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ABSTRACT (THAI)  กานต์กิตติ กิตติคำรณ : การเพ่ิมประสิทธิภาพตำแหน่งบริการสำหรับบริการตาม

ตำแหน่ง. ( Service Placement Optimization for Location-Based Service) อ.ที่
ปรึกษาหลัก : รศ. ดร.กุลธิดา โรจน์วิบูลย์ชัย 

  
บริการตามตำแหน่ง (LBS) จำเป็นและมีประโยชน์สำหรับแอปพลิเคชันต่างๆ มากมาย 

เช่น ระบบการนำทาง และเกม แอปพลิเคชันหล่านี้ต้องการความแม่นยำสูงและความล่าช้าต่ำ 
โดยทั่วไป ความซับซ้อนของอัลกอริธึมการระบุตำแหน่งภายในอาคารที่ใช้ใน  LBS จะขึ้นอยู่กับ
ขนาดของข้อมูลลายนิ้วมือ สิ่งนี้สามารถนำไปสู่ความล่าช้าที่ยาวนาน เมื่อใช้งานในพ้ืนที่ขนาดใหญ่ 
ในบทความนี้ เราเสนอกรอบงานการปรับแบบแผนสำหรับการวางตำแหน่งบริการที่ขอบ  โดยมี
เป้าหมายเพ่ือลดต้นทุนโดยรวมของการปรับใช้ การประมวลผลที่ขอบและเวลาตอบสนองของ
บริการให้น้อยที่สุด กลยุทธ์ตำแหน่งของเราใช้เพ่ือแก้ปัญหาการวางโหนดขอบ วิธีการหลอมจำลอง
จะถูกนำมาใช้ในการสำรวจปริภูมิคำตอบ เพ่ือค้นหาคำตอบที่เหมาะสมที่สุดอย่างมีประสิทธิภาพ 
ผลลัพธ์แสดงให้เห็นว่ากรอบงานที่เราเสนอสามารถทำงานได้ดีกว่างานที่มีอยู่  โดยมีปรับปรุงเวลา
ตอบสนองของบริการถึง 30.50% จากการใช้ข้อมูลจำลองในกรทดสอบ และถึง 63.25% จากการ
ใช้ข้อมูลขนาดใหญ่ในโลกแห่งความเป็นจริงในการทดสอบ 

 

สาขาวิชา วิศวกรรมคอมพิวเตอร์ ลายมือชื่อนิสิต ................................................ 
ปีการศึกษา 2565 ลายมือชื่อ อ.ที่ปรึกษาหลัก .............................. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 

 
ABSTRACT (ENGLISH) # # 6470421621 : MAJOR COMPUTER ENGINEERING 
KEYWORD: localization service, indoor localization, large-scale, edge computing, 

optimization problem 
 Karnkitti Kittikamron : Service Placement Optimization for Location -Based 

Service. Advisor: Assoc. Prof. KULTIDA ROJVIBOONCHAI, Ph.D. 
  

Location-based service (LBS) is necessary and useful for several 
applications including navigation and games. These real-time applications require 
high accuracy and low delay. In general, the complexity of indoor localization 
algorithms used in LBS depends on the size of fingerprint data. This can lead to 
long delays when operating in large-scale areas. In this paper, we propose a novel 
optimization framework for edge service placement, aiming at minimizing the 
overall cost of edge computing deployment and service response time. Our 
placement strategy is used to solve the formulated edge node placement 
problems. The simulated annealing approach is then used in solution space 
exploration to discover the optimal solution efficiently. The results show that our 
proposed framework can outperform the existing work with a 30.50% improvement 
in the service response time on the simulated data, and a 63.25% improvement in 
the service response time on the real-world large- scale data. 
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1. Background and Signification of the Research Problem 
As smartphones are the part of people’s everyday life over the last few years, 

one of the most useful services in this story is location-based service. Location-based 
service is a service that uses geospatial data and content preference combined to 
provide suitable information to users based on their location [1]. This service has 
been used vastly in many applications such as turn-by-turn navigation, shopping mall 
advertising, games and entertainment (AR/VR), social network and assistive healthcare 
systems, etc. which are delay-sensitive applications and require low latency. 
Positioning is crucial to LBS and is mostly supported in both outdoor environments 
handled by GPS services and indoor environments handled by indoor location 
services. 

Several techniques have been proposed for indoor localization recently 
including the techniques that do not require the pre-installation of infrastructure 
which is by far more popular due to cost saving and accuracy [2]-[3]. The most 
popular technique that does not require the pre-installation of infrastructure is the 
Wi-Fi fingerprint technique [4]. Wi-Fi fingerprints can achieve high accuracy by using 
the assumption that each location has a specific signal characteristic like fingerprints 
which can be used to represent that location. There are two phases in this 
technique: the training phase and localizing phase. In the training phase, a site survey 
is performed to construct fingerprints of all targeted positions and store them in the 
database. In the localizing phase, the user’s Wi-Fi fingerprint is compared to all 
fingerprints in the database by using a localizing algorithm and then returns the 
user’s position as a result. 

When it comes to large-scale area scenarios like multi-floor building 
environments, the size of fingerprints can be massive due to the high resolution of 
location tags indicating which position on which floor of which building. As a result, 
the indoor localization system contains a large size of fingerprints which causes an 
increase in processing time usage of the localization process affecting overall 
performance [5]. This problem results from cloud-centric architecture deployment 
which is a conventional architecture used in the present application. To illustrate, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

indoor localization only needs the fingerprint data of a focused area such as a 
building or a building cluster in localization; all the large fingerprint data stored in the 
server containing unnecessary fingerprints are processed in localization leading to a 
long processing time problem. Moreover, the service is usually deployed on 
computational resources on the cloud which is far away from users  resulting in a 
long delay, large workload, and low scalability [6]. To sum up, the current 
architecture can cause an increase in response time including propagation delay and 
localization processing time. 

Edge computing is a distributed computing paradigm bringing computational 
resources and data storage closer to end users at the edge of the network which can 
provide new opportunities for efficient operation such as reducing latency and saving 
bandwidth. Edge computing could be applied to enhance the performance of indoor 
localization in terms of latency by distributing services close to the user and in terms 
of processing time by implementing only necessary data according to data locality.  

Although, deploying the service on the edge server at each building can solve 
the problems magnificently, in a real situation, not every building has enough 
resources or is the potential to place an edge server due to cost limits. When it 
comes to edge computing implementation, the edge node placement strategy is the 
crucial part to manage how to divide the workload for edge nodes and where to put 
them. There are several edge node placement strategies proposed in the past few 
years which mostly focus on optimizing the algorithm to balance targeted metrics 
such as latency, energy consumption, resource utilization, cost, workload, etc. [7]–[8]. 
In indoor localization in large-scale areas, the size of fingerprint data of each building 
is different. Therefore, the time used in the localization process varies at different 
buildings. Misplaced services with varied building fingerprint data can increase the 
size of the fingerprint at each node resulting in long processing time and poor 
network traffic. Moreover, usage quantity varies depending on each location in the 
system [9]. The absence of this consideration of usage quantity results in misplacing 
service at an infrequently used node. There is no edge node placement strategy 
considering the difference in time used in processing and usage quantity at each 
node which impacts the performance of the positioning service. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

To overcome the above-mentioned limitation, in this paper, we proposed an 
edge service placement optimization framework aiming to achieve better latency, 
cost, and response time including localization processing time and propagation delay 
by considering data locality dependency and historical usage quantity data or Point 
of Interest (POI). We developed a framework for solving edge node placement and 
used indoor localization service as a use case example in testing. In addition, our 
proposed placement optimization could be applied to not only positioning services 
but also services whose performance relies on data locality and data size.  

