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The present study was conducted to delineate the groundwater potential 

in Kanchanaburi Province, Thailand based on groundwater yield, groundwater 
contamination risk, and groundwater quality. In this study, an ensemble model was 
created by combining Analytical Hierarchy Process, Frequency Ratio, and Random 
Forest to evaluate the spatial distribution map of the groundwater resources. 
Additionally, a new hybrid approach was developed based on maximum entropy 
and analytical hierarchy process to delineate the Ni contamination risk in 
groundwater. Finally, four machine-learning models, including Random Forest - 
Cross validation, Random Forest – Bootstrap, Artificial Neural Network - Cross 
validation, and Artificial Neural Network - Bootstrap were used to decipher 
groundwater quality.  The results indicated that the ensemble model was better 
than individual models in delineating groundwater yield potential. Poor and 
moderate potential with groundwater yield > 10 m3/h was distributed mainly in 
the western Kanchanaburi, while the eastern regions showed high groundwater 
yield potential (bao nhiêu m3/h). In terms of contamination risk, the hybrid model 
between maximum entropy and analytical hierarchy process gave a high 
performance with an Area Under Curve of 0.86 and Accuracy of 0.85. The map of 
Ni contamination risk in groundwater showed that approximately 24.79% of the 
eastern Kanchanaburi (1691.82 km2) was a very low contamination risk of Ni, 
whereas the zone with high Ni contamination risk accounted for around 6.56% 
(447.65 km2). Moderate contamination risk zone of Ni occupied 68.65% of the 
eastern region. In the groundwater quality assessment, Random Forest - Cross 
validation was the best in deciphering the groundwater quality map, compared to 
the Random Forest – Bootstrap, the Artificial Neural Network - Cross validation, and 
the Artificial Neural Network – Bootstrap models. According to the best model 
(Random Forest - Cross validation), around 64.78% and 29.39% of the eastern 
Kanchanaburi were good and very good groundwater quality while only 0.58% and 
0.08% were poor and very poor groundwater quality, respectively. Meantime, 
5.17% was designated to be moderate groundwater quality. In conclusion, 
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Chapter 1. INTRODUCTION 

1.1. Statement of the problem 

Water is vital for the existence of all life on the Earth and an essential 

component of several manufacturing operations in a nation. In recent decades, 

freshwater shortages in many regions have demanded research on the sustainable use 

of water resources (Chen et al., 2020; Hou et al., 2020; Zehtabiyan-Rezaie et al., 2019), 

based on the effects of weather elements and human activities on these resources. 

The intricate process of climate change has caused widespread drought, changes in 

location, timing form, the number of precipitations, and tropical storm intensity in 

many areas of the world (Dai, 2013). Rising sea levels have led to salinity intrusion in 

soil and groundwater in desert and coastal regions (Boonkaewwan et al., 2020; Howard 

et al., 2010; Shah et al., 2001). Simultaneously, population growth, agricultural 

expansion, urbanization, and modern industrial activities have created an increasingly 

large need for freshwater (Francis, 2011; Howard et al., 2010; McDonald et al., 2011; 

Wilson et al., 2006). To reduce freshwater shortages, the exploitation and sustainable 

use of water resources have garnered increasing attention, particularly with regard to 

groundwater. The development of groundwater potential maps is becoming 

increasingly important in many scientific fields and nations (Chaminé et al., 2015). In 

particular, groundwater mapping provides suitable locations for drilling groundwater 

wells for the purpose of water resource management and agricultural activities (Ahmed 

and Sajjad, 2018; Elbeih, 2015). Simultaneously, a groundwater potential map can 

reveal the groundwater potential zone of a given region. Additionally, human 

development and changes in natural processes lead to negative aspects of 

groundwater quality (Li et al., 2017; Shah, 2005; White et al., 2007). The presence of 

heavy metals causes considerable concern in various water uses. Consequently, 

assessing the concentration of toxic pollutants in groundwater is urgently needed in 

many regions and countries worldwide.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

Constantly advancing remote sensing (RS) and geographic information system (GIS) 

technology has played a vital role in groundwater hydrology in recent decades. GIS is an 

appropriate tool for solving spatial attribute problems in many environmental science 

fields (Beck, 2003; Chaudhary and Kumar, 2018; Chowdhury et al., 2009; Edet et al., 1998; 

Twumasi and Merem, 2006), particularly hydrology and hydrogeology. The information RS 

provides for the Earth's surface facilitates groundwater potential research in many regions 

that do not have available data and complex topography. In recent years, several 

groundwater studies have utilized RS and GIS technology to map groundwater potential 

zones in their areas of interest. Some scientists (Ghosh et al., 2016; Gnanachandrasamy et 

al., 2018; Kallali et al., 2007; Machiwal et al., 2011; Pinto et al., 2017; Selvam et al., 2016) 

have used statistical models such as multi-criteria decision analysis (MCDA), multi-influence 

factor (MIF), analytical hierarchy process (AHP), frequency ratio (FR) model, logistic 

regression (LR) model, and evidence belief function (EBF). Other researchers have applied 

machine learning approaches to analyze, calculate, and map the groundwater potential 

zone (Alizamir et al., 2018; Kamali Maskooni et al., 2020; Lee et al., 2019; Sahoo et al., 

2017; Tan et al., 2020). Machine learning models are often used in groundwater studies, 

including AB-AD Tree, quadratic discriminant analysis, K-neighbor classification, random 

forest classifier (RFC), and support vector machine (SVM). The purpose of these models is 

to delineate areas with large groundwater reserves to exploit and reasonably use 

groundwater. Although some attempts have been made to develop these models for 

assessing the groundwater potential for a given region, the accuracy of the models has 

reportedly ranged from 50% to 92% (Abijith et al., 2020; Kamali Maskooni et al., 2020; 

Pham et al., 2019; Tien Bui et al., 2019) with regard to the establishment of potential 

groundwater maps. The improvement of groundwater potential mapping models has a 

significant role in determining the successful location of groundwater wells. This not only 

helps establish wells but also guides the sustainable use of groundwater resources. 

In this study, Kanchanaburi Province in Thailand is considered because its 
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groundwater situation faces many problems such as drought and contamination 

(Srirattana et al., 2021). Moreover, groundwater extraction increases rapidly to meet 

the demand for domestic and agricultural irrigation (Putthividhya and Pipitsombat, 

2018). However, the groundwater potential map in terms of quantity and quality in 

this province is still limited. Hence, it is necessary to assess groundwater potential for 

various purposes in Kanchanaburi Province, Thailand. The anticipated output of this 

study will contribute new approaches in groundwater potential study not only for 

the study area but also for other regions in the world. 

1.2. Research Objective 

The general objective of the research is to delineate the groundwater 

potential zones in terms of quantity and quality in the Kanchanaburi Province, 

Thailand, where groundwater has been widely used by the inhabitant for their 

various needs. 

1.3. Specific objectives 

a) to develop a new ensemble model to efficiently evaluate the spatial 

distribution map of the groundwater resources. 

b) to develop a new hybrid model to delineate the heavy metal 

contamination risk zone in groundwater. 

c) to delineate groundwater quality using the Entropy water quality indexes. 

1.4. Research questions 

1. How is the spatial distribution of groundwater yield in the study area? 

2. Which database and models are suitable for the study area? 

3. How is the level of heavy metals contamination risk in groundwater in the study 

area? 
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4. Is the hybrid model acceptable for heavy metal risk assessment in 

groundwater?  

5. Which model is acceptable for deciphering groundwater quality?  

6. What is the suitability of groundwater potential for different uses? 

1.5. Hypothesis 

1. The new hybrid approaches (AHP, FR, RF) can effectively assess 

groundwater potential in a case study of Kanchanaburi Province, Thailand. 

2. The new hybrid approaches (Maxent and AHP) can effectively delineate the 

heavy metal contamination risk zone in groundwater in a case study of Kanchanaburi 

province, Thailand. 

3. The machine learning models can effectively decipher groundwater quality 

in a case study of Kanchanaburi Province, Thailand. 

1.6. Expected outcome 

1. A map of spatial distribution of groundwater yield in Kanchanaburi, 

Thailand using frequency ratio, random forest, and analytic hierarchy process. 

2. A map of contamination risk zones in groundwater in Kanchanaburi, 

Thailand. 

3. A map of groundwater quality in Kanchanaburi, Thailand. 
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Chapter 2. THEORETICAL BACKGROUND AND LITERATURE REVIEWS 

2.1. Definition of groundwater potential map 

Previous literature reviews indicate that the definition of GWP is a general 

concept depending on the purpose of each research. Some researchers (Andermann 

et al., 2012; Fischer et al., 2003; Rodell et al., 2007; Yeh et al., 2006) have focused on 

groundwater storage, while others (Batte et al., 2008; Janakarajan and Moench, 2006; 

Nampak et al., 2014) have analyzed the groundwater yield in an area. From a storage 

perspective, GWP is defined as the total amount of water in aquifers that can be 

stored for a long time (Kebede, 2013). Considering the yield, GWP is the quantity of 

groundwater that may be extracted from a groundwater aquifer without surpassing 

the long-term recharge or the chemical and physical integrity of the basin (Greer, 

2008). In addition to the above aspects, groundwater quality is also used to delineate 

GWP zones for different purposes. Hounsinou (2020) considered the extent of saline 

intrusion of seawater to set the GWP boundaries. Dhar et al. (2015) defined the GWP 

zones by overlaying the GWP and groundwater quality indexes. Consequently, the 

definition of GWP is not a specific concept to use uniformly worldwide. The usage of 

groundwater storage or yield to define GWP remains controversial because they 

ignore factors, such as groundwater quality, aquifer properties, sensitivity, 

contamination, and its intended use. The definition of GWP based on the knowledge 

of the authors can be stated as follows: “Groundwater potential is the volume of 

groundwater that can be withdrawn from an aquifer for a particular purpose without 

affecting the groundwater yield and groundwater quality of an aquifer.” 

2.2. Number of publications in groundwater potential field 

The study area statistics around the world provide hydrologists with a general 

picture of GWP research. It shows the level of interest in groundwater reserves in 

different parts of the world. It is the basis for international organizations to select and 
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implement projects related to the conservation of global groundwater resources. In 

this section, information regarding the number of research papers on GWP and other 

parameters is presented. The content includes information about the number of 

national studies. The information given in Fig. 2.1 was collected from two reliable 

sources, namely Scopus and Web of Science, with keywords “groundwater potential 

+ year,” applied by the “title, abstract, and keywords” search functions. A total of 

872 and 707 articles were found in Scopus and Web of Science in this field from 

2010 to 2020, respectively. Overall, the number of articles related to GWP map 

research has remarkably increased in this period (Fig. 2.1), with 87 countries of 

interest according to authors (Fig. 2.2). Fig. 2.2 also shows the level of interest by 

hydrologists regarding GWP worldwide over the past decade. India, Iran, and Nigeria 

had a high number of publications in this research field. Only a small number of 

relevant studies have been conducted in the rest of the countries (Fig. 2.2). Fig. 2.3 

shows the top 10 journals of Scopus and Web of Science systems selected by 

authors for publication between 2010 and 2020, in which Environmental Earth 

Sciences and Arabian Journal of Geosciences had the highest publication. 

 

Fig. 2.1. Number of GWP studies in the world between 2010 and 2020 
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Fig. 2.2. Map of the nations with studies in the world groundwater potential map 

published from 2010 to 2020 in the Scopus (a) and Web of Science (b) database 
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Fig 2.3. Top 10 journals considering number of publications on GWP in the Scopus (a) 

and Web of Science (b) database from 2010 to 2020 
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2.3. Parameters, model techniques and validation in groundwater potential 

studies 

The dataset related to this study is compiled from two sources, namely Scopus 

and Web of Science, and conducted as shown in Fig. 2.4. The first step involves 

searching the literature. A total of 872 publications on Scopus and 707 publications on 

Web of Science are related to GWP. The second step is cross-referencing literature 

between the two systems using DOI and the title of papers. A total of 1085 

publications were found in the GWP field from 2010 to 2020. The third step is the 

calculation of the number of representative samples using Slovin’s formula (Marendra 

and Tangahu, 2020) (Eq. 1). 

n =  
N

1+Ne2,      (1) 

where N is the total of 1085 publications, e is the error margin (0.1), and n is the number of 

representative samples. The fourth step is setting the dataset. A total of 91 publications 

are selected for this study based on the citation index from high to low (Table 2.1). The 

final step is reviewing the content on parameters, models, and validation techniques. This 

step is the most time-consuming procedure in the research process. 

 

Fig. 2.4. Flow chart of constructing the database 
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2.3.1. Input parameters in groundwater potential studies 

GWP studies are generally developed on the basis of climate, geology, 

hydrology, land cover, topography, and aquifer-related data. A total of 41 input 

parameters are related to the identification of groundwater-rich areas (Fig. 2.5). The 

number of input parameters necessary to establish the GWP map is different in each 

study. This number ranges from 2 to 17 parameters. Input parameters are the 

required information of a GWP model. These parameters provide databases related 

to GWP and are the basis for model application. The frequency of input parameters 

used in GWP studies is depicted in Fig. 2.5. These data are usually extracted from 

conventional data, existing maps, remote sensing, and survey. Eight common factors, 

including geology, slope, land use, soil type, drainage density (DD), fault/lineament 

density, altitude, and rainfall with a usage frequency larger than 50%, are available in 

GWP studies during 2010–2020. 

