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1. Background and Signification of the Research Problem

As smartphones are the part of people’s everyday life over the last few years,
one of the most useful services in this story is location-based service. Location-based
service is a service that uses geospatial data and content preference combined to
provide suitable information to users based on their location [1]. This service has
been used vastly in many applications such as turn-by-turn navigation, shopping mall
advertising, games and entertainment (AR/VR), social network and assistive healthcare
systems, etc. which are delay-sensitive applications and require low latency.
Positioning is crucial to LBS and is mostly supported in both outdoor environments
handled by GPS services and indoor environments handled by indoor location
services.

Several techniques have been proposed for indoor localization recently
including the techniques that do not require the pre-installation of infrastructure
which is by far more popular due to cost saving and accuracy [2]-[3]. The most
popular technique that does not require the pre-installation of infrastructure is the
Wi-Fi fingerprint technique [4]. Wi-Fi fingerprints can achieve high accuracy by using
the assumption that each location has a specific signal characteristic like fingerprints
which can be used to represent that location. There are two phases in this
technique: the training phase and localizing phase. In the training phase, a site survey
is performed to construct fingerprints of all targeted positions and store them in the
database. In the localizing phase, the user’s Wi-Fi fingerprint is compared to all
fingerprints in the database by using a localizing algorithm and then returns the
user’s position as a result.

When it comes to large-scale area scenarios like multi-floor building
environments, the size of fingerprints can be massive due to the high resolution of
location tags indicating which position on which floor of which building. As a result,
the indoor localization system contains a large size of fingerprints which causes an
increase in processing time usage of the localization process affecting overall
performance [5]. This problem results from cloud-centric architecture deployment

which is a conventional architecture used in the present application. To illustrate,



indoor localization only needs the fingerprint data of a focused area such as a
building or a building cluster in localization; all the large fingerprint data stored in the
server containing unnecessary fingerprints are processed in localization leading to a
long processing time problem. Moreover, the service is usually deployed on
computational resources on the cloud which is far away from users resulting in a
long delay, large workload, and low scalability [6]. To sum up, the current
architecture can cause an increase in response time including propagation delay and
localization processing time.

Edge computing is a distributed computing paradigm bringing computational
resources and data storage closer to end users at the edge of the network which can
provide new opportunities for efficient operation such as reducing latency and saving
bandwidth. Edge computing could be applied to enhance the performance of indoor
localization in terms of latency by distributing services close to the user and in terms
of processing time by implementing only necessary data according to data locality.

Although, deploying the service on the edge server at each building can solve
the problems magnificently, in a real situation, not every building has enough
resources or is the potential to place an edge server due to cost limits. When it
comes to edge computing implementation, the edge node placement strategy is the
crucial part to manage how to divide the workload for edge nodes and where to put
them. There are several edge node placement strategies proposed in the past few
years which mostly focus on optimizing the algorithm to balance targeted metrics
such as latency, energy consumption, resource utilization, cost, workload, etc. [7]-[8].
In indoor localization in large-scale areas, the size of fingerprint data of each building
is different. Therefore, the time used in the localization process varies at different
buildings. Misplaced services with varied building fingerprint data can increase the
size of the fingerprint at each node resulting in long processing time and poor
network traffic. Moreover, usage quantity varies depending on each location in the
system [9]. The absence of this consideration of usage quantity results in misplacing
service at an infrequently used node. There is no edge node placement strategy
considering the difference in time used in processing and usage quantity at each

node which impacts the performance of the positioning service.



To overcome the above-mentioned limitation, in this paper, we proposed an
edge service placement optimization framework aiming to achieve better latency,
cost, and response time including localization processing time and propagation delay
by considering data locality dependency and historical usage quantity data or Point
of Interest (POI). We developed a framework for solving edge node placement and
used indoor localization service as a use case example in testing. In addition, our
proposed placement optimization could be applied to not only positioning services

but also services whose performance relies on data locality and data size.

1.1. Design Goals

This research has been studied to propose an edge node placement framework
for location-based service with the restriction of real-time response. The optimal
placement solution needs to divide the workload and allocate the service at a
suitable size and place it at the optimal location to satisfy the requirement of LBS.
The optimization objectives include the overall cost of edge node network
deployment, the number of edge nodes deployed in the network, and the overall

response time including propagation delay and localization processing time.

1.2. Scope and Assumption
The scope of this thesis is limited to the followings:

- This thesis considers optimizing the placement strategy based on static
placement optimization using the input information only once.

- In terms of the computational complexity of each task, the size of fingerprint
data has been used to calculate the size of time and conclude the processing
time.

- This thesis focuses on achieving the optimized service response time
including localization processing time ad propagation delay using the average
value.

- This thesis did not aim at improving any localization methods.



In order to evaluate the proposed framework, the framework was
implemented as modules by using Python. The network environment is
formed by using the NetworkX library.
- This thesis doesn’t concern service replica; each service presents at only one
node.
- The issue of node and link failures is not taken into consideration in this
thesis.
- All server resources are only reserved for the target service in service
placement.
1.3. Academic Values
1. Edge node placement optimization framework for location-based services can
be used in not only positioning services but also services whose performance relies
on data locality and data size.
2. Edge node placement optimization framework can be tailored to the
specification of targeted applications by adjusting the weights of metrics used in

optimization.

1.4. Process of Thesis

1. Study and research related topics about fingerprint-based indoor localization

2. Study and research related topics about edge node placement strategy

3. Preliminary experiment

3. Design the edge service placement framework

4. Framework development

5. Design the edge service placement experiments using indoor localization as a
use case

6. Prepare the simulated network topology data set

7. Test the experiment on the simulated input data from 6.

8. Analyze and compare the results from 7.

9. Prepare the real-world large-scale data set

10. Test the experiment on the real-world large-scale data set from 9.



11. Analyze and compare the results from 10.

12. Summarize and discuss the experimental results

1.5. Publication

“Edge Service Placement Optimization for Location-Based Service” by Karnkitti
Kittikamron, Natthanon Manop, Adsadawut Chanakitkarnchok, and Kultida
Rojviboonchai published and presented at the international academic conference
named “The 20th International Joint Conference on Computer Science and Software

Engineering (JCSSE2023)” at Phitsanulok, Thailand on June 28" — July 1 2023.

1.6. Thesis Organization

The rest of the dissertation is organized as follows. The next chapter describes the
theoretical backeround of location-based service, indoor localization, and edge node
placement strategy. This chapter also includes the literature review contributed to
this thesis. Chapter 3 explains the research methodology including the problem
formulation, the architecture of the proposed framework, and also each module of
the proposed framework. In Chapter 4, we evaluate the performance of our
proposed framework compared with the previous approaches. Finally, Chapter 5

concludes the thesis and discussion for further research.



2. Theoretical Background and Literature Review
2.1. Location-Based Services
There are three basic components in the service: positioning, which is the part
that determines the user’s location, modeling which is the part that models context
and characteristics adapted to the location of users and communication which is the

part that provides relevant information from LBS applications to the users [10].

2.2. Indoor Localization

Several techniques have been applied for indoor localization [11]-[12]. The most
popular technique is the Wi-Fi fingerprint. Due to no additional infrastructure
installation required and availability in commercial smartphones, Wi-Fi could offer
more ease of use and high accuracy, even though time and manpower are taken for
site surveys. In the large-scale area, long processing time and accuracy are common
problems. Many indoor localization techniques using area classification have been
proposed aiming to deal with out-of-scope area data which can cause computational
resource waste.

