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The present study was conducted to delineate the groundwater potential
in Kanchanaburi Province, Thailand based on groundwater yield, groundwater
contamination risk, and groundwater quality. In this study, an ensemble model was
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Forest to evaluate the spatial distribution map of the groundwater resources.
Additionally, a new hybrid approach was developed based on maximum entropy
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Chapter 1. INTRODUCTION

1.1. Statement of the problem

Water is vital for the existence of all life on the Earth and an essential
component of several manufacturing operations in a nation. In recent decades,
freshwater shortages in many regions have demanded research on the sustainable use
of water resources (Chen et al., 2020; Hou et al., 2020; Zehtabiyan-Rezaie et al., 2019),
based on the effects of weather elements and human activities on these resources.
The intricate process of climate change has caused widespread drought, changes in
location, timing form, the number of precipitations, and tropical storm intensity in
many areas of the world (Dai, 2013). Rising sea levels have led to salinity intrusion in
soil and groundwater in desert and coastal regions (Boonkaewwan et al., 2020; Howard
et al, 2010; Shah et al, 2001). Simultaneously, population growth, agricultural
expansion, urbanization, and modern industrial activities have created an increasingly
large need for freshwater (Francis, 2011; Howard et al,, 2010; McDonald et al., 2011;
Wilson et al.,, 2006). To reduce freshwater shortages, the exploitation and sustainable
use of water resources have earnered increasing attention, particularly with regard to
groundwater. The development of groundwater potential maps is becoming
increasingly important in many scientific fields and nations (Chaminé et al, 2015). In
particular, gsroundwater mapping provides suitable locations for drilling groundwater
wells for the purpose of water resource management and agricultural activities (Ahmed
and Sajjad, 2018; Elbeih, 2015). Simultaneously, a groundwater potential map can
reveal the groundwater potential zone of a given region. Additionally, human
development and changes in natural processes lead to negative aspects of
groundwater quality (Li et al., 2017; Shah, 2005; White et al., 2007). The presence of
heavy metals causes considerable concern in various water uses. Consequently,
assessing the concentration of toxic pollutants in groundwater is urgently needed in

many regions and countries worldwide.



Constantly advancing remote sensing (RS) and geographic information system (GIS)
technology has played a vital role in groundwater hydrology in recent decades. GIS is an
appropriate tool for solving spatial attribute problems in many environmental science
fields (Beck, 2003; Chaudhary and Kumar, 2018; Chowdhury et al., 2009; Edet et al., 1998;
Twumasi and Merem, 2006), particularly hydrology and hydrogeology. The information RS
provides for the Earth's surface facilitates groundwater potential research in many regions
that do not have available data and complex topography. In recent years, several
groundwater studies have utilized RS and GIS technology to map groundwater potential
zones in their areas of interest. Some scientists (Ghosh et al., 2016; Gnanachandrasamy et
al,, 2018; Kallali et al., 2007; Machiwal et al.,2011; Pinto et al.,, 2017; Selvam et al., 2016)
have used statistical models such as multi-criteria decision analysis (MCDA), multi-influence
factor (MIF), analytical hierarchy process (AHP), frequency ratio (FR) model, logistic
regression (LR) model, and evidence belief function (EBF). Other researchers have applied
machine learning approaches to analyze, calculate, and map the groundwater potential
zone (Alizamir et al., 2018; Kamali Maskooni et al., 2020; Lee et al., 2019; Sahoo et al,,
2017; Tan et al,, 2020). Machine learming models are often used in groundwater studies,
including AB-AD Tree, quadratic discriminant analysis, K-neighbor classification, random
forest classifier (RFC), and support vector machine (SVM). The purpose of these models is
to delineate areas with large groundwater reserves to exploit and reasonably use
groundwater. Although some attempts have been made to develop these models for
assessing the groundwater potential for a given region, the accuracy of the models has
reportedly ranged from 50% to 92% (Abijith et al., 2020; Kamali Maskooni et al., 2020;
Pham et al,, 2019; Tien Bui et al, 2019) with regard to the establishment of potential
groundwater maps. The improvement of groundwater potential mapping models has a
significant role in determining the successful location of groundwater wells. This not only

helps establish wells but also guides the sustainable use of sroundwater resources.

In this study, Kanchanaburi Province in Thailand is considered because its



groundwater situation faces many problems such as drought and contamination
(Srirattana et al,, 2021). Moreover, groundwater extraction increases rapidly to meet
the demand for domestic and agricultural irrigation (Putthividhya and Pipitsombat,
2018). However, the groundwater potential map in terms of quantity and quality in
this province is still limited. Hence, it is necessary to assess groundwater potential for
various purposes in Kanchanaburi Province, Thailand. The anticipated output of this
study will contribute new approaches in groundwater potential study not only for

the study area but also for other regions in the world.
1.2. Research Objective

The general objective of the research is to delineate the groundwater
potential zones in terms of quantity and quality in the Kanchanaburi Province,
Thailand, where groundwater has been widely used by the inhabitant for their

various needs.
1.3. Specific objectives

a) to develop a new ensemble model to efficiently evaluate the spatial

distribution map of the groundwater resources.

b) to develop a new hybrid model to delineate the heavy metal

contamination risk zone in groundwater.

) to delineate groundwater quality using the Entropy water quality indexes.
1.4. Research questions

1. How is the spatial distribution of groundwater yield in the study area?

2. Which database and models are suitable for the study area?

3. How is the level of heavy metals contamination risk in groundwater in the study

area?



4. Is the hybrid model acceptable for heavy metal risk assessment in

groundwater?
5. Which model is acceptable for deciphering sroundwater quality?
6. What is the suitability of groundwater potential for different uses?
1.5. Hypothesis

1. The new hybrid approaches (AHP, FR, RF) can effectively assess

groundwater potential in a case study of Kanchanaburi Province, Thailand.

2. The new hybrid approaches (Maxent and AHP) can effectively delineate the
heavy metal contamination risk zone in groundwater in a case study of Kanchanaburi

province, Thailand.

3. The machine learning models can effectively decipher gsroundwater quality
in a case study of Kanchanaburi Province, Thailand.
1.6. Expected outcome

1. A map of spatial distribution of groundwater yield in Kanchanaburi,

Thailand using frequency ratio, random forest, and analytic hierarchy process.

2. A map of contamination risk zones in groundwater in Kanchanaburi,

Thailand.

3. A map of groundwater quality in Kanchanaburi, Thailand.



Chapter 2. THEORETICAL BACKGROUND AND LITERATURE REVIEWS
2.1. Definition of groundwater potential map

Previous literature reviews indicate that the definition of GWP is a general
concept depending on the purpose of each research. Some researchers (Andermann
et al,, 2012; Fischer et al., 2003; Rodell et al., 2007: Yeh et al., 2006) have focused on
groundwater storage, while others (Batte et al., 2008; Janakarajan and Moench, 2006;
Nampak et al., 2014) have analyzed the groundwater yield in an area. From a storage
perspective, GWP is defined as the total amount of water in aquifers that can be
stored for a long time (Kebede, 2013). Considering the yield, GWP is the quantity of
groundwater that may be extracted from a groundwater aquifer without surpassing
the long-term recharge or the chemical and physical integrity of the basin (Greer,
2008). In addition to the above aspects, groundwater quality is also used to delineate
GWP zones for different purposes. Hounsinou (2020) considered the extent of saline
intrusion of seawater to set the GWP boundaries. Dhar et al. (2015) defined the GWP
zones by overlaying the GWP and groundwater quality indexes. Consequently, the
definition of GWP is not a specific concept to use uniformly worldwide. The usage of
groundwater storage or yield to define GWP remains controversial because they
ignore factors, such as groundwater quality, aquifer properties, sensitivity,
contamination, and its intended use. The definition of GWP based on the knowledge
of the authors can be stated as follows: “Groundwater potential is the volume of
groundwater that can be withdrawn from an aquifer for a particular purpose without

affecting the groundwater yield and groundwater quality of an aquifer.”
2.2. Number of publications in groundwater potential field

The study area statistics around the world provide hydrologists with a general
picture of GWP research. It shows the level of interest in groundwater reserves in

different parts of the world. It is the basis for international organizations to select and



implement projects related to the conservation of global groundwater resources. In
this section, information regarding the number of research papers on GWP and other
parameters is presented. The content includes information about the number of
national studies. The information given in Fig. 2.1 was collected from two reliable
sources, namely Scopus and Web of Science, with keywords “groundwater potential
+ year,” applied by the “title, abstract, and keywords” search functions. A total of
872 and 707 articles were found in Scopus and Web of Science in this field from
2010 to 2020, respectively. Overall, the number of articles related to GWP map
research has remarkably increased in this period (Fig. 2.1), with 87 countries of
interest according to authors (Fig. 2.2). Fie. 2.2 also shows the level of interest by
hydrologists regarding GWP worldwide over the past decade. India, Iran, and Nigeria
had a high number of publications in this research field. Only a small number of
relevant studies have been conducted in the rest of the countries (Fig. 2.2). Fig. 2.3
shows the top 10 journals of Scopus and Web of Science systems selected by
authors for publication between 2010 and 2020, in which Environmental Earth

Sciences and Arabian Journal of Geosciences had the highest publication.

—Scopus Web of Science

180 - /
160

Documents
=
(=]

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Fig. 2.1. Number of GWP studies in the world between 2010 and 2020
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Fig. 2.2. Map of the nations with studies in the world groundwater potential map

published from 2010 to 2020 in the Scopus (a) and Web of Science (b) database
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2.3. Parameters, model techniques and validation in groundwater potential

studies

The dataset related to this study is compiled from two sources, namely Scopus
and Web of Science, and conducted as shown in Fig. 2.4. The first step involves
searching the literature. A total of 872 publications on Scopus and 707 publications on
Web of Science are related to GWP. The second step is cross-referencing literature
between the two systems using DOl and the title of papers. A total of 1085
publications were found in the GWP field from 2010 to 2020. The third step is the
calculation of the number of representative samples using Slovin’s formula (Marendra
and Tangahu, 2020) (Eqg. 1).

N

n=—— (1)

1+Ne?’
where N is the total of 1085 publications, e is the error margin (0.1), and n is the number of
representative samples. The fourth step is setting the dataset. A total of 91 publications
are selected for this study based on the citation index from high to low (Table 2.1). The
final step is reviewing the content on parameters, models, and validation techniques. This

step is the most time-consuming procedure in the research process.

Title/Abstract/Keywords:
“Groundwater potential” DOI/Title Slovin’s formula
2010 - 2020
Scopus
872 articles
Removal of Sample of
Scientific duplications After e
literature duplications systematic review
Cross- -
search reference 1058 articles 91 articles
Web of Science search

707 articles

Fig. 2.4. Flow chart of constructing the database
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2.3.1. Input parameters in groundwater potential studies

GWP studies are generally developed on the basis of climate, geology,
hydrology, land cover, topography, and aquifer-related data. A total of 41 input
parameters are related to the identification of groundwater-rich areas (Fig. 2.5). The
number of input parameters necessary to establish the GWP map is different in each
study. This number ranges from 2 to 17 parameters. Input parameters are the
required information of a GWP model. These parameters provide databases related
to GWP and are the basis for model application. The frequency of input parameters
used in GWP studies is depicted in Fig. 2.5. These data are usually extracted from
conventional data, existing maps, remote sensing, and survey. Eight common factors,
including geology, slope, land use, soil type, drainage density (DD), fault/lineament
density, altitude, and rainfall with a usage frequency larger than 50%, are available in

GWP studies during 2010-2020.
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90 { ™ Topographic-related parameters

u Geological-related parameters
® Hydrological-related parameters
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Fig. 2.5. Frequency of factors used in GWP studies from 2010 to 2020

2.3.1.1. Topographic-related parameters
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Topographic-related parameters are factors that describe the topographical
features of a study area. The frequently used topographic parameters in GWP
research include the following: slope, slope aspect, altitude, topographic wetness
index (TWI), slope length, curvature, plan curvature, profile curvature, stream power
index, sediment transport index, geomorphology, distance to roads, convergence
index, relative slope position, terrain ruggedness index, flow direction, and relief.
Furthermore, five topographic-related parameters, namely slope, slope aspect,
altitude, TWI, and slope length, were widely utilized in most GWP studies (Fig. 2.5).
Slope controls the percolation of water into the soil (Ali et al.,, 2015). Magesh et al.
(2012) proved that a gentle slope means that surface water has less residence time
on the ground. This leads to water having more time to seep into the ground,
whereas a high slope increases flow speed and erosion, and therefore, rainwater
does not have sufficient time to infiltrate. Areas with low slopes have negative
surface runoff and positive percolation rates, whereas areas with high slopes usually
have high amounts of soil runoff and fast meteoric water evacuation by direct hitting
water/or rainfall. Adiat et al. (2012) concluded that groundwater recharge depends
on the surface flow velocity and vertical percolation controlled by slope degree.
Naghibi and Pourghasemi (2015) indicated that the slope aspect also affects
hydrological processes because it determines rainfall direction, moisture, plant
growth, and snow melting. Tahmassebipoor et al. (2016) determined that
groundwater is often limited at high altitudes and abundant at low elevations.
Rahmati et al. (2016) applied TWI to measure the amount of runoff accumulation at
any place in a basin. GWP partly explains a strong inverse correlation between the
TWI index and groundwater yield. Naghibi et al. (2017a) indicated that the possibility
of soil loss also impacts GWP, which is calculated on the basis of slope length. GWP
is also high when the slop length value is low. Overall, topographic-related

parameters control permeability, surface flow direction, and number of precipitations
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seeping into the soil. In the last decade, the growth of the aerospace industry has
greatly contributed to many scientific fields. Digital elevation models (DEMs) are
useful for determining the topography of a certain area (Agarwal and Garg, 2016;
Pradhan et al., 2020; Rajasekhar et al.,, 2019). DEM is usually taken from the Shuttle
Radar Topography Mission (SRTM) (Arkoprovo et al., 2012; Nanda et al., 2017; Prasad
et al., 2020) or ASTER sensors (Mosavi et al., 2020; Sachdeva and Kumar, 2020; Waikar
and Nilawar, 2014) and stored in a raster format. Topographic data are normally

extracted from digital elevation information.

2.3.1.2. Geological-related parameters

Geological-related parameters are commonly accepted to govern the
potential of groundwater. In GWP mapping studies, distance to faults, geology,
lineaments, lineament density, and relative permeability factors are classified among
the geological group (Ozdemir, 2011a). Among these factors, geology is the first
aspect chosen by researchers in building a GWP model, followed by lineament
density (Fig. 2.5). This selection is understandable because differences in lithologies,
structure, folds, and faults result in changes in the strength and permeability of soil
and rock (Ozdemir, 2011a). Geology plays a significant role in finding water
underground. This factor has been mentioned in many groundwater studies. From a
geological perspective, groundwater exists in the fractures and voids of consolidated
rock as well as in the porosity of unconsolidated sediment. Therefore, GWP research
considers the water retention condition of the geological features, such as weathered
products, source rocks, and unconsolidated or consolidated sediments (Xie et al,
2014). According to Termeh et al. (2019), hydraulic conductivity, porosity, and
groundwater flow of an aquifer are dominated by lithology features. Assatse et al.
(2016) pointed out that unconsolidated sediment rocks usually have large gaps,

facilitating the existence and movement of water. Areas of unconsolidated sediment
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rock have high GWP. In addition, some consolidated sediment rocks are also deemed
beneficial for groundwater storage. Consolidated sediment rocks are normally
sandstone and limestone (Assatse et al.,, 2016). In contrast, some rock types, such as
metamorphic rock and volcanic rocks, are not generally considered adequate
materials for good GWP. Thus, geological structure determines the existence of
groundwater in a given region. To collect geological data, most groundwater studies
have utilized field surveys (Bagyaraj et al,, 2019) or are based on a geologic map
(Zabihi et al,, 2016). In addition to geological features, lineaments are also a
preferential option in GWP studies. Lineaments, which are surficial expressions of
faults, are an expression of underlying geological structures. Additionally, lineaments
occur in the forms of fractures, lithological limits, and fault zones on the ground.
Lineaments often appear in mountainous areas or straight coastlines (Adiat et al,
2012; Golla, 2020; Martha et al., 2013; Rahmati et al., 2015). In the past, lineaments
were usually extracted from geology and topography maps (Moore and Waltz, 1983,
O'leary et al., 1976). However, more recently, the development of space science and
aerial data (such as radar, Landsat ETM (Enhanced Thematic Mapper), and Aster DEM
(Digital Elevation Model)) has allowed the collection of lineaments from satellite
photographs (Das et al,, 2018; Hashim et al,, 2013; Mwaniki et al., 2015). (Akinluyi et
al.,, 2018) demonstrated that GWP is influenced by lineaments. Elements belonging
to lineaments such as foliation, fractures, and faults are commonly used to find
suitable groundwater exploitation locations. The factors related to lineament, such
as distance to faults and lineament density, represent the relationship between
surface and subsurface water flow through water mobility and infiltration (Termeh et
al.,, 2019). Abdalla (2012) argued that the occurrence of faults is a good condition for
groundwater recharge, especially in hard rock locations. Indeed, the fractures, joints,
and lineaments act as a conduit, which strengthens the connection between surface

water and groundwater. A fault zone can act as a conduit for vertical subsurface flow
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or as a barrier for horizontal flow, thus making GWP poor (Bense and Person, 2006).
Lineament density reflects the groundwater phenomenon under the Earth's surface.
High lineament density corresponds to high secondary porosity (Haridas et al., 1998);
hence, aquifers and aquitards are quickly recharged through water infiltration.
Concurrently, groundwater movement and retention may be calculated via
lineament density. As such, lineament data are used as an indispensable part of
finding water potential underground. The first lineament data were explored in a
groundwater study carried out by (Lattman and Parizek, 1964). Subsequently, many
researchers have applied this approach to complex terrain areas (Abijith et al., 2020;
Al-Ruzouq et al.,, 2019; Ali-et al;; 2015; lbrahim-Bathis and Ahmed, 2016; Kamali

Maskooni et al., 2020).
2.3.1.3. Hydrological-related parameters

Hydrological-related parameters play a vital role in delineating GWP zones of
a given region. River density, distance to rivers, drainage, DD, distance to drainage,
and net recharge are hydrological-related parameters in GWP. Among these
parameters, DD and distance to rivers were more commonly used than other
hydrological factors (Fig. 2.5). Rahmati et al. (2016) reported that GWP, groundwater
recharge, and hydrogeological systems are affected by hydrological parameters. High
groundwater productivity is rarely found in low river density areas that are far from
rivers, streams, and surface water. Chen et al. (2018) indicated that surface water
sources are the primary recharging sources, which affect the formation capability of
groundwater springs. In addition to river-related factors, drainage-related factors also
affect the GWP of an area. DD represents the drainage capacity of a basin based on
the length of water flow (Bagyaraj et al., 2013; Martinez-Santos and Renard, 2020;
Singh et al,, 2013). DD represents residence times of groundwater (Das, 2019), where
a high DD implies a large water loss capability and vice versa (Arkoprovo et al., 2012).