 
1.1. Design Goals 

This research has been studied to propose an edge node placement framework 
for location-based service with the restriction of real-time response. The optimal 
placement solution needs to divide the workload and allocate the service at a 
suitable size and place it at the optimal location to satisfy the requirement of LBS. 
The optimization objectives include the overall cost of edge node network 
deployment, the number of edge nodes deployed in the network, and the overall 
response time including propagation delay and localization processing time. 

 
1.2. Scope and Assumption 
 The scope of this thesis is limited to the followings:  

- This thesis considers optimizing the placement strategy based on static 
placement optimization using the input information only once. 

- In terms of the computational complexity of each task, the size of fingerprint 
data has been used to calculate the size of time and conclude the processing 
time. 

- This thesis focuses on achieving the optimized service response time 
including localization processing time ad propagation delay using the average 
value. 

- This thesis did not aim at improving any localization methods. 
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- In order to evaluate the proposed framework, the framework was 
implemented as modules by using Python. The network environment is 
formed by using the NetworkX library. 

- This thesis doesn’t concern service replica; each service presents at only one 
node. 

- The issue of node and link failures is not taken into consideration in this 
thesis. 

- All server resources are only reserved for the target service in service 
placement. 

-  
1.3. Academic Values 
 1. Edge node placement optimization framework for location-based services can 
be used in not only positioning services but also services whose performance relies 
on data locality and data size. 
 2. Edge node placement optimization framework can be tailored to the 
specification of targeted applications by adjusting the weights of metrics used in 
optimization. 
 
1.4. Process of Thesis  
 1. Study and research related topics about fingerprint-based indoor localization 
 2. Study and research related topics about edge node placement strategy 
 3. Preliminary experiment 
 3. Design the edge service placement framework 
 4. Framework development  
 5. Design the edge service placement experiments using indoor localization as a 
use case 
 6. Prepare the simulated network topology data set 
 7. Test the experiment on the simulated input data from 6. 
 8. Analyze and compare the results from 7. 
 9. Prepare the real-world large-scale data set 
 10. Test the experiment on the real-world large-scale data set from 9. 
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 11. Analyze and compare the results from 10. 
 12. Summarize and discuss the experimental results 
 
1.5. Publication 
 “Edge Service Placement Optimization for Location-Based Service” by Karnkitti 
Kittikamron, Natthanon Manop, Adsadawut Chanakitkarnchok, and Kultida 
Rojviboonchai published and presented at the international academic conference 
named “The 20th International Joint Conference on Computer Science and Software 
Engineering (JCSSE2023)” at Phitsanulok, Thailand on June 28th – July 1st 2023.  
 
1.6. Thesis Organization 
 The rest of the dissertation is organized as follows. The next chapter describes the 
theoretical background of location-based service, indoor localization, and edge node 
placement strategy. This chapter also includes the literature review contributed to 
this thesis. Chapter 3 explains the research methodology including the problem 
formulation, the architecture of the proposed framework, and also each module of 
the proposed framework. In Chapter 4, we evaluate the performance of our 
proposed framework compared with the previous approaches. Finally, Chapter 5 
concludes the thesis and discussion for further research.  
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2. Theoretical Background and Literature Review 
2.1. Location-Based Services 

There are three basic components in the service: positioning, which is the part 
that determines the user’s location, modeling which is the part that models context 
and characteristics adapted to the location of users and communication which is the 
part that provides relevant information from LBS applications to the users [10].  

 
2.2. Indoor Localization 

Several techniques have been applied for indoor localization [11]-[12]. The most 
popular technique is the Wi-Fi fingerprint. Due to no additional infrastructure 
installation required and availability in commercial smartphones, Wi-Fi could offer 
more ease of use and high accuracy, even though time and manpower are taken for 
site surveys. In the large-scale area, long processing time and accuracy are common 
problems. Many indoor localization techniques using area classification have been 
proposed aiming to deal with out-of-scope area data which can cause computational 
resource waste. 

Adaptive Indoor Localization System for Large-Scale Area [13] proposed an 
indoor localization system for the large-scale area containing three main parts. First, 
an area classification is designed for identifying an area of the user's queries by 
filtering out the unknown data and out-of-scope area queries sent from outdoors and 
locating a building of the queries. Second, a fingerprint-based indoor localization 
algorithm uses the information from the previous part to localize the exact location 
of those queries. Third, the missing-BSSID detector algorithm handles the changing 
environment by detecting the missing BSSID from queries and updating the database. 
The proposed indoor localization system can achieve high accuracy and reduce the 
overall processing time in changing environments. Nevertheless, the system shows 
that the size of fingerprint data can affect the fingerprint-based indoor localization 
algorithm processing time resulting from cloud-centric architecture which also affects 
service propagation delay. 
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2.3. Edge Node Placement Strategy 
Madamori et al. [14] proposed a cost-effective edge node placement in smart 

cities that opportunistically leverage public transit network strategy aiming to 
minimize overall delivery latency within a budget. Not only single-objective 
optimization has been studied, but there are also many multiple-objective 
optimizations have been proposed for optimizing more than one metric such as 
latency, resource utilization, cost, energy consumption, QoE, etc. 

EdgeOn is a framework tailored to a 5G-EC ecosystem based on three key 
aspects such as cost, number of edge nodes, and capacity usage ratio [15]. The 
framework was developed by ensuring ultra-low latency demand compliance to 
address the strict latency and reliability demands of 5G. The main module of the 
framework works with three core processing stages and an output stage. First, Input 
Processing takes network topology as input and normalizes it to meet the 5G use 
case requirements. Second, to handle real data input, Scenario Generation 
implemented a network emulator to provide test scenarios. Next, the Placement 
Optimization phase is the key of the framework to return an optimized placement 
solution comprising the Pre-Optimization module which aims to reduce the problem 
complexity by separating the region of interest and omitting isolated service 
consumer nodes, Placement Strategy module implements two different greedy and 
scored algorithms to greedily pair service consumer and edge (service provider) 
nodes considering consumer requirements, network usage, edge node capacities, etc. 
and Solution Space Exploration module proceeding the pairing algorithm conforming 
the strictly constrained and scoring solution considering multi-objective to determine 
the Pareto front out of NP-hard problems. In the Solution Space Exploration module, 
the Hybrid Simulated Annealing technique was applied combining the concept of 
Traditional Simulated Annealing and Tabu Search algorithm to obtain a strong ability 
to escape local optima throughout the solution space exploration. Finally, the 
Output stage returns the optimum solution containing the set of edge node locations 
to place the service infrastructure. The framework can achieve 30% less average ENs 
deployed and a 25% higher average usage ratio. Nevertheless, the framework 
provides the best solution for only general applications and not for the application 
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that has concern dependencies at the data level. Moreover, the framework doesn't 
consider the historical data of usage quantities in solution exploration.  
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3. Research Methodology 
3.1. Problem Formulation 

In a large-scale area like multi-floor buildings, cloud-centric architecture or 
centralized deployment cannot satisfy low delay requirements of location-based 
services due to limitations in high localization processing time, propagation delay, 
and bandwidth. 
 

 
Figure 1 Edge node placement illustration 

Edge computing brings computational resources and data storage closer to end 
users at the edge of the network which is suitable for low processing tasks and 
results in low latency and bandwidth. Integrating edge computing could be one of 
the good options. By deploying an edge server with service implemented at every 
building as shown in Figure 1, the stated problems are solved. However, not all 
buildings are the potential to place edge servers because of inadequate resources 
and limited budgets. This problem could be stated as an edge node placement 
problem where the problem can be solved by edge node placement strategies. 
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Figure 2 Problem formulation illustration 

To illustrate, the goal of the solution is to select potential building nodes as edge 
nodes to place indoor localization services. As each building node holds a different 
size of the fingerprint which reflects the computational complexity and the different 
number of usage quantities shown in Figure 2, placing service needs to consider 
these characteristics concurrently. Therefore, this problem was formulated as a 
multi-objective edge node placement optimization problem.   