Adaptive Indoor Localization System for Large-Scale Area [13] proposed an
indoor localization system for the large-scale area containing three main parts. First,
an area classification is designed for identifying an area of the user's queries by
filtering out the unknown data and out-of-scope area queries sent from outdoors and
locating a building of the queries. Second, a fingerprint-based indoor localization
algorithm uses the information from the previous part to localize the exact location
of those queries. Third, the missing-BSSID detector algorithm handles the changing
environment by detecting the missing BSSID from queries and updating the database.
The proposed indoor localization system can achieve high accuracy and reduce the
overall processing time in changing environments. Nevertheless, the system shows
that the size of fingerprint data can affect the fingerprint-based indoor localization
algorithm processing time resulting from cloud-centric architecture which also affects

service propagation delay.



2.3. Edge Node Placement Strategy

Madamori et al. [14] proposed a cost-effective edge node placement in smart
cities that opportunistically leverage public transit network strategy aiming to
minimize overall delivery latency within a budget. Not only single-objective
optimization has been studied, but there are also many multiple-objective
optimizations have been proposed for optimizing more than one metric such as
latency, resource utilization, cost, energy consumption, QoE, etc.

EdgeOn is a framework tailored to a 5G-EC ecosystem based on three key
aspects such as cost, number of edge nodes, and capacity usage ratio [15]. The
framework was developed by ensuring ultra-low latency demand compliance to
address the strict latency and reliability demands of 5G. The main module of the
framework works with three core processing stages and an output stage. First, Input
Processing takes network topology as input and normalizes it to meet the 5G use
case requirements. Second, to handle real data input, Scenario Generation
implemented a network emulator to provide test scenarios. Next, the Placement
Optimization phase is the key of the framework to return an optimized placement
solution comprising the Pre-Optimization module which aims to reduce the problem
complexity by separating the region of interest and omitting isolated service
consumer nodes, Placement Strategy module implements two different greedy and
scored algorithms to greedily pair service consumer and edge (service provider)
nodes considering consumer requirements, network usage, edge node capacities, etc.
and Solution Space Exploration module proceeding the pairing algorithm conforming
the strictly constrained and scoring solution considering multi-objective to determine
the Pareto front out of NP-hard problems. In the Solution Space Exploration module,
the Hybrid Simulated Annealing technique was applied combining the concept of
Traditional Simulated Annealing and Tabu Search algorithm to obtain a strong ability
to escape local optima throughout the solution space exploration. Finally, the
Output stage returns the optimum solution containing the set of edge node locations
to place the service infrastructure. The framework can achieve 30% less average ENs
deployed and a 25% higher average usage ratio. Nevertheless, the framework

provides the best solution for only general applications and not for the application



that has concern dependencies at the data level. Moreover, the framework doesn't

consider the historical data of usage quantities in solution exploration.



3. Research Methodology
3.1. Problem Formulation
In a large-scale area like multi-floor buildings, cloud-centric architecture or
centralized deployment cannot satisfy low delay requirements of location-based
services due to limitations in high localization processing time, propagation delay,

and bandwidth.

' Full edge Edge service
Centralized deployment placement
deployment Building A (Q,)

Building K (Q,+Q;)

- Edge server (e)
All Fingerprint
All Usage Quantity
Building B (Q)
Q is the usage quantity Quantity Qg
S is the number of fingerprint

Figure 1 Edge node placement illustration

Edge computing brings computational resources and data storage closer to end
users at the edge of the network which is suitable for low processing tasks and
results in low latency and bandwidth. Integrating edge computing could be one of
the good options. By deploying an edge server with service implemented at every
building as shown in Figure 1, the stated problems are solved. However, not all
buildings are the potential to place edge servers because of inadequate resources
and limited budgets. This problem could be stated as an edge node placement

problem where the problem can be solved by edge node placement strategies.
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(200,100) (300,300)

(200,200)

(200,150)
(400,500)

(400,500) (Usage quantity, The size of fingerprint)

P is a potential building node

*is a node selected as an edge node

Figure 2 Problem formulation illustration
To illustrate, the goal of the solution is to select potential building nodes as edge
nodes to place indoor localization services. As each building node holds a different
size of the fingerprint which reflects the computational complexity and the different
number of usage quantities shown in Figure 2, placing service needs to consider
these characteristics concurrently. Therefore, this problem was formulated as a

multi-objective edge node placement optimization problem.

Min w1 * Total cost + w2 * Number of edge nodes + w3 311
* Average response time

Equation 3.1.1 showed the objective function of the multi-objective
optimization aiming at the minimized total cost, the minimized number of edge
nodes, and the minimized average response time including localization processing

time and propagation delay.

3.2. Framework Architecture
In this study, an edge service placement optimization framework for location-

based service has been proposed composed of four main modules.
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4. Solution Space Exploration Module

1. Input

Processing
Module

3. Solution
Evaluation
Module

2. Placement
Strategy Module

Figure 3 Framework Architecture

As shown in Figure 3, the proposed framework consists of four main modules
working together to take a network topology as input and return the placement
solution. The framework includes the Input Processing Module which handles the
network topology input, the Placement Strategy Module which generates placement
solutions, the Solution Evaluation Module which evaluates the quality of a solution
in terms of score, and the Solution Space Exploration Module which explores the
solution space to find an optimal solution by cooperating with the two prior

modules.

3.3. Input Processing Module

This module transforms a network topology input into a simplified form and

labels node and edge information.

Link: A5,A6

Delay: 2

Bandwidth: 600

Tag: A7
Usage Quantity: 500
Potential Edge Node: False

Compute Complexity: 300

o vy

Figure 4 The example results of the Input Processing Module
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Figure 4 shows the example of input network topology having been processed by
the Input Processing Module. Each node represents a service node in the input
network topology and holds attributes such as the number of historical usage
quantities, potential edge node status, and compute complexity (the size of the
fingerprint data). Each edge represents a link in the input network topology and holds
link delay and bandwidth value.

3.4. Placement Strategy Module

There are nodes in the input network topology. At first, all nodes are unserved.
An unserved node is a node that holds user demand and is not served. Then some
nodes are selected to be edge nodes and serve the other unserved nodes. This
module is responsible for solution generation by using a greedy algorithm that
selects potential nodes as edge nodes and pairs them with unserved nodes. A
potential node is a node that has adequate resources to place the service and to

serve unserved nodes.
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Algorithm 1 Edge Placement Algorithm

Input: a list of nodes, delay the maximum delay, an
edge selection order, mode (initial mode,
neighbor mode)
Output: an edge list (E]), an edge selection order (Eo)
1: sorted P « list of potential nodes
2: unserved N « set of unserved nodes
3: while (unserved N is not empty) do
4: if (mode is initial mode) then
5 sort sorted_P by node’s data size * node’s usage
quantity
6: else
7: sorted_P <« edge selection order
8: endif
9:  edge « the first node of sorted P
0: edge list « add edge
1:  neighbor unserved « all neighbor nodes of edge
which is unserved reached within delay and its usage
quantity not exceeding edge’s current capacity
12:  sort neighbor_unserved by total data size * total
usage quantity of each node and the edge
13:  served « the first node of neighbor unserved
14:  edge serving node operation
15: end while
16: return El, Eo