 

Fig. 2.5. Frequency of factors used in GWP studies from 2010 to 2020 

2.3.1.1. Topographic-related parameters 
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Topographic-related parameters are factors that describe the topographical 

features of a study area. The frequently used topographic parameters in GWP 

research include the following: slope, slope aspect, altitude, topographic wetness 

index (TWI), slope length, curvature, plan curvature, profile curvature, stream power 

index, sediment transport index, geomorphology, distance to roads, convergence 

index, relative slope position, terrain ruggedness index, flow direction, and relief. 

Furthermore, five topographic-related parameters, namely slope, slope aspect, 

altitude, TWI, and slope length, were widely utilized in most GWP studies (Fig. 2.5). 

Slope controls the percolation of water into the soil (Ali et al., 2015). Magesh et al. 

(2012) proved that a gentle slope means that surface water has less residence time 

on the ground. This leads to water having more time to seep into the ground, 

whereas a high slope increases flow speed and erosion, and therefore, rainwater 

does not have sufficient time to infiltrate. Areas with low slopes have negative 

surface runoff and positive percolation rates, whereas areas with high slopes usually 

have high amounts of soil runoff and fast meteoric water evacuation by direct hitting 

water/or rainfall. Adiat et al. (2012) concluded that groundwater recharge depends 

on the surface flow velocity and vertical percolation controlled by slope degree. 

Naghibi and Pourghasemi (2015) indicated that the slope aspect also affects 

hydrological processes because it determines rainfall direction, moisture, plant 

growth, and snow melting. Tahmassebipoor et al. (2016) determined that 

groundwater is often limited at high altitudes and abundant at low elevations. 

Rahmati et al. (2016) applied TWI to measure the amount of runoff accumulation at 

any place in a basin. GWP partly explains a strong inverse correlation between the 

TWI index and groundwater yield. Naghibi et al. (2017a) indicated that the possibility 

of soil loss also impacts GWP, which is calculated on the basis of slope length. GWP 

is also high when the slop length value is low. Overall, topographic-related 

parameters control permeability, surface flow direction, and number of precipitations 
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seeping into the soil. In the last decade, the growth of the aerospace industry has 

greatly contributed to many scientific fields. Digital elevation models (DEMs) are 

useful for determining the topography of a certain area (Agarwal and Garg, 2016; 

Pradhan et al., 2020; Rajasekhar et al., 2019). DEM is usually taken from the Shuttle 

Radar Topography Mission (SRTM) (Arkoprovo et al., 2012; Nanda et al., 2017; Prasad 

et al., 2020) or ASTER sensors (Mosavi et al., 2020; Sachdeva and Kumar, 2020; Waikar 

and Nilawar, 2014) and stored in a raster format. Topographic data are normally 

extracted from digital elevation information. 

2.3.1.2. Geological-related parameters 

Geological-related parameters are commonly accepted to govern the 

potential of groundwater. In GWP mapping studies, distance to faults, geology, 

lineaments, lineament density, and relative permeability factors are classified among 

the geological group (Ozdemir, 2011a). Among these factors, geology is the first 

aspect chosen by researchers in building a GWP model, followed by lineament 

density (Fig. 2.5). This selection is understandable because differences in lithologies, 

structure, folds, and faults result in changes in the strength and permeability of soil 

and rock (Ozdemir, 2011a). Geology plays a significant role in finding water 

underground. This factor has been mentioned in many groundwater studies. From a 

geological perspective, groundwater exists in the fractures and voids of consolidated 

rock as well as in the porosity of unconsolidated sediment. Therefore, GWP research 

considers the water retention condition of the geological features, such as weathered 

products, source rocks, and unconsolidated or consolidated sediments (Xie et al., 

2014). According to Termeh et al. (2019), hydraulic conductivity, porosity, and 

groundwater flow of an aquifer are dominated by lithology features. Assatse et al. 

(2016) pointed out that unconsolidated sediment rocks usually have large gaps, 

facilitating the existence and movement of water. Areas of unconsolidated sediment 
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rock have high GWP. In addition, some consolidated sediment rocks are also deemed 

beneficial for groundwater storage. Consolidated sediment rocks are normally 

sandstone and limestone (Assatse et al., 2016). In contrast, some rock types, such as 

metamorphic rock and volcanic rocks, are not generally considered adequate 

materials for good GWP. Thus, geological structure determines the existence of 

groundwater in a given region. To collect geological data, most groundwater studies 

have utilized field surveys (Bagyaraj et al., 2019) or are based on a geologic map 

(Zabihi et al., 2016). In addition to geological features, lineaments are also a 

preferential option in GWP studies. Lineaments, which are surficial expressions of 

faults, are an expression of underlying geological structures. Additionally, lineaments 

occur in the forms of fractures, lithological limits, and fault zones on the ground. 

Lineaments often appear in mountainous areas or straight coastlines (Adiat et al., 

2012; Golla, 2020; Martha et al., 2013; Rahmati et al., 2015). In the past, lineaments 

were usually extracted from geology and topography maps (Moore and Waltz, 1983; 

O'leary et al., 1976). However, more recently, the development of space science and 

aerial data (such as radar, Landsat ETM (Enhanced Thematic Mapper), and Aster DEM 

(Digital Elevation Model)) has allowed the collection of lineaments from satellite 

photographs (Das et al., 2018; Hashim et al., 2013; Mwaniki et al., 2015). (Akinluyi et 

al., 2018) demonstrated that GWP is influenced by lineaments. Elements belonging 

to lineaments such as foliation, fractures, and faults are commonly used to find 

suitable groundwater exploitation locations. The factors related to lineament, such 

as distance to faults and lineament density, represent the relationship between 

surface and subsurface water flow through water mobility and infiltration (Termeh et 

al., 2019). Abdalla (2012) argued that the occurrence of faults is a good condition for 

groundwater recharge, especially in hard rock locations. Indeed, the fractures, joints, 

and lineaments act as a conduit, which strengthens the connection between surface 

water and groundwater. A fault zone can act as a conduit for vertical subsurface flow 
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or as a barrier for horizontal flow, thus making GWP poor (Bense and Person, 2006). 

Lineament density reflects the groundwater phenomenon under the Earth's surface. 

High lineament density corresponds to high secondary porosity (Haridas et al., 1998); 

hence, aquifers and aquitards are quickly recharged through water infiltration. 

Concurrently, groundwater movement and retention may be calculated via 

lineament density. As such, lineament data are used as an indispensable part of 

finding water potential underground. The first lineament data were explored in a 

groundwater study carried out by (Lattman and Parizek, 1964). Subsequently, many 

researchers have applied this approach to complex terrain areas (Abijith et al., 2020; 

Al-Ruzouq et al., 2019; Ali et al., 2015; Ibrahim-Bathis and Ahmed, 2016; Kamali 

Maskooni et al., 2020).  

2.3.1.3. Hydrological-related parameters 

 Hydrological-related parameters play a vital role in delineating GWP zones of 

a given region. River density, distance to rivers, drainage, DD, distance to drainage, 

and net recharge are hydrological-related parameters in GWP. Among these 

parameters, DD and distance to rivers were more commonly used than other 

hydrological factors (Fig. 2.5). Rahmati et al. (2016) reported that GWP, groundwater 

recharge, and hydrogeological systems are affected by hydrological parameters. High 

groundwater productivity is rarely found in low river density areas that are far from 

rivers, streams, and surface water. Chen et al. (2018) indicated that surface water 

sources are the primary recharging sources, which affect the formation capability of 

groundwater springs. In addition to river-related factors, drainage-related factors also 

affect the GWP of an area. DD represents the drainage capacity of a basin based on 

the length of water flow (Bagyaraj et al., 2013; Martínez‐Santos and Renard, 2020; 

Singh et al., 2013). DD represents residence times of groundwater (Das, 2019), where 

a high DD implies a large water loss capability and vice versa (Arkoprovo et al., 2012). 

DD is expressed by the presence of flows on the earth’s surface, such as rivers and 
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streams. The numbers of rivers are often distributed more in delta regions than in hill 

regions (Mukherjee et al., 2012). DD has been directly designated as GWP; the greater 

this value, the higher the GWP (Nasir et al., 2018). According to Strahler (1964), DD is 

calculated by the overall length of rivers and outflows in a given locality divided by 

the total surface area of the locality. According to Moglen et al. (1998), source rock 

and climate features determine the shape of stream systems. Areas with a hydrology 

system with short and scattered rivers have a high GWP and vice versa. Ghosh et al. 

(2016) observed the inverse correlation of DD and permeability. The zones of high DD 

are associated with decreased permeability and significant surface runoff. Therefore, 

the GWP in these zones is low. The length factor of river and flow systems directly 

affects the DD of a region. In addition to the length of the flow system, other factors 

also impact DD, including lithology, runoff, vegetation cover, and infiltration. 

Therefore, DD is a necessary element in groundwater studies (Konkul et al., 2014). It 

is regarded as an index of groundwater recharge (Gupta and Srivastava, 2010; Mandal 

et al., 2016; Mosavi et al., 2020; Thapa et al., 2018). Similar to the slope, DD is usually 

extracted from DEM data (typically ASTER GDE, and SRTM 1 Arc Second Global 

satellite images with a spatial resolution of 30 m using ArcGIS 10.5 software) (Bagyaraj 

et al., 2013; Ibrahim-Bathis and Ahmed, 2016; Waikar and Nilawar, 2014). 

2.3.1.4. Climatic-related parameters 

 Climatic-related parameters play a significant role in groundwater formation. In 

the last decade, GWP models have considered precipitation and surface temperature 

as determining factors in the GWP in a study area (Elewa and Qaddah, 2011; Mallick et 

al., 2015; Razandi et al., 2015; Shekhar and Pandey, 2015). Rainfall is a significant factor 

affecting groundwater recharge (Mukherjee et al., 2012; Owor et al., 2009; Shekhar and 

Pandey, 2015) and its occurrence (Gumma and Pavelic, 2013; Mosavi et al., 2020; 

Mukherjee et al., 2012; Nguyen et al., 2020b; Pham et al., 2019) in a study area. In 

some hydrological studies (Abijith et al., 2020; Klongvessa et al., 2018; Martínez‐Santos 
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and Renard, 2020; Rahmati et al., 2015; Suganthi et al., 2013; Thapa et al., 2018), 

rainfall is also a factor that influences the recharge capacity of an area. Precipitation 

contributes a large amount of water to aquifers and aquitards through subsurface 

infiltration systems. As the rainfall increases, the groundwater level also rises 

(Chotpantarat et al., 2014; Shekhar and Pandey, 2015). The groundwater recharge 

potential is generally higher in the rainy season than in the dry season, thus increasing 

groundwater level (Konkul et al., 2014; Wisittammasri and Chotpantarat, 2016). This 

finding shows that precipitation is the water supply source for groundwater (Agarwal 

and Garg, 2016). In addition to the precipitation factor, Mallick et al. (2015) also utilized 

the surface temperature factor in the GWP study. They assumed that the heat 

signatures of the earth’s surface help discover GWP based on specific heat. For 

example, dry soil has a lower heat capacity than saturated soil. The surface 

temperature was usually calculated from satellite imagery (Mallick et al., 2015). 

2.3.1.5. Land cover-related parameters 

 Land use, soil type, soil depth, and NDVI are assigned to the land cover-

related group in the present study. Fig. 2.5 reveals that land use and soil type are 

the two commonly used land cover factors by hydrologists in the past decade. Land 

use describes the various land-use units of humans on the earth’s surface, which 

presents the domination of recharge rate and groundwater usage (Chen et al., 2018). 

Therefore, land use plays a major role in groundwater exploitation and usage 

(Bagyaraj et al., 2019; Dar et al., 2010; Mandal et al., 2016; Mukherjee et al., 2012; 

Waikar and Nilawar, 2014). Zones affected by urbanization and agricultural activities 

often require the exploitation of large amounts of groundwater (Odeh et al., 2019). 

Other zones such as forests and water bodies are rarely intervened by humans (Lone 

et al., 2013). Consequently, human interference directly affects groundwater storage 

and recharge capacity. Chen et al. (2018) reported that each land use type has a 

difference in water permeability. Built-up, hard rock, and bare land areas have lower 
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permeability than vegetation areas. Each land use type impacts groundwater 

retention differently based on evapotranspiration, soil erosion, and runoff 

(Chotpantarat and Boonkaewwan, 2018; Saravanan et al., 2018). The land use factor 

is routinely developed through aerial imagery and field surveys (Avtar et al., 2010; 

Basavaraj and Nijagunappa, 2011; Magesh et al., 2012; Mandal et al., 2016; Shekhar 

and Pandey, 2015). Soil type directly affects groundwater infiltration (Sun et al., 2018) 

and is a necessary part of defining groundwater recharge (Oh et al., 2011). Mollinedo 

et al. (2015) reported that a region's water holding capacity depends on the type, 

texture, and depth of soil. Díaz-Alcaide and Martínez-Santos (2019) indicated that 

gravelly and sandy soils are high percolation materials, whereas silty and clayey soils 

allow the least infiltration. Meanwhile, moderate infiltration is related to loamy soils 

and fine sand. Soil data are typically collected from available soil maps prepared by 

the land management department of a nation (Agarwal and Garg, 2016; Kumar et al., 

2016; Oh et al., 2011; Pinto et al., 2017). NDVI is also an indicator used in forecasting 

groundwater storage and aquifer production of a study area (Chen et al., 2018; 

Naghibi et al., 2017b; Nampak et al., 2014). Areas with a high NDVI index reflect better 

GWP than those with a low NDVI index (Nampak et al., 2014). NDVI data are usually 

computed from satellite imagery sources in previous studies. 