 
Min w1 ∗ Total cost + w2 ∗ Number of edge nodes +  w3

∗ Average response time 
3.1.1 

 
Equation 3.1.1 showed the objective function of the multi-objective 

optimization aiming at the minimized total cost, the minimized number of edge 
nodes, and the minimized average response time including localization processing 
time and propagation delay. 

 
3.2. Framework Architecture 

In this study, an edge service placement optimization framework for location-
based service has been proposed composed of four main modules. 
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Figure 3 Framework Architecture 

As shown in Figure 3, the proposed framework consists of four main modules 
working together to take a network topology as input and return the placement 
solution. The framework includes the Input Processing Module which handles the 
network topology input, the Placement Strategy Module which generates placement 
solutions, the Solution Evaluation Module which evaluates the quality of a solution 
in terms of score, and the Solution Space Exploration Module which explores the 
solution space to find an optimal solution by cooperating with the two prior 
modules. 

 
3.3. Input Processing Module 

This module transforms a network topology input into a simplified form and 
labels node and edge information. 

 
Figure 4 The example results of the Input Processing Module 
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Figure 4 shows the example of input network topology having been processed by 
the Input Processing Module. Each node represents a service node in the input 
network topology and holds attributes such as the number of historical usage 
quantities, potential edge node status, and compute complexity (the size of the 
fingerprint data). Each edge represents a link in the input network topology and holds 
link delay and bandwidth value. 

 
3.4. Placement Strategy Module 

There are nodes in the input network topology. At first, all nodes are unserved. 
An unserved node is a node that holds user demand and is not served. Then some 
nodes are selected to be edge nodes and serve the other unserved nodes. This 
module is responsible for solution generation by using a greedy algorithm that 
selects potential nodes as edge nodes and pairs them with unserved nodes. A 
potential node is a node that has adequate resources to place the service and to 
serve unserved nodes. 
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Our edge placement algorithm is shown in Algorithm 1. The purpose of the 

algorithm is to find an initial solution using a greedy algorithm. In the normal pairing 
process (initial_mode), a potential node with the least product of the usage quantity 
and the size of fingerprint data is selected as an edge node. Next, all nodes that are 
not edge nodes and have exceeding workload are filtered out, so that they could be 
selected as edge nodes later. Then the remaining nodes are sorted by the product of 
the sum of usage quantities between a node and edge node and the sum of the size 
of fingerprint data between the node and edge node. The one with the least product 
is chosen to pair with that edge node and becomes its served node. In the edge 
serving node, the shortest path between the edge node and served node is used, 
and all requests or the workload of the served node are served by the edge node. 
The service at the edge node also includes the fingerprint data of the served node. 
As the module process goes on, the order of edge selection is recorded. After the 
initial solution is retrieved, the module returns the answer consisting of an edge list 
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which is the list of edge nodes with their served nodes and the edge selection order. 
The algorithm can also be used in neighbor solution generation. If an edge selection 
order is given to the algorithm using neighbor_mode, in the pairing process, edge 
nodes are selected in order of the edge selection order input instead of the least 
product method.  

 
3.5. Solution Evaluation Module 

To know the quality of any solutions, each solution needs to be measured in 
terms of metrics and calculated as a score. This module evaluates solutions to make 
it be comparable to each other in different aspects such as total cost, number of 
edge nodes, and average response time including localization processing time and 
propagation delay. Each factor is defined as follows: 

𝑇𝐶 =  ∑ 𝐶𝑖 ∗ 𝐸𝑖

𝑛

𝑖 = 1

 

where 𝐶𝑖  is the compute complexity of node i, 
 𝐸𝑖 is the status of node i which is 1 if node I is edge node and 0, otherwise. 
 

3.5.1 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑠𝑡 =  ∑ ∑ ∑ 𝑘𝑝 ∗ 𝐸𝑖

𝑝 𝜖 𝑃𝑖𝑗

 

𝑗 𝜖 𝑆𝑖

𝑛

𝑖 = 1

 

where 𝑃𝑖𝑗  is the set of links in the path from node i to node j, 
 𝑆𝑖 is the set of nodes served by edge node i, 
 𝑘𝑝 is the network cost of link p, 
 𝐸𝑖 is the status of node i which is 1 if node I is edge node and 0, otherwise. 
 

3.5.2 

𝑇𝑜𝑡𝑎𝑙 𝑢𝑝𝑓𝑟𝑜𝑛𝑡 𝑐𝑜𝑠𝑡 =  ∑ 𝑈𝑖 ∗ 𝐸𝑖

𝑛

𝑖 = 1

 

where 𝑈𝑖  is the upfront deployment cost of node i, 
 𝐸𝑖 is the status of node i which is 1 if node I is edge node and 0, otherwise.  
 
  

 
3.5.3 

Total cost = Total capacity cost + Total network cost + Total upfront cost 
 
 

3.5.4 
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𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑝𝑜𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 (𝑃𝐷)  =  ∑ ∑ ∑ 𝑑𝑝 ∗ 𝐸𝑖 ∗

𝑝 𝜖 𝑃𝑖𝑗

𝑄𝑗  

𝑗 𝜖 𝑆𝑖

𝑛

𝑖 = 1

 

where 𝑄𝑖  is the usage quantity of node i,  
 𝑑𝑝 is the delay of link p, 
 𝐸𝑖 is the status of node i which is 1 if node I is edge node and 0, otherwise 

 
3.5.5 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝐿𝑃𝑇)  =  ∑(𝐸𝑖 ∗  ( ∑ 𝐶𝑗 

𝑗 𝜖 𝑆𝑖

𝑛

𝑖 = 1

∗ ∑ 𝑄𝑘))

𝑘 𝜖 𝑆𝑖

 

where 𝑄𝑖  is the usage quantity of node i,  
 𝐶𝑖  is the compute complexity of node i, 
 𝑆𝑖 is the set of nodes served by edge node I, 
 𝐸𝑖 is the status of node i which is 1 if node I is edge node and 0, otherwise. 
 

3.5.6 

𝑇𝑜𝑡𝑎𝑙 𝑢𝑠𝑎𝑔𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝑈𝑄)  =  ∑ 𝑄𝑖

𝑛

𝑖 = 1

 

where 𝑄𝑖  is the usage quantity of node i 
 

3.5.7 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑎𝑣𝑔𝐿𝑃𝑇)  =  𝐿𝑃𝑇 / 𝑈𝑄 

 
3.5.8 

Avearage response time (avgRT)  = (LPT +  PD) /UQ 3.5.9 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑛𝑜𝑑𝑒𝑠 =  ∑ 𝐸𝑖

𝑛

𝑖 = 1

 

where 𝐸𝑖 is the status of node i which is 1 if node I is edge node and 0, otherwise. 
 

 
3.5.10 

 

Score = w1 ∗ Total cost + w2 ∗ Number of edge nodes +  w3 ∗ Average response time 
 3.5.11 

 
Equation 3.5.4 showed that total cost is the sum of the total capacity cost shown 

in Equation 3.5.1, which is the sum of the capacity unit of each edge node, and total 
network cost shown in Equation 3.5.2, which is the sum of the network unit used in 
network traffic between each edge node and its served nodes, and total upfront cost 
shown in Equation 3.5.3, which is the sum of edge server deployment cost of each 
edge node. The number of edge nodes is counted shown in Equation 3.5.10. 
Equation 3.5.9 showed that the average response time is the average of the sum of 
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total localization processing time from Equation 3.5.6 and the total propagation 
delay from Equation 3.5.5 over total usage quantity from Equation 3.5.7. To 
summarize the difference metrics into a score, each metric is normalized by using 
relative calculation with the initial solution. Then with provided weights that 
emphasize how much each metric is important, the score is calculated using a 
weighted sum approach as shown in Equation 3.5.11. 