Our edge placement algorithm is shown in Algorithm 1. The purpose of the
algorithm is to find an initial solution using a greedy algorithm. In the normal pairing
process (initial_mode), a potential node with the least product of the usage quantity
and the size of fingerprint data is selected as an edge node. Next, all nodes that are
not edge nodes and have exceeding workload are filtered out, so that they could be
selected as edge nodes later. Then the remaining nodes are sorted by the product of
the sum of usage quantities between a node and edge node and the sum of the size
of fingerprint data between the node and edge node. The one with the least product
is chosen to pair with that edge node and becomes its served node. In the edge
serving node, the shortest path between the edge node and served node is used,
and all requests or the workload of the served node are served by the edge node.
The service at the edge node also includes the fingerprint data of the served node.
As the module process goes on, the order of edge selection is recorded. After the

initial solution is retrieved, the module returns the answer consisting of an edge list
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which is the list of edge nodes with their served nodes and the edge selection order.
The algorithm can also be used in neighbor solution generation. If an edge selection
order is given to the algorithm using neighbor mode, in the pairing process, edge
nodes are selected in order of the edge selection order input instead of the least

product method.

3.5. Solution Evaluation Module

To know the quality of any solutions, each solution needs to be measured in
terms of metrics and calculated as a score. This module evaluates solutions to make
it be comparable to each other in different aspects such as total cost, number of
edge nodes, and average response time including localization processing time and
propagation delay. Each factor is defined as follows:

£ 3.5.1
TC = Z Ci * Ei

=gl
where Cjis the compute complexity of node i,

E; is the status of node i which is 1 if node | is edge node and 0, otherwise.

S 3.5.2
Total network cost = Z Z 2 kp * E;

i=1j€eS;peP
where  P;; is the set of links in the path from node i to node j,
S; is the set of nodes served by edge node i,
ky is the network cost of link p,

E; is the status of node i which is 1 if node | is edge node and 0, otherwise.

n
Total upfront cost = Z U; * E;
i=1 3.5.3
where Uj is the upfront deployment cost of node i,

E; is the status of node i which is 1 if node | is edge node and 0, otherwise.

Total cost = Total capacity cost + Total network cost + Total upfront cost 354
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n

Total propogation delay (PD) = Z Z Z d, * E; * Q;

i=1j€eS;pePy 355
where Q; is the usage quantity of node i,
dy, is the delay of link p,
E; is the status of node i which is 1 if node | is edge node and 0, otherwise
$ 3.5.6
Total localization processing time (LPT) = Z (E; * (Z C; = Z Q)
i=1 j€eS; kesS;
where Q; is the usage quantity of node i,
C; is the compute complexity of node i,
S; is the set of nodes served by edge node |,
E; is the status of node i which is 1 if node | is edge node and 0, otherwise.
n
_ 3.5.7
Total usage quantity (UQ) = Z Q;
i=1
where Q; is the usage quantity of node i
Average localization processing time (avgLPT) = LPT /UQ 358
Avearage response time (avgRT) = (LPT + PD) /UQ 359

n
Number of edge nodes = Z E;
i=1 3.5.10
where Ej is the status of node i which is 1 if node | is edge node and 0, otherwise.

Score = w1 * Total cost + w2 * Number of edge nodes + w3 * Average response time
35.11

Equation 3.5.4 showed that total cost is the sum of the total capacity cost shown
in Equation 3.5.1, which is the sum of the capacity unit of each edge node, and total
network cost shown in Equation 3.5.2, which is the sum of the network unit used in
network traffic between each edge node and its served nodes, and total upfront cost
shown in Equation 3.5.3, which is the sum of edge server deployment cost of each
edge node. The number of edge nodes is counted shown in Equation 3.5.10.

Equation 3.5.9 showed that the average response time is the average of the sum of
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total localization processing time from Equation 3.5.6 and the total propagation
delay from Equation 3.5.5 over total usage quantity from Equation 3.5.7. To
summarize the difference metrics into a score, each metric is normalized by using
relative calculation with the initial solution. Then with provided weights that
emphasize how much each metric is important, the score is calculated using a

weighted sum approach as shown in Equation 3.5.11.

3.6. Solution Space Exploration Module

As the edge node placement problem was proved to be an NP-hard problem
[16]-[17], the solution space can be vast that the optimal solution cannot be
obtained in polynomial time. To find the optimal solution, the solution space needs

to be explored efficiently.



Algorithm 2 Hybrid Simulated Annealing

10:

11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:

29:
30:
31:
32:
33:

Input: 7,,;, minimum temperature, 7 initial
temperature, / number of iterations, # number of
neighbor solutions, NL a list of nodes, ayfast T’
decrease, as slow T decrease
Output: an edge list (E)
initial sol < placement(NL, initial mode) // generate
an initial solution
best sol «— initial sol
best sol all « initial sol
worse_sol «— null
i—0
while (7> T,.s) do
while (i < /) do
edge orders «—mutate(best _sol, n) // generate n
edge selection orders by mutating best sol’s edge
selection order
N «— placement(NL, edge orders, neighor mode)
/I generate n number of neighbor solutions
S « score(N) // score the solutions

if (score(S[0])< score(best_sol)) then
b _sol <+ §[0]
else
p < ap(T, score(S[0], best _sol)
if p > random(0, 1) then
best sol «— §[0]
end if
worse sol «— random(S)
i—i+t1
end while
if score(best sol) < score(best sol all) then
calculate the probability to adjust 7, n, and
best sol all
else
calculate the probability to adjust 7" and n
end if
end while
return El(best sol all)
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This module applies the Simulated Annealing approach [18], which is a stochastic

global search algorithm for combinatorial optimization problems and collaborates

with Placement Strategy Module and Score Evaluation Module to find the optimal

solution. The point of this method is to escape local optima and discover global
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optima by keeping the bad solution in the possible solution list because good
solutions may be generated from the bad solution.

Algorithm 2 shows the Hybrid Simulated Annealing. After the initial solution has
been obtained by using Algorithm 1, the edge selection order is mutated into similar
edge selection orders by shuffling, randomizing, swapping, and concatenating the
initial edge selection order. Then neighbor solutions are generated using Algorithm 1
by taking the mutated edge selection orders as input. The weights for evaluating
each metric of solutions are determined and sent together with the outcome
solution to the Score Evaluation Module. The exploration continues by using the
objective function as shown in Equation 3.1.1 through the score calculation as shown
in Equation 3.5.11. The temperature of the Simulated Annealing is adjusted until it
reaches the minimum temperature. In the end, the optimal solution is found and
returned as the output. The output includes an edge list which is the list of edge
nodes with their served nodes. This suggests where to deploy edge nodes and where
to put which service to achieve the optimization goal.

