m
as

k
in

g

T
h

e
ri

sk
 o

f
d

ir
ec

t
p

er
so

n
al

 i
d

en
ti

fi
ca

ti
o

n
 i

n
 d

at
a

sh
ar

-

in
g

 m
ay

 c
au

se
 t

h
e

re
co

g
n

it
io

n
 o

f
in

d
iv

id
u

al
 p

er
so

n
s

[4
7

,
4

9
-5

1
].

R
Q

7
:

T
h

e
sy

st
em

 s
h

al
l

p
ro

v
id

e
a

m
ec

h
an

is
m

 f
o

r

p
se

u
d

o
n
y

m
iz

ed
 d

at
a

to
 r

ed
u

ce
 t

h
e

ri
sk

 o
f

id
en

ti
fy

in
g

in
d

iv
id

u
al

 p
er

so
n

s
th

ro
u

g
h
 d

at
a

sh
ar

in
g

.

S
ec

u
re

 d
is

tr
ib

u
te

d
 d

at
a

st
o

ra
g
e

T
h

e
sh

ar
in

g
 o

f
p
er

so
n

al
 d

at
a

am
o

n
g

 d
at

a
co

n
tr

o
ll

er
s

sh
o

u
ld

 n
o

t
d

u
p

li
ca

te
 a

n
y

 i
n
d

iv
id

u
al

s’
 d

at
a

in
 s

ec
u

re

d
is

tr
ib

u
te

d
 d

at
a

st
o

ra
g

es
,
re

d
u
ci

n
g

 I
T

 c
o

st
s

an
d

 o
p

er
-

at
io

n
al

 b
u

rd
en

s.

R
Q

8
:

T
h

e
sy

st
em

 s
h

al
l

en
ab

le
 a

sy
n

c
ca

ll
b

ac
k

 t
o

m
an

ag
e

th
e

re
q

u
es

t-
re

sp
o
n

se
 i

n
te

ra
ct

io
n

 w
it

h
 d

y
-

n
am

ic
 c

o
n

fi
g

u
ra

ti
o
n

 e
n

d
p

o
in

t
ca

ll
b

ac
k

 U
R

L
s

fo
r

el
im

in
at

in
g

 t
h

e
u

se
 o

f
se

cu
re

 d
is

tr
ib

u
te

d
 d

at
a

st
o

ra
g

e.

6
9

 T

ab
le

9
:

T
h
e

p
ro

p
o
se

d
 m

o
d
el

 a
n
d
 G

D
P

R
 a

rt
ic

le
s

it
 c

o
v
er

ed
 (

co
n
t’

d
).

D

S
S

M

C
la

ss
 D

ia
g

ra
m

G

D
P

R

a
rt

ic
le

E

v
en

t
S

et
/

C
o

n
st

a
n

t

L
o

ca
l/

S
ta

te
 v

a
ri

a
b

le

O
p

er
a

ti
o

n

C
la

ss

A
tt

ri
b

u
te

R
Q

1

A
d

d
C

o
n

se
n
t

C
O

N
S

E
N

T
S

co

n
se

n
ts

ad

d
C

o
n

se
n

t
C

o
n

se
n

t:
st

ru
ct

,

C
o
n

se
n

tC
o

n
tr

ac
t

co
n

se
n

tC
o

d
e,

co
n

se
n

tD
et

ai
l,

co
n

se
n

tV
er

si
o

n
,

d
at

aR
et

en
ti

o
n

,

re
q
u

es
te

rI
d

,

re
q
u

es
te

rU
rl

A
rt

ic
le

 4
(1

),

A
rt

ic
le

 4
(4

),

A
rt

ic
le

 4
(7

),

A
rt

ic
le

 5
(1

b
),

A
rt

ic
le

 2
4

,

A
rt

ic
le

 2
8

,
A

rt
ic

le
 3

7

C
O

N
S

E
N

T
S

,

F
IE

L
D

S

d
at

aF
ie

ld
s

ad
d

D
at

aF
ie

ld

D
at

aF
ie

ld
:s

tr
u

ct
,

D
at

aF
ie

ld
C

o
n

tr
ac

t

co
n

se
n

tC
o

d
e,

co
n

se
n

tV
er

si
o

n
,

fi
el

d
N

am
e

A
d

d
D

at
aS

u
b

je
ct

C
o

n
se

n
t

P
A

R
T

IC
IP

A
N

T
S

,
D

A
T

A
_

S
U

B
JE

C
T

S
,

C
O

N
S

E
N

T
S

,

B
O

O
L

d
at

aS
u

b
je

ct
C

o
n

se
n

ts

ad
d

D
at

aS
u
b
je

ct
C

o
n

se
n

t
D

at
aS

u
b
je

ct
C

o
n

se
n
t:

st
ru

ct
,

D
at

aS
u

b
je

ct
C

o
n

se
n
tC

o
n
tr

ac
t

re
sp

o
n
d

er
Id

,
re

sp
o

n
d

er
U

rl
,

p
se

u
d
o
n

y
m

,

co
n

se
n

tC
o

d
e,

co

n
se

n
tV

er
si

o
n

R
Q

2

P

A
R

T
IC

IP
A

N
T

S
,

D
A

T
A

_
S

U
B

JE
C

T
S

,
C

O
N

S
E

N
T

S
,

B
O

O
L

co
n

se
n

tE
x
p

ir
ed

:b
o
o

l,

d
at

aS
u

b
je

ct
C

o
n

se
n

ts

is
C

o
n

se
n

tV
al

id

D
at

aS
u

b
je

ct
C

o
n

se
n
t:

st
ru

ct
,

D
at

aS
u

b
je

ct
C

o
n

se
n
tC

o
n
tr

ac
t

re
sp

o
n
d

er
Id

,

p
se

u
d
o
n

y
m

,
co

n
se

n
tC

o
d
e,

co
n

se
n

tV
er

si
o

n
,

d
at

aR
et

en
ti

o
n

,
cr

ea
te

T
im

es
ta

m
p

A
rt

ic
le

 5
(1

a)
,

A
rt

ic
le

 5
(1

c)
,

A
rt

ic
le

 5
(1

d
),

A
rt

ic
le

 6
(1

a)

R
Q

3

S
u

b
m

it
R

eq
u

es
t

R
E

Q
U

E
S

T
S

,

P
A

R
T

IC
IP

A
N

T
S

,
D

A
T

A
_

S
U

B
JE

C
T

S
,

C
O

N
S

E
N

T
S

d
at

aA
cc

es
sR

eq
u
es

ts

su
b
m

it
R

eq
u

es
t

D
at

aA
cc

es
sR

eq
u

es
t:

st
ru

ct
,

D
at

aA
cc

es
sR

eq
u

es
tC

o
n
tr

ac
t

re
q
u

es
tE

x
is

ts
,

re
q
u

es
tI

d
,

p
se

u
d
o
n

y
m

,

co
n

se
n

tC
o

d
e,

co
n

se
n

tV
er

si
o

n

A
rt

ic
le

 5
(1

e)
,

A
rt

ic
le

 5
(1

f)
,

A
rt

ic
le

 6
(1

a)
,

A
rt

ic
le

 2
0

S
u

b
m

it
R

es
p
o

n
se

R

E
S

P
O

N
S

E
S

,

R
E

Q
U

E
S

T
S

d
at

aA
cc

es
sR

es
p

o
n

se
s

su
b
m

it
R

es
p
o

n
se

D

at
aA

cc
es

sR
es

p
o

n
se

:s
tr

u
ct

,

D
at

aA
cc

es
sR

es
p
o

n
se

C
o
n

tr
ac

t

re
sp

o
n

se
E

x
is

ts
,

re
sp

o
n

se
Id

,

re
q
u

es
tI

d
,

p
se

u
d
o
n

y
m

,
co

n
se

n
tC

o
d
e,

co
n

se
n

tV
er

si
o

n

R
Q

4

R
ev

o
k

eC
o

n
se

n
t

P
A

R
T

IC
IP

A
N

T
S

,
D

A
T

A
_

S
U

B
JE

C
T

S
,

C
O

N
S

E
N

T
S

,

B
O

O
L

d
at

aS
u

b
je

ct
C

o
n

se
n

ts

re
v
o

k
eC

o
n
se

n
t

D
at

aS
u

b
je

ct
C

o
n

se
n
t:

st
ru

ct
,

D
at

aS
u

b
je

ct
C

o
n

se
n
tC

o
n
tr

ac
t

p
se

u
d
o
n

y
m

,
re

sp
o

n
d

er
Id

,

co
n

se
n

tC
o

d
e,

co
n

se
n

tV
er

si
o

n
,

w
it

h
d

ra
w

n
T

im
es

ta
m

p

A
rt

ic
le

 7
(3

),

A
rt

ic
le

 1
7

,

A
rt

ic
le

 1
9

7
0

T
ab

le

9
:

T
h
e

p
ro

p
o
se

d
 m

o
d
el

 a
n
d
 G

D
P

R
 a

rt
ic

le
s

it
 c

o
v
er

ed
.

D

S
S

M

C
la

ss
 D

ia
g

ra
m

G

D
P

R

a
rt

ic
le

E

v
en

t
S

et
/

C
o

n
st

a
n

t

L
o

ca
l/

S
ta

te
 v

a
ri

a
b

le

O
p

er
a

ti
o

n

C
la

ss

A
tt

ri
b

u
te

R
Q

5

R
en

ew
C

o
n

se
n

t
P

A
R

T
IC

IP
A

N
T

S
,

D
A

T
A

_
S

U
B

JE
C

T
S

,
C

O
N

S
E

N
T

S
,

B
O

O
L

d
at

aS
u

b
je

ct
C

o
n

se
n

ts

re
n

ew
C

o
n

se
n
t

D
at

aS
u

b
je

ct
C

o
n

se
n
t:

st
ru

ct
,

D
at

aS
u

b
je

ct
C

o
n

se
n
tC

o
n
tr

ac
t

p
se

u
d
o
n

y
m

,

re
sp

o
n
d

er
Id

,
co

n
se

n
tC

o
d
e.

co
n

se
n

tV
er

si
o

n
,

cr
ea

te
T

im
es

ta
m

p

A
rt

ic
le

 6
(1

a)

R
Q

6

L

o
g

A
d
d

ed
C

o
n

se
n

t,

L
o
g

In
ac

ti
v
at

ed
C

o
n

se
n
t

C
o
n

se
n

tC
o

n
tr

ac
t

L
o
g

A
d
d

ed
D

at
aF

ie
ld

D

at
aF

ie
ld

C
o
n

tr
ac

t

L
o
g

A
d
d

ed
D

at
aS

u
b
je

ct
C

o
n

se
n

t,

L
o
g

F
ir

ed
R

eq
u
es

te
rC

al
lb

ac
k
,

L
o
g

R
et

u
rn

ed
R

eq
u
es

te
rC

al
lb

ac
k

,

L
o
g

R
ev

o
k

ed
C

o
n
se

n
t,

L

o
g

R
en

ew
ed

C
o

n
se

n
t

D
at

aS
u

b
je

ct
C

o
n

se
n
tC

o
n
tr

ac
t

L
o
g

S
u
b

m
it

te
d
R

eq
u

es
t,

L
o
g

F
ir

ed
R

es
p

o
n
d

er
C

al
lb

ac
k

,
L

o
g

R
et

u
rn

ed
R

es
p
o

n
d

er
C

al
lb

ac
k

D
at

aA
cc

es
sR

eq
u

es
tC

o
n
tr

ac
t

L
o
g

S
u
b

m
it

te
d
R

es
p
o

n
se

,

L
o
g

F
ir

ed
D

at
aT

ra
n

fe
rC

al
lb

ac
k
,

L
o
g

R
et

u
rn

ed
D

at
aT

ra
n

sf
er

C
al

lb
ac

k

D
at

aA
cc

es
sR

es
p
o

n
se

C
o
n

tr
ac

t

R
Q

7

D
at

aS
u

b
je

ct
C

o
n

se
n
t:

st
ru

ct

p
se

u
d
o
n

y
m

A

rt
ic

le
 4

(5
)

R
Q

8

C
al

lb
ac

k
R

eq
u
es

te
r

b
al

an
ce

O
f(

th
is

),

P
A

R
T

IC
IP

A
N

T
S

,

D
A

T
A

_
S

U
B

JE
C

T
S

,
C

O
N

S
E

N
T

S
,

B
O

O
L

o
ra

cl
iz

eF
ee

:n
u

m
b
er

,

d
at

aS
u

b
je

ct
C

o
n

se
n

ts
,

ca
ll

b
ac

k
R

eq
u
es

te
rS

ta
te

s

ca
ll

b
ac

k
R

eq
u
es

te
r

D
at

aS
u

b
je

ct
C

o
n

se
n
t:

st
ru

ct
,

D
at

aS
u

b
je

ct
C

o
n

se
n
tC

o
n
tr

ac
t

re
sp

o
n
d

er
Id

,

p
se

u
d
o
n

y
m

,

co
n

se
n

tC
o

d
e,

co

n
se

n
tV

er
si

o
n
,

re
sq

u
es

te
rU

rl

C
al

lb
ac

k
R

es
p

o
n
d

er

b
al

an
ce

O
f(

th
is

),

R
E

Q
U

E
S

T
S

,

P
A

R
T

IC
IP

A
N

T
S

,

D
A

T
A

_
S

U
B

JE
C

T
S

,
C

O
N

S
E

N
T

S

o
ra

cl
iz

eF
ee

:n
u

m
b
er

,

d
at

aA
cc

es
sR

eq
u
es

ts
,

ca
ll

b
ac

k
R

es
p

o
n
d

er
S

ta
te

s

ca
ll

b
ac

k
R

es
p

o
n
d

er

D
at

aA
cc

es
sR

eq
u

es
t:

st
ru

ct
,

D
at

aA
cc

es
sR

eq
u

es
tC

o
n
tr

ac
t

re
q
u

es
tI

d
,

p
se

u
d
o
n

y
m

,

co
n

se
n

tC
o

d
e,

co
n

se
n

tV
er

si
o

n
,

re
sp

o
n
d

er
U

rl

C
al

lb
ac

k
D

at
aT

ra
n

sf
er

b

al
an

ce
O

f(
th

is
),

R
E

S
P

O
N

S
E

S
,

R
E

Q
U

E
S

T
S

o
ra

cl
iz

eF
ee

:n
u

m
b
er

,

d
at

aA
cc

es
sR

es
p

o
n

se
s,

ca
ll

b
ac

k
D

at
aT

ra
n

sf
er

S
ta

te
s

ca
ll

b
ac

k
D

at
aT

ra
n

sf
er

D

at
aA

cc
es

sR
es

p
o

n
se

:s
tr

u
ct

,

D
at

aA
cc

es
sR

es
p
o

n
se

C
o
n

tr
ac

t

re
sp

o
n

se
Id

,

re
sp

o
n
d

er
U

rl
,

tr
an

sf
er

U
rl

71

5.1. CM State Machine for Data Sharing in Distributed Systems

This chapter proposes a formal model for data sharing in distributed systems
which embeds data protection into software development upon the GDPR. Based on

Article 4(11) GDPR, for the consent to be valid, the data subject voluntarily agrees to

enable either a data controller or a data processor to process his/her personal data for a

specific purpose. We considered consent management essential for promoting privacy

awareness in the system design [131, 132]. Furthermore, it indicates that the system

cannot process or share personal data without the data subject’s consent. In this chap-

ter, we built a state machine for data sharing to depict the dynamic behavior of a re-

quester sending requests to access personal data on the blockchain relevant to the rela-

tionships of a data subject’s consent, a requester, a responder, and a smart contract’s

balance. We followed PbD concepts and GDPR guidelines presented in Table 9 and

provided the example of request-response interaction through the data-sharing se-

quence diagram (Figure 28 and Figure 29) and the DSSM (Figure 30) that covers

the main aspects of blockchain-based consent management in data sharing.

Figure 28: Data sharing sequence diagram illustrating the request-response interac-

tion between ServiceA (responder) and Service B (requester).

 72

Figure 29: Data sharing sequence diagram continued from the previous diagram

(Figure 28), which illustrates the request-response interaction between ServiceA and

ServiceB.

We utilize the blockchain to obtain records of all request-response interactions

without storing personal data. Moreover, the requester and responder communicate

through blockchain, which is strictly forbidden to communicate directly with each

other. The interactions between the requester and the responder begin with the re-

quester requesting to access personal data through smart contracts (i.e., providing

consent management) live on a blockchain. Then smart contracts automatically check

if the data subject has authorized access to their personal data. If the request is ap-

proved, the blockchain makes a callback to trigger the responder. Finally, the re-

sponder sends the response back to the blockchain and transmits personal data to the

requester through an off-chain channel (i.e., the channel allowing transactions to oc-

cur outside the blockchain).

Based on sequence diagrams, the requester (ServiceB) first adds its new consent

into the blockchain (Figure 28(1)). Second, the data subject accesses the front-end of

his/her data provider, a responder (ServiceA), and retrieves from the blockchain all

available consents required by the requester (ServiceB) offering new products or ser-

vices (Figure 28(2)). The data subject must accept before using its products or ser-

 73

vices. Third, after the data subject agrees with a requester’s consent, the responder

(ServiceA) sends back the data subject’s acceptance status into the blockchain (Figure

28(3)). Fourth, when the new data subject’s consent has been stored on the block-

chain, the blockchain makes a callback to trigger the requester (ServiceB), which can

prepare a request for accessing personal data (Figure 29(4)). Fifth, when the request

has been stored on the blockchain, the blockchain makes a callback to trigger the re-

sponder (ServiceA), which can respond to access the personal data within the reten-

tion period (Figure 29(5)). Sixth, when the response has been stored on the block-

chain, the blockchain makes a callback to trigger the responder (ServiceA), which can

transfer personal data directly to the requester (ServiceB) via an off-chain channel

(Figure 29(6)). One request will get only one response in our model, as tracking all

requests and responses on the blockchain is easier.

Figure 30: Data Sharing State Machine (DSSM) illustrating the transition states and

events used to share personal data between a requester and a responder through

blockchain.

5.2. Formal Development in Event-B

To build the data sharing model, first, we created the data sharing context

(DSCX) to define carrier sets, and constants associated with blockchain as follows: 1)

CONSENTS is a set of personal data sharing agreements (e.g., ConsentA, ConsentB)

between the services sending and receiving data, 2) FIELDS is a set of data fields

(e.g., Name, BirthDate, BirthDefects) that identifies individuals, 3) DA-

TA_SUBJECTS is a set of data subjects (e.g., DataSubject1), 4) PARTICIPANTS is a

 74

set of services (e.g., ServiceA, ServiceB) that require data sharing based on block-

chain technology, 5) ADDRESSES is a set of contract addresses to interact with de-

ployed smart contracts, 6) the constant this is a member of ADDRESSES, which re-

fers to the contract address itself, 7) the constant initialBalance is a natural number

representing the initial balance of contract address this, 8) REQUESTS is a set of data

requests, the requesting services (requesters) create requests (e.g., Request1) to the

responding services (responders) for accessing personal data, and 9) RESPONSES is

a set of data responses, the responders check whether the requests have authorized

access to personal data and return the responses (e.g., Response1) back to the re-

questers.

Second, we created DSSM and referred to DSCX; the state machine can directly

access the defined global static variables. State machine naturally encapsulates states

and behaviors related to variables, invariants, and transitions. In the Event-B model,

variables represent the states of the system, and invariants, e.g., inv1, inv2, represent

the preserved properties of the states. A transition represents the change from one state

to another according to an event. Every event comprises guards as preconditions and

actions for variable modification, labeled, e.g., grd1, grd2, and act1, act2, respective-

ly. A transition will take place only if it satisfies all invariants and guards.

5.2.1. Data Sharing State Machine (DSSM)

The DSSM (Figure 30) was modeled and formally proved for blockchain-

based data sharing. It depicts the dynamic behavior of a requester sending re-

quests to access personal data on the blockchain that provides consent-based ac-

cess control. If the request is authorized, the responder will send the response

back to the blockchain and transmit personal data to the requester through an

off-chain channel. For this state machine, we defined the preserved invariants as

follows:

5.2.1.1. Invariants in DSSM

inv1: consents ∈ ℙ(CONSENTS)
inv2: dataFields ∈ CONSENTS ⇸ ℙ1(FIELDS)
inv3: dataSubjectConsents ∈

PARTICIPANTS × DATA_SUBJECTS × CONSENTS ⇸ BOOL
inv4: addresses ⊆ ADDRESSES
inv5: balanceOf ∈ addresses → ℕ
inv6: callbackRequesterStates ∈

ℙ(PARTICIPANTS × DATA_SUBJECTS × CONSENTS)
inv7: dataAccessRequests ∈

REQUESTS ⇸ PARTICIPANTS × DATA_SUBJECTS × CONSENTS
inv8: callbackResponderStates ∈ ℙ(REQUESTS)
inv9: dataAccessResponses ∈ RESPONSES ⤔ REQUESTS

 75

inv10: callbackDataTransferStates ∈ ℙ(RESPONSES)
inv11: encryptedData ∈ RESPONSES ⇸ ℙ(DATA_SUBJECTS × FIELDS)
inv12: dataTransferStates ∈ RESPONSES ⇸ BOOL

The variable consents contains a set of CONSENTS, which holds all

consents offered by the requesters. According to PbD, the requester must

demonstrate that data subjects agreed to process their personal data for a

specific purpose on the defined data fields. Hence, we declared the varia-

ble dataFields as a set of ordered pairs (consent ↦ dataField) where con-

sent ∈ CONSENTS and dataField ∈ ℙ1(FIELDS). The dataFields speci-

fies that consent can have one or more data fields. The dataSubjectCon-

sents defines (pdc ↦ active) as a set of ordered pairs, where pdc ∈ PAR-

TICIPANTS × DATA_SUBJECTS × CONSENTS, and active ∈ BOOL

(i.e., TRUE or FALSE). The variable dataSubjectConsents represents a

record of the data subject’s consent that allows a requester to process

his/her personal data under the purpose of the consent. The addresses is a

subset of the ADDRESSES set where each represents a unique smart con-

tract address on the blockchain. We defined the balanceOf(address ↦ bal-

ance) where address ∈ addresses and balance is a natural number, keeping

track of the contract address balance. The variable callbackRequesterStates

contains a set of ordered triples (responder ↦ dataSubject ↦ consent)

where responder ∈ PARTICIPANTS, dataSubject ∈ DATA_SUBJECTS,

consent ∈ CONSENTS to track which requesters have been successfully

invoked after the data subjects have given their consents for their data pro-

cessing. The variable dataAccessRequests is a set of ordered pairs (request

↦ dataSubjectConsent) where request ∈ REQUESTS, and dataSub-

jectConsent ∈ dom(dataSubjectConsents), represents a record of data re-

quest of a requester to the blockchain after receiving a callback of data

subject’s permission. The callbackResponderStates contains a set of RE-

QUESTS to track which responders have been successfully invoked after

the requesters have initiated their requests. Hence, we declared the

dataAccessResponses that holds the one-to-one relationship between RE-

SPONSES and REQUESTS. This mapping allows transferring data be-

tween the responder and requester. The variable callbackDataTransfer-

States contains a set of RESPONSES to track which responders have been

successfully invoked for starting an off-chain data transfer after accepting

the requests. We stored the encrypted data in variable encryptedData, a set

of ordered pairs (response ↦ personalData) where response ∈ RESPONS-

ES, and personalData ∈ DATA_SUBJECTS × FIELDS. Furthermore, we

defined a variable dataTransferStates to hold the status of successful data

transfer as a set of ordered pairs (response ↦ success) where response ∈

RESPONSES, and success ∈ BOOL (i.e., TRUE or FALSE).

 76

5.2.1.2. Events in DSSM

The DSSM state machine is executed starting from the INITIALI-

SATION event, then all variables of DSSM are initialized. Listing 18

shows the formal model of how a new requester’s consent is added to the

blockchain. The guards are defined with three preconditions. First, the

guard grd1 ensures that the consent does not exist in the variable consents.

Second, the guard grd2 ensures that any dataField is a member of

ℙ1(FIELDS). Third, the guard grd3 ensures that adding an ordered pair

(consent ↦ dataField) into variable dataFields must satisfy the invariant

inv2. Whenever all guards are valid, action act1 adds the consent to the

consents, and action act2 adds an ordered pair (consent ↦ dataField) to the

dataFields.

AddConsent ≙
Any consent, dataField Where
 grd1 : consent ∈ dom(consents) ∧ consent ∈ consents
 grd2 : dataField ∈ ℙ1(FIELDS)
 grd3 : dataField {consent ↦ dataField} ∈ CONSENTS ⇸ ℙ1(FIELDS)
Then
 act1 : consents ≔ consents ∪ {consent}
 act2 : dataFields(consent) ≔ dataField
End

Listing 18. The AddConsent event.

Listing 19 shows how to formally model the addition of a new data

subject’s consent. The guards are defined with five preconditions. First, the

guard grd1 ensures that the responder is a member of PARTICIPANTS.

Second, the guard grd2 ensures that the dataSubject is a member of DA-

TA_SUBJECTS. Third, the guard grd3 ensures that the consent is a mem-

ber of the variable consents and within the domain dataFields. Fourth, the

guard grd4 ensures that a new ordered triple (responder ↦ dataSubject ↦

consent) does not exist in the domain dataSubjectConsents, which means

no active data subject’s consent is already granted for the requester on the

blockchain. Fifth, the guard grd5 ensures that when adding TRUE to the

dataSubjectConsents(responder ↦ dataSubject ↦ consent), the invariant

inv3 must be satisfied. Finally, whenever all of the guards are valid, the ac-

tion act1 adds TRUE to the dataSubjectConsents(responder ↦ dataSubject

↦ consent).

AddDataSubjectConsent ≙
Any responder, dataSubject, consent Where
 grd1 : responder ∈ PARTICIPANTS

 77

 grd2 : dataSubject ∈ DATA_SUBJECTS
 grd3 : consent ∈ consents ∧ consent ∈ dom(dataFields)
 grd4 : responder ↦ dataSubject ↦ consent ∉ dom(dataSubjectConsents)
 grd5 : dataSubjectConsents

{responder ↦ dataSubject ↦ consent ↦ TRUE} ∈
(PARTICIPANTS × DATA_SUBJECTS × CONSENTS) ⇸ BOOL

Then
act1 : dataSubjectConsents(responder ↦ dataSubject ↦ consent) ≔ TRUE

End
Listing 19. The AddDataSubjectConsent event.