DD is expressed by the presence of flows on the earth’s surface, such as rivers and
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streams. The numbers of rivers are often distributed more in delta regions than in hill
regions (Mukherjee et al.,, 2012). DD has been directly designated as GWP; the greater
this value, the higher the GWP (Nasir et al., 2018). According to Strahler (1964), DD is
calculated by the overall length of rivers and outflows in a given locality divided by
the total surface area of the locality. According to Moglen et al. (1998), source rock
and climate features determine the shape of stream systems. Areas with a hydrology
system with short and scattered rivers have a hish GWP and vice versa. Ghosh et al.
(2016) observed the inverse correlation of DD and permeability. The zones of high DD
are associated with decreased permeability and significant surface runoff. Therefore,
the GWP in these zones is low. The length factor of river and flow systems directly
affects the DD of a region. In addition to the length of the flow system, other factors
also impact DD, including lithology, runoff, vegetation cover, and infiltration.
Therefore, DD is a necessary element in groundwater studies (Konkul et al., 2014). It
is regarded as an index of groundwater recharge (Gupta and Srivastava, 2010; Mandal
et al,, 2016; Mosavi et al., 2020; Thapa et al., 2018). Similar to the slope, DD is usually
extracted from DEM data (typically ASTER GDE, and SRTM 1 Arc Second Global
satellite images with a spatial resolution of 30 m using ArcGIS 10.5 software) (Bagyaraj

et al., 2013; Ibrahim-Bathis and Ahmed, 2016; Waikar and Nilawar, 2014).
2.3.1.4. Climatic-related parameters

Climatic-related parameters play a significant role in groundwater formation. In
the last decade, GWP models have considered precipitation and surface temperature
as determining factors in the GWP in a study area (Elewa and Qaddah, 2011; Mallick et
al., 2015; Razandi et al., 2015; Shekhar and Pandey, 2015). Rainfall is a significant factor
affecting groundwater recharge (Mukherjee et al., 2012, Owor et al., 2009; Shekhar and
Pandey, 2015) and its occurrence (Gumma and Pavelic, 2013; Mosavi et al., 2020;

Mukherjee et al,, 2012; Nguyen et al.,, 2020b; Pham et al,, 2019) in a study area. In

some hydrological studies (Abijith et al., 2020; Klongvessa et al., 2018; Martinez-Santos
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and Renard, 2020; Rahmati et al, 2015; Suganthi et al., 2013; Thapa et al., 2018),
rainfall is also a factor that influences the recharge capacity of an area. Precipitation
contributes a large amount of water to aquifers and aquitards through subsurface
infiltration systems. As the rainfall increases, the groundwater level also rises
(Chotpantarat et al, 2014; Shekhar and Pandey, 2015). The groundwater recharge
potential is generally higher in the rainy season than in the dry season, thus increasing
groundwater level (Konkul et al., 2014; Wisittammasri and Chotpantarat, 2016). This
finding shows that precipitation is the water supply source for groundwater (Agarwal
and Garg, 2016). In addition to the precipitation factor, Mallick et al. (2015) also utilized
the surface temperature factor in the GWP study. They assumed that the heat
signatures of the earth’s surface help discover GWP based on specific heat. For
example, dry soil has a lower heat capacity than saturated soil. The surface

temperature was usually calculated from satellite imagery (Mallick et al., 2015).
2.3.1.5. Land cover-related parameters

Land use, soil type, soil depth, and NDVI are assigned to the land cover-
related group in the present study. Fig. 2.5 reveals that land use and soil type are
the two commonly used land cover factors by hydrologists in the past decade. Land
use describes the various land-use units of humans on the earth’s surface, which
presents the domination of recharge rate and groundwater usage (Chen et al.,, 2018).
Therefore, land use plays a major role in groundwater exploitation and usage
(Bagyaraj et al,, 2019; Dar et al,, 2010; Mandal et al.,, 2016; Mukherjee et al., 2012,
Waikar and Nilawar, 2014). Zones affected by urbanization and agricultural activities
often require the exploitation of large amounts of groundwater (Odeh et al., 2019).
Other zones such as forests and water bodies are rarely intervened by humans (Lone
et al, 2013). Consequently, human interference directly affects groundwater storage
and recharge capacity. Chen et al. (2018) reported that each land use type has a

difference in water permeability. Built-up, hard rock, and bare land areas have lower



21

permeability than vegetation areas. Each land use type impacts groundwater
retention differently based on evapotranspiration, soil erosion, and runoff
(Chotpantarat and Boonkaewwan, 2018; Saravanan et al., 2018). The land use factor
is routinely developed through aerial imagery and field surveys (Avtar et al., 2010;
Basavaraj and Nijagunappa, 2011; Magesh et al., 2012; Mandal et al., 2016; Shekhar
and Pandey, 2015). Soil type directly affects groundwater infiltration (Sun et al., 2018)
and is a necessary part of defining groundwater recharge (Oh et al., 2011). Mollinedo
et al. (2015) reported that a region's water holding capacity depends on the type,
texture, and depth of soil. Diaz-Alcaide and Martinez-Santos (2019) indicated that
gravelly and sandy soils are high percolation materials, whereas silty and clayey soils
allow the least infiltration. Meanwhile, moderate infiltration is related to loamy soils
and fine sand. Soil data are typically collected from available soil maps prepared by
the land management department of a nation (Agarwal and Garg, 2016; Kumar et al,,
2016; Oh et al,, 2011; Pinto et al.,, 2017). NDVI is also an indicator used in forecasting
groundwater storage and aquifer production of a study area (Chen et al.,, 2018;
Naghibi et al., 2017b; Nampak et al., 2014). Areas with a high NDVI index reflect better
GWP than those with a low NDVI index (Nampak et al., 2014). NDVI data are usually

computed from satellite imagery sources in previous studies.
2.3.1.6. Aquifer-related parameters

In addition to geological-related factors for the formation of consolidated
/unconsolidated aquifers, the other characteristics of aquifers, such as aquifer
thickness, aquifer resistivity, artesian pressure, groundwater depth, and groundwater
quality also influence GWP. In the groundwater study, the thickness of an aquifer also
aids in defining potential zones, which is demonstrated through the thickness of
weathered materials (Razandi et al., 2015). Shekhar and Pandey (2015) indicated that
areas with thick weathering have more groundwater than those with thin weathering

because groundwater is prevalent at the base of the weathered zone, wherein rocks
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have broken down into sand size and large fragments. In addition to aquifer thickness,
aquifer resistivity is also used to determine GWP in some studies (Aizebeokhai et al,
2010; Jha et al, 2010, Muchingami et al., 2012). A high resistivity value indicates low
GWP and vice versa (Muchingami et al., 2012). From the viewpoint of the aquifer
classification (confined/unconfined), artesian pressure is also a decisive factor in
determining potential locations of groundwater. The confined aquifers occur in wide
and thick permeable formations with low artesian pressure, which yields low amounts
of groundwater, whereas the aquifer systems occur in thin permeable formations with
high pressure, thus yielding appreciable amounts of groundwater (Da Lio et al,, 2013).
Groundwater depth is also one of the key indicators in determining the GWP of a well
or borehole location. A large groundwater depth results in a large GWP (Machiwal et
al., 2011). In addition, groundwater quality reflects the GWP of an area. Oikonomidis et
al. (2015) used nitrate concentration in groundwater and GWP index to delineate GWP
and non-GWP zones for domestic uses in Central Greece in the region of Thessaly.
Their results indicated that groundwater in the karst area has good storage and low
nitrate concentration considering a good GWP zone. By contrast, groundwater in the
agricultural activity regions with high nitrate concentration is considered a poor GWP
zone despite its high yield. Gopinath et al. (2019) indicated that the intrusion of
seawater in eastern coastal India increases dissolved mineral concentrations (such as
sodium and chloride) in aquifers due to intensive pumping rates. This phenomenon
reduces GWP in areas facing seawater intrusion problems. Furthermore, Chotpantarat
et al. (2020) used hydrochemical characteristics, including the stable isotopes **0 and
H, to assess the origin of the groundwater and applied principal component analysis
to determine sources of nitrate contamination in Phetchaburi Province, Thailand. Their
result showed that nitrate concentration mainly originated from the agricultural
regions, reducing the GWP area in this region. Boonkaewwan et al. (2020) investigated

the mechanisms of arsenic (As) release in coastal alluvial aquifers in Rayong Province,
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Thailand. They found that arsenite (As**) is mainly released in the deep coastal aquifer
groundwater due to reducing conditions. Thus, groundwater treatment is necessary for
some areas before drinking. As previously mentioned, in addition to the groundwater

quantity, the assessment of the GWP area should also consider groundwater quality.
2.3.2. Model techniques

Approximately 59% of the 91 publications (Table 2.1) used a model or
method to develop and assess GWP. The remaining 31% used two or more models.
The current study classified the models into three main groups: statistical, machine
learning, and hybrid/ensemble models (Fig. 2.6). The model categorization was
complicated, and many revisions were made until the final categorization was
realized; this categorization was subjective and based on expert judgment. Fig. 2.6
shows the information regarding the popularity of models used in 91 publications.
The database of this study revealed the use of 60 models from 2010 to 2020; the
figure is considerably large. Models MCDA-AHP, FR, EBF, WOE are the models with the
most occurrences in the statistical group, while RF, LR, BRT, SVM models are used a
lot in machine learning group. In this section, the study looks into the characteristics

and roles of these popular models.
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Fig. 2.6. Popularity of GWP models from 2010 to 2020
2.3.2.1. Common statistical models
a. Multi-criteria decision analysis-Analytical hierarchy process (MCDA-AHP) model

MCDM-AHP is a model that uses associated factors to assess a problem (Saha,
2017). The related factors are assigned a weight corresponding to their importance in
observing issues (Kumar et al.,, 2016). The MCDM-AHP analyzes the weight of related
factors to the main variable. The variables in this model are compared considering
their effect on each other on a scale of 1-9. The MCDM-AHP model aids
hydrogeologists in identifying and decentralizing groundwater influencing factors in
the GWP field. The advantages of this method lie in its fast results and minimal errors
in choosing well locations. In addition, the MCDM-AHP model permits the
modification of the factor weight to satisfy different areas. However, the MCDM-AHP
model depends on the opinion of experts in setting the criteria weight; thus, the

model result is subjective (Singh et al, 2018). The MCDM-AHP model is often
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combined with GIS tools, verifying the geographical regions that agree with GWP
conditions. The MCDM-AHP model is typically used to evaluate GWP comprising the
following four steps. Step 1: Establishing the factors related to the GWP and creating
an important hierarchy for factors. Step 2: Classifying and comparing the factors
influencing groundwater. Step 3: Calculating the weighted value of the influencing
factors. Step 4: Validating the consistency of the pair comparisons. In the MCDM-AHP,
influence factors are combined into an indicator to evaluate outputs (Andualem and

Demeke, 2019).

In recent years, hydrological studies have commonly applied the MCDM-AHP
model. Elmahdy and Mohamed (2014) delineated GWP zones using the AHP model in
the Al Dhaid area, United Arab Emirates. The model was successful in integrating
thematic layers and assessing their weights. Selvam et al. (2015) created GWP and
recharged zones in the Tuticorin districts of Tamil Nadu, India, using the MCDM
technique. The variables used included soil, precipitation, slope, drainage, lithology,
land use, and lineaments, where lithology and land use were integrated with the
highest weight. Jenifer and Jha (2017) used the MCDA-AHP model for mapping GWP
zones in the state of Tamil Nadu of India based on the assigned weights of thematic
layers according to the suggestion of experts. The AHP model provided accurate
predictions. The groundwater yield was applied to test the validity of the AHP model.
Andualem and Demeke (2019) incorporated the MCDM technique and GIS technology
to delineate the GWP zones in Upper Blue Nile Basin, Ethiopia. The thematic layers
were assigned on the basis of the standardization with effective potential. The results
indicated that GWP was categorized into the following five zones: excellent, very good,
moderate, poor, and very poor potential fields. Simultaneously, Arabameri et al. (2019)
found that the AHP model was more effective than the random forest model by using

yield data and thematic layers to assess GWP.
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b. Frequency ratio (FR) model

The FR model is applied mainly in landslide research. This model is utilized
to assess and predict the landslide locations in a given region (Choi et al,, 2012,
Jaafari et al., 2014; Pradhan, 2010). In recent years, some hydrogeologists have used
the FR model to research groundwater resources (Falah et al, 2017; Guru et al,
2017; Mousavi et al., 2017; Termeh et al., 2019). The FR model is a bivariate statistical
algorithm used to compute the occurrence probability rate of a factor (Razandi et al,
2015). Thus, the FR ratio is the rate of non-occurrence or occurrence of a given
characteristic. Regarding advantages, the FR is a simple method used to compute the
probabilistic connection between the environmental factors and GWP. This method
helps discover the spatial correlations between GWP and environmental factors and
simplifies the quantification and comprehension of each environmental factor by the
model. The FR model is directly employed in a GIS (Oh et al, 2011), and its
outcomes are uncomplicated (Falah et al., 2017). However, the FR model depends
on the technique-related elements. The adjustment of input parameters will impact
the output map (Oh et al, 2011). In reality, the construction of the FR model is
conducted on the basis of the observed interactions between each groundwater

conditioning factor and the distribution of gsroundwater well/spring sites.

In the last decade, many studies have conducted GWP maps utilizing the FR
model. Ozdemir (2011b) discovered that the FR model was better estimators than
Weights of evidence (WOE) and Logistic regression (LR) in mapping GWP in the Sultan
Mountains, Turkey. Oh et al. (2011) used the FR model to create the GWP map in the
area of Pohang City, Korea. They surveyed 83 well locations; the well points at 55
locations were used for training the model, and the well points at 28 locations were
selected for the model test. The training cases were utilized to predict the
groundwater appearance availability based on thematic layers, including soail,

lineament, geology, and topography data. Their result indicated that soil texture had
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the most impact on GWP, whereas ground elevation had the least impact. Razandi et
al. (2015) compared the efficiency of the FR, AHP, and gradient boosted decision tree
(DT) models in Varamin Plain, Iran, with the areas under the curves (AUCs) of 77.55%,
73.47%, and 65.08%, respectively. Guru et al. (2017) applied the FR to explore the
impact of six factors (i.e., DD, lineament density, geology, slope, geomorphology, and
land use) on groundwater level. The prediction rate of the FR model was 77.23%.
According to Termeh et al. (2019), the FR model was used to create the groundwater
spring potential map in Alborz, Iran. They surveyed 339 springs; springs at 238
locations were used for training the model, and springs at 101 locations were
selected for the model test. The training cases were utilized to predict the
groundwater appearance availability based on thematic layers, including land cover,
lithology, DD, fault density, toposgraphic wetness index, plan curvature, slope
direction, altitude, soil, precipitation, distance from the river, distance from the fault,

profile curvature, slope length, and slope angle.
c. Evidential belief function (EBF) model

The EBF is a bivariate statistic model based on the combination rule to
determine spatial integration (Nacghibi and Pourchasemi, 2015). The structure of an
EBF model includes degree of plausibility (Pls), degree of uncertainty (Unc), degree of
disbelief (Dis), and degree of belief (Bel) (Nampak et al., 2014). The Pls and Bel are
respectively upper and lower levels of belief with a basic probability assignment
function. The Unc is equal to Pls-Bel, which is a lack of understanding evidence of a
proposition. The Dis is a value of 1-Pls that ranges from 0 to 1, which is the belief of
a false proposition. The relative flexibility of EBF is used in the GWP study to admit
uncertainty of spring occurrence from the available evidence (Naghibi and
Pourghasemi, 2015). However, the FR requires a considerable amount of information

to reduce uncertainty.



28

Recent GWP projects indicate that the EBF provides a reasonable solution for
conceptual methods. Manap et al. (2014) applied the EBF model to investigate
groundwater productivity at Langat basin area, Malaysia. The input database included
the potential of 12 environmental factors: rainfall, soil, NDVI, land use, lineament
density, lithology, DD, TWI, SPI, curvature, slope, and elevation. The main goal was to
delineate groundwater productivity zonation and demonstrate the value of the EBF
model. Naghibi and Pourghasemi (2015) compared the performance of the EBF to
that of the Boosted regression tree (BRT), CART, Random forest (RF), and GLM models
using land use, lithology, fault density, river density, distance to faults, distance to
rivers, TWI, SPI, slope length, profile curvature, plan curvature, elevation, slope
aspect, and slope angle as the environmental factors to map GWP in Chaharmahal-e-
Bakhtiari Province, Iran. The assessment output indicated that the performance of
the EBF was the lowest among the models. Tahmassebipoor et al. (2016) investigated
the GWP with the EBF and WOE approaches. The input factors were utilized as
precipitation, lineament density, slope percent, TWI, curvature, elevation, DD, soil
texture, distance from river, land use, and lithology. The result showed that the AUC
of the EBF and WOE was 83.7% and 78.2%, respectively. Kordestani et al. (2019)
simulated GWP in Chaharmahal-e-Bakhtiari Province, Iran by combining the EBF and
the BRT, namely the EBF-BRT model. The inputs included topographical and
hydrogeological factors. The results revealed that the EBF-BRT was more accurate
than the EBF. In another research project, Termeh et al. (2019) compared the ANFIS-
GA (genetic algorithm), ANFIS-BBO, ANFIS-SA (simulated annealing), FR, EBF, and
entropy models for predicting GWP in Booshehr plain, Iran. They concluded that the

ANFIS-GA had superior performance to other models.
d. Weights of evidence (WOE) model

The WOE technique is a method that uses phenomena and events to prove a

hypothesis (Al-Abadi, 2015; Falah et al., 2017; Oikonomidis et al., 2015; Ozdemir,
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2011b). This method evaluates the weight of variables based on the probability of a
phenomenon or event occurring on each variable. This model is derived from the
weight of evidence method used in Bayesian statistics. In GWP studies, the WOE
estimates the weight for the absence or presence of each subclass of environmental
factors based on the absence or presence of representative parameters, such as
groundwater yield and spring/well/borehole occurrence, within a given region (Al-
Abadi, 2015; Falah et al,, 2017; Oikonomidis et al., 2015; Tahmassebipoor et al,,
2016). The advantages and disadvantages of the WOE lists are as follows. On the one
hand, the WOE helps eliminate the subjectivity of weight and easily sets up the GWP
maps. On the other hand, the WOE depends on the number of conditioning variables
to set the weight of evidence and require the independence of data input
(Tahmassebipoor et al.,, 2016). Therefore, a requirement for studies using the WOE is
to determine the accurate number of input variables, which helps obtain the correct

weight of variables in the model.

While researching groundwater productivity potential mapping, Lee et al.
(2012) analyzed the correlation of hydrogeological factors with specific capacity (SPC)
and transmissivity (T) data. SPC and T were collected at 83 and 81 well locations in
Pohang city, South Korea, respectively. SPC and T data were subdivided in a 70:30
ratio to train and validate the output. They concluded that the WOE model's
accuracy was 71.20%. The map was generated by the WOE model with relatively
accurate groundwater resource exploration. Al-Abadi (2015) applied the WOE model
to demarcate GWP in the Missan and Wasit governorates, Irag. This study utilized
data from 143 borehole locations and eight variables affecting GWP, including depth
of borehole, aquifer type, distance to faults, distance to roads, LU, geology, slope,
and altitude. The results of the GWP map were divided into areas with very high
potential (15%), areas with high potential (23%), areas with medium potential (32%),

and areas with low potential (30%). Falah et al. (2017) investigated the capabilities of
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the WOE, GAM, FR, and SI with different combinations of land use, soil, lithology,
distance to faults, fault density, topographic wetness index, distance to rivers, DD,
slope aspect, slope angle, plan curvature, altitude, and 6439 springs to predict GWP
in Lorestan Province, Iran. Their results showed that the accuracy of the GWP
delineation map from the WOE was lower than that of other models. Chen et al.
(2018) developed a novel ensemble WOE with LR and functional tree models to
map groundwater spring potential in Shaanxi Province of China. They found that the
ensemble model is more satisfactory compared with individual models. Falah and
Zeinivand (2019) applied the WOE model to compare it with an FR model in the
assessment of groundwater distribution in Lorestan province, Iran. They used 212
springs, in which 140 springs were training datasets and 72 springs were test data.
Their output data showed that the predictions of the WOE model are less accurate

than those of the FR model.
2.3.2.2. Common machine-learning models
a. Random Forest (RF) model

The random forest (RF) is a predictive model that uses many DTs to forecast
the appearance of an event, in which each DT is generated from resampling. In 2001,
Breiman (2001) was the first author to apply the RF algorithm to classify his data.
Then, the RF was further developed and utilized in many science fields. According to
Rodriguez-Galiano et al. (2014), regression trees and classification trees could be
considered part of the RF model. A regression tree mission involves determining the
limitation characteristics and conditions for the formation of a node in a DT, while
the function of the classification tree is to classify the data that have not been
previously categorized into appropriate groups or classes. The RF model yields very
high accuracy results but does not show the operating algorithms because of the

complex structure of this model (Rodriguez-Galiano et al,, 2014). The output of RF
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can be classification or regression. The RF has pros and cons compared with other
machine learning models. Regarding advantages, the RF can work with complex data,
decrease the overfitting and variance issues, and is remarkably stable. Meanwhile, the
disadvantages of the RF lie in its large and powerful computer resource requirement,
long training process, and its assignment of the number of variables and trees in the

model.

In the area of GWP with the RF, Zabihi et al. (2016) assessed two GWP maps
created with RF and MARS for Boujnordm, North Khorasan, Iran. Fourteen explanatory
factors and 234 spring locations, including 176 cases, were applied to train the
model, and 58 locations were employed to create the GWP. The result showed that
the AUC of RF is lower than the AUC of MARS. Similarly, Golkarian et al. (2018)
compared the RF, C.50, and MARS in forecasting GWP in Mashhad, Razavi Khorasan
Province, Iran. The input variables were lithology, land use, faults density, rivers
density, distance to faults, distance to rivers, slope length, TWI, profile curvature,
plan curvature, slope angle, slope aspect, and elevation. Their outcome indicated
that the RF had an accuracy lower than MARS and higher than the C5.0. Naghibi et al.
(2018) compared the KNN, ANN, PDA, QDA, LDA, Support vector machine (SVM),
MARS, BRT, and RF models for GWP assessment in Iran. Lithology, land use, fault
density, river density, distance from faults, distance from rivers, TWI, SPI, slope
length, slope curvature, plan curvature, slope aspect, and altitude were utilized as
the input factors of these models. They indicated that the RF was the best among all
models in mapping GPW, and four factors with the most impact on GWP included
profile curvature, plan curvature, slope, and elevation. Nachibi et al. (2019) simulated
GWP by using the RF, CART, BRT, EBFTM, and RTF. They used 13 input factors,
including lithology, land use, fault density, distance from faults, river density,
distance from rivers, TWI, slope length, profile curvature, plan curvature, altitude,

slope aspect, and slope angle, and 273 spring locations. They concluded that the
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EBFTM had the highest performance, followed by the RF. Pham et al. (2019)
indicated that the RF was a useful model for predicting sroundwater spring potential;
hence, the maps created by this model could be advantageous for groundwater

resource exploration and management.
b. Logistic regression (LR) model

The LR model is commonly used in research on water issue prediction. This
model has recently been developed in other groundwater-related areas, such as
ground subsidence (Oh et al,, 2011) and potential groundwater springs (Nampak et
al,, 2014; Ozdemir, 2011b; Rahmati et al., 2018). The LR is a regression model that
finds the correlation between independent and dependent parameters to create the
coefficient (Nguyen et al.,, 2020b). The result of the LR is only 0 or 1 (binary model).
The LR is helpful in GWP studies to predict groundwater absence or presence via
spring/non-spring specific yield parameters. Similar to other machine learning models,
the LR has the advantages of simplicity and linearity and is reliable in data training.
The disadvantage of the LR is easily gotten overfitting as the number of features is
higher than that of observation. Additionally, the LR requires the dependent variable

that must be the discrete number set and cannot process non-linear problems.

