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การรบกวนของสัญญาณรบกวนสีขาวและแบบจ าลองท่ีไม่ตรงกนั (Model mismatch) ซ่ึงวิธีการควบคุมท่ีน าเสนอนั้น
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ดว้ยวิธีการ Sequential Least Squares Programming (SLSQP) 
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 Takorn Plengsangsri : CONTROL OF A POLYBUTYLENE SUCCINATE 

(PBS) POLYMERIZATION IN A SEMI-BATCH REACTOR BY NEURAL 

NETWORK MODEL BASED PREDICTIVE CONTROLLER. Advisor: Prof. 
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Polybutylene succinate (PBS) is a biodegradable plastic known for its strength 

and versatility in various applications. This research presents a data-driven approach to 

simulate temperature control in a semi-batch reactor during polymerization, the 

performance of the proposed approaches was compared against conventional controllers, 

including PID control and first-principles model MPC control. The study developed neural 

network model-based predictive control (NNMPC) and multiple neural network model-

based predictive control (Multi-NNMPC), using Python and Tensorflow. Neural network 

models were trained by using a wide range of dynamic data with varying numbers of 

neurons in hidden layers to investigate the process dynamics under different model 

complexities. Under nominal conditions, 50 neuron NNMPC demonstrated the most 

efficient complexity among the tested structures, exhibiting an Integral of Absolute Error 

(IAE) value of 2,104.77, 20 neuron Multi-NNMPC provided slightly improved 

performance as IAE reduced to 2,030.52 and the control action trended duplicating MPC 

control. These approaches addressed the failure of PID control, which caused overshoot 

and inefficient setpoint tracking. The PID control resulted in polymer over-specification, 

with the molecular weight reaching almost 14,000 and an IAE value of 3,271.83. In 

contrast, the optimal temperature control approach of the 50 neuron NNMPC could perform 

tight temperature control and yield the desired properties of the polymer, significantly 

outperforming PID control. This research also considers uncertain conditions, including the 

interference of white noise and model mismatch, all control approaches successfully 

handled the noise and maintained temperature isothermally, the 50 neuron NNMPC 

exhibited less aggressive valve movement than PID control, enhancing control action and 

leading to increased robustness and reduced utility consumption. When model mismatch 

was introduced to represent reactor fouling, reducing the overall heat transfer coefficient by 

30%, the 50 neuron NNMPC achieved faster convergence of control variable to setpoints 

compared to other controllers. It yielded an IAE of 2,892.41, while MPC showed an IAE of 

3,009.59. Moreover, the neural network model demonstrated the ability to learn highly 

nonlinear dynamics efficiently, enabling the prediction of optimal manipulated variables up 

to 5 to 20 times faster than a mathematical model using the Sequential Least Squares 

Programming (SLSQP) method. 

 Field of Study: Chemical Engineering Student's Signature ............................... 

Academic Year: 2022 Advisor's Signature .............................. 

 Co-advisor's Signature ......................... 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 v 

ACKNOWLEDGEMENT S 
 

ACKNOWLEDGEMENTS 

  

I am grateful for the collaboration between Chulalongkorn University (CU) and 

National Taiwan University (NTU) in completing this thesis. Special thanks to Professor 

Dr. Paisan Kittisupakorn (CU advisor), and Professor Dr. Jeffrey D. Ward (NTU 

advisor) for their guidance, expertise, and continuous support throughout this research 

journey and for expanding my knowledge in the field. I also appreciate the valuable 

suggestions and concepts provided by the thesis examination committee and the faculty 

members of CU and NTU involved. I sincerely hope that this research will contribute to 

the advancement of control techniques. It is my aspiration that the findings and insights 

presented in this thesis will be beneficial in the development of advanced control 

strategies and make a meaningful impact on the field. 

I would like to take this opportunity to express my gratitude to Mr. Kris 

Prasopsanti, who supported and taught me to write MPC in Python, as well as providing 

deep knowledge about neural networks. I would also like to thank Psalm and Hope for 

the advice, and all those who contributed to the completion of this thesis. Lastly, I am 

deeply thankful to my friends and family for their unwavering support and for letting the 

Master's degree period in Thailand and Taiwan become an incredibly joyful moment 

that will remain in my memory forever. 

  

  

Takorn  Plengsangsri 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE OF CONTENTS 

 Page 

...................................................................................................................................... iii 

ABSTRACT (THAI) ................................................................................................... iii 

....................................................................................................................................... iv 

ABSTRACT (ENGLISH) ............................................................................................. iv 

ACKNOWLEDGEMENTS ........................................................................................... v 

TABLE OF CONTENTS .............................................................................................. vi 

LIST OF FIGURES ...................................................................................................... ix 

Chapter 1 ........................................................................................................................ 1 

Introduction .................................................................................................................... 1 

1.1 Background and significant of the study ............................................................. 1 

1.2 Literature reviews ................................................................................................ 4 

1.3 Objectives .......................................................................................................... 13 

1.4 Scope of the research ......................................................................................... 13 

1.5 Benefit of this research ...................................................................................... 14 

Chapter 2 ...................................................................................................................... 15 

Theories and methods .................................................................................................. 15 

2.1 The synthesis of polybutylene succinate ........................................................... 15 

2.1.1 Esterification ............................................................................................ 16 

2.1.2 Polycondensation ...................................................................................... 24 

2.2 Split range PID control ...................................................................................... 30 

2.3 Model predictive control (MPC) ....................................................................... 31 

2.3.1 MPC control principle .............................................................................. 32 

2.4 Artificial neural network .................................................................................... 34 

2.4.1 Artificial neural network component ....................................................... 34 

    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 vii 

2.4.2 Artificial neural network architecture ...................................................... 35 

2.4.2.1 Feedforward neural network ........................................................ 35 

2.4.2.2 Feedback neural network .............................................................. 36 

2.4.3 Neural network training ............................................................................ 37 

2.4.4 Activation functions ................................................................................. 37 

2.5 Methods ............................................................................................................. 39 

2.5.1 Model development .................................................................................. 40 

2.5.2 The controller design ................................................................................ 40 

2.5.3 Neural network model training ................................................................. 41 

2.5.4 NNMPC deployment ................................................................................ 44 

2.5.5 Multi-NNMPC deployment ...................................................................... 45 

2.5.6 Control performance comparison ............................................................. 45 

Chapter 3 ...................................................................................................................... 46 

Results and discussion ................................................................................................. 46 

3.1 Model development ........................................................................................... 46 

3.2 Split range PID control ...................................................................................... 49 

3.2.1 Nominal case ............................................................................................ 50 

3.2.2 White noise case ....................................................................................... 54 

3.3 MPC control ....................................................................................................... 57 

3.3.1 Nominal case ............................................................................................ 59 

3.3.2 White noise case ....................................................................................... 62 

3.3.3 Model mismatch case ............................................................................... 66 

3.4 NNMPC control ................................................................................................. 69 

3.4.1 Neural network model training and validation ......................................... 70 

3.4.2 Nominal case ............................................................................................ 75 

3.4.3 White noise case ....................................................................................... 85 

3.4.3 Model mismatch case ............................................................................... 95 

3.5 Multi-NNMPC control ..................................................................................... 105 

3.5.1 Nominal case .......................................................................................... 106 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 viii 

3.5.2 White noise case ..................................................................................... 112 

3.5.3 Model mismatch case ............................................................................. 118 

Chapter 4 .................................................................................................................... 124 

Conclusions ................................................................................................................ 124 

APPENDIX ................................................................................................................ 129 

REFERENCES .......................................................................................................... 136 

VITA .......................................................................................................................... 140 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES 

 Page 

Figure 1 Type of Bio-plastics [15] ................................................................................. 4 

Figure  2 The molecular structure of polybutylene succinate (PBS) [17] ..................... 5 

Figure  3 The morphology of PBS crystallized for different molecular weight: (a) 2.1 

×104, (b) 2.9× 104, (c) 3.3×104, (d) 4.1×104, (e) 5.0×104 and (f) 6.3×104 [18] .............. 6 

Figure  4 Chain extension step using HMDI [20] .......................................................... 7 

Figure  5 Feed forward and recurrent neural network structures[28] ............................ 9 

Figure  6 Feedforward neural network in NNMPC with neural network estimator [30]

...................................................................................................................................... 10 

Figure  7 The esterification and polycondensation process ......................................... 15 

Figure  8 The synthesis of PESu, PPSu and PBSu conversion at 190°C and                        

3.0×10-4 mol TBT/mol SA. Kinetics model (lines) and experimental data (points) [3]

...................................................................................................................................... 21 

Figure  9 The mole of each particular species as a function of time during ................ 22 

Figure  10 (a) Kinetic value with reaction time with the absence of metal catalyst and 

(b) Kinetic value with reaction time with metal catalyst [38] ..................................... 23 

Figure  11 Transesterification/polycondensation reaction [4] ..................................... 24 

Figure  12 Esterification reaction [4] ........................................................................... 24 

Figure  13 (a) The true [OH] concentration and (b) the true [COOH] concentration as 

a function of time during PBS polycondensation process [4]...................................... 27 

Figure  14 Intrinsic viscosity [n] as a function of time during polycondensation [4] .. 29 

Figure  15 Split range PID control structure. ............................................................... 30 

Figure  16 Split range control signal range (Left), Split range control signal range with 

dead band (Right). ........................................................................................................ 30 

Figure  17 MPC control structure ................................................................................ 31 

Figure  18 MPC for temperature control [45] .............................................................. 32 

Figure  19 A Deep learning neural network [46] ......................................................... 34 

Figure  20 An illustration of artificial neuron [46] ...................................................... 34 

Figure  21 Feed forward neural network [46] .............................................................. 36 

    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 x 

Figure  22 Feedback neural network [46] .................................................................... 36 

Figure  23 Binary step function [47] ............................................................................ 38 

Figure  24 Linear activation function [47] ................................................................... 38 

Figure  25 Sigmoid/logistic function [47] .................................................................... 39 

Figure  26 ReLU activation function [47].................................................................... 39 

Figure  27 The neural network model schematic diagram of polybutylene succinate 

(PBS) esterification process. ........................................................................................ 42 

Figure  28 The neural network model schematic diagram of polybutylene succinate 

(PBS) polycondensation process.................................................................................. 43 

Figure  29 NNMPC control structure........................................................................... 44 

Figure  30 Multi-NNMPC control structure ................................................................ 45 

Figure  31 The molecular specie profile in esterification process at 190 °C ............... 46 

Figure  32 The molecular specie profile in esterification process for 400 minutes at 

various temperature a) 50°C, b) 100°C, c) 150°C, and d) 200°C ................................ 48 

Figure  33 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process for 400 minutes under isothermal operation at various temperatures ............. 48 

Figure  34 Split range arrangement (blue line: cooling valve, red line: heating valve)

...................................................................................................................................... 49 

Figure  35 Molecular specie profile in esterification process under split range PID 

control (B arrangement) ............................................................................................... 52 

Figure  36 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under split 

range PID control (A, B, and C arrangement) ............................................................. 52 

Figure  37(a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under split range PID control .......................................................................... 53 

Figure  38 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

split range PID control ................................................................................................. 53 

Figure  39 The set of white noise interferes with the reactor temperature .................. 54 

Figure  40 Molecular specie profile in esterification process under split range PID 

control with white noise ............................................................................................... 55 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xi 

Figure  41 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under split 

range PID control with white noise ............................................................................. 55 

Figure  42 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under split range PID control with white noise .............................................. 56 

Figure  43 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

split range PID control with white noise...................................................................... 56 

Figure  44 Molecular specie profile in esterification process under MPC control ...... 60 

Figure  45 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

MPC control ................................................................................................................. 60 

Figure  46 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under MPC control .......................................................................................... 61 

Figure  47 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

MPC control ................................................................................................................. 61 

Figure  48 (a) The set of white noise interferes with the reactor temperature, (b)The 

set of white noise interferes with the jacket temperature ............................................. 62 

Figure  49 Molecular specie profile in esterification process under MPC control with 

white noise ................................................................................................................... 64 

Figure  50 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

MPC control with white noise ..................................................................................... 64 

Figure  51 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under MPC control with white noise .............................................................. 65 

Figure  52 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

MPC control with white noise ..................................................................................... 65 

Figure  53 Molecular specie profile in esterification process under MPC control with 

model mismatch ........................................................................................................... 67 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xii 

Figure  54 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

MPC control with model mismatch ............................................................................. 67 

Figure  55 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under MPC control with model mismatch ...................................................... 68 

Figure  56 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

MPC control with model mismatch ............................................................................. 68 

Figure  57 MPC structure for NN model validation .................................................... 70 

Figure  58 Esterification NN model validation result (12 – 20 – 20 – 10) .................. 72 

Figure  59 Esterification NN model validation result (12 – 50 – 50 – 10) .................. 72 

Figure  60 Esterification NN model validation result (12 – 100 – 100 – 10) .............. 72 

Figure  61 Esterification NN model validation result (12 – 200 – 200 – 10) .............. 73 

Figure  62 Polycondensation NN model validation result (12 – 20 – 20 – 10) ........... 73 

Figure  63 Polycondensation NN model validation result (12 – 50 – 50 – 10) ........... 74 

Figure  64 Polycondensation NN model validation result (12 – 100 – 100 – 10) ....... 74 

Figure  65 Polycondensation NN model validation result (12 – 200 – 200 – 10) ....... 74 

Figure  66 Molecular specie profile in esterification process under 20 neuron NNMPC 

control .......................................................................................................................... 77 

Figure  67 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 20 

neuron NNMPC control ............................................................................................... 77 

Figure  68 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron NNMPC control ................................................................... 78 

Figure  69 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

20 neuron NNMPC control .......................................................................................... 78 

Figure  70 Molecular specie profile in esterification process under 50 neuron NNMPC 

control .......................................................................................................................... 79 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xiii 

Figure  71 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 50 

neuron NNMPC control ............................................................................................... 79 

Figure  72 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 50 neuron NNMPC control ................................................................... 80 

Figure  73 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

50 neuron NNMPC control .......................................................................................... 80 

Figure  74 Molecular specie profile in esterification process under 100 neuron 

NNMPC control ........................................................................................................... 81 

Figure  75 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 100 

neuron NNMPC control ............................................................................................... 81 

Figure  76 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 100 neuron NNMPC control ................................................................. 82 

Figure  77 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

100 neuron NNMPC control ........................................................................................ 82 

Figure  78 Molecular specie profile in esterification process under 200 neuron 

NNMPC control ........................................................................................................... 83 

Figure  79 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 200 

neuron NNMPC control ............................................................................................... 83 

Figure  80 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 200 neuron NNMPC control ................................................................. 84 

Figure  81 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

200 neuron NNMPC control ........................................................................................ 84 

Figure  82 (a) The set of white noise interferes with the reactor temperature, (b)The 

set of white noise interferes with the jacket temperature ............................................. 85 

Figure  83 Molecular specie profile in esterification process under 20 neuron NNMPC 

control with white noise ............................................................................................... 87 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xiv 

Figure  84 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 20 

neuron NNMPC control with white noise ................................................................... 87 

Figure  85 (a) OH end group (eq/106 g), (b) COOH end group (eq/106 g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron NNMPC control with white noise ....................................... 88 

Figure  86 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

20 neuron NNMPC control with white noise .............................................................. 88 

Figure  87 Molecular specie profile in esterification process under 50 neuron NNMPC 

control with white noise ............................................................................................... 89 

Figure  88 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 50 

neuron NNMPC control with white noise ................................................................... 89 

Figure  89 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 50 neuron NNMPC control with white noise ....................................... 90 

Figure  90 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

50 neuron NNMPC control with white noise .............................................................. 90 

Figure  91 Molecular specie profile in esterification process under 100 neuron 

NNMPC control with white noise................................................................................ 91 

Figure  92 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 100 

neuron NNMPC control with white noise ................................................................... 91 

Figure  93 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 100 neuron NNMPC control with white noise ................................... 92 

Figure  94 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

100 neuron NNMPC control with white noise ............................................................ 92 

Figure  95 Molecular specie profile in esterification process under 200 neuron 

NNMPC control with white noise................................................................................ 93 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xv 

Figure  96  (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 200 

neuron NNMPC control with white noise ................................................................... 93 

Figure  97 (a) OH end group (eq/106 g), (b) COOH end group (eq/106 g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 200 neuron NNMPC control with white noise .................................... 94 

Figure  98 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

200 neuron NNMPC control with white noise ............................................................ 94 

Figure  99 Molecular specie profile in esterification process under 20 neuron NNMPC 

control with model mismatch....................................................................................... 97 

Figure  100 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 20 

neuron NNMPC control with model mismatch ........................................................... 97 

Figure  101 (a) OH end group (eq/106 g), (b) COOH end group (eq/106 g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron NNMPC control with model mismatch .............................. 98 

Figure  102 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

20 neuron NNMPC control with model mismatch...................................................... 98 

Figure  103 Molecular specie profile in esterification process under 50 neuron 

NNMPC control with model mismatch ....................................................................... 99 

Figure  104 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 50 

neuron NNMPC control with model mismatch ........................................................... 99 

Figure  105 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 50 neuron NNMPC control with model mismatch ............................ 100 

Figure  106 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 50 

neuron NNMPC control with model mismatch ......................................................... 100 

Figure  107 Molecular specie profile in esterification process under 100 neuron 

NNMPC control with model mismatch ..................................................................... 101 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xvi 

Figure  108 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 100 

neuron NNMPC control with model mismatch ......................................................... 101 

Figure  109 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 100 neuron NNMPC control with model mismatch .......................... 102 

Figure  110 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 100 

neuron NNMPC control with model mismatch ......................................................... 102 

Figure  111 Molecular specie profile in esterification process under 200 neuron 

NNMPC control with model mismatch ..................................................................... 103 