2.3.1.6. Aquifer-related parameters 

In addition to geological-related factors for the formation of consolidated 

/unconsolidated aquifers, the other characteristics of aquifers, such as aquifer 

thickness, aquifer resistivity, artesian pressure, groundwater depth, and groundwater 

quality also influence GWP. In the groundwater study, the thickness of an aquifer also 

aids in defining potential zones, which is demonstrated through the thickness of 

weathered materials (Razandi et al., 2015). Shekhar and Pandey (2015) indicated that 

areas with thick weathering have more groundwater than those with thin weathering 

because groundwater is prevalent at the base of the weathered zone, wherein rocks 
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have broken down into sand size and large fragments. In addition to aquifer thickness, 

aquifer resistivity is also used to determine GWP in some studies (Aizebeokhai et al., 

2010; Jha et al., 2010; Muchingami et al., 2012). A high resistivity value indicates low 

GWP and vice versa (Muchingami et al., 2012). From the viewpoint of the aquifer 

classification (confined/unconfined), artesian pressure is also a decisive factor in 

determining potential locations of groundwater. The confined aquifers occur in wide 

and thick permeable formations with low artesian pressure, which yields low amounts 

of groundwater, whereas the aquifer systems occur in thin permeable formations with 

high pressure, thus yielding appreciable amounts of groundwater (Da Lio et al., 2013). 

Groundwater depth is also one of the key indicators in determining the GWP of a well 

or borehole location. A large groundwater depth results in a large GWP (Machiwal et 

al., 2011). In addition, groundwater quality reflects the GWP of an area. Oikonomidis et 

al. (2015) used nitrate concentration in groundwater and GWP index to delineate GWP 

and non-GWP zones for domestic uses in Central Greece in the region of Thessaly. 

Their results indicated that groundwater in the karst area has good storage and low 

nitrate concentration considering a good GWP zone. By contrast, groundwater in the 

agricultural activity regions with high nitrate concentration is considered a poor GWP 

zone despite its high yield. Gopinath et al. (2019) indicated that the intrusion of 

seawater in eastern coastal India increases dissolved mineral concentrations (such as 

sodium and chloride) in aquifers due to intensive pumping rates. This phenomenon 

reduces GWP in areas facing seawater intrusion problems. Furthermore, Chotpantarat 

et al. (2020) used hydrochemical characteristics, including the stable isotopes 18O and 
2H, to assess the origin of the groundwater and applied principal component analysis 

to determine sources of nitrate contamination in Phetchaburi Province, Thailand. Their 

result showed that nitrate concentration mainly originated from the agricultural 

regions, reducing the GWP area in this region. Boonkaewwan et al. (2020) investigated 

the mechanisms of arsenic (As) release in coastal alluvial aquifers in Rayong Province, 
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Thailand. They found that arsenite (As3+) is mainly released in the deep coastal aquifer 

groundwater due to reducing conditions. Thus, groundwater treatment is necessary for 

some areas before drinking. As previously mentioned, in addition to the groundwater 

quantity, the assessment of the GWP area should also consider groundwater quality. 

2.3.2. Model techniques  

Approximately 59% of the 91 publications (Table 2.1) used a model or 

method to develop and assess GWP. The remaining 31% used two or more models. 

The current study classified the models into three main groups: statistical, machine 

learning, and hybrid/ensemble models (Fig. 2.6). The model categorization was 

complicated, and many revisions were made until the final categorization was 

realized; this categorization was subjective and based on expert judgment. Fig. 2.6 

shows the information regarding the popularity of models used in 91 publications. 

The database of this study revealed the use of 60 models from 2010 to 2020; the 

figure is considerably large. Models MCDA-AHP, FR, EBF, WOE are the models with the 

most occurrences in the statistical group, while RF, LR, BRT, SVM models are used a 

lot in machine learning group. In this section, the study looks into the characteristics 

and roles of these popular models. 
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Fig. 2.6. Popularity of GWP models from 2010 to 2020 

2.3.2.1. Common statistical models 

a. Multi-criteria decision analysis-Analytical hierarchy process (MCDA-AHP) model  

MCDM-AHP is a model that uses associated factors to assess a problem (Saha, 

2017). The related factors are assigned a weight corresponding to their importance in 

observing issues (Kumar et al., 2016). The MCDM-AHP analyzes the weight of related 

factors to the main variable. The variables in this model are compared considering 

their effect on each other on a scale of 1–9. The MCDM-AHP model aids 

hydrogeologists in identifying and decentralizing groundwater influencing factors in 

the GWP field. The advantages of this method lie in its fast results and minimal errors 

in choosing well locations. In addition, the MCDM-AHP model permits the 

modification of the factor weight to satisfy different areas. However, the MCDM-AHP 

model depends on the opinion of experts in setting the criteria weight; thus, the 

model result is subjective (Singh et al., 2018). The MCDM-AHP model is often 
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combined with GIS tools, verifying the geographical regions that agree with GWP 

conditions. The MCDM-AHP model is typically used to evaluate GWP comprising the 

following four steps. Step 1: Establishing the factors related to the GWP and creating 

an important hierarchy for factors. Step 2: Classifying and comparing the factors 

influencing groundwater. Step 3: Calculating the weighted value of the influencing 

factors. Step 4: Validating the consistency of the pair comparisons. In the MCDM-AHP, 

influence factors are combined into an indicator to evaluate outputs (Andualem and 

Demeke, 2019).  

In recent years, hydrological studies have commonly applied the MCDM-AHP 

model. Elmahdy and Mohamed (2014) delineated GWP zones using the AHP model in 

the Al Dhaid area, United Arab Emirates. The model was successful in integrating 

thematic layers and assessing their weights. Selvam et al. (2015) created GWP and 

recharged zones in the Tuticorin districts of Tamil Nadu, India, using the MCDM 

technique. The variables used included soil, precipitation, slope, drainage, lithology, 

land use, and lineaments, where lithology and land use were integrated with the 

highest weight. Jenifer and Jha (2017) used the MCDA-AHP model for mapping GWP 

zones in the state of Tamil Nadu of India based on the assigned weights of thematic 

layers according to the suggestion of experts. The AHP model provided accurate 

predictions. The groundwater yield was applied to test the validity of the AHP model. 

Andualem and Demeke (2019) incorporated the MCDM technique and GIS technology 

to delineate the GWP zones in Upper Blue Nile Basin, Ethiopia. The thematic layers 

were assigned on the basis of the standardization with effective potential. The results 

indicated that GWP was categorized into the following five zones: excellent, very good, 

moderate, poor, and very poor potential fields. Simultaneously, Arabameri et al. (2019) 

found that the AHP model was more effective than the random forest model by using 

yield data and thematic layers to assess GWP. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

b. Frequency ratio (FR) model 

The FR model is applied mainly in landslide research. This model is utilized 

to assess and predict the landslide locations in a given region (Choi et al., 2012; 

Jaafari et al., 2014; Pradhan, 2010). In recent years, some hydrogeologists have used 

the FR model to research groundwater resources (Falah et al., 2017; Guru et al., 

2017; Mousavi et al., 2017; Termeh et al., 2019). The FR model is a bivariate statistical 

algorithm used to compute the occurrence probability rate of a factor (Razandi et al., 

2015). Thus, the FR ratio is the rate of non-occurrence or occurrence of a given 

characteristic. Regarding advantages, the FR is a simple method used to compute the 

probabilistic connection between the environmental factors and GWP. This method 

helps discover the spatial correlations between GWP and environmental factors and 

simplifies the quantification and comprehension of each environmental factor by the 

model. The FR model is directly employed in a GIS (Oh et al., 2011), and its 

outcomes are uncomplicated (Falah et al., 2017). However, the FR model depends 

on the technique-related elements. The adjustment of input parameters will impact 

the output map (Oh et al., 2011). In reality, the construction of the FR model is 

conducted on the basis of the observed interactions between each groundwater 

conditioning factor and the distribution of groundwater well/spring sites. 

In the last decade, many studies have conducted GWP maps utilizing the FR 

model. Ozdemir (2011b) discovered that the FR model was better estimators than 

Weights of evidence (WOE) and Logistic regression (LR) in mapping GWP in the Sultan 

Mountains, Turkey. Oh et al. (2011) used the FR model to create the GWP map in the 

area of Pohang City, Korea. They surveyed 83 well locations; the well points at 55 

locations were used for training the model, and the well points at 28 locations were 

selected for the model test. The training cases were utilized to predict the 

groundwater appearance availability based on thematic layers, including soil, 

lineament, geology, and topography data. Their result indicated that soil texture had 
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the most impact on GWP, whereas ground elevation had the least impact. Razandi et 

al. (2015) compared the efficiency of the FR, AHP, and gradient boosted decision tree 

(DT) models in Varamin Plain, Iran, with the areas under the curves (AUCs) of 77.55%, 

73.47%, and 65.08%, respectively. Guru et al. (2017) applied the FR to explore the 

impact of six factors (i.e., DD, lineament density, geology, slope, geomorphology, and 

land use) on groundwater level. The prediction rate of the FR model was 77.23%. 

According to Termeh et al. (2019), the FR model was used to create the groundwater 

spring potential map in Alborz, Iran. They surveyed 339 springs; springs at 238 

locations were used for training the model, and springs at 101 locations were 

selected for the model test. The training cases were utilized to predict the 

groundwater appearance availability based on thematic layers, including land cover, 

lithology, DD, fault density, topographic wetness index, plan curvature, slope 

direction, altitude, soil, precipitation, distance from the river, distance from the fault, 

profile curvature, slope length, and slope angle.  

c. Evidential belief function (EBF) model 

The EBF is a bivariate statistic model based on the combination rule to 

determine spatial integration (Naghibi and Pourghasemi, 2015). The structure of an 

EBF model includes degree of plausibility (Pls), degree of uncertainty (Unc), degree of 

disbelief (Dis), and degree of belief (Bel) (Nampak et al., 2014). The Pls and Bel are 

respectively upper and lower levels of belief with a basic probability assignment 

function. The Unc is equal to Pls-Bel, which is a lack of understanding evidence of a 

proposition. The Dis is a value of 1–Pls that ranges from 0 to 1, which is the belief of 

a false proposition. The relative flexibility of EBF is used in the GWP study to admit 

uncertainty of spring occurrence from the available evidence (Naghibi and 

Pourghasemi, 2015). However, the FR requires a considerable amount of information 

to reduce uncertainty. 
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Recent GWP projects indicate that the EBF provides a reasonable solution for 

conceptual methods. Manap et al. (2014) applied the EBF model to investigate 

groundwater productivity at Langat basin area, Malaysia. The input database included 

the potential of 12 environmental factors: rainfall, soil, NDVI, land use, lineament 

density, lithology, DD, TWI, SPI, curvature, slope, and elevation. The main goal was to 

delineate groundwater productivity zonation and demonstrate the value of the EBF 

model. Naghibi and Pourghasemi (2015) compared the performance of the EBF to 

that of the Boosted regression tree (BRT), CART, Random forest (RF), and GLM models 

using land use, lithology, fault density, river density, distance to faults, distance to 

rivers, TWI, SPI, slope length, profile curvature, plan curvature, elevation, slope 

aspect, and slope angle as the environmental factors to map GWP in Chaharmahal-e-

Bakhtiari Province, Iran. The assessment output indicated that the performance of 

the EBF was the lowest among the models. Tahmassebipoor et al. (2016) investigated 

the GWP with the EBF and WOE approaches. The input factors were utilized as 

precipitation, lineament density, slope percent, TWI, curvature, elevation, DD, soil 

texture, distance from river, land use, and lithology. The result showed that the AUC 

of the EBF and WOE was 83.7% and 78.2%, respectively. Kordestani et al. (2019) 

simulated GWP in Chaharmahal-e-Bakhtiari Province, Iran by combining the EBF and 

the BRT, namely the EBF-BRT model. The inputs included topographical and 

hydrogeological factors. The results revealed that the EBF-BRT was more accurate 

than the EBF. In another research project, Termeh et al. (2019) compared the ANFIS-

GA (genetic algorithm), ANFIS-BBO, ANFIS-SA (simulated annealing), FR, EBF, and 

entropy models for predicting GWP in Booshehr plain, Iran. They concluded that the 

ANFIS-GA had superior performance to other models. 

d. Weights of evidence (WOE) model 

The WOE technique is a method that uses phenomena and events to prove a 

hypothesis (Al-Abadi, 2015; Falah et al., 2017; Oikonomidis et al., 2015; Ozdemir, 
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2011b). This method evaluates the weight of variables based on the probability of a 

phenomenon or event occurring on each variable. This model is derived from the 

weight of evidence method used in Bayesian statistics. In GWP studies, the WOE 

estimates the weight for the absence or presence of each subclass of environmental 

factors based on the absence or presence of representative parameters, such as 

groundwater yield and spring/well/borehole occurrence, within a given region (Al-

Abadi, 2015; Falah et al., 2017; Oikonomidis et al., 2015; Tahmassebipoor et al., 

2016). The advantages and disadvantages of the WOE lists are as follows. On the one 

hand, the WOE helps eliminate the subjectivity of weight and easily sets up the GWP 

maps. On the other hand, the WOE depends on the number of conditioning variables 

to set the weight of evidence and require the independence of data input 

(Tahmassebipoor et al., 2016). Therefore, a requirement for studies using the WOE is 

to determine the accurate number of input variables, which helps obtain the correct 

weight of variables in the model. 