 
3.6. Solution Space Exploration Module 

As the edge node placement problem was proved to be an NP-hard problem 
[16]-[17], the solution space can be vast that the optimal solution cannot be 
obtained in polynomial time. To find the optimal solution, the solution space needs 
to be explored efficiently.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17 

 
 

This module applies the Simulated Annealing approach [18], which is a stochastic 
global search algorithm for combinatorial optimization problems and collaborates 
with Placement Strategy Module and Score Evaluation Module to find the optimal 
solution. The point of this method is to escape local optima and discover global 
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optima by keeping the bad solution in the possible solution list because good 
solutions may be generated from the bad solution. 

Algorithm 2 shows the Hybrid Simulated Annealing. After the initial solution has 
been obtained by using Algorithm 1, the edge selection order is mutated into similar 
edge selection orders by shuffling, randomizing, swapping, and concatenating the 
initial edge selection order. Then neighbor solutions are generated using Algorithm 1 
by taking the mutated edge selection orders as input. The weights for evaluating 
each metric of solutions are determined and sent together with the outcome 
solution to the Score Evaluation Module. The exploration continues by using the 
objective function as shown in Equation 3.1.1 through the score calculation as shown 
in Equation 3.5.11. The temperature of the Simulated Annealing is adjusted until it 
reaches the minimum temperature. In the end, the optimal solution is found and 
returned as the output. The output includes an edge list which is the list of edge 
nodes with their served nodes. This suggests where to deploy edge nodes and where 
to put which service to achieve the optimization goal. 

The time complexity of simulated annealing from Algorithm 2 can be 
approximated as O(k*N), where k is the number of iterations or steps taken by the 
algorithm and N is the size of the problem space. The size of the problem space can 
be analyzed from Algorithm 1. The placement strategy algorithm shows the size of 
the problem space is n2 where n is the number of nodes in input topology. 
Therefore, the overall complexity of the framework is O(k*n2) where k is the number 
of iterations of the simulated annealing and n is the number of nodes in input 
topology. The time complexity analysis usually focuses on the expected 
performance over multiple runs rather than the worst-case scenario. 
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4. Measurement and Evaluation 
4.1. Experimental Setup 

4.1.1. Development Tools 
To evaluate the performance of the proposed framework, the framework 

including the Input Processing module, the Placement Strategy module, the Score 
Evaluation module, and the Solution Space Exploration module was implemented 
using Python, a programming language. We also used Networkx, a Python package for 
the structure and functions of networks, to model the network topology. 

4.1.2. Scenario 
We used an indoor localization system as a use case in the edge node 

placement testing to test how the performance relies on data location and data size. 
The goal of the experiment was to find the nodes suitable for indoor localization 
service deployment among all network input nodes by considering cost and the 
metrics of concern using given network and application usage information. 

4.1.3. Input Dataset 
We need a network topology with the information of each edge including link 

bandwidth, and link delay, and the information of each node including the number 
of requests, the size of fingerprint data, and the potential to place service status for 
the experiment. To evaluate the framework in a large-scale area use case, we 
conducted experiments on simulated network topologies with different numbers of 
nodes and on large-scale data from an indoor localization service and from a 
country-scale shopping mall group data. 

4.1.3.1. Simulated Network Topologies  
For experiments on the simulated network topologies, 8 topologies were 

generated with the numbers of nodes ranging from 10 to 80 nodes. For each 
topology, nodes with coordinate pairs were plotted on a 2D grid map scatteredly and 
edges were randomly linked between nodes. The usage quantity and data size of 
each node was assigned with random values between 20,000 to 100,000 requests. All 
nodes have the potential to deploy edge servers. The link delay was calculated 
based on the Euclidean distance between two nodes. The maximum workload 
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capacity that each potential node can serve was set to be 3 times the maximum 
workload produced by each node. Each link holds the same bandwidth. 

 
Figure 5 The example of the simulated network topology 

Figure 5 depicts the example of the simulated network topology used in the 
experiment with the size of 80 nodes generated by using NetworkX. Each node’s 
number of requests is randomly assigned with a value between 20,000 requests to 
100,000 requests. Each node’s size of fingerprint data is randomly assigned with a 
value between 50 to 500. 

4.1.3.2. Real-World Large-Scale Data 
To ensure that our proposed framework not only works in simulated network 

topologies, we used two real-world large-scale datasets as follows: 
a) Wi-Fi fingerprint dataset of 37 multi-floor buildings at Chula Expo 
The Wi-Fi fingerprint dataset of 37 multi-floor buildings collected at the Chula 

Expo Exhibition in 2017 was used to form input data [13]. To illustrate, each building 
represents each node in the network topology. Each node was plotted on a 2D grid 
map by its location. 
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Figure 6 37 Buildings in Chulalongkorn University from Ref. 13 

 Figure 6 depicts the input topology used in the experiment showing the network 
topology occupying the campus over more than 10 clusters of buildings. For the 
network edges, there are links between each building node (Pin) and its faculty node 
(Circle) which is the centroid point of the cluster differentiated by colors and links 
between each faculty node and the IT center node. The link delay was calculated 
based on the geographical distance between buildings. To illustrate, the link with a 
longer distance will hold a longer propagation delay. The collected data includes (1) 
Wi-Fi fingerprint of each building retrieved from the access point scanning results, 
which represents the building id, floor, and position tag of each location, (2) the size 
of data of each building fingerprint which depends on the number of position tags 
within that building, (3) the network node topology consisting of each node and edge 
basic attributes, and (4) the historical service usage quantity obtained from the 
queries made by users on exhibition days at each building.  

b) Central Shopping Mall Group 
We also used another network topology dataset with country-scale size to 

emphasize the impact of propagation delay. A shopping mall is a place full of people 
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utilizing location-based services such as games, entertainment, advertising, navigation, 
etc. One of the largest and most popular shopping mall groups in Thailand is the 
Central Shopping Mall Group [19]. With marketing research and planning, each branch 
of the shopping mall is in a dense population and economic district area. The 
Central Shopping Mall Group is an interesting contender for the service placement 
strategy study due to the large number of branches and the topology scale which 
cover the whole part of Thailand. The information of Central Shopping Mall Group 
provided online is sufficient to use as network topology input of indoor localization 
use case in the experiment. 

 
Figure 7 Map of Central Shopping Mall Group used in the experiment 
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Figure 7 depicts the network topology formed by using each shopping mall 
branch to represent each node. Each branch location was plotted on a real-world 2D 
map. On the map, there are 41 branches of Central Shopping Mall Group, for 
example, Central Lardprao located in Bangkok province in the central region of 
Thailand. As shown in the map, the number of branches is dense in some areas. For 
the network edges, there are links between each shopping mall node (Pin) and its 
region node (Circle) which is the centroid point of the cluster differentiated by colors. 
The link delay was calculated based on the geographical distance between the 
shopping mall. As the distance between each node is longer, we expected that the 
propagation delay would be more significant.  