Figure  112 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 200 

neuron NNMPC control with model mismatch ......................................................... 103 

Figure  113 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 200 neuron NNMPC control with model mismatch .......................... 104 

Figure  114 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 200 

neuron NNMPC control with model mismatch ......................................................... 104 

Figure  115 Molecular specie profile in esterification process under 10 neuron Multi-

NNMPC control ......................................................................................................... 108 

Figure  116 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 10 

neuron Multi-NNMPC control ................................................................................... 108 

Figure  117 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 10 neuron Multi-NNMPC control ...................................................... 109 

Figure  118 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

10 neuron Multi-NNMPC control .............................................................................. 109 

Figure  119 Molecular specie profile in esterification process under 20 neuron Multi-

NNMPC control ......................................................................................................... 110 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xvii 

Figure  120 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 20 

neuron Multi-NNMPC control ................................................................................... 110 

Figure  121 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron Multi-NNMPC control ...................................................... 111 

Figure  122 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

20 neuron Multi-NNMPC control .............................................................................. 111 

Figure  123 Molecular specie profile in esterification process under 10 neuron Multi-

NNMPC control with white noise.............................................................................. 114 

Figure  124 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 10 

neuron Multi-NNMPC control with white noise ....................................................... 114 

Figure  125 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 10 neuron Multi-NNMPC control with white noise .......................... 115 

Figure  126 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

10 neuron Multi-NNMPC control with white noise .................................................. 115 

Figure  127 Molecular specie profile in esterification process under 20 neuron Multi-

NNMPC control with white noise.............................................................................. 116 

Figure  128 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 20 

neuron Multi-NNMPC control with white noise ....................................................... 116 

Figure  129 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron Multi-NNMPC control with white noise .......................... 117 

Figure  130 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

20 neuron Multi-NNMPC control with white noise.................................................. 117 

Figure  131 Molecular specie profile in esterification process under 10 neuron Multi-

NNMPC control with model mismatch ..................................................................... 120 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xviii 

Figure  132 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 10 

neuron Multi-NNMPC control with model mismatch ............................................... 120 

Figure  133 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d)Intrinsic viscosity (dL/g) during polycondensation 

process under 10 neuron Multi-NNMPC control with model mismatch .................. 121 

Figure  134 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 10 

neuron Multi-NNMPC control with model mismatch ............................................... 121 

Figure  135 Molecular specie profile in esterification process under 20 neuron Multi-

NNMPC control with model mismatch ..................................................................... 122 

Figure  136 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 20 

neuron Multi-NNMPC control with model mismatch ............................................... 122 

Figure  137 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (𝑀𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron Multi-NNMPC control with model mismatch .................. 123 

Figure  138 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in Both processes esterification 

process under 20 neuron Multi-NNMPC control with model mismatch ................... 123 

Figure  139 Succinic acid simulation data ................................................................. 129 

Figure  140 Butylene glycol simulation data ............................................................. 129 

Figure  141 Water simulation data ............................................................................. 129 

Figure  142 Succinic acid end group simulation data ................................................ 130 

Figure  143 Butylene glycol end group simulation data ............................................ 130 

Figure  144 Succinic acid repeating unit simulation data .......................................... 130 

Figure  145 Butylene glycol repeating unit simulation data ...................................... 131 

Figure  146 Dibutylene glycol repeating unit simulation data ................................... 131 

Figure  147 Reactor temperature of esterification process simulation result ............. 131 

Figure  148 Jacket temperature of esterification process simulation result ............... 132 

Figure  149 Heating oil flow rate of esterification process simulation result ............ 132 

Figure  150 Cooling oil flow rate of esterification process simulation result ............ 132 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 xix 

Figure  151 Hydroxyl end group simulation result .................................................... 133 

Figure  152 Carboxyl end group simulation result .................................................... 133 

Figure  153 Butylene glycol simulation result ........................................................... 133 

Figure  154 Water simulation result........................................................................... 134 

Figure  155 Reactor temperature of polycondensation process simulation result ..... 134 

Figure  156 Jacket temperature of polycondensation simulation result ..................... 134 

Figure  157 Heating oil flow rate of polycondensation process simulation result ..... 135 

Figure  158 Cooling oil flow rate of polycondensation process simulation result .... 135 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

Introduction 

 

1.1 Background and significant of the study 

In the past decade, there has been an enormous amount of plastic usage globally 

and the trend of usage also continues to grow rapidly because of its remarkable 

properties. However, conventional plastics from fossil fuels cannot be degraded or 

decomposed in the soil or marine environment leading to plastic pollution which is an 

inevitable environmental issue that impacts every country around the world [1]. 

Polybutylene succinate (PBS) is a biodegradable plastic that has received attention 

due to its sufficient strength and versatility in a variety of applications. It is 100% 

biodegradable in the natural environment [2]. The synthesis of polybutylene succinate 

requires esterification reaction which proceeds in a jacketed semi-batch reactor where 

various types of oligomers are generated as a function of time and the 

polycondensation reaction takes place in a jacketed semi-batch reactor with vacuum 

environment that creates a longer chain of the polymer[3, 4]. Both of the reactions 

have a similar crucial factor in the control which is temperature leads to obtaining the 

polymer with desired average molecular weight and intrinsic viscosity that impacts 

the quality of the product [4]. 

The rise of data-driven technologies has been a significant development in 

industry recently and has poised for the upcoming transition to industry 5.0 [5]. The 

advancement of technology coupled with the availability of data has enabled data-
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driven solutions to be integrated into various applications in industries including 

chemical process control, the aspect is implementing data analytic technique of 

machine learning to the work field that could assist the operators to optimize the 

performance of chemical processes [6] and this method leverages the power of data in 

the control systems to achieve highly efficient control to improve final product quality 

and reduce energy usage [7, 8]. 

This research emphasizes on neural network model-based predictive control 

strategy (NNMPC) implemented in the polybutylene succinate polymerization 

process, to regulate the temperature within the reactor through precise manipulation of 

heating and cooling oil flow rates. The temperature of both reactor and jacket, 

molecular specie profiles of polymer as a function of time are simulated. The 

polymerization in batch process has high complexity of multivariable process and 

non-linearity [9], it is challenging to practically develop a high-accuracy 

mathematical model for the chemical process operation. Furthermore, when the 

process encounters a large deviation from the model after a long time of operation 

[10], adjusting the model's accuracy becomes challenging since some of the critical 

parameters are difficult to measure. Neural network model can be a powerful 

approach to be utilized in approximating nonlinear functions of complex system by 

using training data [11]. However, the quality and quantity of training data are crucial 

factors that determine the neural network model's predictive efficiency [12]. 

One distinct advantage of using a neural network model in process control is the 

speed of optimization performed at each time step. Compared to solving a complex 

mathematical optimization problem of the conventional model-based predictive 
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control [13], the optimization process in neural network models is much faster [14]. 

Therefore, deploying a neural network model in process control can lead to more 

efficient control actions in non-linear and fast dynamic processes. 

Replacing the mathematics model with the neural network model has more 

advantages because the operator can adjust the model easily after the actual process 

deviates from the model by recollecting the data from the sensors of the process and 

retraining the neural network model by using a machine learning library such as 

Tensor flow which is an open source and it is a user-friendly library in order to 

generate the new neural network model that could describe the process more 

efficiently than the previous one thus it is evident that the model could be fixed easily 

and economically than the mathematic model that is very complex as its nature so it 

takes a long period of time to modify the deviated model to become efficient again. 

The research shows the simulation results under NNMPC, MPC, and split range 

PID control for both esterification and polycondensation reactions that proceed in the 

reactors are analyzed and discussed the control performance by comparing IAE 

criteria and simulation time. 
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1.2 Literature reviews 

 

Figure 1 Type of Bio-plastics [15] 
 

The various kind of bio-plastics have been developed under the development 

of chemistry knowledge that aims to completely substitute the usage of fossil fuel-

based plastics and become an alternative way to reduce the accumulated amount of 

plastics that are waiting to be eliminated in landfills. Bio-plastics can be divided into 

2 kinds: biodegradable and non-biodegradable plastics as shown in Figure 1. For 

instance, polyethylene (PE) and Nylon 11 (NY 11) are non-biodegradable plastics but 

it produced from biomass resources. On the other hand, biodegradable plastics can be 

provided by biomass or even using petroleum feedstock but their molecular structure 

is suitable to be degraded naturally including Polyhydroxybutyrate (PHB), Polylactic 

Acid (PLA), and strach which are bio-based plastic and can be degraded. 

Polyethersulfone (PES), Polycaprolactone (PCL), and Polybutylene succinate (PBS) 

are biodegradable plastic even though these are fossil fuels-based polymers [15]. 

Those biodegradable plastics have to be chosen to apply in appropriate 

applications because the degree of decomposable affects their properties [16] 

therefore they could have low strength as Polycaprolactone (PCL) cannot withstand 

moderate to high external force and vice-versa Polyhydroxybutyrate (PHB) can be 

degraded in only suitable environment but it is not decomposed in landfill or ocean. 
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Polybutylene succinate (PBS) and Polylactic Acid (PLA), both are commercially 

produced and they have a high effort in research and development due to their 

sufficient strength and both are 100% degradable in the natural environment. The 

synthesis of polybutylene succinate occurs when succinic acid and butylene glycol or 

(1,4-butanediol) are reacted, the acid can be provided by sugar fermentation while 

butylene glycol could be obtained from biomass carbohydrates that passed through an 

enzymatic reaction leads to 100% biopath to obtain the PBS however butylene glycol 

manufacturing can be done by using fossil fuel feedstock which is 50% biopath [1]. 

 

Figure  2 The molecular structure of polybutylene succinate (PBS) [17] 
 

Polybutylene succinate (PBS) polymer chain consists of polymerized units of 

butylene succinate (𝐶8𝐻12𝑂4) as illustrated in Figure 2. It has gained attention during 

the past two decades because of its degradable ability in nature to substitute 

conventional plastic usage with the intention to reduce accumulated plastic waste. 

PBS has outstanding properties of the transparent surface and rigid structure to 

withstand external force allowing it to be compatible with wide applications including 

packaging, composable bags, agricultural mulching films, textiles, and catering goods 

[2]. The performance limitation of PBS is the low melting temperature (114°C) 

compared to PLA with Tm over 160°C that restricted in food application however the 

reinforced nanofiller could enhance the properties [17]. In the PBS grade of FZ91PM 

from PTT public company limited (Thailand) has a melt flow index (MFI) at 190°C 

of 5g/ 10 min with a density of 1.26 g/cm3 and glass transition temperature (Tg) and 
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melting temperature (Tm) at 78°C and 115°C, respectively. In the mechanical 

property view, the tensile strength is 20 MPa and the tensile modulus is 450 MPa [2]. 

 The molecular weight plays a crucial role in shaping the crystal morphology 

and influencing the mechanical properties of polybutylene succinate (PBS). As 

illustrated in Figure 3, it becomes evident that an increase in the polymer's molecular 

weight yields a greater abundance of spherulites, while simultaneously leading to 

smaller sizes due to heightened nucleation density. PBS with higher molecular weight 

exhibits a remarkably denser branching texture, resulting in a more intricate 

morphology with internal birefringence patterns [18]. 

 

Figure  3 The morphology of PBS crystallized for different molecular weight: (a) 2.1 

×104, (b) 2.9× 104, (c) 3.3×104, (d) 4.1×104, (e) 5.0×104 and (f) 6.3×104 [18] 

Upon reaching a molecular weight of 40,000, it is observed that the modulus, 

yield strength, and elongation at break of PBS exhibit a diminishing trend as the 

molecular weight continues to increase. Thus, it becomes evident that the highest 

degree of crystallinity and the highest molecular weight does not singularly determine 

the optimal mechanical properties. Instead, the key lies in balancing between these 
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factors. However, for industrial applications, molecular weights ranging from 

approximately 20,000 to 70,000 prove to be sufficiently high [18]. 

To attain a high molecular weight PBS through the condensation 

polymerization process is costly because it requires a long operating time in a high 

vacuum reactor [19]. However, one of the alternative methods is chain extension. 

Within this approach, an additional step is implemented during the melt condensation 

process, as depicted in Figure 4, utilizing a chain extender such as hexamethylene 

diisocyanate (HMDI), isocyanate, oxazoline, silazane, epoxy compound or anhydride 

to merge polymer chains that significantly contribute augment molecular weight of 

PBS [20]. A study has revealed the effectiveness of employing the HMDI chain 

extender, enabling PBS to reach molecular weight up to 200,000 g/mol [21]. 

 

Figure  4 Chain extension step using HMDI [20] 

In the section on process control, there are many control techniques are 

adopted in chemical plants. The proportional-integral-derivative (PID) control is 

general and well-known technique because it is simple and provides good robustness 

and could gain sufficient control performance [22]. PID requires tuning for desired 

control action, Ziegler-Nichole tuning relation is widely used however the minimizing 

integral of time-weighted absolute error (ITAE) could be used as a tuning criterion to 

calculate the tuning parameters that provide better dynamic responses in temperature 
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and concentration control of non-isothermal CSTR [22]. MPC is an advanced 

controller with online optimization that can control multi input multi output system 

(MIMO), and handle constraints with better response in minimizing the overshoot of 

the process in a continuous stirred tank reactor (CSTR) that is a nonlinear system 

MPC could drive process variable to the set point effectively under disturbance with 

small fluctuation of the controller output which is better than PID with automatic 

tuning [23]. 

The artificial neural network is one of the methods in artificial intelligence 

(AI) applications and it is a mathematically based model using the same concept as 

human brain work to process the data through several layers of neurons. Recently, the 

neural network plays a big role in various fields such as economics, financial forecast, 

medical diagnosis, etc. in order to assist humans with ease and efficient decision-

making. The neural network model can perform certain tasks including character 

pattern recognition, time series prediction, clustering, and control. 

Pattern recognition is usually found in the application of image processing and 

voice analysis. Converting handwriting to text on a smartphone (character 

recognition) is a notable example that implemented the neural network as the 

fundamental working principle. A thousand of human handwriting data are collected 

for model training to learn the pattern and similarity of a pixel arrangement of each 

handwritten alphabet and number leading to efficiently recognizing the alphabet [24]. 

Time series prediction is efficiently performed in this field including stock 

price forecasting, and product market price forecasting. The stock markets have very 

high volatility and the stock price changes every second, the historical stock prices are 
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inputted into the neural network for building the model as beneficial to investors to 

forecast the change in the stock price [25]. 

Control is the main point focused in this research, the neural network learns 

the chemical process dynamic data in order to directly command the final control 

element (control valve) to reach the desired point, this method is called direct control 

[26] while the neural network model-based control is used the model along with the 

calculation of manipulated variable. Not only chemical process control but also 

automotive and robotic control uses the neural network model as the fundamental of 

the control [27]. 

The feedforward neural network (FFNN) and recurrent neural network (RNN) 

have weights, and biases on each neuron consisting in the structure as shown in 

Figure 5. RNN is a recursive neural network structure, in which inputs are influenced 

by the previous output that is connected back to the initial nodes with a tapped delay 

line (TDL). While the output of FFNN is only influenced by the inputs as a signal 

flowing in forward direction [28]. 

 

Figure  5 Feed forward and recurrent neural network structures[28] 
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 The model predictive controller provides an optimal manipulated variable by 

doing optimization using the prediction model. To predict the future state of a system 

for all time step in the operation through a model that describing the system can be 

achieved by having all initial states of a minimum set of variables xi(t) where i ranges 

from 1 to n, and the system inputs for all t ≥ t0 [29]. Therefore, the FFNN is more 

appropriate to be utilized in model predictive controller because the output is based on 

only current state and it is not influenced by the previous state. The multilayered feed-

forward neural network model used in model predictive control, the data is flow 

through the NN model as a sequence in the prediction horizon as shown in Figure 6. 

 

Figure  6 Feedforward neural network in NNMPC with neural network estimator [30] 

Model-based control methods require a process model of a system to 

determine the control action, all states and model parameters are required. However, 

in most processes, there are numerous states and parameters that cannot be precisely 

measured such as heat and composition. Therefore, online estimation techniques are 

utilized to approximate the unknown states and parameters. Arpornwichanop et al [31] 

performed the temperature control in batch reactor by using extended Kalman filter 
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incorporated with model predictive control (MPC), an extended Kalman filter is a 

state estimation technique that was utilized to estimate the heat released from the 

reactions. It is obvious that the application of extended Kalman filter provided 

outstanding state estimation resulting MPC showed high robustness and good control 

performance. 

 The state estimation by using extended Kalman filter, the plant model has to 

be simplified for deploying the model in MPC [31]. The exact plant model contains 

numerous parameters and states, and some of them are unmeasurable. If the exact 

model was used, the Kalman filter would have to estimate many variables at once, 

resulting in lower performance. By simplifying the model and reducing the number of 

variables, the Kalman filter can more accurately estimate the remaining variables, 

leading to better performance. 

The NNMPC was carried out in the biochemical engineering field to perform 

the yeast fermentation temperature control by manipulating the coolant flow rate, the 

controller can manipulate the coolant flow rate to control the temperature inside the 

reactor to the desired varying setpoint under external disturbances [32]. The weighting 

factor in the objective function of MPC influences the dynamic response, the low 

weight shows aggressive control action corresponding to the oscillatory control 

variable (Temperature) but reaches setpoint in a short time while high weighting 

factor shows conservative control action with smooth output [32]. The advantage of 

NNMPC is simplicity of tuning based on the model training on Tensorflow (a 

machine learning library on Python) to be covered the process operating condition to 

obtain the model and it supports the high dimensional models [32]. 
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Designing an efficient MPC controller needs to specify appropriate prediction 

and control horizons, there are no exact criteria for the determining optimal number of 

horizons. In polystyrene synthesis operation in a batch reactor using MPC control to 

manipulate a 500 W heater, thereby ensuring precise tracking of the optimal 

temperature profile as a result of horizon length. Through trial and error method, it 

was found that the efficient temperature could be achieved by a prediction horizon of 

27 sample intervals. However, employing shorter intervals led to unstable responses. 