While researching groundwater productivity potential mapping, Lee et al. 

(2012) analyzed the correlation of hydrogeological factors with specific capacity (SPC) 

and transmissivity (T) data. SPC and T were collected at 83 and 81 well locations in 

Pohang city, South Korea, respectively. SPC and T data were subdivided in a 70:30 

ratio to train and validate the output. They concluded that the WOE model's 

accuracy was 71.20%. The map was generated by the WOE model with relatively 

accurate groundwater resource exploration. Al-Abadi (2015) applied the WOE model 

to demarcate GWP in the Missan and Wasit governorates, Iraq. This study utilized 

data from 143 borehole locations and eight variables affecting GWP, including depth 

of borehole, aquifer type, distance to faults, distance to roads, LU, geology, slope, 

and altitude. The results of the GWP map were divided into areas with very high 

potential (15%), areas with high potential (23%), areas with medium potential (32%), 

and areas with low potential (30%). Falah et al. (2017) investigated the capabilities of 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/transmissivity
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the WOE, GAM, FR, and SI with different combinations of land use, soil, lithology, 

distance to faults, fault density, topographic wetness index, distance to rivers, DD, 

slope aspect, slope angle, plan curvature, altitude, and 6439 springs to predict GWP 

in Lorestan Province, Iran. Their results showed that the accuracy of the GWP 

delineation map from the WOE was lower than that of other models. Chen et al. 

(2018) developed a novel ensemble WOE with LR and functional tree models to 

map groundwater spring potential in Shaanxi Province of China. They found that the 

ensemble model is more satisfactory compared with individual models. Falah and 

Zeinivand (2019) applied the WOE model to compare it with an FR model in the 

assessment of groundwater distribution in Lorestan province, Iran. They used 212 

springs, in which 140 springs were training datasets and 72 springs were test data. 

Their output data showed that the predictions of the WOE model are less accurate 

than those of the FR model. 

2.3.2.2. Common machine-learning models 

a. Random Forest (RF) model 

The random forest (RF) is a predictive model that uses many DTs to forecast 

the appearance of an event, in which each DT is generated from resampling. In 2001, 

Breiman (2001) was the first author to apply the RF algorithm to classify his data. 

Then, the RF was further developed and utilized in many science fields. According to 

Rodriguez-Galiano et al. (2014), regression trees and classification trees could be 

considered part of the RF model. A regression tree mission involves determining the 

limitation characteristics and conditions for the formation of a node in a DT, while 

the function of the classification tree is to classify the data that have not been 

previously categorized into appropriate groups or classes. The RF model yields very 

high accuracy results but does not show the operating algorithms because of the 

complex structure of this model (Rodriguez-Galiano et al., 2014). The output of RF 
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can be classification or regression. The RF has pros and cons compared with other 

machine learning models. Regarding advantages, the RF can work with complex data, 

decrease the overfitting and variance issues, and is remarkably stable. Meanwhile, the 

disadvantages of the RF lie in its large and powerful computer resource requirement, 

long training process, and its assignment of the number of variables and trees in the 

model. 

In the area of GWP with the RF, Zabihi et al. (2016) assessed two GWP maps 

created with RF and MARS for Boujnordm, North Khorasan, Iran. Fourteen explanatory 

factors and 234 spring locations, including 176 cases, were applied to train the 

model, and 58 locations were employed to create the GWP. The result showed that 

the AUC of RF is lower than the AUC of MARS. Similarly, Golkarian et al. (2018) 

compared the RF, C.50, and MARS in forecasting GWP in Mashhad, Razavi Khorasan 

Province, Iran. The input variables were lithology, land use, faults density, rivers 

density, distance to faults, distance to rivers, slope length, TWI, profile curvature, 

plan curvature, slope angle, slope aspect, and elevation. Their outcome indicated 

that the RF had an accuracy lower than MARS and higher than the C5.0. Naghibi et al. 

(2018) compared the KNN, ANN, PDA, QDA, LDA, Support vector machine (SVM), 

MARS, BRT, and RF models for GWP assessment in Iran. Lithology, land use, fault 

density, river density, distance from faults, distance from rivers, TWI, SPI, slope 

length, slope curvature, plan curvature, slope aspect, and altitude were utilized as 

the input factors of these models. They indicated that the RF was the best among all 

models in mapping GPW, and four factors with the most impact on GWP included 

profile curvature, plan curvature, slope, and elevation. Naghibi et al. (2019) simulated 

GWP by using the RF, CART, BRT, EBFTM, and RTF. They used 13 input factors, 

including lithology, land use, fault density, distance from faults, river density, 

distance from rivers, TWI, slope length, profile curvature, plan curvature, altitude, 

slope aspect, and slope angle, and 273 spring locations. They concluded that the 
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EBFTM had the highest performance, followed by the RF. Pham et al. (2019) 

indicated that the RF was a useful model for predicting groundwater spring potential; 

hence, the maps created by this model could be advantageous for groundwater 

resource exploration and management. 

b. Logistic regression (LR) model 

The LR model is commonly used in research on water issue prediction. This 

model has recently been developed in other groundwater-related areas, such as 

ground subsidence (Oh et al., 2011) and potential groundwater springs (Nampak et 

al., 2014; Ozdemir, 2011b; Rahmati et al., 2018). The LR is a regression model that 

finds the correlation between independent and dependent parameters to create the 

coefficient (Nguyen et al., 2020b). The result of the LR is only 0 or 1 (binary model). 

The LR is helpful in GWP studies to predict groundwater absence or presence via 

spring/non-spring specific yield parameters. Similar to other machine learning models, 

the LR has the advantages of simplicity and linearity and is reliable in data training. 

The disadvantage of the LR is easily gotten overfitting as the number of features is 

higher than that of observation. Additionally, the LR requires the dependent variable 

that must be the discrete number set and cannot process non-linear problems.   

Ozdemir (2011b) created a groundwater spring potential map (GWSP) for the 

Sultan Mountains, Turkey, integrating an LR model with the GIS environment. The 

validation of the research surveyed 440 springs and 17 spring-related variables. The 

authors reported that this was the first study on GWP using an LR approach to 

identify potential regions of groundwater. The coefficient of 17 spring-related 

variables was calculated using the binary LR method. The results show that the LR 

model is a suitable tool to estimate GWSP in a given region. Nampak et al. (2014) 

compared the LR and the EBF in predicting GWP in Malaysia's Langat River 

catchment. They considered precipitation, soil type, NDVI, land use, lineament 
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density, lithology, DD, TWI, SPI, curvature, slope, and elevation as input factors and 

concluded that the EBF outperformed the LR. Rahmati et al. (2018) used the LR with 

the DT to map GWP in Khorasan Province, Iran and compared it with the SVM and 

C4.5 models. The inputs to the models were CI, slope, TPI, TWI, RSP, stream density, 

distance from stream, lithology, distance to fault, aspect, and elevation. The results 

indicated that the LR had the highest AUC value, followed by the SVM and C4.5 

models. Zandi et al. (2016) applied the LR to map GWP. They used 38 springs to train 

the model with mean precipitation, land use, relative, fault density, fault distance, 

petrology, and slope. After the training, the output map was tested through the AUC 

value. They concluded that the LR was an effective model in mapping GWP. From 

the results, land use was the environmental factor that impact the highest on GWP. 

Martínez‐Santos and Renard (2020) successfully demonstrated the efficiency of the 

LR model in the Bauole sub-catchment, Mali, using precipitation, land use, soil, NDVI, 

TWI, slope, DD, lithology, proximity to surface water, lineament density, and 

lineaments and 1848 borehole yields. 

c. Boosted regression tree (BRT) model 

The BRT is a combination model between the boosting method and the DT 

algorithm. The BRT operates by combining and fitting many DTs based on the 

boosting method to improve the predictive performance. The output of BRT is an 

average model from many approximate rules, but boosting is conducted in a 

stepwise procedure (Nampak et al., 2014). The application of BRT in GWP mapping is 

compatible with classification and regression of a spring/non-spring location or 

groundwater yield in a given region (Mousavi et al., 2017; Naghibi and Pourghasemi, 

2015; Nampak et al., 2014). Considering its advantages and disadvantages, the BRT 

can work with numerical and categorical data, reduce overfitting, and optimize the 

different loss functions. However, the real-time database process of the BRT is long 

because of the large number of trees, and the output can be outliers. 
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Naghibi et al. (2016) compared the performance of the BRT to that of the 

CART, RF, and EBFTM in the spatial modeling of GWP. They used 864 spring locations 

to train and validate these models according to the rate of 70:30. The input factors 

included fault density, DD, land use, geology, distance to faults, distance to rivers, 

profile curvature, plan curvature, slope length, TWI, altitude, slope aspect, and slope 

degree. Their result showed that the BRT was a good model in predicting GWP with 

an AUC value of 0.898. Mousavi et al. (2017) used the BRT and the FR to delineate 

GWP zones in the Mashhad Plain, Iran. Lithology, land use, fault density, river density, 

distance to rivers, distance from faults, TWI, slope length, profile curvature, plan 

curvature, elevation, slope aspect, and slope degree were applied as input factors. 

Both models demonstrated satisfactory performances. Their results showed that TWI 

had the largest impact on predicting GWP, followed by elevation and distance to 

rivers. Al-Abadi (2017b) compared the BRT with FR and the ant miner algorithm in 

assessing GWP in the Euphrates River Basin, Iraq. The slope, profile curvature, plain 

curvature, TWI, SPI, distance to rivers, distance to faults, altitude, lithology, and 

aquifer type were used as the input data of these models. The result indicated that 

the GWP map from the ant miner algorithm was more accurate than that from the 

BRT and the FR. Kim et al. (2019) investigated the capabilities of the BRT, RF, and LR 

in predicting specific capacity and transmissivity of groundwater productivity in the 

Okcheon-gun, South Korea, by using the inputs of plan curvature, convergence index, 

TRI, depth of groundwater, distance from channel network, distance to faults, 

lineament density, drainage basin, slope length, TWI, valley depth, relative, slope, 

soil type, land use, and geology. Their results showed that applying the BRT, RF, and 

LR with specific capacity and transmissivity had high accuracy. 

d. Support vector machine (SVM) model 

The SVM is a statistical learning model for regression and classification tasks 

to determine a hyperplane for training data (Rahmati et al., 2018). The SVM 
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comprises sigmoid kernels, radial basis function, polynomial, and linear (Rahmati et 

al., 2018). In the GWP, the SVM considers the environmental factors as the x variable 

and the validation factors (groundwater yield, specific capacity, and spring/non-spring) 

as the class label. The optimal separating hyperplane helps classify the training data 

into subsets or classes (+1, −1) (Lee et al., 2018; Naghibi et al., 2017a; Naghibi et al., 

2018; Sameen et al., 2019). The advantage of the SVM lies in its effective operation in 

high-dimensional spaces and in cases where the number of samples is lower than 

that of dimensions. However, the SVM underperforms when the dataset is large and 

the noise is substantial. 

Naghibi et al. (2017a) tested four different SVM models along with the 

random forest genetic algorithm optimized (RFGA) and the RF to create the GWP 

maps in Ardebil Province, Iran. The environmental factors included lithology, land 

use, faults density, distance to faults, rivers density, distance from rivers, TWI, SPI, 

profile curvature, plan curvature, slope aspect, slope angle, and elevation. SVML 

yielded the best result among different SVMs. However, the performance of all SVM 

models was lower than the RF and the RFGA. Lee et al. (2018) compared the ANN 

and SVM for GWP prediction in Boryeong City, Korea. They used 27 hydrogeological 

factors to predict groundwater yield and SPC. Their results revealed that the ANN 

was better than the SVM in performance. However, the SVM was proposed as a time-

effective GWP tool. Guzman et al. (2019) investigated GW for agricultural activities in 

the southeastern USA. They considered evapotranspiration, precipitation, and 

groundwater level data as model input. Their results concluded that the SVR was 

better than the ANN. Sameen et al. (2019) applied the RF, SVM, ANN, DT, SLRF, and 

voted ANN-RF to map GWP. The applied data included geology, profile curvature, 

TWI, STI, SPI, elevation, aspect, slope, curvature, plan curvature, distance to stream, 

land use, and TRI and 85 wells with different groundwater yields to train and test 

these models. The comparison between the RF, SVM, ANN, DT, self-learning random 
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forest (SLRF), and voted ANN-RF for GWP mapping indicated that the SLRF was the 

most suitable model. Panahi et al. (2020) applied the SVM with grid search and 

genetic algorithms to forecast GWP in the Ajloun and Jerash Provinces, Jordan. The 

models were applied to improve the predictive performance in GWP using 

environmental factors, including NDVI, lithology, land use, rainfall, distance to faults, 

slope length, soil type, SPI, distance to drainage, TWI, curvature, altitude, aspect, and 

slope angle. Their results indicated that applying the SVM with the genetic algorithm 

demonstrated more accuracy than the SVM with the grid search. 