 

 
Figure 8 The example of Central Shopping Mall Group data 

For the node attributes, Figure 8 shows the example of each branch of Central 
Shopping Mall Group [19]. Besides the location of each node, we also retrieve the 
Gross leasable area (GLA) of each branch [19]. The Gross leasable area (GLA) data 
reflects the total floor area within a commercial property that is available for lease 
to tenants. It represents the space that can be rented out and generates rental 
income for the property owner or landlord. The usage quantity or the number of 
requests for each node was derived from the number of stores in each shopping 
mall. The size of fingerprint data was retrieved from the GLA data. All nodes were 
the potential nodes to place the service. 

4.1.4. Parameter Configuration 
In the experiment, the parameters of the Solution Space Exploration module in 

the proposed framework were defined. 
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Table  1 Hybrid Simulated Annealing’s Parameter Configuration 

Hybrid Simulated Annealing 

Minimum Temperature 1 

Maximum Temperature 0.1 

Temperature Iteration 30 

The Number of Neighbors 12 

Fast Alpha 0.80 

Slow Alpha 0.95 

The Weight of Total Cost (w1) 0.1875 

The Weight of The Number of Edge nodes (w2) 0.625 

The Weight of The Average Service Response Time (w3) 0.1875 

 
For the Hybrid Simulated Annealing in the Solution Space Exploration Module, 

the parameters including the minimum temperature, the maximum temperature, the 
temperature iterations, the number of neighbors, the fast alpha, and the slow alpha 

were set as shown in Table  1 The weight values of 1, 2, and 3 in the 
objective function of the Solution Space Exploration shown in Equation 3.1.1 and 
also in the score calculation of the Score Evaluation Module shown in Equation 
3.5.11 are set to 0.1875, 0.625, and 0.1875, respectively. 

Table  2 Cloud and Edge Server Parameter Configuration 

Cost 

Server Cloud Edge 

Computational Capability (unit) 10 1 

Server Upfront Cost (unit) 1.5 1 

Network Cost (unit) 1 0.1 

 
Moreover, since we included the Centralized Deployment in the experiment 

benchmark, the parameters of the cloud server including the computational 
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capability, server upfront cost, and the network traffic cost were defined as shown in 
Table  2. 

4.1.5. Workload Modeling 
 The localization processing time is one of the main factors in our optimization 
objective. When deploying service at only some edge nodes, some edge nodes need 
to have more than a single localization service that can serve not only their own 
building but also other buildings. As a result, the localization processing time 
increases due to the larger size of fingerprint data. To evaluate the total localization 
processing, we need to model a function to calculate the time used by each service 
for processing each request based on the size of fingerprint data.  
 

4.1.5.1. Exploring the relationship between the size of fingerprint data 
and the processing time experiment 

 We implemented 37 localization services by using fingerprint data of each building 
from 37 multi-floor buildings data [13]. Then, requests to each service were made 
and the response time was recorded and calculated on average. The size of 
fingerprint data of each service varies between 38 to 513. The results were shown on 
a scatter plot between the size of fingerprint data and the processing time. 

 
Figure 9 Scatter plot of the size of fingerprint data and the processing time 
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 As shown in Figure 9, as the size of fingerprint data grows larger, the processing 
time tends to increase linearly according to the line of best fit (red). The linear 
equation of the line of best fit is y = 0.9589x − 14.2306, where x is the size of 
fingerprint data and y is the processing time. From the experimental result, we can 
conclude that the relationship between the size of fingerprint data and the 
processing time is linear. 
 There are other fingerprint-based indoor localizing algorithms with higher 
complexity than linear. For example, the complexity of a GraphSLAM-based 
crowdsourcing framework for indoor Wi-Fi fingerprinting is O(N2) where N is the 
number of the fingerprint data [12]. Therefore, we also modeled the workload with 
an exponential relationship between the size of fingerprint data and processing time 
to represent other complex applications as well. 
 
 In the real scenario, the workload size or the number of requests also affects the 
overall processing time. Consequently, the relationship between the processing time 
and workload is prone not to be a linear relationship due to high network traffic and 
limited resource utilization. 
 

4.1.5.2. Exploring the relationship between the size of workload and the 
processing time experiment 

 We implemented a localization service for 37 multi-floor buildings [13]. Then, we 
deployed the service on a server. Next, load testing was done by requesting the 
service on the server to observe the change in the processing time at each workload. 
For the load testing, we use K6 which is an open-source load testing tool used to 
test the performance and scalability of web applications. It is designed to simulate 
virtual users or concurrent connections and generate load on the target system to 
measure its response time and throughput under different scenarios [20]. We 
assumed that the available time of service is 8 hours. The parameters of K6 were set 
as follows: the duration is 10 seconds, and the number of concurrent users varied 
between 10 users to 50,000 users. 
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Figure 10 Scatter plot of the number of requests and the processing time 

 Figure 10 shows that as the number of requests grows larger, the processing time 
tends to increase rapidly at first and then slowly. According to the line of best fit 
(red), the regression equation of the line of best fit is y = -28235.3892 + 

2403.3221⋅ln(x), where x is the number of requests and y is the processing time. We 
can conclude that the relationship between the size of the workload or the number 
of requests and the processing time is logarithmic. 

4.1.5.3. Workload Modeling in the Experiment 
 As the relationship between the size of fingerprint data and the processing time 
has been proven to be linear, we will calculate the total localization processing time 
of any services in the experiment by using the sum of the size of fingerprint data. For 
the higher complexity application, we calculate the localization processing time using 

this equation: y = 91.29498⋅1.00442x where x is the number of requests and y is the 
processing time. 
 As the relationship between the size of the workload or the number of requests 
and the processing time is logarithmic, we considered the impact of the size of the 
workload on the processing time by adding the processing time delay to the 
processing time. The processing time delay that we used in the experiment is 
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calculated by using two functions. The first equation is y = 20.56652⋅1.00002x where 
x is the number of requests and y is the processing time used when the number of 
requests is lower than a million requests. The second equation is y = 

−681.1851+108.75751⋅ln(x), where x is the number of requests and y is the 
processing time. For the experiment on simulated network topologies, we rather 
used linear workload modeling as normal without considering the processing time 
delay instead. 
4.2. Metrics 
 We evaluated the performance of the proposed framework by using three metrics 
corresponding to the objective functions. 

4.2.1. Total cost 
Total cost is the sum of overall capacity cost, network cost, and upfront edge 

server deployment cost using Equation 3.5.1-3.5.4. 
4.2.2. Average response time 

Average response time is the average amount of time taken to respond to a 
request including localization processing time and propagation delay using Equation 
3.5.9. 

4.2.3. The number of edge nodes 
The number of edge nodes required for service placement is calculated by using 

Equation 3.5.10. 
4.3. Benchmarks 

We compared the experimental results of the proposed framework to five 
benchmarks to show the prominent point of each approach, and to which approach 
our proposed framework can outperform. 

4.3.1. Full edge deployment 
An approach in which every node on the network topology is used as an edge 

node with the service implemented. 
4.3.2. Centralized deployment 

An approach in which there is only one node that the service is implemented. 
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4.3.3. EdgeOn Framework [15] 
An approach in which the service edge is placed by the solution from a multi-

objective network-aware edge node placement model and solution strategy tailored 
to 5G scenarios. This framework shares the same goals with our proposed framework 
but does not consider the localization processing time and POI data. 

4.3.4. Betweenness Centrality [21] 
An approach in which the service edge is placed by the betweenness centrality 

which is the number of times a node acts as a bridge along the shortest path 
between two other nodes. 