Listing 20 shows how we formally model the handling of the re-

quest-response mechanism on the blockchain. After adding a new data

subject’s consent, the blockchain creates a callback to the requester

(Listing 20) via an outside API call. When the requester receives a

callback, it will prepare a request to access personal data. The guards are

defined with three preconditions. First, the guard grd1 ensures that the

constant this is a member of the domain balanceOf, the oraclizeFee is the

charge for sending a payload to an API call outside the blockchain, which

is a member of a set of natural numbers, and the oraclizeFee must be less

than or equal to balanceOf(this). Second, the guard grd2 ensures that the

decreased balanceOf(this) with the oraclizeFee must satisfy the invariant

inv5. Third, the guard grd3 ensures that the dataSubjectConsent is a mem-

ber of the domain dataSubjectConsents, dataSubjectConsent does not exist

in the callbackRequesterStates, and the active status of the dataSub-

jectConsents(dataSubjectConsent) is TRUE. Whenever all guards are val-

id, action act1 charges oraclizeFee from the balanceOf(this), and action

act2 adds the dataSubjectConsent to the callbackRequesterStates.

CallbackRequester ≙
Any oraclizeFee, dataSubjectConsent Where
 grd1 : this ∈ dom(balanceOf) ∧ oraclizeFee ∈ ℕ ∧

oraclizeFee ≤ balanceOf(this)
 grd2 : balanceOf {this ↦ balanceOf(this) − oraclizeFee} ∈

addresses → ℕ
 grd3 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsent ∉ callbackRequesterStates ∧
dataSubjectConsents(dataSubjectConsent) = TRUE

Then
act1 : balanceOf ≔ balanceOf {this ↦ balanceOf(this) –

oraclizeFee}
act2 : callbackRequesterStates ≔ callbackRequesterStates ∪

{dataSubjectConsent}
End

Listing 20: The CallbackRequester event.

 78

The SubmitRequest event (Listing 21) allows a requester to create a

request for accessing personal data. In this event, we defined a set of con-

straints to restrict the request access: 1) the consent has not expired, 2) the

consent has not been withdrawn, and 3) the request ID has not been sub-

mitted. These constraints were then described as five guards of the event.

First, the guard grd1 ensures that the consentExpired is a member of the

boolean and consentExpired is FALSE. Second, the guard grd2 ensures

that the dataSubjectConsent is a member of the dataSubjectConsents, and

the range of dataSubjectConsents(dataSubjectConsent) is TRUE. Third,

the guard grd3 ensures that the dataSubjectConsent is a member of the var-

iable callbackRequesterStates. Fourth, the guard grd4 ensures that the re-

quest is a member of REQUESTS and the request does not exist in the

domain dataAccessRequests. Fifth, the guard grd5 ensures that adding an

ordered pair (request ↦ dataSubjectConsent) into variable dataAccessRe-

quests must satisfy the invariant inv7. Whenever all guards are valid, ac-

tion act1 adds an ordered pair (request ↦ dataSubjectConsent) to the

dataAccessRequests.

SubmitRequest ≙
Any consentExpired, dataSubjectConsent, request Where
 grd1 : consentExpired ∈ BOOL ∧ consentExpired = FALSE
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd3 : dataSubjectConsent ∈ callbackRequesterStates
 grd4 : request ∈ REQUESTS ∧ request ∉ dom(dataAccessRequests)
 grd5 : dataAccessRequests {request ↦ dataSubjectConsent} ∈

REQUESTS ⇸ PARTICIPANTS × DATA_SUBJECTS × CONSENTS
Then

act1 : dataAccessRequests(request) ≔ dataSubjectConsent
End

Listing 21: The SubmitRequest event.

The CallbackResponder event (Listing 22) handles a callback from

the blockchain to the responder. When the responder receives a callback, it

will respond to a request to access the personal data within the retention

period. The guards are defined with four preconditions. The first two

guards are the same as in the CallbackRequester event. Additionally, we

declared the guard grd3 to ensure that the request is a member of the do-

main dataAccessRequests, and the request does not exist in the

callbackResponderStates. Finally, through the guard grd4, we specified

that the dataAccessRequests(request) as a dataSubjectConsent is a member

of the domain dataSubjectConsents, and the range of the dataSubjectCon-

sents(dataAccessRequests(request)) as a boolean is TRUE. Whenever all

 79

guards are valid, action act1 charges oraclizeFee from the balanceOf(this),

and action act2 adds the request to the callbackResponderStates.

CallbackResponder ≙
Any oraclizeFee, dataSubjectConsent Where
 grd1 : this ∈ dom(balanceOf) ∧ oraclizeFee ∈ ℕ ∧

oraclizeFee ≤ balanceOf(this)
 grd2 : balanceOf {this ↦ balanceOf(this) − oraclizeFee} ∈

addresses → ℕ
 grd3 : request ∈ dom(dataAccessRequests) ∧ request ∉

callbackResponderStates
 grd4 : dataAccessRequests(request) ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataAccessRequests(request)) = TRUE
Then

act1 : balanceOf ≔ balanceOf {this ↦ balanceOf(this) –
oraclizeFee}

act2 : callbackResponderStates ≔ callbackResponderStates ∪ {request}
End

Listing 22: The CallbackResponder event.

The SubmitResponse event (Listing 23) is used to handle the re-

sponse of a responder to a requester. Before returning the response to the

requester, the event must check the following constraints: 1) the consent

has not expired, 2) the consent has not been withdrawn, and 3) the re-

sponse ID has not been submitted. Based on these constraints, guards are

defined with five preconditions. The first two guards are the same as in the

SubmitRequest event. Additionally, we declared guards grd3 to ensure that

the request is a member of the variable callbackResponderStates and grd4

to ensure that the response is a member of RESPONSES and the response

does not exist in the domain dataAccessResponses. Finally, the last guard

grd5 ensures that adding an ordered pair (response ↦ request) into variable

dataAccessResponses must satisfy the invariant inv9. Whenever all guards

are valid, action act1 adds an ordered pair (response ↦ request) to the

dataAccessResponses.

SubmitResponse ≙
Any consentExpired, request, response Where
 grd1 : consentExpired ∈ BOOL ∧ consentExpired = FALSE
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd3 : request ∈ callbackResponderStates
 grd4 : response ∈ RESPONSES ∧ response ∉ dom(dataAccessResponses)
 grd5 : dataAccessResponses {request ↦ response} ∈ RESPONSES ⤔

REQUESTS
Then

act1 : dataAccessResponses(response) ≔ request

 80

End
Listing 23: The SubmitResponse event.

The CallbackDataTransfer event (Listing 24) is used to handle a

callback from the blockchain to trigger the responder for data transfer.

When the responder receives a callback, it will transfer personal data to the

requester directly. The guards are defined with four preconditions. The first

two guards are the same as in the CallbackRequester event. Additionally,

we declared the guard grd3 to ensure that the response is a member of the

domain dataAccessResponses, and the response does not exist in the

callbackDataTransferStates. By means of the guard grd4, we specified that

the dataAccessResponses(response) as a request is a member of the do-

main dataAccessRequests, dataAccessRequests(dataAccessResponses(re-

sponse)) as a dataSubjectConsent is member of the domain dataSub-

jectConsents, and the range of the dataSubjectConsents(dataAccessRe-

quests(dataAccessResponses(response))) as a boolean is TRUE. Whenever

all guards are valid, action act1 charges oraclizeFee from the balance-

Of(this), and action act2 adds the response to the callbackDataTransfer-

States.

CallbackDataTransfer ≙
Any oraclizeFee, request Where
 grd1 : this ∈ dom(balanceOf) ∧ oraclizeFee ∈ ℕ ∧

oraclizeFee ≤ balanceOf(this)
 grd2 : balanceOf {this ↦ balanceOf(this) − oraclizeFee} ∈

addresses → ℕ
 grd3 : response ∈ dom(dataAccessResponses) ∧ response ∉

callbackDataTransferStates
 grd4 : dataAccessResponses(response) ∈ dom(dataAccessRequests) ∧

dataAccessRequests(dataAccessResponses(response)) ∈
dom(dataSubjectConsents) ∧
dataSubjectConsents(dataAccessRequests(dataAccessResponses(
response))) = TRUE

Then
act1 : balanceOf ≔ balanceOf {this ↦ balanceOf(this) –

oraclizeFee}
act2 : callbackDataTransferStates ≔ callbackDataTransferStates ∪

{response}
End

Listing 24: The CallbackDataTransfer event.

The TransferData event (Listing 25) transmits personal data from the

responder to the requester via an off-chain channel. Before the personal

data is transmitted, all constraints must be satisfied. The guards are defined

with five preconditions. First, the guard grd1 ensures that the response is a

member of the callbackDataTransferStates and the domain dataAccessRe-

 81

sponses, and the response does not exist in the domain dataTransferStates.

Second, the guard grd2 ensures that consent is a member of the domain da-

taFields. Third, the guard grd3 ensures that the data subject’s consent is

active and exists in the variables dataAccessRequests. Fourth, the guard

grd4 ensures that adding an ordered pair (response ↦ {dataSubject} × da-

taFields(consent)) into variable encryptedData must satisfy the invariant

inv11. Fifth, the guard grd5 ensures that adding an ordered pair (response

↦ TRUE) into variable dataTransferStates must satisfy the invariant

inv12. Whenever all guards are valid, the action act1 adds an ordered pair

(response ↦ {dataSubject} × dataFields(consent)) to the encryptedData,

and action act2 adds an ordered pair (response ↦ TRUE) to the dataTrans-

ferStates.

TransferData ≙
Any responder, dataSubject, consent, response Where
 grd1 : response ∈ callbackDataTransferStates ∧ response ∈

dom(dataAccessResponses) ∧ response ∉
dom(dataTransferStates)

 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧
dataSubjectConsents(dataSubjectConsent) = TRUE

 grd3 : ∃x·x ∈ dataAccessRequests[{dataAccessResponses(response)}] ∧
x = responder ↦ dataSubject ↦ consent ∧ responder ↦
dataSubject ↦ consent ∈ dom(dataSubjectConsents) ∧
dataSubjectConsents(x) = TRUE

 grd4 : encryptedData {response ↦ {dataSubject} ×
dataFields(consent)} ∈ RESPONSES ⇸ ℙ(DATA_SUBJECTS ×
FIELDS)

 grd5 : dataTransferStates {response ↦ TRUE} ∈ RESPONSES ⇸ BOOL
Then

act1 : encryptedData(response) ≔ {dataSubject} × dataFields(consent)
act2 : dataTransferStates(response) ≔ TRUE

End
Listing 25: The TransferData event.

The RevokeConsent event (Listing 26) is fired when a data subject

requests to withdraw his/her consent. The guards are defined with two pre-

conditions. First, the guard grd1 ensures that dataSubjectConsent is a

member of the domain dataSubjectConsents and the active status of the

dataSubjectConsents(dataSubjectConsent) is TRUE. The second guard

grd2 ensures that when updating FALSE to the dataSubjectCon-

sents(dataSubjectConsent), the invariant inv3 must be satisfied. Whenever

all guards are valid, action act1 assigns FALSE to the dataSubjectCon-

sents(dataSubjectConsent).

RevokeConsent ≙
Any dataSubjectConsent Where
 grd1 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE

 82

 grd2 : dataSubjectConsents {dataSubjectConsent ↦ FALSE} ∈
(PARTICIPANTS × DATA_SUBJECTS × CONSENTS) ⇸ BOOL

Then
act1 : dataSubjectConsents(dataSubjectConsent) ≔ FALSE

End
Listing 26: The RevokeConsent event.

The RenewConsent event (Listing 27) is fired when a data subject

requests to renew his/her consent. The guards are defined with two pre-

conditions. First, the guard grd1 ensures that dataSubjectConsent is a

member of the domain dataSubjectConsents and the active status of the

dataSubjectConsents(dataSubjectConsent) is FALSE. The guard grd2 en-

sures that when updating TRUE to the dataSubjectConsents(dataSub-

jectConsent), the invariant inv3 must be satisfied. Whenever all guards are

valid, the action act1 assigns TRUE to the dataSubjectConsents(dataSub-

jectConsent).

RenewConsent ≙
Any dataSubjectConsent Where
 grd1 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = FALSE
grd2 : dataSubjectConsents {dataSubjectConsent ↦ TRUE} ∈

(PARTICIPANTS × DATA_SUBJECTS × CONSENTS) ⇸ BOOL
Then

act1 : dataSubjectConsents(dataSubjectConsent) ≔ TRUE
End

Listing 27. The RenewConsent event.

The InsufficientBalance event (Listing 28) handles the insufficient

balance within a smart contract. An insufficient balance occurs when a

smart contract’s balance is too low to cover fees. The guards are defined

with three preconditions. First, the guard grd1 ensures that the constant

this is a member of the domain balanceOf, the oraclizeFee is a member of

the set of natural numbers, and the oraclizeFee must be greater than bal-

anceOf(this). Second, the guard grd2 ensures that dataSubjectConsent is a

member of the domain dataSubjectConsents and the active status of the

dataSubjectConsents(dataSubjectConsent) is TRUE. Third, the guard grd3

ensures that insufficient balance occurs in callback events. Whenever all of

the guards are valid, the process ends.

InsufficientBalance ≙
Any oraclizeFee, dataSubjectConsent, request, response Where
 grd1 : this ∈ dom(balanceOf) ∧ oraclizeFee ∈ ℕ ∧

oraclizeFee > balanceOf(this)
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

 83

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd3 : (dataSubjectConsent ∉ callbackRequesterStates) ∨

(request ↦ dataSubjectConsent ∈ dataAccessRequests ∧
request ∉ callbackResponderStates) ∨
(response ↦ request ∈ dataAccessResponses ∧
response ∉ callbackDataTransferStates)

Then
 skip
End

Listing 28. The InsufficientBalance event.

The CheckConsentExpiration event (Listing 29) is used to handle

when data subjects’ consent is expired. The guards are defined with three

preconditions. First, the guard grd1 ensures that the consentExpired is a

member of the boolean and consentExpired is TRUE. Second, the guard

grd2 ensures that dataSubjectConsent is a member of the domain dataSub-

jectConsents and the active status of the dataSubjectConsents(dataSub-

jectConsent) is TRUE. Third, the guard grd3 ensures that when updating

FALSE to the dataSubjectConsents(dataSubjectConsent), the invariant

inv3 must be satisfied. Whenever all guards are valid, the action act1 as-

signs FALSE to the dataSubjectConsents(dataSubjectConsent).

CheckConsentExpiration ≙
Any consentExpired, dataSubjectConsent Where
 grd1 : consentExpired ∈ BOOL ∧ consentExpired = TRUE
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd3 : dataSubjectConsents {dataSubjectConsent ↦ FALSE} ∈

PARTICIPANTS × DATA_SUBJECTS × CONSENTS ⇸ BOOL
Then

act1 : dataSubjectConsents(dataSubjectConsent) ≔ FALSE
End

Listing 29. The CheckConsentExpiration event.

The UnauthorizedAccess event (Listing 30) is used to handle when

there is a request to access the data of a data subject, but the data subject’s

consent has been revoked or expired. The guard grd1 ensures that dataSub-

jectConsent is a member of the domain dataSubjectConsents and the active

status of the dataSubjectConsents(dataSubjectConsent) is FALSE. When-

ever the guard is valid, the process ends.

UnauthorizedAccess ≙
Any dataSubjectConsent Where

grd1 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧
dataSubjectConsents(dataSubjectConsent) = FALSE

Then

 84

skip
End

Listing 30. The UnauthorizedAccess event.

5.3. Model Evaluation in Event-B

The DSSM was formalized with Event-B, and its correctness was verified using

the Rodin Platform. The Rodin Platform produces and discharges a set of POs auto-

matically or manually to ensure that all events preserve all invariants. The resulting

model (Table 10) demonstrates that the DSSM was proved automatically by Atelier B

provers. As a result, there are no invariant violations or deadlocks found. The Event-B

model are presented in APPENDIX B.

Table 10: The summary of proof statistics by the Rodin platform for the proposed

state machine based on the Event-B model.

Machine name Number of proof ob-

ligations

Automatic (%) Manual (%)

DSSM 42 42 (100%) 0 (0%)

5.4. Event-B Model Transformation to Class Diagram

The proposed model constructed by Event-B assists developers as a guideline in

applying consent management functionality among distributed services based on

blockchain technology. In an object-oriented approach, a class diagram depicts a static

view of a system, which is described by modeling its classes, attributes, operations,

and associations. Moreover, a class diagram makes it easier for developers to under-

stand how to implement smart contracts to support consent management. Here is an

example of transforming our Event-B model into a class diagram. First, identify a sys-

tem’s classes that appear in static variables of Event-B (e.g., carrier sets, constants,

and variables). Second, identify a system’s class associations among itself or other

sets that appear in invariants. Third, identify a system’s operations in classes. Besides,

each of the transitions has guard conditions, and it can be fired when the guard condi-

tions are evaluated to be true, then an event occurs. Each guard condition represents a

precondition based on state variables inside a method within classes. Figure 31 and
Figure 32 show the class diagram designed based on Ethereum smart contracts using

Solidity. We mapped the static variables in Event-B to concrete classes, which are di-

vided into two groups: 1) classes used in consent management functionality, e.g.,

Consent, ConsentContract, DataSubjectConsent, DataSubjectConsentContract, as

shown in Figure 31, and 2) classes used in request-response interactions between ser-

vices, e.g., DataAccessRequest, DataAccessRequestContract, DataAccessResponse,

DataAccessResponseContract, as shown in Figure 32. The set of DATA_SUBJECTS

and CONSENTS represents data subjects and consents under GDPR, respectively.

According to GDPR, the system requires gaining data subjects’ consent before pro-

cessing data. Therefore, we first defined structs (i.e., user-defined data types that ob-

 85

tain related data items, probably of different data types); for example, Consent is used

to hold a set of properties (e.g., consentCode, consentVersion, consentDetail, dataRe-

tention (in days), createTimestamp, requesterUrl). Within our proposed model, the

system should inform data subjects which piece of personal data is being used. So, we

created DataField to hold predefined data fields upon the requesters’ consent and used

it to specify the personal data to be transferred. Moreover, DataSubjectConsent must

be created to keep the relationship between data subjects and requesters’ consent.

Figure 31: Class diagram resulted from mapping the proposed model in Event-B to

code for supporting consent management in the context of data sharing.

 86

Figure 32: Class diagram continued from the previous diagram (Figure 31) demon-

strating how to transform the proposed model in Event-B for supporting request-

response interactions.

Second, we defined contracts (i.e., classes that obtain state variables and meth-

ods); for example, ConsentContract is to provide the addConsent() method, which is

mapped to the AddConsent event. In the AddDataSubjectConsent event, we created

DataSubjectConsentContract to obtain the addDataSubjectConsent() method. In addi-

tion, we added isConsentValid() as a common method to check whether consent is

expired or withdrawn. As for the request-response interactions, we created DataAc-

cessRequestContract and DataAccessResponseContract to obtain DataAccessRequest

and DataAccessResponse structs, respectively.

For the SubmitRequest and SubmitResponse events, the model is required to

check whether consent is valid. Hence, we then added the isConsentValid() method

into these two contracts by calling DataSubjectConsentContract.isConsentValid().

According to the class diagram in Figure 31 and Figure 32, our proposed model was

designed for generic usage and can be applied to any business model.

 87

To allow the developers to quickly adopt the model, we developed SmartData-

Trust that implemented smart contracts based on these class diagrams and exposed a

REST API to interact with the blockchain. The requester and responder services only

need to focus on implementing a REST API for consuming SmartDataTrust API and

providing the callback URLs made by the blockchain.

5.5. SmartDataTrust Implementation

The SmartDataTrust API is a middleware that interacts with smart contracts live

on the Ethereum blockchain by exposing REST services to the outside world (Figure

33). Implementing this API aims to provide a set of consent functionality for requester

and responder services, which minimizes the effort of incorporating GDPR-compliant

consent management in their interacting services. Moreover, it supports scalability by

separating configuration from code in the YAML format (i.e., config.yaml), which is

easily configured to deploy as Docker containers [134] with Kubernetes [135]. The

API was designed based on a three-layer architecture [136] partitioned into REST

controllers (i.e., consent_controller.py, data_subject_controller.py, data_access_
request_controller.py, data_access_response_controller.py), application services (i.e.,

consent_service.py, data_field_service.py, data_subject_service.py, data_access_
request_service.py, data_access_response_service.py), and the blockchain connector

(i.e., blockchain_connector.py). The REST controllers handle incoming HTTP re-

quests from requester and responder services and pass them through the application

services. As for application services, they encapsulate data validation and conversion.

Finally, the blockchain connector uses web3 frameworks [137] (e.g., Web3.py,

Ethers.js, Infura API) for connecting smart contracts on the Ethereum blockchain

through their contacts’ addresses and contracts’ schema files, which are configured in

config.yaml.

In smart contract development, we first plug Truffle Suite [138] into

SmartDataTrust API for building and deploying smart contracts on the Ethereum

blockchain. Second, we implemented smart contracts with Solidity followed by the

class diagram, as shown in Figure 31 and Figure 32. Third, we deployed smart con-

tracts using Truffle’s command (i.e., truffle migrate). After successful deployment,

Truffle Suits generates the contracts’ address and contracts’ schema in JSON format

files. Fourth, we configured the contracts’ address and schema path into config.yaml.

Finally, we start the Python REST API.

 88

Figure 33: Overview of SmartDataTrust API framework.

Unfortunately, a smart contract is an immutable program. Once it is deployed on

the blockchain, it preserves a new address. However, the multiple times of deploy-

ments of the smart contract lead to difficulty managing addresses and increasing exe-

cution time. We then designed reusable smart contracts to keep only states of data

subjects’ consent and request-response interactions between services. To create a

callback URL outside the blockchain, we use blockchain oracles [79], e.g., Provable,

Chainlink, and Astraea. In particular, we chose Provable for integrating into smart

contracts because it is easy to implement and support dynamic data retrieval from

trusted sources in large-scale applications. As for any service, it can be either a re-

quester or a responder. We then created RequesterController and ResponderController

classes following the available services in the SmartDataTrust API, and to handle API

calls and HTTPS GET/POST requests among blockchain; we created RestClientProxy

class.

To enhance an existing system integrated with the SmartDataTrust API, we

demonstrate via a software platform for cancer precision medicine called RUN-

ONCO [133]. RUN-ONCO allows users (i.e., oncologists, nurses, and researchers) to

manage and create their own data analyzes to examine clinical, biospecimen, and ge-

netic data, which assists oncologists in making specific treatment plans for individual

cancer patients based on their genetics. To engage in research on cancer precision

medicine, we need more patient data to help discover how to improve patient out-

comes, such as genetic data and drug response. Therefore, we need to enhance RUN-

ONCO to enable data sharing to exchange health data across organizations and be-

 89

tween services. We then divided services into two types: 1) the service which manag-

es its own patients’ data, e.g., health information systems, and 2) the service which

does not contain any patients’ data, e.g., third-party API. RUN-ONCO and other ser-

vices only focused on implementing a REST API for consuming the SmartDataTrust

API to manage consent requests/responses on the blockchain and handling the re-

quester and responder callbacks made by the blockchain. To enhance RUN-ONCO

support consent management in data sharing (Figure 34A and Figure 34B), by fol-

lowing DSSM, we first need to alter the ConsentService class by adding the addCon-

sent() method. Second, we need to add the encryptData() and decryptData() methods

into the PatientService class to support secure data transfer between services.

Figure 34: Class diagram demonstrating how a software platform for cancer precision

medicine handles GDPR-compliant blockchain-based consent management in data

sharing. (A) relevant classes needed to be enhanced to support data sharing. (B) new

classes added to RUN-ONCO for supporting managed consent into the blockchain

and handling the requester and responder callbacks made by the blockchain.

90

CHAPTER VI

ANALYSIS AND INTERPRETATION OF RESULTS

To justify our formal models corresponding to the competency questions in

Table 5, we used the ProB for generating test cases to ensure that formal models

fulfill a given coverage criteria. The ProB generates test cases based on non-

deterministic choice in Event-B separated into three places [139]: 1) the choice

derives from different events, 2) the choice derives from local variables of events, and

3) the choice derives from the non-deterministic assignment. The ProB executes

events to perform test scenarios based on the non-deterministic choice corresponding

to current state variables, invariants, and guards restricted to small finite sets. Besides,

if unsatisfied guards exist in any events during the model checking simulation, then

these events will be absent from the choice of the possible events on the next ones.

We thus specified test cases in both CM for centralized systems and CM for dis-

tributed systems in data sharing.

6.1. Test Cases in CM for Centralized Systems

6.1.1. Test Cases in the RPSM Model

This RPSM model describes the dynamic behavior of how the system ma-

nipulates patients’ consent and how to restrict privileged permissions of author-

ized users (e.g., doctors, nurses, lab staff) for processing personal data within

patients’ consent.

We then specify the test case objectives as follows:

• RP1: In the AddPatient and AddConsent events, a user who does not ob-

tain a nursing staff role shall not perform these events.

• RP2: A user who does not obtain any role granted in consents shall not

perform the ExecuteQuery event.

• RP3: In the ExecuteQuery event, the local variable consentExpired shall

be FALSE (i.e., the patient’s consent is valid), and the user shall obtain

the role granted in the consent configuration and hold in the variable crf.

• RP4: After the ExecuteQuery event firing, the variable pf (i.e., query re-

sults) shall contain only selected data fields corresponding to consent

configuration.

 91

• RP5: If a user has more than one role to access a patient’s data under the

same given consent, the value of variable pf shall contain all selected da-

ta fields corresponding to a user’s roles.

First, we determine the variable value of crf and userRoles, before

running the ProB simulation.

The variable value crf is:

{(CONSENTS1 ↦ {(NursingStaff ↦ HN)}),
 (CONSENTS2 ↦ {(Oncologist ↦ HN),

 (Oncologist ↦ Name),
 (Oncologist ↦ Age),
 (Researcher ↦ HN),
 (Researcher ↦ Omics)})}

The value of crf indicates that if a patient provides the CON-

SENTS1, only a user who has a NursingStaff role can access a patient’s

HN. As for the CONSENTS2, each role has access data fields differently.

An oncologist can access a patient’s information, e.g., HN, Name, and

Age, but a researcher can access a patient’s HN and Omics.

The variable value userRoles is:

{(AUTHORIZED_USER1 ↦ NursingStaff),
 (AUTHORIZED_USER1 ↦ LabStaff),
 (AUTHORIZED_USER2 ↦ Oncologist),
 (AUTHORIZED_USER2 ↦ Researcher),
 (AUTHORIZED_USER3 ↦ LabStaff)}

The value of userRoles indicates that AUTHORIZED_USERS1

obtains two roles, e.g., NursingStaff, and LabStaff. As for AUTHOR-

IZED_USERS2 also has two roles, e.g., Oncologist, and Researcher.

Lastly, AUTHORIZED_USERS3 obtain a role as LabStaff.