2.3.2.3. Hybrid/ensemble models 

The evolution of computer science, GIS, and remote sensing has helped 

models overcome the disadvantages and improve predictive performance. Combined 

or hybrid models have commonly been used in GWP studies in recent years. The 

combination of statistical methods and machine learning not only solves data 

problems but also boosts the predictive productivity of GWP. Additionally, the 

integration of parametric and nonparametric structures from different sources of 

knowledge is a strong point of the hybrid/ensemble models. This finding has been 

demonstrated in many recent GWP studies using hybrid/ensemble models. Khosravi 

et al. (2018) delineated GWP zones in the Koohdasht–Nourabad Plain in Iran by 

integrating ANFIS with metaheuristic optimization algorithms. They used lithology, soil 

type, rainfall, land use, distance from river, distance from fault, TRI, TWI, SPI, plan 

curvature, elevation, and slope as input data. IWO, DE, FA, PSO, and BA algorithms 

were applied to optimize the ANFIS. Their result revealed that the ANFIS + DE 

demonstrated the best model performance. Termeh et al. (2019) proposed a 

combination between SA, BBO, and GA techniques and ANFIS to optimize the GWP 

map. The relevant input factors include land use, soil, rainfall, lithology, distance to 

rivers, fault density, distance to faults, DD, TWI, profile curvature, plan curvature, 

slope length, slope aspect, slope angle, and altitude. A total of 339 wells were 
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divided with a scale of 70:30 to train and validate these models. The GA was found 

to be superior to the SA and BBO method as combined with ANFIS for improving the 

performance of the GWP map. These models also indicated that rainfall, soil, and 

land use were important factors for GWP in the Booshehr plain, Iran. Pham et al. 

(2019) investigated the GWP in the Vadodara district, India, by developing hybrid 

models based on Decision Stump (DS), RF, MB, and BG. Their database included 34 

groundwater wells, slope, soil, land use, lithology, river density, precipitation, TWI, 

plan curvature, aspect, slope, and altitude. They also integrated DS with other 

models to classify the different ensemble learners. Their result indicated that the 

dataset with a scale of 50:50 is superior to other ratios, and the performance of all 

hybrid models was satisfactory. Singh et al. (2022) created a hybrid model based on 

catastrophe theory (CT) and AHP to analyze the space of GWP in the West Bengal 

state, India. Their result removed the major limitation of the catastrophe theory in 

quantitative factors. The accuracy of this hybrid model was 77%. Nguyen et al. 

(2020b) developed four ensemble models using LR with cascade generalization, 

random subspace, bagging, and dagging to map the GWP in Dak Lak Province, 

Vietnam. They used 12 geo-environmental factors, such as geology, land use, soil, 

river density, precipitation, flow direction, TWI, STI, curvature, slope, elevation, and 

aspect, and the groundwater yield of 195 well locations, as input data. Their result 

revealed that the AUC value of ensemble models was higher than that of the single 

LR model, in which the LR+ dagging demonstrated the best performance. 

2.3.3. Validation 

2.3.3.1. Validation-related parameters 

 The past studies (Machiwal et al., 2011; Naghibi and Pourghasemi, 2015; Rajaveni 

et al., 2017; Razandi et al., 2015) have applied the groundwater measurement 

parameters, such as specific yield (Sy)/specific storage (Ss), non-spring/spring occurrence, 
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and groundwater level, to delineate the GWP zones of a given region. Uliana (2005) 

stated that “specific storage (Ss) is the volume of water released from a unit volume of a 

confined aquifer for a unit (1 m or 1 ft) drop in piezometric head, and specific yield (Sy) 

is the volume of water that can yield by gravity drainage from a unit volume of an 

unconfined aquifer for a unit drop (1 m or 1 ft) in water level; this quantity is equivalent 

to the effective porosity.” Kresic (2010) indicated that spring is a location where 

groundwater is discharged to the land surface by gravity and water pressure. The 

groundwater level is the level of saturated water in soil or rock observed in a 

well/borehole (Maggirwar et al., 2011). These parameters are crucial for classifying the 

GWP levels of a given area. The GWP studies from 2010 to 2020 have used different 

parameters depending on reality conditions and approaches to develop and assess the 

models. Machiwal et al. (2011) indicated that the high GWP is associated with a large 

groundwater yield. Specifically, the areas with good GWP have a groundwater yield larger 

than 5 m3/h, the areas with medium GWP have groundwater yield ranging from 1 m3/h 

to 5 m3/h, and those with low GWP have a groundwater yield of less than 1 m3/h. 

Razandi et al. (2015) conducted a study in the Varamin Plain, Iran and found that wells 

with groundwater yield of more than 40 m3/h are known as locations with good 

groundwater productivity. Ozdemir (2011a) used the non-spring/spring occurrence to 

determine the GWP levels in Aksehir, Turkey. Locations with spring occurrence were 

reported to have good groundwater productivity. Non-spring/spring occurrence was also 

used in the research by Naghibi and Pourghasemi (2015) to delineate GWP zones in the 

Chaharmahal-e-Bakhtiari Province, Iran. Their result revealed that springs rarely occur in 

regions with low GWP. Rajaveni et al. (2017) indicated that the groundwater level in a 

well/borehole also represents GWP at a location. They found that areas with low GWP 

have large groundwater fluctuations, while areas with high GWP have low groundwater 

fluctuations. Mukherjee et al. (2012) observed data on groundwater levels to verify the 

GWP map in Kachchh district, India. 
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2.3.3.2. Validation technique 

Validation is a crucial step in assessing GWP models. Validation testing generally 

verifies forecast performance. Rajaee et al. (2019) indicated that the predicted results 

increasingly improved. Algorithm development in models has increased, aided by the 

evolution of GIS, RS, machine learning technologies. Díaz-Alcaide and Martínez-Santos 

(2019) also argued that the reason for the increased predictive efficiency is the use of 

an increased number of variables in GWP mapping. According to statistics from the 

study dataset (91 publications), four main techniques used by hydrogeologists in 

groundwater research to check the accuracy of a groundwater map in their area of 

interest are as follows: receiver operating characteristic (ROC), statistical evaluation 

measures, Kappa index, and root mean square error (Table 2.2). Among these 

techniques, the ROC is mostly used in GWP studies with model performance 

evaluation. The choice of the groundwater map validation technique depends on the 

preference of the operator. Performance evaluation results for common models in this 

study are shown in Fig. 2.7. 
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Fig. 2.7. Fluctuation of AUC value in common models in GWP studies 

Table 2.2. Validation methods in GWP studies 
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2.4. Current status and challenges for groundwater potential mapping research 

in the future 

This review provides an overview of factors pertaining to GWP mapping from 

model thematic layers, algorithms, and their accuracy. A GWP map must present the 

potential areas of groundwater (Elmahdy and Mohamed, 2014). Hydrogeologists usually 

delineate their potential maps into five levels: very high, high, moderate, poor, and very 

poor potential regions (Kumar et al., 2014; Mukherjee et al., 2012; Pham et al., 2019). 

According to the statistics of this review, there are eight topical map layers commonly 

used by hydrogeologists: geology, slope, land use, soil type, drainage density, 

lineament density, altitude, rainfall.  

Another consideration of GWP map is the data source for mapping thematic 

layers. For data sources to create thematic layers, two main sources have been 

commonly employed: satellite data and hydrogeological data. Today, the 

development of RS technology has provided a large amount of data on the Earth's 
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surface and weather information, facilitating map creation within a shorter time than 

that required for field data collection (Díaz-Alcaide and Martínez-Santos, 2019). Thus, 

although RS data are effective, scientists must have a wide and in-depth knowledge 

of RS (Oikonomidis et al., 2015). Some satellites with high resolution provide high-

quality images; however, this makes the images cost-intensive making their use 

unfeasible. Another disadvantage of RS data is that satellite images only provide 

coverage information; information of objects present under cloud cover and treetops 

is not considered. This requires hydrogeologists to combine information from the 

field, such as the borehole, well, and hydrogeological data, with RS; field parameters 

can provide what RS data cannot. For example, well productivity data cannot be 

collected from satellite images. Additionally, field data always provide a high degree 

of confidence and validity. However, the collection of borehole, well, and 

hydrogeological data is time- and labor-consuming. According to current statistics, 

there are several approaches to establish a GWP map. These methods can be 

divided into three groups: statistical, machine learning, hybrid/ensemble techniques. 

The common statistical techniques include MCDA-AHP, FR, EBF, and WOE models. 

The features of the statistical models are easy to implement a GWP map, their 

observed variables do not require more than that of machine learning models. In 

some cases, several authors have only used the weights of the affected variables of 

groundwater, ignoring the map's accuracy (Gaur et al., 2011; Hashim et al., 2013; 

Murmu et al., 2019; Singh et al., 2013). Recently, machine learning models have been 

used extensively by hydrogeologists. The common machine learning models include 

RF, LR, BRT, and SVM. Big data are required to train and test the machine learning 

models (Martínez‐Santos and Renard, 2020). From basic machine learning and 

statistical models, hydrogeologists have developed advanced models aimed at 

creating more accurate GWP maps such as the adaptive neuro-fuzzy inference 

system (ANFIS) + differential evolution (DE) model (Khosravi et al., 2018), random 
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forest (RF) + decision Strump (DS) (Pham et al., 2019), adaptive neuro-fuzzy inference 

system (ANFIS) + genetic algorithm (GA) (Termeh et al., 2019), and logistic regression 

(LR) + dagging (DLR) (Nguyen et al., 2020b). 

An integral part of any GWP study is the validation step (Das, 2019). Statistically, 

receiver operating characteristic (ROC), statistical evaluation measures, Kappa index, 

and root mean square error are four main techniques used to evaluate a GWP map. 

Statistical evaluation measures, Kappa index, and root mean square error are often 

used to check the accuracy of statistical models, while the AUC technique is often used to 

check the accuracy of machine learning models and several statistical models. Generally, 

the effectiveness of the common statistical models ranges from approximately 59.0% 

to 90.3% while the accuracy of GWP maps produced by common machine-learning 

models goes from 50.0% to 90.1%. Strikingly, a higher accuracy interval (71.0% - 92.0%) 

was shown in the hybrid/ensemble models (Fig. 2.7). In addition, some authors have 

combined the AUC technique with specificity, sensitivity, negative predictive value, and the 

positive predictive value (Nguyen et al., 2020b; Ozdemir, 2011a; Pham et al., 2019). 

The complex changes in climatic conditions and an increase in the demand for 

clean water pose many challenges for hydrogeologists with regard to groundwater use and 

planning. In reality, hydrogeologists have conducted extensive researches and pursued 

various methods and approaches to create the most suitable GWP map for their regions of 

interest in the past decade. However, GWP mapping research is still characterized by a 

number of limitations and challenges that need to be addressed in the future. 

Thus far, researchers have not found the optimal models required to map the 

GWP of different areas around the world. There are two reasons for this: the difference 

between regions in natural conditions and social characteristics, and the discrepancy in the 

input data. Therefore, it is difficult to conclude which model is the most accurate. 

Simultaneously, the constant changes in climatic conditions, runoff factors, land-use 
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coefficients, and population growth directly affect the GWP of a certain region, posing great 

difficulties for hydrogeologists in mapping GWP. 

To address these challenges, future research should focus on the following 

aspects. First, studies must focus on improving the quality and quantity of the input 

database to ensure the reliability of GWP maps. At the same time, stronger emphasis must 

be placed on using satellite images with high resolution to improve the accuracy of 

classification, which will lead to the improved accuracy of the forecast results. Third, maps 

should be created based on a combination of machine learning and statistical models. 

Fourth, researchers need to apply different approaches for each research region to acquire 

the most suitable research model. Finally, three-dimensional models should be used to 

obtain an overview of the groundwater system. 

2.5. Summary 

This chapter aims to review parameters, model techniques, validation methods in 

groundwater potential field. According to statistics, there are three major model groups used 

to establish groundwater potential maps. The first model group is a statistic group, including 

multi-criteria decision making/analytic hierarchy process, frequency ratio, evidence belief 

function, and weights of evidence. The second model group includes machine learning 

models, such as random forest, logistic regression, boosted regression tree, and support 

vector machine. The final group is the hybrid/ensemble models. In groundwater potential 

mapping studies, 41 thematic layers affect the potential of groundwater. However, 

hydrological researchers have frequently used eight factors in groundwater potential studies: 

geology, slope, land use, soil type, drainage density, lineament density, altitude, rainfall. Most 

previous studies on groundwater potential have used a combination of geographic 

information system, remote sensing, and machine learning techniques to design the 

groundwater potential in regions of interest. Data sources are commonly applied to 

groundwater potential mapping, including satellite, borehole, and geophysical data. The 
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accuracy of groundwater potential maps produced by common machine learning models 

ranges from 50.0% to 90.1%, while that produced by common statistical models ranges 

between 59.0% and 90.3%. Interestingly, hybrid/ensemble models’ accuracy interval was 

from 71.0% to 92.0%. Therefore, the review suggests that statistical algorithms and machine 

learning techniques should be combined, and thematic layers should be increasingly used in 

mapping groundwater potential maps to achieve high efficiency. 
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Chapter 3. STUDY AREA AND RESEARCH METHODOLOGIES 

3.1. Study area 

3.1.1. Location 

 The present study focuses on the distribution of potential groundwater in 

Kanchanaburi province, Thailand. The province is placed in the western central of 

Thailand, from 99°10’54’’ to 99°53’31’’E and 13°43’34’’to 15°39’46’’N (Fig. 3.1). 