4.3.5. Degree Centrality [21] 
An approach in which the service edge is placed by the number of links incident 

upon a node. 
4.4. Experimental Results 

4.4.1. Simulated Networks Topology  
 Fig. 4.1.1 shows the experimental results for the simulated network topologies 
with the topology sizes ranging from 10 nodes to 80 nodes. Fig. 4.1.1 shows the 
impact of topology sizes on the average service response time, the total cost, and 
the number of edge nodes. 
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Figure 11 The impact of topology sizes on (a) Average service response time; (b) 

Total cost; (c) Number of edge nodes 
 It can be observed in Figure 11(a) that at the small topology size, the average 
response time of each approach slightly differs from the others due to the small 
number of fingerprints. As the topology size grows larger, all approaches outperform 
the centralized deployment. The average response time from all topology sizes of 
the EdgeOn framework is equal to 757.42 ms whereas that of our proposed 
framework is equal to 580.33 ms. This shows a 23.38% improvement on average and 
up to 30.50 %improvement. Our proposed framework can achieve less average 
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service response time than the EdgeOn framework at any topology size. This is 
because, unlike EdgeOn framework, our proposed framework considers the average 
service response time in the optimization. Moreover, the EdgeOn framework also 
focuses on maximizing the capacity usage ratio of each edge server which directly 
affects the growth of the data size and usage quantity at each edge server, leading to 
long service response time. The full edge deployment conquers all approaches with 
the least average service response time as expected. The betweenness centrality and 
the degree centrality provide the worst average service response time among 
approaches. 
 As shown in Figure 11(b), as the topology size increases, the total cost increases 
for all approaches. At the small topology size, the total cost of the centralized 
deployment is the highest due to the cloud service cost. At the large topology size, 
the total cost of the centralized deployment tends to be stable. The total cost of 
the full edge deployment is the highest at any topology size since the number of 
servers is the same number of topology sizes. The total cost of our proposed 
framework is about the same as that of EdgeOn.  
 As shown in Figure 11(c), our proposed framework provides a slightly higher 
number of edge nodes than the EdgeOn framework. The degree centrality can 
achieve the same number of edge nodes as that of the betweenness centrality. 
 The result reveals that our proposed framework can achieve a better average 
service response time than other approaches on the simulated topologies.  

4.4.2. Real-World Large-Scale Data 
a) Wi-Fi fingerprint dataset of 37 multi-floor buildings at Chula Expo 

 The performance of the proposed framework on real-world large-scale data could 
change due to the density of nodes, the sparsity of links and the realistic size of 
fingerprint data, and the number of requests. 
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Table  3 The experimental results for the large-scale area consisting of 37 multi-
floor buildings using linear workload modeling 

Approach 
Metrics 

Average service 
response time (ms) 

Number of edge 
nodes 

Total cost (unit) 

Our proposed 
framework 

100.93 21 656.82 

EdgeOn framework 173.85 16 558. 43 
Centralized 

deployement 
210.10 1 614.01 

Full edge deployment 85.76 37 753.43 

 
 We carried out the edge node placement experiment on the 37 multi-floor 
buildings data using linear workload modeling with our proposed framework and 
other benchmarks. Table  3 shows the experimental results for the large-scale area 
consisting of 37 multi-floor buildings using linear workload modeling. As our results 
show, the EdgeOn framework achieves an average service response time of 173.85 
ms whereas the centralized deployment achieves 210.10 ms. Our proposed 
framework achieves an average service response time of 100.93 ms which is 41.94% 
and 51.96% lower compared to the EdgeOn framework and the centralized 
deployment, respectively. In addition, the total cost of the EdgeOn framework is 
equal to 558.43 units whereas that of our proposed framework is equal to 656.82 
units which are only 17.62 % higher. In terms of the number of edge nodes, the 
result of the EdgeOn framework is 16 nodes whereas that of our proposed 
framework is 21 nodes which is 31.25% higher.  
 The results reveal that our proposed framework can leverage the number of edge 
nodes and the total cost to achieve better average service response time than other 
approaches on the real-world large-scale data: Wi-Fi fingerprint dataset of 37 multi-
floor buildings at Chula Expo using linear workload modeling. 

b) Central Shopping Mall Group 
 The performance of the proposed framework on real-world large-scale data could 
be affected by the size of the topology in terms of distance. In the central shopping 
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mall group topology, the path with the longest propagation delay is the path 
between Central i-City and Central Lampang which is 143.49 ms. We expected that 
our proposed framework can provide the placement solution with the least average 
service response time while balancing the total cost and the number of edge nodes. 
We also used exponential workload modeling in this experiment to reflect the 
computational process behavior due to a large number of requests and a large size 
of fingerprint data. 

Table  4 The experimental results for the Central Shopping Mall Group data using 
logarithmic workload modeling. 

Approach 

Metrics 

Average service 
response time 

(ms) 

Number of edge 
nodes 

Total cost (unit) 
Average 

propagation 
delay (ms) 

Our proposed 
framework 

655.44 26 627.48 2.51 

EdgeOn 
framework 

1,783.55 28 711.98 
1.00 

 Table  4 shows the experimental results for the Central Shopping Mall Group data 
using logarithmic workload modeling. From the result, our proposed frameworks 
required 627.48 units of total cost whereas the EdgeOn framework required 711.98 
units of total cost 84.5 units higher. In terms of the number of edge nodes required 
in service deployment, the proposed framework required less 2 edge nodes than the 
EdgeOn framework. The average service response time of our proposed framework is 
655.44 ms which is 63.25% lower compared to that of EdgeOn framework. In 
addition, our proposed framework’s solution can achieve the propagation delay at 
2.51 ms on average per query on the large topology input. This shows that our 
proposed framework can provide the placement solution that can divide the user 
workloads and computational demand of each service efficiently and can preserve 
the optimized response time including both localization processing time and 
propagation delay. 
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 The experimental results show that our proposed framework can be applied to 
applications with a linear relationship between the data size and the processing time 
and also the higher complexity applications with an exponential relationship 
between the data size and the processing time to provide a better average service 
response time than other approaches. 
4.5. Result Discussion 

4.5.1. Workload Imbalance 
 The main goal of the proposed framework is to minimize the service response 
time by including the average service response time in the objective function. In 
optimization, incorporating the average value into the goal or objective function is 
advantageous as it captures the overall value, covering both positive and negative 
aspects. Nevertheless, this approach may encounter challenges due to the extensive 
range between the minimum and maximum values, leading to potential imbalances. 
We designed the greedy algorithm of the Placement Strategy module to select the 
edge node by considering the least product of the number of requests and the size 
of fingerprint data of each node to place the small service first before combining the 
other services and becoming larger. Using the product methods, the number of 
requests is reciprocal to the size of fingerprint data. As a result, it is possible that 
there can be an edge node that serves a high workload whereas the other edge 
node serves a low workload leading to a workload imbalance problem. 
Table  5 The result of our proposed framework tested on the Central Shopping Mall 

Group data from 4.4.2(b) in detail. 

Our proposed 
framework 

Edge node detail (Number of requests) 
 (150000, 78.7), (100000, 300.0), (70000, 236.0), (100000, 311.0), 
(40000, 100.0), (70000, 186.0), (120000, 364.0), (70000, 255.0), 
(20000, 90.0), (40000, 225.0), (95000, 312.0), (105000, 340.0) 

(110000, 285.0), (25000, 155.0), (85000, 593.0), (100000, 128.0), 
(50000, 250.0), (60000, 270.0), (60000, 300.0), (40000, 104.953), 
(75000, 278.0), (100000, 107.0), (75000, 138.0), (90000, 181.0), 

(80000, 230.5), (130000, 830.0) 

 Table  5 shows the result of our proposed framework tested on the Central 
Shopping Mall Group data from 4.4.2(b) in detail. The number of requests served by 
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an edge node and the size of the fingerprint of each edge node are displayed in pair 
orders. 
Table  6 The summary of the number of requests served by an edge node and the 

size of the fingerprint of each edge node data from 4.4.2(b) 

 Minimum Value Maximum Value Standard 
Deviation 

The number of requests 20,000 150,000 31582.99 

The size of fingerprint 
data 

78.7 830.0 158.69 

 Table  6 shows the summary of the number of requests served by an edge node 
and the size of the fingerprint of each edge node data from 4.4.2(b). The minimum 
number of requests served by an edge node is equal to 20,000 requests while the 
maximum number is equal to 150,000 requests. The difference between the 
maximum value and the minimum value is about 130,000 requests showing that 
there is a workload imbalance among edge nodes in some cases. 