The time complexity of simulated annealing from Algorithm 2 can be
approximated as O(k*N), where k is the number of iterations or steps taken by the
algorithm and N is the size of the problem space. The size of the problem space can
be analyzed from Algorithm 1. The placement strategy algorithm shows the size of
the problem space is n? where n is the number of nodes in input topology.
Therefore, the overall complexity of the framework is O(k*n’) where k is the number
of iterations of the simulated annealing and n is the number of nodes in input
topology. The time complexity analysis usually focuses on the expected

performance over multiple runs rather than the worst-case scenario.
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4. Measurement and Evaluation
4.1. Experimental Setup
4.1.1. Development Tools
To evaluate the performance of the proposed framework, the framework
including the Input Processing module, the Placement Strategy module, the Score
Evaluation module, and the Solution Space Exploration module was implemented
using Python, a programming language. We also used Networkx, a Python package for
the structure and functions of networks, to model the network topology.
4.1.2. Scenario
We used an indoor localization system as a use case in the edge node
placement testing to test how the performance relies on data location and data size.
The goal of the experiment was to find the nodes suitable for indoor localization
service deployment among all network input nodes by considering cost and the
metrics of concern using given network and application usage information.
4.1.3. Input Dataset
We need a network topology with the information of each edge including link
bandwidth, and link delay, and the information of each node including the number
of requests, the size of fingerprint data, and the potential to place service status for
the experiment. To evaluate the framework in a large-scale area use case, we
conducted experiments on simulated network topologies with different numbers of
nodes and on large-scale data from an indoor localization service and from a
country-scale shopping mall group data.
4.1.3.1. Simulated Network Topologies
For experiments on the simulated network topologies, 8 topologies were
generated with the numbers of nodes ranging from 10 to 80 nodes. For each
topology, nodes with coordinate pairs were plotted on a 2D grid map scatteredly and
edges were randomly linked between nodes. The usage quantity and data size of
each node was assigned with random values between 20,000 to 100,000 requests. All
nodes have the potential to deploy edge servers. The link delay was calculated

based on the Euclidean distance between two nodes. The maximum workload
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capacity that each potential node can serve was set to be 3 times the maximum

workload produced by each node. Each link holds the same bandwidth.

Figure 5 The example of the simulated network topology

Figure 5 depicts the example of the simulated network topology used in the
experiment with the size of 80 nodes generated by using NetworkX. Each node’s
number of requests is randomly assigned with a value between 20,000 requests to
100,000 requests. Each node’s size of fingerprint data is randomly assigned with a
value between 50 to 500.

4.1.3.2. Real-World Large-Scale Data

To ensure that our proposed framework not only works in simulated network
topologies, we used two real-world large-scale datasets as follows:

a) Wi-Fi fingerprint dataset of 37 multi-floor buildings at Chula Expo

The Wi-Fi fingerprint dataset of 37 multi-floor buildings collected at the Chula
Expo Exhibition in 2017 was used to form input data [13]. To illustrate, each building
represents each node in the network topology. Each node was plotted on a 2D grid

map by its location.
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Figure 6 37 Buildings in Chu(o(ongkom University from Ref. 13

Figure 6 depicts the input topology used in the experiment showing the network

topology occupying the campus over more than 10 clusters of buildings. For the
network edges, there are links between each building node (Pin) and its faculty node
(Circle) which is the centroid point of the cluster differentiated by colors and links
between each faculty node and the IT center node. The link delay was calculated
based on the geographical distance between buildings. To illustrate, the link with a
longer distance will hold a longer propagation delay. The collected data includes (1)
Wi-Fi fingerprint of each building retrieved from the access point scanning results
which represents the building id, floor, and position tag of each location, (2) the size
of data of each building fingerprint which depends on the number of position tags
within that building, (3) the network node topology consisting of each node and edge

basic attributes, and (4) the historical service usage quantity obtained from the
queries made by users on exhibition days at each building.

b) Central Shopping Mall Group
We also used another network topology dataset with country-scale size to

emphasize the impact of propagation delay. A shopping mall is a place full of peopl



22

utilizing location-based services such as games, entertainment, advertising, navigation,
etc. One of the largest and most popular shopping mall groups in Thailand is the
Central Shopping Mall Group [19]. With marketing research and planning, each branch
of the shopping mall is in a dense population and economic district area. The
Central Shopping Mall Group is an interesting contender for the service placement
strategy study due to the large number of branches and the topology scale which
cover the whole part of Thailand. The information of Central Shopping Mall Group
provided online is sufficient to use as network topology input of indoor localization
use case in the experiment. )3 4
¥ 1

: g s
3 B R
) ; 23

i
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Figure 7 Map of Central Shopping Mall Group used in the experiment



23

Figure 7 depicts the network topology formed by using each shopping mall
branch to represent each node. Each branch location was plotted on a real-world 2D
map. On the map, there are 41 branches of Central Shopping Mall Group, for
example, Central Lardprao located in Bangkok province in the central region of
Thailand. As shown in the map, the number of branches is dense in some areas. For
the network edges, there are links between each shopping mall node (Pin) and its
region node (Circle) which is the centroid point of the cluster differentiated by colors.
The link delay was calculated based on the geographical distance between the
shopping mall. As the distance between each node is longer, we expected that the

propagation delay would be more significant.

Name = Province = Lat = Lng = GLA (sgm) = Region = POI (Stores) = POI (Cust
Central Lardprao Bangkok 13.8161884  100.561057 78,700 C 339
Central Ramindra Bangkok 13.8723394 100.6019646 23,500 C 145
Central Pinklao Bangkok 13.7782234 100.4763161 104,500 C 255
Central Marina Chonburi 12.945729 100.8902896 29,000 E 132
Central Chiangmai Airport Chiang Mai 18.7693089  98.9752557 107,000 N 533
Central Rama IlI Bangkok 13.6979914  100.537438 98,000 C 292
Central Bangna Bangkok 13.66974489  100.634596 113,000 C 299
Central Rama Il Bangkok 13.6639306 100.4377225 161,500 C 350
CentralWorld Bangkok 13.7460002 100.5399162 830,000 C 500
Central Rattanathibet Nonthaburi 13.8661107  100.497032 105,000 C 216
Central Phuket — Festival Phuket 7.8895826  98.3662517 300,000 S 300

Figure 8 The example of Central Shopping Mall Group data

For the node attributes, Figure 8 shows the example of each branch of Central
Shopping Mall Group [19]. Besides the location of each node, we also retrieve the
Gross leasable area (GLA) of each branch [19]. The Gross leasable area (GLA) data
reflects the total floor area within a commercial property that is available for lease
to tenants. It represents the space that can be rented out and generates rental
income for the property owner or landlord. The usage quantity or the number of
requests for each node was derived from the number of stores in each shopping
mall. The size of fingerprint data was retrieved from the GLA data. All nodes were
the potential nodes to place the service.

4.1.4. Parameter Configuration
In the experiment, the parameters of the Solution Space Exploration module in

the proposed framework were defined.



Table 1 Hybrid Simulated Annealing’s Parameter Configuration

Hybrid Simulated Annealing

Minimum Temperature 1

Maximum Temperature 0.1

Temperature Iteration 30

The Number of Neighbors 12

Fast Alpha 0.80

Slow Alpha 0.95
The Weight of Total Cost (w1) 0.1875
The Weight of The Number of Edge nodes (w2) 0.625
The Weight of The Average Service Response Time (w3) 0.1875
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For the Hybrid Simulated Annealing in the Solution Space Exploration Module,

the parameters including the minimum temperature, the maximum temperature, the

temperature iterations, the number of neighbors, the fast alpha, and the slow alpha

were set as shown in Table 1 The weight values of M1, M2, and M3 in the

objective function of the Solution Space Exploration shown in Equation 3.1.1 and

also in the score calculation of the Score Evaluation Module shown in Equation

3.5.11 are set to 0.1875, 0.625, and 0.1875, respectively.