While the control horizon was varied between 2, 4, and 8 revealed no significant 

differences in temperature tracking performance. Therefore, 2 or 4 sample intervals of 

control horizon is sufficient to provide good performance [33]. 

Kittisupakorn et al [34] reported the neural network-based model predictive 

control implemented in the steel pickling process in order to control the concentration 

of highly concentrated acid substances employed in the process baths along with 5%, 

10%, and 15% of HCl concentration bath. The model could simulate and predict the 

process's state variables of the nonlinear and multivariable interaction chemical 

process under disturbance, model mismatch, and process noise. The control 

performance of acid baths using NNMPC and PI control were compared under 

disturbance case using IAE criteria, for 5% HCl bath with NNMPC had a smaller IAE 

error value of 0.223 while PI control yielded the IAE 0.355. The control under the 

model mismatch case of 5% HCl using NNMPC showed 0.218 IAE error and PI 

control accounted for 0.356 which is higher for around 50 %. It is evidence that 

NNMPC can provide an excellent control performance beyond the PI controller 

without oscillation in all cases. 
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1.3 Objectives 

 The objective of this study is to simulate the dynamic of PBS esterification 

and polycondensation process and develop advanced control strategies for reactor 

temperature control. Specifically, the study aims to develop both the NNMPC and 

Multi-NNMPC strategies and compare their control performance. The controlled 

variable, which is the reactor temperature, must reach the setpoint rapidly and without 

overshoot or offset to achieve high control performance. The proposed control 

techniques are also expected to maintain temperature control effectively, even under 

the interference of white noise and model mismatch.  

1.4 Scope of the research  

 The scope of this research is to study the synthesis of polybutylene succinate 

(PBS) using a simulation approach that focuses on the esterification and 

polycondensation processes. Python programming is utilized for the simulation. The 

esterification reaction is carried out in a 1 m3 semi-batch reactor equipped with a 0.2 

m3 recirculating jacket and oil is used as the heating and cooling fluid. The process is 

conducted at different temperature ranges: 25 to 135oC from 0 to 50 minutes, 225oC 

from 50 to 400 minutes, and 150oC from 400 to 450 minutes. The polycondensation 

reaction is performed in a 1 m3 vacuumed semi-batch reactor with a 0.2 m3 

recirculating jacket, starting at 150oC and maintained at 245oC for 200 minutes, 

followed by cooling to 100 oC. Various control strategies, including split range PID, 

MPC, NNMPC, and Multi-NNMPC, are implemented to regulate the temperature 

inside the reactor by adjusting the oil flow rate. The proposed control techniques are 

tested for robustness against uncertainty events, such as white noise case and model 
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mismatch case. The control performance of each process is compared based on IAE in 

different scenarios. This research is expected to contribute to the advancement of the 

PBS synthesis process. 

1.5 Benefit of this research 

 The research offers significant benefits to the production of polybutylene 

succinate (PBS). One major benefit is the developed neural network model, which can 

replace the mathematical model in the MPC optimizer. This reflects the strength of 

data-driven technology, enabling a more efficient and higher robustness of the 

proposed control strategy. The NNMPC and Multi-NNMPC control strategy also 

delivers superior control performance and energy usage efficiency, outperforming 

both conventional MPC and split range PID control strategies. Additionally, the 

neural network model approaches offer a fast optimization procedure that overcomes 

the disadvantage of mathematical-based MPC, which typically takes longer to 

optimize the oil flow rate. These benefits have significant implications for the 

industry, as they offer a superior temperature control approach for PBS production 

that is more efficient, cost-effective, and reliable. 
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Chapter 2 

Theories and methods 

 

2.1 The synthesis of polybutylene succinate 

 

Figure  7 The esterification and polycondensation process 

 

The synthesis of polybutylene succinate (PBS) is carried out through a two-

stage melt polycondensation process in which two semi-batch reactors are employed 

in a series configuration with distinct operating conditions as shown in Figure 7. The 

primary reactor, designed for esterification of 5500 mol of succinic acid and butylene 

glycol in a molar ratio of 1.1, operates in three steps at atmospheric pressure. Each 

step has an important role in ensuring the final product quality. In the preheating 

phase the reactor contents are gradually heated from 25°C to 135°C over 50 minutes, 

followed by isothermal reaction step which proceeds until almost no additional water 

is liberated [35]. This step requires 350 minutes. The reaction is then finalized during 

a cooling step in which the temperature is reduced to 150°C [35]. The water produced 

from the reactions is assumed to be removed instantaneously that directly affecting 

the concentration of the mixture due to the significantly reduced volume. 

TT TC TT TC 
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In the second reactor, a polycondensation proceeds in a vacuum environment. 

Butylene glycol is liberated in polycondensation reaction and is removed in vapor 

phase. The temperature is controlled for 200 minutes after reaching a setpoint in the 

range of 245°C [35], to simulate the effect of the temperature on the dynamic change 

of number average molecular weight of PBS. 

Reactor temperature control is assumed to be achieved using a jacket with two 

feeds (hot and cold oil). Either a split-range PID controller or a multivariable MPC 

controller are used to manipulate the final control elements (the heating and cooling 

oil control valves). Heating oil is assumed to be available with a maximum opening of 

10 L/s and constant inlet temperature of 250°C for the esterification batch and 280°C 

for the polycondensation batch. It is circulated in the jacket to heat the reactor 

contents to the setpoint and compensate for heat loss due to removal of substances 

through evaporation. The efficient control of fluid flow rate enables precise 

temperature control and stability during chemical reactions, particularly those 

involving exothermic reactions. Cooling oil at 25°C is used for cooling with a 

maximum flow rate of 10 L/s. 

2.1.1 Esterification 

Esterification reaction is the reaction between an organic acid (RCOOH) and 

alcohol (ROH) to form an ester (RCOOR) and water. In the synthesis of polybutylene 

succinate (PBS), the esterification occurs in the first step that generates various types 

of oligomers that collide to the formed molecules to react and proceed the 

esterification reaction again and other oligomers are formed as shown the reaction r1 

to r4. Bikiaris et al [3] reported the reaction schemes and mathematical reaction 
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models of the esterification reaction of the three of poly (alkylene succinate) including 

polyethylene succinate (PES), polypropylene succinate (PPS), and polybutylene 

succinate (PBS) for determining the best process conditions to maximize esterification 

reaction rate and conversion. Succinic acid was reacted with a variety of glycols 

(ethylene, propylene, and butylene glycol) to obtain the corresponding poly (alkylene 

succinate) using Tetrabutoxy-titanium (TBT) as the catalyst. After the reaction 

proceeds, succinic acid and glycol will react to form oligomers (tSA, tG, bSA, bG, 

and bDG) and water [3]. Those oligomers influence the subsequent polymerization. 

All the species involved in the esterification reactions are indicated in Table 1. 

The kinetic of esterification process is derived by rate law and mass balance 

equations are shown in eq. 2-7 to 2-21.  These equations are related to volume that 

described by the remaining substance volume subtract evaporated volume of water at 

each time step as shown in eq. 2-22. 

Material Symbol and description Molecular structure 

Monomers 
SA Succinic acid HOOC- CH2CH2 -COOH 

BG Butylene glycol HO- CH2CH2CH2CH2 -OH 

Oligomer 

tSA SA end group HOOC- CH2CH2 –CO- 

tBG Butylene glycol end group HO- CH2CH2CH2CH2 -O- 

bSA SA repeating unit -OC- CH2CH2 -CO- 

bBG Butylene glycol repeating unit -O- CH2CH2CH2CH2 -O- 

bDBG Dibutylene glycol repeating unit - O- CH2CH2CH2CH2 -O- CH2CH2CH2CH2 -O- 

Product W Water H2O 

Table  1 The molecular structure of monomer, oligomers and product in esterification 

reactions of polybutylene succinate (PBS) 
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Reaction Schemes: 

𝑟1 𝑆𝐴 + 𝐵𝐺
𝑘1
⇋
𝑘1

′
 𝑡𝑆𝐴 + 𝑡𝐵𝐺 + 𝑊 (2-1) 

𝑟2 𝑡𝑆𝐴 + 𝐵𝐺
𝑘2
⇋
𝑘2

′
 𝑏𝑆𝐴 + 𝑡𝐵𝐺 + 𝑊 (2-2) 

𝑟3 𝑆𝐴 + 𝑡𝐵𝐺
𝑘3
⇋
𝑘3

′
 𝑡𝑆𝐴 + 𝑏𝐵𝐺 + 𝑊 (2-3) 

𝑟4 𝑡𝑆𝐴 + 𝑡𝐵𝐺
𝑘4
⇋
𝑘4

′
 𝑏𝑆𝐴 + 𝑏𝐵𝐺 + 𝑊 (2-4) 

𝑟5 𝑡𝐵𝐺 + 𝑡𝐵𝐺
𝑘5
⇋
𝑘5

′
 𝑏𝐵𝐺 + 𝐵𝐺 (2-5) 

𝑟6 𝑡𝐵𝐺 + 𝑡𝐵𝐺
𝑘6
→ 𝑏𝐷𝐵𝐺 + 𝑊 (2-6) 

Rate law equations: 

 𝑟1 = {4𝑘1(𝑆𝐴)(𝐵𝐺) − (
𝑘1

𝐾1
) (𝑡𝑆𝐴)(𝑊)} /𝑉2 (2-7) 

 𝑟2 = {2𝑘2(𝑡𝑆𝐴)(𝐵𝐺) − 2 (
𝑘2

𝐾2
) (𝑏𝑆𝐴)(𝑊)} /𝑉2 (2-8) 

 𝑟3 = {2𝑘3(𝑆𝐴)(𝑡𝐵𝐺) − (
𝑘3

𝐾3
) (𝑡𝑆𝐴)(𝑊)} /𝑉2 (2-9) 

 𝑟4 = {𝑘4(𝑡𝑆𝐴)(𝑡𝐵𝐺) − 2 (
𝑘4

𝐾4
) (𝑏𝑆𝐴)(𝑊)} /𝑉2 (2-10) 

 𝑟5 = {𝑘5(𝑡𝐵𝐺)(𝑡𝐵𝐺) − 4 (
𝑘5

𝐾5
) (𝑏𝐵𝐺)(𝐵𝐺)} /𝑉2 (2-11) 

 𝑟6 = {𝑘6(𝑡𝐵𝐺)(𝑡𝐵𝐺)}/𝑉2 (2-12) 

 
𝑘𝑖 = 𝐴𝑖𝑒

−
𝐸𝑎

𝑅𝑇𝑅 (2-13) 

Mass balance equations: 

 
1

𝑉

𝑑(𝑆𝐴)

𝑑𝑡
= −𝑟1 − 𝑟3 (2-14) 

 
1

𝑉

𝑑(𝐵𝐺)

𝑑𝑡
= −𝑟1 − 𝑟2 + 𝑟5 (2-15) 

 
𝑑(𝑊)

𝑑𝑡
= 𝑉(𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 + 𝑟6) − 𝐹𝑊 = 0 (2-16) 

 
1

𝑉

𝑑(𝑡𝑆𝐴)

𝑑𝑡
= 𝑟1 − 𝑟2 + 𝑟3 − 𝑟4 (2-17) 

 
1

𝑉

𝑑(𝑡𝐵𝐺)

𝑑𝑡
= 𝑟1 + 𝑟2 − 𝑟3 − 𝑟4 − 2𝑟5 − 2𝑟6 (2-18) 

 
1

𝑉

𝑑(𝑏𝑆𝐴)

𝑑𝑡
= 𝑟2 + 𝑟4 (2-19) 
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1

𝑉

𝑑(𝑏𝐵𝐺)

𝑑𝑡
= 𝑟3 + 𝑟4 + 𝑟5 (2-20) 

 
1

𝑉

𝑑(𝑏𝐷𝐵𝐺)

𝑑𝑡
= 𝑟6 (2-21) 

 𝑉 =
(𝑆𝐴)𝑀𝑊𝑆𝐴

𝜌𝑆𝐴
+

(𝐺)𝑀𝑊𝐺

𝜌𝐺
+

𝑊𝑂𝑙𝑖𝑔

𝜌𝑂𝑙𝑖𝑔
−

(𝑊)𝑀𝑊𝑊

𝜌𝑊
 (2-22) 

Energy balance equations: 

At the reactor: 

𝑑𝐻𝑅

𝑑𝑡
 = 𝐻𝑅,𝑖𝑛 − 𝐻𝑅,𝑜𝑢𝑡 + 𝑄𝑅 (2-23) 

𝜌𝑚𝑖𝑥𝑉𝐶𝑝,𝑚𝑖𝑥

𝑑𝑇𝑅

𝑑𝑡
 = −𝜌𝑤𝐹𝑤(𝐶𝑝,𝑤𝑇𝑅(𝑡) + ∆𝐻𝑊,𝑣𝑎𝑝) − (𝑟1 + 𝑟2 + 𝑟3 + 𝑟4)𝑉∆𝐻𝑒𝑠𝑡𝑒𝑟 (2-24) 

 −𝑟6𝑉∆𝐻𝑏𝑦𝑝𝑟𝑜𝑑 − 𝑈𝑒𝑠𝑡𝐴(𝑇𝑅(𝑡) - 𝑇𝐽(𝑡))  

𝑑𝑇𝑅

𝑑𝑡
 = −

𝑚𝑤(𝐶𝑝,𝑤𝑇𝑅(𝑡) + ∆𝐻𝑊,𝑣𝑎𝑝)

𝜌𝑚𝑖𝑥𝑉𝐶𝑝,𝑚𝑖𝑥
−

(𝑟1 + 𝑟2 + 𝑟3 + 𝑟4)𝑉∆𝐻𝑒𝑠𝑡𝑒𝑟

𝜌𝑚𝑖𝑥𝑉𝐶𝑝,𝑚𝑖𝑥
 (2-25) 

 −
𝑟6𝑉∆𝐻𝑏𝑦𝑝𝑟𝑜𝑑

𝜌𝑚𝑖𝑥𝑉𝐶𝑝,𝑚𝑖𝑥
− 𝑈𝑒𝑠𝑡𝐴(𝑇𝑅(𝑡) − 𝑇𝐽(𝑡))  

At the jacket: 

𝑑𝐻𝐽

𝑑𝑡
 = 𝐻𝐽,𝑖𝑛 − 𝐻𝐽,𝑜𝑢𝑡 + 𝑄𝐽 (2-26) 

𝜌𝑜𝑖𝑙𝑉𝐽𝐶𝑝,𝑐𝑜𝑜𝑙

𝑑𝑇𝐽

𝑑𝑡
 = 𝜌𝑜𝑖𝑙𝐹ℎ𝑒𝑎𝑡𝐶𝑝,𝑜𝑖𝑙𝑇𝐽ℎ𝑒𝑎𝑡,𝑖𝑛 + 𝜌𝑜𝑖𝑙𝐹𝑐𝑜𝑜𝑙𝐶𝑝,𝑜𝑖𝑙𝑇𝐽,𝑖𝑛 −  𝜌𝑜𝑖𝑙𝐹ℎ𝑒𝑎𝑡𝐶𝑝,𝑜𝑖𝑙𝑇𝐽(𝑡) (2-27) 

 −𝜌𝑜𝑖𝑙𝐹𝑐𝑜𝑜𝑙𝐶𝑝,𝑜𝑖𝑙𝑇𝐽(𝑡) + 𝑈𝑒𝑠𝑡𝐴(𝑇𝑅(𝑡) − 𝑇𝐽(𝑡))  

𝑑𝑇𝐽

𝑑𝑡
 = 

𝜌𝑜𝑖𝑙𝐹ℎ𝑒𝑎𝑡 𝐶𝑝,𝑜𝑖𝑙𝑇𝐽,ℎ𝑒𝑎𝑡𝑖𝑛

𝜌𝑜𝑖𝑙𝑉𝐽𝐶𝑝,𝑜𝑖𝑙
+

𝜌𝑜𝑖𝑙𝐹𝑐𝑜𝑜𝑙 𝐶𝑝,𝑜𝑖𝑙𝑇𝐽,𝑐𝑜𝑜𝑙𝑖𝑛

𝜌𝑜𝑖𝑙𝑉𝐽𝐶𝑝,𝑜𝑖𝑙
 (2-28) 

 −
 𝜌𝑜𝑖𝑙𝐹ℎ𝑒𝑎𝑡𝐶𝑝,𝑜𝑖𝑙𝑇𝐽(𝑡)

 𝜌𝑜𝑖𝑙𝑉𝐽𝐶𝑝,𝑜𝑖𝑙
−

 𝜌𝑜𝑖𝑙𝐹𝑐𝑜𝑜𝑙𝐶𝑝𝑇𝐽(𝑡)

 𝜌𝑜𝑖𝑙𝑉𝐽𝐶𝑝,𝑜𝑖𝑙
+

𝑈𝑒𝑠𝑡𝐴(𝑇𝑅(𝑡) − 𝑇𝐽(𝑡)) 

 𝜌𝑜𝑖𝑙𝑉𝐽𝐶𝑝,𝑜𝑖𝑙
  

𝑑𝑇𝐽

𝑑𝑡
 = 

𝐹ℎ𝑒𝑎𝑡(𝑇𝐽,ℎ𝑒𝑎𝑡𝑖𝑛 − 𝑇𝐽(𝑡))

𝑉𝐽
+

𝐹𝑐𝑜𝑜𝑙(𝑇𝐽,𝑐𝑜𝑜𝑙𝑖𝑛 − 𝑇𝐽(𝑡))

𝑉𝐽
 (2-29) 

 +
𝑈𝑒𝑠𝑡𝐴(𝑇𝑅(𝑡) − 𝑇𝐽(𝑡)) 

 𝜌𝑜𝑖𝑙𝑉𝐽𝐶𝑝,𝑜𝑖𝑙
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Symbol Description Unit 

𝐻𝑅 Enthalpy at reactor J 

𝐻𝐽 Enthalpy at jacket J 

𝐻𝑅,𝑖𝑛 Enthalpy at inlet J/s 

𝐻𝑅,𝑜𝑢𝑡 Enthalpy at outlet J/s 

𝑄𝑅 Heat from/to reactor J/s 

𝑄𝐽 Heat from/to jacket J/s 

𝑇𝑅 Temperature of reactor °C 

𝑇𝐽  Temperature of jacket °C 

𝑇𝐽 ,ℎ𝑒𝑎𝑡𝑖𝑛 Temperature at jacket inlet °C 

𝑇𝐽 ,𝑐𝑜𝑜𝑙𝑖𝑛 Temperature at jacket inlet °C 

∆𝐻𝑊,𝑣𝑎𝑝 Heat of vaporization J/mol 

∆𝐻𝑒𝑠𝑡𝑒𝑟 Heat of esterification reactions J/mol 

∆𝐻𝑏𝑦𝑝𝑟𝑜𝑑 Heat of by-product reactions J/mol 

𝐶𝑝,𝑚𝑖𝑥 Heat capacity of mixture J/g*K 

𝐶𝑝,𝑜𝑖𝑙 Heat capacity of coolant J/g*K 

𝐶𝑝,𝑤 Heat capacity of water J/g*K 

𝜌𝑚𝑖𝑥 Density of the mixture g/L 

𝜌𝑐𝑜𝑜𝑙 Density of the coolant g/cm3 

𝜌𝑤 Density of water g/cm3 

𝑈𝑒𝑠𝑡 Overall heat transfer coefficient of esterification unit  W/m2°C 

𝐴 Heat transfer area m2 

𝐹ℎ𝑒𝑎𝑡 Heating oil flow rate L/s 

𝐹𝑐𝑜𝑜𝑙 Cooling oil flow rate L/s 

𝑚𝑤 Mass flow rate of water g/s 

𝑉 Volume of reactor L 

𝑉𝐽  Volume of jacket L 

Table  2 The related variables in esterification process energy balance equations 
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 When the process is carried out, there is enormous heat generated and 

consumed simultaneously as exothermic reactions proceed with evaporation of water. 