6.1.1.1. The RP1 Test Case

According to Figure 35(A), AUTHORIZED_USERS3 login to the

system as lab staff with SESSIONS2. Within the choice of events generat-

ed by ProB (Figure 35(B)), the Logout event is the only choice for AU-

THORIZED_USERS3 to perform for the next event execution. It indicates

that this user has no access to the AddPatient and AddConsent events be-

cause guard conditions are invalid for both events. Then, the state variable

sessions has been updated with a new ordered pair (SESSIONS2 ↦ AU-

THORIZED_USERS3), as shown in Figure 36.

 92

Hence, simulation results point out that the RPSM model covered

the RP1 test case.

Figure 35: The simulation of the RP1 test case. (A) the Login event and its variables

are produced by ProB, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS3 to perform for the next event execution.

Figure 36: The latest value of the variable sessions corresponds to event execution in

the RP1 test case.

6.1.1.2. The RP2 Test Case

In Figure 37(A), AUTHORIZED_USERS3 login to the system as

lab staff with SESSIONS1 and creates an inquiry QUERIES1 to retrieve

the personal data of PATIENTS1. Within the choice of events generated by

ProB (Figure 37(B)), the Logout event is the only choice for AUTHOR-

IZED_USERS3 to perform for the next event execution. It indicates that

this user cannot access the ExecuteQuery event because guard conditions

are invalid. Then, the state variable queries has been updated with a new

ordered pair {(AUTHORIZED_USERS3 ↦ {(QUERIES1 ↦ PATIENTS1)
})}, as shown in Figure 38.

Hence, simulation results point out that the RPSM model covered

the RP2 test case.

B

A

 93

Figure 37: The simulation of the RP2 test case. (A) the CreateInquiry event and its

variables are produced by ProB, which has been executed in the history panel. (B) the

choice of events allows AUTHORIZED_USERS3 to perform for the next event exe-

cution.

Figure 38: The latest value of the variable queries corresponds to event execution in

the RP2 test case.

6.1.1.3. The RP3 Test Case

Figure 39(A) demonstrates that AUTHORIZED_USERS1 login

into the system as nursing staff creates an inquiry QUERIES1 to retrieve

the personal data of PATIENTS1, and the query has been verified accord-

ing to the patient’s consent. Within the choice of events generated by ProB,

two events are available for AUTHORIZED_USERS1 to perform for the

next event execution, e.g., the ExecuteQuery event, and Logout events. It

indicates that this user can access the ExecuteQuery event because guard

conditions are valid (Figure 39(B)). Then, the state variable author-

izedConsent has been updated with a new ordered pair {(AUTHOR-

IZED_USERS1 ↦ {(PATIENTS1 ↦ CONSENTS1)})}, as shown in

Figure 40.

Hence, simulation results point out that the RPSM model covered

the RP3 test case.

A

B

 94

Figure 39: The simulation of the RP3 test case. (A) the CheckAuthorizeConsent

event and its variables are produced by ProB, which has been executed in the history

panel. (B) the choice of events allows AUTHORIZED_USERS1 to perform for the

next event execution.

Figure 40: The latest value of the variable authorizedConsent corresponds to event

execution in the RP3 test case.

6.1.1.4. The RP4 Test Case

According to Figure 41(A), AUTHORIZED_USERS1 executes

the query and receives the personal data of PATIENTS1 within CON-

SENTS1. Then, the state variable pf has been updated with a new ordered

pair {(AUTHORIZED_UERS1 ↦ {(PATIENTS1 ↦ HN)})}. Based on the

configuration of CONSENTS1, any user who obtains a nursing staff role

has access to the patient’s HN. So, the value of variable pf corresponds to

the given consent, as shown in Figure 42.

Hence, simulation results point out that the RPSM model covered

the RP4 test case.

B

A

 95

Figure 41: The simulation of the RP4 test case. (A) the ExecuteQuery event and its

variables are produced by ProB, which has been executed in the history panel.

Figure 42: The latest value of the variable pf corresponds to event execution in the

RP4 test case.

6.1.1.5. Test RP5 Test Case

To begin with, AUTHORIZED_USERS1 adds PATIENTS1 and the

patient’s consent (PATIENTS1 ↦ CONSENTS2) into the system (Figure

43(A)). However, the configuration of CONSENTS2 states that a user with

an oncologist role can access a patient’s HN, Name, and Age; a user with a

researcher role can access a patient’s HN and Omics. So, a user who ob-

tains these roles, e.g., oncologist and researcher, shall access a patient’s

HN, Name, Age, and Omics.

According to Figure 43(B), AUTHORIZED_USER2 login to the

system, which obtains two roles, e.g., oncologist and researcher. Then, the

user creates a query for accessing the personal data of PATIENTS1 under

CONSENTS2. After verifying the consent validation, the system executes

the query result. Hence, the value of variable pf corresponds to the ex-

pected result (Figure 44), which indicates that the RPSM model covered

the RP5 test case.

A

 96

Figure 43: The simulation of the RP5 test case. (A) AUTHORIZED_USERS1 adds

PATIENTS1 and his/her given consent. (B) AUTHORIZED_USERS2 creates query

to access the information of PATIENTS1 under CONSENTS2.

Figure 44: The latest value of the variable pf corresponds to event execution in the

RP5 test case.

6.1.2. Test Cases in the WASM Model

The WASM model describes the dynamic behavior of how the system

manages the withdrawal approval process when patients request to withdraw

their consent. The user’s roles that are involved in this process are legal staff and

legal approvers.

We then specify the test case objectives as follows:

• WA1: In the CreateWithdrawal, ApproveWithdrawal, and RejectWith-

drawal events, a user who does not obtain the legal staff and legal ap-

proval roles shall not perform these events.

• WA2: In the CreateWithdrawal event, a user who has a legal staff role

shall create the withdrawal request.

• WA3: In the ApproveWithdrawal event, a user who has a legal approver

role shall permit to approve the withdrawal request on the condition that

A

B

 97

canWithdraw is TRUE. After the withdrawal request has been approved,

the withdrawal request’s status shall be updated to approved, and the sys-

tem shall add the patient’s consent into the variable markAsDeleted to

indicate that the patient’s personal data shall be deleted from the system.

• WA4: In the RejectWithdrawal event, a user who has a legal approver

role shall permit to reject the withdrawal request on the condition that

canWithdraw is FALSE.

First, we determine the variable value of userRoles and pc, before

running ProB.

The variable value userRoles is:

{(AUTHORIZED_USERS1 ↦ LegalStaff),
 (AUTHORIZED_USERS2 ↦ LegalApprover),
 (AUTHORIZED_USERS3 ↦ NursingStaff),
 (AUTHORIZED_USERS3 ↦ LabStaff)}

The value of userRoles indicates the AUTHORIZED_USERS1 and AU-

THORIZED_USERS2, users obtain a role, i.e., LegalStaff, and LegalApprover,

respectively. As for the AUTHORIZED_USERS3 obtains two roles, i.e.,

NursingStaff, and LabStaff.

The variable value pc is:

{(PATIENTS1 ↦ CONSENTS1),
 (PATIENTS2 ↦ CONSENTS1)}

The value of pc contains patients’ consents, e.g., the PATIENTS1 has giv-

en the CONSENTS1, and the PATIENTS2 has given the CONSENTS1.

6.1.2.1. The WA1 Test Case

According to Figure 45(A), AUTHORIZED_USERS3 login to the

system with SESSIONS1. However, AUTHORIZED_USERS3 obtains

two roles, i.e., nursing staff, and lab staff. Within the choice of events gen-

erated by ProB (Figure 45(B)), the Logout event is the only choice for

AUTHORIZED_USERS3 to perform for the next event execution. It indi-

cates that this user cannot access the CreateWithdrawal, ApproveWith-

drawal, and RejectWithdrawal events because guard conditions are invalid

for all three events. Then, the state variable sessions has been updated with

a new ordered pair (SESSIONS1 ↦ AUTHORIZED_USERS3), as shown

in Figure 46.

 98

Hence, simulation results point out that the WASM model covered

the WA1 test case.

Figure 45: The simulation of the WA1 test case. (A) the Login event and its variables

are produced by ProB, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS3 to perform for the next event execution.

Figure 46: The latest value of the variable sessions corresponds to event execution in

the WA1 test case.

6.1.2.2. The WA2 Test Case

In Figure 47(A), AUTHORIZED_USERS1 login to the system as

legal staff and creates the withdrawal request for PATIENTS1 under

CONSENTS1. Within the choice of events generated by ProB (Figure

47(B)), the Logout event is the only choice for AUTHORIZED_USERS1

to perform. It indicates that this user cannot access the ApproveWithdrawal

and RejectWithdrawal events because guard conditions are invalid for both

events. Then, the state variable withdrawState has been updated with a

new ordered pair {({(PATIENTS1 ↦ CONSENTS1)} ↦ Void)}, as shown

in Figure 48.

Hence, simulation results point out that the WASM model covered

the WA2 test case.

B

A

 99

Figure 47: The simulation of the WA2 test case. (A) the CreateWithdrawal event and

its variables are produced by ProB, which has been executed in the history panel. (B)

the choice of events allows AUTHORIZED_USERS1 to perform for the next event

execution.

Figure 48: The latest value of the variable withdrawState corresponds to event execu-

tion in the WA2 test case.

6.1.2.3. The WA3 Test Case

Figure 49(A) demonstrates that AUTHORIZED_USERS2 login to

the system as legal approver and the local variable canWithdraw is TRUE

(i.e., there is no conflict of interest on the consent revocation), then this

user approves the withdrawal request. Hence, the withdrawState and mar-

kAsDeleted variables have been updated with a new ordered pair {({(PA-

TIENTS1 ↦ CONSENTS1)} ↦ Approved)} and {(PATIENT ↦ CON-

SENTS1)}, respectively, as shown in Figure 50.

Hence, simulation results point out that the WASM model covered

the WA3 test case.

B

A

 100

Figure 49: The simulation of the WA3 test case. (A) the ApproveWithdrawal event

and its variables are produced by ProB, which has been executed in the history panel.

Figure 50: The latest values of withdrawState and markAsDeleted variables corre-

spond to event execution in the WA3 test case.

6.1.2.4. The WA4 Test Case

Figure 51(A) demonstrates that AUTHORIZED_USERS2 login to

the system as legal approver and the local variable canWithdraw is FALSE

(i.e., there exists a conflict of interest in the consent revocation), then this

user rejects the withdrawal request. Hence, the withdrawState variable has

been updated with a new ordered pair {({(PATIENTS1 ↦ CONSENTS1)}

↦ Rejected)}, as shown in Figure 52.

Hence, simulation results point out that the WASM model covered

the WA4 test case.

A

 101

Figure 51: The simulation of the WA4 test case. (A) the RejectWithdrawal event and

its variables are produced by ProB, which has been executed in the history panel.

Figure 52: The latest value of the variable withdrawState corresponds to event execu-

tion in the WA4 test case.

6.1.3. Test Cases in the PASM Model

The PASM model describes the dynamic behavior of how the system man-

ages the portable approval process when patients request to portable their per-

sonal. The user’s roles that are involved in this process are legal staff and legal

approver.

We then specify the test case objectives as follows:

• PA1: In the CreatePortable, ApprovePortable, and RejectPortable events,

a user who does not obtain the legal staff and legal approver roles shall

not perform these events.

• PA2: In the CreatePortable event, a user who has a legal staff role shall

create the portable request.

• PA3: In the ApprovePortable event, a user who has a legal approver role

shall permit to approve the portable request on the condition that can-

Portable is TRUE.

A

 102

• PA4: In the RejectPortable event, a user who has a legal approver role

shall permit to reject the portable request on the condition that can-

Portable is FALSE.

First, we determine the variable value of userRoles and pc, before

running ProB.

The variable value userRoles is:

{(AUTHORIZED_USERS1 ↦ LegalStaff),
 (AUTHORIZED_USERS2 ↦ LegalApprover),
 (AUTHORIZED_USERS3 ↦ NursingStaff),
 (AUTHORIZED_USERS3 ↦ LabStaff)}

The value of userRoles indicates the AUTHORIZED_USERS1 and

AUTHORIZED_USERS2, users obtain a role, i.e., LegalStaff, and Le-

galApprover, respectively. As for the AUTHORIZED_USERS3 obtains

two roles, i.e., NursingStaff, and LabStaff.

The variable value pc is:

{(PATIENTS1 ↦ CONSENTS1),
 (PATIENTS2 ↦ CONSENTS1)}

The value of pc contains patients’ consents, e.g., the PATIENTS1

has given the CONSENTS1, and the PATIENTS2 has given the CON-

SENTS1.

6.1.3.1. The PA1 Test Case

According to Figure 53(A), AUTHORIZED_USERS3 login to the system

with SESSIONS1. However, AUTHORIZED_USERS3 obtains two roles, e.g.,

nursing staff, and lab staff. Within the choice of events generated by ProB

(Figure 53(B)), the Logout event is the only choice for AUTHOR-

IZED_USERS3 to perform for the next event execution. It indicates that this us-

er cannot access the CreatePortable, ApprovePortable, and RejectPortable events

because guard conditions are invalid for all three events. Then, the state variable

sessions has been updated with a new ordered pair (SESSIONS1 ↦ AUTHOR-

IZED_USERS3), as shown in Figure 54.

Hence, simulation results point out that the PASM model covered the PA1

test case.

 103

Figure 53:The simulation of the PA1 test case. (A) the Login event and its variables

are produced by ProB, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS3 to perform for the next event execution.

Figure 54: The latest value of the variable sessions corresponds to event execution in

the PA1 test case.

6.1.3.2. The PA2 Test Case

In Figure 55(A), AUTHORIZED_USERS1 login to the system as

the legal staff and creates the portable request for PATIENTS1 under

CONSENTS1. Within the choice of events generated by ProB Figure

55(B), the Logout event is the only choice for AUTHORIZED_USERS1 to

perform for the next event execution. It indicates that this user cannot ac-

cess the ApprovePortable and RejectPortable events because guard condi-

tions are invalid for both events. Then, the state variable withdrawState

has been updated with a new ordered pair {({(PATIENTS1 ↦ CON-

SENTS1)} ↦ Void)}, as shown in Figure 56.

Hence, simulation results point out that the PASM model covered

the PA2 test case.

B

A

 104

Figure 55: The simulation of the PA2 test case. (A) the CreatePortable event and its

variables are produced by ProB, which has been executed in the history panel. (B) the

choice of events allows AUTHORIZED_USERS1 to perform for the next event exe-

cution.

Figure 56: The latest value of the variable portableState corresponds to event execu-

tion in the PA2 test case.

6.1.3.3. The PA3 Test Case

Figure 57(A) demonstrates that AUTHORIZED_USERS2 login to

the system as legal approver and the local variable canPortable is TRUE

(i.e., there might be a fee for exporting personal data, and if the patient ac-

cepts to pay, then this variable becomes TRUE), then this user approves

the portable request. Hence, the portableState variable has been updated

with a new ordered pair {({(PATIENTS1 ↦ CONSENTS1)} ↦ Ap-

proved)}, as shown in Figure 58.

Hence, simulation results point out that the PASM model covered

the PA3 test case.

B

A

 105

Figure 57: The simulation of the PA3 test case. (A) the ApprovePortable event and its

variables are produced by ProB, which has been executed in the history panel.

Figure 58: The latest value of the variable portableState corresponds to event execu-

tion in the PA3 test case.

6.1.3.4. The PA4 Test Case

Figure 59(A) demonstrates that AUTHORIZED_USERS2 login to

the system as legal approver and the local variable canPortable is FALSE

(i.e., there might be a fee for exporting personal data, and if the patient de-

clines to pay, then this variable becomes FALSE), then this user rejects the

portable request. Hence, the portableState variable has been updated with

a new ordered pair {({(PATIENTS1 ↦ CONSENTS1)} ↦ Rejected)}, as

shown in Figure 60.

Hence, simulation results point out that the PASM model covered

the PA4 test case.

A

 106

Figure 59: The simulation of the PA4 test case. (A) the RejectPortable event and its

variables are produced by ProB, which has been executed in the history panel.

Figure 60: The latest value of the variable portable corresponds to event execution in

the PA4 test case.

6.1.4. Test Cases in the CRSM Model

The CRSM model describes the dynamic behavior of how the system

manages the consent renewal process when patients’ consent expires. The user’s

role that is involved in this process is the legal staff.

We then specify the test case objectives as follows:

• CR1: In CreateConsentRenewRequest, NotifyPatient, ExtendConsen-

tExpiration, and DeletePatientData events, a user who does not obtain

the legal staff role shall not perform these events.

• CR2: In the CreateConsentRenewRequest event, only the legal staff shall

create the consent renewal request under these conditions: the patient’s

consent is expired but is not withdrawn.

• CR3: As for the NotifyPatient event, the legal staff shall inform the pa-

tient about the consent renewal and receives the patient’s response for

approval or rejection on extending the data retention.

A

 107

• CR4: If the patient approves the consent renewal, the legal staff shall

update the consent to unexpired.

• CR5: If the patient rejects the consent renewal, the legal staff shall add

the consent into the variable markAsDeleted to indicate that the patient’s

personal data shall be deleted from the system.

First, we determine the variable value of userRoles and pc, before running

ProB.

The variable value userRoles is:

{(AUTHORIZED_USERS1 ↦ LegalStaff),
 (AUTHORIZED_USERS2 ↦ LegalApprover),
 (AUTHORIZED_USERS3 ↦ NursingStaff),
 (AUTHORIZED_USERS3 ↦ LabStaff)}

The value of userRoles indicates the AUTHORIZED_USERS1 and AU-

THORIZED_USERS2, users obtain a role, i.e., LegalStaff, and LegalApprover,

respectively. As for the AUTHORIZED_USERS3 obtains two roles, i.e.,

NursingStaff, and LabStaff.

The variable value pc is:

{(PATIENTS1 ↦ CONSENTS1),
 (PATIENTS2 ↦ CONSENTS1)}

The value of pc contains patients’ consents, e.g., the PATIENTS1 has giv-

en the CONSENTS1, and the PATIENTS2 has given the CONSENTS1.

6.1.4.1. The CR1 Test Case

According to Figure 61(A), AUTHORIZED_USERS3 login to the

system with SESSIONS1. However, AUTHORIZED_USERS3 obtains

two roles, i.e., nursing staff, and lab staff. Within the choice of events gen-

erated by ProB (Figure 61(B)), the Logout event is the only choice for

AUTHORIZED_USERS3 to perform for the next event execution. It indi-

cates that this user cannot access the CreateConsentRenewRequest, No-

tifyPatient, ExtendConsentExpiration, and DeletePatientData events be-

cause guard conditions are invalid for all four events. Then, the state vari-

able sessions has been updated with a new ordered pair (SESSIONS1 ↦

AUTHORIZED_USERS3), as shown in Figure 62.

Hence, simulation results point out that the CRSM model covered

the CR1 test case.

 108

Figure 61: The simulation of the CR1 test case. (A) the Login event and its variables

are produced by ProB, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS3 to perform for the next event execution.

Figure 62: The latest value of the variable sessions corresponds to event execution in

the CR1 test case.

6.1.4.2. The CR2 Test Case

Figure 63(A) demonstrates that AUTHORIZED_USERS1 login to

the system as legal staff and the local variables of expired is TRUE (i.e.,

the patient’s consent is expired) and isWithdraw is FALSE (i.e., the pa-

tient’s consent is not withdrawn), then this user creates the consent renewal

request to inform the patient about the data retention extension to allow the

hospital to continue to process his/her personal. Within the choice of

events generated by ProB (Figure 63(B)), there are two events available

for AUTHORIZED_USERS1 to perform, e.g., the NotifyPatient, and Log-

out events. It indicates that this user can access the NotifyPatient event be-

cause guard conditions are valid. Then, the consentRenewalState and is-

ConsentExpired variables have been updated with a new ordered pair

{({(PATIENTS1 ↦ CONSENTS1)} ↦ Void)} and {({(PATIENTS1 ↦

CONSENTS1)} ↦ TRUE)}, respectively, as shown in Figure 64.

B

A

 109

Hence, simulation results point out that the CRSM model covered

the CR2 test case.

Figure 63: The simulation of the CR2 test case. (A) the CreateConsentRenewRequest

event and its variables are produced by ProB, which has been executed in the history

panel. (B) the choice of events allows AUTHORIZED_USERS to perform for the

next event execution.

Figure 64: The latest values of consentRenewalState and isConsentExpired variables

correspond to event execution in the CR2 test case.

6.1.4.3. The CR3 Test Case

As for the NotifyPatient event, AUTHORIZED_USERS1 informs

the patient to extend data retention (Figure 65(A) and Figure 67(A)). Af-

ter receiving the patient’s answer (i.e., Approved, Rejected), then this user

saves the answer into the system. If the patient approves extending data re-

tention, then ProB generates the two possible events for AUTHOR-

IZED_USERS1 to perform. i.e., the ExtendConsentExpiration, and Logout

events (Figure 65(B)). The state variables consentRenewalState and mar-

kAsReceived have been updated with a new ordered pair {({(PATIENTS1

↦ CONSENTS1)} ↦ Approved)}, and {(PATIENTS1 ↦ CONSENTS1)},

respectively (Figure 66).

On the other hand, If the patient rejects to stop processing his/her

personal data, then ProB generates the two events for AUTHOR-

B

A

 110

IZED_USERS1 to perform. e.g., the DeletePatientData, and Logout events

(Figure 67(B)). The state variables consentRenewalState and mar-

kAsReceived have been updated with a new ordered pair {({(PATIENTS1

↦ CONSENTS1)} ↦ Rejected)}, and {(PATIENTS1 ↦ CONSENTS1)},

respectively (Figure 68).

Hence, simulation results point out that the CRSM model covered

the CR3 test case.

Figure 65: The simulation of the CR3 test case. (A) the NotifyPatient event with

“Approved” status, which has been executed in the history panel. (B) the choice of

events allows AUTHORIZED_USERS1 to perform for the next event execution.

Figure 66: The latest values of consentRenewalState and markAsReceived variables

correspond to event execution in the CR3 test case.

B

A

 111

Figure 67: The simulation of the CR3 test case. (A) the NotifyPatient event with “Re-

jected” status, which has been executed in the history panel. (B) the choice of events

allows AUTHORIZED_USERS1 to perform for the next event execution.

Figure 68: The latest values of consentRenewalState and markAsReceived variables

correspond to event execution in the CR3 test case.

6.1.4.4. The CR4 Test Case

After the patient approves the consent renewal request, then AU-

THORIZED_USERS1 extends the data retention within the given consent

(Figure 69(A)). Hence, the isConsentExpired variable has been updated

with a new ordered pair {({(PATIENTS1 ↦ CONSENTS1)} ↦ FALSE)},

as shown in Figure 70.

Hence, simulation results point out that the CRSM model covered

the CR4 test case.

B

A

 112

Figure 69: The simulation of the CR4 test case. (A) the ExtendConsentExpiration

event and its variables are produced by ProB, which has been executed in the history

panel.

Figure 70: The latest value of the variable isConsentExpired corresponds to event ex-

ecution in the CR4 test case.

6.1.4.5. The CR5 Test Case

After the patient rejects the consent renewal request, then AU-

THORIZED_USERS1 deletes the patient’s personal data. Figure 71(A).

Hence, the markAsDeleted variable has been updated with a new ordered

pair {(PATIENTS1 ↦ CONSENTS1)}, as shown in Figure 72.

Hence, simulation results point out that the CRSM model covered

the CR5 test case.

A

 113

Figure 71: The simulation of the CR5 test case. (A) the DeletePatientData event and

its variables are produced by ProB, which has been executed in the history panel.

Figure 72: The latest value of the variable markAsDeleted corresponds to event exe-

cution in the CR5 test case.

6.2. Test Cases in CM for Distributed Systems in Data Sharing

6.2.1. Test Cases in the DSSM Model

The DSSM model describes the dynamic behavior of manipulating data

subjects’ consent and sharing personal data across multiple services through

blockchain.

We then specify the test case objectives as follows:

• DS1: The model shall conduct consent and data subjects’ consent.

• DS2: The model shall correctly manage the interaction between the re-

quester and response services. As for the data transfer among services, it

shall select data fields corresponding to consent configuration.

• DS3: For every step of the request-response services interaction, the

model shall verify consent validity.

• DS4: The model shall manage one-time request per a patient’s data.

A

 114

• DS5: For every step of callback to request-response services, the model

shall handle the blockchain oracle charge for API calls (i.e., an oraclize’s

fee) and the smart contract’s insufficient balance.

Before running ProB, we first determined the constant initialBalan-

ce with 3 points representing the initial balance of the smart contract.

Then, we assigned the initialBalance to the smart contract’s address this as

an ordered pair {(this ↦ 3)} in the variable balanceOf, indicating this sma-

rt contract’s address has balance as 3 points.

6.2.1.1. The DS1 Test Case

According to Figure 73(A), ConsentB has been added to the block-

chain by ServiceB, and DataSubject1 provides permission to access per-

sonal data within ConsentB and its data fields. The relevant state variables

which have been updated (Figure 74) are as follows: 1) the variable con-

sents contains the collection of available consents updated with ConsentB,

2) the variable dataFields contains the collection of data fields under the

specific consent updated with {(ConsentB ↦ {Name, BirthDate, BirthDe-

fects})}, and 3) the variable dataSubjectConsents contains the valid data

subject’s consent within the specific responder service updated with {(Ser-

viceA ↦ DataSubject1 ↦ ConsentB ↦ TRUE)}.

Hence, simulation results point out that the DSSM model covered

the DS1 test case.

Figure 73: The simulation of the DS1 test case. (A) the AddConsent and

AddDataSubject events and their variables are produced by ProB, which has been ex-

ecuted in the history panel.

A

 115

Figure 74: The latest values of consents, dataFields, and dataSubjectConsents varia-

bles correspond to event execution in the DS1 test case.

6.2.1.2. The DS2 Test Case

Figure 75(A) demonstrates the request-response interaction be-

tween ServiceA and ServiceB on the blockchain. After ServiceA submits

the data subject’s consent, the blockchain then handles a callback URL to

ServiceB. Besides, in every callback URL in the blockchain, the smart

contract must pay a fee for the blockchain oracle to manage an API call

with 1 point.

After ServiceB receives the API call, ServiceB submits the request

back to the blockchain. The balanceOf, callbackRequester, and dataAc-

cessRequestes variables have been updated with {(this ↦ 2)}, {(ServiceB

↦ DataSubject1 ↦ ConsentB)}, and {(Request1 ↦ (ServiceA ↦ DataSub-

ject1 ↦ ConsentB))}, respectively (Figure 76).