Ozdemir (2011b) created a groundwater spring potential map (GWSP) for the
Sultan Mountains, Turkey, integrating an LR model with the GIS environment. The
validation of the research surveyed 440 springs and 17 spring-related variables. The
authors reported that this was the first study on GWP using an LR approach to
identify potential regions of groundwater. The coefficient of 17 spring-related
variables was calculated using the binary LR method. The results show that the LR
model is a suitable tool to estimate GWSP in a given region. Nampak et al. (2014)
compared the LR and the EBF in predicting GWP in Malaysia's Langat River

catchment. They considered precipitation, soil type, NDVI, land use, lineament
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density, lithology, DD, TWI, SPI, curvature, slope, and elevation as input factors and
concluded that the EBF outperformed the LR. Rahmati et al. (2018) used the LR with
the DT to map GWP in Khorasan Province, Iran and compared it with the SVM and
C4.5 models. The inputs to the models were Cl, slope, TPI, TWI, RSP, stream density,
distance from stream, lithology, distance to fault, aspect, and elevation. The results
indicated that the LR had the highest AUC value, followed by the SVM and C4.5
models. Zandi et al. (2016) applied the LR to map GWP. They used 38 springs to train
the model with mean precipitation, land use, relative, fault density, fault distance,
petrology, and slope. After the training, the output map was tested through the AUC
value. They concluded that the LR was an effective model in mapping GWP. From
the results, land use was the environmental factor that impact the highest on GWP.
Martinez-Santos and Renard (2020) successfully demonstrated the efficiency of the
LR model in the Bauole sub-catchment, Mali, using precipitation, land use, soil, NDVI,
TWI, slope, DD, lithology, proximity to surface water, lineament density, and

lineaments and 1848 borehole yields.
¢. Boosted regression tree (BRT) model

The BRT is a combination model between the boosting method and the DT
algorithm. The BRT operates by combining and fitting many DTs based on the
boosting method to improve the predictive performance. The output of BRT is an
average model from many approximate rules, but boosting is conducted in a
stepwise procedure (Nampak et al., 2014). The application of BRT in GWP mapping is
compatible with classification and regression of a spring/non-spring location or
groundwater yield in a given region (Mousavi et al., 2017; Naghibi and Pourghasemi,
2015; Nampak et al, 2014). Considering its advantages and disadvantages, the BRT
can work with numerical and categorical data, reduce overfitting, and optimize the
different loss functions. However, the real-time database process of the BRT is long

because of the large number of trees, and the output can be outliers.
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Nachibi et al. (2016) compared the performance of the BRT to that of the
CART, RF, and EBFTM in the spatial modeling of GWP. They used 864 spring locations
to train and validate these models according to the rate of 70:30. The input factors
included fault density, DD, land use, geology, distance to faults, distance to rivers,
profile curvature, plan curvature, slope length, TWI, altitude, slope aspect, and slope
degree. Their result showed that the BRT was a good model in predicting GWP with
an AUC value of 0.898. Mousavi et al. (2017) used the BRT and the FR to delineate
GWP zones in the Mashhad Plain, Iran. Lithology, land use, fault density, river density,
distance to rivers, distance from faults, TWI, slope length, profile curvature, plan
curvature, elevation, slope aspect, and slope degree were applied as input factors.
Both models demonstrated satisfactory performances. Their results showed that TWI
had the largest impact on predicting GWP, followed by elevation and distance to
rivers. Al-Abadi (2017b) compared the BRT with FR and the ant miner algorithm in
assessing GWP in the Euphrates River Basin, Irag. The slope, profile curvature, plain
curvature, TWI, SPI, distance to rivers, distance to faults, altitude, lithology, and
aquifer type were used as the input data of these models. The result indicated that
the GWP map from the ant miner algorithm was more accurate than that from the
BRT and the FR. Kim et al. (2019) investigated the capabilities of the BRT, RF, and LR
in predicting specific capacity and transmissivity of groundwater productivity in the
Okcheon-gun, South Korea, by using the inputs of plan curvature, convergence index,
TRI, depth of groundwater, distance from channel network, distance to faults,
lineament density, drainage basin, slope length, TWI, valley depth, relative, slope,
soil type, land use, and geology. Their results showed that applying the BRT, RF, and

LR with specific capacity and transmissivity had high accuracy.
d. Support vector machine (SVM) model

The SVM is a statistical learning model for regression and classification tasks

to determine a hyperplane for training data (Rahmati et al, 2018). The SVM
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comprises sigmoid kernels, radial basis function, polynomial, and linear (Rahmati et
al., 2018). In the GWP, the SVM considers the environmental factors as the x variable
and the validation factors (groundwater yield, specific capacity, and spring/non-spring)
as the class label. The optimal separating hyperplane helps classify the training data
into subsets or classes (+1, -1) (Lee et al.,, 2018; Nachibi et al., 2017a; Naghibi et al,
2018; Sameen et al., 2019). The advantage of the SVM lies in its effective operation in
high-dimensional spaces and in cases where the number of samples is lower than
that of dimensions. However, the SVM underperforms when the dataset is large and

the noise is substantial.

Nachibi et al. (2017a) tested four different SVM models along with the
random forest genetic algorithm optimized (RFGA) and the RF to create the GWP
maps in Ardebil Province, Iran. The environmental factors included lithology, land
use, faults density, distance to faults, rivers density, distance from rivers, TWI, SPI,
profile curvature, plan curvature, slope aspect, slope angle, and elevation. SVML
yielded the best result among different SVMs. However, the performance of all SVM
models was lower than the RF and the RFGA. Lee et al. (2018) compared the ANN
and SVM for GWP prediction in Boryeong City, Korea. They used 27 hydrogeological
factors to predict groundwater yield and SPC. Their results revealed that the ANN
was better than the SVM in performance. However, the SVM was proposed as a time-
effective GWP tool. Guzman et al. (2019) investigated GW for agricultural activities in
the southeastern USA. They considered evapotranspiration, precipitation, and
groundwater level data as model input. Their results concluded that the SVR was
better than the ANN. Sameen et al. (2019) applied the RF, SVM, ANN, DT, SLRF, and
voted ANN-RF to map GWP. The applied data included geology, profile curvature,
TWI, STI, SPI, elevation, aspect, slope, curvature, plan curvature, distance to stream,
land use, and TRI and 85 wells with different groundwater yields to train and test

these models. The comparison between the RF, SVM, ANN, DT, self-learning random
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forest (SLRF), and voted ANN-RF for GWP mapping indicated that the SLRF was the
most suitable model. Panahi et al. (2020) applied the SVM with g¢rid search and
genetic algorithms to forecast GWP in the Ajloun and Jerash Provinces, Jordan. The
models were applied to improve the predictive performance in GWP using
environmental factors, including NDVI, lithology, land use, rainfall, distance to faults,
slope length, soil type, SPI, distance to drainage, TWI, curvature, altitude, aspect, and
slope angle. Their results indicated that applying the SVM with the genetic algorithm

demonstrated more accuracy than the SVM with the grid search.
2.3.2.3. Hybrid/ensemble models

The evolution of computer science, GIS, and remote sensing has helped
models overcome the disadvantages and improve predictive performance. Combined
or hybrid models have commonly been used in GWP studies in recent years. The
combination of statistical methods and machine learning not only solves data
problems but also boosts the predictive productivity of GWP. Additionally, the
integration of parametric and nonparametric structures from different sources of
knowledge is a strong point of the hybrid/ensemble models. This finding has been
demonstrated in many recent GWP studies using hybrid/ensemble models. Khosravi
et al. (2018) delineated GWP zones in the Koohdasht-Nourabad Plain in Iran by
integrating ANFIS with metaheuristic optimization algorithms. They used lithology, soil
type, rainfall, land use, distance from river, distance from fault, TRI, TWI, SPI, plan
curvature, elevation, and slope as input data. IWO, DE, FA, PSO, and BA algorithms
were applied to optimize the ANFIS. Their result revealed that the ANFIS + DE
demonstrated the best model performance. Termeh et al. (2019) proposed a
combination between SA, BBO, and GA techniques and ANFIS to optimize the GWP
map. The relevant input factors include land use, soil, rainfall, lithology, distance to
rivers, fault density, distance to faults, DD, TWI, profile curvature, plan curvature,

slope length, slope aspect, slope angle, and altitude. A total of 339 wells were



37

divided with a scale of 70:30 to train and validate these models. The GA was found
to be superior to the SA and BBO method as combined with ANFIS for improving the
performance of the GWP map. These models also indicated that rainfall, soil, and
land use were important factors for GWP in the Booshehr plain, Iran. Pham et al.
(2019) investigated the GWP in the Vadodara district, India, by developing hybrid
models based on Decision Stump (DS), RF, MB, and BG. Their database included 34
groundwater wells, slope, soil, land use, lithology, river density, precipitation, TWI,
plan curvature, aspect, slope, and altitude. They also integrated DS with other
models to classify the different ensemble learners. Their result indicated that the
dataset with a scale of 50:50 is superior to other ratios, and the performance of all
hybrid models was satisfactory. Sinch et al. (2022) created a hybrid model based on
catastrophe theory (CT) and AHP to analyze the space of GWP in the West Bengal
state, India. Their result removed the major limitation of the catastrophe theory in
quantitative factors. The accuracy of this hybrid model was 77%. Neuyen et al.
(2020b) developed four ensemble models using LR with cascade generalization,
random subspace, bagging, and dagging to map the GWP in Dak Lak Province,
Vietnam. They used 12 geo-environmental factors, such as geology, land use, soil,
river density, precipitation, flow direction, TWI, STI, curvature, slope, elevation, and
aspect, and the groundwater yield of 195 well locations, as input data. Their result
revealed that the AUC value of ensemble models was higher than that of the single

LR model, in which the LR+ dagging demonstrated the best performance.
2.3.3. Validation
2.3.3.1. Validation-related parameters

The past studies (Machiwal et al., 2011; Naghibi and Pourghasemi, 2015; Rajaveni
et al, 2017, Razandi et al, 2015) have applied the groundwater measurement

parameters, such as specific yield (Sy)/specific storage (Ss), non-spring/spring occurrence,
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and groundwater level, to delineate the GWP zones of a given region. Uliana (2005)
stated that “specific storage (Ss) is the volume of water released from a unit volume of a
confined aquifer for a unit (1 m or 1 ft) drop in piezometric head, and specific yield (Sy)
is the volume of water that can yield by gravity drainage from a unit volume of an
unconfined aquifer for a unit drop (1 m or 1 ft) in water level; this quantity is equivalent
to the effective porosity.” Kresic (2010) indicated that spring is a location where
groundwater is discharged to the land surface by gravity and water pressure. The
groundwater level is the level of saturated water in soil or rock observed in a
well/borehole (Maggirwar et al,, 2011). These parameters are crucial for classifying the
GWP levels of a given area. The GWP studies from 2010 to 2020 have used different
parameters depending on reality conditions and approaches to develop and assess the
models. Machiwal et al. (2011) indicated that the high GWP is associated with a large
groundwater yield. Specifically, the areas with good GWP have a groundwater yield larger
than 5 m*/h, the areas with medium GWP have groundwater yield ranging from 1 m*/h
to 5 m*h, and those with low GWP have a groundwater yield of less than 1 m?/h.
Razandi et al. (2015) conducted a study in the Varamin Plain, Iran and found that wells
with groundwater yield of more than 40 m®h are known as locations with good
groundwater productivity. Ozdemir (2011a) used the non-spring/spring occurrence to
determine the GWP levels in Aksehir, Turkey. Locations with spring occurrence were
reported to have good groundwater productivity. Non-spring/spring occurrence was also
used in the research by Naghibi and Pourghasemi (2015) to delineate GWP zones in the
Chaharmahal-e-Bakhtiari Province, Iran. Their result revealed that springs rarely occur in
regions with low GWP. Rajaveni et al. (2017) indicated that the groundwater level in a
well/borehole also represents GWP at a location. They found that areas with low GWP
have large groundwater fluctuations, while areas with higsh GWP have low groundwater
fluctuations. Mukherjee et al. (2012) observed data on groundwater levels to verify the

GWP map in Kachchh district, India.
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2.3.3.2. Validation technique

Validation is a crucial step in assessing GWP models. Validation testing generally
verifies forecast performance. Rajace et al. (2019) indicated that the predicted results
increasingly improved. Algorithm development in models has increased, aided by the
evolution of GIS, RS, machine learning technologies. Diaz-Alcaide and Martinez-Santos
(2019) also argued that the reason for the increased predictive efficiency is the use of
an increased number of variables in GWP mapping. According to statistics from the
study dataset (91 publications), four main techniques used by hydrogeologists in
groundwater research to check the accuracy of a groundwater map in their area of
interest are as follows: receiver operating characteristic (ROC), statistical evaluation
measures, Kappa index, and root mean square error (Table 2.2). Among these
techniques, the ROC is mostly used in GWP studies with model performance
evaluation. The choice of the groundwater map validation technique depends on the
preference of the operator. Performance evaluation results for common models in this

study are shown in Fig. 2.7.
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Fig. 2.7. Fluctuation of AUC value in common models in GWP studies
Table 2.2. Validation methods in GWP studies
WValidation
Mo Descriptions References
method
The RCC is a curve line graph that describes the
relationship between sensitivity (Y-axis) and 1-
Receiver
specificity (X-axis) for every possible cutoff value.  (Naghibi et al,
1 operating
The value of ROC is the under-curve area ranging 2017a)
characteristic
from 0.5 to 1. (0.5-0.6: poor; 0.6-0.7: average; 0.7-
0.8: good; 0.8-0.9; very good; 0.5-1; excellent).
Y= TPiTN+FP+FN
Statistical s l TP
ensitivity analysis = ——— (Nguyen et al,,
2 evaluation TP +FN
. . TN 2020b)
Mmeasres Specificity analysis = TN + FP

where TP - true positive; TN - true negative; FP
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Kappa coefficient is an index to calculate the

rmodel reliability in GWP classification.

Accuracy — Pe
Kappa Kappa = 1 —CFPE (Golkarian et al,
coefficient P, is an agreement level that might be 3018)
generated by chance. The closer the kappa
value gets to 1, the better model's performance
is.
Root mean square is a value that measures the
deviations of all samples between the predicted
Root mean  value (Xp) and the actual value (X). (Rahrmati -
! sguare error RMSE = Jr_lr,E?:l(Xp —X,)? Melesse, 2016)

The closer the RMSE walue is to 0, the better

madel’s performance is.

2.4. Current status and challenges for groundwater potential mapping research

in the future

This review provides an overview of factors pertaining to GWP mapping from
model thematic layers, algorithms, and their accuracy. A GWP map must present the
potential areas of groundwater (Elmahdy and Mohamed, 2014). Hydrogeologists usually
delineate their potential maps into five levels: very high, high, moderate, poor, and very
poor potential regions (Kumar et al,, 2014; Mukherjee et al, 2012, Pham et al, 2019).
According to the statistics of this review, there are eight topical map layers commonly
used by hydrogeologists: geology, slope, land use, soil type, drainage density,

lineament density, altitude, rainfall.

Another consideration of GWP map is the data source for mapping thematic
layers. For data sources to create thematic layers, two main sources have been
commonly employed: satellite data and hydrogeological data. Today, the

development of RS technology has provided a large amount of data on the Earth's
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surface and weather information, facilitating map creation within a shorter time than
that required for field data collection (Diaz-Alcaide and Martinez-Santos, 2019). Thus,
although RS data are effective, scientists must have a wide and in-depth knowledge
of RS (Oikonomidis et al,, 2015). Some satellites with high resolution provide high-
quality images; however, this makes the images cost-intensive making their use
unfeasible. Another disadvantage of RS data is that satellite images only provide
coverage information; information of objects present under cloud cover and treetops
is not considered. This requires hydrogeologists to combine information from the
field, such as the borehole, well, and hydrogeolosgical data, with RS; field parameters
can provide what RS data cannot. For example, well productivity data cannot be
collected from satellite images. Additionally, field data always provide a high degree
of confidence and validity. However, the collection of borehole, well, and
hydrogeological data is time- and labor-consuming. According to current statistics,
there are several approaches to establish a GWP map. These methods can be
divided into three groups: statistical, machine learning, hybrid/ensemble techniques.
The common statistical techniques include MCDA-AHP, FR, EBF, and WOE models.
The features of the statistical models are easy to implement a GWP map, their
observed variables do not require more than that of machine learning models. In
some cases, several authors have only used the weights of the affected variables of
groundwater, ignoring the map's accuracy (Gaur et al, 2011; Hashim et al, 2013;
Murmu et al,, 2019; Singh et al., 2013). Recently, machine learning models have been
used extensively by hydrogeologists. The common machine learning models include
RF, LR, BRT, and SVM. Big data are required to train and test the machine learning
models (Martinez-Santos and Renard, 2020). From basic machine learning and
statistical models, hydrogeologists have developed advanced models aimed at
creating more accurate GWP maps such as the adaptive neuro-fuzzy inference

system (ANFIS) + differential evolution (DE) model (Khosravi et al,, 2018), random
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forest (RF) + decision Strump (DS) (Pham et al., 2019), adaptive neuro-fuzzy inference
system (ANFIS) + genetic algorithm (GA) (Termeh et al.,, 2019), and logistic regression

(LR) + dagging (DLR) (Neuyen et al., 2020Db).

An integral part of any GWP study is the validation step (Das, 2019). Statistically,
receiver operating characteristic (ROC), statistical evaluation measures, Kappa index,
and root mean square error are four main techniques used to evaluate a GWP map.
Statistical evaluation measures, Kappa index, and root mean square error are often
used to check the accuracy of statistical models, while the AUC technique is often used to
check the accuracy of machine learning models and several statistical models. Generally,
the effectiveness of the common statistical models ranges from approximately 59.0%
to 90.3% while the accuracy of GWP maps produced by common machine-learning
models goes from 50.0% to 90.1%. Strikingly, a higher accuracy interval (71.0% - 92.0%)
was shown in the hybrid/ensemble models (Fig. 2.7). In addition, some authors have
combined the AUC technigue with specificity, sensitivity, negative predictive value, and the

positive predictive value (Nguyen et al., 2020b; Ozdemir, 2011a; Pham et al., 2019).

The complex changes in climatic conditions and an increase in the demand for
clean water pose many challenges for hydrogeologists with regard to groundwater use and
planning. In reality, hydrogeologists have conducted extensive researches and pursued
various methods and approaches to create the most suitable GWP map for their regions of
interest in the past decade. However, GWP mapping research is still characterized by a

number of limitations and challenges that need to be addressed in the future.

Thus far, researchers have not found the optimal models required to map the
GWP of different areas around the world. There are two reasons for this: the difference
between regions in natural conditions and social characteristics, and the discrepancy in the
input data. Therefore, it is difficult to conclude which model is the most accurate.

Simultaneously, the constant changes in climatic conditions, runoff factors, land-use
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coefficients, and population growth directly affect the GWP of a certain region, posing great

difficulties for hydrogeologists in mapping GWP.