The esterification reactions (r1 to r4) and di-glycol reaction (r6) are strong exothermic 

reactions that produce a mole of water after reacted. The energy involved in the 

reactor is derived in eq.2-23 to 2-25. In order to maintain the temperature 

isothermally, thermal fluid (oil) is supplied into the jacket to transfer heat into the 

jacket or absorb heat from the reactor depend on temperature different in each side as 

derived in eq.2-26 to 2-29 as energy balance at the jacket. All the parameters related 

to energy balance equations for both sides are indicated in Table 2. The transfer of 

energy between two volumes can be described by the overall heat transfer coefficient 

(U). In a stainless-steel jacketed vessel containing an organic mixture, the facilitation 

of heat transfer by utilization of heat transfer oil. The overall heat transfer coefficient 

in this system typically ranges from 170 to 680 J/m²sK [36]. 

 

Figure  8 The synthesis of PESu, PPSu and PBSu conversion at 190°C and                        

3.0×10-4 mol TBT/mol SA. Kinetics model (lines) and experimental data (points) [3] 
 

The authors developed a kinetic model for the reaction at 190°C in the 

presence of 3.0×10-4 mol TBT/mol SA by fitting reaction rate constants (k) to the 

experimental data of different poly (alkylene succinate) as shown in Figure 8. 
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Figure  9 The mole of each particular species as a function of time during 

the esterification reaction of polypropylene succinate at 190 °C [3] 
 

When the esterification reactions of polypropylene succinate proceed as 

shown in Figure 9, oligomers of tSA and tPG and water are formed because SA and 

PG reactant rapidly. Subsequently, the oligomers continue to react. As a consequence, 

the tSA and tPG concentration gradually decrease after the reactions have been 

carried out for a period of time [3]. High conversion was obtained for all glycols [37]. 

The type and amount of catalyst present in the reactor has a strong influence 

on the kinetics of the reaction substantially the K value in the rate law equations, 

therefore, obtaining the desired properties of the polymer, the selection of catalyst 

types and amount of usage are significant [37]. The synthesis of polypropylene 

terephthalate (PPT) with a variety of different catalyst types to find the catalyst that 

yields the highest conversion. It was found that Tetrabutoxy-titanium (TBT) 

contributes well to the reaction of both esterification and polycondensation beyond 

other catalysts. The PPT reaction schemes has reaction schemes similar to PBS 

therefore TBT catalyst is reasonable to provide the esterified succinic acid in the 

synthesis of PBS.  
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The esterification of PBS is commonly known as an acid-catalyzed reaction 

means succinic acid as a monomer acts as a catalyst in the reaction. The esterification 

of PBS with the presence of a TBT catalyst, both acid and the metal catalyst generally 

influence the k values and also the rate of reaction in consequence. However, when 

the metal catalyst utilized in the reaction could lower the acid-catalyzed activity [38]. 

  
(a) (b) 

Figure  10 (a) Kinetic value with reaction time with the absence of metal catalyst and 

(b) Kinetic value with reaction time with metal catalyst [38] 

 

The mathematic model and using the extent of reaction values from the 

experiment with the absence of the monobutyl tinoxide (MBTO) catalyst to illustrate 

the kinetic of polyesterification in figure 10a, the kinetic values of 3 different 

temperatures ranging from 170, 180, and 190 C shows linear behavior with time. 

However, when the model was implemented in the presence of an MBTO catalyst 

environment, the nonlinearity behavior curves occurred which deviated a lot as shown 

in the figure 10b therefore, the developed model was assumed that the rapid increase 

of the rate of reaction is only from the effect of metal catalyst usage due to low 

activity of self-catalyzed acid shows linear behavior with reaction time as an 

uncatalyzed reaction [38]. 
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2.1.2 Polycondensation 

The esterified acid product is fed into another reactor which is operated at a 

high vacuum environment with the presence of a catalyst where the polycondensation 

or transesterification reaction is carried out in the vacuum environment and high 

temperature in order to reduce pressure and assist the devolatilization leading to 

remove the by-product of 1,4-butanediol or butylene glycol [39] as to increase the 

molecular weight and viscosity of the product. During the process, the oligomers are 

stirred by mechanical agitation to transfer the by-product to the vaporization surface 

to increase the rate of removal. 

 In polycondensation reaction, there are 2 reactions where acid and glycol are 

reacted that occur simultaneously including 1. transesterification or polycondensation 

where glycols are generated, and 2. esterification where water is produced as a by-

product as shown in figure 11 and 12.  

 

Figure  11 Transesterification/polycondensation reaction [4] 
 

 

Figure  12 Esterification reaction [4] 
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Mass balance equations: 

 

𝑟7 
𝑑[𝑂𝐻]𝑡

𝑑𝑡
= −2𝑘1[𝑂𝐻]𝑡

2 − 𝑘2[𝐶𝑂𝑂𝐻]𝑡[𝑂𝐻]𝑡 (2-30) 

𝑟8 
𝑑[𝐶𝑂𝑂𝐻]𝑡

𝑑𝑡
= −𝑘2[𝐶𝑂𝑂𝐻]𝑡[𝑂𝐻]𝑡 (2-31) 

 [𝑂𝐻]𝑡 = [𝑂𝐻] − [𝑂𝐻]𝑖 (2-32) 

 [𝐶𝑂𝑂𝐻]𝑡 = [𝐶𝑂𝑂𝐻] − [𝐶𝑂𝑂𝐻]𝑖 (2-33) 

 [𝑂𝐻]𝑖 = −773 +
443648

𝑇
 (2-34) 

 [𝐶𝑂𝑂𝐻]𝑖 = −47 +
28507

𝑇
 (2-35) 

Energy balance equations: 

At the reactor 

𝑑𝐻𝑅

𝑑𝑡
 = 𝐻𝑅,𝑖𝑛 − 𝐻𝑅,𝑜𝑢𝑡 + 𝑄𝑅 (2-36) 

𝑀𝑚𝑖𝑥𝐶𝑝,𝑚𝑖𝑥

𝑑𝑇𝑅

𝑑𝑡
= −�̇�𝐵𝐺(𝐶𝑝,𝐵𝐺𝑇𝑅(𝑡) + ∆𝐻𝑣𝑎𝑝,𝐵𝐺) − �̇�𝑊(𝐶𝑝,𝑊𝑇𝑅(𝑡) + ∆𝐻𝑣𝑎𝑝,𝑊) (2-37) 

 −𝑟7𝑀𝑚𝑖𝑥∆𝐻𝑝𝑜𝑙𝑦𝑐𝑜𝑛 − 𝑟8𝑀𝑚𝑖𝑥∆𝐻𝑒𝑠𝑡𝑒𝑟 − 𝑈𝑝𝑜𝑙𝑦𝑐𝐴(𝑇𝑅(𝑡) - 𝑇𝐽(𝑡))  

𝑑𝑇𝑅

𝑑𝑡
= −

�̇�𝐵𝐺(𝐶𝑝,𝐵𝐺𝑇𝑅(𝑡) + ∆𝐻𝑣𝑎𝑝,𝐵𝐺)

𝑀𝑚𝑖𝑥𝐶𝑝,𝑚𝑖𝑥
−

�̇�𝑊(𝐶𝑝,𝑤𝑇𝑅(𝑡) + ∆𝐻𝑣𝑎𝑝,𝑊)

𝑀𝑚𝑖𝑥𝐶𝑝,𝑚𝑖𝑥
 (2-38) 

 −
𝑟7∆𝐻𝑝𝑜𝑙𝑦𝑐

𝐶𝑝,𝑚𝑖𝑥
−

𝑟8∆𝐻𝑒𝑠𝑡𝑒𝑟

𝐶𝑝,𝑚𝑖𝑥
−

𝑈𝑝𝑜𝑙𝑦𝑐𝐴(𝑇𝑅(𝑡)  −  𝑇𝐽(𝑡))

𝑀𝑚𝑖𝑥𝐶𝑝,𝑚𝑖𝑥
  

At the jacket: 

𝑑𝑇𝐽

𝑑𝑡
 = 

𝐹ℎ𝑒𝑎𝑡(𝑇𝐽,ℎ𝑒𝑎𝑡𝑖𝑛 − 𝑇𝐽(𝑡))

𝑉𝐽
+

𝐹𝑐𝑜𝑜𝑙(𝑇𝐽,𝑐𝑜𝑜𝑙𝑖𝑛 − 𝑇𝐽(𝑡))

𝑉𝐽
 (2-39) 

 +
𝑈𝑝𝑜𝑙𝑦𝑐𝐴(𝑇𝑅(𝑡) − 𝑇𝐽(𝑡)) 

 𝜌𝑜𝑖𝑙𝑉𝐽𝐶𝑝,𝑜𝑖𝑙
  

Bikiaris et al proposed k1 and k2 of both reactions provided by fitting the 

values to the dynamic models of the variation of carboxyl and hydroxyl content with 

time to the experimental results using 4 different temperatures (210, 220, 230, 245 

°C) and they also measured the intrinsic viscosity using an Ubbelohde viscometer at 
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25°C after the reaction carried out to calculate the average molecular weight. The rate 

of change of true hydroxyl [𝑂𝐻]𝑡  and true carboxyl end group [𝐶𝑂𝑂𝐻]𝑡  are 

described by the expression of eq. 2-30 and 2-31. 

To achieve higher accuracy in the synthesis of the polymer simulation, the 

consideration of defective chemicals must be involved because the defect of degraded 

chemicals leads to inactive chain end groups that are unable to proceed with 

polycondensation and are ineffective to incorporate in crystalline parts as a result of 

chain mobility restriction [40]. However, it was found that the higher temperature 

could enhance chain end group ability as the inactive end group concentrations 

decrease when the synthesis temperature reached the higher point. The true 

concentration expressions are modified by deducting the inactive chain end group 

concentrations [𝑂𝐻]𝑖  and [𝐶𝑂𝑂𝐻]𝑖 from the total chain end group concentrations 

[𝑂𝐻] and [𝐶𝑂𝑂𝐻] [4]. The mathematical relationships are shown in eq. 2-32 to 2-35. 

Energy balance in the polycondensation unit is derived in eq. 2-36 to 2-38, 

show the influence of exothermic reaction for both of the main and minor reactions 

and evaporation of 2 components including butylene glycol and water simultaneously. 

The rate of jacket temperature change is shown in eq. 2-39.  

The hydroxyl content while accounting for inactive end group substantially 

decreased with increasing temperature as shown in Figure 13a. At 245°C the hydroxyl 

content was only 143 meq/kg after 3 hrs while the synthesis temperature of 210°C 

(35°C lower) and there were triple times hydroxyl content left over from the reactions 

(418 meq/kg). COOH contents showed minor differences at varying temperatures at 

around 14 meq/kg after 3 hrs of reaction [4] as illustrated in Figure 13b. 
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(a) (b) 

Figure  13 (a) The true [OH] concentration and (b) the true [COOH] concentration 

as a function of time during PBS polycondensation process [4] 

 The chemical reactions involved in this process can be described as follows: 

reactions labeled as 𝑟1 to 𝑟4 and 𝑟8  represent the interaction between esterified acid 

and glycol, while 𝑟5  and 𝑟7  denote the polycondensation reaction primarily taking 

place in the second batch. Furthermore, 𝑟6  is the di-glycol reaction that produces 

dibutylene glycol repeating units after the reaction of two units of butylene glycol end 

groups. All of these reactions are inherently exothermic processes, entailing the 

release of heat as the reactions progress. The corresponding heat of reaction values at 

a temperature of 200°C are shown in Table 3. 

Reactions Heat of reaction (J/mol) 

Esterification -18576 

Polycondensation -29906 

di-glycol -18576 

Table  3 Heat of reactions 

In both reactors, a mass removal process is employed to evaporate water and 

butylene glycol as by-products, thereby increasing the concentration of the mixture. 

This procedure necessitates the absorption of heat by the molecules to facilitate a 

phase change. The specific quantity of heat required for vaporization, known as the 

heat of vaporization, is indicated in Table 4. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28 

Molecules Heat of vaporization (J/g) 

Water (W) 1941.2 

Butylene glycol (BG) 798.92 

Table  4 Heat of vaporization 

The mechanical properties of the polymer are directly influenced by molecular 

weight. A very low molecular weight polymer is in viscous liquid form if the Tg 

(glass transition temperature) is lower than ambient temperature, the material is brittle 

when Tg is higher than room temperature. For longer polymer chains usually called 

elastomer which has low strength but high elongation. Rubber characteristics of 

polymer could be found at MW around 105 exhibits a higher elongation [41]. 

Therefore, molecular weight measurement is a crucial procedure to verify the desired 

mechanical properties and the polymer viscosity. The number average molecular 

weight (�̅�𝑛) of PBS is described by acid end group content [COOH] and hydroxyl 

end group content [OH] in the milli-equivalent per kilogram (meq/kg) as depicted in 

the following.  

�̅�𝑛 =
∑ 𝑛𝑖𝑀𝑤𝑖

𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

=
∑ 𝑚𝑖

𝑁
𝑖=1

∑ 𝑛𝑖
𝑁
𝑖=1

=
1

∑ 𝑛𝑖/𝑚𝑖
𝑁
𝑖=1

=
1

[𝐶𝑂𝑂𝐻] + [𝑂𝐻]
2

 (2-40) 

�̅�𝑛 =
2

[𝐶𝑂𝑂𝐻] + [𝑂𝐻]
 (2-41) 

Mark-Houwink equation (MHE) [42] is proposed in this work to simulate the 

viscosity of the synthesized PBS as a function of time without using viscometer to 

measure the collected samples.  The equation presents the nonlinear relationship of 

the polymer’s intrinsic viscosity (𝜂) and the number average molecular weight (�̅�𝑛). 

[𝜂] = 𝐾�̅�𝑛
𝑎 (2-42) 

𝑙𝑛[𝜂] = 𝑙𝑛𝐾 + 𝑎𝑙𝑛�̅�𝑛 (2-43) 
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From eq. 2-43, multiply the natural log on both sides of eq. 2-42 in order to 

transform the non-linear to a linear relationship. Therefore, ln 𝐾 and 𝑎 value are the y-

axis intercept and slope of the plotted experimental result, respectively. The MHE 

parameters of K and a are affected by the selected solvent in the experiment [43].  

Bikaris et al [4] presented the 𝐾 and 𝑎 values of the Mark-Houwink equation 

in eq. 2-44 and Solomon-Ciuta equation (conventional viscosity evaluation method) 

as shown in the eq. 2-45 where C is the concentration of the solution, 𝑡 is the flow 

time of the solution, and 𝑡0 is the flow time of the pure solvent. 

�̅�𝑛 = 3.29 × 104[𝜂]1.54 (2-44) 

[𝜂] = 7.44 × 10−4�̅�𝑛
0.648 (2-45) 

[𝜂] =
[2 {

𝑡
𝑡0

− ln (
𝑡
𝑡0

) − 1}]

1
2

𝐶
 

(2-46) 

The PBS polycondensation at the different temperatures ranging from 210, 

220, 230, and 245°C showed the diverse of intrinsic viscosity as shown in Figure 14. 

The intrinsic viscosity increased with higher temperature as well as higher reaction 

rates. The result showed the model (lines) corresponding to experiment (dots) results 

in the similar trends. The maximum viscosity was observed at 245°C at 0.55 dL/g. 