Table 2 Cloud and Edge Server Parameter Configuration

Cost
Server Cloud Edge
Computational Capability (unit) 10 1
Server Upfront Cost (unit) 1.5 1
Network Cost (unit) 1 0.1

Moreover, since we included the Centralized Deployment in the experiment

benchmark, the parameters of the cloud server including the computational
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capability, server upfront cost, and the network traffic cost were defined as shown in
Table 2.
4.1.5. Workload Modeling

The localization processing time is one of the main factors in our optimization
objective. When deploying service at only some edge nodes, some edge nodes need
to have more than a single localization service that can serve not only their own
building but also other buildings. As a result, the localization processing time
increases due to the larger size of fingerprint data. To evaluate the total localization
processing, we need to model a function to calculate the time used by each service

for processing each request based on the size of fingerprint data.

4.1.5.1. Exploring the relationship between the size of fingerprint data
and the processing time experiment
We implemented 37 localization services by using fingerprint data of each building
from 37 multi-floor buildings data [13]. Then, requests to each service were made
and the response time was recorded and calculated on average. The size of
fingerprint data of each service varies between 38 to 513. The results were shown on

a scatter plot between the size of fingerprint data and the processing time.

600

@400
E
“; [ |
E
=
=
=
W
W
3
(=]
& 200 o % ®
=
= .'
o e ®
»*’ .
o
e ®
oy L X ]
0
100 200 300 400 500

The Size of Fingerprint Data

Figure 9 Scatter plot of the size of fingerprint data and the processing time
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As shown in Figure 9, as the size of fingerprint data grows larger, the processing
time tends to increase linearly according to the line of best fit (red). The linear
equation of the line of best fit is y = 0.9589x - 14.2306, where X is the size of
fingerprint data and y is the processing time. From the experimental result, we can
conclude that the relationship between the size of fingerprint data and the
processing time is linear.

There are other fingerprint-based indoor localizing algorithms with higher
complexity than linear. For example, the complexity of a GraphSLAM-based
crowdsourcing framework for indoor Wi-Fi fingerprinting is O(N?) where N is the
number of the fingerprint data [12]. Therefore, we also modeled the workload with
an exponential relationship between the size of fingerprint data and processing time

to represent other complex applications as well.

In the real scenario, the workload size or the number of requests also affects the
overall processing time. Consequently, the relationship between the processing time
and workload is prone not to be a linear relationship due to high network traffic and

limited resource utilization.

4.1.5.2. Exploring the relationship between the size of workload and the
processing time experiment
We implemented a localization service for 37 multi-floor buildings [13]. Then, we
deployed the service on a server. Next, load testing was done by requesting the
service on the server to observe the change in the processing time at each workload.
For the load testing, we use K6 which is an open-source load testing tool used to
test the performance and scalability of web applications. It is designed to simulate
virtual users or concurrent connections and generate load on the target system to
measure its response time and throughput under different scenarios [20]. We
assumed that the available time of service is 8 hours. The parameters of K6 were set
as follows: the duration is 10 seconds, and the number of concurrent users varied

between 10 users to 50,000 users.



27

20000
¢

15000 W

10000 o+ ©

5000

The processing time (ms)

-5000
25000000 50000000 75000000 100000000 125000000

The number of requests
Figure 10 Scatter plot of the number of requests and the processing time

Figure 10 shows that as the number of requests grows larger, the processing time
tends to increase rapidly at first and then slowly. According to the line of best fit
(red), the regression equation of the line of best fit is y = -28235.3892 +
2403.3221+In(x), where x is the number of requests and vy is the processing time. We
can conclude that the relationship between the size of the workload or the number
of requests and the processing time is logarithmic.

4.1.5.3. Workload Modeling in the Experiment

As the relationship between the size of fingerprint data and the processing time
has been proven to be linear, we will calculate the total localization processing time
of any services in the experiment by using the sum of the size of fingerprint data. For
the higher complexity application, we calculate the localization processing time using
this equation: y = 91.29498+1.00442" where x is the number of requests and y is the
processing time.

As the relationship between the size of the workload or the number of requests
and the processing time is logarithmic, we considered the impact of the size of the
workload on the processing time by adding the processing time delay to the

processing time. The processing time delay that we used in the experiment is
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calculated by using two functions. The first equation is y = 20.56652°1.00002" where
x is the number of requests and y is the processing time used when the number of
requests is lower than a million requests. The second equation is y =
-681.1851+108.75751In(x), where x is the number of requests and vy is the
processing time. For the experiment on simulated network topologies, we rather
used linear workload modeling as normal without considering the processing time
delay instead.
4.2. Metrics
We evaluated the performance of the proposed framework by using three metrics
corresponding to the objective functions.
4.2.1. Total cost
Total cost is the sum of overall capacity cost, network cost, and upfront edge
server deployment cost using Equation 3.5.1-3.5.4.
4.2.2. Average response time
Average response time is the average amount of time taken to respond to a
request including localization processing time and propagation delay using Equation
3.5.9.
4.2.3. The number of edge nodes
The number of edge nodes required for service placement is calculated by using
Equation 3.5.10.
4.3. Benchmarks
We compared the experimental results of the proposed framework to five
benchmarks to show the prominent point of each approach, and to which approach
our proposed framework can outperform.
4.3.1. Full edge deployment
An approach in which every node on the network topology is used as an edge
node with the service implemented.
4.3.2. Centralized deployment

An approach in which there is only one node that the service is implemented.
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4.3.3. EdgeOn Framework [15]

An approach in which the service edge is placed by the solution from a multi-
objective network-aware edge node placement model and solution strategy tailored
to 5G scenarios. This framework shares the same goals with our proposed framework
but does not consider the localization processing time and POI data.

4.3.4. Betweenness Centrality [21]

An approach in which the service edge is placed by the betweenness centrality
which is the number of times a node acts as a bridge along the shortest path
between two other nodes.

4.3.5. Degree Centrality [21]

An approach in which the service edge is placed by the number of links incident

upon a node.
4.4, Experimental Results
4.4.1. Simulated Networks Topology

Fig. 4.1.1 shows the experimental results for the simulated network topologies
with the topology sizes ranging from 10 nodes to 80 nodes. Fig. 4.1.1 shows the
impact of topology sizes on the average service response time, the total cost, and

the number of edge nodes.
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It can be observed in Figure 11(a) that at the small topology size, the average

response time of each approach slightly differs from the others due to the small

number of fingerprints. As the topology size grows larger, all approaches outperform

the centralized deployment. The average response time from all topology sizes of

the EdgeOn framework is equal to 757.42 ms whereas that of our proposed

framework is equal to 580.33 ms. This shows a 23.38% improvement on average and

up to 30.50 %i

mprovement. Our proposed framework can achieve less average
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service response time than the EdgeOn framework at any topology size. This is
because, unlike EdgeOn framework, our proposed framework considers the average
service response time in the optimization. Moreover, the EdgeOn framework also
focuses on maximizing the capacity usage ratio of each edge server which directly
affects the growth of the data size and usage quantity at each edge server, leading to
long service response time. The full edge deployment conquers all approaches with
the least average service response time as expected. The betweenness centrality and
the degree centrality provide the worst average service response time among
approaches.