To address these challenges, future research should focus on the following
aspects. First, studies must focus on improving the quality and quantity of the input
database to ensure the reliability of GWP maps. At the same time, stronger emphasis must
be placed on using satellite images with high resolution to improve the accuracy of
classification, which will lead to the improved accuracy of the forecast results. Third, maps
should be created based on a combination of machine learning and statistical models.
Fourth, researchers need to apply different approaches for each research region to acquire
the most suitable research model. Finally, three-dimensional models should be used to

obtain an overview of the groundwater system.
2.5. Summary

This chapter aims to review parameters, model techniques, validation methods in
groundwater potential field. According to statistics, there are three major model groups used
to establish groundwater potential maps. The first model group is a statistic group, including
multi-criteria decision making/analytic hierarchy process, frequency ratio, evidence belief
function, and weights of evidence. The second model group includes machine learning
models, such as random forest, logistic regression, boosted regression tree, and support
vector machine. The final group is the hybrid/ensemble models. In groundwater potential
mapping studies, 41 thematic layers affect the potential of groundwater. However,
hydrological researchers have frequently used eight factors in groundwater potential studies:
geology, slope, land use, soil type, drainage density, lineament density, altitude, rainfall. Most
previous studies on groundwater potential have used a combination of geographic
information system, remote sensing, and machine leaming techniques to design the
groundwater potential in regions of interest. Data sources are commonly applied to

groundwater potential mapping, including satellite, borehole, and geophysical data. The
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accuracy of groundwater potential maps produced by common machine learing models
ranges from 50.0% to 90.1%, while that produced by common statistical models ranges
between 59.0% and 90.3%. Interestingly, hybrid/ensemble models’ accuracy interval was
from 71.0% to 92.0%. Therefore, the review suggests that statistical algorithms and machine
learning techniques should be combined, and thematic layers should be increasingly used in

mapping groundwater potential maps to achieve high efficiency.
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Chapter 3. STUDY AREA AND RESEARCH METHODOLOGIES
3.1. Study area
3.1.1. Location

The present study focuses on the distribution of potential groundwater in
Kanchanaburi province, Thailand. The province is placed in the western central of
Thailand, from 99°10°54°" to 99°53’31"’E and 13°43’34’’to 15°39’46’’N (Fig. 3.1).
There are approximately 19,483 km?, of which 61% is a mountain with an elevation
from 2 m to 2,028 meters (6653 ft) above sea level. The province has 847.47 km
long of the border with neighboring provinces and Myanmar. The region has a
tropical savanna climate with significant seasonal variations in temperature and
precipitation. Administratively, Kanchanaburi is separated into 13 districts: Bo Phloi,
Dan Makham Tia, Huai Krachao, Lao Khwan, Mueang Kanchanaburi, Nong Prue,
Phanom Thuan, Sai Yok, Sangkhla Buri, Si Sawat, Tha Maka, Tha Muang, and Thong

Pha Phum.
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Fig. 3.1. Location of Kanchanaburi province
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As of December 31%, 2018, the number of inhabitants of Kanchanaburi was

848,198 and, the population density was around 43.5 people/km? (the Statistical

Yearbook of Thailand 2018). Four population groups are living in Kanchanaburi, including

Thai, Karen and Mon, and Burmese.

Gender (C 2018) (Person)

Males

420,099

Females

423,081

Age Groups (C 2018)
(Person)
0-18 years 193,643
19-49 years 388,729
50-60 years 145,805
60+ years 120,020

m Males
m Females

m(-18 years old ® 19 -49 years old
® 50 - 60 years old -~ 60+ years old

Fig. 3.2. Information about the population structure in Kanchanaburi province

3.1.2. Topography

The terrain of Kanchanaburi province has a very diverse and hierarchical

structure. The topography of Kanchanaburi province gradually rises from the East to

the West. There are three kinds of terrain in Kanchanaburi: mountains, valleys, and

river basins. The mountainous topography is allocated in the North and West of

province (in Sangkhla Buri, Thong Pha Phum, Si Sawat, some parts of Sai Yok, Bo

Phloi, and Mueang Kanchanaburi districts) with an elevation ranging from 300 to 1800
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meters, occupy three-fifths of total land area. The mountainous regions are mainly

enveloped by natural and production forests with plant biodiversity.

The valleys area is located in the northeast of the province (in Lao Khwan,
Phanom Thuan District, Bo Phloi, and Mueang Kanchanaburi districts) and comprises
20% of the total area. The characteristic of topographic structures is a hillside plain
with low hills and groves, and slope direction is from east to southeast, mostly
between 30 and 100 meters above sea level. The remaining area is the river basin,
mainly located in the south and east of Kanchanaburi province (in Tha Muang. Tha

Maka, and some parts of Phanom Thuan districts).
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Fig. 3.3. Terrain of Kanchanaburi province in Thailand
3.1.3. Meteorological condition

The atmospheric circulation of Southeast Asian monsoons impacts the climate in
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Kanchanaburi. It is the interconversion of climatic characteristics of the mountain and plain
Thailand. The northeast monsoon often occurs between November and March; the
southwest monsoon usually begins between May and September. The transition period is
April and October. The province has two main seasons: summer and winter. In the dry
season, the heat lasts a long time; conversely, cold spells occasionally appear in the wet
duration. On the report of the Kanchanaburi people’s committee about climate, weather

features of the province are characterized as follows:

Temperature of the province is very high. It is approximately 38.2°C in the
summer and around 31.3°C in the winter. The amplitude of temperature oscillates
quite widely. April has the highest monthly mean temperature at approximately
38.2°C, and December is the lowest monthly mean one at just under 19.6°C

(https://www.weather-atlas.com).
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Fig. 3.4. Monthly temperature in Kanchanaburi province (2020)

The annual average relative humidity fluctuates from 61% to 80%. October
typically occurs the highest humidity at 80%, and March usually has the lowest humidity

at about 61%.
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Fig. 3.5. Monthly humidity in Kanchanaburi province (2020)

The annual average precipitation is 1056.4 mm, but it does not distribute
evenly in the province. The heavy rainfall is concentrated in mountainous areas.
Between May and October, precipitation occupies around 83% of the annual rainfall
total. The rest of the rainfall happens from November to April. September is the

highest average rainfall of 220.5 mm, while January is the lowest with 3.3 mm.
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Fig. 3.6. Monthly average precipitation and rainfall days in Kanchanaburi province (2020)

The annual average sunshine and daylight hours are approximately 31,700 hours
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and 53,000 hours, respectively. The highest hours of sunshine happen from January to
April and December; the average hours of sunshine in these months are around 9 hours
per day. Moreover, the lowest hours of sunshine appear from July to September; the
average hours of sunshine in these months are approximately 5 hours per day. June and
July have the longest days, with 12.9 hours per day; meanwhile, December has the

shortest day, with 11.3 hours per day.
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Fig. 3.7. Monthly average sunshine and daylight hours in Kanchanaburi province (2020)

The Southeast monsoon's wind regime begins to blow into the Gulf of Thailand in
late May and early June. The southeast monsoon blows through, causing more rain in the
period from August to September. In winter, the northeast monsoon blows from the high-
pressure area from China. The northeast monsoon is cold and dry. It blows over the whole
of Kanchanaburi from October to February next year. The Northeast Monsoon begins to
weaken in February, when the East Wind from the South China Sea and the Southeast
from the Gulf of Thailand will take its place. In addition to the monsoons mentioned

above, the area has occasional storms.

Climate change affects many weather elements such as the number of

precipitations, temperature, sunshine duration, etc. Therefore, it impacts the groundwater
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quality and quantity in Kanchanaburi. However, the effect of climate on groundwater takes a
bit long time (for example, 50 years). According to Srisuk et al. (2016), climate change has
degraded groundwater quality in coastal and inland areas in Thailand, such as saline water
intrusion. While the analysis by Pholkern et al. (2018) indicated that groundwater resources in

Central Huai Luang Basis are at risk due to climate change.

3.1.4. Hydrologic condlition

98°0°0"E 99°0°0"E 100°0°0"E
N
[\
!
v v
g g
£ e
] ]
- -
Legend
= River
B
l: Kanchanaburi boundary
:] District boudaries
2 2
e Landsat 8_Satellite Image )
§ RGB .:
Lo - Red:  Band 6 »
- Green: Band 5
- Blue: Band_4
g —
80 Kilometers

98°0'0"E 99°0'0"E 100°0°0"E

Fig. 3.8. River systems and waterbody in Kanchanaburi province

Four river systems pass the Kanchanaburi province's territory, namely Khwae Noi,
Khwae Yai, Mae Klong, and Lam Taphoen rivers. These rivers originate from the Khwae Noi
river systems in Thong Pha Phum district and Thong Pha Phum district. Khwae Noi converges
with Khwae Yai to form Mae Klong river in Pak Phraek ward, Mueang Kanchanaburi districts.
Lam Taphoen river flows through the Eastern Plain of Kanchanaburi province and meets the

Khwae Yai River at Tha Sao in Sai Yok district.
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3.1.5. Soil resources

Kanchanaburi province has suitable soil conditions for cultivating crops such as
sugarcane, maize, cassava, and pineapple. According to the survey of the land
development department of Thailand (2007), the soil condition in Kanchanaburi is
mainly formed from sedimentary rock by decomposition of igneous rock, granite,
granodiorite, shale, and quartz phyllite. There are 33 soil group types found in
Kanchanaburi province. Soil group 62 occupies 10,334.81 km?, followed by soil group
33 (1029.55 km?), and soil group 29 (994.26 km?). Soil groups 31 and 48 have a total

area of 935.54 km? and 841.98 km?, respectively.

+ Soil group 62: This type of soil covers mainly hilly areas. It appears at
places with a slope of more than 35%. The characteristic is deep and shallow. Soil
texture and fertility vary according to the original rock, such as crushed stone, lump
rock, or slate. This type of soil should not be used for agricultural purposes because

of ecosystem conservation.

+ Soil group 33: Soil texture has brown or reddish-brown. It lies deep in the
soil, contains mica or lime, is formed from sediment materials, and is found along
rivers, hills, and mountains. This soil type usually appears in regions with a slope of
about 2-12%. It has drainage from good to moderate; therefore, the groundwater level
is more profound than 1m all year round. The soil group has moderate natural fertility.

The topsoil layer has a pH in the range of 6.5-7.5.

+ Soil group 29: Soil texture is clay and delicate, with yellowish-brown or
reddish colors. It originates from river sediments or degraded soils. This group is
found in hills. It appears in areas with a slope of about 3-25%. It is deep and well-
drained soil. Natural fertility is relatively low; the pH of soil ranges around 4.5-5.5.
This type of land is currently used to grow different types of rice, crops, and fruit

trees.
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+ Soil group 31: Soil texture is clay. The feature is fertile. It has brown, yellow,
and red colors due to the decomposition of many types of rocks. It is found in
undulating and deformed regions. This group appears in regions with a slope of
about 3-20%. This type of soil is deep and medium well-drained soil. The
groundwater level is usually more than 1m deep. The natural average pH is 5.5-6.5.

Currently, this type of soil is used to grow rice and various fruit trees.

+ Soil group 7: Soil texture is clay, has brown or gray-brown colors, and is
formed by river alluvium. It is deep soil and poorly drained. It is found in flat and
relatively smooth areas. The water level is 30-50 cm deep in the rainy season for 3-4
months. This group has naturally fertile and moderate fertility features. The pH

ranges from 6.0-7.0.
3.1.6. Geological condition

Kanchanaburi is Thailand's westernmost province. It has a lot of high mountain
ranges. The research study's geology consists mainly of metamorphic, igneous, and
sedimentary rocks ranging in age from Precambrian to Quaternary. Fig 3.9 depicts the

geology in Kanchanaburi province.
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Fig. 3.9. The geological map of Kanchanaburi province
3.1.6.1. Geological structure

The research area's structures are complex with folds and faults. The folds may
be seen in various spots in Kanchanaburi from both field and satellite imagery
(Songmuang et al,, 2007). Most fold axes are in the northwest-southeast direction
(Bunopas, 1976). Fold structures may be seen in a variety of rocks. It could be anticlinal
and synclinal folds. The anticlinal and synclinal folds have been observed in the
Ordovician and Permian limestones in the Khao Leam region. According to (Songmuang
et al., 2007), tight and recumbent folds may be found in Ordovician to Devonian strata,

mainly in the western section of Kanchanaburi city and the Three Pagoda Fault.

Many faults appear in western Thailand grouped into the Sri Sawat Fault and
the Three Pagoda Fault (Chuaviroj, 1991; Pailoplee et al., 2009). The Sri Sawat Fault,

which runs north-south, has a curved pattern with multiple smaller fault sets at its
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southern end. The Sri Sawat Faults begin in Kanchanaburi Province's Sri Sawat district
and the northern section of Bo Ploi district. In a northwesterly direction, this fault
also flows through the Khwae Yai River. The Three Pagoda Fault deviates from the
Mae-Ping Fault to the north, cutting Paleozoic to Cenozoic lithological units. Fig. 3.10

displays the active faults in Kanchanaburi province.
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Fig. 3.10. The faults pass through Kanchanaburi province
3..1.6.2. Geological Setting

Kanchanaburi's geology comprises several faults that run in different directions,
primarily northwest-southeast. These faults cut through various lithologies. The youngest
unit consists of narrow and long strips of Quaternary deposits filled with laterites, silts,
sands, and gravels. The Triassic rocks of the Chong Khab formation lie unconformably
under the Quaternary layers. The Daonella sp, Halobia sp and sandstone interbedded

with limestone make up the Chong Khab formation. The Permian Tha Madua sandstone,
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which includes heavily bedded red sandstone and white quartz sandstone, underpins
the Chong Khab formation. The Sai Yok Limestone is almost equivalent in age to the Tha
Madua sandstone. This Permian-aged deposit consists of massive and bedded
limestones  with  fusulinids, brachiopods, pelecypods, and bryozoans. The
PermoCarboniferous-aged Khaeng Krachan formation underlies the Permian-aged Sai Yok
formation. The Bo Ploi and Kanchanaburi formations, which are Silurian to Devonian in
age, comprise pebbly mudstone, gray sandstone, and dark-gray shale. The Thung Song
includes banded argillaceous limestone, argillite, and quartzite with Ordovician
cephalopods is older than the Silurian-Devonian rocks. The Tarutao (or Chao Nen Group)
of the Cambrian age is the earliest lithologic unit in the study area (Songmuang et al,

2007).
3.1.7. Hydrogeological characteristics

Groundwater sources in Kanchanaburi provinces can be divided into two main

groups: Unconsolidated aquifers and Consolidated aquifer.

- Unconsolidated aquifers: Groundwater in unconsolidated rocks differ in both
quality and quantity, depending on the type of sediment, biological characteristics,
and structural characteristics of sediment accumulation. The areas in the South and
East of Kanchanaburi are low-lying areas with a source of groundwater that can be

utilized. Groundwater can be withdrawn to use at a rate of 30-50 m>/hour.

- Consolidated aquifer: Groundwater is stored in fractured materials such as
granite, basalt, and limestone. The Western part of the Kanchanaburi province is
mainly metamorphic rocks. Therefore, groundwater is shallow, less than 2 m?>/hour
(Sangkhla Buri, Sai Yok, Si Sawat, and Bo Ploi districts). Meanwhile, in places with low
terrain  (Mueang Kanchanaburi, Sai Yok, and Thong Pha Phum districts), the

groundwater supplies above the threshold of more than 50 m*/hour.

In addition to limited groundwater resources, groundwater quality is another
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issue in the study area. The total mass of matter is considered the overall chemical
characteristics of groundwater. Total dissolved solid (TDS) is a term that uses to
describe the total concentration of dissolved materials in water. The optimal value

of total dissolved solids (TDS) is 600 mg/l and the maximum allowed is 1,200 mg/L.

TDS in groundwater in Si Sawat, Thong Pha Phum, and Sangkhla Buri districts
was less than 500 meg/L. Meanwhile, TDS in groundwater in Sai Yok, Thong Pha Phum,

Lao Khwan, and Bo Phloi districts was around 500-1,500 mg/L.
3.2. Research data

3.2.1. Data about groundwater yield assessment

3.2.1.1. Groundwater yield

Our case study considered eight site-specific variables, including altitude, distance
to faults, distance to waterbodies, slope, geology, land use, rainfall, and soil type (Fic.
3.11). In previous studies, these variables were considered to influence groundwater
yield and distribution (Abd Manap et al,,2014; Arulbalaji et al,, 2019; Mumtaz et al,
2019; Naghibi et al,, 2017a; Razandi et al,, 2015). This study mostly obtained well-
processed data from government agencies or, in some cases , extracted data from
satellites using well-defined procedures to make our analysis workflow consistent for
future studies (Diaz-Alcaide and Martinez-Santos, 2019). In particular, the altitude and
slope layers were calculated based on the Aster Global Digital Elevation Model V003
from  the  National  Aeronautics and  Space  Administration  (NASA;
https://search.earthdata.nasa.gov) using ArcGIS pro 2.8 (Khal et al,, 2020). Land use and
soil type maps were obtained from the Thailand Department of Agriculture. Global
satellite precipitation data (CHRS, http://chrs.web.uci.e.du) were collected from the
rainfall database to estimate the annual precipitation in Kanchanaburi Province during
the time period between 2010 and 2020. The distance to waterbodies was digitized and

calculated from Thailand’s hydrological system. Geological and fault data were
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collected from the Department of Mineral Resources. All spatial input layers were
resampled to a 30 m resolution for the overlay analysis. Because the AHP and FR
methods require categorical input variables for the analysis, the continuous variables in
our study (that is, altitude, distance to faults, distance to waterbodies, slope, and rainfall)

were classified into subclasses using the equal interval method.
3.2.1.2. Ground truth data

Our case study used groundwater yield as the ground truth data for GWP model
training and map validation. Groundwater yield was collected from 1,601 wells across
Kanchanaburi Province in a previous project funded by the Thailand Department of
Groundwater Resources (DGR). The groundwater yield for 1,601 wells was partitioned based
on the threshold of 10 m*h into two datasets: those of wells with a groundwater yield of
>10 m*/h and those of wells with a groundwater yield <10 m*/h (Fie. 3.11). Both datasets
were used to train and validate the RF model, whereas only the dataset with a sroundwater
yield of >10 m?*/h was used in the AHP and FR model training. The datasets were split into
two subsets using a ratio of 70:30 for model training and validation, respectively. The

detailed experimental designs for individual model buildings are presented in Section 3.3.1.
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Fig. 3.11. Well positions in Kanchanaburi Province, Thailand
3.2.2. Data about heavy mental contamination risk assessment in groundwater
3.2.2.1. Ni contamination in groundwater

Ni contamination in groundwater is a phenomenon in which the Ni
concentration exceeds the permissible level. According to Thailand's groundwater
quality standards, Ni concentration in groundwater must not be more than 20 pg/L. For
our case study, Ni data of 180 groundwater samples were collected from April to July
2021 and analyzed at Thailand Department of Groundwater Resources (DGR). The
groundwater sample locations were displayed using the UTM coordinate system (Fig.
3.12). The concentration of Ni was measured in the laboratory by Atomic Absorption
Spectrophotometry-Direct Aspiration method with a detection limit of 10 pg/L. Ni
concentration in groundwater samples fluctuates from 10 to 72 pg/L (Fig. 2.13). In 180

groundwater samples, 16 groundwater samples were contaminated with Ni.
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3.2.2.2. Influencing factors

The groundwater could be contaminated with Ni from anthropogenic and

natural sources. Based on the previous surveys (Baumann et al., 2006; Mohankumar
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et al, 2016; Sajedi-Hosseini et al., 2018; Twarakavi and Kaluarachchi, 2005; Uliasz-
Misiak et al.,, 2022), eight environmental variables, including altitude, distance to
roads, distance to waterbodies, geology, land use, rainfall, slope, and soil type were
selected. In this study, all these factors were utilized as influencing factors to control
the Ni contamination in groundwater. Maps of altitude and slope were extracted
from the Aster Global Digital Elevation Model V003 satellite image. Distance to roads
and distance to waterbodies were processed and estimated by the “Euclidean
Distance” function in the ArcGIS environment from Thailand's national database of
hydrology and transportation, respectively. Geology and soil type maps were
provided by the Thailand Department of Mineral Resources. Land-use map was
collected from Kanchanaburi Provincial Land Office. A rainfall map was created from
Global satellite precipitation data (CHRS, http://chrs.web.uci.e.du). All influencing

factors were prepared in raster format, with each pixel size of 30m x 30m.
3.2.3. Data about groundwater quality assessment

This study investigated previous publications relevant to groundwater quality
assessment in reputable journals (Agrawal et al., 2021; Amiri et al., 2014; Asadi et al,,
2019; Boateng et al., 2016; Chotpantarat and Thamrongsrisakul, 2021; Gulgundi and
Shetty, 2018; Jha et al., 2020; Kawo and Karuppannan, 2018; Li et al,, 2018; Rabeliy,
2018; Sadat-Noori et al., 2014; Sridharan and Senthil Nathan, 2017; Wali et al., 2019)
(Supplementary Table S1). It was clear that the number of parameters was used
differently in these studies. An investigation was then conducted statistics on the
popularity of the parameters to select groundwater parameters with the use of
above 50% for this study. Finally, potassium (K*), sodium (Na*), calcium (Ca?*),
magnesium (Mg?%), chloride (Cl7), sulfate (SO37), bicarbonate (HCO3), nitrate
(NO3), pH, electric conductivity (EC), total dissolved solids (TDS) and total hardness

(TH) were selected to assess the groundwater quality in Kanchanaburi, Thailand.



63

Next, | inherited groundwater samples of 116 wells in Nong Prue, Bo Phloi, Mueang
Kanchanaburi, and Dam Makham Tia districts from the Groundwater Resource
Department (DGR) conducted from January to April 2022 and then collected 64
groundwater samples in Lao Khwan, Huai Krachao, Phanom Thuan, Tha Maka, Tha
Muang districts in May 2022 to assure the coverage rate (Fig. 3.12). A total of 180
groundwater samples were used in this study (Supplementary Table S2). Al
groundwater samples were contained in 500-ml polyethylene bottles and labeled
corresponding to information of each well after getting from the groundwater wells.
The measurements of EC and TDS were conducted by Hach 51800-10 senslON 5
Waterproof Conductivity Meter with an accuracy of +0.5%. pH was measured by
HQ40d Portable Multi Meter with an accuracy of +0.01. Analysis of K* and Na*
Ca%*, Mg?*, Cl7, SO3~, HCO3, NO3, and TH were implemented at the DGR. All the
physical parameters were measured in the field. The analysis results were checked
with internal standards (Wisitthammasri et al., 2020) and with an ion charge balance

error percentage of 0.3% (lower than 5%) (Li et al., 2018).