 

Figure  14 Intrinsic viscosity [n] as a function of time during polycondensation [4] 
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2.2 Split range PID control 

 

Figure  15 Split range PID control structure. 
 

  
(a) (b) 

Figure  16 Split range control signal range (Left), Split range control signal range 

with dead band (Right). 
 

 PID control is widely employed in many industries due to its simplicity 

feedback control structure and practical ease of use. In this study, split range PID 

control was simulated for both reactors to regulate the heating and cooling oil valves 

(The control structure is depicted in Figure 15). The controller output is split into two 

ranges 0 to 0.5 for cooling valve opening and 0.5 to 1 for heating valve opening. At 

each time step, only one valve is opened while another one is fully closed to restrict 

wasting energy and also achieve full performance [44]. However, this resulted in 

oscillation around the setpoint, which was mitigated by introducing a dead band at the 

controller output from 0.49 to 0.51 to prevent valve movement when the temperature 

reached the setpoint. The proposed control signal ranges are depicted in Figure 16.  
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 PID were tuned by minimizing an ITAE objective function as depicted in eq. 

2-47. The proposed tuning method can provide excellence performance in terms of 

reactor temperature control, it may also result in highly aggressive control action. To 

address this is-sue, the weighting matrix are included in both valves to adjust the 

optimal tuning parameters for more efficient control action of each valve, a balance 

between aggressive control action and efficient control performance can be achieved. 

𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑇𝑠𝑝 − 𝑇𝑅(𝑡)| 𝑑𝑡 + 𝑤𝐹ℎ𝑒𝑎𝑡(∆𝑢𝐹ℎ𝑒𝑎𝑡)2 + 𝑤𝐹𝑐𝑜𝑜𝑙(∆𝑢𝐹𝑐𝑜𝑜𝑙)2 (2-47) 

2.3 Model predictive control (MPC) 

Model predictive control (MPC) or receding horizon control (RHC) is one of 

the feedback control techniques that utilizes a mathematic model in order to calculate 

the manipulated variable (u(t)) as shown in Figure 17. The manipulated variable in 

every time step is obtained from the measured process variable to solve the optimal 

manipulated variable via online dynamic optimization in the closed loop therefore it 

will drive the process in the direction that has minimum objective function or 

performance index under the assigned dynamic process model, the constraints on 

state, and control variables. 

 

Figure  17 MPC control structure 
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In traditional control techniques, when the process has more than one control 

variable and also more than one manipulated variable thus this case requires multiple 

control loops to control the process to the desired set point, which is a very complex 

control structure. However, MPC could completely perform the control of the 

Multiple Input Multiple Output (MIMO) process by using one controller in one 

control loop which would reduce the huge complexity of the traditional control 

structure. In addition, the distinctive point of the optimal control strategy is 

constraints of the manipulated variable could be formulated thereby the dynamic of 

the process will be more efficient under the manipulated variable changes related to 

the constraints. 

2.3.1 MPC control principle 

 

Figure  18 MPC for temperature control [45] 

 At the k time step, the controller will calculate the set of manipulated variables 

including at the present time and the next M time step which is u(k), 

u(k+1),…,u(k+M) by predicting the future output of the process in P time step from 
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y(k+1),y(k+2),…,y(k+P) to obtain the output values that related to the desired target 

by optimizing the objective function as shown below. 

Find the control u(t) minimizing or maximizing: 

Objective function: 

𝐽 =  ∫ {(𝑥(𝑡) − 𝑥𝑠𝑝)2 + 𝑊(∆𝑢)2}𝑑𝑡
𝑡𝑓

0

 (2-48) 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢) (2-49) 

x(t0) = x0 (2-50) 

Constraints on controls and states: 

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 

𝑥(𝑡 + 𝑡𝑓) = 𝑥𝑠𝑝 

When 

W Weight matrix in order to tune the process response 

𝑡𝑓 Final time step 

𝑢𝑚𝑎𝑥 Maximum value of manipulated variable 

𝑢𝑚𝑖𝑛 Minimum value of manipulated variable 

𝑥𝑚𝑎𝑥  Maximum value of controlled variable 

𝑥𝑚𝑖𝑛 Minimum value of controlled variable 
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2.4 Artificial neural network  

 

Figure  19 A Deep learning neural network [46] 
 

 The neural network is a multi-layered network of perceptron or neurons 

linking together as illustrated in figure 19, which is composed of 3 input nodes, 2 

hidden layers which contain 4 nodes in each layer, and 2 nodes at the output layer. In 

each connection, there are the crucial relevant neural network elements that attempt to 

replicate the organization of neurons in the human brain. 

2.4.1 Artificial neural network component 

 

 

Figure  20 An illustration of artificial neuron [46] 
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Input layer is the data inputted to the neural network in each node at this 

layer. In case the data is qualitative data such as nationality, sex, marriage, blood type, 

etc. must be changed to quantitative data or numerical data before input into the 

neural network. 

Weight represents the knowledge that the neural network learned the relation 

of data in order to predict the probability therefore weight values could be tuned by 

training the large amount of data. 

Summation function is the layer that sums up the inputted data (xi) or the 

data from the preceding layer multiplied by corresponding weights (wi) and pass to 

the activation function as depicted in the equation below. 

𝑆 = ∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 (2-51) 

Activation function is a nonlinear function that transforms the output data 

from the summation function to the form of output in the assigned form depend on the 

relation of the inputted data and the model applications to assist in preventing 

problems such as exploding and vanishing gradient. 

Output layer is the terminal layer of the network where the result of 

prediction or data output from the neural network will be released at this layer. 

2.4.2 Artificial neural network architecture 

 

 The architecture could be classified on the basis of data flow direction that 

consists of feedforward and feedback neural networks. 

2.4.2.1 Feedforward neural network 
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Figure  21 Feed forward neural network [46] 

A feed-forward neural network or other word is called a non-recurrent 

network is a neural network structure where the data is inputted into the linked multi-

layer network and only flows in the forward direction and processed via mathematical 

calculation through the particular neural network components then send to the next 

hidden layers in consequent and terminates at the output layer as shown in Figure 21. 

2.4.2.2 Feedback neural network 

 

 

Figure  22 Feedback neural network [46] 
 

In the feedback neural network, such as recurrent neural network (RNN), the 

processed signal is allowed to flow forward and backward in the loop. The backward 

direction from the output to the prior neurons leads to the recognition of data’s 
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sequential characteristics and then the learned scenarios are used to forecast the next 

likely outcomes. The recurrence connection is possible to connect in any way as 

shown in the example of the connection in the figure above and it could be the path 

from output linked to the input node as the external feedback loop and internal 

feedback loops connected inside as minor feedback loops as shown in Figure 22. 

2.4.3 Neural network training 

 

Forward propagation  

In this procedure, the neural network is trained by the data flow direction from 

left to right. Initially, the inputted data is multiplied by the weights in each layer to 

calculate the loss or the difference of the actual and predicted output in order to 

prepare for the backpropagation in the following step. 

  Backpropagation  

the training direction from right to left utilizes the supervised learning 

principle, the algorithm adjusts the weights of the neural network in each layer until 

the loss of NN is in the acceptable range. 

2.4.4 Activation functions 

 

1. Binary step function 

Binary step function is a function that give the output equal to 1 when 

the input is equal or more than 0 and when input is lower or equal to 0, the 

output will be 0. 
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Figure  23 Binary step function [47] 

𝑓(𝑥) = {
1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

 (2-52) 

 

2. Linear activation function 

This activation function type will return the output value equal to any 

inputted data into the function.  

 

Figure  24 Linear activation function [47] 

𝑓(𝑥) = x (2-53) 

 

3. Sigmoid Function 

Sigmoid function or logistic function is the S-shaped curve function 

that is frequently used as activation function in neural network applications. 

The output value of the function is in the range of 0 to 1. 
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Figure  25 Sigmoid/logistic function [47] 

𝑓(𝑥) =  
1

1 + exp (−𝑥)
 (2-54) 

4. Rectified linear unit (ReLU) 

ReLU is a linear activation-based function that has the output value of 

the function from 0 to infinity as clearly shown in the graph below. When the 

input value is less than or equal to 0 then the output will be 0. Otherwise, the 

output will be equal to the input which is in the positive range. 

 

Figure  26 ReLU activation function [47] 
 

𝑓(𝑥) = max (0, 𝑥) (2-55) 

2.5 Methods 

 The control simulations were executing on Python for entire work, which was 

divided into 2 parts including esterification and polycondensation. Both parts are 

connected together to study the dynamics of the process after various controllers are 

implemented to perform the control actions. Starting from the model development, the 
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controller design, neural network training, NNMPC deployment, and the control 

performance under IAE criteria were analyzed and discussed. 

2.5.1 Model development 

 At first, the processes were simulated under isothermal conditions to study the 

dynamic of the developed model at different temperatures. The dynamics model is 

related to numerous differential equations therefore Scipy library is installed to 

perform solving differential equation tasks including the mass and energy balances, 

rate laws equation and etc. to verify that the dynamics and the final conversion that 

corresponds to the reported experiment to implement controllers in the further action. 

2.5.2 The controller design 

 When the developed dynamic model is satisfied, the open loop control was 

performed at the initial state because it was uncomplicated to analyze the dynamic 

response after inputting one step change action to the model and the relevant 

parameters could be adjusted conveniently at this stage.  

Split range PID control strategy is carried out in the next step which is a 

classic controller that is widely used in industries, this control strategy requires tuning 

therefore optimal tuning by minimizes the Integral of Time multiplied by Absolute 

Error criteria (ITAE) as objective function is introduced in this work to achieve the 

𝐾𝑐, 𝜏𝐼  and 𝜏𝐷 that provide minimum ITAE for highly efficient control performance.  

𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑇𝑠𝑝 − 𝑇𝑅(𝑡)| 𝑑𝑡 (2-56) 

𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑇𝑠𝑝 − 𝑇𝑅(𝑡)| 𝑑𝑡 + 𝑤𝐹ℎ𝑒𝑎𝑡(∆𝑢𝐹ℎ𝑒𝑎𝑡)2 + 𝑤𝐹𝑐𝑜𝑜𝑙(∆𝑢𝐹𝑐𝑜𝑜𝑙)
2 (2-57) 
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The proposed tuning method can provide excellence performance in terms of 

reactor temperature control, it may also result in highly aggressive control action. To 

address this issue, the weighting matrix are included in both terms to adjust the 

optimal tuning parameters for more efficient control action of each valve, we can 

achieve a more optimal balance between aggressive control action and efficient 

control performance. 

In the section on model predictive control (MPC), the prediction horizon (P) is 

assigned to be 10 units of time and the manipulating horizon (M) is 3 units of time. 

The optimization runs by Scipy optimize library using the SLSQP method to obtain 

the set of optimal manipulated variables in the control horizon. In this work, the 

industrial process data is unavailable therefore the developed mathematic models 

represent the actual process.  

2.5.3 Neural network model training 

The data from the simulation of both of the reactor with mathematic-based 

model predictive control are collected to train the neural networks compose of 4 

layers in total. For esterification process, starting with the 11 nodes of input layer 

followed by 2 hidden layers that contain varying nodes each, and the final layer is the 

output layer shows each of particular predicted results of the model in the next time 

step. The rectified linear unit (ReLU) activation function is implemented in both 

hidden layers and output as illustrated in Figure 27. Polycondensation NN model, 8 

inputs involve all species, temperature at both sides, and process inputs followed by 2 

hidden layers with varying number of nodes at each layer with ReLU activation 

function. The neural network model structure of the process is shown in Figure 28.  
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Figure  27 The neural network model schematic diagram of polybutylene succinate 

(PBS) esterification process. 
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Figure  28 The neural network model schematic diagram of polybutylene succinate 

(PBS) polycondensation process.  

In the neural network training, the number of neurons in the hidden layer will 

be varied from 20, 50, 100, and 200 neurons to monitor the change in the accuracy of 

prediction and computational time after implementing the neural models to MPC then 

the appropriate conditions for the NN model training are discussed. 

One of the crucial procedures in training artificial neural network models, it is 

the preprocess of input data before feeding them into the model. One of the most 

common preprocessing techniques is data normalization, which adjusts the database 

to be in the range of 0 to 1. This technique is crucial as it helps to improve the 

performance and convergence speed of the neural network model. By rescaling the 

input data, we can avoid the dominance of certain variables and ensure that all the 

variables contribute equally to the model. To achieve this, the following equations are 

used to normalize the variable dataset [48]. 
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𝑋′ = [
𝑋 −  𝑀𝑖𝑛(𝑋)

𝑀𝑎𝑥(𝑋) −  𝑀𝑖𝑛(𝑋)
] (2-58) 

𝑋   Raw value 

𝑋′   Normalized data 

𝑀𝑎𝑥(𝑋)  The maximum of raw value 

𝑀𝑖𝑛(𝑋)  The minimum of raw value 

2.5.4 NNMPC deployment 

 

Figure  29 NNMPC control structure 

 The neural network model was deployed in the optimizing process substituting 

the mathematic model in conventional MPC as illustrated in Figure 29. All input state 

values from the process and the optimizer are normalized in the range of 0 – 1 at 

every time step before inputting to the neural network model as training procedure 

thus the output or prediction result are denormalized before sending to the optimizer. 
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2.5.5 Multi-NNMPC deployment 

 

Figure  30 Multi-NNMPC control structure 

 Multiple neural network models were designed for use in preheating, heating, 

and cooling steps of esterification process, the proposed control structure is depicted 

in Figure 30. The polycondensation process is divided the single neural network 

model into 3 models including heating, isothermal control, and cooling. This approach 

is intended to improve performance and accelerate the optimization process by 

reducing the complexity of a single neural network model through its division into 

multiple neural network models [49]. The neural network models were deployed in a 

sequential manner, with the preheating model utilized from 0 to 50 minutes, the 

heating model utilized from 50 to 400 minutes, and the cooling model from 400 to 

450 minutes. 

2.5.6 Control performance comparison 

 The developed NNMPC is compared to split range PID and MPC control on 

the basis of the IAE criteria under various scenarios such as nominal case, the 

presence of white noise, model mismatch case.  

𝐼𝐴𝐸 = ∫|𝑇𝑠𝑝 − 𝑇(𝑡)|𝑑𝑡 
(2-59) 
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Chapter 3 

Results and discussion 

 

3.1 Model development 

 Bikaris et al [3] reported the k of individual reaction at 190°C to estimate the 

rate of related reactions between 0.55 mol of succinic acid and 0.605 mol of butylene 

glycol of r1 to r4, while r5 was considered a polycondensation reaction that had a 

relatively low rate of reaction and therefore, its effect was neglected. r6, which is a 

diglycol reaction, was observed to occur minimally. The reactions proceed 

simultaneously create various types of oligomers with water until 400 minutes then 

obviously low rate of water generated is observed as shown in Figure 31. 

 
Figure  31 The molecular specie profile in esterification process at 190 °C 

 The rate constant (k) of chemical reactions is highly sensitive to temperature. 

The Arrhenius equation (Eq. 3-1) is commonly used to describe the temperature 

dependence of k values, and it includes variables such as the universal gas constant 

(R), activation energy (Ea), and pre-exponent factor (A). The value of A could be 

determined by calculating the y-intersection of the linearized Arrhenius equation as 

shown in Eq. 3-2 in order to simulate the molecular specie profile at any temperature 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 47 

for isothermal conditions. The result of Ea and A of each individual reaction are 

indicated in Table 5 and 6. 

 𝑘 =  𝐴𝑒−
𝐸𝑎
𝑅𝑇 (3-1) 

 𝑙𝑛𝑘 =  −
𝐸𝑎

𝑅
(

1

𝑇
) + 𝑙𝑛𝐴 (3-2) 

 Reactions 
𝑘𝑖 @ 190°C 

(L/mol×min) 

𝐸𝑎 

(J/mol) 
𝐴𝑖 

𝑟1 𝑆𝐴 + 𝐵𝐺
𝑘1
⇋
𝑘1

′
 𝑡𝑆𝐴 + 𝑡𝐵𝐺 + 𝑊 0.0027 47400 601.340 

𝑟2 𝑡𝑆𝐴 + 𝐵𝐺
𝑘2
⇋
𝑘2

′
 𝑏𝑆𝐴 + 𝑡𝐵𝐺 + 𝑊 0.0027 47400 601.340 

𝑟3 𝑆𝐴 + 𝑡𝐵𝐺
𝑘3
⇋
𝑘3

′
 𝑡𝑆𝐴 + 𝑏𝐵𝐺 + 𝑊 0.00135 47400 300.670 

𝑟4 𝑡𝑆𝐴 + 𝑡𝐵𝐺
𝑘4
⇋
𝑘4

′
 𝑏𝑆𝐴 + 𝑏𝐵𝐺 + 𝑊 0.00135 47400 300.670 

𝑟5 𝑡𝐵𝐺 + 𝑡𝐵𝐺
𝑘5
⇋
𝑘5

′
 𝑏𝐵𝐺 + 𝐵𝐺 0 0 0 

𝑟6 𝑡𝐵𝐺 + 𝑡𝐵𝐺
𝑘6
→ 𝑏𝐷𝐵𝐺 + 𝑊 0.0011 78473 784988.7 

Table  5 Esterification reaction schemes with rate constants, activation energy (Ea), 

and pre-exponential factor (A) 

 Reactions 
𝑘𝑖 @ 245°C 

(kg/meq) h-1 

𝐸𝑎 

(J/mol) 
𝐴𝑖 

𝑟7 2𝑅𝑂𝐻 
𝑘7
⇋
𝑘7

′
 𝑃𝐵𝑆 +  𝐵𝐺 0.0020 85700 839,028.53 

𝑟8 𝑅𝐶𝑂𝑂𝐻 + 𝑂𝐻 
𝑘8
⇋
𝑘8

′
 𝑃𝐵𝑆 +  𝑊 0.0060 47400 363.07 

Table  6 Polycondensation reaction schemes with rate constants, activation energy 

(Ea), and pre-exponential factor (A) 

 The esterification process at isothermal simulation results, the process 

operated at 50°C shows the extremely low rate of reaction as shown in Figure 32. 