The request submission of ServiceB triggers the blockchain to

make the callback URL to ServiceA. Then, ServiceA submits the response

back to the blockchain (Figure 75(B)). Then, the balanceOf, callbackRe-

sponderStates, and dataAccessResponses have been with {(this ↦ 1)}, Re-

quest1, and {(Response1 ↦ Request1)}, respectively (Figure 76).

After the blockchain receives the response from ServiceA, the

blockchain makes the callback URL to ServiceA again to give the callback

URL of ServiceB. Then, ServiceA encrypts the selected data fields based

on the data subject’s consent, and transfers encrypted personal data to Ser-

viceB (Figure 75(C)). In doing so, the state variables balanceOf,

callbackDataTransferStates, dataTransferStates, and encryptedData have

been with {(this ↦ 0)}, Response1, {(Response1 ↦ TRUE)}, and {(Re-

 116

sponse1 ↦ {(DataSubject1 ↦ Name), (DataSubject1 ↦ BirthDate),

(DataSubject1 ↦ BirthDefects)})}, respectively (Figure 76).

Hence, simulation results point out that the DSSM model works

correctly, and the change of state variables corresponds to the execution of

the events, which covered the DS2 test case.

Figure 75: The simulation of the DS2 test case. (A) the CallbackRequester and Sub-

mitRequest events, which have been executed in the history panel. (B) the

CallbackResponder and SubmitResponse events, which have been executed in the his-

tory panel. (C) the CallbackDataTransfer and TransferData events, which have been

executed in the history panel.

Figure 76: The latest values of all state variables in the DSSM model correspond to

event execution in the DS2 test case.

A

B

C

 117

6.2.1.3. The DS3 Test Case

To verify the consent validation is working correctly, we then simu-

late the test case by firing the RevokeConsent event to make the consent

invalid, before entering the following events: 1) the CallbackRequester

event, 2) the SubmitRequest event, 3) the CallbackResponder event, 4) the

SubmitResponse event, 5) the CallbackDataTransfer event, and 6) the

TransferData event.

After firing the RevokeConsent event (Figure 77(A)), the guards

of above events are invalid, as shown in Figure 77(B).

Hence, simulation results point out that the DSSM model covered

the DS3 test case.

Figure 77: The simulation of the DS3 test case. (A) the RevokeConsent event and its

variables produced by ProB, which have been executed in the history panel. (B) the

list of unsatisfied and satisfied event guards corresponds to current state variables.

6.2.1.4. The DS4 Test Case

Firstly, we defined a fee for the blockchain oracle to manage an

API call as 0 points, and the smart contract’s balance currently remains at

3 points. Secondly, we simulated the different requests (e.g., Request1, Re-

quest2) for transferring personal data of the same data subject.

According to Figure 78, we executed events alternately between

Request1 and Request2. The state variables during ProB simulation are

correct, as shown in Figure 79.

A

B

 118

The simulation results point out that the DSSM model covered the

DS4 test case.

Figure 78: The simulation of the DS4 test case in the history panel.

Figure 79: The latest values of all state variables in the DSSM model correspond to

event execution in the DS4 test case.

6.2.1.5. The DS5 Test Case

Firstly, we defined a fee for the blockchain oracle to manage an

API call as 3 points, and the smart contract’s balance remained 3 points.

The request-response interaction has begun after ServiceA submits

the data subject’s consent into the blockchain. After the CallbackRequester

event firing, the smart contract’s balance remains 0 points. ServiceB re-

ceives an API call and then submits the request to the blockchain, which

 119

triggers the CallbackResponder event fires. It causes insufficient balance

on the smart contract (Figure 80(A)).

Hence, simulation results point out that the DSSM model covered

the DS5 test case.

Figure 80: The simulation of the DS5 test case. (A) the InsufficientBalance event and

its variables produced by ProB, which have been executed in the history panel.

Based on the above test cases, our proposed models covered five common func-

tionalities outlined in the scope of work in CHAPTER I. Moreover, we constructed

the mapping among competency questions and our study (Table 11), which comprises

five state machines and covered the main aspects of consent management as follows:

1) Restricted Processing State Machine (RPSM), which explains the behavior of re-

striction for collecting and processing of individuals’ data according to their given

consent, 2) Withdrawal Approval State Machine (WASM), which explains the behav-

ior of approval for revoking individuals’ consent and removing their data, 3) Portable

Approval State Machine (PASM), which explains the behavior of approval for re-

questing a portable copy of personal data, 4) Consent Renewal State Machine

(CRSM), which explains the behavior of approval for renewing consent to extend the

period of personal data usage, and 5) Data Sharing State Machine (DSSM), which ex-

plains the behavior of sharing personal data among requester and responder services

through blockchain-based consent management, which allows automatic data sharing

and open-access permanent audit logs.

A

1
2

0

 T
ab

le

1
1
:

T
h
e

m
ap

p
in

g
 b

et
w

ee
n
 c

o
m

p
et

en
cy

 q
u

es
ti

o
n
s

fo
r

co
n
se

n
t

m
an

ag
em

en
t

an
d
 o

u
r

st
u
d
y

 (
co

n
t’

d
).

F

o
r
m

a
l

m
o

d
e
l

C
la

ss
 d

ia
g
r
a

m

M
a

ch
in

e
E

v
e
n

t
S

et

L
o

c
a
l/

st
a

te
 v

a
r
ia

b
le

O

p
er

a
ti

o
n

C

la
ss

A

tt
ri

b
u

te
/R

el
a
ti

o
n

G

D
P

R

a
rt

ic
le

Q
1

.
W

h
o
 i

s
re

sp
o
n

si
b

le
 f

o
r
 g

a
th

er
in

g
 c

o
n

se
n

t
a
g
r
ee

m
en

ts
?

R
P

S
M

A
U

T
H

O
R

IZ
E

D
_

U
S

E
R

S
,

R
O

L
E

S

u
se

rR
o
le

s

A
u

th
o

ri
ze

d
U

se
r,

R
o

le

u
se

rR
o
le

s
A

rt
.
4

(7
),

A
rt

.
6

(1
a)

,

A
rt

.
2

8

D
S

S
M

P
A

R
T

IC
IP

A
N

T
S

re

sp
o

n
d

er

D

at
aS

u
b

je
ct

C
o
n

se
n
t:

st
ru

ct

Q
2

.
F

o
r
 w

h
a
t

p
u

r
p

o
se

s
d

o
es

 a
 c

o
n

se
n

t
a

g
re

e
m

e
n

t
c
o
v

er
?

R
P

S
M

C

O
N

S
E

N
T

S

C
o

n
se

n
t

co
n

se
n
tD

et
ai

l,

co
n

se
n
tV

er
si

o
n
,

d
at

aR
et

en
ti

o
n

A
rt

.
4

(4
).

A
rt

.
6

(1
a)

,

A
rt

.
7

D
S

S
M

A
d

d
C

o
n

se
n
t

C
O

N
S

E
N

T
S

co

n
se

n
ts

ad

d
C

o
n

se
n
t

C
o

n
se

n
t:

st
ru

ct
,

C
o

n
se

n
tC

o
n

tr
ac

t

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

d
at

aR
et

en
ti

o
n

Q
3

.
H

o
w

 t
o

 r
ev

o
k

e
co

n
se

n
t

a
g

re
em

e
n

t?

W
A

S
M

re
v

o
k

eC
o

n
se

n
t

P
A

T
IE

N
T

S
,

C
O

N
S

E
N

T
S

,

S
T

A
T

U
S

E
S

w
it

h
d

ra
w

al
S

ta
te

re

v
o
k

eC
o

n
se

n
t

D
at

aS
u
b

je
ct

C
o
n

se
n
t

w
it

h
d

ra
w

n
F

la
g

,

w
it

h
d

ra
w

n
D

at
e,

A
rt

.
7

R
ec

.
6
3

,

R
ec

.
6
6

D
S

S
M

re
v

o
k

eC
o

n
se

n
t

P
A

R
T

IC
IP

A
N

T
S

,

D
A

T
A

_
S

U
B

JE
C

T
S

,

C
O

N
S

E
N

T
S

,

B
O

O
L

d
at

aS
u
b

je
ct

C
o

n
se

n
ts

re

v
o
k

eC
o

n
se

n
t

D
at

aS
u
b

je
ct

C
o
n

se
n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
tC

o
n

tr
ac

t

p
se

u
d

o
n

y
m

,

re
sp

o
n
d

er
Id

,

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

w
it

h
d

ra
w

n
F

la
g

,

w
it

h
d

ra
w

n
T

im
es

ta
m

p
,

d
at

aS
u
b

je
ct

C
o

n
se

n
te

d
A

ct
iv

e

Q
4

.
H

o
w

 l
o

n
g

 d
o
e
s

a
 c

o
n

se
n

t
a
g

re
e
m

en
t

la
st

?

R
P

S
M

co

n
se

n
tE

x
p
ir

ed

ex
p

ir
eC

o
n

se
n
t

C
o

n
se

n
t,

D
at

aS
u
b

je
ct

C
o
n

se
n
t

d
at

aR
et

en
ti

o
n

,

cr
ea

te
d

D
at

e

A
rt

.
5

(1
)

R
ec

.
3
2

,

R
ec

.
4
2

C
R

S
M

P

A
T

IE
N

T
S

,

C
O

N
S

E
N

T
S

,

B
O

O
L

ex
p

ir
ed

,

is
C

o
n

se
n
tE

x
p
ir

ed

ex
p

ir
eC

o
n

se
n
t

C
o

n
se

n
t,

D
at

aS
u
b

je
ct

C
o
n

se
n
t

d
at

aR
et

en
ti

o
n

,

cr
ea

te
d

D
at

e

1
2
1

T
ab

le

1
1
:

T
h
e

m
ap

p
in

g
 b

et
w

ee
n
 c

o
m

p
et

en
cy

 q
u

es
ti

o
n
s

fo
r

co
n
se

n
t

m
an

ag
em

en
t

an
d
 o

u
r

st
u
d
y

 (
co

n
t’

d
).

F

o
r
m

a
l

m
o

d
e
l

C
la

ss
 d

ia
g
r
a

m

M
a

ch
in

e
E

v
e
n

t
S

et

L
o

c
a
l/

st
a

te
 v

a
r
ia

b
le

O

p
er

a
ti

o
n

C

la
ss

A

tt
ri

b
u

te
/R

el
a
ti

o
n

G

D
P

R

a
rt

ic
le

Q
4

.
H

o
w

 l
o

n
g

 d
o
e
s

a
 c

o
n

se
n

t
a
g

re
e
m

en
t

la
st

?

D
S

S
M

P

A
R

T
IC

IP
A

N
T

S
,

D
A

T
A

_
S

U
B

JE
C

T
S

,

C
O

N
S

E
N

T
S

,

B
O

O
L

co
n

se
n
tE

x
p
ir

ed
,

d
at

aS
u
b

je
ct

C
o

n
se

n
ts

D

at
aS

u
b

je
ct

C
o
n

se
n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
tC

o
n

tr
ac

t

re
sp

o
n
d

er
Id

,

p
se

u
d

o
n

y
m

,

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

d
at

aR
et

en
ti

o
n

,

cr
ea

te
T

im
es

ta
m

p
,

d
at

aS
u
b

je
ct

C
o

n
se

n
te

d
A

ct
iv

e

A
rt

.
5

(1
)

R
ec

.
3
2

,

R
ec

.
4
2

Q
5

.
W

h
en

 h
a
s

c
o
n

se
n

t
b

ee
n

 g
ra

n
te

d
?

R
P

S
M

A
d

d
C

o
n

se
n
t

P
A

T
IE

N
T

S
,

C
O

N
S

E
N

T
S

p
c

C

o
n

se
n
t,

D
at

aS
u
b

je
ct

C
o
n

se
n
t

co
n

se
n
tD

et
ai

l,

co
n

se
n
tV

er
si

o
n
,

d
at

aR
et

en
ti

o
n

,

ac
ce

p
te

d
F

la
g
,

cr
ea

te
d

D
at

e

A
rt

.
4

(1
1
),

A
rt

.
7

,

A
rt

.
6

(1
a)

D
S

S
M

A
d

d
D

at
aS

u
b

je
ct

C
o
n

se
n
t

P
A

R
T

IC
IP

A
N

T
S

,

D
A

T
A

_
S

U
B

JE
C

T
S

,

C
O

N
S

E
N

T
S

,

B
O

O
L

d
at

aS
u
b

je
ct

C
o

n
se

n
ts

ad

d
D

at
aS

u
b

je
ct

C
o

n
se

n
t

C
o

n
se

n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
tC

o
n

tr
ac

t

re
sp

o
n
d

er
Id

,

p
se

u
d

o
n

y
m

,

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

d
at

aR
et

en
ti

o
n

,

ac
ce

p
te

d
F

la
g
,

cr
ea

te
T

im
es

ta
m

p

Q
6

.
W

h
en

 h
a
s

c
o
n

se
n

t
b

ee
n

 w
it

h
d

r
a

w
n

?

W
A

S
M

B
O

O
L

ca

n
W

it
h
d

ra
w

ca

n
W

it
h
d

ra
w

D

at
aS

u
b

je
ct

C
o
n

se
n
t

A

rt
.
1

7
,

A
rt

.
1

9

Q
7

.
W

h
en

 i
s

c
o
n

se
n

t
p

e
r
m

it
te

d
 d

a
ta

 t
o

 b
e

p
o

rt
a
b

le
?

P
A

S
M

B
O

O
L

ca

n
P

o
rt

ab
le

ca

n
P

o
rt

ab
le

D

at
aS

u
b

je
ct

C
o
n

se
n
t

A

rt
.
2

0

Q
8

.
W

h
en

 h
a
s

c
o
n

se
n

t
b

ee
n

 r
en

ew
e
d

?

C
R

S
M

P

A
T

IE
N

T
S

,

C
O

N
S

E
N

T
S

,

B
O

O
L

ex
p

ir
ed

,

is
C

o
n

se
n
tE

x
p
ir

ed

ex
p

ir
eC

o
n

se
n
t

C
o

n
se

n
t,

D
at

aS
u
b

je
ct

C
o
n

se
n
t

d
at

aR
et

en
ti

o
n

,

cr
ea

te
d

D
at

e

A
rt

.
4

(1
1
),

A
rt

.
7

,

A
rt

.
6

(1
a)

1
2
2

T
ab

le

1
1
:

T
h
e

m
ap

p
in

g
 b

et
w

ee
n
 c

o
m

p
et

en
cy

 q
u

es
ti

o
n
s

fo
r

co
n
se

n
t

m
an

ag
em

en
t

an
d
 o

u
r

st
u
d
y

 (
co

n
t’

d
).

F

o
r
m

a
l

m
o

d
e
l

C
la

ss
 d

ia
g
a

m

M
a

ch
in

e
E

v
e
n

t
S

et

L
o

c
a
l/

st
a

te
 v

a
r
ia

b
le

O

p
er

a
ti

o
n

C

la
ss

A

tt
ri

b
u

te
/R

el
a
ti

o
n

G

D
P

R

a
rt

ic
le

Q
8

.
W

h
en

 h
a
s

c
o
n

se
n

t
b

ee
n

 r
en

ew
e
d

?

D
S

S
M

R
en

ew
C

o
n
se

n
t

P
A

R
T

IC
IP

A
N

T
S

,

D
A

T
A

_
S

U
B

JE
C

T
S

,

C
O

N
S

E
N

T
S

,

B
O

O
L

co
n

se
n
tE

x
p
ir

ed
,

d
at

aS
b
u

je
ct

C
o

n
se

n
ts

is
C

o
n

se
n
tV

al
id

D

at
aS

u
b

je
ct

C
o
n

se
n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
tC

o
n

tr
ac

t

d
at

aR
et

en
ti

o
n

,

cr
ea

te
T

im
es

ta
m

p
,

d
at

aS
u
b

je
ct

C
o

n
se

n
te

d
A

ct
iv

e

A
rt

.
4

(1
1
),

A
rt

.
7

,

A
rt

.
6

(1
a)

Q
9

.
H

o
w

 h
a

s
p

e
rs

o
n

a
l

d
a
ta

 b
e
en

 g
a
th

e
re

d
?

R
P

S
M

F
IE

L
D

S

D
at

aF
ie

ld
,

D
at

aS
u
b

je
ct

fi
el

d
N

am
e,

fi
el

d
T

y
p
e

A
rt

.
4

(1
),

A
rt

.
9

D
S

S
M

C

O
N

S
E

N
T

S
,

F
IE

L
D

S

d
at

aF
ie

ld
s

D

at
aF

ie
ld

:s
tr

u
ct

,

D
at

aF
ie

ld
C

o
n

tr
ac

t

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

fi
el

d
N

am
e

Q
1

0
.
H

o
w

 h
a
s

p
er

so
n

a
l

d
a

ta
 b

ee
n

 u
se

d
?

R
P

S
M

C
h

ec
k

A
u
th

o
ri

ze
C

o
n

se
n
t,

C
re

at
eQ

u
er

y
,

E
x

ec
u

te
Q

u
er

y

P
A

T
IE

N
T

S
,

C
O

N
S

E
N

T
S

,

R
O

L
E

S
,

F
IE

L
D

S
,

Q
U

E
R

IE
S

cr
f,

q
u
er

ie
s,

au
th

o
ri

ze
d

C
o
n

se
n

t,

p
f

ch
ec

k
A

u
th

o
ri

ze
C

o
n
se

n
t,

cr
ea

te
Q

u
er

y
,

ex
ec

u
te

Q
u
er

y

C
o

n
se

n
tP

o
li

cy
A

cc
es

s,

Q
u

er
y

A

rt
.
4

(2
)

D
S

S
M

S
u
b

m
it

R
eq

u
es

t,

S
u
b

m
it

R
es

p
o
n

se

R
E

Q
U

E
S

T
S

,

P
A

R
T

IC
IP

A
N

T
S

,

D
A

T
A

_
S

U
B

JE
C

T
S

,

R
E

S
P

O
N

S
E

S

d
at

aA
cc

es
sR

eq
u

es
ts

,

d
at

aA
cc

es
sR

es
p

o
n

se
s

su
b

m
it

R
eq

u
es

t,

su
b

m
it

R
es

p
o
n

se

D
at

aA
cc

es
sR

eq
u
es

t:
st

ru
ct

,

D
at

aA
cc

es
sR

eq
u
es

tC
o

n
tr

ac
t,

D
at

aA
cc

es
sR

es
p
o

n
se

:s
tr

u
ct

,

D
at

aA
cc

es
sR

es
p
o

n
se

C
o
n

tr
ac

t

re
q

u
es

tE
x

is
ts

,

re
q

u
es

tI
d
,

p
se

u
d

o
n

y
m

,

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

re
sp

o
n
se

E
x
is

ts
,

re
sp

o
n
se

Id

Q
1

1
.
H

o
w

 h
a
s

p
er

so
n

a
l

d
a

ta
 b

ee
n

 g
a
th

er
ed

?

R
P

S
M

A
d

d
P

at
ie

n
t,

A
d

d
C

o
n

se
n
t

P
A

T
IE

N
T

S
,

C
O

N
S

E
N

T
S

p
c,

p
at

ie
n

ts

D

at
aS

u
b

je
ct

,

D
at

aS
u
b

je
ct

C
o
n

se
n
t,

D
at

aV
al

u
e

A

rt
.
1

2
,

A
rt

.
1

3
,

A
rt

.
1

4
,

R
ec

.
3
9

,

R
ec

.
5
8

,

R
ec

.
6
2

,

R
ec

.
7
3

D
S

S
M

S
u
b

m
it

R
es

p
o
n

se

R
E

S
P

O
N

S
E

S
,

R
E

Q
U

E
S

T
S

d
at

aA
cc

es
sR

es
p

o
n

se
s

su
b

m
it

R
es

p
o
n

se

D
at

aA
cc

es
sR

es
p
o

n
se

:s
tr

u
ct

,

D
at

aA
cc

es
sR

es
p
o

n
se

C
o
n

tr
ac

t

re
sp

o
n
se

E
x
is

ts
,

re
sp

o
n
se

Id
,

p
se

u
d

o
n

y
m

,

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n

1
2
3

T
ab

le

1
1
:

T
h
e

m
ap

p
in

g
 b

et
w

ee
n
 c

o
m

p
et

en
cy

 q
u

es
ti

o
n
s

fo
r

co
n
se

n
t

m
an

ag
em

en
t

an
d
 o

u
r

st
u
d
y

 (
co

n
t’

d
).

F

o
r
m

a
l

m
o

d
e
l

C
la

ss
 d

ia
g
r
a

m

M
a

ch
in

e
E

v
e
n

t
S

et

L
o

c
a
l/

st
a

te
 v

a
r
ia

b
le

O

p
er

a
ti

o
n

C

la
ss

A

tt
ri

b
u

te
/R

el
a
ti

o
n

G

D
P

R

a
rt

ic
le

Q
1

2
.
T

o
 w

h
o

m
 p

e
rs

o
n

a
l

d
a
ta

 i
s

d
is

c
lo

se
d

?

P
A

S
M

A
U

T
H

O
R

IZ
E

D
_

U
S

E
R

S
,

R
O

L
E

S

u
se

rR
o
le

s

A
u

th
o

ri
ze

d
U

se
r,

R
o

le

u
se

rR
o
le

s
A

rt
.
4

(7
),

A
rt

.
6

,

A
rt

.
2

8

D
S

S
M

P

A
R

T
IC

IP
A

N
T

S

C
o

n
se

n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
t:

st
ru

ct

re
q

u
es

te
rI

d
,

re
q

u
es

te
rU

rl
,

re
sp

o
n
d

er
Id

,

re
sp

o
n
d

er
U

rl

Q
1

3
.
W

h
o

 i
s

in
 c

h
a
r
g
e
 o

f
p

e
rs

o
n

a
l

d
a

ta
?

P
A

S
M

A
U

T
H

O
R

IZ
E

D
_

U
S

E
R

S
,

R
O

L
E

S

u
se

rR
o
le

s

A
u

th
o

ri
ze

d
U

se
r,

R
o

le

u
se

rR
o
le

s
A

rt
.
2

4
,

R
ec

.
7
4

,

R
ec

.
7
9

D
S

S
M

P

A
R

T
IC

IP
A

N
T

S

C
o

n
se

n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
t:

st
ru

ct

re
q

u
es

te
rI

d
,

re
q

u
es

te
rU

rl
,

re
sp

o
n
d

er
Id

,

re
sp

o
n
d

er
U

rl

Q
1

4
.
H

o
w

 t
o
 m

in
im

iz
e
 t

h
e
 d

a
ta

 c
o

ll
e
ct

io
n

?

R
P

S
M

C

O
N

S
E

N
T

S
,

R
O

L
E

S
,

F
IE

L
D

S

cr
f

A

rt
.
5

(1
c)

D
S

S
M

C

O
N

S
E

N
T

S
,

F
IE

L
D

S

d
at

aF
ie

ld
s

D

at
aF

ie
ld

:s
tr

u
ct

,

D
at

aF
ie

ld
C

o
n

tr
ac

t

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

fi
el

d
N

am
e

Q
1

5
.
W

h
er

e
 h

a
s

p
er

so
n

a
l

d
a

ta
 b

ee
n

 o
b

ta
in

ed
?

R
P

S
M

P

A
T

IE
N

T
S

,

C
O

N
S

E
N

T
S

p
c,

p
at

ie
n

ts

D

at
aS

u
b

je
ct

,

D
at

aS
u
b

je
ct

C
o
n

se
n
t,

D
at

aV
al

u
e

A

rt
.
5

(1
e)

D
S

S
M

R

E
S

P
O

N
S

E
S

,

D
A

T
A

_
S

U
B

JE
C

T
S

,

F
IE

L
D

S
,

B
O

O
L

en
cr

y
p
te

d
D

at
a,

d
at

aT
ra

n
sf

er
S

ta
te

s

Q
1

6
.
W

h
en

 s
h

o
u

ld
 p

er
so

n
a
l

d
a

ta
 b

e
 p

se
u

d
o

n
y

m
iz

ed
?

D
S

S
M

D

at
aS

u
b

je
ct

C
o
n

se
n
t:

st
ru

ct

p
se

u
d

o
n

y
m

A

rt
.
4

(5
),

R
ec

.
2
6

1
2
4

T
ab

le

1
1
:

T
h
e

m
ap

p
in

g
 b

et
w

ee
n
 c

o
m

p
et

en
cy

 q
u

es
ti

o
n
s

fo
r

co
n
se

n
t

m
an

ag
em

en
t

an
d
 o

u
r

st
u
d
y

 (
co

n
t’

d
).

F

o
r
m

a
l

m
o

d
e
l

C
la

ss
 d

ia
g
r
a

m

M
a

ch
in

e
E

v
e
n

t
S

et

L
o

c
a
l/

st
a

te
 v

a
r
ia

b
le

O

p
er

a
ti

o
n

C

la
ss

A

tt
ri

b
u

te
/R

el
a
ti

o
n

G

D
P

R

a
rt

ic
le

Q
1

7
.
W

h
o

 h
a
s

b
ee

n
 i

d
en

ti
fi

e
d

 a
s

th
e
 d

a
ta

 c
o
n

tr
o
ll

er
?

R
P

S
M

A
U

T
H

O
R

IZ
E

D
_

U
S

E
R

S
,

R
O

L
E

S

u
se

rR
o
le

s

A
u

th
o

ri
ze

d
U

se
r,

R
o

le

u
se

rR
o
le

s
A

rt
.
4

(7
),

A
rt

.
2

8

D
S

S
M

C

O
N

S
E

N
T

S
,

F
IE

L
D

S

d
at

aF
ie

ld
s

D

at
aF

ie
ld

:s
tr

u
ct

,

D
at

aF
ie

ld
C

o
n

tr
ac

t

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

fi
el

d
N

am
e

Q
1

8
.
H

o
w

 t
o
 r

e
a
c
h

 o
u

t
to

 t
h

e
d

a
ta

 c
o
n

tr
o

ll
e
r?

 (
n

o
t

a
p

p
li

ca
b

le
)

Q
1

9
.
W

h
a

t
is

 t
h

e
d

a
ta

 c
o
n

tr
o
ll

e
r
 i

n
 c

h
a

rg
e

fo
r?

R
P

S
M

A
U

T
H

O
R

IZ
E

D
_

U
S

E
R

S
,

R
O

L
E

S

u
se

rR
o
le

s

A
u

th
o

ri
ze

d
U

se
r,

R
o

le

u
se

rR
o
le

s
A

rt
.
4

(7
),

A
rt

.
1

4
,

A
rt

.
2

8
,

A
rt

.
3

7

D
S

S
M

C

O
N

S
E

N
T

S
,

P
A

R
T

IC
IP

A
N

T
S

co
n

se
n
t,

re
sp

o
n
d

er

C

o
n

se
n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
t:

st
ru

ct

re
q

u
es

te
rI

d
,

re
q

u
es

te
rU

rl
,

re
sp

o
n
d

er
Id

,

re
sp

o
n
d

er
U

rl

Q
2

0
.
H

o
w

 t
o
 e

m
b

ed
 d

a
ta

 p
r
o
te

c
ti

o
n

 a
s

a
 d

e
fa

u
lt

 s
et

ti
n

g
 f

o
r
 p

ro
ce

ss
in

g
 p

er
so

n
a

l
d

a
ta

?