After getting information on groundwater samples from the DGR, the study
conducted an analytical process by the SPPS software to determine the statistical
values. In addition, the Piper Trilinear diagram was used to observe
hydrogeochemical properties in groundwater using the Graph software (Ratchawang
et al,, 2022), and a correlation matrix was estimated using the "library(corrplot)" in the
R environment to analyze the “Pearson” correlation between the groundwater
parameters and the normalized EWQI (Cortadellas et al.,, 2017). Next, a geostatistical
process was applied to develop the groundwater quality map. It was an important
procedure because it could not collect all field data on the whole study area. In
geostatistical analysis, the two typical interpolation methods are IDW and Kriging. The

IDW is known as a deterministic method for unknown values based on the distance
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weight between known values. Kriging is an interpolation technique that measures
the unknown based on spatial statistics of known values (Jha et al., 2020). The IDW is
used when data is a non-normal distribution. Meanwhile, Kriging is used when data is
a normal distribution (Kerry and Oliver, 2007). For our case study, the normal
distribution was determined by the Kolmogorov-Smirnov test. As a result, all data of
groundwater parameters were non-normal distributions, so the IDW was applied to

generate the groundwater parameter maps (Table 4.11).
3.3. Methodologies

3.3.1. Methodologies for mapping groundwater yield
3.3.1.1. Analytic Hierarchy Process (AHP)

AHP is a decision analysis technique based on the selection criteria of experts
to evaluate a problem (Wang et al., 2009). Because of its effectiveness, it is applied
to many fields of science and technology, including groundwater potential mapping
(Arulbalaji et al., 2019; Das et al., 2019; Razandi et al;; 2015). It provides quick support
by examining the weight and condition factors of groundwater potential (Kumar and
Krishna, 2018). The limitation of the AHP approach is the dependence on expert’s
knowledge and experience, which can lead to a few inconsistencies in some cases
(Velasquez and Hester, 2013). In this study, five groundwater experts belonging to the
DGR were asked to perform the AHP analysis. The experts were requested to provide
ranking scores in the pairwise comparisons based on how they think a variable
(influencing factor) or variable’s subclass might be more important than the other for
getting groundwater yield >10 m*/h. Then, the influencing factors were integrated
according to Saaty's 1-9 scale based on the experts' evaluation (Saaty, 1990). The
influencing factors were independently determined such that only the odd scores
were used for the AHP technique. These scores were defined based on different

levels: 1 - equal importance, 3 - somewhat more important, 5 - much more
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important, 7 - very much more important, and 9 - absolutely more important. A
pairwise comparison matrix was utilized to collate the hierarchy of variables in the
next step (Table 4.1). Eventually, the weight of factors on outcomes was calculated
using a diagonal matrix (Table 4.2). Equations (2) and (3) were utilized to test the

consistency ratio of the AHP model (Saaty, 1990):

A -n
n—-1
CI
CR=— (3)
RI

where (] is the consistency index, Adpgqx iS the highest eigenvalue in the
comparison pairs, n is the number of factors (n = 8), CR is the consistency ratio, and
Rl is the random consistency index. The RI value was detailed in the previous study
(Alonso and Lamata, 2006). The AHP is accepted when CR is less than 0.1
(Malczewski, 1999). In this model, the groundwater potential index was calculated
based on the weight of the influencing factors and Saaty's 1-9 scale of subclasses,
which was formulated as per equation (4) (Al-Djazouli et al,, 2021; Arulbalaji et al,

2019; Owolabi et al., 2020):
GWPIAHP = ZWLR]v (4)

where GW Pl yp is the groundwater potential index, W; is the weight of the

influencing factor it"

, and R; is the Saaty's 1-9 scale of subclass j of influencing
factor i assigned by experts. After achieving the GWPIlyp, the study applied
equation (5) to normalize this indicator into the scaling of 0 to 1.

X— Xmin

(5)

X ved =
Normalized
Xmax—Xmin

where Xyormatizea 15 the normalized value, X is the original value, and Xp,in

and Xpqx are the original minimum and maximum values.

3.2.1.2. Frequency Ratio (FR)
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FR, a statistical algorithm, is used to calculate the probability of a particular
object or phenomenon (Bonham-Carter, 1994). The FR model was employed to
determine the possibility of sroundwater occurrence with a particular yield in a basin
in a previous study (Guru et al, 2017). Influencing factors were considered
independent variables, while groundwater yield was regarded as a dependent
variable (Razandi et al., 2015). The advantage of the FR technique is that the output
weights of conditional factors are based on statistical data. The drawback of RF is its
dependence on the ground truth data and method to classify subclasses of
influencing factors (Wang et al, 2020). For our case study, the FR model was
deployed based on the dataset of wells with a groundwater yield >10 m®/h and the
number of pixels of each variable’s subclass to calculate the groundwater potential
index. The equations for the FR approach were expressed as follows. Firstly, the FR

value of each class was calculated by equation (6):

FR = 5 (6)

where FR is the probability of occurrence of groundwater yield >10 m®/h on
each subclass of influencing factor, £ is the number of well locations with
groundwater yield >10m>/h involving each subclass of influencing factor, TE is the
total number of well locations, F is the number of pixels in each subclass of
influencing factor, and TF is the total number of pixels of influencing factor.

Secondly, the relative frequency (RFgz) was calculated as follows:

FR;;
e ()

RFeri =

where RFq is the relative frequency of the i subclass of ji influencing factors (j
ranges from 1 to 8). FR; is the frequency ratio value of i" subclass. Y, FR; is the total
frequency ratio value of " influencing factors. Next step, the predicted value (PV) was

calculated by equation (8):
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PVj _ RFFRij_max_RFRFij_min (8)
(RFFRij_max_RFFRij_min)average

where  RFpgij max s the maximum RFgp value of j™ influencing factors,
RFgEij min is the minimum RFg value of /™ influencing factors. The calculated values
(RF & FV) were used to determine a set of many pixels with a groundwater potential

index (GWPI) by equation (9):
GWPIER model = Z(RFFRi X PV]) (9)

Similar to the AHP, the GWPIgg megel Was normalized into a scale of 0 to 1 using

equation (5).
3.3.1.3. Random Forest (RF)

RF is an assembly algorithm for classification or regression based on multiple
decision trees in a predictive model (Breiman, 2001). The tree’s branches are formed
from attributes of variables. The number of variables and decision trees must be
determined before a model is implemented (Liaw and Wiener, 2002). In the GWP
research, the RF model has been applied to define the potential location and
reserves of groundwater based on well data and influencing factors (Nashibi et al,,
2017a; Rahmati and Melesse, 2016; Zabihi et al,, 2016). The training data for the RF
models are encoded in a binary tree algorithm, which generates the nodes in a
decision tree. The prediction error is estimated and influencing variables are
permuted (Catani et al., 2013). However, the RF model overfits when training
datasets are small or when there are too many input features (Wang et al., 2020). In
our case study, an RF model was created to classify groundwater yield into two
classes of yield below (class 0) and above (class 1) 10 m?/h based on the eight input
influencing factors. Because the groundwater yield data was imbalanced, stratified
random sampling was used to create the training and testing data for the RF model
building. The groundwater yield data for 1,601 wells was first split into two strata

using the groundwater yield threshold of 10 m>h. The individual strata were then
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randomly split into two subsets using a ratio of 70:30 before being combined into a
training and testing set, respectively. This ensures that enough data from the two
classes is available in both the training and testing sets for proper model training. The
Caret package in the R program (Naghibi et al.,, 2017a) was used to train and tune the
binary RF classifier. Ten-fold cross-validation was used to reduce overfitting on the
training set during model training. Categorical input influencing factors, including
geology, land use, and soil type, were converted into one-hot encoding (Neuyen et
al., 2020a) depending on which method provides a better accuracy score. The cutoff
threshold of prediction probability for class 1 (that is, sroundwater yield >10 m?/h)
was set using the optimal value (optimal threshold) of the model in this study. The
Gini importance (Kalantar et al.,, 2019) derived from the RF model training was used
to rank the importance of the input variables (nominal weights) in classifying the
groundwater yield. Regarding the calculation of the groundwater potential index, the
study used the prediction probability from the RF model to generate the GWPZ map.
Because probability below the optimal threshold was associated with groundwater
yield of <10 m?h, the study used the optimal threshold value which was the
minimum probability of the groundwater yield above the 10 m®/h class. The adjusted
probability dataset was then scaled between 0 and 1 using min-max normalization

and used as the GWPI for the RF model.
3.3.1.4. Ensemble model

Ensemble refers to the combination of multiple alternative models to obtain
better predictive performance than that obtained from individual ones (Opitz and
Maclin, 1999). Since these alternative models are often trained using different
algorithms or different datasets, they tend to cancel each other’s weaknesses out
and improve the overall accuracy (Muavhi et al., 2021; Rajaee et al., 2019; Yan et al,,

2019).
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In this study, to create an ensemble model of AHP, FR, and RF for GWP mapping,
the study averaged the GWPIs from the three individual models. These GWPIs have been

normalized to be on the same scale (0-1) in previous models.
3.3.1.5. Mapping of sroundwater potential zones

For visualization purposes and better decision-making, the normalized GWP!
was delineated for potential zones with groundwater yields above 10 m*/h using
Jenk’s natural break function in the ArcGIS environment (Kumar et al., 2016). The

potential zones were classified into three levels, high, moderate, and poor.
3.3.1.6. Validation for maps of groundwater potential zones

The validation of a model is essential for determining its predictive power
(Chen et al, 2019¢). The Receiver Operating Characteristic (ROC) curves and the Area
Under the Curve (AUC) metrics (Naghibi et al., 2017a) were used to compare the
performance of the three GWP models in this study. The ROC curves were obtained by
plotting the cumulative area of GWPI zones represented by the validation wells on the
y axis against (1 - GWPI) on the x axis (Fig. 3.14). The AUC, the area limited by the ROC
space, demonstrates the accuracy of a prediction system by describing the system’s
ability to accurately predict the occurrence or non-occurrence of pre-defined “events”
(Jothibasu and Anbazhagan, 2016). The AUC value ranges from 0 to 1. For our case
study, a perfect GWP model should have all validation wells fall into zones with a
GWPI of 1 (or a 1-GWPI value of 0), corresponding to the AUC of 1. This is because
validation wells have a groundwater yield above 10 m?h, and therefore their
probability, or “potential”, is always 1. However, perfect GWP models are unlikely to
exist. A good predictive GWP model aims to cover most of the validation wells in the
high GWPI zones (that is, zones with low 1- GWPI). In other words, the closer the AUC

value is to 1, the better the GWP model is.

To construct a ROC curve, the study classified the corresponding GWPI map
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into 100 classes (incremented by 0.01 unit). Validation wells were also plotted on
the classified map and the area of the GWPI zones that have the validation wells was
recorded. The area of GWPI zones was normalized between zero and one by dividing
its raw value by the total area represented by all validation wells. The GWPI and the
corresponding zonal area represented by the validation wells were sorted in
descending order of the GWPI. The cumulative area was then calculated by adding a

value to the previous one in the sequence.
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Fig. 3.14. Receiver Operating Characteristic curves and Area Under the Curve metrics
3.3.2. Methodologies for mapping Ni contamination risk zone in groundwater

The research process was carried out the following steps (Fig. 3.15): Step one
is to build a database for the model. The input data includes the position of
boreholes, information about influencing factors, and classification of Ni
contamination and non-contamination. Groundwater samples are classified into
contaminated and uncontaminated based on the Thailand groundwater quality

standard for drinking purposes and were coded as 0 and 1. 0 is the uncontaminated
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sample, and 1 is the contaminated well by Ni element. The database is divided into
a ratio of 70:30 to train the model and test the results (126 samples for training; 54
samples for validating). Step two sets the weighted criteria and ranks the influencing
factors based on contribution level and predicted value based on the Maxent
technique, respectively. Step three calculates the AHP weight of influencing factors
on the Ni contamination in groundwater using the AHP technique. Step 4 maps the Ni

contamination risk zones in groundwater in the study area. Step 5 is validation.
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Fig 3.15. Flowchart for delineating the Ni contamination risk zones in groundwater
3.3.2.1. Maxent

Maxent is a statistical technique based on the maximal distribution of known
outcomes (Mousazade et al, 2019). In this technique, the probability distribution
function is built based on environment variables. The prediction result uses the
probability distribution function to calculate the phenomenon's occurrence probability
(Reddy and Davalos, 2003). However, the maxent technique works towards a uniform

distribution without considering the constraints of the environment variables (Kaky et al,
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2020). In this study, Maxent was used to estimate the maximum occurrence probability
of heavy metal pollution in the study area and the contribution level of environmental

factors. The Maxent mathematical formulas are as follows (Mousazade et al., 2019):

Py == (10)
P..

(P;) 4 (11)

X ZiLiPij

Hi=-Y"7 (P)log;(Py):ji-1:23.:n (12)

Hjmax = 1092 S; (13)

o Hjmax_Hj

Ij B Hjmax (14)

Where i is symbol for the i" influencing factors (i ranges from 1 to 8), j is
symbol for the " class of the influencing factors, a is the area of each class of each
influencing factor, b is the number of contaminated groundwater samples in the j*

class of the i influencing factor, P;; is the occurrence probability of Ni

contamination in the j™ class of the i

influencing factor, (P;;) is the density
probability, H is the entropy values, Hjpgqy is the maximum entropy value. The
computing contribution level of influencing factors to the Ni contamination risk and the

predicted value are performed in the R program environment with the SDM package

(Algorithm 1).

Algorithm 1. Maxent approach

1: # Install package “SDM” and “Java environment”
2: # Import databases

3: # Construct maxent model

4: MX = max(‘environmental factors’, ‘train data’)
5. # Getting the contribution variable

6: plot(MX)
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7: # Get the predicted value

8: response(MX)

3.3.2.2. Analytic Hierarchy Process (AHP)

AHP is a technique in making decisions. In the AHP technique, the weighted
criteria of the conditional variables are usually determined based on experts'
opinions on with scale of 1 to 9 (Saaty, 1990). The odd scores are defined according
to different levels: 1 - equal importance, 3 - somewhat more important, 5 - much
more important, 7 - very much more important, 9 - absolutely more important.
Meanwhile, the even scores are defined as intermediate values when compromise is
needed (Saaty, 1990). In this study, the influencing factors were determined
independently so that the odd scores were only used to set the weight criteria for
the AHP model. The weighted criteria of influencing factors and the ranks of their
classes were assigned based on the contribution level and the predicted values from
the Maxent method, respectively. For the weighted criteria, the contribution level
was normalized by a common scale based on Eg. (16), and then applied as following
principle: 0-0.2 was assigned 1, 0.2-0.4 was assigned 3, 0.4-0.6 was assigned 5, 0.6-0.8
was assigned 7, 0.8-1 was assigned 9. For the ranks of classes, the scores were given
from 1-9 (only odd scores) based on the predicted values. The higher the predicted
value was, the higher the score was, meaning that the probability of contamination
occurrence is high. After the weighted criteria were set, calculating the AHP weights
of the influencing factor were performed in a pairwise comparison matrix. In the AHP
approach, the consistency ratio less than 0.1 was used to evaluate the matrix results
(Arulbalaji et al,, 2019; Saaty, 1990). The consistency ratio was estimated according to

the Egs. (17) and (18):

_ CL=CLminimum
Xnormalized - ] — T (16)
CLmaxlmum Cmelmum
A -n
Cc] = max (17)

n-1
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CI
RI

CR = (18)

where Xpormatizea 1S the normalized value of contribution level, CL is the
value of contribution level of the i" influencing factors, Cl is the consistency index, n
is the number of environmental factors, A, qx is the highest eigenvalue of pairwise
comparison matrix, CR is consistency ratio, Rl is the random index of the number of
environment variables. The Rl value is detailed in the study of (Alonso and Lamata,

2006).

3.3.2.3. Calculating potential contamination index and mapping the nickel contamination

risk zones

The potential contamination index is a dimensionless quantity. In this study,
the potential contamination index was wused to predict groundwater's Ni
contamination risk. Based on the previous studies about potential prediction (Achu et
al.,, 2020; Adiat et al.,, 2012; Arulbalaji et al., 2019; Dar et al,, 2021; Saranya et al,,
2020), the potential contamination index of Ni in groundwater for each location was

estimated according to the following formula:

GWCPI = AlWAlf + DtRWDtRf + DtWWDth + GeowGeof + LUWLUf + RWRf +
SLWSLf +S5,S f 19

Where GWPCI is the potential contamination index of Ni in groundwater, Al is
the altitude, DtR is the distance to roads, DtW is the distance to waterbodies, Geo is
the geology, LU is the land use, R is the rainfall, SL is the slope, and S is the soil, w is

the weight of influencing factor, f is rank of the classes of the influencing factor.

The potential contamination index map of Ni in groundwater was based on
the value of pixels calculated from equation (19). The GWCPI values were classified
into three different levels, including high, moderate, low, using the Natural Breaks

function in ArcGIS software.
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3.3.2.4. Validation for contamination risk map of Ni in groundwater

The results verification is an essential step in scientific and forecasting studies
(Barzegar et al,, 2018). In the current study, the data for validating the output map
was based on 54 groundwater samples (30% database for testing). The receiver
operating characteristic (ROC) and statistical indicators were proposed to evaluate the
model's performance and accuracy of the output map (Tien Bui et al, 2019). The
ROC is a graphical plot of a curve that represents the relationship between sensitivity
and 1 - specificity or true positive rate and false positive rate (Pham et al., 2019). The
ROC value is the area under the curve, namely the area under curve (AUC) (Tien Bui
et al,, 2019). The AUC value changes from 0 to 1. AUC value close to 1 means the
hish model's performance, and vice versa. The statistical indicators include positive
predictive value (PPV), negative predictive value (NPV), accuracy, sensitivity,
specificity. These statistics are calculated based on the equation (20, 21,22,23,24) and
confusion matrix (Table 3.1) (Pham et al,, 2019):

TP

Sensitivity = e (20)
e TN
Specificity = — (21)
Accuracy = Lt — (22)
TP+TN+FP+FN

PPV = — (23)
TP+FP

NPV = — (24)
TN+FN

Where TP is the amount of pixels correctly classified as contamination
samples (positive results), TN is the amount of pixels correctly classified as “non-
contamination samples” (negative results), FP is the amount of pixels incorrectly
classified as “contamination samples” (positive results), FN is the amount of pixels

incorrectly classified as “contamination samples” (negative results).
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Table 3.1. Matrix for observed and predicted values

Result

Polluted samples  Mon-polluted samples

Polluted sarnples TP FIN

Observation

MNon-polluted samples FP ™

3.3.3. Methodologies for mapping groundwater quality
3.3.3.1. EWQI computation

Entropy is a technique to calculate objective quality parameter weights
(Peiyue et al, 2010). It overcomes the weighting system's subjectivity. The entropy
creates a network of information to assess the indirect connections of variables. The
influenced weight of a variable is mainly determined by the difference of alternative
values when using another variable. Data is less information when the entropy value
is high, and therefore the result is more unpredictable. In the procedures of
calculating the EWQI, each parameter is given an entropy weight (Wu et al., 2018). In
this study, sroundwater samples and physicochemical parameters are assigned in the
order of i from 1 to 180 (i.e., 180 groundwater samples) and j from 1 to 12 (i.e,
twelve parameters), respectively. Mathematically, the formulas for computing the

EWQI are presented as follows:

dq1 dq2 alj
A=|321 a ..y (25)
dj1 di2 ai]-
Xt —Xii oo
bij — ij —Xij min (26)

Xij max ~Xij min
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bll b12 e bl]
B =|bz1 by ..by; 27)
bil biZ bl]
_ (1+bi]')
By = ZiZ,(1+ by (28)
1
L (1—e]-)
J 7 ym (-e) (30)
C:
Q) =g x 100 (31)

where A is the Eigenvalue matrix, by; is standardized value, B is a standard-grade
matrix, B is performance indices, e; is the information entropy, wj is the entropy weight,
Cj is the concentration of parameters j, Sj is the permissible standard value, qj is the
quality rating scale. After achieving the EWQI, the study has applied equation (9) to
normalize this indicator into the scaling of 0 to 1.