Thus, it is evident that the synthesis temperature has to be over than 150°C to yield a 

high conversion after 400 minutes of operation. From Figure 33, shows the different 

factors in polycondensation process including the rate of change in polymer end 

groups, and properties at different temperature ranging from 210, 220, 230, 245°C. 
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(a) (c) 

  
(b) (d) 

Figure  32 The molecular specie profile in esterification process for 400 minutes at 

various temperature a) 50°C, b) 100°C, c) 150°C, and d) 200°C 

  
(a) (c) 

  
(b) (d) 

Figure  33 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process for 400 minutes under isothermal operation at various temperatures 
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3.2 Split range PID control 

 In this section, the split range PID control is applied in the synthesis of 

polybutylene succinate (PBS), under varying split range arrangements to analyze the 

dynamic behavior and control performance of the process under nominal condition 

and in the presence of white noise case. 

 The split range PID control with different split range arrangements are varied 

by shifting the controller output of the heating and cooling oil valve intersection with 

introducing a dead band size of 0.02 to stop valve movement after reaching the 

setpoint. These arrangements are illustrated in Figure 34 and are denoted as split rage 

A (0.24 – 0.26), split rage B (0.49 – 0.51), and split rage C (0.74 - 0.76). The main 

reason for the shifting of the controller output’s intersection point impacts the slope of 

each controller output and the sensitivity of the control response. The split range PID 

control is effectively tuned by minimizing ITAE tuning method. 

  
(a) (b) 

 
(c) 

Figure  34 Split range arrangement (blue line: cooling valve, red line: heating valve) 
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3.2.1 Nominal case 

 

Process 
IAE 

A B C 

Esterification 3719.88 3271.83 2276.00 

Polycondensation 6724.87 6663.46 6596.73 

Table  7 IAE performance criteria comparison of esterification and polycondensation 

process under split range PID control with various arrangements. 
 

 The tuning parameters of each of the proposed split range PID control 

arrangements for both esterification and polycondensation processes were found to 

have approximately similar values. Specifically, the esterification process, the tuning 

parameters were found to be K𝑐   = 0.02, τ𝐼  = 64.03, and τ𝐷 = 0.63. For the 

polycondensation process, were K𝑐 = 0.01, τ𝐼 = 7.90, and τ𝐷= 1.78. 

 At the end of the process, the final number of moles of each species under split 

range PID control (B arrangement) were determined as shown in Figure 35, SA = 

178.381 mol, BG = 0.002 mol, W = 10,551.340 mol, tSA = 1,624.245 mol, tBG = 

16.304 mol, bSA = 3,697.372, bBG = 2,968.993 mol, and bDBG = 1,532.350 mol. 

 Upon performing temperature control in the esterification process, it is clear 

that the temperature during the preheating phase could not be effectively controlled at 

135°C due to the high rate of reaction and heat release rates at the initial state. This 

resulted in a large overshoot, indicating that all split range PID control with varied 

arrangements were unable to maintain the temperature within the desired range as 

shown in Figure 36a. Additionally, a slight overshoot was observed during the heating 

phase of 225°C, which had a noticeable impact on the slow response of setpoint 

tracking. However, the C arrangement performed the least overshoot at controlled 
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temperature and the fastest setpoint tracking throughout all the arrangements due to 

the highest slope of the heating oil valve controller output, reflecting the higher speed 

in the valve manipulation. Split range PID control with C arrangement received the 

best control performance with the lowest IAE value of 2276.00. 

 In the temperature control of polycondensation process, split range PID 

control with C arrangement provided the lowest IAE value across all arrangements of 

6596.73 with the smallest overshoot in the heating phase as shown in Figure 38a. The 

final number average molecular weight and viscosity under split range PID control (C 

arrangement) were 13265.80 and 0.5544 dL/g, respectively. The split range control 

with the A arrangement showed better control performance in the cooling phase as the 

temperature slightly declined lower than the setpoint of 100°C compared to other split 

range arrangements. As the result of the higher slope of the cooling oil valve 

controller output. However, the overshoot in cooling procedure is not significantly 

affecting the chemical properties because of the low operating temperature. 

 The temperature profile is highly influencing the physical and chemical 

properties of the final product. Thus, tight temperature control during the synthesis is 

crucial in the operation. The split range PID control, which employs an A and B 

arrangement was observed to gradually decrease the heating oil flow rate, thereby 

leading to unable to control the temperature and the polymer molecular weight rapidly 

shooting at around 120 minutes as shown in Figure 37c.  
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Figure  35 Molecular specie profile in esterification process under split range PID 

control (B arrangement) 

  
(a) (c) 

  
(b) (d) 

Figure  36 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under split 

range PID control (A, B, and C arrangement) 
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(a) (c) 

  
(b) (d) 

Figure  37(a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under split range PID control 

  
(a) (c) 

  
(b) (d) 

Figure  38 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

split range PID control 
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3.2.2 White noise case 

 

Process 
IAE 

A B C 

Esterification 4308.96 3868.96 3001.82 

Polycondensation 6769.90 6717.38 6613.99 

Table  8 IAE performance criteria comparison of esterification and polycondensation 

process under split range PID control with various arrangements for noise case. 

 
Figure  39 The set of white noise interferes with the reactor temperature   

 

 The efficacy of split range PID control in the presence of white noise was 

tested. This is a significant aspect of the controller's operation since real processes are 

often subject to white noise interference. In the simulation with noise interference, a 

set of white noise was randomly generated at all time steps (450 minutes) with zero 

mean and a standard deviation of 1 as shown in Figure 39, resulting in a maximum 

deviation of roughly ±3°C from the actual value in order to corrupt the measurement 

of the reactor temperature. All split range PID arrangements exhibited an oscillatory 

response but the controller demonstrated the ability to drive the temperature to the 

setpoint and maintain the reactor temperature during the isothermal stage. 

 The split range PID (C arrangement) showed the lowest IAE value in both 

processes of 3001.82 and 6613.99, respectively. However, the control action of both 

valves was highly aggressive. Over-utility consumption was observed in Figure 41 

and 43. This reflects the tradeoff between tight temperature control and robustness. 
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Figure  40 Molecular specie profile in esterification process under split range PID 

control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  41 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under split 

range PID control with white noise 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 56 

  
(a) (c) 

  
(b) (d) 

Figure  42 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under split range PID control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  43 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

split range PID control with white noise 
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3.3 MPC control 

 Model predictive control (MPC) is an advanced control technique that was 

employed in this research. a multivariable model predictive control technique is 

carried out to manipulate the heating and cooling oil valve simultaneously with the 

optimal trajectories under given constraints. 

 The mathematical process model, as derived in Chapter 2 of this research, is 

implemented to predict the future state outputs over the prediction horizon (P). The 

set of manipulated variables in the manipulated horizon (M) is determined by solving 

a minimization problem based on a given objective function, which is including three 

terms. The first term represents the deviation of the temperature from the desired 

setpoint, while the second and third terms correspond to the change of manipulation 

of the heating oil valve and the cooling oil valve, respectively. 

 The control action can be effectively tuned by specifying the value of the 

prediction horizon (P), manipulated horizon (M), and weight matrices in each term of 

the objective function. A long time in the prediction and manipulated horizon can 

result in better control performance but requires more time to solve for the optimal set 

of manipulated variables. In this research, the prediction horizon is proposed to be 10 

time steps and the manipulated horizon is 3 time steps were found to be appropriate 

for both processes. However, determining the exact weight matrices that are optimal 

for a specific control task cannot be achieved through a systematic method. Generally, 

a lower value of weight tends to result in a more aggressive control action, which may 

trigger oscillatory responses in the system. Conversely, a higher weight value leads to 

a more conservative control action, which may prevent overshooting and guarantee 
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greater stability. Thus, the value of weight matrices should be guided by the control 

objectives and the characteristics of the system being controlled. 

 The weight matrices were chosen based on careful consideration of process 

characteristics to achieve stable and effective control. The weight matrices for the 

esterification process are setpoint deviation term (1), heating oil valve term (20), and 

cooling oil valve term (20). For the polycondensation process are setpoint deviation 

term (1), heating oil valve term (50), and cooling oil valve term (50). 

Objective function: 

min
𝑢(𝑘) … 𝑢(𝑘+𝑀−1)

∑ 𝑤𝑠𝑝(𝑇𝑠𝑝 − 𝑇𝑟(𝑡))2 + 𝑤𝐹ℎ𝑒𝑎𝑡(∆𝑢𝐹ℎ𝑒𝑎𝑡)2 + 𝑤𝐹𝑐𝑜𝑜𝑙(∆𝑢𝐹𝑐𝑜𝑜𝑙)2

𝑘+𝑃

𝑖=𝑘+1

 (3-3) 

While u = [
𝑢𝐹ℎ𝑒𝑎𝑡

𝑢𝐹𝑐𝑜𝑜𝑙
]  and 0 ≤ 𝑢𝐹ℎ𝑒𝑎𝑡 ≤  10, 0 ≤ 𝑢𝐹𝑐𝑜𝑜𝑙 ≤  10 

𝑤𝑠𝑝   Weight matrix of deviation of setpoint term 

𝑤𝐹ℎ𝑒𝑎𝑡 and 𝑤𝐹𝑐𝑜𝑜𝑙 Weight matrix of heating oil valve and cooling oil valve 

𝑃 and 𝑀  Prediction and Manipulated horizon 

𝑇𝑠𝑝   Temperature setpoint 

𝑇𝑟   Reactor temperature 

𝑢   Manipulated variables 

𝑘   Present time 
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3.3.1 Nominal case 

 

Process IAE Time (s) 

Esterification 1880.69 122.22 

Polycondensation 6425.58 45.44 

Table  9 IAE performance criteria comparison of esterification and polycondensation 

process under MPC control 

 Efficient temperature setpoint tracking throughout the esterification process 

for preheating, heating, and cooling phases is achieved through multivariable model 

predictive control, enabling the reactor temperature of the process to reach setpoints 

without overshoot and offset, as depicted in Figure 45a. The IAE performance criteria 

was 1880.69, and the simulation took 122.22 seconds to generate the entire result. 

 This control strategy has also demonstrated a good performance in the 

polycondensation process with an IAE of 6425.58, as shown in Figure 47a. The 

temperature reached the setpoint of 245°C at 105 minutes without overshoot and 

offset, and was then isothermally controlled for 200 minutes, followed by a cooling 

procedure at 305 minutes to reduce the temperature down to 100°C. The final 

molecular weight was recorded after the operation to be 13,257.23 and viscosity was 

0.55 dL/g. The results were taken 45.44 seconds to generate the entire simulation. 

 Model predictive control approach shows a relatively higher control 

performance compared to the split range PID control technique for all split range 

arrangements as lower IAE values. This control technique has been successful in 

addressing control issues that occurred in the processes under feed-back control such 

as a large overshoot and slow setpoint tracking, which can affect final product quality. 

Moreover, the utility consumptions were lesser than split range PID control.   
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Figure  44 Molecular specie profile in esterification process under MPC control 

  
(a) (c) 

  
(b) (d) 

Figure  45 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

MPC control 
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(a) (c) 

  
(b) (d) 

Figure  46 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under MPC control 

  
(a) (c) 

  
(b) (d) 

Figure  47 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

MPC control 
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3.3.2 White noise case 

 

Process IAE Time (s) 

Esterification 2472.37 364.61 

Polycondensation 6806.14 121.62 

Table  10 IAE performance criteria comparison of esterification and 

polycondensation process under MPC control with white noise 

 

  
(a) (b) 

Figure  48 (a) The set of white noise interferes with the reactor temperature, (b)The 

set of white noise interferes with the jacket temperature 

 In the simulation with noise interference, two sets of white noise were 

randomly generated at all time steps (450 minutes) with zero mean and a standard 

deviation of 1, resulting in a maximum deviation of roughly ±3°C from the actual 

value in order to corrupt the measurement of the reactor and jacket temperature before 

sending to the optimizer to perform computation as shown in Figure 48a and 48b. 

 The results of the study demonstrate the MPC strategy was able to efficiently 

track the reactor temperature setpoint and maintain isothermal control for all stages 

even when the process encountered white noise. This highlights the robustness and 

effectiveness of the MPC approach in regulating complex polymerization processes 

subject to noise and disturbance. However, the simulation time increased significantly 

for almost three times longer than the nominal case for both esterification and 

polycondensation processes. This was attributed to the fluctuation of temperature after 

the measurement, which complicated the task of the optimizer. 
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 In esterification process (the IAE value was 2472.37), the temperature was 

controlled to reach the setpoint of 225°C in the heating phase at 90 minutes as shown 

in Figure 50. For polycondensation process, the temperature reached the setpoint of 

245°C at 105 minutes (Figure 52). The reactor temperature of both processes reached 

the setpoint at the similar time as nominal case even white noise corrupted the control 

operation. The number average molecular weight and intrinsic viscosity were 

observed after the operation to be 13259.41 and 0.55 dL/g, respectively as shown in 

Figures 52c and 52d. These values are similar to the nominal case, this reflects the 

effectiveness and robustness of MPC control in chemical processes. 

 The result of the simulations indicates that during the isothermal control with 

white noise interference for both processes, the control action of the heating and 

cooling oil valve showed a lesser aggressive action than split range PID control (C 

arrangement) as depicted in Figures 41c and 41d for esterification process, and 43c 

and 43d for polycondensation process. While the MPC's optimizer was able to 

effectively reduce the aggressiveness of the control action, it was found that 

increasing the weighting matrices of the valves led to a more conservative approach. 

however, resulted in slower attainment of the setpoint of the controlled variable. 
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Figure  49 Molecular specie profile in esterification process under MPC control with 

white noise 

  
(a) (c) 

  
(b) (d) 

Figure  50 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

MPC control with white noise 
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(a) (c) 

  
(b) (d) 

Figure  51 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under MPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  52 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

MPC control with white noise 
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3.3.3 Model mismatch case 

Process IAE Time (s) 

Esterification 3009.59 128.74 

Polycondensation 10160.21 53.88 

Table  11 IAE performance criteria comparison of esterification and 

polycondensation process under MPC control with model mismatch 

 In the actual process, a well-formulated mathematical model may deviate from 

the process after a period of operation, Therefore, in this research uncertainty events 

involving model mismatch are considered. The overall heat transfer coefficient of 

esterification unit of 545 W/m2°C and polycondensation unit of 200 W/m2°C were 

reduced by 30% to simulate fouling in both reactors after a long period of processing 

to study the robustness of the control. 

 The esterification process, the dynamic response of the reactor temperature 

control for the model mismatch case under MPC takes a longer time to reach the 

setpoint of 225°C (approximately 15 minutes) as shown in Figure 54a resulting in a 

higher IAE of 3009.59 compared to the nominal case because of the lower heat 

transfer capability of the process. Despite a large difference between the process and 

the model, the controllers still show efficient control performance. 

 In polycondensation process, the reactor temperature was able to reach the 

setpoint of 245°C at 144 minutes which was 33 minutes slower than the nominal case 

as shown in Figure 57a. The cooling down procedure to 100°C was also impacted due 

to model mismatch. Specifically, the nominal case took 49 minutes to complete the 

cooling process, while the model mismatch caused a delay of 18 minutes, resulting in 

a total time of 67 minutes to reach the setpoint. The final molecular weight and 

viscosity were 13669.66 and 0.56 dL/g. 
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Figure  53 Molecular specie profile in esterification process under MPC control with 

model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  54 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

MPC control with model mismatch 
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(a) (c) 

  
(b) (d) 

Figure  55 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under MPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  56 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

MPC control with model mismatch 
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3.4 NNMPC control 

 A neural network model was deployed in model predictive control (MPC) and 

used a similar objective function as used in the first principle model predictive control 

for the optimization procedure. The NN model complexity is the crucial factor that 

affects prediction accuracy. Therefore, the neural network models with 2 hidden 

layers and a range of neurons in each hidden layer from 20, 50, 100, and 200 neurons 

were trained and deployed to simulate the process in several scenarios such as 

nominal case, the presence of white noise case, and model mismatch case in order to 

investigate the most appropriate complexity that provides a high control performance 

with good robustness. 

 To ensure that the control actions remained comparable, the MPC tuning 

parameters, such as the horizons and the weight matrices, were to be similar to those 

used in MPC. This allowed us to study the process dynamics under equivalent control 

actions. Specifically, the prediction horizon and manipulated horizon were set at 10 

and 3 time steps, respectively. For the weight matrices of the esterification process, 

the setpoint deviation term was set at 1, while the heating oil valve and cooling oil 

valve terms were set to 20. Meanwhile, in the polycondensation process, the setpoint 

deviation term was set at 1, while the heating oil valve and cooling oil valve terms 

were set to 50. 
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3.4.1 Neural network model training and validation 

  

Figure  57 MPC structure for NN model validation 

 50 sets of simulation data in each process were generated from a mathematic 

model based predictive controller to random set points. 80% of the data were 

randomly selected by the train-test split function, therefore, 40 sets were training data 

sets, 8 sets were prepared for validation, and the last 2 sets were testing data set. 

 After neural network models of each process are successfully trained, it is 

essential to validate their accuracy by testing models outside of the training data set to 

investigate the controllability while driving the controlled variable to the setpoints 

outside training data. This is accomplished by process dynamic testing (the validation 

structure is illustrated in Figure 57), the process model is represented by ordinary 

differential equations, whereby both optimal inputs (heating and cooling oil flow rate) 

are sent from mathematic model based predictive control to the process model and 

neural network model. During validation proceeded the actual values of the process 

were sent to update to the neural network model in every 10 time steps following the 

prediction horizon length. 