There are approximately 19,483 km2, of which 61% is a mountain with an elevation 

from 2 m to 2,028 meters (6653 ft) above sea level. The province has 847.47 km 

long of the border with neighboring provinces and Myanmar. The region has a 

tropical savanna climate with significant seasonal variations in temperature and 

precipitation. Administratively, Kanchanaburi is separated into 13 districts: Bo Phloi, 

Dan Makham Tia, Huai Krachao, Lao Khwan, Mueang Kanchanaburi, Nong Prue, 

Phanom Thuan, Sai Yok, Sangkhla Buri, Si Sawat, Tha Maka, Tha Muang, and Thong 

Pha Phum. 

 

  

 

 

 

 

 

 

 

Fig. 3.1. Location of Kanchanaburi province 
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As of December 31st, 2018, the number of inhabitants of Kanchanaburi was 

848,198 and, the population density was around 43.5 people/km2 (the Statistical 

Yearbook of Thailand 2018). Four population groups are living in Kanchanaburi, including 

Thai, Karen and Mon, and Burmese. 

 

Fig. 3.2. Information about the population structure in Kanchanaburi province 

3.1.2. Topography 

The terrain of Kanchanaburi province has a very diverse and hierarchical 

structure. The topography of Kanchanaburi province gradually rises from the East to 

the West. There are three kinds of terrain in Kanchanaburi: mountains, valleys, and 

river basins. The mountainous topography is allocated in the North and West of 

province (in Sangkhla Buri, Thong Pha Phum, Si Sawat, some parts of Sai Yok, Bo 

Phloi, and Mueang Kanchanaburi districts) with an elevation ranging from 300 to 1800 
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meters, occupy three-fifths of total land area. The mountainous regions are mainly 

enveloped by natural and production forests with plant biodiversity.  

 The valleys area is located in the northeast of the province (in Lao Khwan, 

Phanom Thuan District, Bo Phloi, and Mueang Kanchanaburi districts) and comprises 

20% of the total area. The characteristic of topographic structures is a hillside plain 

with low hills and groves, and slope direction is from east to southeast, mostly 

between 30 and 100 meters above sea level. The remaining area is the river basin, 

mainly located in the south and east of Kanchanaburi province (in Tha Muang. Tha 

Maka, and some parts of Phanom Thuan districts). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Terrain of Kanchanaburi province in Thailand 

3.1.3. Meteorological condition 

The atmospheric circulation of Southeast Asian monsoons impacts the climate in 
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Kanchanaburi. It is the interconversion of climatic characteristics of the mountain and plain 

Thailand. The northeast monsoon often occurs between November and March; the 

southwest monsoon usually begins between May and September. The transition period is 

April and October. The province has two main seasons: summer and winter. In the dry 

season, the heat lasts a long time; conversely, cold spells occasionally appear in the wet 

duration. On the report of the Kanchanaburi people’s committee about climate, weather 

features of the province are characterized as follows: 

  Temperature of the province is very high. It is approximately 38.2oC in the 

summer and around 31.3oC in the winter. The amplitude of temperature oscillates 

quite widely. April has the highest monthly mean temperature at approximately 

38.2oC, and December is the lowest monthly mean one at just under 19.6oC 

(https://www.weather-atlas.com). 

 

Fig. 3.4. Monthly temperature in Kanchanaburi province (2020) 

The annual average relative humidity fluctuates from 61% to 80%. October 

typically occurs the highest humidity at 80%, and March usually has the lowest humidity 

at about 61%. 
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 Fig. 3.5. Monthly humidity in Kanchanaburi province (2020) 

The annual average precipitation is 1056.4 mm, but it does not distribute 

evenly in the province. The heavy rainfall is concentrated in mountainous areas. 

Between May and October, precipitation occupies around 83% of the annual rainfall 

total. The rest of the rainfall happens from November to April. September is the 

highest average rainfall of 220.5 mm, while January is the lowest with 3.3 mm. 

 

Fig. 3.6. Monthly average precipitation and rainfall days in Kanchanaburi province (2020) 

The annual average sunshine and daylight hours are approximately 31,700 hours 
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and 53,000 hours, respectively. The highest hours of sunshine happen from January to 

April and December; the average hours of sunshine in these months are around 9 hours 

per day. Moreover, the lowest hours of sunshine appear from July to September; the 

average hours of sunshine in these months are approximately 5 hours per day. June and 

July have the longest days, with 12.9 hours per day; meanwhile, December has the 

shortest day, with 11.3 hours per day. 

 

Fig. 3.7. Monthly average sunshine and daylight hours in Kanchanaburi province (2020) 

The Southeast monsoon's wind regime begins to blow into the Gulf of Thailand in 

late May and early June. The southeast monsoon blows through, causing more rain in the 

period from August to September. In winter, the northeast monsoon blows from the high-

pressure area from China. The northeast monsoon is cold and dry. It blows over the whole 

of Kanchanaburi from October to February next year. The Northeast Monsoon begins to 

weaken in February, when the East Wind from the South China Sea and the Southeast 

from the Gulf of Thailand will take its place. In addition to the monsoons mentioned 

above, the area has occasional storms. 

Climate change affects many weather elements such as the number of 

precipitations, temperature, sunshine duration, etc. Therefore, it impacts the groundwater 
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quality and quantity in Kanchanaburi. However, the effect of climate on groundwater takes a 

bit long time (for example, 50 years). According to Srisuk et al. (2016), climate change has 

degraded groundwater quality in coastal and inland areas in Thailand, such as saline water 

intrusion. While the analysis by Pholkern et al. (2018) indicated that groundwater resources in 

Central Huai Luang Basis are at risk due to climate change. 

3.1.4. Hydrologic condition 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8. River systems and waterbody in Kanchanaburi province  

 Four river systems pass the Kanchanaburi province's territory, namely Khwae Noi, 

Khwae Yai, Mae Klong, and Lam Taphoen rivers. These rivers originate from the Khwae Noi 

river systems in Thong Pha Phum district and Thong Pha Phum district. Khwae Noi converges 

with Khwae Yai to form Mae Klong river in Pak Phraek ward, Mueang Kanchanaburi districts. 

Lam Taphoen river flows through the Eastern Plain of Kanchanaburi province and meets the 

Khwae Yai River at Tha Sao in Sai Yok district. 
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3.1.5. Soil resources 

Kanchanaburi province has suitable soil conditions for cultivating crops such as 

sugarcane, maize, cassava, and pineapple. According to the survey of the land 

development department of Thailand (2007), the soil condition in Kanchanaburi is 

mainly formed from sedimentary rock by decomposition of igneous rock, granite, 

granodiorite, shale, and quartz phyllite. There are 33 soil group types found in 

Kanchanaburi province. Soil group 62 occupies 10,334.81 km2, followed by soil group 

33 (1029.55 km2), and soil group 29 (994.26 km2). Soil groups 31 and 48 have a total 

area of 935.54 km2 and 841.98 km2, respectively. 

+ Soil group 62: This type of soil covers mainly hilly areas. It appears at 

places with a slope of more than 35%. The characteristic is deep and shallow. Soil 

texture and fertility vary according to the original rock, such as crushed stone, lump 

rock, or slate. This type of soil should not be used for agricultural purposes because 

of ecosystem conservation. 

+ Soil group 33: Soil texture has brown or reddish-brown. It lies deep in the 

soil, contains mica or lime, is formed from sediment materials, and is found along 

rivers, hills, and mountains. This soil type usually appears in regions with a slope of 

about 2-12%. It has drainage from good to moderate; therefore, the groundwater level 

is more profound than 1m all year round. The soil group has moderate natural fertility. 

The topsoil layer has a pH in the range of 6.5-7.5. 

+ Soil group 29:  Soil texture is clay and delicate, with yellowish-brown or 

reddish colors. It originates from river sediments or degraded soils. This group is 

found in hills. It appears in areas with a slope of about 3-25%. It is deep and well-

drained soil. Natural fertility is relatively low; the pH of soil ranges around 4.5-5.5. 

This type of land is currently used to grow different types of rice, crops, and fruit 

trees. 
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+ Soil group 31: Soil texture is clay. The feature is fertile. It has brown, yellow, 

and red colors due to the decomposition of many types of rocks. It is found in 

undulating and deformed regions. This group appears in regions with a slope of 

about 3-20%. This type of soil is deep and medium well-drained soil. The 

groundwater level is usually more than 1m deep. The natural average pH is 5.5-6.5. 

Currently, this type of soil is used to grow rice and various fruit trees. 

+ Soil group 7: Soil texture is clay, has brown or gray-brown colors, and is 

formed by river alluvium. It is deep soil and poorly drained. It is found in flat and 

relatively smooth areas. The water level is 30-50 cm deep in the rainy season for 3-4 

months. This group has naturally fertile and moderate fertility features. The pH 

ranges from 6.0-7.0. 

3.1.6. Geological condition 

Kanchanaburi is Thailand's westernmost province. It has a lot of high mountain 

ranges. The research study's geology consists mainly of metamorphic, igneous, and 

sedimentary rocks ranging in age from Precambrian to Quaternary. Fig 3.9 depicts the 

geology in Kanchanaburi province. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 55 

 

Fig. 3.9. The geological map of Kanchanaburi province 

3.1.6.1. Geological structure 

The research area's structures are complex with folds and faults. The folds may 

be seen in various spots in Kanchanaburi from both field and satellite imagery 

(Songmuang et al., 2007). Most fold axes are in the northwest-southeast direction 

(Bunopas, 1976). Fold structures may be seen in a variety of rocks. It could be anticlinal 

and synclinal folds. The anticlinal and synclinal folds have been observed in the 

Ordovician and Permian limestones in the Khao Leam region. According to (Songmuang 

et al., 2007), tight and recumbent folds may be found in Ordovician to Devonian strata, 

mainly in the western section of Kanchanaburi city and the Three Pagoda Fault. 

Many faults appear in western Thailand grouped into the Sri Sawat Fault and 

the Three Pagoda Fault (Chuaviroj, 1991; Pailoplee et al., 2009). The Sri Sawat Fault, 

which runs north-south, has a curved pattern with multiple smaller fault sets at its 
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southern end. The Sri Sawat Faults begin in Kanchanaburi Province's Sri Sawat district 

and the northern section of Bo Ploi district. In a northwesterly direction, this fault 

also flows through the Khwae Yai River. The Three Pagoda Fault deviates from the 

Mae-Ping Fault to the north, cutting Paleozoic to Cenozoic lithological units. Fig. 3.10 

displays the active faults in Kanchanaburi province. 

 

Fig. 3.10. The faults pass through Kanchanaburi province 

3..1.6.2. Geological Setting 

Kanchanaburi's geology comprises several faults that run in different directions, 

primarily northwest-southeast. These faults cut through various lithologies. The youngest 

unit consists of narrow and long strips of Quaternary deposits filled with laterites, silts, 

sands, and gravels. The Triassic rocks of the Chong Khab formation lie unconformably 

under the Quaternary layers. The Daonella sp, Halobia sp and sandstone interbedded 

with limestone make up the Chong Khab formation. The Permian Tha Madua sandstone, 
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which includes heavily bedded red sandstone and white quartz sandstone, underpins 

the Chong Khab formation. The Sai Yok Limestone is almost equivalent in age to the Tha 

Madua sandstone. This Permian-aged deposit consists of massive and bedded 

limestones with fusulinids, brachiopods, pelecypods, and bryozoans. The 

PermoCarboniferous-aged Khaeng Krachan formation underlies the Permian-aged Sai Yok 

formation. The Bo Ploi and Kanchanaburi formations, which are Silurian to Devonian in 

age, comprise pebbly mudstone, gray sandstone, and dark-gray shale. The Thung Song 

includes banded argillaceous limestone, argillite, and quartzite with Ordovician 

cephalopods is older than the Silurian-Devonian rocks. The Tarutao (or Chao Nen Group) 

of the Cambrian age is the earliest lithologic unit in the study area (Songmuang et al., 

2007). 

3.1.7. Hydrogeological characteristics 

Groundwater sources in Kanchanaburi provinces can be divided into two main 

groups: Unconsolidated aquifers  and Consolidated aquifer. 

- Unconsolidated aquifers: Groundwater in unconsolidated rocks differ in both 

quality and quantity, depending on the type of sediment, biological characteristics, 

and structural characteristics of sediment accumulation. The areas in the South and 

East of Kanchanaburi are low-lying areas with a source of groundwater that can be 

utilized. Groundwater can be withdrawn to use at a rate of 30-50 m3/hour. 

- Consolidated aquifer: Groundwater is stored in fractured materials such as 

granite, basalt, and limestone. The Western part of the Kanchanaburi province is 

mainly metamorphic rocks. Therefore, groundwater is shallow, less than 2 m3/hour 

(Sangkhla Buri, Sai Yok, Si Sawat, and Bo Ploi districts). Meanwhile, in places with low 

terrain (Mueang Kanchanaburi, Sai Yok, and Thong Pha Phum districts), the 

groundwater supplies above the threshold of more than 50 m3/hour. 

In addition to limited groundwater resources, groundwater quality is another 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 58 

issue in the study area. The total mass of matter is considered the overall chemical 

characteristics of groundwater. Total dissolved solid (TDS) is a term that uses to 

describe the total concentration of dissolved materials in water. The optimal value 

of total dissolved solids (TDS) is 600 mg/l and the maximum allowed is 1,200 mg/l. 

TDS in groundwater in Si Sawat, Thong Pha Phum, and Sangkhla Buri districts 

was less than 500 mg/L. Meanwhile, TDS in groundwater in Sai Yok, Thong Pha Phum, 

Lao Khwan, and Bo Phloi districts was around 500-1,500 mg/l. 