EWQI— EWQIm;
EWQIyormatized = EWQImax—EWQnIl:;-n (33)

where EWQIlyormatizea 1S the normalized value, EWQI is the original value,
EWQILyin and EWQIy4, are the original minimum and maximum values. For
visualization purposes and better decision making, the normalized EWQI was
classified into five levels of groundwater quality, including excellent quality
(EWQIyormatizea ©f 0-0.2), good quality (EWQIyormatizea ©f 0.2-0.4), moderate
quality (EWQIyormatizea ©f 0.4-0.6), poor quality (EWQInormaiizea ©f 6-0.8),

extremely poor quality (EWQIyormatizea ©f 0.8-1).
3.3.3.2. Cross-validation and bootstrap techniques

In this study, the initial database, including 16 columns and 180 rows, was
designed based on a matrix structure in which the columns were the information on

the groundwater parameters and the rows were the information on groundwater
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samples (Supplementary Table S2). In the initial database, groundwater parameters
were the independent variables, the normalized EWQI was the target variable. Cross-
validation and bootstrap techniques were then applied to build training and testing
data subsets for the ML models. Cross-validation and bootstrap are resampling
methods (Kohavi, 1995). While the cross-validation divides the initial dataset into
multiple subsets for training and testing (Berrar, 2019), the bootstrap generates
multiple subsets from the initial database after resampling with replacement (Chernick,
2012). For the cross-validation, the initial database was split into five subsets, each
subset is called a data block (fold) comprised of 36 groundwater samples (Fig. 3.16a).
For the bootstrap, the initial database was divided into 100 multiple subsets after

resampling with replacement (Fig. 3.16b).

(a) Initial dataset (b) Initial dataset

Fold 1 Fold2 Fold 3 Fold4 Fold 5

kation] | @ @ © © @ [0000000000]
Iteration 2 . . . . . ; ; ;
Iteration 3 w
MR R HEHIRH T
teration4 | @ @ @ @ @
Iteration5 | @ @ @ @ @ Testing|. ..| |O..| |OO.|
O Training @ Testing Bootstrap sample 1 Bootstrap sample 2 Bootstrap sample n

Fig. 3.16. Cross-validation (a) and bootstrap (b)
3.3.3.3. Random forest (RF)

Achievement in the application of the RF model has been recorded remarkably
in branches of environmental science such as landslides (Cheng et al., 2021), floods
(Schoppa et al., 2020), air pollution (Kumar, 2018), land use management (Wu et al,
2021), and water quality (Wang et al., 2021). The RF, an ensemble learning method, is
established from the decision trees. In the RF model, a decision tree is an option for
forecasting results, in which tree branches are a combination of data classes based on

different datasets and attributes (Ahmad et al., 2017). An ensemble output of the RF is
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an aggregate of the decision trees, therefore, the information on the decision trees
complements each other, resulting in a model with low bias and low variance (Goldstein
et al, 2011). As a corollary, the RF model solves overfitting and underfitting problems on
the validation/test subset. An RF model conducts the task of classification or regression
(Liaw and Wiener, 2002). In the RF algorithm, the number of decision trees (n-tree) and
attribute information (m-try) must declare to determine the optimal model. However,
the RF model returns results in a long time because it processes many predictions. For
our case study, the RF algorithm was implemented in the R program environment using
the “Caret” package. To start, the study built the control subjects using the "trainControl
function" based on the cross-validation and bootstrap, respectively. Then, the study
integrated the control subjects into the RF algorithm, called RF-CV and RF-B models,
respectively. The role of RF in this study was to conduct a regression task because the
normalized EWQI is a continuous variable ranging between 0 and 1. The value of the
normalized EWQI for locations in the study area was conducted by the prediction

function.
3.3.3.4. Artificial neural network (ANN)

The ANN, a machine learning model, is applied by many researchers to make
predictions (Soltani Mohammadi et al.,12017; Tamiru and Dinka, 2021; Xu et al., 2021).
The ANN is developed from a structure that is similar to the behavior of neurons and
synapses in the human brain. It allows computer programs to recognize complex
relationships in a dataset and solve the problem of prediction (Lee et al., 2017). The
structure of an ANN model includes an input layer, hidden layers, and an output
layer (Ahmad et al, 2017). The input layer represents input data, hidden layers
represent the intermediate nodes that divide the input space into boundary regions,
and the output layer represents the output of the neural network (Monteiro et al,
2021). Similar to the RF, the ANN can perform classification or regression missions.

The ANN works based on the correlation of input data to make decisions. However,
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ANN only works with numeric data and requires large datasets, which requires the
categorical data need to be generalized coding (Tayyebi and Pijanowski, 2014). For
our case study, the groundwater parameters were designated as the input layer, and
the normalized EWQI was appointed as the output layer. The “nearalnet” package
was performed directly in the R program. The cross-validation and bootstrap
techniques were integrated into the ANN algorithm to build the ANN models, called
the ANN-CV and ANN-B, respectively. The default number of hidden layers was one
with a threshold of 0.05 because the more hidden layer is, the more complex the
model is (Bedi et al,, 2020). The ANN-CV and ANN-B algorithms were presented in

supplementary materials.
3.3.3.5. Model validation

Modeling can lead to deviations between forecast and observed values.
Therefore, model validation is an essential step for any model. For our case study,
coefficient of determination (R?), root mean square error (RMSE), and mean absolute
error (MAE) were utilized to accurately validate and compare the performance between
the models (Bedi et al., 2020). The R? is an indicator to explain the coefficient of variance
explanation, which describes the relationship between a set of parameters on the target
variable. The value of R? varies from zero to one. The R? goes to one, the model is good,
and vice visa (Santhi et al,, 2001). The RMSE, an error-index statistic, is used to compare
the performance of models. The lower the RMSE is, the more reliable model is. Similar
to RMSE, MAE is also applied to evaluate the models. The value of MAE goes to 0, which

means that model is more suitable (Chai and Draxler, 2014).

S (EWQl,~EWQI,)*(EWQI,~EWQI,)

R? =
(S (EWQI~EWQIn))0 S+ (S, (EWQLn ~EWQL,p) )0

_ YL (EWQIL—EWQIp)
n

MAE

RMSE = \/%((EWQIH — EWQI,,)? (36)



81

where EWQI, is the estimated value of normalized EWQI, EWQI,, is the predicted

value of the normalized EWQI.
Chapter 4. RESULTS AND DISCUSSION

4.1. Exploring spatial distribution of groundwater yield in Kanchanaburi,

Thailand using AHP, FR, and RF
4.1.1. Influencing factors on groundwater yield

Altitude: Altitude affects groundwater distribution as water often moves
down the elevation gradient. Therefore, it is an indicator of groundwater potential
(Chen et al,, 2019¢). In the study area, altitude values ranged from 2 m to 1,812 m
and were divided into five subclasses: 2-50 (2,331 km?), 50-100 (2,278 km?); 100-150

(1,263 km?); 150-200 (2,150 km?); and >200m (11,368 km?) (Fig. 4.1a).

Distance to faults: Faults are hydraulic barriers hindering horizontal
groundwater movement. Therefore, it is an important factor to invest groundwater
yield (Naghibi and Pourghasemi, 2015). The distance to faults map of Kanchanaburi
was generated with five subclasses: 0-10,000, 10,000-20,000, 20,000-30,000, 30,000-
40,000, and >40,000 m, in turn accounting for an area of 14,384, 2,480, 1,601, 857,

and 67 km?, respectively (Fig. 4.1b).

Distance to waterbodies: Distance to waterbodies affects the infiltration of
groundwater and the recharge capacity of an aquifer (Chen et al, 2019c). The
distance to waterbodies map was classified into five subclasses: 0-2,000 (13,315 km?),
2,000-4,000 (3,956 km?), 4,000-6,000 (1,388 km?), 6,000-8,000 (489 km?), and >8,000

m (242 km?) (Fig. 4.1¢).

Slope: Slope determines excess rainfall and runoff accumulation and thus
influences the residence time of water on the surface and the ability of water to

seep into the underground (Nguyen et al., 2020c). The slope in the study area was
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classified into five subclasses: 0°-3° (3,304 km?), 3°-6° (3,820 km?), 6°~10° (3,122 km?),

10°-16° (3,070 km?), and >16° (6,073 km?) (Fig. 4.1dl).

Geology: Geology is important for the distribution of groundwater. Indeed,
good aquifers are often found on fractured rocks (limestone, basalts, conglomerates,
sandstone) and unconsolidated sediments (sand, gravel), while poor aquifers are
composed of igneous rocks (granite, shale) or sediments (mud, clay, slit) (MacDonald
and Davies, 2000). In the study area, there are fourteen geological units, including
Carboniferous-Permian (CPk), Devonian (D), Cambrian (E), Cambrian-Ordovician (EO),
Jurassic (J), Cretaceous (Kgr), Ordovician (O), Pre-Cambrian (PE), Permian (Pr),
Quaternary (Q), Silurian-Devonian (SD), Silurian-Devonian-Carboniferous (SDC), Tertiary
(Tmm), Triassic (Tr) in which Q covers the highest area (5,474 km?), followed by SDC
(3,180 km?), O (2,647 km?), Pr (2,430 km?), Tr (1,472 km?). Moreover, other geological

units occupy a small area of Kanchanaburi (Fig. 4.1¢).

Land use: Land use reveals the current state of the surface coating of a
geographic feature, which has a close relationship with groundwater through
residence time and the infiltration process of surface water. It represents soil
moisture, surface roughness, movement and recharge capacity of groundwater
(Sameen et al.,, 2019). In Kanchanaburi, the land use factor comprises five land cover
units, reclassified into agricultural land (5,323 km?), miscellaneous land (454 km?),
forest land (12,224 km?), urban and built-up land (557 km?), and waterbody (506 km?)
(Fig. 4.1f). Forest is primarily distributed in the West; moreover, agricultural,

miscellaneous, urban and built-up lands concentrate in the East.

Rainfall: Rainfall greatly influences the recharge of groundwater through
surface input and subsurface infiltration (Khoshtinat et al., 2019). The rainfall map
was divided into five subclasses as follows: <1,500 (8,091 km?), 1,500-1,650 (4,223

km?), 1,650-1,800 (5,051 km?), 1,800-1,950 (1,964 km?), and >1,950 mm/year (60 km?)
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(Fig. 4.1g).

Soil type: Soil controls the infiltration and retention rate of water, which is
decided by soil structure and texture (Martinez-Santos and Renard, 2020). In
Kanchanaburi, there are fourteen soil types in which clayey sand is the dominant
type, comprising ~11,189 km? of the total area, followed by sandy loam (2,759 km?)
and clay loam (1,987 km?). The others cover only a small part of the area and are

sparsely distributed in the province (Fig. 4.1h).
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4.1.2. Application of AHP for delineating eroundwater potential zones

The AHP approach provides the weight of the influencing factors for the
presence of wells with a groundwater yield above 10 m®/h. A pairwise comparison
matrix of influencing factors determined by the judement of experts in the
groundwater field was used to calculate their diagonal matrix (Tables 4.1 and 4.2).
The highest weight of 28.66% was found in altitude and distance to faults. It was
followed by distance to water and slope at 14.40%. Meanwhile, the figures for
geology, rainfall, and soil type were only 3.95%, and land use was the least impact
factor with a weight of 2.03% (Tables 4.2 and 4.33). The consistency ratio was 0.055

(Table 4.2) revealing the reasonability of the pair-wise comparison process.

Table 4.1. Pairwise comparison matrix of influencing factors

AHP Al DF Dw Slope  Geology LU Rainfall  Soil type Weight criteria
Al 1 1 3 3 T 9 T 7 9
DF 1 1 3 3 T 9 T 7 9
oW 1/3 173 1 1 5 T 5 5 T
Slope 1/3 1 1 1 5 T 5 5 T
Geology /9 LT 1T 113 1 3 1 1 3
LU 7 15 1/5 1 3 1 1/3 13 1
Rainfall 17 15 1/5 1 3 1 1 1 3
Soil type 1/9 7 17 173 1 173 1/3 1 3
Geometric
321 321 B.74 8.74 27.33 42.00 27.33 27.33
Mean

Abbreviations: Al — Altitude; DF - Distance to faults; DW - Distance to waterbodies; LU — Land

use

While the high groundwater potential zones were observed mainly in the East
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of Kanchanaburi Province, the poor groundwater potential zones were found in the
western area (Fig. 4.3a). Specifically, 59.88% and 22.23% of GWP were represented by
poor and moderate potential, respectively, while high potential accounted for

17.89% (Fig. 4.4).

Table 4.2. Diagonal matrix of influencing factors

AHP Al DF DW  Slope  Geoloay LU Rainfall s Sum  Weight (wi) Eigerwalue (A)
Al 031 031 033 034 0.26 0.21 0.26 026 229 28B.66 8.55
DF 031 031 033 034 0.28 0.21 0.28 028 229 2B.66 8.55
oW 010 010 011 011 0.18 017 0.18 018 115 14.40 8.43
Slope 010 010 011 011 0.18 017 0.18 018 115 14.40 8.43
Geology 004 004 002 002 0.04 0.07 0.04 004 032 3.95 8.07
LU 003 003 002 002 0.01 0.02 0.01 001 0.6 2.03 8.11
Rainfall 004 004 002 002 0.04 0.07 0.04 004 032 3.95 8.07
s 004 004 002 002 0.04 0.07 0.04 004 032 3.95 8.07

A rmmax = 8.55; Ol = 0.078; Rl = 1.4056; CR = 0.055

Abbreviations: Al — Altitude; DF — Distance to faults; DW - Distance to waterbodies; LU —
Land use, S - Soil type

Table 4.3. Normalized weights and Saaty's scale of factors’ subclasses in the AHP model

Influencing factors Subclasses Weight (Wi} Saaty's scale (Rj)
2-50m 9
50-100 m T
Altitude 100-150 m 2B.6E 5
150-200 m 3
»>200 m 1
0 to 10,000 m 1
10,000 to 20,000 m 3
Distance to faults 20,000 to 30,000 m 28.66 5
30,000 to 40,000 m T
> 40,000 m 9
0 to 2,000 m 9
2000 to 4,000 m T
Distance to waterbodies 4,000 to 6,000 m 14.40 5
6,000 to 8,000 m 3
>8.000 m 1
0= to 3= 9
Slope 3° to &° 14.40 T

£° to 10° 5
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4.1.3. Application of FR for delineating groundwater potential zones

The occurrence probability of groundwater well locations with a yield >10
m>/h on influencing factors and its spatial relationship with influencing factors was
observed using the FR approach (Table 4.4, Fig. 4.3b). This spatial relationship was
shown by the predicted value, which was considered an indicator for calculating the
GWPI. The spatial relationship will be positive, average, and negative when the
predicted values are >1, 1, and <1, respectively (Lee and Pradhan, 2006). It is clear
that the well location with a yield of >10 m*h and certain influencing factors,
including distance to faults, distance to waterbodies, land use, and rainfall, had a
positive spatial relationship. Meanwhile, a negative spatial relationship was observed
between well location and altitude, slope, geology, and soil type. Besides, the
relative frequency is also another important indicator of the impact of an influencing
factor’s subclasses on the occurrence of groundwater yield above 10 m?/h (Muavhi
et al,, 2021). In the influencing factor of altitude, the subclasses with a low value had
a high relative frequency and vice versa. The relative frequency value was higher
when the distance was far from the faults. The influencing factors showed a sharp
contrast with distance from waterbodies, slope, and rainfall. About geological units,
the analysis of the FR approach indicated that the Quaternary had the highest value
of relative frequency (0.41), followed by the Cambrian (0.21), and Silurian-Devonian
(0.17). According to land-use type, urban and built-up land had the highest value of
relative frequency (0.90) followed by agricultural land (0.07). Also, an assessment of
soil type revealed that the largest relative frequency values of 0.28 and 0.20 were
found in silt and silt loam, respectively. The majority of areas were affected by
moderate (43.58%) and poor (30.92%) potential, while the remaining areas were

correlated with high potential (25.50%) (Fig. 4.4).



Table 4.4. Frequency ratio values of the influencing factors
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Influencing factors Subclasses No. of pixels % of pieels Mo, of wells %% of Well FR RFem  FWj
250 m Z.5p0.578 12023 54 5253 271 048
E0-100 m I5511ET 11.745 ao 1384 118 021
Altitude 100-150 m 1,404,085 8517 T 034 1az o025 087
150-200 m 2,385,108 11.088 g 311 028 005
»200 m 12,551,183 EB.6Z4 5 173 003 001
0to0 10,000 m 15,783,312 T4.182 ao 13.84 137 o001
10,000 o 20,000 m 2,755,714 12780 33 1142 E93 005
Distance to faults 20,000 +o 30,000 m 1778129 B.ZET 57 1872 7389 014 113
30,000 +o 40,000 m B5Z.5E6 4421 34 1176 2661 016
»30,000 m 75,358 0.350 11 351 10883 Osd
040 2,000 m 14,795,142 EB.65T 173 5R.88 047 053
2,000 to 4,000 m 4,396,017 20,403 1 035 0.0z 002
Distance to waterbodies 4,000 t0 6,000 m 1,542 558 T.159 1 035 005 005 170
&,000 to B,200 m 455,408 2104 o] 0.00 0.00 000
» 8,000 m Z6B.3TE 1.248 o] 0.00 0.00 000
07 to 5° 3871525 17.040 a7 23.18 136 040
3 to &7 4,244 857 15702 &8 23.53 1.1% 035
Slope &% to 107 3468374 16102 33 1142 L R 5 R+
10° to 167 3411514 15835 & 208 013 004
»1&7 §,748,329 31.320 1 035 001 000
Silurian-Devonian 402,851 1870 Z 059 037 007
Cuakernary 5,082,732 ZB.23 152 52.60 186 036
Cretaceous 625,202 2802 o] 0.00 0.00 000
Trizssic 1,556,212 T.5EE o] 0.00 0.00 000
Carbonifierous-
1412578 8.55T 1 035 005 001
Permian
Permizn 2,700,326 12,534 5 173 014 003
Geology 0.68
Silurian-Devonian-
3,553,408 16.401 3 104 006 001
Carboniferous
Ordavicizn 241752 13,655 Z 059 005 001
Waker 412851 1518 o] 0.00 0.00 000
Cambrizn 79377 5153 5 173 055 011
Pre-Cambrizn 183,754 0.853 Z 059 081 018
Jurassic 638,309 2383 1 035 01z 002
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Cambrian-Ordovician 105,767 0491 1 03s 07 0id
Devonian 12872 0.0&0 o] 000 0.00 000
Tertiany 175578 0315 1 035 042 008
Agricultural land 5815278 ET.45T -1 2284 083 008
Mizcellareous land ED4.B5B 1.343 5 173 074 005
Farest land 13,5H2 255 £3.046 2 0s9 001 000
Land use 1.62
Waterhady BI1918 1.779 o] 000 0.00 000
Jrban and Built-up
£13.08d 2871 10z 5520 1223 085
land
<1500 mm.year 8,500,315 41727 & 208 005 001
1500 to 1850
4,602 200 Z1.7E1 20 682 032 005
mmyesr
1650 to 1800
Rainfall 5,612 822 26.051 a4 207 112 018 112
mmyesr
1800 to 1950
2,182 204 10128 63 2180 215 037
mmeyesr
» 1850 mm.fyear 67 445 0.313 2 0.s9 231 038
Gravelly sandy loam 34197 1.621 3 104 064 004
Loarmy sand 514,108 2387 T 242 101 008
Gravelly samdy clay
576,066 1870 1 138 052 003
loam
Sandy loam 5,066,104 14.235 &3 2553 165 008
Clay loam 2,207,954 10.250 21 TET 07l 00d
Silt loam 550305 2597 20 682 Z66 015
Soil Sandy clay loam 08,007 0455 1 03s 0Fe 004 Q60
Loam 372,195 1.728 % 10.0% 5Bl 035
Silty clay loam 366,614 1.702 20 6852 4.07 023
Clayey sand 12,455,143 51.720 2 0se 001 000
Water 021425 4778 0 000 0.00 000
Rod complex 57538 0.174 ] 000 0.00 000
Coarse sandy loam 2051 0.00% o] 000 0.00 000
Silt 55,606 0166 0 000 0.00 000

Abbreviations: FR - Frequency ratio; RF; - Relative frequency of i subclass; PVj - Predicted value

of j" influencing factors

4.1.4. Application of RF for delineating groundwater potential zones

As previously suggested in section 2.3.3, the RF model was conducted by the

binary regression algorithm. The importance of influencing factors was also observed
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by the RF model (Fig. 4.2). The contribution level to groundwater well occurrences
with a yield >10 m®/h of distance to waterbodies was the highest (22.00%), followed
by the altitude factor (20.40%). Distance to faults, slope and soil type was the next in
the contribution level with 16.87%, 15.90%, and 11.88%, respectively. The other
factors were insignificant or had a low impact. The final GWP map from the RF
approach is presented in Fig. 4.3c. The majority of regions had poor potential at
60.67% of the area, followed by the proportion of moderate potential (20.79 %).

Meanwhile, only 18.54% of the area was defined by high GWP (Fig. 4.4).

Altitude

Distance to faults
Distance to waterbodies
Slope

Geology

Influencing factors

Land use
Rainfall

Soil type

0.00 5.00 10.00 15.00 20.00 25.00
Contribution level (%)

Fig. 4.2. Contribution level of influencing factors on groundwater yield >10 m®/h

conducted by the RF

4.1.5. Application ensemble model of AHP, FR, RF for delineating groundwater

potential zones

An ensemble model was created by averaging the normalized GWPIs predicted in
this study by the AHP, FR, and RF models (Fig. 4.3d)). Poor and moderate potential made
up 36.42% and 30.15% of the area, respectively, while 33.43% of the area showed high

potential (Fig. 4.4).