As shown in Figure 11(b), as the topology size increases, the total cost increases
for all approaches. At the small topology size, the total cost of the centralized
deployment is the highest due to the cloud service cost. At the large topology size,
the total cost of the centralized deployment tends to be stable. The total cost of
the full edge deployment is the highest at any topology size since the number of
servers is the same number of topology sizes. The total cost of our proposed
framework is about the same as that of EdgeOn.

As shown in Figure 11(c), our proposed framework provides a slightly higher
number of edge nodes than the EdgeOn framework. The degree centrality can
achieve the same number of edge nodes as that of the betweenness centrality.

The result reveals that our proposed framework can achieve a better average
service response time than other approaches on the simulated topologies.

4.4.2. Real-World Large-Scale Data

a) Wi-Fi fingerprint dataset of 37 multi-floor buildings at Chula Expo

The performance of the proposed framework on real-world large-scale data could
change due to the density of nodes, the sparsity of links and the realistic size of

fingerprint data, and the number of requests.
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Table 3 The experimental results for the large-scale area consisting of 37 multi-

floor buildings using linear workload modeling

Metrics
Approach Average service Number of edge
Total cost (unit)
response time (ms) nodes
Our proposed
100.93 21 656.82
framework
EdgeOn framework 173.85 16 558. 43
Centralized
210.10 1 614.01
deployement
Full edge deployment 85.76 37 753.43

We carried out the edge node placement experiment on the 37 multi-floor
buildings data using linear workload modeling with our proposed framework and
other benchmarks. Table 3 shows the experimental results for the large-scale area
consisting of 37 multi-floor buildings using linear workload modeling. As our results
show, the EdgeOn framework achieves an average service response time of 173.85
ms whereas the centralized deployment achieves 210.10 ms. Our proposed
framework achieves an average service response time of 100.93 ms which is 41.94%
and 51.96% lower compared to the EdgeOn framework and the centralized
deployment, respectively. In addition, the total cost of the EdgeOn framework is
equal to 558.43 units whereas that of our proposed framework is equal to 656.82
units which are only 17.62 % higher. In terms of the number of edge nodes, the
result of the EdeeOn framework is 16 nodes whereas that of our proposed
framework is 21 nodes which is 31.25% higher.

The results reveal that our proposed framework can leverage the number of edge
nodes and the total cost to achieve better average service response time than other
approaches on the real-world large-scale data: Wi-Fi fingerprint dataset of 37 multi-
floor buildings at Chula Expo using linear workload modeling.

b) Central Shopping Mall Group
The performance of the proposed framework on real-world large-scale data could

be affected by the size of the topology in terms of distance. In the central shopping
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mall group topology, the path with the longest propagation delay is the path
between Central i-City and Central Lampang which is 143.49 ms. We expected that
our proposed framework can provide the placement solution with the least average
service response time while balancing the total cost and the number of edge nodes.
We also used exponential workload modeling in this experiment to reflect the
computational process behavior due to a large number of requests and a large size
of fingerprint data.
Table 4 The experimental results for the Central Shopping Mall Group data using

logarithmic workload modeling.

Metrics
Average service Average
Approach Number of edge
response time Total cost (unit) propagation
nodes
(ms) delay (ms)
Our proposed
655.44 26 627.48 2.51
framework
EdgeOn 1.00
1,783.55 28 711.98
framework

Table 4 shows the experimental results for the Central Shopping Mall Group data
using logarithmic workload modeling. From the result, our proposed frameworks
required 627.48 units of total cost whereas the EdgeOn framework required 711.98
units of total cost 84.5 units higher. In terms of the number of edge nodes required
in service deployment, the proposed framework required less 2 edge nodes than the
EdgeOn framework. The average service response time of our proposed framework is
655.44 ms which is 63.25% lower compared to that of EdgeOn framework. In
addition, our proposed framework’s solution can achieve the propagation delay at
251 ms on average per query on the large topology input. This shows that our
proposed framework can provide the placement solution that can divide the user
workloads and computational demand of each service efficiently and can preserve
the optimized response time including both localization processing time and

propagation delay.
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The experimental results show that our proposed framework can be applied to
applications with a linear relationship between the data size and the processing time
and also the higher complexity applications with an exponential relationship
between the data size and the processing time to provide a better average service
response time than other approaches.

4.5. Result Discussion
4.5.1. Workload Imbalance

The main goal of the proposed framework is to minimize the service response
time by including the average service response time in the objective function. In
optimization, incorporating the average value into the goal or objective function is
advantageous as it captures the overall value, covering both positive and negative
aspects. Nevertheless, this approach may encounter challenges due to the extensive
range between the minimum and maximum values, leading to potential imbalances.
We designed the greedy algorithm of the Placement Strategy module to select the
edge node by considering the least product of the number of requests and the size
of fingerprint data of each node to place the small service first before combining the
other services and becoming larger. Using the product methods, the number of
requests is reciprocal to the size of fingerprint data. As a result, it is possible that
there can be an edge node that serves a high workload whereas the other edge
node serves a low workload leading to a workload imbalance problem.

Table 5 The result of our proposed framework tested on the Central Shopping Mall
Group data from 4.4.2(b) in detail.

Edge node detail (Number of requests)

(150000, 78.7), (100000, 300.0), (70000, 236.0), (100000, 311.0),
(40000, 100.0), (70000, 186.0), (120000, 364.0), (70000, 255.0),
Our proposed (20000, 90.0), (40000, 225.0), (95000, 312.0), (105000, 340.0)
framework (110000, 285.0), (25000, 155.0), (85000, 593.0), (100000, 128.0),
(50000, 250.0), (60000, 270.0), (60000, 300.0), (40000, 104.953),
(75000, 278.0), (100000, 107.0), (75000, 138.0), (90000, 181.0),
(80000, 230.5), (130000, 830.0)

Table 5 shows the result of our proposed framework tested on the Central

Shopping Mall Group data from 4.4.2(b) in detail. The number of requests served by
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an edge node and the size of the fingerprint of each edge node are displayed in pair
orders.
Table 6 The summary of the number of requests served by an edge node and the

size of the fingerprint of each edge node data from 4.4.2(b)

Minimum Value | Maximum Value Standard
Deviation
The number of requests 20,000 150,000 31582.99
The size of fingerprint 78.7 830.0 158.69
data

Table 6 shows the summary of the number of requests served by an edge node
and the size of the fingerprint of each edge node data from 4.4.2(b). The minimum
number of requests served by an edge node is equal to 20,000 requests while the
maximum number is equal to 150,000 requests. The difference between the
maximum value and the minimum value is about 130,000 requests showing that

there is a workload imbalance among edge nodes in some cases.

Histogram (Frequencies)

N Data Set 1

Count

49000 78000 107000 136000 165000
The number of req

Figure 12 The histogram of the number of requests served by an edge node
Figure 12 shows that the characteristic of the histogram is a right-skewed
distribution. Most of the number of requests served by an edge node is between

20,000 requests to 107,000 requests and only some are above.
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In terms of the size of fingerprint data, from Table 6, the minimum value is equal
to 78.7 and the maximum value is equal to 830.0. The standard deviation of the data

is equal to 158.69.