R
P

S
M

C

O
N

S
E

N
T

S
,

R
O

L
E

S
,

F
IE

L
D

S
,

P
A

T
IE

N
T

S
,

A
U

T
H

O
R

IZ
E

D
_

U
S

E
R

S

p
c,

cr
f,

u
se

rR
o
le

s

C

o
n

se
n
tP

o
li

cy
A

cc
es

s,

C
o

n
se

n
tR

o
le

F
ie

ld
,

D
at

aS
u
b

jc
ec

tC
o

n
se

n
t

u
se

rR
o
le

s
A

rt
.
2

5

D
S

S
M

C

O
N

S
E

N
T

S
,

P
A

R
T

IC
IP

A
N

T
S

co
n

se
n
t,

re
sp

o
n
d

er

C

o
n

se
n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
t:

st
ru

ct

re
q

u
es

te
rI

d
,

re
q

u
es

te
rU

rl
,

re
sp

o
n
d

er
Id

,

re
sp

o
n
d

er
U

rl

Q
2

1
.
W

h
o

 h
a
s

b
ee

n
 i

d
en

ti
fi

e
d

 a
s

th
e
 d

a
ta

 p
ro

ce
ss

o
r
?

R
P

S
M

A
U

T
H

O
R

IZ
E

D
_

U
S

E
R

S
,

R
O

L
E

S

u
se

rR
o
le

s

A
u

th
o

ri
ze

d
U

se
r,

R
o

le

u
se

rR
o
le

s
A

rt
.
4

(8
)

1
2
5

T
ab

le

1
1
:

T
h
e

m
ap

p
in

g
 b

et
w

ee
n
 c

o
m

p
et

en
cy

 q
u

es
ti

o
n
s

fo
r

co
n
se

n
t

m
an

ag
em

en
t

an
d
 o

u
r

st
u
d
y.

M
a

ch
in

e
E

v
e
n

t
S

et

L
o

c
a
l/

st
a

te
 v

a
r
ia

b
le

O

p
er

a
ti

o
n

C

la
ss

A

tt
ri

b
u

te
/R

el
a
ti

o
n

G

D
P

R

a
rt

ic
le

Q
2

1
.
W

h
o

 h
a
s

b
ee

n
 i

d
en

ti
fi

e
d

 a
s

th
e
 d

a
ta

 p
ro

ce
ss

o
r
?

D
S

S
M

P

A
R

T
IC

IP
A

N
T

S
,

D
A

T
A

_
S

U
B

JE
C

T
S

,

C
O

N
S

E
N

T
S

,

B
O

O
L

,

R
E

S
P

O
N

S
E

S
,

R
E

Q
U

E
S

T
S

re
q

u
es

tE
x

is
ts

,

re
q

u
es

tI
d
,

p
se

u
d

o
n

y
m

,

co
n

se
n
tC

o
d

e,

co
n

se
n
tV

er
si

o
n
,

re
sp

o
n
se

E
x
is

ts
,

re
sp

o
n
se

Id

is
C

o
n

se
n
tV

al
id

,

su
b

m
it

R
eq

u
es

t,

su
b

m
it

R
es

p
o
n

se

D
at

aS
u
b

je
ct

C
o
n

se
n
t:

st
ru

ct
,

D
at

aS
u
b

je
ct

C
o
n

se
n
tC

o
n

tr
ac

t,

D
at

aA
cc

es
sR

eq
u
es

t:
st

ru
ct

,

D
at

aA
cc

es
sR

eq
u
es

tC
o

n
tr

ac
t,

D
at

aA
cc

es
sR

es
p
o

n
se

:s
tr

u
ct

,

D
at

aA
cc

es
sR

es
p
o

n
se

C
o
n

tr
ac

t

co
n

se
n
tE

x
p
ir

ed
,

d
at

aS
u
b

je
ct

C
o

n
se

n
ts

,

d
at

aA
cc

es
sR

eq
u

es
ts

,

d
at

aA
cc

es
sR

es
p

o
n

se
s

A
rt

.
4

(8
)

Q
2

2
.
W

h
o

 h
a
s

b
ee

n
 i

d
en

ti
fi

e
d

 a
s

th
e
 d

a
ta

 s
u

b
je

c
t?

R
P

S
M

A
U

T
H

O
R

IZ
E

D
_

U
S

E
R

S
,

R
O

L
E

S

u
se

rR
o
le

s

A
u

th
o

ri
ze

d
U

se
r,

R
o

le

u
se

rR
o
le

s
A

rt
.
4

(1
)

D
S

S
M

D
A

T
A

_
S

U
B

JE
C

T
S

d

at
aS

u
b

je
ct

s

D
at

aS
u
b

je
ct

C
o
n

se
n
t:

st
ru

ct

Q
2

3
.
W

h
o

m
 t

o
 r

e
a
c
h

 o
u

t
to

?
 (

n
o

t
a

p
p

li
ca

b
le

)

126

CHAPTER VII

DISCUSSION AND CONCLUSION

7.1. Discussion

The objective of CM for centralized systems is to manage legal documents (i.e.,

consent) and data subjects’ consent choices for collecting and processing personal da-

ta inside its system according to the role-based consent assignment, which consists of

four state machines, including RPSM, WASM, PASM, and CRSM. The advantages of

CM for centralized systems are that it provides great control of the personal data

lifecycle and is easy to adopt into software systems. Moreover, the RPSM provides

consent-based permission combined with RBAC to restrict stakeholders to process

only specified data fields within the data subject’s consent. Based on RBAC and a

consent, all authorized users with the same roles can access data fields consented by

the data subject. For example, all doctors can access a patient data even though that

patient is not their case. We can adopt and formalize ABAC (Attribute-Based Access

Control) to give more restrictions on data access in future work. As for the PASM, it

only provides a portable approval workflow that permits data subjects to request a

portable copy of their personal data. However, transferring personal data between or-

ganizations or services must proceed outside the system. To enable the automatic

transferring of personal data across services, we then extended our research by de-

signing CM for distributed systems in data sharing under the assumption that commu-

nications among systems are secured, which is described in the DSSM. Using block-

chain technology in CM for distributed systems in data sharing helps enable secure,

transparent, and traceable data sharing across services. The advantages of CM for dis-

tributed systems in data sharing are that it manages consent-authorized validation and

request-response interaction among services as a middleware. Unfortunately, pro-

grams (i.e., smart contracts) that live on the blockchain are irreversible. Once they are

deployed, it generates new addresses. With multiple times of deployments, it hardly

maintains addresses and increases execution time. To bridge this gap, we designed

reusable smart contracts which obtain only states of data subjects’ consent and re-

quest-response interactions among services.

Choosing the right CMs for software systems depends on business objectives.

For instance, the use of CM for centralized systems is proper for systems that have

individuals’ data to manage but do not provide disclosure of individuals’ data auto-

matically between organizations or services. In contrast, using CM for distributed sys-

tems in data sharing is proper only for systems that need to share individuals’ data se-

curely and enable irreversible audit trails among systems utilizing blockchain tech-

nology. By its nature, the blockchain’s programs are not easy to alter once data has

 127

persisted. Therefore, CM for distributed systems in data sharing shall use blockchain

for keeping only the state of shared data subjects’ data.

7.2. Conclusion

Privacy issues become a threat to individuals’ lives. The GDPR then seeks to

minimize the threat by outlining the data protection law to give individuals the power

to control their personal data. According to the literature, the GDPR provisions are

difficult to interpret and apply to software systems, leading to violating individuals’

privacy. To bridge the gap, this thesis introduces CM for centralized systems and data

sharing in distributed systems, which covers five common functionalities stated in the

scope of work in CHAPTER I.

To begin with, CM in centralized systems handles the entire personal data

lifecycle for a system with its own data subjects’ data. On the other hand, CM in dis-

tributed systems is used to control the lifecycle of sharing personal data among multi-

ple systems. The difference between these two approaches is that CM in centralized

systems focuses on managing their data subjects’ data based on role-based consent. In

contrast, CM in distributed systems uses blockchain technology to enable open-access

immutable audit logs and secure sharing of personal data among systems.

According to a modern software system, the system can conduct and disclose

data subjects’ data to other service providers, such as customer service management

systems. To integrate data protection into the system, it simply adopts our proposed

models and class diagrams as guidelines, which are proven correctness by the Event-

B method.

As for further research, we will evaluate the operational performances of these

two approaches against existing studies. Moreover, in the CM in distributed systems,

we will assess data subjects’ compensation costs for sharing their personal data to mo-

tivate their data contribution to healthcare research.

128

APPENDIX A

EVENT-B MODELS FOR CONSENT MANAGEMENT IN CEN-

TRALIZED SYSTEMS

Event-B models were constructed based on four state machines: 1) RPSM,

which covered conducting individuals’ consent and limiting access to authorized per-

sonal data based on a given consent, 2) WASM, which provided a withdrawal approv-

al process for allowing individuals to withdraw their consent at any time they wish to,

3) PASM, which provided a portable approval process for allowing individuals to re-

quest portable their personal data, and 4) CRSM, which provided a consent renewal

process for enabling individuals to renew their consent for continued use of services

and products offered by service providers. Besides, Event-B models are available for

the public at https://github.com/cucpbioinfo/ConsentBasedPrivacy .

1. The RPSM Model

We modeled RPSM (Figure 81) to describe the dynamic behavior of how the

system conducts data subjects’ consent and how to restrict privileged permissions of

stakeholders (e.g., doctors, nurses, researchers) for processing personal data within

data subjects’ consent. The RPSM model is divided into two parts, including the

RPCX context, and the RPSM machine.

Figure 81: RPSM demonstrating how to restrict access to personal data according to

data subjects’ consent.

1.1. The RPCX Context

The RPCX context is the static part of the RPSM model containing the

sets, constants, and axioms.

https://github.com/cucpbioinfo/ConsentBasedPrivacy

 129

1.1.1. Sets in RPCX

Sets are a set of abstracts in the context of CM in health systems

are comprises the following sets:

• PATIENTS is a set of individuals.

• CONSENTS is a set of consent agreements.

• FIELDS is a set of data fields that leads to specific personal char-

acteristics.

• AUTHORIZED_USERS is a set of privileged users in the sys-

tem.

• SESSIONS is a set of login sessions according to privileged us-

ers’ requests to access the system.

• ROLES is a set of permissions that specify the users’ area of re-

sponsibility and functionalities on the system.

• QUERIES is a set of queries to retrieve patients’ information.

1.1.2. Constants in RPCX

Constants are elements of sets, which declare in the axiom section.

There are two particular sets define in this section:

1. FIELDS contains the following constants: HN (i.e., hospital

number), Name, Age, Weight, Height, Gender, and Race.

2. ROLES contains the following constants: NursingStaff, Oncolo-

gist, and LabStaff.

1.1.3. Axioms in RPCX

Axioms are used to determine known static relations written with

predicate logic and assumed to be true. Moreover, they are also used to

assign constants to pre-defined sets. According to Listing A1, the axm1

and axm2 are added to specify constants to pre-defined sets, e.g., ROLES

and FIELDS, respectively. As for the four axioms (axm3 - axm6), they are

added to deal with empty set assignments in variables restrained by par-

tial functions, e.g., sessions, queries, pf, and authorizedConsent, respec-

tively.

AXIOMS
 axm1 : partition(ROLES, {NursingStaff}, {Oncologist}, {LabStaff})
 axm2 : partition(FIELDS, {HN}, {Name}, {Age}, {Weight}, {Height},

 130

{Gender}, {Race})
 axm3 : ∅ ∈ SESSIONS ⤔ AUTHORIZED_USERS
 axm4 : ∅ ∈ AUTHORIZED_USERS ⇸ (QUERIES ⤔ PATIENTS)
 axm5 : ∅ ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ FIELDS)
 axm6 : ∅ ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ CONSENTS)

Listing A1: The list of axioms in RPCX.

1.2. The RPSM Machine

The RPSM machine is the dynamic part of the RPSM model containing

the invariants, variables, and events.

1.2.1. Invariants in RPSM

Invariants are constraints of state variables described by first-order

logic expressions, as shown in Listing A2. In every event execution, ac-

tions change state variables’ value, which must preserve all their invariants

in the whole model.

INVARIANTS
 inv1 : sessions ∈ SESSIONS ⤔ AUTHORIZED_USERS
 inv2 : userRoles ∈ AUTHORIZED_USERS ↔ ROLES
 inv3 : pc ∈ PATIENTS ↔ CONSENTS
 inv4 : patients ∈ ℙ(PATIENTS)
 inv5 : crf ∈ CONSENTS ⇸ (ROLES ↔ FIELDS)
 inv6 : queries ∈ AUTHORIZED_USERS ⇸ (QUERIES ↔ PATIENTS)
 inv7 : pf ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ FIELDS)
 inv8 : authorizedConsent ∈ AUTHORIZED_USERS ⇸

(PATIENTS ↔ CONSENTS)

Listing A2: The list of invariants in RPSM.

The state variables are divided into eight variables:

• The variable sessions contains the one-to-one relationships be-

tween SESSIONS and AUTHORIZED_USERS.

The example of the sessions value:

{(SESSIONS1 ↦ AUTHORIZED_USER1)}

• The variable userRoles contains the relation between two given

sets, e.g., AUTHORIZED_USER and ROLES for determining

user activities and tasks based on user permissions that each sys-

tem configures.

The example of the userRoles value:

 131

{(AUTHORIZED_USER1 ↦ NursingStaff),
 (AUTHORIZED_USER1 ↦ Oncologist),
 (AUTHORIZED_USER1 ↦ LabStaff),
 (AUTHORIZED_USER2 ↦ LabStaff)}

• The variable patients contains the PATIENTS set during the

model refinement.

The example of the patients value:

{PATIENTS1}

• The variable pc contains the relation between two given sets, e.g.,

PATIENTS and CONSENTS, representing patients’ consent

agreements in which patients permit users who have been defined

in consent agreements to process their personal data.

The example of the pc value:

{(PATIENTS1 ↦ CONSENTS1)}

• The variable crf contains the relation between three given sets,

e.g., CONSENTS, ROLES, and FIELDS, representing consent-

based permission in which only authorized users can access per-

sonal data according to a given consent.

The example of the crf value:

{(CONSENT1 ↦ {(NursingStaff ↦ HN)}),
 (CONSENT2 ↦ {(NursingStaff ↦ HN),

(NursingStaff ↦ Name),
(NursingStaff ↦ Age)})}

• The variable queries contains the relation between three given

sets, e.g., AUTHORIZED_USERS, PATIENTS, and QUERIES,

representing personal data queries.

The example of the queries value:

{(AUTHORIZED_USER1 ↦ {(QUERIES1 ↦ PATIENTS1)})}

• The variable pf contains the relation between three given sets,

e.g., AUTHORIZED_USERS, PATIENTS, and FIELDS, repre-

senting query results. This variable holds query results of person-

al data in which selected only data fields that are apparent in the

variable crf.

The example of the queries value:

 132

{(AUTHORIZED_USER1 ↦ {(PATIENTS1 ↦ HN)})}

• The variable authorizedConsent contains the relation between

three given sets, e.g., AUTHORIZED_USERS, PATIENTS, and

CONSENTS, representing consent validation results. This varia-

ble holds the result of consent validation which checks the validi-

ty before executing users’ query to retrieve patients’ data.

The example of the authorizedConsent value:

{(AUTHORIZED_USER1 ↦ {(PATIENTS1 ↦ CONSENTS1)})}

1.2.2. Events in RPSM

Events are the state transitions of the given model. In Event-B, the

event will be executed when its guards meet conditions then state variables

will be updated values.

The RPSM are partitioned into eight events:

1.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the

model. According to Listing A3, the six actions (act1 – act6) are as-

signed empty sets. As for act7 and act8, they are specified variables

with first-order logic expressions using operation, called choice from

set (i.e., :∈). In doing so, the userRoles and crf variables are automat-

ically generated by the Rodin Platform.

INITIALISATION ≙
STATUS
 ordinary
BEGIN
 act1 : sessions ≔ ∅
 act2 : patients ≔ ∅
 act3 : pc ≔ ∅
 act4 : queries ≔ ∅
 act5 : pf ≔ ∅
 act6 : authorizedConsent ≔ ∅
 act7 : userRoles :∈ AUTHORIZED_USERS ROLES
 act8 : crf :∈ CONSENTS → ℙ1(ROLES × FIELDS)
END

Listing A3: The INITIALISATION event.

 133

1.2.2.2. The Login Event

This event describes the behavior of login (Listing A3). The

event will be executed when the current user session does not exist,

and this user is registered, then the user successfully login to the sys-

tem.

Login ≙
STATUS
 ordinary
ANY
 s, u
WHERE
 grd1 : s ∈ SESSIONS ∧ s ∉ dom(sessions)

 grd2 : u ∈ AUTHORIZED_USERS ∧ s ∉ ran(sessions)
 grd3 : sessions ∪ {s ↦ u} ∈ SESSIONS ⤔ AUTHORIZED_USERS
THEN
 act1 : sessions ≔ sessions ∪ {s ↦ u}
END

Listing A4: The Login event.

1.2.2.3. The AddPatient Event

The event describes the behavior of creating a patient (Listing

A5). The event will be executed when the authorized user has logged

on with the nursing staff role, and this patient does not register to the

system before, then the user adds the patient information successful-

ly.

AddPatient ≙
STATUS
 ordinary
ANY
 s, p
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = NursingStaff
 grd3 : p ∈ PATIENTS ∧ p ∉ patients
 grd4 : sessions(s) ∉ dom(queries)
THEN
 act1 : patients ≔ patients ∪ {p}

END

Listing A5: The AddPatient event.

 134

1.2.2.4. The AddConsent Event

The event describes the behavior of adding consent (Listing

A6). The event will be executed when the authorized user has logged

on with the nursing staff role, and this patient’s consent is not added

to the system before, then the user adds the patient’s consent success-

fully.

AddConsent ≙
STATUS
 ordinary
ANY
 s, p, c
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = NursingStaff
 grd3 : p ∈ patients ∧ c ∈ dom(crf)
 grd4 : p ↦ c ∉ pc
 grd5 : pc ∪ {p ↦ c} ∈ PATIENTS ↔ CONSENTS
 grd6 : sessions(s) ∉ dom(queries)
THEN
 act1 : pc ≔ pc ∪ {p ↦ c}
END

Listing A6: The AddConsent event.

1.2.2.5. The CreateInquiry Event

This event describes the behavior of creating (Listing A7). The

event will be executed when the authorized user has logged on, and

this user wishes to retrieve a patient’s information who has given

their consent, then the user creates an inquiry successfully.

CreateInquiry ≙
STATUS
 ordinary
ANY
 s, p, q
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : q ∈ QUERIES ∧ p ∈ dom(pc) ∧ sessions(s) ∉ dom(queries)
 grd3 : queries {sessions(s) ↦ {q ↦ p}} ∈

AUTHORIZED_USERS ⇸ (QUERIES ↔ PATIENTS)
THEN
 act1 : queries(sessions(s)) ≔ {q ↦ p}
END

Listing A7: The CreateInquiry event.

 135

1.2.2.6. The CheckAuthorizeConsent Event

This event describes the behavior of checking authorized con-

sent (Listing A8). The event will be executed when the created query

is passed on the following conditions: 1) the patient’s consent does

not expire, and 2) the authorized user who created the query has con-

sent permission to access the information of this patient. Then, the

system captures the consent validation result.

CheckAuthorizeConsent ≙
STATUS
 ordinary
ANY
 s, p, c, consentExpired
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(queries)
 grd2 : consentExpired ∈ BOOL ∧ consentExpired = FALSE
 grd3 : c ∈ pc[{p}] ∧ c ∈ dom(crf)
 grd4 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r ∈ dom(crf(c))
 grd5 : sessions(s) ∉ dom(authorizedConsent)
 grd6 : authorizedConsent {sessions(s) ↦ {p ↦ c}} ∈

AUTHORIZED_USERS ⇸ (PATIENTS ↔ CONSENTS)
THEN
 act1 : authorizedConsent(sessions(s)) ≔ {p ↦ c}
END

Listing A8: The CheckAuthorizeConsent event.

1.2.2.7. The ExecuteQuery Event

This event describes the behavior of executing query (Listing

A9). The event will be executed when the authorized consent has

been verified, then the system returns the patient’s data fields to the

user.

ExecuteQuery ≙
STATUS
 ordinary
ANY
 s, p, c
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(queries)
 grd2 : p ∈ ran(queries(sessions(s))) ∧ c ∈ dom(crf)
 grd3 : sessions(s) ∈ dom(authorizedConsent) ∧ p ↦ c ∈

authorizedConsent(sessions(s))
 grd4 : sessions(s) ∉ dom(pf)
 grd5 : pf {sessions(s) ↦ {p} × ran(userRoles[sessions[{s}]] ◁

 136

crf(c))} ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ FIELDS)
THEN
 act1 : pf(sessions(s)) ≔ {p} × ran(userRoles[sessions[{s}]] ◁

crf(c))
END

Listing A9: The ExecuteQuery event.

1.2.2.8. The Logout Event

This event describes the behavior of logout (Listing A10). The

event will be executed when the current user session exists, then the

system removes state variables values within the current user, includ-

ing the pf, queries, authorizedConsent, and sessions variables.

Logout ≙
STATUS
 ordinary
ANY
 s

WHERE
 grd1 : s ∈ dom(sessions)
 grd2 : {sessions(s)} ⩤ queries ∈ AUTHORIZED_USERS ⇸

(QUERIES ↔ PATIENTS)
 grd3 : {sessions(s)} ⩤ authorizedConsent ∈ AUTHORIZED_USERS ⇸

(PATIENTS ↔ CONSENTS)
 grd4 : {sessions(s)} ⩤ pf ∈ AUTHORIZED_USERS ⇸ (PATIENTS ↔ FIELDS)
 grd5 : sessions ⩥ {sessions(s)} ∈ SESSIONS ⤔ AUTHORIZED_USERS
THEN
 act1 : queries ≔ {sessions(s)} ⩤ queries
 act2 : authorizedConsent ≔ {sessions(s)} ⩤ authorizedConsent
 act3 : pf ≔ {sessions(s)} ⩤ pf
 act4 : sessions ≔ sessions ⩥ {sessions(s)}
END

Listing A10: The Logout event.

2. The WASM Model

We modeled WASM (Figure 82) to describe the dynamic behavior of how the

system manages the withdrawal approval process when patients request to withdraw

their consent. The WASM model is divided into two parts, including the WACX con-

text and the WASM machine.

 137

Figure 82: WASM demonstrating how to conduct the withdrawal approval process.

2.1. The WACX Context

The WACX context is the static part of the WASM model containing the

sets, constants, and axioms.

2.1.1. Sets in WACX

Sets are a set of abstracts in the context of CM in health systems

are comprises the following sets:

• PATIENTS is a set of individuals.

• CONSENTS is a set of consent agreements.

• AUTHORIZED_USERS is a set of privileged users in the sys-

tem.

• SESSIONS is a set of login sessions according to privileged us-

ers’ requests to access the system.

• ROLES is a set of permissions that specify the users’ area of re-

sponsibility and functionalities on the system.

• STATUSES is a set of withdrawal statuses.

2.1.2. Constants in WACX

Constants are elements of sets, which declare in the axiom section.

There are two particular sets define in this section:

1. ROLES is obtained with the following constants: LegalStaff, and

LegalApprover.

2. STATUES is obtained with the following constants: Void, Ap-

proved, and Rejected.

 138

2.1.3. Axioms in WACX

Axioms are used to determine known static relations written with

predicate logic and assumed to be true. Moreover, they are also used to

assign constants to pre-defined sets. According to Listing A11, the axm1

and axm2 are added to specify constants to pre-defined sets, e.g., ROLES,

and STATUSES, respectively. As for the axm3 and axm4, they are added

to deal with empty set assignments in variables restrained by partial func-

tions, e.g., sessions, and withdrawalState, respectively.

AXIOMS
 axm1 : partition(ROLES, {LegalStaff}, {LegalApprover})
 axm2 : partition(STATUSES, {Void}, {Approved}, {Rejected})
 axm3 : ∅ ∈ SESSIONS ⤔ AUTHORIZED_USERS
 axm4 : ∅ ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES

Listing A11: The list of axioms in WACX.

2.2. The WASM Machine

The WASM machine is the dynamic part of the WASM model containing

the invariants, variables, and events.

2.2.1. Invariants in WASM

Invariants are constraints of state variables described by first-order

logic expressions, as shown in Listing A12. In every event execution, ac-

tions change state variables’ value, which must preserve all their invariants

in the whole model.

INVARIANTS
 inv1 : sessions ∈ SESSIONS ⤔ AUTHORIZED_USERS
 inv2 : userRoles ∈ AUTHORIZED_USERS ↔ ROLES
 inv3 : pc ∈ PATIENTS ↔ CONSENTS
 inv4 : withdrawalState ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES
 inv5 : markAsDeleted ∈ PATIENTS ↔ CONSENTS

Listing A12: The list of invariants in WASM.

The state variables are divided into five variables:

• The variable sessions contains the one-to-one relationships be-

tween SESSIONS and AUTHORIZED_USERS.

The example of the sessions value:

 139

{(SESSIONS1 ↦ AUTHORIZED_USER2),
 (SESSIONS2 ↦ AUTHORIZED_USER1)}

• The variable userRoles contains the relation between two given

sets, e.g., AUTHORIZED_USER, and ROLES for determining

user activities and tasks based on user permissions that each sys-

tem configures.

The example of the userRoles value:

{(AUTHORIZED_USER1 ↦ LegalStaff),
 (AUTHORIZED_USER1 ↦ LegalApprover),
 (AUTHORIZED_USER2 ↦ LegalStaff)}

• The variable pc contains the relation between two given sets, e.g.,

PATIENTS and CONSENTS, representing patients’ consent

agreements in which patients permit users who have been defined

in consent agreements to process their personal data.

The example of the pc value:

{(PATIENTS1 ↦ CONSENTS1),
 (PATIENTS1 ↦ CONSENTS2),
 (PATIENTS2 ↦ CONSENTS1),
 (PATIENTS2 ↦ CONSENTS2)}

• The variable withdrawalState contains the relation between three

given sets, e.g., PATIENTS, CONSENTS, and STATUSES, rep-

resenting withdrawal requests.