92

(a)

() (d)

Fig. 4.3. Groundwater potential maps for yield >10 m*/h in Kanchanaburi Province,

Thailand: (@) AHP model; (b) FR model; (c) RF model; (d) Ensemble model
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Fig 4.4. Area of GWP zones for groundwater yield >10 m*/h in Kanchanaburi Province
4.1.6. Assessment of the model’s accuracy

The models’ results were assessed by comparing the cumulative GPWIs of
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the testing set via AUC value. The AUCs of the AHP, FR, RF, and ensemble models
were 0.72, 0.74, 0.76, and 0.80, respectively (Fig. 4.5), revealing that all models
achieved similarly ¢ood predictions. Nevertheless, individual models exhibited
different behaviors. Specifically, the RF model did better at identifying the target
groundwater yield at the GWPI above 0.6 (or 1-GWPI below 0.4) but worse at lower
GWPI, compared to other models. The predictive power of FR was lower than that of
the random classifier at the GWPI above 0.9 (that is, 1-GWPI below 0.1), but
outweighed that of RF and AHP at the GWPI below 0.6. The AHP model, on the
other hand, expressed monotonic behavior across the GWPI range. Combining the
results from all models into an ensemble did improve the overall model prediction.
The ensemble model achieved an AUC score of 0.8 and performed better for the

GWPI values between 0.2 and 0.8, whereas all the individual models fell short.
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Fig. 4.5. Validation of models.
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4.1.7. Discussion

Quantifying the importance of the influence factors on groundwater processes
helps policy-makers improve water resource planning. In our study, the models used have
different mechanisms to weigh the influencing factors as they belong to different
approaches. The AHP model used a decision system approach, so the weights of
influencing factors were assigned completely based on expert opinions and domain
knowledge, while the FR and RF models assigned weights based on data analysis. The FR
method eliminated human interference and simply assigcned weights based on the
number of wells with a groundwater yield exceeding 10 m>h that fell into different sub-
classes of the influencing factors. The RF, on the other hand, used more sophisticated
optimization algorithms to compute the weight for each influencing factor based on the
information gained between all models that included a specific influencing factor and all
models that excluded that factor. Our results showed that the AHP and RF methods had
similar rankings for the top four most important factors, including altitude, distance to
faults, distance to waterbodies, and slope, that influence the occurrence of wells with
groundwater yields exceeding 10 m*h in the study area (Table 4.5). The FR identified
distance to waterbodies and distance to faults as the first and third most important factors
but assigned less weight to altitude and slope. This was because the FR employed a less
sophisticated statistical approach, and thus might fail to capture the effects of interaction
between the influencing factors. Nevertheless, our analysis indicated that the AHP could
be a cost-effective and accurate method to identify the most important influencing factors

for policy-making priorities.
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Table 4.5. Ranking of influencing factors by a method based on the factor weights. The

ranking score ranges from one to eight in descending order of importance

Influencing factor

Altitucde

Distance to faults
Distance to waterbodies
Slope

Geoloay

Land use

Rainfall 7 Lt &

Soil B 8 5

Our analysis confirmed findings from previous studies regarding the influence of
geophysical characteristics on groundwater yield. In particular, the study found that high
groundwater yield was mostly observed in areas with an altitude below 100 m, which
asserted the impact of gravity on groundwater. A similar study by Al-Abadi (2017a) also
showed the occurrence of high groundwater yield in areas with an altitude below 99 m
while Khoshtinat et al. (2019) indicated that the lower the altitude, the higher the GWP for
their study region. Our study revealed the greater influence of faults as a natural barrier to
impeding the occurrence of high groundwater yield, which was in line with a study by
(Anderson and Bakker, 2008). However, some previous studies (Arulbalaji et al,, 2019,
Arunbose et al., 2021; Falah and Zeinivand, 2019) insisted that high fault density could be
an advantage for the rechargeability of groundwater, which was often observed in areas
with dominant vertical or mountainous areas with basement rocks (Chuma et al., 2013).
The distance to waterbodies such as rivers, lakes, dams, and springs influenced

groundwater yield because surface water was a recharging source of aquifers. The shorter
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the distance to waterbodies was, the higher the GWP was. The relationship has also been
discussed intensively in previous studies (Chen et al., 2018; Machiwal et al., 2011; Mosavi et
al., 2020; Tahmassebipoor et al,, 2016). The slope was also identified as one of the top
influencing factors for high groundwater yield in our study with higher yields observed in
areas with a slope of below 10°. Similar conclusions were drawn by other studies (Al-Abadl,
2017a; Ganapuram et al,, 2009; Jothibasu and Anbazhagan, 2016; Kumar and Krishna,

2018).

The GWP with a yield >10 m*/h of the lowland areas was higher than that of
the mountainous areas in Kanchanaburi, where the terrain was flat with a low slope
and altitude (Ahmed and Sajjad, 2018; Falah and Zeinivand, 2019; Shao et al., 2020)
(Fig. 4.3). This finding was consistent with a previous hydrogeology survey conducted
by the DGR in Kanchanaburi province (DGR, 2006). The GWP maps using the RF and
ensemble models were considerably similar compared to the AHP and RF,
respectively. This can be explained by the Jenks natural break function allowing the
equivalent GWPI values to be grouped into a cluster to minimize the variance between
classes in the mapping (Papaioannou et al.,, 2015). The poor GWP zones estimated by
the AHP and RF models were 60% of the entire area, which is almost twice as higher
as that computed by FR and ensemble. Meanwhile, the moderate GWP represented
approximately 30% and 60% of the maps produced using AHP or RF and FR or
ensemble models, respectively. The area with high GWP was in a range of 17.89 - 33%
from model to model (Fig 4.4). The model selection for GWPZ mapping is an important
but difficult decision as it often involves trade-offs among resources, time, expertise,
and accuracy. These trade-offs are different for different study areas and objectives.
For this study, the study showed that all models achieved similarly good prediction
outcomes (Fig. 4.5). However, the RF and FR were more complex, costly, and time-
consuming than the AHP model. Therefore, one might be better off just using the AHP

model for similar regions where the ground truth data for groundwater yield is not
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available. This will save time and costs as well as reduce the complexity. However, in
other cases when the accuracy of the GWPZ mapping is a priority, the study
recommend the use of complex machine learning models (e.g., RF and artificial neural
networks) and/or an ensemble of different models and approaches to improve the

overall predictive power, as illustrated by our analysis.

4.2. Exploring nickel contamination risk zones in groundwater in the eastern part

of Kanchanaburi province, Thailand using Maxent and AHP

Based on the results from the delineation of groundwater yield potential
zones (section 4.1), sections 4.2 and 4.3 focus on in the eastern part of Kanchanaburi
province, Thailand, including Nong Prue, Lao Khwan, Bo Phloi, Huai Krachao, Phanom
Thuan, Mueang Kanchanaburi, Tha Maka, Tha Muang, Dan Makham Tia districts,

where groundwater yield was evaluated high and moderate potential.
4.2.1. Influencing factors on Ni contamination in groundwater

Eight influencing factors, including altitude, distance to road, distance to
waterbodies, geology, land use, rainfall, slope, and soil type, were used to delineate
the Ni contamination risk zones. Figure 4a-h shows the details of the influencing

factors.

Altitude factor represents the influence of topography on groundwater depth
and flow rate (Condon and Maxwell, 2015). When the flow rate and groundwater
depth are significant, groundwater's chemical and physical characteristics can be
altered in space and time (Alizamir et al,, 2019). Altitude in the study area can be
observed with elevation values ranging from 2 to 1812 meters above sea level,
classified into five classes: 2-50 (2,265.64 km?), 50-100 (1,819.74 km?); 100-150
(881.59 km?); 150-200 (578.12 km?); and >200m (1,278.38 km?) (Fic. 4.6a). The

majority of the high elevation zones are on the northwest side.

Distance to roads is considered an essential factor in assessing groundwater



98

quality (Wang et al,, 2018). Road transport activities contribute significantly harmful
substances to groundwater through the dry and wet deposition of effluents, dust,
and exhaust gases (Uliasz-Misiak et al., 2022). For our case study, distance to roads
map was categorized into five classes: 0-2,000 (5,588.13 km?), 2,000-4,000 (954.11
km?), 4,000-6,000 (190.33 km?), 6,000-8,000 (71.61 km?), and >8,000 m (20.54 km?)

(Fig. 4.6b).

Waterbodies represent the close relationship between surface water and
groundwater in the hydrological cycle. Changes in groundwater's chemical and physical
composition are also influenced by the recharge and discharge processes (Lipczynska-
Kochany, 2018). Distance to waterbodies factor was categorized into five classes: 0-2,000
(5,081.24 km?), 2,000-4,000 (1,255.16 km?), 4,000-6,000 (254.47 km?), 6,000-8,000 (134.44

km?), and >8,000 m (99.42 km?) (Fie. 4.60).

Geology plays a significant role in determining the chemical composition of
groundwater because groundwater is contained in bedrock aquifer or host sediment
(Golkarian and Rahmati, 2018). Twelve geological units are observed in the study
area, including Tertiary (Tmm), Devonian-Carboniferous (SDC), Silurian-Devonian (SD),
Quaternary (Q), Permian (Pr), Pre-Cambrian (PE), Ordovician (O), Cretaceous (Kgr),
Jurassic (J), Cambrian-Ordovician (EOQ), Cambrian (E), Carboniferous-Permian (CPk), in
which Q covers the highest area (4,413.86 km?), followed by SDC (474.25 km?), O

(421.22 km?), Pr (330.14 km?), Tr (285.74 km?) (Fig. 4.6d).

Land use reflects human activities on the land surface (Zhang et al,, 2019).
The wastes from human activities affect the quality of groundwater (Mclay et al,
2001). There are five main land use types in the study area, including urban land (446
km?), agricultural land (4,253 km?), miscellaneous (362 km?), forest land (1688 km?),

and waterbody (76 km?) (Fig. 4.6e).

Rainfall is known as a recharge source of groundwater, meaning its chemical
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components in the water can affect groundwater quality (Ali et al., 2020). In this
study, the rainfall data was divided into five different regions as follows: <1,500
(149.73 km?), 1,500-1,650 (1,692.15 km?), 1,650-1,800 (3,859.18 km?), 1,800-1,950

(1,062.97 km?), and >1,950 mm/year (60.7 km?) (Fig. 4.61).

Slope reflects the direction and the speed of surface runoff, influencing the
weathering and surface corrosion processes. Therefore, slope also affects surface
water's and groundwater's chemical and physical composition (Arulbalaji et al., 2019).
Slope value varies between 0° and 70° in the study area, classified into five classes:
0°-3° (1,904.08 km?), 3°=6° (2,340.29 km?), 6°~10° (1,238.63 km?), 10°~16° (575.26 km?),
and >16° (765.22 km?) (Fig. 4.69). Regions with high slopes are concentrated in the

western hilly areas.

Soil type is known as a natural filter of the earth's crust for groundwater,
meaning chemicals can be partially trapped as groundwater seeps into the soil
(Keesstra et al,, 2012). Fourteen different texture types are found in the study areas,
including gravelly sandy loam (314.28 km?), loamy sand (462.70 km?), gravelly sandy
clay loam (519.27 km?), sandy loam (2,759.57 km?), clay loam (1,987.16 km?), silt
loam (503.45 km?), sandy clay loam (88.21 km?), loam (334.97 km?), silty clay loam
(329.95 km?), clayey sand (11,189.83 km?), water (829.28 km?), rock complex (33.78

km?), coarse sandy loam (1.83 km?), silt (32.13 km?) (Fig. 4.6h).
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4.2.2. Application of Maxent technique to estimate the contribution level and

predicted value of influencing factors over Ni contamination.

The Maxent approach provides information about the contribution level of
influencing factors to the occurrence ability of Ni contamination in groundwater and
the predicted value of classes of influencing factors (Wahyudi et al.,, 2013). Fig. 4.7
illustrates the contribution level of influencing factors to Ni contamination
determined by the Maxent technique. The result shows land use has the highest
contribution of 65.4% to the delineation of Ni contamination in groundwater,
followed by soil type (14.7%), slope (7.7%), and altitude (4.8%). The other factors
contribute to the model by approximately 2%. Additionally, the impact of influencing
factors on Ni contamination in groundwater is displayed in Fig. 4.8. The high response
of Ni contamination in groundwater occurred at altitude of 0-50 m, distance to roads
of 0-2000 m, distance to waterbodies of >8000 m, geology unit of Pre-Cambrian, land

use of urban land, slope of 0°-3°, soil type of clay loam.

Soil type
Slope
Rainfall
Land use
Geology

Distance to waterbody

Influencing factors

Distance to roads

Altitude

I I I I I I I

0 10 20 30 40 50 60 70

Contribution level (%)

Fig. 4.7. Role of influencing factors in predicting Ni contamination in groundwater
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4.2.3. Application of AHP for calculating the weight of influencing factors

A pairwise comparison matrix was established from the contribution level of
influencing factors to the occurrence ability of Ni contamination in groundwater
(Table 4.6). Table 4.7 presents the weighted criteria of influencing factors for Ni
contamination prediction in groundwater. The rank of classes was set based on the
predictive value (Table 4.8). The result of the AHP analysis indicates that the
consistency ratio of the matrix was 0.049. This consistency ratio proves that the
analytical result of the model was acceptable (Arulbalaji et al,, 2019; Saaty, 1990).
Among influencing factors, land use had the highest AHP weight at 48.711, followed
by soil type and geology. The other influencing factors had the same AHP weight of

4.287.



Table 4.6. Pairwise comparison matrix of influencing factors
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Factors Altitude  DtR DtwW  Geology Land use Rainfall Slope  Soil type  Criteria
Altitude 1 1 1 1 9 1 1 3 1
DtR 1 1 1 1 9 1 1 3 1
Dtw 1 1 1 1 9 1 1 3 1
Geology 1 1 1 1 9 1 1 3 1
Land use 1/9 1/9 /9 /9 1 /9 1/9 1/7 9
Rainfall 1 1 1 1 9 1 1 3 1
Slope 1 1 1 1 9 1 1 3 1
Soil type 1/3 1/3 1/3 1/3 7 1/3 1/3 1 3
Table 4.7. Matrix for calculating the consistency ratio
Weighted Geometric AHP
Factors Altitude  DtR DtW  Geology Landuse Rainfall Slope  Soil type
surm mean weight
Altitude 0.056 0056 0056  0.056 0.061 0.056  0.056 0.033 0.428 0.054 5.351
DtR 0.056 0056 0056  0.056 0.061 0.056  0.056 0.033 0.428 0.054 5.351
Dtw 0.056 0056 0056  0.056 0.061 0.056  0.056 0.033 0.428 0.054 5.351
Geology 0.056 0056 0056  0.056 0.061 0.056  0.056 0.033 0.428 0.054 5.351
Land use 0500 0500 0500  0.500 0.553 0.500  0.500 0.700 4.253 0532  53.158
Rainfall 0.056 0056 0056  0.056 0.061 0.056  0.056 0.033 0.428 0.054 5.351
Slope 0.056 0056 0056  0.056 0.061 0.056  0.056 0.033 0.428 0.054 5.351
Soil type 0.167 0.167  0.167 0.167 0.079 0.167 0.167 0.100 1.179 0.147 14.737
Aoy = 8.376; Ry = 1.4056; CI = 0.038 (<0.1)
Table 4.8. Normalized weights and rank of factors’ classes
Normalized
Factors Code Classes Rank
Weight
1 0-50 m 2
2 50-100 m 7
Altitude 5351 3 100-150 m 5
4 150-200 m 3
5 > 200m 1
1 0-2000 m 2
2 2000-4000 m T
Distance to roads 5351 3 4000-6000 m 5
4 6000-8000 m 3
5 =8000 m 1
1 0-2000 m 1
Distance to waterbodies 5.351 2 2000-4000 m 3
3 4000-6000 m 5




4 £000-B000 m T
5 *BE0DD M Ed
1 Eilurian-Devonian 1
z Quatamary 1
3 Cretateous 1
4 Tiriassic i
5 Carbonifercus-Fermian 1
] Sefmian 1
Geology 5351
T Eilurian-Devonian-Carlboniferows 1
B Ordonician 1
] Cambtizn 1
10 mee-Cambrizn 3
11 Jurassic 1
12 Cambrizn-Ordonician 1
1 Agricuttural land 3
z miscellanecus land 5
Lamd wze 53158 3 Forest land i
4 ‘Water bodies 1
5 Urban land ]
1 <1500 mimAyear 1
z 1500 to 1650 mimeyesr 1
Rainfall 5351 3 1450 to 1800 mimeyess 1
4 1800 to 1950 mimyesr 1
5 >1B50 MmAear 1
i 0=3® £
z 3557 T
Slope 5351 3 E510° 5
4 10%-145° 3
3 F1EY 1
1 Grawelly sandy loam 1
z Loamy sand 1
3 Grawvelly sandy clay loam 1
4 sandy loam 5
5 Clay loam 5
5 Silt loam 5
T sandy day Loam 3
Soil type 14727
B Loam 3
El Silty clay loam 3
10 Claysy sand 1
11 ‘Water 1
12 Rodk comples 1
1% Coarse sandy loam i
1a silt 1

104



105

4.2.4. Map of Ni contamination risk zone in groundwater

Groundwater is known as a drinking water source in many regions of the
world. Using groundwater with high Ni concentrations for domestic purposes will lead
to cancer risk and health complications (Egbueri, 2020). Thus, a map of groundwater's
Ni contamination risk zones is necessary in any region of the world. In this study, the
map of groundwater's Ni contamination risk zone was identified by the potential
contamination index to delineate the Ni contamination risk zone in groundwater. The
output map was spatially categorized as low, moderate, and high zones (Fig. 4.9).
Overall, 24.79% of the area (1691.82 km? was very low contamination risk of Ni,
whereas the zone of high Ni contamination risk accounted for around 6.56% (447.65
km?). Moderate contamination risk zone of Ni occupied 68.65% of the study area

(Table 4.9).
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Fig. 4.9. Map of Ni contamination risk zones in groundwater
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Table 4.9. Statistics of Ni contamination risk zones in groundwater in the study area

Number of
Level Area (km®)  Percentage (%)
pixels
Lowy risk 1879835 1691.85 24,79
Moderate risk 5204419 4683.98 68.65
High risk 497389 a447.65 6.56

4.2 5. Validation

The ROC technique and statistical indicators were utilized to confirm the Ni
contamination risk zones in groundwater. A total of 54 groundwater samples (30% of
the database) were used to validate the model's performance validation and the
accuracy of the output map. The validation results clearly show that the model's
AUC value index was 0.86 (Fig. 4.10), and the accuracy of the resulting map was 85%.
The results of other statistical indicators are presented in Table 4.10. From the
model validation result and the accuracy of the output map, it can be concluded
that combining the maxent method to set the weighted criteria and the AHP
technique to delineate the heavy metal contamination risk zone in groundwater is an

effective model.
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Fig. 4.10. Model performance

Table 4.10. Results of model’s validation and output map

TP TN FP FN PPV NPV  Sensitivity Specificity Accuracy
6 40 il = 0.60 0.91 0.60 0.91 0.85

4.2.6. Discussion

Mapping the Ni contamination risk zone in groundwater is necessary for the
long-term management of water resources. In this study, the maxent algorithm was
selected to replace the expert's opinions in the AHP technique. By comparison to the
previous studies (Arunbose et al., 2021; Azimi et al., 2018; Chakraborty et al., 2016),
the criteria score has been given based on the contribution level of influencing factor
to Ni contamination in groundwater from the output of maxent approach, which help
to eliminate the subjective from judges as using the AHP technique. Additionally, the
limitation of controlling factor was also broken compared to previous studies on
groundwater vulnerability and risk (Barzecar et al,, 2018). In our case study, eight
influencing factors was considered conditional variables for predicting Ni

contamination risk, including altitude, distance to roads, distance to waterbodies,
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geology, land use, rainfall, slope, and soil type, which had never done in assessing

groundwater contamination risk.

Regarding sensitivity analysis, the model shows the role of influencing factors
in determining the Ni contamination, in which land use is the influencing factor with
the largest contribution, followed by soil type. The analysis results indicated that
land use and soil type factors explain approximately 67.8% variation in Ni
contamination in groundwater. Our analysis unveiled the correlation between
influencing factors and Ni contamination risk. The higher the altitude value is, the
lower the Ni contamination is. Distance to roads and slopes are inversely
proportional to the Ni contamination risk, while distance to water bodies is
proportional to the Ni contamination risk. Geologically, the Ni contamination risk in
groundwater of the Pre-Cambrian unit is higher than that of other units. Regarding
land use, the urban areas were defined as the highest-risk zone with Ni
contamination in groundwater, followed by the miscellaneous zones, agricultural
zones, and forest land. Indeed, human activities were the leading cause of Ni
contamination in groundwater (Febueri, 2020; Khatri and Tyagi, 2015). In terms of soil
type, the Ni contamination in groundwater of locations with clay loam, sandy loam,
and clay loam is higher than that of locations with other soil textures. The findings of
the present study were consistent with previous studies on the causes of
groundwater contamination (Ecbueri, 2020; Sajedi-Hosseini et al.,, 2018; Sincha et al,,
2020; Tiankao and Chotpantarat, 2018). In addition, our study indicated that the

effect of rainfall is the same in any value.