3.2. Research data 

3.2.1. Data about groundwater yield assessment 

3.2.1.1. Groundwater yield 

Our case study considered eight site-specific variables, including altitude, distance 

to faults, distance to waterbodies, slope, geology, land use, rainfall, and soil type (Fig. 

3.11). In previous studies, these variables were considered to influence groundwater 

yield and distribution (Abd Manap et al., 2014; Arulbalaji et al., 2019; Mumtaz et al., 

2019; Naghibi et al., 2017a; Razandi et al., 2015). This study mostly obtained well-

processed data from government agencies or, in some cases , extracted data from 

satellites using well-defined procedures to make our analysis workflow consistent for 

future studies (Díaz-Alcaide and Martínez-Santos, 2019). In particular, the altitude and 

slope layers were calculated based on the Aster Global Digital Elevation Model V003 

from the National Aeronautics and Space Administration (NASA; 

https://search.earthdata.nasa.gov) using ArcGIS pro 2.8 (Khal et al., 2020). Land use and 

soil type maps were obtained from the Thailand Department of Agriculture. Global 

satellite precipitation data (CHRS, http://chrs.web.uci.e.du) were collected from the 

rainfall database to estimate the annual precipitation in Kanchanaburi Province during 

the time period between 2010 and 2020. The distance to waterbodies was digitized and 

calculated from Thailand’s hydrological system. Geological and fault data were 
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collected from the Department of Mineral Resources. All spatial input layers were 

resampled to a 30 m resolution for the overlay analysis. Because the AHP and FR 

methods require categorical input variables for the analysis, the continuous variables in 

our study (that is, altitude, distance to faults, distance to waterbodies, slope, and rainfall) 

were classified into subclasses using the equal interval method. 

3.2.1.2. Ground truth data 

Our case study used groundwater yield as the ground truth data for GWP model 

training and map validation. Groundwater yield was collected from 1,601 wells across 

Kanchanaburi Province in a previous project funded by the Thailand Department of 

Groundwater Resources (DGR). The groundwater yield for 1,601 wells was partitioned based 

on the threshold of 10 m3/h into two datasets: those of wells with a groundwater yield of 

>10 m3/h and those of wells with a groundwater yield ≤10 m3/h (Fig. 3.11). Both datasets 

were used to train and validate the RF model, whereas only the dataset with a groundwater 

yield of >10 m3/h was used in the AHP and FR model training. The datasets were split into 

two subsets using a ratio of 70:30 for model training and validation, respectively. The 

detailed experimental designs for individual model buildings are presented in Section 3.3.1. 
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Fig. 3.11. Well positions in Kanchanaburi Province, Thailand 

3.2.2. Data about heavy mental contamination risk assessment in groundwater 

3.2.2.1. Ni contamination in groundwater 

Ni contamination in groundwater is a phenomenon in which the Ni 

concentration exceeds the permissible level. According to Thailand's groundwater 

quality standards, Ni concentration in groundwater must not be more than 20 µg/L. For 

our case study, Ni data of 180 groundwater samples were collected from April to July 

2021 and analyzed at Thailand Department of Groundwater Resources (DGR). The 

groundwater sample locations were displayed using the UTM coordinate system (Fig. 

3.12). The concentration of Ni was measured in the laboratory by Atomic Absorption 

Spectrophotometry-Direct Aspiration method with a detection limit of 10 µg/L. Ni 

concentration in groundwater samples fluctuates from 10 to 72 µg/L (Fig. 3.13). In 180 

groundwater samples, 16 groundwater samples were contaminated with Ni. 
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Fig. 3.12. Positions of groundwater samples in study area 

 

Fig. 3.13. Classification of Ni contaminated and uncontaminated groundwater samples 

3.2.2.2. Influencing factors 

The groundwater could be contaminated with Ni from anthropogenic and 

natural sources. Based on the previous surveys (Baumann et al., 2006; Mohankumar 
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et al., 2016; Sajedi-Hosseini et al., 2018; Twarakavi and Kaluarachchi, 2005; Uliasz-

Misiak et al., 2022), eight environmental variables, including altitude, distance to 

roads, distance to waterbodies, geology, land use, rainfall, slope, and soil type were 

selected. In this study, all these factors were utilized as influencing factors to control 

the Ni contamination in groundwater. Maps of altitude and slope were extracted 

from the Aster Global Digital Elevation Model V003 satellite image. Distance to roads 

and distance to waterbodies were processed and estimated by the “Euclidean 

Distance” function in the ArcGIS environment from Thailand's national database of 

hydrology and transportation, respectively. Geology and soil type maps were 

provided by the Thailand Department of Mineral Resources. Land-use map was 

collected from Kanchanaburi Provincial Land Office. A rainfall map was created from 

Global satellite precipitation data (CHRS, http://chrs.web.uci.e.du). All influencing 

factors were prepared in raster format, with each pixel size of 30m x 30m. 

3.2.3. Data about groundwater quality assessment 

This study investigated previous publications relevant to groundwater quality 

assessment in reputable journals (Agrawal et al., 2021; Amiri et al., 2014; Asadi et al., 

2019; Boateng et al., 2016; Chotpantarat and Thamrongsrisakul, 2021; Gulgundi and 

Shetty, 2018; Jha et al., 2020; Kawo and Karuppannan, 2018; Li et al., 2018; Rabeiy, 

2018; Sadat-Noori et al., 2014; Sridharan and Senthil Nathan, 2017; Wali et al., 2019) 

(Supplementary Table S1). It was clear that the number of parameters was used 

differently in these studies. An investigation was then conducted statistics on the 

popularity of the parameters to select groundwater parameters with the use of 

above 50% for this study. Finally, potassium (K+), sodium (Na+), calcium (Ca2+), 

magnesium (Mg2+), chloride (Cl−), sulfate (SO4
2−), bicarbonate (HCO3

−), nitrate 

(NO3
−), pH, electric conductivity (EC), total dissolved solids (TDS) and total hardness 

(TH) were selected to assess the groundwater quality in Kanchanaburi, Thailand. 
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Next, I inherited groundwater samples of 116 wells in Nong Prue, Bo Phloi, Mueang 

Kanchanaburi, and Dam Makham Tia districts from the Groundwater Resource 

Department (DGR) conducted from January to April 2022 and then collected 64 

groundwater samples in Lao Khwan, Huai Krachao, Phanom Thuan, Tha Maka, Tha 

Muang districts in May 2022 to assure the coverage rate (Fig. 3.12). A total of 180 

groundwater samples were used in this study (Supplementary Table S2). All 

groundwater samples were contained in 500-ml polyethylene bottles and labeled 

corresponding to information of each well after getting from the groundwater wells. 

The measurements of EC and TDS were conducted by Hach 51800-10 sensION 5 

Waterproof Conductivity Meter with an accuracy of ±0.5%. pH was measured by 

HQ40d Portable Multi Meter with an accuracy of ±0.01. Analysis of K+ and Na+ 

Ca2+, Mg2+, Cl−, SO4
2−, HCO3

−, NO3
−, and TH were implemented at the DGR. All the 

physical parameters were measured in the field. The analysis results were checked 

with internal standards (Wisitthammasri et al., 2020) and with an ion charge balance 

error percentage of 0.3% (lower than 5%) (Li et al., 2018). 

 After getting information on groundwater samples from the DGR, the study 

conducted an analytical process by the SPPS software to determine the statistical 

values. In addition, the Piper Trilinear diagram was used to observe 

hydrogeochemical properties in groundwater using the Graph software (Ratchawang 

et al., 2022), and a correlation matrix was estimated using the "library(corrplot)" in the 

R environment to analyze the “Pearson” correlation between the groundwater 

parameters and the normalized EWQI (Cortadellas et al., 2017). Next, a geostatistical 

process was applied to develop the groundwater quality map. It was an important 

procedure because it could not collect all field data on the whole study area. In 

geostatistical analysis, the two typical interpolation methods are IDW and Kriging. The 

IDW is known as a deterministic method for unknown values based on the distance 
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weight between known values. Kriging is an interpolation technique that measures 

the unknown based on spatial statistics of known values (Jha et al., 2020). The IDW is 

used when data is a non-normal distribution. Meanwhile, Kriging is used when data is 

a normal distribution (Kerry and Oliver, 2007). For our case study, the normal 

distribution was determined by the Kolmogorov-Smirnov test. As a result, all data of 

groundwater parameters were non-normal distributions, so the IDW was applied to 

generate the groundwater parameter maps (Table 4.11). 

3.3. Methodologies 

3.3.1. Methodologies for mapping groundwater yield 

3.3.1.1. Analytic Hierarchy Process (AHP) 

AHP is a decision analysis technique based on the selection criteria of experts 

to evaluate a problem (Wang et al., 2009). Because of its effectiveness, it is applied 

to many fields of science and technology, including groundwater potential mapping 

(Arulbalaji et al., 2019; Das et al., 2019; Razandi et al., 2015). It provides quick support 

by examining the weight and condition factors of groundwater potential (Kumar and 

Krishna, 2018). The limitation of the AHP approach is the dependence on expert’s 

knowledge and experience, which can lead to a few inconsistencies in some cases 

(Velasquez and Hester, 2013). In this study, five groundwater experts belonging to the 

DGR were asked to perform the AHP analysis. The experts were requested to provide 

ranking scores in the pairwise comparisons based on how they think a variable 

(influencing factor) or variable’s subclass might be more important than the other for 

getting groundwater yield >10 m3/h. Then, the influencing factors were integrated 

according to Saaty's 1–9 scale based on the experts' evaluation (Saaty, 1990). The 

influencing factors were independently determined such that only the odd scores 

were used for the AHP technique. These scores were defined based on different 

levels: 1 - equal importance, 3 - somewhat more important, 5 - much more 
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important, 7 - very much more important, and 9 - absolutely more important. A 

pairwise comparison matrix was utilized to collate the hierarchy of variables in the 

next step (Table 4.1). Eventually,  the weight of factors on outcomes was calculated 

using a diagonal matrix (Table 4.2). Equations (2) and (3) were utilized to test the 

consistency ratio of the AHP model (Saaty, 1990): 

CI = 
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
      (2) 

CR = 
𝐶𝐼

𝑅𝐼
      (3) 

where CI is the consistency index, 𝜆𝑚𝑎𝑥 is the highest eigenvalue in the 

comparison pairs, n is the number of factors (n = 8), CR is the consistency ratio, and 

RI is the random consistency index. The RI value was detailed in the previous study 

(Alonso and Lamata, 2006). The AHP is accepted when CR is less than 0.1 

(Malczewski, 1999). In this model, the groundwater potential index was calculated 

based on the weight of the influencing factors and Saaty's 1–9 scale of subclasses, 

which was formulated as per equation (4) (Al-Djazouli et al., 2021; Arulbalaji et al., 

2019; Owolabi et al., 2020): 

𝐺𝑊𝑃𝐼𝐴𝐻𝑃 =  ∑ 𝑊𝑖𝑅𝑗 ,     (4) 

where 𝐺𝑊𝑃𝐼𝐴𝐻𝑃 is the groundwater potential index, 𝑊𝑖 is the weight of the 

influencing factor ith, and 𝑅𝑗 is the Saaty's 1–9 scale of subclass jth of influencing 

factor ith assigned by experts. After achieving the 𝐺𝑊𝑃𝐼𝐴𝐻𝑃 , the study applied 

equation (5) to normalize this indicator into the scaling of 0 to 1. 

𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (5) 

where 𝑋𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value, X is the original value, and  𝑋𝑚𝑖𝑛 

and 𝑋𝑚𝑎𝑥 are the original minimum and maximum values. 

3.2.1.2. Frequency Ratio (FR) 
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FR,  a statistical algorithm, is used to calculate the probability of a particular 

object or phenomenon (Bonham-Carter, 1994). The FR model was employed to 

determine the possibility of groundwater occurrence with a particular yield in a basin 

in a previous study (Guru et al., 2017). Influencing factors were considered 

independent variables, while groundwater yield was regarded as a dependent 

variable (Razandi et al., 2015). The advantage of the FR technique is that the output 

weights of conditional factors are based on statistical data. The drawback of RF is its 

dependence on the ground truth data and method to classify subclasses of 

influencing factors (Wang et al., 2020). For our case study, the FR model was 

deployed based on the dataset of wells with a groundwater yield >10 m3/h and the 

number of pixels of each variable’s subclass to calculate the groundwater potential 

index. The equations for the FR approach were expressed as follows. Firstly, the FR 

value of each class was calculated by equation (6): 

FR = 
(

𝐸

𝑇𝐸
)

(
𝐹

𝑇𝐹
)
       (6) 

where FR is the probability of occurrence of groundwater yield >10 m3/h on 

each subclass of influencing factor, E is the number of well locations with 

groundwater yield >10m3/h involving each subclass of influencing factor, TE is the 

total number of well locations, F is the number of pixels in each subclass of 

influencing factor, and TF is the total number of pixels of influencing factor. 