 
Figure 12 The histogram of the number of requests served by an edge node 

 Figure 12 shows that the characteristic of the histogram is a right-skewed 
distribution. Most of the number of requests served by an edge node is between 
20,000 requests to 107,000 requests and only some are above. 
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 In terms of the size of fingerprint data, from Table  6, the minimum value is equal 
to 78.7 and the maximum value is equal to 830.0. The standard deviation of the data 
is equal to 158.69.  

 
Figure 13 The histogram of the size of fingerprint data of each edge node 

 Figure 13 shows that the characteristic of the histogram is a right-skewed 
distribution. Only one outlier is presented which is the size of fingerprint data of 
830.0. We have inspected the edge list and its serving node list and found that the 
node with that size of fingerprint data was serving only itself. This is necessary to 
prevent this node from being combined with the other nodes resulting in the larger 
size of the fingerprint data. 
 From the above results, it can be concluded that even though there is a 
difference in the number of requests among edge nodes, the size of the fingerprint 
data of each service which reflects the localization processing time is like each other. 
The workload imbalance issue presents. Our placement strategy can still achieve the 
optimization goal under such circumstances. 

4.5.2. Cost Analysis 
 The overall cost is one of the objectives of the optimization goal. The 
experimental results in the aspect of the total cost on both simulated data and real-
world data have been shown in units. The total cost only represents the sum of the 
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capacity cost, the network traffic cost, and the upfront deployment cost. The cost of 
the optimal placement solution has been recorded thoroughly to be analyzed later. 
Table  7 The cost analysis of the experimental results on the Central Shopping Mall 

Group data 

Approach 

Cost value 

The capacity 
cost 

The network 
cost 

Total time the 
links used 

(times) 

The upfront 
deployment 

cost 
Our 

proposed 
framework 

6,648.153 3,950,000 790,000 520 

EdgeOn 
framework 

6,648.153 4,550,000 910,000 560 

 
 Table  7 shows the cost analysis of the experimental results on the Central 
Shopping Mall Group data. The capacity cost is calculated from the total size of the 
fingerprint data of each node. Typically, using the EdgeOn approach which is focusing 
on maximizing the capacity usage ratio might lead to duplicated service placement; 
one node can be served by more than one edge node. The result shows that the 
capacity cost of our proposed framework and EdgeOn framework is the same which 
means that each non-edge node in EdgeOn’s solution is served only once by only 
one edge node. The network cost is calculated by using the total times the links are 
used times the constant cost. The result shows that our proposed framework can 
manage the placement solution to use links in the network less than 120,000 times 
compared to the EdgeOn framework. The upfront deployment cost is the sum of the 
upfront deployment cost of each node which is set to the same for all nodes in this 
experiment. 
 From the results, we can conclude that our proposed framework outperforms the 
EdgeOn framework in any aspect of cost.  
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5. Conclusion 
5.1. Thesis Summary 

In this thesis, we proposed an edge service placement optimization framework for 
location-based services. The characteristics of location-based services have been 
studied. The finding expressed the importance of the localization process and its 
impact on the performance of location-based services in terms of real-time response. 
The most popular technique of localization technique. This technique struggles with 
the fingerprint size degrading the performance problem. In a large-scale area, like 
multi-story buildings, the size of the fingerprint could be massive leading to long 
localization processing time. The cloud architecture also resulted in long latency. 
Applying edge computing to deploy small services at the edge of the network close 
to users is the solution. Due to cost and resource limitations, the services can be 
placed at some edge nodes only. This is when the edge node placement strategies 
have been explored. Metrics can be included in the optimization goal of a 
placement strategy. 

We included the edge deployment cost, the number of edge nodes, and the 
average service response time including localization processing time and propagation 
delay. The proposed framework consists of four main modules cooperating to 
generate placement solutions using a greedy algorithm and exploring the solution 
space using the Simulated Annealing approach. 

The experiments were set up using indoor localization service as a use case and 
tested on both simulated data and real-world large-scale data. The relationship 
between the processing time and the size of the fingerprint data and workload 
modeling were also observed. Using our framework, the performance of the 
placement strategy for location-based service can be significantly improved. The 
results show that our proposed strategy outperforms the existing work, sharing the 
same goals in several aspects. The proposed framework can leverage the number of 
edge nodes and the total cost to achieve a lower average response time of up to 
63.25% compared with the existing work. It can be tailored to other applications by 
adjusting the weights in the objective function. The proposed framework can also 
benefit other use cases whose performance relies on data locality and data size. 
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Since the framework aims at minimized response time and considers the Point of 
Interest data. 

 
5.2. Discussions on the Fingerprint Data 

The fingerprint-based technique is one of the most popular techniques used in 
indoor localization while using the concept that each location has its own unique 
signal characteristics which can be used to represent itself.  

 
Figure 14 The example of fingerprint data of an Adaptive Indoor Localization System 

for Large-Scale Area from Ref. 13 
Figure 14 shows the example of fingerprint data of an Adaptive Indoor 

Localization System for a Large-Scale Area from Ref. 13. As shown in the figure, each 
sample of fingerprint data is a list of access points that can be scanned from each 
location labeled by a Basic Service Set Identifier (BSSID) and sorted by the value of 
the Received Signal Strength Indicator (RSSI). The fingerprint characteristics of each 
fingerprint-based technique can be various due to the technology e.g., sensor, 
Bluetooth, geo-magnetic. The fingerprint format that we used in the framework 
design and in the experiments was not fixed or relied on any specific fingerprint-
based localization algorithm. We only considered the size of the fingerprint data and 
the number of fingerprint data impact on the localization processing time. The 
different fingerprint format does not affect the performance of our proposed 
framework. 

 
5.3. Discussions on Historical Usage Quantity Data 

The historical usage quantity data reflects the user workload at each location. In 
our proposed framework, we use the data of the number of requests served by each 
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node representing point-of-interest data. In the placement strategy module, we used 
this data to calculate the least product to greedily pair unserved and selected edge 
nodes. 

Collecting point-of-interest data to be used as historical data needs to be well-
planned to capture all the characteristics of service usage quantity in possible 
scenarios. Some places might have different usage quantities depending on the 
incident. For example, in a shopping mall, the historical data should include the 
workload on normal days and peak time on the event day or the weekend, which 
could be higher. 

With improper data preparation, some servers could be overloaded resulting in 
longer response time than expected. Our proposed framework performs static multi-
objective optimization to find a service placement solution. To illustrate, the 
optimization process is done once before the edge deployment process takes place. 

Our proposed framework can handle this situation by performing the 
optimization process again with the latest point-of-interest data corresponding to the 
workload that covers the peak time situation to achieve a suitable placement 
solution and resource allocation. 