Compared to other administrative districts, the groundwater in the Mueang
Kanchanaburi district was found to be a high Ni contamination risk, raising concern
over groundwater pollution management, particularly in urban areas. Therefore, strict
policies for discharging waste materials should be applied in this region (Hu et al,,

2014). The Ni contamination in groundwater used in the present study is considered
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a striking example to show the geographical distribution of possibly polluted regions
and to investigate the critical cause in identifying contaminated risk areas using the
Maxent and AHP techniques. The AUC value indicated that the used model was a
relatively effective solution for mapping Ni contamination susceptibility in

groundwater.

4.3. Deciphering groundwater quality in the eastern part of Kanchanaburi

province, Thailand using RF and ANN
4.3.1. Groundwater quality in Kanchanabui

Table 4.11 provides information on twelve physicochemical parameters in
groundwater samples in Kanchanaburi, Thailand. The mean value of Ca?* (97.09 mg/\)
and HCO3 (461.94 mg/\) in the groundwater of the study area were the above-
recommended limits. The Kolmogorov-Smimov test shows the p-value of
physicochemical parameters ranging from 0 to 0.002. In terms of calculating the EWQ],
the entropy weight of NO3 was the highest, followed by SO%~, CI~, K+ Na‘, EC, Mg?™,
Ca%*, TH, TDS, HCO3, and pH. Groundwater parameters exceeded the allowed limit in
some groundwater samples except for the Cl~. The concentration of HCO3, Ca®*, and
Mg?* were normally found above the allowed limit with a number of 173, 132, and 70
groundwater samples, respectively. Regarding hydrogeochemical properties, alkaline
earth (Mg+Ca) dominated over alkalis (Na+K), while, and weak acids (HCOs) and strong
acids (SO4+Cl) were not clearly distinguished in distribution (Fig. 4.11). The concentration
of Mg and Ca increased when the concentration of alkalis (Na+K) decreased. The
groundwater samples were predominated by Ca-Cl, mixed Ca-Mg-Cl, mixed Ca-Mg-HCO,,
and Ca-HCOs. The correlation matrix of physicochemical parameters in groundwater is
shown in Fig. 4.12. Groundwater parameters were positively correlated with the
normalized EWQI except for the pH. Out of these, the Na*, HCO3, SO%~, TH, Ca?", EC,

Mg?*, Cl~, and TDS had more than a correlation value of 0.5. The spatial distribution of



groundwater parameters is displayed in Fig. 4.13.

Table 4.11. Parameters relevant to groundwater samples
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M. of
Entropy
Parameters Max Min Mean 5D Standard Pvalue samples out
welght
Urnit
EC (mS&/cm) g030.00 221 140932 99551 2000 == 0.055 0.00 34
TH (mgs) 120000 4000 38555 16183 s00% 0024 0.01 i
TOS (me/l) 172000 7500 58TE86 26104 1200 % 0,023 0.00 5
pH g.00 560 72T 0.40 T-85% 0.001 0.00 38
o™ (gL 31600 &40 97.09 6.1 T1# 0.029 0.02 132
h".gz' (mg/l) 15000 020 2956 2102 20+ 0.055 0.00 70
Ma* (mg/l) 34000 Q.00 6062 £6.36 200 % 0.110 0.00 10
K (mg/l) 5650 0.7 4.7 589 12+ 0111 0.00 13
I (mg) 41000 311 5330 gd.40 &00* 0,123 0.00 0
HCCs (mgl) 120000 2335 461.94 17255 120 % 0.012 0.01 173
20, (mg/l} 58511 028 42.39 B273  Z30% 0212 0.00 5
MOy (mg/l) 13723 000 QT 17.00 45+ 0233 0.00 g

Note: * Standard value based on Thailand guidline, ** Standard value based on WHO.

1: Ca-HCO3
2: Na-Cl

3: Mixed Ca-Na-11CO3

4: Mixed Ca-Mg-Cl
5: Ca-Cl
6: Na-HCO,

Fig. 4.11. Hydrogeochemical properties in groundwater samples
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4.3.2. Application of the RF and ANN with cross-validation and bootstrap in

deciphering groundwater quality

The regression task of RF and ANN was conducted to predict the normalized
EWQI in this study. Then, the normalized EWQI was deciphered into groundwater
quality zones. The CV and B techniques were directly integrated into the RF and ANN
algorithms, called RF-CV, RF-B, ANN-CV, and ANN-B models, respectively. For this task,
the RF model was optimized from the error estimate to determine the n-tree (that
is., the optimal number of trees). The optimal number of n-tree was 36 and 134 for
the RF-CV and RF-B, respectively (Fig. 4.14). Compared to the RF, the ANN was
established based on back-propagated feed-forward processes using the neural
networks. Both the ANN-CV and ANN-B were optimal when the hidden layer was
determined to be three nodes and a weight decay of 0.1 (Fig. 4.15). Fig. 4.16
presents the groundwater quality map using the RF-CV, RF-B, ANN-CV, and ANN-B
models. For the RF-CV, 64.78% and 29.39% of the study area were good and very
good groundwater quality, respectively. Meanwhile, only 0.58% and 0.08% were poor
and very poor groundwater quality, respectively. The remaining 5.17% was
designated to be moderate groundwater quality. For the RF-B, 62.92% and 30.24% of
the study area were deciphered into good and very good groundwater quality.
Moderate, poor, and very poor groundwater quality zones accounted for 6.23 %,
0.56%, and 0.05% of the whole region, respectively (Table 4.12). For the ANN-CV
model, 41.94% and 52.66% of the total area were estimated to be of very g¢ood and
good groundwater quality. Moderate and poor groundwater quality areas account for
4.50% and 0.90% of the total area, respectively. For the ANN-B, 53.46% and 39.90%
of the total area were deciphered to be good and very good groundwater quality.
Moderate, and poor zones constitute 5.67%, and 0.97% of the total area,

respectively (Table 4.12).



Table 4.12. Statistical area in the models
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Groundwater RF-CV RF-B AMN-CV AMNM-B
quallty Piels % Pixels % Pixels B Piels L
Very good 2228081 29.39 2292578 3024 3180026 4194 3025163 39.90
Good 4911720 64.75 4771306 6292 3992212 5244 4053475 53.45
Moderate 31682 517 a72007 625 3d1541 45 429248 5.87
Pocr 43926 055 42205 0.54 G764 09 TiThA 0.97
Wery poar 6250 005 3547 0.05 0 00 O 0.0
0.016
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Fig. 4.14. Relationship between n-tree and predictive error in the RF-CV and RF-B

models
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Fig. 4.15. Neural network of the ANN-CV (a) and ANN-B (b)
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Fig. 4.16. Groundwater quality zones: RF-CV (a), RF-B (b), ANN-CV (c), ANN-B (d)
4.3.3. Validation

The validation process plays a key role to confirm the performance of
machine learning models, which assists in choosing the best predicting model for
mapping groundwater quality. Table 4.13 presents the validation indexes estimated
by the models. Regarding the values of RMSE and MAE, the ANN-B model was the
highest (RMSE = 0.101 and MAE = 0.065), followed by ANN-CV (RMSE = 0.098 and
MAE = 0.061), RF-B (RMSE = 0.078 and MAE = 0.047), ANN-CV (RMSE = 0.067 and MAE
= 0.043). However, the R? value of RF-CV was the highest (0.873) compared to the
other three models. The RF-V’s R? of 0.081 was second only to that of the RF-CV.
The ANN-CV and ANN-B placed third and fourth when comparing the R? values with

0.709 and 0.617, respectively.
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Table 4.13. Validation of the models

Models RMSE RZ MAE
RFE-CY 0.067T 0873 0.043
RF-B 0.078 0.801 0.047
ANM-CV 0.0%8 0.70% 0.061
ANN-B 0.101 0617 0.065

4.3.4. Role of parameters in deciphering the groundwater quality

A stable and powerful model is normally decided by input variables (Sakar, 2018).
Therefore, the importance of groundwater parameters needs revelation to decipher the
groundwater quality maps, which helps to determine the contribution of physiochemical
parameters to normalized EWQI. There was a great difference among models regarding the
role of groundwater parameters in predicting the normalized EWQI (Table 4.14). In the RF
models, TDS was the most important contribution to predicting the normalized EWQI (100)
while the contribution of pH was zero. In the ANN-CV, the important parameters included
pH (100), Na*t (30.25%), C1~ (29.54%), SO3~ (25.31%), Ca?* (20.86%), and NO3 (20.79%).
In the ANN-B, pH (100%), SO3~(29.05%), and NO3 (28.39%) were the important

parameters in deciphering sroundwater quality.

Table 4.14. Contribution levels of groundwater parameters in deciphering the normalized EWQI

Model RE-CW {%6) RF-B (%)  ANN-CV (38) ANN-B (26)
Total dissolved solids 100.00 10:0.00 a17 15.85
Chloride 031 1562 2954 g.94
Eulfate 485 14.15 2531 29.05
Total hardness 117 1225 12.53 4.6
Bicarbonate 254 10.95 187 15.13
Caldium 559 10.85 Z0.86 g.42
Mitrate TET 10.70 20,79 258.39
Zodium 0.75 541 30.25 T.53
Electric conductivity 232 136 0.00 0
Potassium 273 3.68 15.333 11.27
hagnasium 370 337 1763 154

pH Q.00 0.00 10000 100.00
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4.3.5. Discussions

The protection of groundwater resources is a vital mission in many countries,
especially where groundwater is used mainly for domestic and productive activities
(Doveri et al,, 2015). As a result, evaluating and delineating the groundwater quality
zones is necessary to orient the groundwater use and management plan. For this reason,
hydrologists have attempted to find an appropriate approach for delineating
groundwater quality zones. This study pioneered integrating the CV and B techniques
with two famous algorithms with high accuracy (RF and ANN). For this integration, four
ML models were considered in deciphering groundwater quality in the eastern part of
Kanchanaburi province, Thailand. The physicochemical parameter was referred to the
previous publications in prestigious journals. In the comparison with previous studies
(Adimalla, 2021; Amiri et al., 2014; Kumar and Augustine, 2022; Raheja et al., 2022; Singha
et al,, 2021), the normalized EWQI applied to delineate the groundwater quality zones,

which contributes a general guideline for global groundwater investigations.

Our study indicated that there is a dramatic difference in the role of groundwater
parameters in predicting the normalized EWQI in the four models, which can be
explained by the nature of the approaches themselves. The RF models use decision
trees to deal with data (Belgiu et al,, 2016). While the ANN models are developed based
on the neural network (Noori et al., 2010). In this analysis, our study found that TDS was
the most important parameter in the RF models while pH was the most important
parameter in the ANN models, which was not the same as a previous study by Singha et
al. (2021). For this difference, the CV and B techniques were applied to the initial dataset
while Singha et al. (2021) divided the initial dataset into two subsets with different ratios
for the training and testing missions. This study indicated that the RF models were better

than the ANN models in deciphering groundwater quality zones, which coincided with
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some publications (Bui et al,, 2020; Mallick et al,, 2021; Nafouanti et al., 2021). In
addition, the CV technique outperforms the B technique, which could be explained by
the difference in building subsets (Brodeur et al., 2020). The CV technique uses the entire
initial database while the B technique applies only a part of the initial database. Among
four models, the most optimal model was the RF-CV (RMSE = 0.067, R? = 0.873, MAE =
0.043), followed by the RF-B (RMSE = 0.078, R? = 0.801, MAE = 0.047), ANN-CV (RMSE =
0.098, R* = 0.709, MAE = 0.061), and ANN-B (RMSE = 0.101, R* = 0.671, MAE = 0.065). As a
result, this study proposes the RF-CV model could apply to map groundwater quality
not only in Thailand but also in other parts of the world. Our study also indicated that
the performance of the RF models depends on the number of trees (Bernard et al,
2009). While the performance of the RF models depends on the number of intermediate

nodes (Zannou et al., 2021).

According to the RF-CV model, approximately 94% of the study's area was
good to very good groundwater quality. The rest of the territory (about 6%) was
medium, poor, and very poor groundwater quality, which was distributed in the
middle regions of the study area. In the comparison with the land use map, poor,
and very poor groundwater quality occurred in the agricultural and urban regions,
which agrees with a study by Sajedi-Hosseini et al. (2018). Agricultural activities (like
lime and inorganic fertilizer practices), limestone quarries, and geological settings
were the main reasons leading to poor quality in the study area (Deshmukh, 2013;
Ghaffari et al,, 2021; Saha et al., 2019; Sridharan and Senthil Nathan, 2017). This study
suggests that zones with good and very good groundwater quality can be used for
daily purposes of local people while the zones classified very poor, poor and
moderate groundwater quality should be used for agricultural or industrial purposes.
However, the calcium, magnesium, and bicarbonate in groundwater should be
handled before drinking because our physicochemical analysis showed that

groundwater in the study area was mainly polluted by Ca?*, HCO3, Mg?*.
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Chapter 5. CONCLUSION AND SUSGESTION
5.1. Conclusion

The AHP, FR, and RF models were used in this study to represent the expert
decision, statistical, and machine learning approaches for the GWPZ mapping method
comparison. In particular, the study aimed to map the potential of achieving a
groundwater yield above 10 m3/h for Kanchanaburi Province in Thailand. An
ensemble of the three models was also created and compared to the individual
models in the mapping of GWPZ. The results showed that all models achieved
similarly good prediction with an AUC value of 0.72, 0.74, 0.76, and 0.80 for the AHP,
FR, RF, and ensemble models, respectively. The ensemble model improved the
overall predictive power and performed better in areas where all the individual
models failed. This study illustrated the usefulness of the ensemble of models from
different approaches in mapping GWPZ and discussed how future studies can adopt
similar approaches to improve the delineation of GWPZ for policy foci in sustainable
groundwater management. This study recommends that the GWPZ map achieved by
the ensemble model be integrated with the surface water planning map, land use
planning map, and economic map to assist scientists, policymakers, and managers in

Kanchanaburi Province, Thailand, in inclusive and sustainable development.

This study attempted to delineate the Ni contamination risk zones using a
hybrid model of the Maxent and AHP modeling approach. This model works well
with an AUC value of 0.86 and an accuracy of 0.85 in delineating the geographical
distribution of Ni contamination risk in groundwater. Eight factors, including altitude,
distance to roads, distance to waterbodies, geology, land use, rainfall, slope, and soil
type, were selected to set up the model. Among the eight investigated factors in this
study, land use was the most relevant factor for identifying possibly contaminated

locations, followed by soil type. The urban area was the most likely Ni
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contamination in groundwater. The map of Ni contamination risk zones in
groundwater could provide information for residents and decision-makers in using
groundwater resources for various purposes. It could help Thailand's groundwater
resource management agencies grasp the practical basis and find solutions for the

protection of groundwater resources in areas with high Ni contamination risk.

This study evaluated groundwater quality in the eastern part of Kanchanaburi
province and developed four ML models by integrated the RF and ANN algorithms
with the CV and B techniques. The EWQI was converted into the normalized EWQL.
The study found that groundwater quality in the study area was polluted with
calcium, magnesium, and bicarbonate and that the RF-CV was the best in deciphering
the groundwater quality map, compared to the RF-B, ANN-CV, and ANN-B. In the RF-
CV, TDS was the most important parameter while other parameters were little
contribution to predicting the normalized EWQI. The groundwater quality zones were
classified into five levels in the study area. Regarding the best model (RF-CV), poor
and very poor groundwater quality occurred in the agricultural areas. The results
from the present study can be a reference document for developing and mapping

groundwater quality in the future.
5.2. Suggestion

For mapping groundwater yield potential, the AHP, FR, and RF models were
used in this case study to represent the expert decision, statistical, and machine
learning approaches in GWPZ mapping. However, this study acknowledges that these
approaches are broad topics on their own and thus this study's comparison of the
particular models might not be representative. This study strongly encourages future
studies to explore different model combinations to fortify this study's initial findings,
as this study pioneered the research. For studies that wish to follow this study's

approach to GWPZ mapping, this study recommends that they first employ the AHP
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methods to generate the GWPZ map and then collect a small set of ground truth
data to validate the model results. If the results do not meet expectations, more
ground truth data can be collected to create the FR model, and if further accuracy
improvement is required, much more data should be collected to build the RF
model. As illustrated by this study's analysis, one should always attempt ensemble
models when data is available to improve the overall predictive power. Additionally,
this study also suggests that groundwater resources in the Western part of
Kanchanaburi, including Sangkhla Buri, Thong Pha Phum, Si Sawat, Sai Yok districts,
should be strictly protected due to the low groundwater yield potential and that in
the Eastern part of the province, including Nong Prue, Lao Khan, Bo Phloi, Huai
Krachrao, Muong Kanchanaburi, Tha Muang, Tha Maka, Dan Makham districts, can

exploit for purposes of socio-economic development.

For mapping contamination risk in groundwater, this study recommends that
the hybrid model between Maxent and AHP can also be applied to investigate other
heavy metal elements in groundwater because of its own advantages. The input
influencing factors of the model could be easily collected from the field,
government agencies, and free satellite images. Consequently, budget, human labor,
and time could be saved using this process. However, Ni concentration depends on
the accuracy of the analysis instrument. Although the modeling approach for
mapping the Ni contamination risk zone gives a good result, groundwater is
constantly moving, so the groundwater quality at different times will be different.
Therefore, the assessment of Ni content in groundwater should be carried out
regularly in the future. Additionally, the present model still has limitations in terms
of the data on solid wastes, wastewater, waste gas, surface water pollution, and soil
contamination. Hence, these influencing factors should be used to control the future
model. This study also recommends local people in areas with a high risk of

groundwater pollution, especially urban regions, should not use groundwater for
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daily drinking purposes.

For mapping groundwater quality, this study suggests that the RF-CV model
should be applied to map groundwater quality not only in Thailand but also in other
parts of the world. However, this study focuses only on the physicochemical
parameters to estimate the EWQI, the study recommends that future studies should
consider the heavy metal elements in deciphering groundwater quality maps.
Additionally, this study limits in considering the RF and ANN combined with the
cross-validation and bootstrap, therefore an exploration of the performance of other
machine learning is needed to be conducted in the future to determine the best
model for deciphering groundwater quality map. Simultaneously, groundwater
samples were collected at a time due to the limitation of financial support,
therefore, the seasonal variations of groundwater quality are not considered, which

can affect the results.

From the results, gsroundwater agencies can release policies on groundwater.
It can be done by publicizing the list of restricted areas from the exploitation of
groundwater and orienting in reasonable groundwater exploitation and usage with

different purposes.
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Structure of algorithm

Algorithm 1. Random forest for predicting GW yield

—_

. # Install package “randomForest” and “Java environment”
: # Import databases

: # Set training and testing dataset

: RF = randomForest(‘environmental factors’, ‘train data’, 'ntree’, 'cross-validation')

2
3
3: # Construct Random Forest model
a
5: # Get the map

6

: plot(RF)

Algorithm 2. Maxent approach

1: # Install package “SDM” and “Java environment”
: # Import databases
: # Construct maxent model

: MX = max(‘environmental factors’, ‘train data’)

: plot(MX)

2
3
a
5: # Get the contribution variable
6
7: # Get the predicted value

8

: response(MX)

Algorithm 3. Random forest for deciphering GW quality

1: # Install package “randomfForest” and “plyr”

2: # Import databases

3: # Set Cross-validation

4: # Set Bootstrap

5: # Construct RF-CV and RF-B models

6: RF_CV = train(‘influencing factors’, ‘dataset’, 'RF', 'trControl = method'CV', 'number
=5")

7: RF_B = train(‘influencing factors’, ‘dataset’, 'RF', 'trControl = method'boot’,
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'"number =100")

8: # Determine the best model

9: which.min(plot(RF_CVS$finalModel,fallen.leaves = F))
10: which.min(plot(RF_BSfinalModel,fallen.leaves = F))
11: Get the maps

12: plot(RF_CV)

13: plot(RF_B)

14: # Determine the important value

15: varimp(RF_CV)

16: varimp(RF_B)

Algorithm 4. Artificial Neural Networks for deciphering GW quality

1: # Install package “neuralnet”

2: # Import databases

3: # Set Cross-validation

4: # Set Bootstrap

5: # Construct ANN-CV and ANN-B models

6: ANN_CV = train(‘influencing factors’, ‘dataset’, 'nnet’, 'trControl = method'CV/,

'number =5")

7: ANN_B = train(‘influencing factors’, ‘dataset’, 'nnet’, ‘trControl = method'boot,

'number =100")

8: Get the maps

9: plot(ANN_CV)

10: plot(ANN_B)

11: # Determine the important value
12: varlmp(ANN_CV)

13: varimp(ANN_B)
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