The example of the withdrawalState value:

{({(PATIENTS1 ↦ CONSENTS1)} ↦ Void),
 ({(PATIENTS1 ↦ CONSENTS2)} ↦ Approved),
 ({(PATIENTS2 ↦ CONSENTS2)} ↦ Rejected)}

• The variable markAsDeleted contains the relation between two

given sets, e.g., PATIENTS, and CONSENTS, representing pa-

tient data has been deleted.

The example of the markAsDeleted value:

{(PATIENTS1 ↦ CONSENTS2)}

2.2.2. Events in WASM

Events are the state transitions of the given model. In Event-B, the

event will be executed when its guards meet conditions then state variables

will be updated values.

 140

The WASM are partitioned into six events:

2.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the

model. According to Listing A13, the three actions (act1 – act3) are

assigned empty sets. As for act4 and act5, they are specified varia-

bles with first-order logic expressions using operation, called

choice from set (i.e., :∈). In doing so, the userRoles and pc varia-

bles are automatically generated by the Rodin Platform.

INITIALISATION ≙
STATUS
 ordinary
BEGIN
 act1 : sessions ≔ ∅
 act2 : withdrawalState ≔ ∅
 act3 : markAsDeleted ≔ ∅
 act4 : userRoles :∈ AUTHORIZED_USERS ROLES
 act5 : pc :∈ ℙ1(PATIENTS × CONSENTS)
END

Listing A13: The INITIALISATION event.

2.2.2.2. The Login Event

This event describes the behavior of login (Listing A14). The

event will be executed when the current user session does not exist,

and this user is registered, then the user successfully login to the

system.

Login ≙
STATUS
 ordinary
ANY
 s, u
WHERE
 grd1 : s ∈ SESSIONS ∧ s ∉ dom(sessions)

 grd2 : u ∈ AUTHORIZED_USERS ∧ s ∉ ran(sessions)
 grd3 : sessions ∪ {s ↦ u} ∈ SESSIONS ⤔ AUTHORIZED_USERS
THEN
 act1 : sessions ≔ sessions ∪ {s ↦ u}
END

Listing A14: The Login event.

 141

2.2.2.3. The CreateWithdrawal Event

The event describes the behavior of creating a withdrawal re-

quest (Listing A15). The event will be executed when the author-

ized user has logged on with the legal staff role, and this patient

does not request to withdraw consent before, then the user creates

the withdrawal request successfully.

CreateWithdrawal ≙
STATUS
 ordinary
ANY
 s, p, c
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : p ∈ dom(pc) ∧ c ∈ ran(pc) ∧

{p ↦ c} ∉ dom(withdrawalState)
 grd4 : withdrawalState {{p ↦ c} ↦ Void} ∈

(PATIENTS ↔ CONSENTS) ⤔ STATUSES
THEN
 act1 : withdrawalState({p ↦ c}) ≔ Void
END

Listing A15: The CreateWithdrawal event.

2.2.2.4. The ApproveWithdrawal Event

The event describes the behavior of approving a withdrawal

request (Listing A16). The event will be executed when the author-

ized user has logged on with the legal approver role, the with-

drawal request has the current status as Void, and there is no con-

flict exists the consent agreement, then the user approves the re-

quest successfully.

ApproveWithdrawal ≙
STATUS
 ordinary
ANY
 s, pc1, canWithdraw
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalApprover
 grd3 : pc1 ∈ dom(withdrawalState) ∧

withdrawalState(pc1) = Void
 grd4 : withdrawalState {pc1 ↦ Approved} ∈

(PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd5 : canWithdraw ∈ BOOL ∧ canWithdraw = TRUE

 142

 grd6 : markAsDeleted pc1 ∈ PATIENTS ↔ CONSENTS
THEN
 act1 : withdrawalState(pc1) ≔ Approved
 act2 : markAsDeleted ≔ markAsDeleted pc1
END

Listing A16: The ApproveWithdrawal event

2.2.2.5. The RejectWithdrawal event

The event describes the behavior of rejecting a withdrawal

request (Listing A17). The event will be executed when the author-

ized user has logged on with the legal approver role, the with-

drawal request has the current status as Void, and there is conflict

exists the consent agreement, then the user rejects the request suc-

cessfully.

RejectWithdrawal ≙
STATUS
 ordinary
ANY
 s, pc1, canWithdraw
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalApprover
 grd3 : pc1 ∈ dom(withdrawalState) ∧

withdrawalState(pc1) = Void
 grd4 : withdrawalState {pc1 ↦ Rejected} ∈

(PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd5 : canWithdraw ∈ BOOL ∧ canWithdraw = FALSE
THEN
 act1 : withdrawalState(pc1) ≔ Rejected
END

Listing A17: The RejectWithdrawal event.

2.2.2.6. The Logout event

This event describes the behavior of logout (Listing A18).

The event will be executed when the current user session exists,

then the system removes the variable sessions values within the

current user.

Logout ≙
STATUS
 ordinary
ANY
 s

 143

WHERE
 grd1 : s ∈ dom(sessions)
 grd2 : sessions ⩥ {sessions(s)} ∈

SESSIONS ⤔ AUTHORIZED_USERS
THEN
 act1 : sessions ≔ sessions ⩥ {sessions(s)}
END

Listing A18: The Logout event.

3. The PASM Model

We modeled PASM (Figure 83) to describe the dynamic behavior of how the

system manages the portable approval process when patients request portable their

personal data. The PASM model is divided into two parts, including the PACX con-

text and the PASM machine.

Figure 83: PASM demonstrating how to conduct the portable approval process.

3.1. The PACX Context

The PACX context is the static part of the PASM model containing the

sets, constants, and axioms.

3.1.1. Sets in PACX

Sets are a set of abstracts in the context of CM in health systems

are comprises the following sets:

• PATIENTS is a set of individuals.

• CONSENTS is a set of consent agreements.

• AUTHORIZED_USERS is a set of privileged users in the sys-

tem.

 144

• SESSIONS is a set of login sessions according to privileged us-

ers’ requests to access the system.

• ROLES is a set of permissions that specify the users’ area of re-

sponsibility and functionalities on the system.

• STATUSES is a set of portable statuses.

3.1.2. Constants in PACX

Constants are elements of sets, which declare in the axiom section.

There are two particular sets define in the section:

1. ROLES contains the following constants: LegalStaff, and Le-

galApprover.

2. STATUES contains the following constants: Void, Approved,

and Rejected.

3.1.3. Axioms in PACX

Axioms are used to determine known static relations written with

predicate logic and assumed to be true. Moreover, they are also used to as-

sign constants to pre-defined sets. According to Listing A19, the axm1 and

axm2 are added to specify constants to pre-defined sets, e.g., ROLES, and

STATUSES, respectively. As for the axm3 and axm4, they are added to

deal with empty set assignments in variables restrained by partial func-

tions, e.g., sessions, and portableState, respectively.

AXIOMS
 axm1 : partition(ROLES, {LegalStaff}, {LegalApprover})
 axm2 : partition(STATUSES, {Void}, {Approved}, {Rejected})
 axm3 : ∅ ∈ SESSIONS ⤔ AUTHORIZED_USERS
 axm4 : ∅ ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES

Listing A19: The list of axioms in PACX.

3.2. The PASM Machine

The PASM machine is the dynamic part of PASM model containing the

invariants, variables, and events.

3.2.1. Invariants in PASM

Invariants are constraints of state variables described by first-order

logic expressions, as shown in Listing A20. In every event execution, ac-

 145

tions change state variables’ value, which must preserve all their invariants

in the whole model.

INVARIANTS

 inv1 : sessions ∈ SESSIONS ⤔ AUTHORIZED_USERS
 inv2 : userRoles ∈ AUTHORIZED_USERS ↔ ROLES
 inv3 : pc ∈ PATIENTS ↔ CONSENTS
 inv4 : portableState ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES

Listing A20: The list of invariants in PASM.

The state variables are divided into four variables:

• The variable sessions contains the one-to-one relationships be-

tween SESSIONS and AUTHORIZED_USERS.

The example of the sessions value:

{(SESSIONS1 ↦ AUTHORIZED_USER2),
 (SESSIONS2 ↦ AUTHORIZED_USER1)}

• The variable userRoles contains the relation between two given

sets, e.g., AUTHORIZED_USER and ROLES for determining

user activities and tasks based on user permissions that each sys-

tem configures.

The example of the userRoles value:

{(AUTHORIZED_USER1 ↦ LegalStaff),
 (AUTHORIZED_USER1 ↦ LegalApprover),
 (AUTHORIZED_USER2 ↦ LegalStaff)}

• The variable pc contains the relation between two given sets, e.g.,

PATIENTS and CONSENTS, representing patients’ consent

agreements in which patients permit users who have been defined

in consent agreements to process their personal data.

The example of the pc value:

{(PATIENTS1 ↦ CONSENTS1),
 (PATIENTS1 ↦ CONSENTS2)}

• The variable portableState contains the relation between two giv-

en sets, e.g., PATIENTS, CONSENTS, and STATUSES, repre-

senting portable requests.

The example of the portableState value:

{({(PATIENTS1 ↦ CONSENTS1)} ↦ Approved),
 ({(PATIENTS1 ↦ CONSENTS2)} ↦ Rejected)}

 146

3.2.2. Events in PASM

Events are the state transitions of the given model. In Event-B, the

event will be executed when its guards meet conditions then state variables

will be updated values.

The PASM are partitioned into six events:

3.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the

model. According to Listing A21, the act1 and act2 actions are as-

signed empty sets. As for act3 and act4, they are specified variables

with first-order logic expressions using operation, called choice

from set (i.e., :∈). In doing so, the userRoles and pc variables are au-

tomatically generated by the Rodin Platform.

INITIALISATION ≙
STATUS
 ordinary
BEGIN
 act1 : sessions ≔ ∅
 act2 : portableState ≔ ∅
 act3 : userRoles :∈ AUTHORIZED_USERS ROLES
 act4 : pc :∈ ℙ1(PATIENTS × CONSENTS)
END

Listing A21: The INITIALISATION event.

3.2.2.2. The Login Event

This event describes the behavior of login (Listing A22). The

event will be executed when the current user session does not exist,

and this user is registered, then the user successfully login to the

system.

Login ≙
STATUS
 ordinary
ANY
 s, u
WHERE
 grd1 : s ∈ SESSIONS ∧ s ∉ dom(sessions)
 grd2 : u ∈ AUTHORIZED_USERS ∧ s ∉ ran(sessions)
 grd3 : sessions ∪ {s ↦ u} ∈ SESSIONS ⤔ AUTHORIZED_USERS
THEN

 147

 act1 : sessions ≔ sessions ∪ {s ↦ u}
END

Listing A22: The Login event.

3.2.2.3. The CreatePortable Event

The event describes the behavior of creating a portable re-

quest (Listing A23). The event will be executed when the authorized

user has logged on with the legal staff role, and this patient does not

request portable personal data before, then the user creates the port-

able request successfully.

CreatePortable ≙
STATUS
 ordinary
ANY
 s, p, c
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : p ∈ dom(pc) ∧ c ∈ ran(pc) ∧ {p ↦ c} ∉

dom(portableState)
 grd4 : portableState {{p ↦ c} ↦ Void} ∈

(PATIENTS ↔ CONSENTS) ⤔ STATUSES
THEN
 act1 : portableState({p ↦ c}) ≔ Void
END

Listing A23: The CreatePortable event.

3.2.2.4. The ApprovePortable Event

The event describes the behavior of approving a portable re-

quest (Listing A24). The event will be executed when the authorized

user has logged on with the legal approver role, the portable request

has the current status as Void, and the patient accept the prerequisite

conditions (e.g., fee for data transferring), then the user approves the

request successfully.

ApproveWithdrawal ≙
STATUS
 ordinary
ANY
 s, pc1, canPortable
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)

 148

 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalApprover
 grd3 : pc1 ∈ dom(portableState) ∧ portableState(pc1) = Void
 grd4 : portableState {pc1 ↦ Approved} ∈

(PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd5 : canPortable ∈ BOOL ∧ canPortable = TRUE
THEN
 act1 : portableState(pc1) ≔ Approved
END

Listing A24: The ApprovePortable event.

3.2.2.5. The RejectPortable Event

The event describes the behavior of rejecting a portable re-

quest (Listing A25). The event will be executed when the authorized

user has logged on with the legal approver role, the portable request

has the current status as Void, and there is conflict exists the consent

agreement, then the user rejects the request successfully.

RejectPortable ≙
STATUS
 ordinary
ANY
 s, pc1, canPortable
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalApprover
 grd3 : pc1 ∈ dom(portableState) ∧ portableState(pc1) = Void
 grd4 : portableState {pc1 ↦ Rejected} ∈

(PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd5 : canPortable ∈ BOOL ∧ canPortable = FALSE
THEN
 act1 : portableState(pc1) ≔ Rejected
END

Listing A25: The RejectPortable event.

3.2.2.6. The Logout Event

This event describes the behavior of logout (Listing A26). The

event will be executed when the current user session exists, then the

system removes the variable sessions values within the current user.

Logout ≙
STATUS
 ordinary
ANY
 s

 149

WHERE
 grd1 : s ∈ dom(sessions)
 grd2 : sessions ⩥ {sessions(s)} ∈

SESSIONS ⤔ AUTHORIZED_USERS
THEN
 act1 : sessions ≔ sessions ⩥ {sessions(s)}
END

Listing A26: The Logout event.

4. The CRSM Model

We modeled CRSM (Figure 84) to describe the dynamic behavior of how the

system manages the consent renewal process when patients’ consent expires. The

CRSM model is divided into two parts, including the CRCX context and the CRSM

machine.

Figure 84: CRSM demonstrating how to conduct the consent renewal process.

4.1. The CRCX Context

The CRCX context is the static part of the CRSM model containing the

sets, constants, and axioms.

4.1.1. Sets in CRCX

Sets are a set of abstracts in the context of CM in health systems

are comprises the following sets:

• PATIENTS is a set of individuals.

• CONSENTS is a set of consent agreements.

• AUTHORIZED_USERS is a set of privileged users in the sys-

tem.

 150

• SESSIONS is a set of login sessions according to privileged us-

ers’ requests to access the system.

• ROLES is a set of permissions that specify the users’ area of re-

sponsibility and functionalities on the system.

• STATUSES is a set of portable statuses.

4.1.2. Constants in CRCX

Constants are elements of sets, which declare in the axiom section.

There are two particular sets define in this section:

1. ROLES contains the following constants: LegalStaff, and Le-

galApprover.

2. STATUES is obtained with the following constants: Void, Ap-

proved, and Rejected.

4.1.3. Axioms in CRCX

Axioms are used to determine known static relations written with

predicate logic and assumed to be true. Moreover, they are also used to

assign constants to pre-defined sets. According to Listing A27, the axm1

and axm2 are added to specify constants to pre-defined sets, e.g., ROLES,

and STATUSES, respectively. As for the three axioms (axm3 - axm5),

they are added to deal with empty set assignments in variables restrained

by partial functions, e.g., sessions, isConsentExpired, and consentRenew-

alState, respectively.

AXIOMS
 axm1 : partition(ROLES, {LegalStaff}, {LegalApprover})
 axm2 : partition(STATUSES, {Void}, {Approved}, {Rejected})
 axm3 : ∅ ∈ SESSIONS ⤔ AUTHORIZED_USERS
 axm4 : ∅ ∈ (PATIENTS ↔ CONSENTS) ⤔ BOOL
 axm5 : ∅ ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES

Listing A27: The list of axioms in CRCX.

4.2. The CRSM machine

The CRSM machine is the dynamic part of the CRSM model containing

the invariants, variables, and events.

4.2.1. Invariants in CRSM

 151

Invariants are constraints of state variables described by first-order

logic expressions, as shown in Listing A28. In every event execution, ac-

tions change state variables’ value, which must preserve all their invariants

in the whole model.

INVARIANTS
 inv1 : sessions ∈ SESSIONS ⤔ AUTHORIZED_USERS
 inv2 : userRoles ∈ AUTHORIZED_USERS ↔ ROLES
 inv3 : pc ∈ PATIENTS ↔ CONSENTS
 inv4 : isConsentExpired ∈ (PATIENTS ↔ CONSENTS) ⤔ BOOL
 inv5 : consentRenewalState ∈ (PATIENTS ↔ CONSENTS) ⤔ STATUSES
 inv6 : markAsDeleted ∈ PATIENTS ↔ CONSENTS
 inv7 : markAsReceived ∈ PATIENTS ↔ CONSENTS

Listing A28: The list of invariants in CRSM.

The state variables are divided into seven variables:

• The variable sessions contains the one-to-one relationships be-

tween SESSIONS and AUTHORIZED_USERS.

The example of the sessions value:

{(SESSIONS1 ↦ AUTHORIZED_USER2),
 (SESSIONS2 ↦ AUTHORIZED_USER1)}

• The variable userRoles contains the relation between two given

sets, e.g., AUTHORIZED_USER and ROLES for determining

user activities and tasks based on user permissions that each sys-

tem configures.

The example of the userRoles value:

{(AUTHORIZED_USER1 ↦ LegalStaff),
 (AUTHORIZED_USER1 ↦ LegalApprover),
 (AUTHORIZED_USER2 ↦ LegalStaff)}

• The variable pc contains the relation between two given sets, e.g.,

PATIENTS and CONSENTS, representing patients’ consent

agreements in which patients permit users who have been defined

in consent agreements to process their personal data.

The example of the pc value:

{(PATIENTS1 ↦ CONSENTS1),
(PATIENTS1 ↦ CONSENTS2),
(PATIENTS2 ↦ CONSENTS1),
(PATIENTS2 ↦ CONSENTS2)}

 152

• The variable isConsentExpired contains the relation between

three given sets, e.g., PATIENTS, CONSENTS, and BOOL, rep-

resenting the patient’s consent is expired.

The example of the isConsentExpired value:

{({(PATIENTS1 ↦ CONSENTS1)} ↦ FALSE),
 ({(PATIENTS2 ↦ CONSENTS2)} ↦ TRUE)}

• The variable consentRenewalState contains the relation between

three given sets, e.g., PATIENTS, CONSENTS, and STATUSES,

representing consent renewal requests.

The example of the consentRenewalState value:

{({(PATIENTS1 ↦ CONSENTS1)} ↦ Approved),
 ({(PATIENTS2 ↦ CONSENTS2)} ↦ Rejected)}

• The variable markAsDeleted contains the relation between two

given sets, e.g., PATIENTS, and CONSENTS, representing pa-

tient data has been deleted.

The example of the markAsDeleted value:

{(PATIENTS2 ↦ CONSENTS2)}

• The variable markAsReceived contains the relation between two

given sets, e.g., PATIENTS, and CONSENTS, representing the

system has sent the notification to the patient for consent renew-

al.

The example of the markAsReceived value:

{(PATIENTS1 ↦ CONSENTS1),
 (PATIENTS2 ↦ CONSENTS2)}

4.2.2. Events in CRSM

Events are the state transitions of the given model. In Event-B, the

event will be executed when its guards meet conditions then state variables

will be updated values.

The CRSM are partitioned into seven events:

4.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the

model. According to Listing A29, the five actions (act1 – act5) are

assigned empty sets. As for act6 and act7, they are specified varia-

 153

bles with first-order logic expressions using operation, called

choice from set (i.e., :∈). In doing so, the userRoles and pc varia-

bles are automatically generated by the Rodin Platform.

INITIALISATION ≙
STATUS
 ordinary
BEGIN
 act1 : sessions ≔ ∅
 act2 : consentRenewalState ≔ ∅
 act3 : isConsentExpired ≔ ∅
 act4 : markAsDeleted ≔ ∅
 act5 : markAsReceived ≔ ∅
 act6 : userRoles :∈ AUTHORIZED_USERS ROLES
 act7 : pc :∈ ℙ1(PATIENTS × CONSENTS)
END

Listing A29: The INITIALISATION event.

4.2.2.2. The Login Event

This event describes the behavior of login (Listing A30). The

event will be executed when the current user session does not exist,

and this user is registered, then the user successfully login to the

system.

Login ≙
STATUS
 ordinary
ANY
 s, u
WHERE
 grd1 : s ∈ SESSIONS ∧ s ∉ dom(sessions)
 grd2 : u ∈ AUTHORIZED_USERS ∧ s ∉ ran(sessions)
 grd3 : sessions ∪ {s ↦ u} ∈ SESSIONS ⤔ AUTHORIZED_USERS
THEN
 act1 : sessions ≔ sessions ∪ {s ↦ u}
END

Listing A30: The Login event.

4.2.2.3. The CreateConsentRenewRequest Event

This event describes the behavior of creating a consent re-

newal request (Listing A31). The event will be executed when the

authorized user has logged on with the legal staff role, and select a

 154

patient whose consent is expired, then the user creates the renewal

request successfully.

CreateConsentRenewRequest ≙
STATUS
 ordinary
ANY
 s, p, c, expired, isWithdraw
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : p ∈ dom(pc) ∧ c ∈ ran(pc) ∧ {p ↦ c} ∉

dom(consentRenewalState)
 grd4 : expired ∈ BOOL ∧ expired = TRUE
 grd5 : isWithdraw ∈ BOOL ∧ isWithdraw = FALSE
 grd6 : consentRenewalState {{p ↦ c} ↦ Void} ∈

(PATIENTS ↔ CONSENTS) ⤔ STATUSES
 grd7 : isConsentExpired {{p ↦ c} ↦ TRUE} ∈

(PATIENTS ↔ CONSENTS) ⤔ BOOL
THEN
 act1 : consentRenewalState({p ↦ c}) ≔ Void
 act2 : isConsentExpired({p ↦ c}) ≔ TRUE
END

Listing A31: The CreateConsentRenewRequest event.

4.2.2.4. The NotifyPatient Event

This event describes the behavior of notifying a consent re-

newal to the patient in which request for continuing the process of

personal data (Listing A32). The event will be executed when the

authorized user has logged on with the legal staff role, and the pa-

tient returns the answer to approve or reject a consent renewal re-

quest for permitting the process of his/her personal data, then the

user saves the patient’s answer into the system successfully.

NotifyPatient ≙
STATUS
 ordinary
ANY
 s, pc1, acceptStatus
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : pc1 ⊈ markAsReceived ∧ pc1 ∈

dom(consentRenewalState) ∧
consentRenewalState(pc1) = Void

 155

 grd4 : acceptStatus ∈ STATUSES ∖ {Void}
 grd5 : consentRenewalState {pc1 ↦ acceptStatus} ∈

(PATIENTS ↔ CONSENTS) ⤔ STATUSES
THEN
 act1 : consentRenewalState(pc1) ≔ acceptStatus
 act2 : markAsReceived ≔ markAsReceived ∪ pc1
END

Listing A32: The NotifyPatient event.

4.2.2.5. The ExtendConsentExpiration Event

This event describes the behavior of extending a consent’s da-

ta retention after a patient approves the consent renewal request

(Listing A33). The event will be executed when the authorized user

has logged on with the legal staff role and has received approval

from the patient, then the user extends the renewal period of con-

sent.

ExtendConsentExpiration ≙
STATUS
 ordinary
ANY
 s, pc1
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : pc1 ∈ dom(consentRenewalState) ∧

consentRenewalState(pc1) = Approved
 grd4 : pc1 ⊆ markAsReceived ∧ pc1 ∈ dom(isConsentExpired) ∧

isConsentExpired(pc1) = TRUE
 grd5 : isConsentExpired {pc1 ↦ FALSE} ∈

(PATIENTS ↔ CONSENTS) ⤔ BOOL
THEN
 act1 : isConsentExpired(pc1) ≔ FALSE
END

Listing A33: The ExtendConsentExpiration event

4.2.2.6. The DeletePatientData Event

This event describes the behavior of deleting patient data af-

ter a patient rejects the consent renewal request (Listing A34). The

event will be executed when the authorized user has logged on with

the legal staff role and has received a rejective from the patient,

then the user deletes the personal data.

 156

ExtendConsentExpiration ≙
STATUS
 ordinary
ANY
 s, pc1
WHERE
 grd1 : s ∈ dom(sessions) ∧ sessions(s) ∈ dom(userRoles)
 grd2 : ∃r·r ∈ userRoles[sessions[{s}]] ∧ r = LegalStaff
 grd3 : pc1 ∈ dom(consentRenewalState) ∧

consentRenewalState(pc1) = Rejected
 grd4 : pc1 ⊆ markAsReceived ∧ pc1 ∈ dom(isConsentExpired) ∧

isConsentExpired(pc1) = TRUE
 grd5 : markAsDeleted ∩ pc1 = ∅
THEN
 act1 : markAsDeleted ≔ markAsDeleted ∪ pc1
END

Listing A34: The DeletePatientData event.

4.2.2.7. The Logout Event

This event describes the behavior of logout (Listing A35).

The event will be executed when the current user session exists,

then the system removes the variable sessions values within the cur-

rent user.

Logout ≙
STATUS
 ordinary
ANY
 s
WHERE
 grd1 : s ∈ dom(sessions)
 grd2 : sessions ⩥ {sessions(s)} ∈

SESSIONS ⤔ AUTHORIZED_USERS
THEN
 act1 : sessions ≔ sessions ⩥ {sessions(s)}
END

Listing A35: The Logout event.

157

APPENDIX B

AN EVENT-B MODEL OF CONSENT MANAGEMENT FOR

DISTRIBUTED SYSTEMS IN DATA SHARING

An Event-B model was constructed based on DSSM. The DSSM is a state ma-

chine that explains the dynamic behavior of how to conduct data subjects’ consent and

how to manage the interaction between the requester and response services for sharing

personal data based on giving consent using blockchain technology without storing

any personal data on-chain or off-chain storage servers. The Event-B model contains

five functionalities: 1) conducting individuals’ consent, 2) limiting access to author-

ized personal data based on the individual’s consent, 3) allowing individuals to with-

draw consents, 4) allowing individuals to request portable their personal data, and 5)

enabling individuals to renew their consent for continued use of services and products

offered by service providers. Besides, the Event-B model are available for the public

at https://github.com/cucpbioinfo/BlockchainBasedDataSharing. Moreover, we devel-

oped a platform followed by the DSSM called SmartDataTrust. The source code is

available at https://github.com/cucpbioinfo/SmartDataTrust.

1. The DSSM Model

We modeled DSSM (Figure 85) to describe the dynamic behavior of how to

manage data subjects’ consent and the sharing of personal data among services on

blockchain. The DSSM model is divided into two parts, including the DSCX context

and the DSSM machine.

Figure 85: DSSM demonstrating blockchain-based consent management in data shar-

ing

https://github.com/cucpbioinfo/BlockchainBasedDataSharing
https://github.com/cucpbioinfo/SmartDataTrust

 158

1.1. The DSCX Context

The DSCX context is the static part of the DSSM model containing the

sets, constants, and axioms.