Histogram (Frequencies)

Data Set 1

300 450 600 750 900

Size of fing data

Figure 13 The histogram of the size of fingerprint data of each edge node

Figure 13 shows that the characteristic of the histogram is a right-skewed
distribution. Only one outlier is presented which is the size of fingerprint data of
830.0. We have inspected the edge list and its serving node list and found that the
node with that size of fingerprint data was serving only itself. This is necessary to
prevent this node from being combined with the other nodes resulting in the larger
size of the fingerprint data.

From the above results, it can be concluded that even though there is a
difference in the number of requests among edge nodes, the size of the fingerprint
data of each service which reflects the localization processing time is like each other.
The workload imbalance issue presents. Our placement strategy can still achieve the
optimization goal under such circumstances.

4.5.2. Cost Analysis

The overall cost is one of the objectives of the optimization goal. The

experimental results in the aspect of the total cost on both simulated data and real-

world data have been shown in units. The total cost only represents the sum of the
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capacity cost, the network traffic cost, and the upfront deployment cost. The cost of
the optimal placement solution has been recorded thoroughly to be analyzed later.

Table 7 The cost analysis of the experimental results on the Central Shopping Mall

Group data
Cost value
Total time the The upfront
Approach The capacity The network
links used deployment
cost cost
(times) cost
Our
proposed 6,648.153 3,950,000 790,000 520
framework
EdgeOn
6,648.153 4,550,000 910,000 560
framework

Table 7 shows the cost analysis of the experimental results on the Central
Shopping Mall Group data. The capacity cost is calculated from the total size of the
fingerprint data of each node. Typically, using the EdgeOn approach which is focusing
on maximizing the capacity usage ratio might lead to duplicated service placement;
one node can be served by more than one edge node. The result shows that the
capacity cost of our proposed framework and EdgeOn framework is the same which
means that each non-edge node in EdgeOn’s solution is served only once by only
one edge node. The network cost is calculated by using the total times the links are
used times the constant cost. The result shows that our proposed framework can
manage the placement solution to use links in the network less than 120,000 times
compared to the EdgeOn framework. The upfront deployment cost is the sum of the
upfront deployment cost of each node which is set to the same for all nodes in this
experiment.

From the results, we can conclude that our proposed framework outperforms the

EdgeOn framework in any aspect of cost.
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5. Conclusion
5.1. Thesis Summary

In this thesis, we proposed an edge service placement optimization framework for
location-based services. The characteristics of location-based services have been
studied. The finding expressed the importance of the localization process and its
impact on the performance of location-based services in terms of real-time response.
The most popular technique of localization technique. This technique strugsles with
the fingerprint size degrading the performance problem. In a large-scale area, like
multi-story buildings, the size of the fingerprint could be massive leading to long
localization processing time. The cloud architecture also resulted in long latency.
Applying edge computing to deploy small services at the edge of the network close
to users is the solution. Due to cost and resource limitations, the services can be
placed at some edge nodes only. This is when the edge node placement strategies
have been explored. Metrics can be included in the optimization goal of a
placement strategy.

We included the edge deployment cost, the number of edge nodes, and the
average service response time including localization processing time and propagation
delay. The proposed framework consists of four main modules cooperating to
generate placement solutions using a greedy algorithm and exploring the solution
space using the Simulated Annealing approach.

The experiments were set up using indoor localization service as a use case and
tested on both simulated data and real-world large-scale data. The relationship
between the processing time and the size of the fingerprint data and workload
modeling were also observed. Using our framework, the performance of the
placement strategy for location-based service can be significantly improved. The
results show that our proposed strategy outperforms the existing work, sharing the
same goals in several aspects. The proposed framework can leverage the number of
edge nodes and the total cost to achieve a lower average response time of up to
63.25% compared with the existing work. It can be tailored to other applications by
adjusting the weights in the objective function. The proposed framework can also

benefit other use cases whose performance relies on data locality and data size.
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Since the framework aims at minimized response time and considers the Point of

Interest data.

5.2. Discussions on the Fingerprint Data
The fingerprint-based technique is one of the most popular techniques used in
indoor localization while using the concept that each location has its own unique

signal characteristics which can be used to represent itself.

[
{
"sampling_id": 1,
"fingerprint": [{ "RSSI": -55, "BSSID": "f4:f2:6d:ec:59:@a" },{ "RSSI": -89, "BSSID": "c8:1f:be:38:7b:d8"

"sampling_id": 2,

"fingerprint": [{ "RSSI": -37, "BSSID": "74:ea:3a:cc:8e:3d"
{ "RSSI": -85, "BSSID": "cc:de:ec:d7:97:68"
{ "RSSI": -91, "BSSID": "d4:7b:b@:b8:01:c0"

"RSSI"™: -8@, "BSSID": "2c:@8:Bc:62:c4:cc”
"RSSI": -89, "BSSID": "38:d5:47:bd:26:88"
"RSSI": -92, "BSSID": "e@:88:5d:90:1b:72"

e
]

}
]

Figure 14 The example of fingerprint data of an Adaptive Indoor Localization System
for Large-Scale Area from Ref. 13

Figure 14 shows the example of fingerprint data of an Adaptive Indoor
Localization System for a Large-Scale Area from Ref. 13. As shown in the figure, each
sample of fingerprint data is a list of access points that can be scanned from each
location labeled by a Basic Service Set Identifier (BSSID) and sorted by the value of
the Received Signal Strength Indicator (RSSI). The fingerprint characteristics of each
fingerprint-based technique can be various due to the technology e.g., sensor,
Bluetooth, geo-magnetic. The fingerprint format that we used in the framework
design and in the experiments was not fixed or relied on any specific fingerprint-
based localization algorithm. We only considered the size of the fingerprint data and
the number of fingerprint data impact on the localization processing time. The
different fingerprint format does not affect the performance of our proposed

framework.

5.3. Discussions on Historical Usage Quantity Data
The historical usage quantity data reflects the user workload at each location. In

our proposed framework, we use the data of the number of requests served by each
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node representing point-of-interest data. In the placement strategy module, we used
this data to calculate the least product to greedily pair unserved and selected edge
nodes.

Collecting point-of-interest data to be used as historical data needs to be well-
planned to capture all the characteristics of service usage quantity in possible
scenarios. Some places might have different usage quantities depending on the
incident. For example, in a shopping mall, the historical data should include the
workload on normal days and peak time on the event day or the weekend, which
could be higher.

With improper data preparation, some servers could be overloaded resulting in
longer response time than expected. Our proposed framework performs static multi-
objective optimization to find a service placement solution. To illustrate, the
optimization process is done once before the edge deployment process takes place.

Our proposed framework can handle this situation by performing the
optimization process again with the latest point-of-interest data corresponding to the
workload that covers the peak time situation to achieve a suitable placement

solution and resource allocation.