 
5.4. Discussions on Performance Trade-Off 

The objective function of our proposed framework is shown in Equation 3.1.1. 
which is to minimize the total cost, the number of edge nodes, and the average 
response time. As a result, the framework's performance involves a tradeoff between 
the total cost, the number of edge nodes, and the average response time depending 
on the weight of each factor. Each weight factor can be adjusted and tailored to the 
target application. For example, the application that requires a real-time response 
with a strict limit of delay like Video conferencing and Emergency services, the weight 
of the average service response time should be set with the highest value to provide 
the least average service response time. When the deployment budget is limited, 
e.g., the scenario with plenty of Internet of Things (IoT) devices and small-scale 
businesses, the weight of the total cost should be set with the highest value to 
achieve the placement solution with the lowest deployment cost. 
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5.4.1. Parameter Tuning 
In the performance evaluation, we included the EdgeOn framework as one of 

the benchmarks. Since the weights of our proposed framework can be adjusted 
arbitrarily, we needed suitable weights for the experiment to compare the 
experimental results to the EdgeOn framework fairly. The weights that we used for 
our proposed framework were required to provide results close to that of the 
EdgeOn framework in the aspects of the number of edge nodes required for edge 
deployment and the total cost. Therefore, we performed parameter tuning to find 
the weights.  

The weights that we focused on were w1 (for the total cost), w2 (for the number 
of edge nodes), and w3 (for the average service response time). A placement 
solution was acquired from each framework run which is a space solution exploration 
process of simulated annealing and solution generation of placement strategy. The 
goal of the parameter tuning is to find the weights that can provide the placement 
solution result close to that of EdgeOn in those two aspects. At first, a placement 
solution was retrieved by using EdgeOn framework and then was evaluated in terms 
of the total cost and the number of edge nodes to be used in the comparison. 

The list of the w1 parameter was [0.0625, 0.125, 0.3125, 0.625, 0.75, 0.875, 1]. 
The list of the w2 parameter was [0.0625, 0.125, 0.3125, 0.625, 0.75, 0.875, 1]. The list 
of the w3 parameter was [0.0625, 0.125, 0.3125, 0.625, 0.75, 0.875, 1]. In each run, 
the result was recorded and calculated. The measure the closeness of our proposed 
framework’s results with given weights and that of the EdgeOn framework in terms of 
the total cost and the number of edge nodes, we computed the Root Mean Square 
Error (RMSE) for each aspect separately, comparing that of the EdgeOn framework 
values. Then sum up the individual RMSE values to obtain an overall measure of the 
closeness between results. By minimizing the sum of RMSE values, you can find the 
combination of weights (w1, w2, w3) that brings results closer to the results of the 
reference framework in terms of aspects of the total cost and the number of edge 
nodes. The time used in each run of our proposed framework was approximately 120 
seconds when using 37 buildings in Chulalongkorn University data [13] or around 11 
hours in total. The results show that the weights including w1, w2, and w3 that 
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provide the least sum of RMSE are 0.1875, 0.625, and 0.1875, respectively. Therefore, 
we used these weights for our proposed framework in the experiments for 
performance evaluation. 

 
5.5. Discussions on Centralized Deployment 

In the experiments, we defined the centralized deployment as one of the 
benchmarks. The centralized deployment is an approach in which there is only one 
node in that the service is implemented. In the parameter configuration, we set the 
number of equal to 1 server, the network cost to 10 times the local network cost 
and the computational capability to 10 times the server used in other approaches. 
The experimental results on simulated data from Figure 11 shows that at the large 
topology size, the total cost of the centralized deployment is lower than that of our 
proposed framework while the average service response time is higher. The results 
cannot be interpreted directly and fairly because the computational capability of the 
server used in the centralized deployment approach was fixed. 

To compare the results of our proposed framework to the centralized 
deployment with fairness, we configured the computational capability of the server 
used in the centralized deployment to be M times of the server used in other 
approaches where M is the number of nodes of input topology size. To clarify, if the 
number of input nodes is 20 nodes, the computational capability of the server is 20 
times that of the normal server. The server cost was also M times the cost of the 
normal server. Then, the experiment with new centralized deployment was carried 
out. 
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Figure 15 The impact of topology sizes of simulated data using the new centralized 

deployment parameter on (a) Average service response time; (b) Total cost; (c) 
Number of edge nodes 

Figure 15(a) shows the impact of topology sizes of simulated data using the new 
centralized deployment parameter on the average service response time. The 
average service response time of the centralized deployment approach is lower than 
that of our proposed framework at any topology size up to 338.68 ms at the 
topology size of 70 nodes. On the other hand, in terms of the total cost, Figure 15(b) 
shows that the centralized deployment provides the worst total cost compared to 
all approaches at any topology size. The total cost of the centralized deployment is 
more than 114.63% when compared to that of our proposed framework. Figure 15(c) 
shows that our proposed framework requires less than 50% number of the edge 
nodes of the input topology size at any topology size. As our proposed framework 
uses the local network traffic which is cheaper than the cloud network traffic and 
also uses a smaller number of servers, the total cost of our proposed framework is 
lower than the centralized deployment. Even though the centralized deployment 
can achieve better average service response time by scaling up the resources, this 
approach still requires much more cost than other approaches. 
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5.6. Discussions on Workload Imbalance  
From the result discussion 5.4.1, the workload imbalance presents due to the 

use of the average value of response time in the optimization goal of our framework. 
In the experiments, we assumed that every edge node holds sufficient 
computational resources for any number of requests and that every link also holds 
adequate bandwidth for all network traffic loads. 

However, in the real scenario, the heavy workload could affect the server 
performance. As a result, some edge servers face overload requests. Using the same 
specification of the edge server can cause server failure, heavy network traffic, and 
bottleneck problems in case of service overuse due to workload imbalance. To avoid 
these problems, the limitation of the number of requests each edge server needs to 
serve and the network traffic that each link and node can handle need to be defined 
as constraints.  

With constraints on the number of requests of each edge node and the network 
traffic, our proposed framework can manage and divide the workload of each node 
within the constraints to achieve the optimal placement solution by leveraging the 
total cost and the number of edge nodes to prevent such problems. As a result, the 
number of edge nodes is scaled up to serve all requests, also the total cost 
increases. Despite the increase in the number of edge nodes and the total cost, our 
proposed framework can still optimize the average service response time. 
 
5.7. Discussions on Application 

The experimental results show that our proposed framework can achieve less 
than 30.50% average service response time compared with the existing work using 
the simulated data and less than 63.25% or 1,128.11 ms average service response 
time compared with the existing work using the real-world large-scale data. For such 
a lower response time, the performance of many applications could be improved. 
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Figure 16 Bandwidth and latency requirements for different application [22] 
Figure 16 shows the bandwidth and latency requirements for different 

applications [22]. Many location-based services such as Augmented Reality, Virtual 
Reality, Disaster alert, and Real-time gaming are also included. These applications 
require less than 100 ms of delay. It can be concluded that our proposed framework 
is able to improve those application performances which are location-based services 
with better average response time. 

 
5.8. Discussions on Limitations and Future Works  

Despite several benefits, there are limitations that should be mentioned. 
Our proposed framework can provide a better average service response time 

compared with the existing work. However, by using the average value in the 
optimization process, the framework still faces a workload imbalance problem. The 
workload distribution needs to be studied more and included in optimization or 
constraints. 
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Another topic is that the problem of the proposed framework was formulated as 
a static multi-objective optimization problem. That is the optimization process is 
done once before the edge deployment process takes place. As a result, the data 
used in the optimization could be obsolete when time passes due to the change in 
the network environment and user behavior. Optimizing the solution dynamically 
could be important in the future when the data changes rapidly. 

Although the experiments were designed considering any possible factors, the 
real data was not derived directly completely. Some of them were adapted to use in 
the experiments, for example, the propagation delay of each link is calculated by 
using geographical distance. Data collecting design and realistic network topology 
construction could proceed in the future to provide more accuracy in the framework 
performance evaluation. 
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