 The trained neural network model was validated across three different 

setpoints following the unique of the setpoints in the testing set. In esterification 
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process, the process was heated up to 189°C, then isothermally controlled at 162°C, 

then cooled down to 59°C. While polycondensation model was validated by cooling 

down and controlling the temperature at 117°C for the first stage and then heating up 

to 235°C in the consequence step. Then, both results from process and neural network 

model were compared with the neural network model by using mean square error 

(MSE) as shown in Eq.3-4. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑘  −  𝑦𝑛𝑛𝑘

)2

𝑛

𝑘=1

 (3-4) 

𝑦𝑘   State variables from mathematical process model 

𝑦𝑛𝑛𝑘
   State variables from NN model 

Neural network structures 
Mean square error (MSE) 

Esterification Polycondensation 

20 neurons 18.896 1.298 

50 neurons 4.958  0.904 

100 neurons 13.250 57.890 

200 neurons 21.366 20.518 

Table  12 Mean square error of different NN structure 

 The validation results of the esterification neural network model are indicated 

in Table 12, it reveals that 50 neuron NN structure had a good performance with low 

MSE value of 4.958, the neural network model with 100 neurons also performed well, 

with an MSE of 13.250. The result from both NN models could track the process 

result efficiently, however, the are slightly accumulated error at particular durations as 

shown in Figure 59 and 60. On the other hand, the NN structure with 20 and 200 

neurons showed a lower performance in reaching the test setpoint as shown in Figure 

58 and 61, with the MSE of 18.896 and 21.366, respectively. 
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Figure  58 Esterification NN model validation result (12 – 20 – 20 – 10) 

 

 

Figure  59 Esterification NN model validation result (12 – 50 – 50 – 10) 

 

 

Figure  60 Esterification NN model validation result (12 – 100 – 100 – 10) 
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Figure  61 Esterification NN model validation result (12 – 200 – 200 – 10) 

 In the section of polycondensation process, 20 and 50 neuron NN structure 

were deployed in validation procedure, it was found that the smaller size of NN 

structure is trend to be efficient due to the lower number of inputs as the MSE value 

of 1.298 and 0.904, respectively. The 100 and 200 neuron NN structure, the exceeded 

complexity of NN structure led to the declined of the control performance. the NN 

output for reactor temperature was unable to track the result from the ODE in the 

isothermal temperature control in some particular periods. Therefore, the MSE values 

are remarkably higher than the smaller structures. 

 

Figure  62 Polycondensation NN model validation result (12 – 20 – 20 – 10) 
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Figure  63 Polycondensation NN model validation result (12 – 50 – 50 – 10) 

 

Figure  64 Polycondensation NN model validation result (12 – 100 – 100 – 10) 

 

Figure  65 Polycondensation NN model validation result (12 – 200 – 200 – 10) 
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3.4.2 Nominal case 

 
NNMPC 

MPC 
20 50 100 200 

Esterification process 

IAE 2418.45 2104.77 2208.10 2734.14 1880.69 

Time (s) 13.45 16.61 16.67 29.56 122.22 

Polycondensation process 

IAE 8535.75 7239.28 7904.65 9107.39 6425.58 

Time (s) 16.62 19.05 21.80 53.68 45.44 

Table  13 IAE performance criteria and simulation time under various NNMPC 

controller in esterification and polycondensation processes 

 In both processes, all NN architectures in NNMPC performed a lower 

performance than mathematic model based MPC because the process is assumed to be 

represented by ordinary differential equations as the model in MPC optimizer. 

Therefore, the model is 100% matching the process leading to the highest control 

performance throughout all controllers. 

 The least complex 20 neuron NN structure showed a low performance as a 

result of insufficient complexity of the NN structure leading to a lower prediction 

accuracy of the model.  The esterification process is shown in Figure 67, the 

temperature was regulated to the setpoint of 135°C in preheating phase with an offset 

of around 2°C. Afterward, the temperature was gradually increased to the synthesis 

temperature setpoint of 225°C at 154 minutes. In polycondensation process under 20 

neuron NNMPC is shown in Figure 69, the temperature was controlled to reach the 

setpoint of 245°C with highly conservative action resulting in a high IAE of 8535.75. 

 The 50 neuron and 100 neuron NNMPC controllers demonstrated exceptional 

temperature control capabilities in the esterification process provided a low IAE value 
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of 2104.77 and 2208.10, respectively. The setpoints were reached in all stages without 

any offset as shown in Figures 71a and 75a. The isothermal control of 225°C during 

the heating phase was achieved in a remarkably short time of around 115 minutes, 

which is faster than 20 neuron NNMPC by up to 39 minutes. Additionally, the heating 

and cooling oil utilities were more sufficiently consumed compared to the process 

under MPC control. A similar trend is also found in the polycondensation process that 

showed an IAE value of 7239.28 when the process under 50 neuron NNMPC, the 

reactor temperature was regulated to the synthesis setpoint of 245°C, which reached 

the setpoint at 120 minutes. The heating oil valve regulated by 100 neuron NNMPC 

performed an aggressive action at the beginning, leading to reaching the target 

setpoint slightly slower as shown in Figure 77c. 

 When using the highest neural network model complexity, with 200 neurons 

in both the esterification and polycondensation processes, the highest IAE value was 

observed among the varied models tested, at 2734.14 and 9107.39, respectively. The 

high complexity caused overfitting, resulting in lower control performance. 

 The simulation time of the NNMPCs is significantly lower than the first 

principle MPC. The length of simulation time is highly influenced by the complexity 

of the NN model as indicated in Table 14, which in turn affects the optimization 

process that is carried out at each time step. In particular, the first principle MPC took 

122.22 seconds, while the 20 neuron NNMPC required only 13.45 seconds to 

complete the simulation. The NNMPCs are a highly efficient and promising approach 

for carrying out complex simulations, with considerably reduced computational time. 
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Figure  66 Molecular specie profile in esterification process under 20 neuron 

NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  67 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 20 

neuron NNMPC control 
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(a) (c) 

  
(b) (d) 

Figure  68 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  69 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

20 neuron NNMPC control 
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Figure  70 Molecular specie profile in esterification process under 50 neuron 

NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  71 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 50 

neuron NNMPC control 
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(a) (c) 

  
(b) (d) 

Figure  72 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 50 neuron NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  73 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

50 neuron NNMPC control 
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Figure  74 Molecular specie profile in esterification process under 100 neuron 

NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  75 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 100 

neuron NNMPC control 
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(a) (c) 

  
(b) (d) 

Figure  76 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 100 neuron NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  77 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

100 neuron NNMPC control 
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Figure  78 Molecular specie profile in esterification process under 200 neuron 

NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  79 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 200 

neuron NNMPC control 
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(a) (c) 

  
(b) (d) 

Figure  80 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 200 neuron NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  81 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

200 neuron NNMPC control 
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3.4.3 White noise case 

 
NNMPC 

MPC 
20 50 100 200 

Esterification process 

IAE 2690.58 2490.93 2536.45 3225.23 2472.37 

Time (s) 15.91 21.40 21.15 32.30 364.61 

Polycondensation process 

IAE 9465.43 7299.60 8012.91 10863.01 6806.14 

Time (s) 18.82 25.95 25.89 72.10 121.62 

Table  14 IAE performance criteria and simulation time under various NNMPC 

controller in esterification and polycondensation processes with white noise 

 

  
(a) (b) 

Figure  82 (a) The set of white noise interferes with the reactor temperature, (b)The 

set of white noise interferes with the jacket temperature 

 In the simulation with noise interference, the two sets of white noise were 

randomly generated at all time steps (450 minutes) with zero mean and a standard 

deviation of 1, resulting in a maximum deviation of roughly ±3°C from the actual 

value in order to corrupt the measurement of the reactor and jacket temperature as 

shown in Figures 82a and 82b. 

 The temperature control of the esterification process demonstrated a 

significant advancement in robustness when subjected to interference from white 

noise upon the implementation of NNMPC control. The control action of each valve 

under NNMPC exhibited a less aggressive action during maintaining the reactor 
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temperature isothermally compared to MPC control, resulting in a potential increase 

in utility usage efficiency through the use of NNMPC. The esterification process 

under 50 neuron NNMPC is shown in Figure 88, achieving an IAE value of 2490.93, 

equivalent to the MPC controller which exhibited the lowest IAE value across all 

controllers, as shown in Table 15. 

 For the polycondensation process, it was found that only the 50 neuron 

NNMPC demonstrated the necessary proficiency to effectively manage the effects of 

noise interference while maintaining isothermal reactor temperature control. As a 

result, this particular neural network structure exhibited the lowest IAE value when 

compared against other NN configurations tested. Although the 100 and 200 neuron 

NNMPC controllers were able to control temperature to the synthesis setpoint of 

245°C, their control action was notably aggressive as shown in Figures 94 and 98, 

leading to inefficient dynamic response. Specifically, the 100 neuron NNMPC was 

able to provide good performance in the nominal case, but when white noise 

corrupted the temperature measurement, it regulated aggressively in raising reactor 

temperature that wasting energy usage and poor dynamic. This reflects the NN model 

complexity impacts the robustness of the controller. 

 The 20 neuron NNMPC has the lowest complexity of the varied NN structure, 

this relatively simple structure proved to be not a limiting factor, as it has ability to 

learn the dynamic changes of the polycondensation process from the provided data. 

The simulation revealed that the optimal manipulated variables computed by the 20 

neuron NN model, could manage the noise interference and maintain isothermal 

control at the setpoints throughout the operation as shown in Figure 86. 
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Figure  83 Molecular specie profile in esterification process under 20 neuron 

NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  84 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 20 

neuron NNMPC control with white noise 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 88 

  
(a) (c) 

  
(b) (d) 

Figure  85 (a) OH end group (eq/106 g), (b) COOH end group (eq/106 g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  86 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

20 neuron NNMPC control with white noise 
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Figure  87 Molecular specie profile in esterification process under 50 neuron 

NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  88 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 50 

neuron NNMPC control with white noise 
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(a) (c) 

  
(b) (d) 

Figure  89 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 50 neuron NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  90 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

50 neuron NNMPC control with white noise 
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Figure  91 Molecular specie profile in esterification process under 100 neuron 

NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  92 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 100 

neuron NNMPC control with white noise 
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(a) (c) 

  
(b) (d) 

Figure  93 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 100 neuron NNMPC control with white noise 

  
(a) (c) 

  

(b) (d) 

Figure  94 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

100 neuron NNMPC control with white noise 
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Figure  95 Molecular specie profile in esterification process under 200 neuron 

NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  96  (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

200 neuron NNMPC control with white noise 
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(a) (c) 

  
(b) (d) 

Figure  97 (a) OH end group (eq/106 g), (b) COOH end group (eq/106 g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 200 neuron NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  98 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate of 

heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process under 

200 neuron NNMPC control with white noise 
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3.4.3 Model mismatch case 

 

 
NNMPC 

MPC 
20 50 100 200 

Esterification process 

IAE 3143.89 2892.41 3088.79 3745.34 3009.59 

Time (s) 14.63 18.25 21.49 28.53 128.74 

Polycondensation process 

IAE 11623.74 9795.90 10902.57 11504.63 10160.21 

Time (s) 19.79 22.48 25.26 39.86 53.88 

Table  15 IAE performance criteria and simulation time under various NNMPC 

controller in esterification and polycondensation processes with model mismatch 

 

 When the process encountered a model mismatch scenario, the dynamic 

response of temperature control for the model mismatch case takes a longer time to 

reach the setpoint because of the lower heat transfer capability of the process, thus, a 

higher IAE compared to the nominal case is obtained. The implementation of neural 

network model within MPC was simulated and it proved to be a significant 

improvement over the mathematic model MPC in terms of control performance. 

 The optimal manipulated variables were computed by NNMPC, driving the 

temperature to the desired setpoint faster than temperature control under MPC. 

Despite a large difference between the overall heat transfer coefficient of the process 

and the model, the controller still showed efficient control performance. Specifically, 

the esterification process under 50 neuron NNMPC control as shown in Figure 104 

reveals that the heating oil fed into the jacket was a moderately high flow rate and the 

control action was not extremely aggressive resulting in the minimum IAE value of 

2892.41 compared to the MPC’s control performance, which yielded an IAE value of 
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3009.59. This can be attributed to the fact that the neural network models were trained 

using a wide range of data, enhancing the ability to adapt its prediction and offer 

improved control performance in uncertain events. 

 The other NN structure arrangements provide reasonable performance, the 

lowest complexity model consisting of 20 neurons provided good control action with 

an IAE of 3143.89. However, the heating oil flow rate was not sufficient to achieve a 

faster increase in temperature as shown in Figure 100. On the other hand, the high 

complexity NN model of 100 and 200 neurons shows highly aggressive actions in 

manipulating the oil valves for certain durations resulting in unreasonable waste of 

utility supply as illustrated in Figures 108 and 112. The overfitting of the model led to 

lower prediction accuracy that impacted the energy usage efficiency. 

 In polycondensation process, synthesis temperature and time are the main 

factors that impact the polymer properties. When the process encounters with model 

mismatch scenario, the temperature slowly rises to the setpoint and it takes a longer 

time in the synthesis process due to fouling in the reactor, thus the polymer properties 

exceed the specifications than the nominal case. From the simulations, the 

polycondensation process under 50 neuron NNMPC shows that the number average 

molecular weight rose up to 14,483 at the end of the process as a result of the optimal 

manipulated variable of heating oil flow rate being insufficient leading to the 

temperature slowly reached the setpoint of 245°C at around 220 minutes of the 

operation as shown in Figure 106. 
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Figure  99 Molecular specie profile in esterification process under 20 neuron 

NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  100 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

20 neuron NNMPC control with model mismatch 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 98 

  
(a) (c) 

  
(b) (d) 

Figure  101 (a) OH end group (eq/106 g), (b) COOH end group (eq/106 g), (c) 

Number average molecular weight ( �̅�𝑛 ), (d) Intrinsic viscosity(dL/g) during 

polycondensation process under 20 neuron NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  102 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process 

under 20 neuron NNMPC control with model mismatch 
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Figure  103 Molecular specie profile in esterification process under 50 neuron 

NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  104 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

50 neuron NNMPC control with model mismatch 
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(a) (c) 

  
(b) (d) 

Figure  105 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 50 neuron NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  106 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

50 neuron NNMPC control with model mismatch 
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Figure  107 Molecular specie profile in esterification process under 100 neuron 

NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  108 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

100 neuron NNMPC control with model mismatch 
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(a) (c) 

  
(b) (d) 

Figure  109 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 100 neuron NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  110 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

100 neuron NNMPC control with model mismatch 
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Figure  111 Molecular specie profile in esterification process under 200 neuron 

NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  112 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

200 neuron NNMPC control with model mismatch 
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(a) (c) 

  
(b) (d) 

Figure  113 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 200 neuron NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  114 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

200 neuron NNMPC control with model mismatch 
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3.5 Multi-NNMPC control  

 Multiple neural network model based predictive control (Multi-NNMPC). 

This method aims to improve the performance of the previous control method which 

was based on a single neural network model. The single MM model was not able to 

learn the dynamic behavior of the entire polymerization process accurately due to the 

complexity of the process. To overcome this issue, the single model was divided into 

three models, with lower complexity, to handle different parts of the process including 

esterification and polycondensation. By doing so, the control performance can be 

improved, and the simulation time can be shortened. 

 The NN models were designed with two hidden layers, and the number of 

neurons in each layer varied by two different configurations. One with 10 neurons per 

layer, and the other with 20 neurons per layer. These models were deployed in MPC 

to control the polymerization processes, and their control performance was compared 

to a single model with 50 neurons and a standard MPC control. 

 In the optimization procedure, the similar objective function as the first 

principle MPC is implemented in the reactor temperature control procedure, and each 

neural network model is assigned for a particular duration. For the esterification 

process, the preheating NN model (model 1-1) is used for the first 100 minutes, 

followed by the heating NN model (model 1-2) is in charge from 100 to 300 minutes, 

and the cooling NN model (model 1-3) is activated towards the end of the operation. 

In the polycondensation process, the heating NN model (model 2-1) controls the 

process from 0 to 150 minutes, then the isothermal control NN model (model 2-2) for 

150 to 300 minutes, and finally, the cooling model (model 2-3) takes over from 300 
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minutes until the temperature reaches the final setpoint.  The tuning parameters of 

Multi-NNMPC, including horizons, and weight matrices, remain the same as previous 

simulations. 

3.5.1 Nominal case 

 
Multi-NNMPC NNMPC 

MPC 
10 20 50 

Esterification process 

IAE 2140.08 2030.52 2104.77 1880.69 

Time (s) 8.75 10.13 16.61 122.22 

Polycondensation process 

IAE 6652.24 6952.12 7239.28 6425.58 

Time (s) 5.03 10.91 19.05 45.44 

Table  16 IAE performance criteria and simulation time under various Multi-NNMPC 

controller in esterification and polycondensation processes 
 

 In esterification process, 20 neuron Multi-NNMPC performed the best and 

achieved precise temperature control to the setpoints without overshoot or offset, with 

an IAE value of 2030.52 as indicated in Table 17. The implementation of reduced NN 

models of 10 neurons shows a slightly lower performance that provided a higher IAE 

of 2140.08, this reflects the improvement of the esterification process control ability 

through 20 neuron Multi-NNMPC beyond a single NN model predictive controller 

(50 neuron NNMPC) that gained IAE of 2104.77. From Figure 120c illustrates the 

controlled valve action under 20 neuron Multi-NNMPC, indicating that more heating 

oil volume was supplied during the heating procedure than the control under 10 

neuron Multi-NNMPC as shown in Figure 116c. This resulted in a rapid increase in 

temperature up to the setpoint of 225°C. 
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 The implementation of Multi-NNMPC into the polycondensation process 

shows more appropriate usage of reduced complexity of NN model because the 

number of inputs is lesser than the prior process, thus, 10 neurons per hidden layer are 

sufficient for dynamic prediction in particular durations. The control action of heating 

oil flow under 10 neuron Multi-NNMPC, it is clear that the controller performed the 

heating oil supply with a highly smooth action and provided a higher efficiency 

(IAE=6652.24) as illustrated in Figure 118c. While 20 neuron NNMPC performed 

highly aggressive control action at heating and cooling oil valve movement because 

the lesser amount of training data led to a higher overfitting probability of NN model. 