1.1.1. Sets in DSCX

Sets are a set of abstracts in the context of CM in data sharing are

comprises the following sets:

• DATA_SUBJECTS is a set of individuals.

• CONSENTS is a set of consent agreements.

• FIELDS is a set of data fields that leads to specific personal char-

acteristics.

• PARTICIPANTS is a set of requester and responder services.

• REQUESTS is a set of data requests created by requester services

for retrieving personal data.

• RESPONSES is a set of data responses created by responder ser-

vices for replying to requester services.

• ADDRESSES is a set of smart contracts’ addresses. The smart

contract’s address is a unique identifier that points to the collec-

tion of code and data on the blockchain.

1.1.2. Axioms in DSCX

Axioms are used to determine known static relations written with

predicate logic and assumed to be true. Moreover, they are also used to as-

sign constants to pre-defined sets. According to Listing B1, the nine axi-

oms (axm1 – axm9) are added to specify constants to pre-defined sets, e.g.,

PARTICIPANTS, CONSENTS, FIELDS, DATA_SUBJECTS, RE-

QUESTS, RESPONSES, this (i.e., the smart contract’s address), initial-

Balance and {this ↦ initialBalance} (i.e., defining the smart contract’s bal-

ance), respectively. As for the six axioms (axm10 – axm15), they are add-

ed to deal with empty set assignments in variables restrained by partial

functions, e.g., dataFields, dataSubjectConsents, requests, responses, en-

cryptedData and dataTransferStates, respectively.

 159

AXIOMS
 axm1 : partition(PARTICIPANTS, {ServiceA}, {ServiceB})
 axm2 : partition(CONSENTS,{ConsentB})
 axm3 : partition(FIELDS, {Name}, {BirthDate}, {BirthDefects})
 axm4 : partition(DATA_SUBJECTS, {DataSubject1})
 axm5 : partition(REQUESTS, {Request1})
 axm6 : partition(RESPONSES, {Response1})
 axm7 : this ∈ ADDRESSES
 axm8 : initialBalance ∈ ℕ
 axm9 : {this ↦ initialBalance} ∈ {this} → ℕ
 axm10 : ∅ ∈ CONSENTS ⇸ ℙ1(FIELDS)
 axm11 : ∅ ∈ PARTICIPANTS × DATA_SUBJECTS × CONSENTS ⇸ BOOL
 axm12 : ∅ ∈ REQUESTS ⇸ (PARTICIPANTS × DATA_SUBJECTS × CONSENTS)
 axm13 : ∅ ∈ RESPONSES ⤔ REQUESTS
 axm14 : ∅ ∈ RESPONSES ⇸ ℙ(DATA_SUBJECTS × FIELDS)
 axm15 : ∅ ∈ RESPONSES ⇸ BOOL

Listing B1: The list of axioms in DSCX.

1.2. The DSSM Machine

The DSSM machine is the dynamic part of the DSSM model containing

the invariants, variables, and events.

1.2.1. Invariants in DSSM

Invariants constraints of state variables described by first-order log-

ic expressions, as shown in Listing B2. In every event execution, actions

change state variables’ value, which must preserve all their invariants in

the whole model.

INVARIANTS
 inv1 : consents ∈ ℙ(CONSENTS)
 inv2 : dataFields ∈ CONSENTS ⇸ ℙ1(FIELDS)
 inv3 : dataSubjectConsents ∈ PARTICIPANTS × DATA_SUBJECTS ×

CONSENTS ⇸ BOOL
 inv4 : addresses ⊆ ADDRESSES
 inv5 : balanceOf ∈ addresses → ℕ
 inv6 : callbackRequesterStates ∈ ℙ(PARTICIPANTS ×

DATA_SUBJECTS × CONSENTS)
 inv7 : dataAccessRequests ∈ REQUESTS ⇸ PARTICIPANTS ×

DATA_SUBJECTS × CONSENTS
 inv8 : callbackResponderStates ∈ ℙ(REQUESTS)
 inv9 : dataAccessResponses ∈ RESPONSES ⤔ REQUESTS
 inv10 : callbackDataTransferStates ∈ ℙ(RESPONSES)
 inv11 : encryptedData ∈ RESPONSES ⇸ ℙ(DATA_SUBJECTS × FIELDS)
 inv12 : dataTransferStates ∈ RESPONSES ⇸ BOOL

Listing B2: The list of invariants in DSSM.

 160

The state variables are divided into seven variables:

• The variable consents obtains the CONSENTS set during the

model refinement.

The example of the consents value:

{ConsentB}

• The variable dataFields contains the relation between two given

sets, e.g., CONSENTS, and FIELDS, representing the required

data fields within each consent agreement.

The example of the dataFields value:

{(ConsentB ↦ {Name, BirthDate, BirthDefects})}

• The variable dataSubjectConsents contains the relation between

four given sets, e.g., PARTICIPANTS, DATA_SUBJECTS,

CONSENTS, and BOOL (i.e., TRUE or FALSE). This variable

represents the valid data subject’s consent within each responder

service (i.e., the service which provides personal data for other

services) for permitting the requester service to access personal

data.

The example of the dataSubjectConsents value:

{(ServiceA ↦ DataSubject1 ↦ ConsentB ↦ FALSE),
 (ServiceB ↦ DataSubject1 ↦ ConsentB ↦ FALSE)}

• The variable addresses obtains the ADDRESSES, representing

the smart contract’s address.

The example of the addresses value:

{this}

• The variable balanceOf contains the relation between two given

sets, e.g., ADDRESSES, and a natural number, representing the

smart contract’s balance.

The example of the balanceOf value:

{(this ↦ 2)}

• The variable callbackRequesterStates contains the relation be-

tween three given sets, e.g., PARTICIPANTS, DATA_

SUBJECTS, and CONSENTS, representing the blockchain in-

 161

voking the callback URL to notify the requester service for re-

questing personal data from the responder service.

The example of the callbackRequesterStates value:

{(ServiceA ↦ DataSubject1 ↦ ConsentB),
 (ServiceB ↦ DataSubject1 ↦ ConsentB)}

• The variable dataAccessRequests contains the relation between

four given sets, e.g., REQUESTS, PARTICIPANTS, DATA_

SUBJECTS, and CONSENTS, representing the record of data

request submitted by the requester service.

The example of the dataAccessRequests value:

{(Request1 ↦ (ServiceB ↦ DataSubject1 ↦ ConsentB))}

• The variable callbackResponderStates obtains the REQUESTS

set, representing the blockchain invoking the callback URL to no-

tify the responder service for replying to the requester service.

The example of the callbackResponderStates value:

{Request1}

• The variable dataAccessResponses contains the relation between

two given sets, e.g., RESPONSES, and REQUESTS, represent-

ing the record of data response submitted by the responder ser-

vice.

The example of the dataAccessResponses value:

{(Response ↦ Request)}

• The variable callbackDataTransferStates obtains the RESPONS-

ES set, representing the blockchain invoking the callback URL to

notify the responder service for transferring personal data be-

tween requester service.

The example of the callbackDataTransferStates value:

{Response1}

• The variable encryptedData contains the relation between three

given sets, e.g., RESPONSES, DATA_SUBJECTS, and FIELDS,

representing the personal data encryption in which data has been

selected from the consent’s data fields mapping.

The example of the encryptedData value:

 162

{(Response1 ↦ {(DataSubject1 ↦ Name),
(DataSubject1 ↦ BirthDate)}})

• The variable dataTransferStates contains the relation between

three given sets, e.g., RESPONSES, and BOOL, representing da-

ta transfer between the responder and requester services success-

ful.

The example of the dataTransferStates value:

{(Response1 ↦ TRUE)}

1.2.2. Events in DSSM

Events are the state transitions of the given model. In Event-B, the

event will be executed when its guards meet conditions then state varia-

bles will be updated values.

The DSSM are partitioned into thirteen events:

1.2.2.1. The INITIALISATION Event

This event is used to initiate all state variable values of the

model. According to Listing B3: The INITIALISATION event., the

ten actions (act1 – act10) are assigned empty sets. As for act11 and

act12, they are specified variables with first-order logic expressions

using operation, called choice from set (i.e., :∈). In doing so, the

addresses and balanceOf variables are automatically generated by

the Rodin Platform.

INITIALISATION ≙
STATUS
 ordinary
BEGIN
 act1 : consents ≔ ∅
 act2 : dataFields ≔ ∅
 act3 : dataSubjectConsents ≔ ∅
 act4 : callbackRequesterStates ≔ ∅
 act5 : dataAccessRequests ≔ ∅
 act6 : callbackResponderStates ≔ ∅
 act7 : dataAccessResponses ≔ ∅
 act8 : callbackDataTransferStates ≔ ∅
 act9 : encryptedData ≔ ∅
 act10 : dataTransferStates ≔ ∅
 act11 : addresses ≔ {this}

 163

 act12 : balanceOf ≔ {this ↦ initialBalance}
END

Listing B3: The INITIALISATION event.

1.2.2.2. The AddConsent Event

This event describes the behavior of adding consent

(Listing B4). The event will be executed when the consent does not

exist, then the requester service adds a new consent into block-

chain.

AddConsent ≙
STATUS
 ordinary
ANY
 consent, dataField
WHERE
 grd1 : consent ∈ CONSENTS ∧ consent ∉ consents
 grd2 : dataField ∈ ℙ1(FIELDS)
 grd3 : dataFields {consent ↦ dataField} ∈

CONSENTS ⇸ ℙ1(FIELDS)
THEN
 act1 : consents ≔ consents ∪ {consent}
 act2 : dataFields(consent) ≔ dataField
END

Listing B4: The AddConsent event.

1.2.2.3. The AddDataSubjectConsent Event

This event describes the behavior of adding a data subject’s

consent (Listing B5). The event will be executed when the data

subject’s consent within the responder service does not exist in the

blockchain (i.e., the data subject gives his/her consent under the re-

sponder service for the first time), then the blockchain saves the da-

ta subject’s consent successfully.

AddDataSubjectConsent ≙
STATUS
 ordinary
ANY
 responder, consent, dataField
WHERE
 grd1 : responder ∈ PARTICIPANTS
 grd2 : dataSubject ∈ DATA_SUBJECTS
 grd3 : consent ∈ consents ∧ consent ∈ dom(dataFields)
 grd4 : responder ↦ dataSubject ↦ consent ∉

 164

dom(dataSubjectConsents)
 grd5 : dataSubjectConsents {responder ↦ dataSubject ↦

consent ↦ TRUE} ∈ (PARTICIPANTS × DATA_SUBJECTS ×
CONSENTS) ⇸ BOOL

THEN
 act1 : dataSubjectConsents(responder ↦ dataSubject ↦

consent) ≔ TRUE
END

Listing B5: The AddDataSubjectConsent event.

1.2.2.4. The CallbackRequester Event

This event describes the behavior of making an API call to

requester service by blockchain (Listing B6). The event will be ex-

ecuted when the smart contract’s balance is enough to pay the ora-

clize’s fee for the callback URL, the data subject’s consent is valid,

then the blockchain makes an API call to the requester service suc-

cessfully.

CallbackRequester ≙
STATUS
 ordinary
ANY
 oraclizeFee, dataSubjectConsent
WHERE
 grd1 : this ∈ dom(balanceOf) ∧ oraclizeFee ∈ ℕ ∧

oraclizeFee ≤ balanceOf(this)
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsent ∉ callbackRequesterStates ∧
dataSubjectConsents(dataSubjectConsent) = TRUE

 grd3 : balanceOf {this ↦ balanceOf(this) − oraclizeFee} ∈
addresses → ℕ

THEN
 act1 : callbackRequesterStates ≔ callbackRequesterStates ∪

{dataSubjectConsent}
 act2 : balanceOf ≔ balanceOf {this ↦ balanceOf(this) –

oraclizeFee}
END

Listing B6: The CallbackRequester event.

1.2.2.5. The SubmitRequest Event

This event describes the behavior of submitting the data re-

quest to the blockchain by the requester service (Listing B7). The

event will be executed when the data subject’s consent is valid, and

 165

the data request does not exist in the blockchain, then the block-

chain saves the data request successfully.

SubmitRequest ≙
STATUS
 ordinary
ANY
 consentExpired, dataSubjectConsent, request
WHERE
 grd1 : consentExpired ∈ BOOL ∧ consentExpired = FALSE
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd3 : dataSubjectConsent ∈ callbackRequesterStates
 grd4 : request ∈ REQUESTS ∧ request ∉ dom(dataAccessRequests)
 grd5 : dataAccessRequests {request ↦ dataSubjectConsent} ∈

REQUESTS ⇸ PARTICIPANTS × DATA_SUBJECTS × CONSENTS
THEN
 act1 : dataAccessRequests(request) ≔ dataSubjectConsent
END

Listing B7: The SubmitRequest event.

1.2.2.6. The CallbackResponder Event

This event describes the behavior of making an API call to

responder service by blockchain (Listing B8). The event will be

executed when the smart contract’s balance is enough to pay the

oraclize’s fee for the callback URL, the data subject’s consent is

valid, then the blockchain makes an API call to the responder ser-

vice successfully.

CallbackResponder ≙
STATUS
 ordinary
ANY
 oraclizeFee, request
WHERE
 grd1 : this ∈ dom(balanceOf) ∧ oraclizeFee ∈ ℕ ∧

oraclizeFee ≤ balanceOf(this)
 grd2 : request ∈ dom(dataAccessRequests) ∧

request ∉ callbackResponderStates ∧
dataAccessRequests(request) ∈
dom(dataSubjectConsents) ∧
dataSubjectConsents(dataAccessRequests(request)) =
TRUE

 grd3 : balanceOf {this ↦ balanceOf(this) − oraclizeFee} ∈
addresses → ℕ

THEN

 166

 act1 : callbackResponderStates ≔ callbackResponderStates ∪
{request}

 act2 : balanceOf ≔ balanceOf {this ↦ balanceOf(this) –
oraclizeFee}

END

Listing B8: The CallbackResponder event.

1.2.2.7. The SubmitResponse Event

This event describes the behavior of submitting the data re-

sponse to the blockchain by the responder service (Listing B9). The

event will be executed when the data subject’s consent is valid, and

the data response does not exist in the blockchain, then the block-

chain saves the data response successfully.

SubmitResponse ≙
STATUS
 ordinary
ANY
 consentExpired, dataSubjectConsent, request, response
WHERE
 grd1 : consentExpired ∈ BOOL ∧ consentExpired = FALSE
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd3 : request ∈ callbackResponderStates
 grd4 : response ∈ RESPONSES ∧ response ∉

dom(dataAccessResponses)
 grd5 : dataAccessResponses {response ↦ request} ∈

RESPONSES ⤔ REQUESTS
THEN
 act1 : dataAccessResponses {response ↦ request} ∈

RESPONSES ⤔ REQUESTS
END

Listing B9: The SubmitResponse event.

1.2.2.8. The CallbackDataTransfer Event

This event describes the behavior of making an API call to

responder service by blockchain (Listing B10). The event will be

executed when the smart contract’s balance is enough to pay the

oraclize’s fee for the callback URL, the data subject’s consent is

valid, then the blockchain makes an API call to the responder ser-

vice successfully.

 167

CallbackDataTransfer ≙
STATUS
 ordinary
ANY
 oraclizeFee, response
WHERE
 grd1 : this ∈ dom(balanceOf) ∧ oraclizeFee ∈ ℕ ∧

oraclizeFee ≤ balanceOf(this)
 grd2 : response ∈ dom(dataAccessResponses) ∧

response ∉ callbackDataTransferStates
 grd3 : dataAccessResponses(response) ∈

dom(dataAccessRequests) ∧
dataAccessRequests(dataAccessResponses(response)) ∈
dom(dataSubjectConsents) ∧ dataSubjectConsents(
dataAccessRequests(dataAccessResponses(response))) =
TRUE

 grd4 : balanceOf {this ↦ balanceOf(this) − oraclizeFee} ∈
addresses → ℕ

THEN
 act1 : callbackDataTransferStates ≔ callbackResponderStates ∪

{response}
 act2 : balanceOf ≔ balanceOf {this ↦ balanceOf(this) –

oraclizeFee}
END

Listing B10: The CallbackDataTransfer event.

1.2.2.9. The TransferData Event

This event describes the behavior of transferring data be-

tween the responder and requester services (Listing B11). The

event will be executed when the data subject’s consent, data re-

quest, and data response are valid, then the responder service en-

crypts and transfers personal data to the requester service success-

fully.

TransferData ≙
STATUS
 ordinary
ANY
 responder, dataSubject, consent, response
WHERE
 grd1 : response ∈ callbackDataTransferStates ∧

response ∈ dom(dataAccessResponses) ∧
response ∉ dom(dataTransferStates)

 grd2 : consent ∈ dom(dataFields)
 grd3 : ∃x·x ∈

dataAccessRequests[{dataAccessResponses(response)}] ∧

 168

x = responder ↦ dataSubject ↦ consent ∧
responder ↦ dataSubject ↦ consent ∈
dom(dataSubjectConsents)∧ dataSubjectConsents(x) =
TRUE

 grd4 : encryptedData {response ↦ {dataSubject} ×
dataFields(consent)} ∈ RESPONSES ⇸ ℙ(DATA_SUBJECTS ×
FIELDS)

 grd5 : dataTransferStates {response ↦ TRUE} ∈ RESPONSES ⇸
BOOL

THEN
 act1 : encryptedData(response) ≔ {dataSubject} ×

dataFields(consent)
 act2 : dataTransferStates(response) ≔ TRUE
END

Listing B11: The TransferData event.

1.2.2.10. The InsufficientBalance Event

This event describes the behavior of the smart contract hav-

ing a balance insufficient to cover the oraclize’s fee for making an

API call outside the blockchain (Listing B12).

The event will be executed when the oraclize’s fee is great-

er than the smart contract’s balance which occurs in the callback

URL events, then the blockchain handles the insufficient balance

exception.

InsufficientBalance ≙
STATUS
 ordinary
ANY
 oraclizeFee, dataSubjectConsent, request, response
WHERE
 grd1 : this ∈ dom(balanceOf) ∧ oraclizeFee ∈ ℕ ∧

oraclizeFee > balanceOf(this)
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd3 : (dataSubjectConsent ∉ callbackRequesterStates) ∨

(request ↦ dataSubjectConsent ∈ dataAccessRequests ∧
request ∉ callbackResponderStates) ∨
(response ↦ request ∈ dataAccessResponses ∧
Response ∉ callbackDataTransferStates)

THEN
..skip
END

Listing B12: The InsufficientBalance event.

 169

1.2.2.11. The CheckConsentExpiration Event

This event describes the behavior of checking consent expi-

ration (Listing B13). The event will be executed when the data sub-

ject’s consent is expired, then the blockchain handles the expired

exception.

CheckConsentExpiration ≙
STATUS
 ordinary
ANY
 consentExpired, dataSubjectConsent
WHERE
 grd1 : consentExpired ∈ BOOL ∧ consentExpired = TRUE
 grd2 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd3 : dataSubjectConsents {dataSubjectConsent ↦ FALSE} ∈

PARTICIPANTS × DATA_SUBJECTS × CONSENTS ⇸ BOOL
THEN
 act1 : dataSubjectConsents(dataSubjectConsent) ≔ FALSE
END

Listing B13: The CheckConsentExpiration event.

1.2.2.12. The UnauthorizedAccess Event

This event describes the behavior of handling invalid data

subject’s consent during the interaction between the requester and

responder services (Listing B14). The event will be executed when

the data subject’s consent is invalid, then the blockchain handles

the invalid exception.

UnauthorizedAccess ≙
STATUS
 ordinary
ANY
 dataSubjectConsent
WHERE
 grd1 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = FALSE
THEN
..skip
END

Listing B14: The UnauthorizedAccess event.

 170

1.2.2.13. The RevokeConsent Event

This event describes the behavior of withdrawing the data

subject’s consent via the responder service (Listing B15). The

event will be executed when the data subject’s consent is valid,

then the blockchain updates the data subject's consent to invalid.

RevokeConsent ≙
STATUS
 ordinary
ANY
 dataSubjectConsent
WHERE
 grd1 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧

dataSubjectConsents(dataSubjectConsent) = TRUE
 grd2 : dataSubjectConsents {dataSubjectConsent ↦ FALSE} ∈

(PARTICIPANTS × DATA_SUBJECTS × CONSENTS) ⇸ BOOL
THEN
 act1 : dataSubjectConsents(dataSubjectConsent) ≔ FALSE
END

Listing B15: The RevokeConsent event.

1.2.2.14. The RenewConsent Event

This event describes the behavior of renewing the data sub-

ject’s consent via the responder service (Listing B16). The event

will be executed when the data subject’s consent is invalid, then the

blockchain updates the data subject's consent to valid.

RenewConsent ≙
STATUS
 ordinary
ANY
 dataSubjectConsent
WHERE
 grd1 : dataSubjectConsent ∈ dom(dataSubjectConsents) ∧
 grd2 : dataSubjectConsents(dataSubjectConsent) = FALSE
 grd3 : dataSubjectConsents {dataSubjectConsent ↦ TRUE} ∈

(PARTICIPANTS × DATA_SUBJECTS × CONSENTS) ⇸ BOOL
THEN
 act1 : dataSubjectConsents(dataSubjectConsent) ≔ TRUE
END

Listing B16: The RenewConsent event.

171

REFE REN CES

REFERENCES

1. Commission, E., Regulation (EU) 2016/679 of the European Parliament and of

the Council of 27 April 2016 on the protection of natural persons with regard to

the processing of personal data and on the free movement of such data, and

repealing Directive 95/46/EC (General Data Protection Regulation) (Text with

EEA relevance). 2016, European Commission.

2. Daoudagh, S., et al. How to Improve the GDPR Compliance through Consent

Management and Access Control. in Proceedings of the 7th International

Conference on Information Systems Security and Privacy - ICISSP. 2021.

3. Agrafiotis, I., et al. Applying Formal Methods to Detect and Resolve Ambiguities

in Privacy Requirements. 2011. Berlin, Heidelberg: Springer Berlin Heidelberg.

4. de Carvalho, R.M., et al., Protecting Citizens’ Personal Data and Privacy: Joint

Effort from GDPR EU Cluster Research Projects. SN Computer Science, 2020.

1(4): p. 217.

5. Alhazmi, A. and N.A.G. Arachchilage, I’m all ears! Listening to software

developers on putting GDPR principles into software development practice.

Personal and Ubiquitous Computing, 2021. 25(5): p. 879-892.

6. Awanthika, S. and A. Nalin A. G., Why developers cannot embed privacy into

software systems? An empirical investigation, in Proceedings of the 22nd

International Conference on Evaluation and Assessment in Software

Engineering 2018. 2018: Christchurch, New Zealand. p. 211–216.

7. Bu, F., et al., “Privacy by Design” implementation: Information system

engineers’ perspective. International Journal of Information Management, 2020.

53: p. 102124.

8. Hadar, I., et al., Privacy by designers: software developers’ privacy mindset.

Empirical Software Engineering, 2018. 23(1): p. 259-289.

9. Spalevic, Z. and K. Vićentijević, GDPR and challenges of personal data

protection. The European Journal of Applied Economics, 2022. 19(1): p. 55-65.

10. Cavoukian, A., Privacy by Design: The 7 Foundational Principles. 2011.

11. Cavoukian, A., Understanding How to Implement Privacy by Design, One Step

at a Time. IEEE Consumer Electronics Magazine, 2020. 9(2): p. 78-82.

12. Alkhariji, L., et al., Synthesising Privacy by Design Knowledge Toward

Explainable Internet of Things Application Designing in Healthcare. ACM

Transactions on Multimedia Computing, Communications, and Applications,

2021. 17: p. 1-29.

13. Levin, A., The Case Study of Ontario (January 1, 2018). Canadian Journal of

Comparative and Contemporary Law, 2018. 4 (1): p. 115-160.

14. al, K.S.e., Deliverable D3.2: Cross Sectoral Cybersecurity Building Blocks.

2020.

15. al, S.A.e., Deliverable D3.11: Definition of Privacy by Design and Privacy

Preserving Enablers. 2020.

16. Gruschka, N. and M. Jensen, Aligning user consent management and service

process modeling. Lecture Notes in Informatics (LNI), Proceedings - Series of

the Gesellschaft fur Informatik (GI), 2014: p. 527-538.

17. Fatema, K., et al., Compliance through Informed Consent: Semantic Based

Consent Permission and Data Management Model, in Proceedings of the 5th

 172

Workshop on Society, Privacy and the Semantic Web - Policy and Technology

(PrivOn2017) (PrivOn). 2017.

18. Bincoletto, G., Data protection issues in cross-border interoperability of

Electronic Health Record systems within the European Union. Data & Policy,

2020. 2: p. e3.

19. Koops, B.-J. and R.E. Leenes, Privacy Regulation Cannot Be Hardcoded. A

Critical Comment on the 'Privacy by Design' Provision in Data-Protection Law.

International Review of Law, Computers & Technology, 2014. 28(2): p. 159-

171.

20. Kakarlapudi, P. and Q. Mahmoud, A Systematic Review of Blockchain for

Consent Management. Healthcare, 2021. 9: p. 137.

21. Stephen, C., et al., Report on the NSF Workshop on Formal Methods for

Security. 2016, National Science Foundation, USA.

22. Tschantz, M.C. and J.M. Wing. Formal Methods for Privacy. 2009. Berlin,

Heidelberg: Springer Berlin Heidelberg.

23. Abrial, J.-R., Modeling in Event-B: system and software engineering. 2010:

Cambridge University Press.

24. Abrial, J.-R. A System Development Process with Event-B and the Rodin

Platform. 2007. Berlin, Heidelberg: Springer Berlin Heidelberg.

25. Abrial, J.-R., et al., Rodin: an open toolset for modelling and reasoning in

Event-B. International Journal on Software Tools for Technology Transfer, 2010.

12(6): p. 447-466.

26. Michael, J.P.M., Butler, Rodin User's Handbook: Covers Rodin v.2.8. 2014:

Publishing Platform, North Charleston, SC, USA.

27. Albanese, G., et al., Dynamic consent management for clinical trials via private

blockchain technology. Journal of Ambient Intelligence and Humanized

Computing, 2020. 11(11): p. 4909-4926.

28. Dijana, P. Guidelines for GDPR compliant consent and data management model

in ICT businesses. in 29th international conference of central European

conference on information and intelligent systems. 2018.

29. Steinbrook, R., Personally Controlled Online Health Data — The Next Big

Thing in Medical Care? The New England journal of medicine, 2008. 358: p.

1653-6.