5.4. Discussions on Performance Trade-Off

The objective function of our proposed framework is shown in Equation 3.1.1.
which is to minimize the total cost, the number of edge nodes, and the average
response time. As a result, the framework's performance involves a tradeoff between
the total cost, the number of edge nodes, and the average response time depending
on the weight of each factor. Each weight factor can be adjusted and tailored to the
target application. For example, the application that requires a real-time response
with a strict limit of delay like Video conferencing and Emergency services, the weight
of the average service response time should be set with the highest value to provide
the least average service response time. When the deployment budget is limited,
e.g., the scenario with plenty of Internet of Things (IoT) devices and small-scale
businesses, the weight of the total cost should be set with the highest value to

achieve the placement solution with the lowest deployment cost.
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5.4.1. Parameter Tuning

In the performance evaluation, we included the EdgeOn framework as one of
the benchmarks. Since the weights of our proposed framework can be adjusted
arbitrarily, we needed suitable weights for the experiment to compare the
experimental results to the EdgeOn framework fairly. The weights that we used for
our proposed framework were required to provide results close to that of the
EdgeOn framework in the aspects of the number of edge nodes required for edge
deployment and the total cost. Therefore, we performed parameter tuning to find
the weights.

The weights that we focused on were w1 (for the total cost), w2 (for the number
of edge nodes), and w3 (for the average service response time). A placement
solution was acquired from each framework run which is a space solution exploration
process of simulated annealing and solution generation of placement strategy. The
goal of the parameter tuning is to find the weights that can provide the placement
solution result close to that of EdgeOn in those two aspects. At first, a placement
solution was retrieved by using EdgeOn framework and then was evaluated in terms
of the total cost and the number of edge nodes to be used in the comparison.

The list of the w1l parameter was [0.0625, 0.125, 0.3125, 0.625, 0.75, 0.875, 1].
The list of the w2 parameter was [0.0625, 0.125, 0.3125, 0.625, 0.75, 0.875, 1]. The list
of the w3 parameter was [0.0625, 0.125, 0.3125, 0.625, 0.75, 0.875, 1]. In each run,
the result was recorded and calculated. The measure the closeness of our proposed
framework’s results with given weights and that of the EdgeOn framework in terms of
the total cost and the number of edge nodes, we computed the Root Mean Square
Error (RMSE) for each aspect separately, comparing that of the EdgeOn framework
values. Then sum up the individual RMSE values to obtain an overall measure of the
closeness between results. By minimizing the sum of RMSE values, you can find the
combination of weights (w1, w2, w3) that brings results closer to the results of the
reference framework in terms of aspects of the total cost and the number of edge
nodes. The time used in each run of our proposed framework was approximately 120
seconds when using 37 buildings in Chulalongkorn University data [13] or around 11

hours in total. The results show that the weights including wl, w2, and w3 that
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provide the least sum of RMSE are 0.1875, 0.625, and 0.1875, respectively. Therefore,
we used these weights for our proposed framework in the experiments for

performance evaluation.

5.5. Discussions on Centralized Deployment

In the experiments, we defined the centralized deployment as one of the
benchmarks. The centralized deployment is an approach in which there is only one
node in that the service is implemented. In the parameter configuration, we set the
number of equal to 1 server, the network cost to 10 times the local network cost
and the computational capability to 10 times the server used in other approaches.
The experimental results on simulated data from Figure 11 shows that at the large
topology size, the total cost of the centralized deployment is lower than that of our
proposed framework while the average service response time is higher. The results
cannot be interpreted directly and fairly because the computational capability of the
server used in the centralized deployment approach was fixed.

To compare the results of our proposed framework to the centralized
deployment with fairness, we configured the computational capability of the server
used in the centralized deployment to be M times of the server used in other
approaches where M is the number of nodes of input topology size. To clarify, if the
number of input nodes is 20 nodes, the computational capability of the server is 20
times that of the normal server. The server cost was also M times the cost of the
normal server. Then, the experiment with new centralized deployment was carried

out.
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Figure 15 The impact of topology sizes of simulated data using the new centralized

deployment parameter on (a) Average service response time; (b) Total cost; (c)
Number of edge nodes

Figure 15(a) shows the impact of topology sizes of simulated data using the new
centralized deployment parameter on the average service response time. The
average service response time of the centralized deployment approach is lower than
that of our proposed framework at any topology size up to 338.68 ms at the
topology size of 70 nodes. On the other hand, in terms of the total cost, Figure 15(b)
shows that the centralized deployment provides the worst total cost compared to
all approaches at any topology size. The total cost of the centralized deployment is
more than 114.63% when compared to that of our proposed framework. Figure 15(c)
shows that our proposed framework requires less than 50% number of the edge
nodes of the input topology size at any topology size. As our proposed framework
uses the local network traffic which is cheaper than the cloud network traffic and
also uses a smaller number of servers, the total cost of our proposed framework is
lower than the centralized deployment. Even though the centralized deployment
can achieve better average service response time by scaling up the resources, this

approach still requires much more cost than other approaches.
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5.6. Discussions on Workload Imbalance

From the result discussion 5.4.1, the workload imbalance presents due to the
use of the average value of response time in the optimization goal of our framework.
In the experiments, we assumed that every edge node holds sufficient
computational resources for any number of requests and that every link also holds
adequate bandwidth for all network traffic loads.

However, in the real scenario, the heavy workload could affect the server
performance. As a result, some edge servers face overload requests. Using the same
specification of the edge server can cause server failure, heavy network traffic, and
bottleneck problems in case of service overuse due to workload imbalance. To avoid
these problems, the limitation of the number of requests each edge server needs to
serve and the network traffic that each link and node can handle need to be defined
as constraints.

With constraints on the number of requests of each edge node and the network
traffic, our proposed framework can manage and divide the workload of each node
within the constraints to achieve the optimal placement solution by leveraging the
total cost and the number of edge nodes to prevent such problems. As a result, the
number of edge nodes is scaled up to serve all requests, also the total cost
increases. Despite the increase in the number of edge nodes and the total cost, our

proposed framework can still optimize the average service response time.

5.7. Discussions on Application

The experimental results show that our proposed framework can achieve less
than 30.50% average service response time compared with the existing work using
the simulated data and less than 63.25% or 1,128.11 ms average service response
time compared with the existing work using the real-world large-scale data. For such

a lower response time, the performance of many applications could be improved.
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Figure 16 Bandwidth and latency requirements for different application [22]
Figure 16 shows the bandwidth and latency requirements for different
applications [22]. Many location-based services such as Augmented Reality, Virtual
Reality, Disaster alert, and Real-time gaming are also included. These applications
require less than 100 ms of delay. It can be concluded that our proposed framework

is able to improve those application performances which are location-based services

with better average response time.

5.8. Discussions on Limitations and Future Works

Despite several benefits, there are limitations that should be mentioned.

Our proposed framework can provide a better average service response time
compared with the existing work. However, by using the average value in the
optimization process, the framework still faces a workload imbalance problem. The
workload distribution needs to be studied more and included in optimization or

constraints.
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Another topic is that the problem of the proposed framework was formulated as
a static multi-objective optimization problem. That is the optimization process is
done once before the edge deployment process takes place. As a result, the data
used in the optimization could be obsolete when time passes due to the change in
the network environment and user behavior. Optimizing the solution dynamically
could be important in the future when the data changes rapidly.

Although the experiments were designed considering any possible factors, the
real data was not derived directly completely. Some of them were adapted to use in
the experiments, for example, the propagation delay of each link is calculated by
using geographical distance. Data collecting design and realistic network topology
construction could proceed in the future to provide more accuracy in the framework

performance evaluation.
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