 The reduced model shows a remarkable improvement in simulation time when 

compared to a single neural network model with high complexity implemented in 

NNMPC. This improvement is attributed to the reduced model's ability to easily 

compute outputs which is highly beneficial during the optimization procedure. 

 The results in Table 17 show that the esterification and polycondensation 

processes took significantly less time to simulate using the reduced model with 10 

neurons, compared to the larger neural network model with 50 neurons implemented 

in NNMPC. Specifically, the esterification process took 8.75 seconds to complete the 

simulation under the 10 neuron Multi-NNMPC, while it took 16.61 seconds under the 

50 neuron NNMPC. Similarly, the polycondensation process took 5.03 seconds to 

complete the simulation under the 10 neuron Multi-NNMPC, while it took 19.05 

seconds under the 50 neuron NNMPC. This highlights the superior computational 

efficiency of the reduced model. 
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.  

Figure  115 Molecular specie profile in esterification process under 10 neuron Multi-

NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  116 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

10 neuron Multi-NNMPC control 
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(a) (c) 

  
(b) (d) 

Figure  117 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 10 neuron Multi-NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  118 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process 

under 10 neuron Multi-NNMPC control 
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Figure  119 Molecular specie profile in esterification process under 20 neuron Multi-

NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  120 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

20 neuron Multi-NNMPC control 
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(a) (c) 

  
(b) (d) 

Figure  121 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron Multi-NNMPC control 

  
(a) (c) 

  
(b) (d) 

Figure  122 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process 

under 20 neuron Multi-NNMPC control 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 112 

3.5.2 White noise case 

 
Multi-NNMPC NNMPC 

MPC 
10 20 50 

Esterification process 

IAE 2497.98 2457.19 2490.93 2472.37 

Time (s) 12.40 18.59 21.40 364.61 

Polycondensation process 

IAE 6842.63 8325.03 7299.60 6806.14 

Time (s) 7.97 26.25 25.95 121.62 

Table  17 IAE performance criteria and simulation time under various Multi-NNMPC 

controller in esterification and polycondensation processes with white noise 
 

 The study found that the multiple neural network model predictive control was 

highly efficient in controlling reactor temperature, particularly in term of robustness, 

its ability to handle the interference from white noise during the esterification 

reaction. The reactor temperature control under Multi-NNMPC with 10 and 20 neuron 

structure could handle the noise and performed highly stable temperature control 

throughout the operation, as illustrated in Figures 124 and 128. This improved control 

performance with the utilization of 20 neuron Multi-NNMPC provided the IAE value 

of 2457.19. Meanwhile, the 10 neuron Multi-NNMPC provided a slightly higher IAE 

value of 2497.98 but its reduced NN structure offered a significantly shorter 

simulation time of only 12.40 seconds. 

 The excellent performance of the 10 neuron Multi-NNMPC in controlling 

reactor temperature was found during the polycondensation process. The control 

efficiency is demonstrated in Figure 126, where it can be observed that the 10 neuron 

Multi-NNMPC maintains the synthesis setpoint of 245°C with a remarkably low IAE 

value of 6842.63, outperforming all other neural network models tested. In addition, 
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the 10 neuron Multi-NNMPC exhibits high-speed optimization ability, with the entire 

simulation completed in only 7.97 seconds, indicating its potential for efficient and 

rapid control in polycondensation processes. 

 The application of the 20 neuron Multi-NNMPC in the nominal case of the 

polycondensation process exhibited aggressive control action, while the temperature 

reach to the setpoint of 245°C. However, when the process was subjected to white 

noise, overfitting of the NN model became an issue, resulting in an inability to 

maintain the target temperature. Specifically, due to the overfitting, the heating oil 

flow rate supplied into the jacket was exceeded, leading to an undesirable increase in 

the reactor temperature up to 265°C as illustrated in Figure 130. This highlights the 

potential impact of NN model overfitting on the robustness of the controller. 

  The simulation demonstrated that the performance of the 20 neuron Multi-

NNMPC in controlling the polycondensation process was significantly affected by the 

presence of white noise. When temperature measurements were corrupted by noise, 

the control system failed, resulting in a substantial increase in both the number 

average molecular weight and intrinsic viscosity of the product. Figure 129 provides a 

clear illustration of the extent of this effect, with the number average molecular 

weight and intrinsic viscosity rising to 16451.50 and 0.63 dL/g, respectively. 
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Figure  123 Molecular specie profile in esterification process under 10 neuron Multi-

NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  124 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

10 neuron Multi-NNMPC control with white noise 
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(a) (c) 

  
(b) (d) 

Figure  125 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 10 neuron Multi-NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  126 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process 

under 10 neuron Multi-NNMPC control with white noise 
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Figure  127 Molecular specie profile in esterification process under 20 neuron Multi-

NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  128 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

20 neuron Multi-NNMPC control with white noise 
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(a) (c) 

  
(b) (d) 

Figure  129 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron Multi-NNMPC control with white noise 

  
(a) (c) 

  
(b) (d) 

Figure  130 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in polycondensation process 

under 20 neuron Multi-NNMPC control with white noise 
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3.5.3 Model mismatch case 

 
Multi-NNMPC NNMPC 

MPC 
10 20 50 

Esterification process 

IAE 2886.75 2795.99 2892.41 3009.59 

Time (s) 7.90 9.98 18.25 128.74 

Polycondensation process 

IAE 9226.62 9277.59 9795.90 10160.21 

Time (s) 5.39 11.66 22.48 53.88 

Table  18 IAE performance criteria and simulation time under various Multi-NNMPC 

controller in esterification and polycondensation processes with model mismatch 
 

 NNMPC has proven to be an exceptional control strategy, demonstrate 

remarkable proficiency in managing model mismatch scenarios that surpasses 

mathematic based MPC techniques. The advanced technique of NNMPC, particularly 

the Multi-NNMPC, exhibits the next level of improvement in the control 

performance, delivering rapid setpoint tracking capabilities while demonstrating 

higher levels of robustness. 

 In esterification process, all NN configuration of Multi-NNMPC provided a 

better control performance than 50 neuron NNMPC. Both of Multi-NNMPC with 10 

and 20 neurons performed the temperature control to the setpoints within a shorter 

duration than NNMPC, and resulting in a substantially lower IAE of 2886.75 and 

2795.99, respectively. 

 The polycondensation process, the synthesis temperature was driven to the 

setpoint of 245°C by using 10 neuron Multi-NNMPC. The temperature was 

successfully achieved within 147 minutes, representing a significant improvement 
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over the control under 50 neuron NNMPC in model mismatch condition that reached 

the setpoint at 217 minutes, as illustrated in Figure 134. A large difference in time 

required to achieve setpoint was a consequence of the 50 neuron NNMPC exhibited a 

protracted temperature ramp-up period, particularly in the range of 240-245°C where 

only increasing 5°C, taking a total of 72 minutes (from 145 to 217 minutes) to reach 

the setpoint.  

 The performance of 20 neuron Multi-NNMPC was comparable to other 

approaches as shown in Figure 138, but it exhibited highly aggressive control action 

during the final stages of the operation, leading to substantial jacket temperature 

fluctuations and energy wastage. This issue was attributed to overfitting of the neural 

network model. 

 The application of Multi-NNMPC with the proposed configuration has proven 

to be highly effective in mitigating the issue of a prolonged temperature ramp-up 

when model mismatch occurs, leading to faster and more efficient attainment of the 

target reactor temperature and superior control performance. By leveraging advanced 

machine learning techniques and neural networks, Multi-NNMPC is able to 

accurately predict system behavior and adapt in real-time to changing conditions, 

enabling precise and effective control even in challenging operating environments. 
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Figure  131 Molecular specie profile in esterification process under 10 neuron Multi-

NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  132 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

10 neuron Multi-NNMPC control with model mismatch 

 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 121 

  
(a) (c) 

  
(b) (d) 

Figure  133 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d)Intrinsic viscosity (dL/g) during polycondensation 

process under 10 neuron Multi-NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  134 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

10 neuron Multi-NNMPC control with model mismatch 
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Figure  135 Molecular specie profile in esterification process under 20 neuron Multi-

NNMPC control with model mismatch 

  
(a) (c) 

  
(b) (d) 

Figure  136 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in esterification process under 

20 neuron Multi-NNMPC control with model mismatch 
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(a) (c) 

  
(b) (d) 

Figure  137 (a) OH end group (eq/106g), (b) COOH end group (eq/106g), (c) Number 

average molecular weight (�̅�𝑛), (d) Intrinsic viscosity(dL/g) during polycondensation 

process under 20 neuron Multi-NNMPC control with model mismatch 

    
(a) (c) 

  
(b) (d) 

Figure  138 (a) Reactor temperature (°C), (b) Jacket temperature (°C), (c) Flow rate 

of heating oil (L/s), (d) Flow rate of cooling oil (L/s) in Both processes esterification 

process under 20 neuron Multi-NNMPC control with model mismatch 
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Chapter 4 

Conclusions 

 This research focuses on the use of data-driven technology for process control, 

specifically by implementing a neural network model in model predictive control for 

temperature control during the synthesis of polybutylene succinate (PBS) through 

esterification and polycondensation processes. The data-driven control techniques of 

NNMPC, and Multi-NNMPC control techniques were compared to split range PID in 

terms of their control performance and robustness under nominal and uncertain 

conditions, using integral absolute error (IAE) as a metric in the performance 

comparison. 

The reactor temperature is designed to be controlled by direct feed heat 

transfer fluid of heat transfer oil into the jacket of the reactor, this technique has a 

huge utility consumption during the operation. In order to achieve both of a high level 

of control performance and efficient energy usage, it is crucial to ensure that each 

controller is sufficiently robust to handle a wide gap of setpoint tracking and 

interference of noise.  This can be accomplished by sufficient robustness of each 

controller to reduce excessive utility consumption.  

 The split-range PID control method is employed with the sampling time of 1 

minute. The simulation results indicate that the reactor temperature was successfully 

regulated with a large overshoot while reaching the setpoints, and the highly excess 

heating oil was fed into the jacket to raise the temperature up to the setpoints. The 

overshoot could be reduced by increasing the slope of the heating oil output line in 

order to increase sensitivity of the heating oil valve manipulation. However, highly 
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aggressive control action was found when noise interfered during the operation, which 

reflects inefficient utility consumption under split-range PID control. This result 

highlights the tradeoff between the temperature control performance and robustness, 

as reducing overshoot results aggressive control action in response to noise corrupting 

the temperature measurement. 

 Neural network model predictive control (NNMPC) was implemented in both 

processes. Specifically, the feed-forward neural network architecture (FFNN) was 

chosen to deploy in model predictive controller. FFNN working principle is related to 

the process dynamic model, since the future state of a system for all time step in the 

operation through a model can be achieved by having all initial states and the system 

inputs without the influence of the previous outputs. 

 The feed-forward neural network models featuring a varying number of 

neurons in two hidden layers from 20, 50, 100, and 200 neurons were trained to study 

the process dynamic under different complexity. In the proposed neural network 

architectures of the processes, the inputs include all molecular species, the reactor and 

jacket temperatures, and the heating and cooling oil flow rates. Some variables are 

difficult to measure accurately in practical applications. Therefore, the 

implementation of this control technique in a real plant needs to incorporate an online 

state estimation technique into the controller, such as an extended Kalman filter. 

However, the model needs to be simplified to enhance the estimation performance but 

certain molecular species, particularly the monomer concentration, should be retained 

as inputs. This is due to the concentration is directly affected to the kinetic of the 

reaction, specifically the reaction rate, and the amount of heat released or absorbed 

during reaction proceed. Monomer concentration over time could be analyzed by 
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Raman spectroscopy, this method offers a simple and accurate of process monitoring 

for semi-batch polymerization. 

 In the nominal operation, the study reveals that MPC proved to be efficient in 

temperature control due to the model is assumed to be matched the process 100% 

performed the IAE value of 1880.69, while NNMPC which has the NN model that 

was trained by using the wide range of process dynamic data from the conventional 

MPC.  When the simulation proceeded without any uncertain event, the NNMPC with 

50 neuron configuration performed outstanding control performance across all 

varying structures the process, the temperature could track the change of the setpoint 

efficiently without overshoot or offset provided the IAE value of 2104.77. However, 

it was observed that the 200 neuron NNMPC demonstrated more aggressive control 

action, likely due to overfitting of the neural network model, while the 20 neuron 

NNMPC model exhibited slight offset caused by insufficient neurons in the NN 

model. 

 The simulation included the interference of white noise to investigate control 

performance after the reactor and jacket temperature measurements were disturbed. 

50 neuron NNMPC showed greater robustness than MPC, as the manipulated 

variables of heating and cooling oil flow rate were smoothly regulated to maintain 

isothermal temperature after the temperature fluctuated. Meanwhile, MPC exhibited 

aggressive control action, constantly switching both heating and cooling valves on 

and off throughout the operation, leading to excessive consumption of utility supply. 

However, MPC performed slightly better performance by obtaining a slightly lower 

IAE value than 50 neuron NNMPC (IAE: 50 neuron NNMPC = 2490.93 and MPC = 

2472.37). 
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 A scenario of model mismatch was simulated by the presence of fouling in the 

reactor, leading to a significant decline in heat transfer capability, this was achieved 

by reducing the overall heat transfer coefficient by 30%. The neural network models 

trained on nominal operation data were utilized to control the process with fouling. 

The NNMPC, consisting of 50 neurons, excelled in handling the mismatch event by 

driving the temperature to the setpoints faster than MPC after the valves were 

smoothly regulated. 50 neuron NNMPC provided IAE value of 2892.41 while MPC 

was 3009.59. No overshoot or offset is observed, demonstrating its efficient ability to 

maintain isothermal control of the process. Furthermore, NNMPC exhibited a lower 

IAE value compared to MPC, the neural network model's adaptability in uncertain 

events, resulting in superior control performance. The control performance under 

model mismatch could be enhanced by data augmentation to cover various scenarios 

or events, leading to reduce the discrepancy between the model and process. 

 The neural network model enhanced optimization speed, with 50 neuron 

NNMPC model performed up to 5 times faster in optimization than the standard 

mathematical model under nominal conditions. Furthermore, utility consumption was 

significantly reduced compared to both split-range PID and MPC, even in cases where 

the processes encountered white noise or model mismatch scenarios. These results 

clearly highlight the benefits of incorporating a neural network model in the control 

strategy. 

 The synthesis of polybutylene succinate (PBS) is a complex and highly 

nonlinear chemical process, exhibiting distinct dynamic responses during each of its 

operational periods. Therefore, multiple NN models were developed, with each model 

specifically address the unique characteristics of three particular operational periods 
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for better in describing the chemical processes or well duplicate the control action of 

MPC. To compare the models' performance, each neural network model was trained 

with reduced complexity of 10 and 20 neurons, the esterification process under 20 

neurons Multi-NNMPC showed a slightly higher control performance than 50 neuron 

NNMPC in all scenarios with 2 times reduced simulation time. In the 

polycondensation process under Multi-NNMPC, the deployed neural network models 

with 10 neuron structure exhibited the most appropriate control action. This is 

because it has a lesser number of inputs, thus, 10 neurons in each hidden layer are 

sufficient to precisely learn the dynamic data without causing model overfitting. The 

simpler NN structure achieved 3 times faster optimization procedure beyond 50 

neuron NNMPC. Moreover, the protracted temperature ramp-up period problem when 

temperature almost reaches the setpoints was resolved. 

 This study presents a useful method for obtaining highly precise chemical 

process models without having to derive mathematical models or specifically black 

box models. This method reflects the effectiveness of data-driven technology in 

process control and highlights the potential of machine learning with improving 

control performance and robustness. The NNMPC approach could apply to control 

other processes that have complex kinetic and strong reactions. Furthermore, other 

chemical process equipment such as distillation column control that is related to a 

highly complex model because of deviating substance thermodynamic properties that 

can be defined by using NN model and employed in NNMPC to control the column 

temperature profile for obtaining desired purity. 
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APPENDIX 

 

Figure  139 Succinic acid simulation data 

 

Figure  140 Butylene glycol simulation data 

 

Figure  141 Water simulation data 
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Figure  142 Succinic acid end group simulation data 

 

Figure  143 Butylene glycol end group simulation data 
 

 

Figure  144 Succinic acid repeating unit simulation data 
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Figure  145 Butylene glycol repeating unit simulation data 

 

Figure  146 Dibutylene glycol repeating unit simulation data 

 

Figure  147 Reactor temperature of esterification process simulation result 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 132 

 

Figure  148 Jacket temperature of esterification process simulation result 

 

Figure  149 Heating oil flow rate of esterification process simulation result 

 

Figure  150 Cooling oil flow rate of esterification process simulation result 
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Figure  151 Hydroxyl end group simulation result 

 

Figure  152 Carboxyl end group simulation result 

 

Figure  153 Butylene glycol simulation result 
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Figure  154 Water simulation result 

 

Figure  155 Reactor temperature of polycondensation process simulation result 

 

Figure  156 Jacket temperature of polycondensation simulation result 
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Figure  157 Heating oil flow rate of polycondensation process simulation result 

 

Figure  158 Cooling oil flow rate of polycondensation process simulation result
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