30. Fatehi, F., et al., General Data Protection Regulation (GDPR) in Healthcare:

Hot Topics and Research Fronts. Studies in health technology and informatics,

2020. 270: p. 1118-1122.

31. Asghar, M.R., et al. A Review of Privacy and Consent Management in

Healthcare: A Focus on Emerging Data Sources. in 2017 IEEE 13th

International Conference on e-Science (e-Science). 2017.

32. Simone, F.-H., IT-Security and Privacy: Design and Use of Privacy-Enhancing

Security Mechanisms. 2001: Springer-Verlag, Berlin.

33. Hert, P. and V. Papakonstantinou, The proposed data protection Regulation

replacing Directive 95/46/EC: A sound system for the protection of individuals.

The Computer Law & Security Review, 2012. 28: p. 130–142.

34. Blume, P., The myths pertaining to the proposed General Data Protection

Regulation. International Data Privacy Law, 2014. 4: p. 269-273.

35. Gürses, S.F., C. Troncoso, and C. Díaz. Engineering Privacy by Design. in

 173

Computers, Privacy & Data Protection 2011.

36. Blake, M.B. and S. Iman, Formal Methods for Preserving Privacy for Big Data

Extraction Software, in NSF Workshop on Big Data Security and Privacy. 2014.

37. Kitchin, R., Big data and human geography:Opportunities, challenges and risks.

Dialogues in Human Geography, 2013. 3(3): p. 262-267.

38. Besik, S. and J.-C. Freytag, Managing Consent in Workflows under GDPR, in

ZEUS. 2020.

39. Politou, E., E. Alepis, and C. Patsakis, Forgetting personal data and revoking

consent under the GDPR: Challenges and proposed solutions. Journal of

Cybersecurity, 2018. 4(1).

40. Voss, W.G., Looking at European Union Data Protection Law Reform Through

a Different Prism: The Proposed EU General Data Protection Regulation Two

Years Later. Journal of Internet Law, 2014. 17(9).

41. Wolters, P.T.J., The Control by and Rights of the Data Subject Under the GDPR.

Journal of Internet Law, 2018. 22(1): p. 7-18.

42. Resnik, D., Re-consenting human subjects: Ethical, legal and practical issues.

Journal of medical ethics, 2009. 35: p. 656-7.

43. Jaiman, V. and V. Urovi, A Consent Model for Blockchain-Based Health Data

Sharing Platforms. IEEE Access, 2020. 8: p. 143734-143745.

44. Vargas, J.C. Blockchain-based consent manager for GDPR compliance. in Open

Identity Summit. 2019.

45. Jung, H.-H. and F.J. Pfister, Blockchain-enabled Clinical Study Consent

Management. Technology Innovation Management Review, 2020. 10: p. 14-24.

46. Ameyed, D., et al. Blockchain Based Model for Consent Management and Data

Transparency Assurance. in 2021 IEEE 21st International Conference on

Software Quality, Reliability and Security Companion (QRS-C). 2021.

47. Jung, S.-S., S.-J. Lee, and I.-C. Euom, Delegation-Based Personal Data

Processing Request Notarization Framework for GDPR Based on Private

Blockchain. Applied Sciences, 2021. 11(22): p. 10574.

48. Finck, M., Blockchains and Data Protection in the European Union,

M.P.I.f.I.a.C.U.o. Oxford, Editor. 2017.

49. Miltiadou, D., et al., Leveraging Management of Customers’ Consent Exploiting

the Benefits of Blockchain Technology Towards Secure Data Sharing, in Big

Data and Artificial Intelligence in Digital Finance: Increasing Personalization

and Trust in Digital Finance using Big Data and AI, J. Soldatos and D. Kyriazis,

Editors. 2022, Springer International Publishing: Cham. p. 127-155.

50. Abedjan, Z., et al., Data Science in Healthcare: Benefits, Challenges and

Opportunities, in Data Science for Healthcare: Methodologies and Applications,

S. Consoli, D. Reforgiato Recupero, and M. Petković, Editors. 2019, Springer

International Publishing: Cham. p. 3-38.

51. Stalla-Bourdillon, S., et al., Data protection by design: Building the foundations

of trustworthy data sharing. Data & Policy, 2020. 2: p. e4.

52. Schupp, S., Tool Support of Formal Methods for Privacy by Design. 2019.

53. Matwin, S., et al. Privacy in Data Mining Using Formal Methods. 2005. Berlin,

Heidelberg: Springer Berlin Heidelberg.

54. Team, C.D. The Coq Proof Assistant reference manual: Version 8.13.1. 2021 26

September 2022]; Available from:

 174

https://github.com/coq/coq/releases/download/V8.13.1/coq-8.13.1-reference-

manual.pdf.

55. Zdravko, M. and R. Ingrid, An introduction to the WEKA data mining system, in

Proceedings of the 11th annual SIGCSE conference on Innovation and

technology in computer science education. 2006, Association for Computing

Machinery: Bologna, Italy. p. 367–368.

56. Stouppa, P. and T. Studer. A Formal Model of Data Privacy. 2007. Berlin,

Heidelberg: Springer Berlin Heidelberg.

57. Ni, Q., et al., Privacy-aware role-based access control. ACM Trans. Inf. Syst.

Secur., 2010. 13(3): p. Article 24.

58. Ashley, P., et al., Enterprise privacy authorization language (EPAL). IBM

Research, 2003. 30: p. 31.

59. Abe, A. and A. Simpson. Formal Models for Privacy. in EDBT/ICDT

Workshops. 2016.

60. Data Protection Act 2018 Explanatory Notes. 2018 26 September 2022];

Available from: http://www.legislation.gov.uk/ukpga/2018/12/notes

61. Alagar, V.S. and K. Periyasamy, The Z Notation, in Specification of Software

Systems. 1998, Springer New York: New York, NY. p. 281-360.

62. Plagge, D. and M. Leuschel. Validating Z Specifications Using the ProB

Animator and Model Checker. 2007. Berlin, Heidelberg: Springer Berlin

Heidelberg.

63. Besik, S.I. and J.-C. Freytag, A formal approach to build privacy-awareness into

clinical workflows. SICS Software-Intensive Cyber-Physical Systems, 2020.

35(1): p. 141-152.

64. Tokas, S. and O. Owe. A Formal Framework for Consent Management. 2020.

Cham: Springer International Publishing.

65. McCracken, D. and E. Reilly, Backus-Naur form (BNF). Encyclopedia of

Computer Science, 2003: p. 129-131.

66. Hyysalo, J., et al., Consent Management Architecture for Secure Data

Transactions. 2016.

67. Kuikkaniemi, K., A. Poikola, and H. Honko. MyData A Nordic Model for

human-centered personal data management and processing. in Ministry of

Transport and Communications. 2015.

68. Byström, N., et al. MyData Architecture—The Stack, version 1.0.0. 2015 26

September 2022]; Available from: https://hiit.github.io/mydata-stack/.

69. Atomic Commit In SQLite. 2017 26 September 2022]; Available from:

http://www.sqlite.org/atomiccommit.html.

70. Marillonnet, P., et al., An Efficient User-Centric Consent Management Design

for Multiservices Platforms. Security and Communication Networks, 2021.

2021: p. 1-19.

71. IBM Security Cost of a Data Breach Report. 2022 26 September 2022];

Available from: https://www.ibm.com/security/data-breach.

72. Daudén-Esmel, C., et al. Lightweight Blockchain-based Platform for GDPR-

Compliant Personal Data Management. in 2021 IEEE 5th International

Conference on Cryptography, Security and Privacy (CSP). 2021.

73. Khan, S.N., et al., Blockchain smart contracts: Applications, challenges, and

future trends. Peer-to-Peer Networking and Applications, 2021. 14(5): p. 2901-

https://github.com/coq/coq/releases/download/V8.13.1/coq-8.13.1-reference-manual.pdf
https://github.com/coq/coq/releases/download/V8.13.1/coq-8.13.1-reference-manual.pdf
http://www.legislation.gov.uk/ukpga/2018/12/notes
https://hiit.github.io/mydata-stack/
http://www.sqlite.org/atomiccommit.html
https://www.ibm.com/security/data-breach

 175

2925.

74. Merlec, M.M., et al., A Smart Contract-Based Dynamic Consent Management

System for Personal Data Usage under GDPR. Sensors, 2021. 21(23): p. 7994.

75. Zheng, G., et al., Decentralized Application (DApp), in Ethereum Smart

Contract Development in Solidity. 2021, Springer Singapore: Singapore. p. 253-

280.

76. Chase, J.P.M. A Permissioned Implementation of Ethereum. 2018 26 September

2022]; Available from: https://github.com/jpmorganchase/quorum.

77. Vitalik, B. Ethereum: A next-generation smart contract and decentralized

application platform. 2014 26 September 2022]; Available from:

https://github.com/ethereum/wiki/ wiki/White-Paper.

78. Benet, J., IPFS - Content Addressed, Versioned, P2P File System. 2014.

79. Ezzat, S.K., Y.N.M. Saleh, and A.A. Abdel-Hamid, Blockchain Oracles: State-

of-the-Art and Research Directions. IEEE Access, 2022. 10: p. 67551-67572.

80. Chris, D., Introducing Ethereum and Solidity: Foundations of Cryptocurrency

and Blockchain Programming for Beginners. 1st. ed. ed. 2017: Apress, USA.

81. Istanbul BFT. 26 September 2022]; Available from:

https://github.com/ethereum/EIPs/issues/650.

82. Raft-based consensus for Ethereum/Quorum. 26 September 2022]; Available

from: https://github.com/ jpmorganchase/quorum/blob/master/raft/doc.md.

83. Rantos, K., et al. ADvoCATE: A Consent Management Platform for Personal

Data Processing in the IoT Using Blockchain Technology. 2019. Cham: Springer

International Publishing.

84. Kosko, B., Fuzzy cognitive maps. International Journal of Man-Machine Studies,

1986. 24(1): p. 65-75.

85. Nguyen, L.V., et al., Cognitive Similarity-Based Collaborative Filtering

Recommendation System. Applied Sciences, 2020. 10(12): p. 4183.

86. Azaria, A., et al. MedRec: Using Blockchain for Medical Data Access and

Permission Management. in 2016 2nd International Conference on Open and

Big Data (OBD). 2016.

87. Hu, C., et al., CrowdMed-II: a blockchain-based framework for efficient consent

management in health data sharing. World Wide Web, 2022. 25(3): p. 1489-

1515.

88. Shah, M., et al. CrowdMed: A Blockchain-Based Approach to Consent

Management for Health Data Sharing. 2019. Cham: Springer International

Publishing.

89. Harbitter, A., A critical look at centralized and distributed strategies for large

scale justice sharing applications. 2004, Washington, D.C: Integrated Justice

Information Systems Institute.

90. van Steen, M. and A.S. Tanenbaum, A brief introduction to distributed systems.

Computing, 2016. 98(10): p. 967-1009.

91. The proposed EU General Data Protection Regulation. 2015, Hunton &

Williams.

92. Kurteva, A., et al., Consent Through the Lens of Semantics: State of the Art

Survey and Best Practices. Semantic Web, 2021: p. 1-27.

93. Pandit, H.J., et al. GConsent - A Consent Ontology Based on the GDPR. 2019.

Cham: Springer International Publishing.

https://github.com/jpmorganchase/quorum
https://github.com/ethereum/wiki/
https://github.com/ethereum/EIPs/issues/650
https://github.com/

 176

94. Kirrane, S., et al., The SPECIAL-K Personal Data Processing Transparency and

Compliance Platform. ArXiv, 2020. abs/2001.09461.

95. Pandit, H.J., et al. Creating a Vocabulary for Data Privacy. 2019. Cham:

Springer International Publishing.

96. Lioudakis, G.V., et al. Facilitating GDPR Compliance: The H2020 BPR4GDPR

Approach. 2020. Cham: Springer International Publishing.

97. Palmirani, M., et al. PrOnto: Privacy Ontology for Legal Reasoning. 2018.

Cham: Springer International Publishing.

98. Loukil, F., et al. LIoPY: A Legal Compliant Ontology to Preserve Privacy for the

Internet of Things. in 2018 IEEE 42nd Annual Computer Software and

Applications Conference (COMPSAC). 2018.

99. Toumia, A., S. Szoniecky, and I. Saleh. ColPri: Towards a Collaborative

Privacy Knowledge Management Ontology for the Internet of Things. in 2020

Fifth International Conference on Fog and Mobile Edge Computing (FMEC).

2020.

100. Abrial, J.-R. and H. Stefan, Refinement, Decomposition, and Instantiation of

Discrete Models: Application to Event-B. Fundam. Inf., 2007. 77(1–2): p. 1–28.

101. Jarrar, A. and Y. Balouki, Formal modeling of a complex adaptive air traffic

control system. Complex Adaptive Systems Modeling, 2018. 6(1): p. 6.

102. Hallerstede, S., On the purpose of Event-B proof obligations. Formal Aspects of

Computing, 2011. 23(1): p. 133-150.

103. Ruíz Barradas, H., L. Burdy, and D. Déharbe. Existence Proof Obligations for

Constraints, Properties and Invariants in Atelier B. 2020. Cham: Springer

International Publishing.

104. Hoang, T.S., An Introduction to the Event-B Modelling Method, in Industrial

Deployment of System Engineering Methods. 2013, Springer-Verlag. p. 211-236.

105. Dobrikov, I. and M. Leuschel. Enabling Analysis for Event-B. 2016. Cham:

Springer International Publishing.

106. Sato, N. and F. Ishikawa, Separation of considerations in event-B refinement

toward industrial use. CEUR Workshop Proceedings, 2015. 1385: p. 43-50.

107. Méry, D. Teaching programming methodology using Event B. in The B Method:

from Research to Teaching. 2008. Nantes, France: APCB.

108. Cansell, D. and D. Méry, Tutorial on the event-based B method. 2006, IFIP

FORTE 2006 Paris.

109. Hoang, T.S. and J.-R. Abrial. Reasoning about Liveness Properties in Event-B.

2011. Berlin, Heidelberg: Springer Berlin Heidelberg.

110. Yang, F. and J.-P. Jacquot. An Event-B Plug-in for Creating Deadlock-Freeness

Theorems. in 14th Brazilian Symposium on Formal Methods. 2011. São Paulo,

Brazil.

111. Ligot, O., J. Bendisposto, and M. Leuschel. Debugging Event-B Models using

the ProB Disprover Plug-in ! in AFADL’07. 2007.

112. Leuschel, M. and M. Butler. ProB: A Model Checker for B. 2003. Berlin,

Heidelberg: Springer Berlin Heidelberg.

113. Robinson, K. A Concise Summary of the Event-B mathematical toolkit. 2014

11.06.2022; Available from: https://wiki.event-b.org/images/EventB-Summary-

refcard.pdf.

114. Suripeddi, M.K.S. and P. Purandare, Blockchain and GDPR – A Study on

https://wiki.event-b.org/images/EventB-Summary-refcard.pdf
https://wiki.event-b.org/images/EventB-Summary-refcard.pdf

 177

Compatibility Issues of the Distributed Ledger Technology with GDPR Data

Processing. Journal of Physics: Conference Series, 2021. 1964(4): p. 042005.

115. Chinnasamy, P., et al., Blockchain based Access Control and Data Sharing

Systems for Smart Devices. Journal of Physics: Conference Series, 2021.

1767(1): p. 012056.

116. Sutton, A. and R. Samavi. Blockchain Enabled Privacy Audit Logs. 2017. Cham:

Springer International Publishing.

117. Wang, X., Design and Implementation of a Data Sharing Model for Improving

Blockchain Technology. Advances in Multimedia, 2022. 2022: p. 4578525.

118. Agrawal, T.K., et al., Demonstration of a blockchain-based framework using

smart contracts for supply chain collaboration. International Journal of

Production Research, 2022: p. 1-20.

119. Monrat, A.A., O. Schelén, and K. Andersson, A Survey of Blockchain From the

Perspectives of Applications, Challenges, and Opportunities. IEEE Access,

2019. 7: p. 117134-117151.

120. Ramkumar, N., G. Sudhasadasivam, and K.G. Saranya. A Survey on Different

Consensus Mechanisms for the Blockchain Technology. in 2020 International

Conference on Communication and Signal Processing (ICCSP). 2020.

121. Sharma, D.K., et al., Chapter 13 - Cryptocurrency Mechanisms for Blockchains:

Models, Characteristics, Challenges, and Applications, in Handbook of

Research on Blockchain Technology, S. Krishnan, et al., Editors. 2020,

Academic Press. p. 323-348.

122. Sharma, G., A. Kumar, and S.S. Gill, Chapter 4 - Applications of blockchain in

automated heavy vehicles: Yesterday, today, and tomorrow, in Autonomous and

Connected Heavy Vehicle Technology, R. Krishnamurthi, A. Kumar, and S.S.

Gill, Editors. 2022, Academic Press. p. 81-93.

123. Aggarwal, S. and N. Kumar, Chapter Ten - Core components of

blockchain☆☆Introduction to blockchain, in Advances in Computers, S.

Aggarwal, N. Kumar, and P. Raj, Editors. 2021, Elsevier. p. 193-209.

124. Elli, A., et al. Hyperledger fabric: a distributed operating system for

permissioned blockchains. in Proceedings of the Thirteenth EuroSys Conference.

2018. Porto, Portugal: Association for Computing Machinery.

125. Akcora, C.G., Y.R. Gel, and M. Kantarcioglu, Blockchain networks: Data

structures of Bitcoin, Monero, Zcash, Ethereum, Ripple, and Iota. WIREs Data

Mining and Knowledge Discovery, 2022. 12(1): p. e1436.

126. Wang, S., et al. An Overview of Smart Contract: Architecture, Applications, and

Future Trends. in 2018 IEEE Intelligent Vehicles Symposium (IV). 2018.

127. Bakri, A., S. Ellis, and A. Adel. Blockchain-Based Applications in Higher

Education: A Systematic Mapping Study. in The 5th International Conference on

Information and Education Innovations (ICIEI '20). 2020. Association for

Computing Machinery.

128. Somboun, T., Survey of Smart Contract Technology and Application Based on

Blockchain. Open Journal of Applied Sciences, 2021. 11: p. 1135-1148.

129. Abdeljalil, B., A Study of Blockchain Oracles. ArXiv, 2020.

130. Vanezi, E., et al. GDPR Compliance in the Design of the INFORM e-Learning

Platform: a Case Study. in 2019 13th International Conference on Research

Challenges in Information Science (RCIS). 2019.

 178

131. Hoepman, J.-H. Privacy Design Strategies. 2014. Berlin, Heidelberg: Springer

Berlin Heidelberg.

132. Rest, J.v., et al. Designing privacy-by-design. in Annual Privacy Forum. 2012.

Springer.

133. Peyrone, N. and D. Wichadakul, RUN-ONCO: A Highly Extensible Software

Platform for Cancer Precision Medicine, in Proceedings of the 2019 6th

International Conference on Biomedical and Bioinformatics Engineering. 2019,

Association for Computing Machinery: Shanghai, China. p. 142–147.

134. Merkel, D., Docker: lightweight Linux containers for consistent development

and deployment. Linux J., 2014. 2014(239): p. Article 2.

135. Dikaleh, S., O. Sheikh, and C. Felix, Introduction to kubernetes, in Proceedings

of the 27th Annual International Conference on Computer Science and Software

Engineering. 2017, IBM Corp.: Markham, Ontario, Canada. p. 310.

136. Ramirez, A.O., Three-Tier Architecture. Linux J., 2000. 2000(75es): p. 7–es.

137. Panda, S.K. and S.C. Satapathy. An Investigation into Smart Contract

Deployment on Ethereum Platform Using Web3.js and Solidity Using

Blockchain. 2021. Singapore: Springer Singapore.

138. Group, T.B. Truffle. 2020 26 April 2023]; Available from:

https://www.trufflesuite.com/truffle.

139. Amine, M., B. Delahaye, and A. Lanoix, Moving from Event-B to probabilistic

Event-B, in Proceedings of the Symposium on Applied Computing. 2017,

Association for Computing Machinery: Marrakech, Morocco. p. 1348–1355.

https://www.trufflesuite.com/truffle

179

180

VITA

VITA

NAME Neda Peyrone

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	1.1. Objective of the Work
	1.2. Contributions
	1.3. Research Methodology

	CHAPTER II RELATED WORK
	CHAPTER III BACKGROUND
	3.1. Consent Management
	3.2. Event-B
	3.3. Blockchain Technology
	3.4. Smart Contract

	CHAPTER IV FORMAL MODELS FOR CONSENT MANAGEMENT IN CENTRALIZED SYSTEMS
	4.1. CM State Machines in Centralized Systems
	4.2. Formal Development in Event-B
	4.2.1. Restricted Processing State Machine (RPSM)
	4.2.2. Withdrawal Approval State Machine (WASM)
	4.2.3. Portable Approval State Machine (PASM)
	4.2.4. Consent Renewal State Machine (CRSM)

	4.3. Model Evaluation in Event-B
	4.4. Event-B Model Transformation to Class Diagram

	CHAPTER V A FORMAL MODEL FOR BLOCKCHAIN-BASED CONSENT MANAGEMENT IN DATA SHARING
	5.1. CM State Machine for Data Sharing in Distributed Systems
	5.2. Formal Development in Event-B
	5.2.1. Data Sharing State Machine (DSSM)
	5.2.1.1. Invariants in DSSM
	5.2.1.2. Events in DSSM

	5.3. Model Evaluation in Event-B
	5.4. Event-B Model Transformation to Class Diagram
	5.5. SmartDataTrust Implementation

	CHAPTER VI ANALYSIS AND INTERPRETATION OF RESULTS
	6.1. Test Cases in CM for Centralized Systems
	6.1.1. Test Cases in the RPSM Model
	6.1.1.1. The RP1 Test Case
	6.1.1.2. The RP2 Test Case
	6.1.1.3. The RP3 Test Case
	6.1.1.4. The RP4 Test Case
	6.1.1.5. Test RP5 Test Case

	6.1.2. Test Cases in the WASM Model
	6.1.2.1. The WA1 Test Case
	6.1.2.2. The WA2 Test Case
	6.1.2.3. The WA3 Test Case
	6.1.2.4. The WA4 Test Case

	6.1.3. Test Cases in the PASM Model
	6.1.3.1. The PA1 Test Case
	6.1.3.2. The PA2 Test Case
	6.1.3.3. The PA3 Test Case
	6.1.3.4. The PA4 Test Case

	6.1.4. Test Cases in the CRSM Model
	6.1.4.1. The CR1 Test Case
	6.1.4.2. The CR2 Test Case
	6.1.4.3. The CR3 Test Case
	6.1.4.4. The CR4 Test Case
	6.1.4.5. The CR5 Test Case

	6.2. Test Cases in CM for Distributed Systems in Data Sharing
	6.2.1. Test Cases in the DSSM Model
	6.2.1.1. The DS1 Test Case
	6.2.1.2. The DS2 Test Case
	6.2.1.3. The DS3 Test Case
	6.2.1.4. The DS4 Test Case
	6.2.1.5. The DS5 Test Case

	CHAPTER VII DISCUSSION AND CONCLUSION
	7.1. Discussion
	7.2. Conclusion

	APPENDIX A EVENT-B MODELS FOR CONSENT MANAGEMENT IN CENTRALIZED SYSTEMS
	1. The RPSM Model
	1.1. The RPCX Context
	1.1.1. Sets in RPCX
	1.1.2. Constants in RPCX
	1.1.3. Axioms in RPCX

	1.2. The RPSM Machine
	1.2.1. Invariants in RPSM
	1.2.2. Events in RPSM
	1.2.2.1. The INITIALISATION Event
	1.2.2.2. The Login Event
	1.2.2.3. The AddPatient Event
	1.2.2.4. The AddConsent Event
	1.2.2.5. The CreateInquiry Event
	1.2.2.6. The CheckAuthorizeConsent Event
	1.2.2.7. The ExecuteQuery Event
	1.2.2.8. The Logout Event

	2. The WASM Model
	2.1. The WACX Context
	2.1.1. Sets in WACX
	2.1.2. Constants in WACX
	2.1.3. Axioms in WACX

	2.2. The WASM Machine
	2.2.1. Invariants in WASM
	2.2.2. Events in WASM
	2.2.2.1. The INITIALISATION Event
	2.2.2.2. The Login Event
	2.2.2.3. The CreateWithdrawal Event
	2.2.2.4. The ApproveWithdrawal Event
	2.2.2.5. The RejectWithdrawal event
	2.2.2.6. The Logout event

	3. The PASM Model
	3.1. The PACX Context
	3.1.1. Sets in PACX
	3.1.2. Constants in PACX
	3.1.3. Axioms in PACX

	3.2. The PASM Machine
	3.2.1. Invariants in PASM
	3.2.2. Events in PASM
	3.2.2.1. The INITIALISATION Event
	3.2.2.2. The Login Event
	3.2.2.3. The CreatePortable Event
	3.2.2.4. The ApprovePortable Event
	3.2.2.5. The RejectPortable Event
	3.2.2.6. The Logout Event

	4. The CRSM Model
	4.1. The CRCX Context
	4.1.1. Sets in CRCX
	4.1.2. Constants in CRCX
	4.1.3. Axioms in CRCX

	4.2. The CRSM machine
	4.2.1. Invariants in CRSM
	4.2.2. Events in CRSM
	4.2.2.1. The INITIALISATION Event
	4.2.2.2. The Login Event
	4.2.2.3. The CreateConsentRenewRequest Event
	4.2.2.4. The NotifyPatient Event
	4.2.2.5. The ExtendConsentExpiration Event
	4.2.2.6. The DeletePatientData Event
	4.2.2.7. The Logout Event

	APPENDIX B AN EVENT-B MODEL OF CONSENT MANAGEMENT FOR DISTRIBUTED SYSTEMS IN DATA SHARING
	1. The DSSM Model
	1.1. The DSCX Context
	1.1.1. Sets in DSCX
	1.1.2. Axioms in DSCX

	1.2. The DSSM Machine
	1.2.1. Invariants in DSSM
	1.2.2. Events in DSSM
	1.2.2.1. The INITIALISATION Event
	1.2.2.2. The AddConsent Event
	1.2.2.3. The AddDataSubjectConsent Event
	1.2.2.4. The CallbackRequester Event
	1.2.2.5. The SubmitRequest Event
	1.2.2.6. The CallbackResponder Event
	1.2.2.7. The SubmitResponse Event
	1.2.2.8. The CallbackDataTransfer Event
	1.2.2.9. The TransferData Event
	1.2.2.10. The InsufficientBalance Event
	1.2.2.11. The CheckConsentExpiration Event
	1.2.2.12. The UnauthorizedAccess Event
	1.2.2.13. The RevokeConsent Event
	1.2.2.14. The RenewConsent Event

	REFERENCES
	VITA