Secondly, the relative frequency (RFFR) was calculated as follows: 

RFFRi = 
𝐹𝑅𝑖𝑗

∑ 𝐹𝑅𝑗
       (7) 

where RFFRi is the relative frequency of the ith subclass of jth influencing factors (j 

ranges from 1 to 8). 𝐹𝑅𝑖 is the frequency ratio value of ith subclass. ∑ 𝐹𝑅𝑗 is the total 

frequency ratio value of jth influencing factors. Next step, the predicted value (PV) was 

calculated by equation (8): 
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PVj = 
𝑅𝐹𝐹𝑅𝑖𝑗_𝑚𝑎𝑥−𝑅𝐹𝑅𝐹𝑖𝑗_𝑚𝑖𝑛

(𝑅𝐹𝐹𝑅𝑖𝑗_𝑚𝑎𝑥−𝑅𝐹𝐹𝑅𝑖𝑗_𝑚𝑖𝑛)𝑎𝑣𝑒𝑟𝑎𝑔𝑒
     (8) 

where 𝑅𝐹𝐹𝑅𝑖𝑗_𝑚𝑎𝑥 is the maximum RFFR value of jth influencing factors, 

𝑅𝐹𝑅𝐹𝑖𝑗_𝑚𝑖𝑛 is the minimum RFFR value of jth influencing factors. The calculated values 

(RF & FV) were used to determine a set of many pixels with a groundwater potential 

index (GWPI) by equation (9): 

GWPIFR model = ∑(𝑅𝐹𝐹𝑅𝑖 × 𝑃𝑉𝑗)    (9) 

Similar to the AHP, the GWPIFR model was normalized into a scale of 0 to 1 using 

equation (5).  

3.3.1.3. Random Forest (RF) 

RF is an assembly algorithm for classification or regression based on multiple 

decision trees in a predictive model (Breiman, 2001). The tree’s branches are formed 

from attributes of variables. The number of variables and decision trees must be 

determined before a model is implemented (Liaw and Wiener, 2002). In the GWP 

research, the RF model has been applied to define the potential location and 

reserves of groundwater based on well data and influencing factors (Naghibi et al., 

2017a; Rahmati and Melesse, 2016; Zabihi et al., 2016). The training data for the RF 

models are encoded in a binary tree algorithm, which generates the nodes in a 

decision tree. The prediction error is estimated and influencing variables are 

permuted (Catani et al., 2013). However, the RF model overfits when training 

datasets are small or when there are too many input features (Wang et al., 2020). In 

our case study, an RF model was created to classify groundwater yield into two 

classes of yield below (class 0) and above (class 1) 10 m3/h based on the eight input 

influencing factors. Because the groundwater yield data was imbalanced, stratified 

random sampling was used to create the training and testing data for the RF model 

building. The groundwater yield data for 1,601 wells was first split into two strata 

using the groundwater yield threshold of 10 m3/h. The individual strata were then 
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randomly split into two subsets using a ratio of 70:30 before being combined into a 

training and testing set, respectively. This ensures that enough data from the two 

classes is available in both the training and testing sets for proper model training. The 

Caret package in the R program (Naghibi et al., 2017a) was used to train and tune the 

binary RF classifier. Ten-fold cross-validation was used to reduce overfitting on the 

training set during model training. Categorical input influencing factors, including 

geology, land use, and soil type, were converted into one-hot encoding (Nguyen et 

al., 2020a) depending on which method provides a better accuracy score. The cutoff 

threshold of prediction probability for class 1 (that is, groundwater yield >10 m3/h) 

was set using the optimal value (optimal threshold) of the model in this study. The 

Gini importance (Kalantar et al., 2019) derived from the RF model training was used 

to rank the importance of the input variables (nominal weights) in classifying the 

groundwater yield. Regarding the calculation of the groundwater potential index, the 

study used the prediction probability from the RF model to generate the GWPZ map. 

Because probability below the optimal threshold was associated with groundwater 

yield of <10 m3/h, the study used the optimal threshold value which was the 

minimum probability of the groundwater yield above the 10 m3/h class. The adjusted 

probability dataset was then scaled between 0 and 1 using min-max normalization 

and used as the GWPI for the RF model. 

3.3.1.4. Ensemble model 

Ensemble refers to the combination of multiple alternative models to obtain 

better predictive performance than that obtained from individual ones (Opitz and 

Maclin, 1999). Since these alternative models are often trained using different 

algorithms or different datasets, they tend to cancel each other’s weaknesses out 

and improve the overall accuracy (Muavhi et al., 2021; Rajaee et al., 2019; Yan et al., 

2019). 
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 In this study, to create an ensemble model of AHP, FR, and RF for GWP mapping, 

the study averaged the GWPIs from the three individual models. These GWPIs have been 

normalized to be on the same scale (0-1) in previous models.  

3.3.1.5. Mapping of groundwater potential zones 

For visualization purposes and better decision-making, the normalized GWPI 

was delineated for potential zones with groundwater yields above 10 m3/h using 

Jenk’s natural break function in the ArcGIS environment (Kumar et al., 2016). The 

potential zones were classified into three levels, high, moderate, and poor. 

3.3.1.6. Validation for maps of groundwater potential zones 

The validation of a model is essential for determining its predictive power 

(Chen et al., 2019c). The Receiver Operating Characteristic (ROC) curves and the Area 

Under the Curve (AUC) metrics (Naghibi et al., 2017a) were used to compare the 

performance of the three GWP models in this study. The ROC curves were obtained by 

plotting the cumulative area of GWPI zones represented by the validation wells on the 

y axis against (1 – GWPI) on the x axis (Fig. 3.14). The AUC, the area limited by the ROC 

space, demonstrates the accuracy of a prediction system by describing the system’s 

ability to accurately predict the occurrence or non-occurrence of pre-defined “events” 

(Jothibasu and Anbazhagan, 2016). The AUC value ranges from 0 to 1. For our case 

study, a perfect GWP model should have all validation wells fall into zones with a 

GWPI of 1 (or a 1-GWPI value of 0), corresponding to the AUC of 1. This is because 

validation wells have a groundwater yield above 10 m3/h, and therefore their 

probability, or “potential”, is always 1. However, perfect GWP models are unlikely to 

exist. A good predictive GWP model aims to cover most of the validation wells in the 

high GWPI zones (that is, zones with low 1- GWPI). In other words, the closer the AUC 

value is to 1, the better the GWP model is.  

To construct a ROC curve, the study classified the corresponding GWPI map 
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into 100 classes (incremented by 0.01 unit). Validation wells were also plotted on 

the classified map and the area of the GWPI zones that have the validation wells was 

recorded. The area of GWPI zones was normalized between zero and one by dividing 

its raw value by the total area represented by all validation wells. The GWPI and the 

corresponding zonal area represented by the validation wells were sorted in 

descending order of the GWPI. The cumulative area was then calculated by adding a 

value to the previous one in the sequence. 

 

Fig. 3.14. Receiver Operating Characteristic curves and Area Under the Curve metrics 

3.3.2. Methodologies for mapping Ni contamination risk zone in groundwater 

The research process was carried out the following steps (Fig. 3.15): Step one 

is to build a database for the model. The input data includes the position of 

boreholes, information about influencing factors, and classification of Ni 

contamination and non-contamination. Groundwater samples are classified into 

contaminated and uncontaminated based on the Thailand groundwater quality 

standard for drinking purposes and were coded as 0 and 1. 0 is the uncontaminated 
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sample, and 1 is the contaminated well by Ni element. The database is divided into 

a ratio of 70:30 to train the model and test the results (126 samples for training; 54 

samples for validating). Step two sets the weighted criteria and ranks the influencing 

factors based on contribution level and predicted value based on the Maxent 

technique, respectively. Step three calculates the AHP weight of influencing factors 

on the Ni contamination in groundwater using the AHP technique. Step 4 maps the Ni 

contamination risk zones in groundwater in the study area. Step 5 is validation. 

 

Fig 3.15. Flowchart for delineating the Ni contamination risk zones in groundwater 

3.3.2.1. Maxent 

Maxent is a statistical technique based on the maximal distribution of known 

outcomes (Mousazade et al., 2019). In this technique, the probability distribution 

function is built based on environment variables. The prediction result uses the 

probability distribution function to calculate the phenomenon's occurrence probability 

(Reddy and Dávalos, 2003). However, the maxent technique works towards a uniform 

distribution without considering the constraints of the environment variables (Kaky et al., 
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2020). In this study, Maxent was used to estimate the maximum occurrence probability 

of heavy metal pollution in the study area and the contribution level of environmental 

factors. The Maxent mathematical formulas are as follows (Mousazade et al., 2019): 

𝑃𝑖𝑗 =  
𝑏

𝑎
       (10) 

(𝑃𝑖𝑗) =  
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗
𝑠𝑗
𝑖=1

      (11) 

𝐻𝑗 = − ∑ (𝑃𝑖𝑗)𝑙𝑜𝑔2(𝑃𝑖𝑗)
𝑠𝑗
𝑖=1  ; j = 1; 2; 3; …; n      (12) 

𝐻𝑗𝑚𝑎𝑥 = 𝑙𝑜𝑔2𝑆𝑗       (13) 

𝐼𝑗 =
𝐻𝑗𝑚𝑎𝑥−𝐻𝑗

𝐻𝑗𝑚𝑎𝑥
       (14) 

𝑊𝑗 = 𝐼𝑗𝑃𝑖𝑗        (15) 

Where i is symbol for the ith influencing factors (i ranges from 1 to 8), j is 

symbol for the jth class of the influencing factors, a is the area of each class of each 

influencing factor, b is the number of contaminated groundwater samples in the jth 

class of the ith influencing factor, 𝑃𝑖𝑗 is the occurrence probability of Ni 

contamination in the jth class of the ith influencing factor, (𝑃𝑖𝑗) is the density 

probability, 𝐻 is the entropy values, 𝐻𝑗𝑚𝑎𝑥 is the maximum entropy value. The 

computing contribution level of influencing factors to the Ni contamination risk and the 

predicted value are performed in the R program environment with the SDM package 

(Algorithm 1). 

Algorithm 1. Maxent approach 

1: # Install package “SDM” and “Java environment” 

2: # Import databases 

3: # Construct maxent model 

4: MX = max(‘environmental factors’, ‘train data’) 

5: # Getting the contribution variable 

6: plot(MX) 
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7: # Get the predicted value 

8: response(MX) 

3.3.2.2. Analytic Hierarchy Process (AHP) 

AHP is a technique in making decisions. In the AHP technique, the weighted 

criteria of the conditional variables are usually determined based on experts' 

opinions on with scale of 1 to 9 (Saaty, 1990). The odd scores are defined according 

to different levels: 1 - equal importance, 3 - somewhat more important, 5 - much 

more important, 7 - very much more important, 9 - absolutely more important. 

Meanwhile, the even scores are defined as intermediate values when compromise is 

needed (Saaty, 1990). In this study, the influencing factors were determined 

independently so that the odd scores were only used to set the weight criteria for 

the AHP model. The weighted criteria of influencing factors and the ranks of their 

classes were assigned based on the contribution level and the predicted values from 

the Maxent method, respectively. For the weighted criteria, the contribution level 

was normalized by a common scale based on Eq. (16), and then applied as following 

principle: 0-0.2 was assigned 1, 0.2-0.4 was assigned 3, 0.4-0.6 was assigned 5, 0.6-0.8 

was assigned 7, 0.8-1 was assigned 9. For the ranks of classes, the scores were given 

from 1-9 (only odd scores) based on the predicted values. The higher the predicted 

value was, the higher the score was, meaning that the probability of contamination 

occurrence is high. After the weighted criteria were set, calculating the AHP weights 

of the influencing factor were performed in a pairwise comparison matrix. In the AHP 

approach, the consistency ratio less than 0.1 was used to evaluate the matrix results 

(Arulbalaji et al., 2019; Saaty, 1990). The consistency ratio was estimated according to 

the Eqs. (17) and (18): 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝐶𝐿−𝐶𝐿𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝐶𝐿𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝐶𝐿𝑚𝑖𝑛𝑖𝑚𝑢𝑚
     (16) 

𝐶𝐼 =  
λ𝑚𝑎𝑥−𝑛

𝑛−1
       (17) 
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𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
       (18) 

 where 𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value of contribution level, CL is the 

value of contribution level of the ith influencing factors, CI is the consistency index, n 

is the number of environmental factors, λ𝑚𝑎𝑥 is the highest eigenvalue of pairwise 

comparison matrix, CR is consistency ratio, RI is the random index of the number of 

environment variables. The RI value is detailed in the study of (Alonso and Lamata, 

2006). 

3.3.2.3. Calculating potential contamination index and mapping the nickel contamination 

risk zones 

The potential contamination index is a dimensionless quantity. In this study, 

the potential contamination index was used to predict groundwater's Ni 

contamination risk. Based on the previous studies about potential prediction (Achu et 

al., 2020; Adiat et al., 2012; Arulbalaji et al., 2019; Dar et al., 2021; Saranya et al., 

2020), the potential contamination index of Ni in groundwater for each location was 

estimated according to the following formula: 

GWCPI = 𝐴𝑙𝑤𝐴𝑙𝑓 + 𝐷𝑡𝑅𝑤𝐷𝑡𝑅𝑓 + 𝐷𝑡𝑊𝑤𝐷𝑡𝑊𝑓 + 𝐺𝑒𝑜𝑤𝐺𝑒𝑜𝑓 + 𝐿𝑈𝑤𝐿𝑈𝑓 + 𝑅𝑤𝑅𝑓 +

𝑆𝐿𝑤𝑆𝐿𝑓 + 𝑆𝑤𝑆𝑓           (19) 

Where GWPCI is the potential contamination index of Ni in groundwater, Al is 

the altitude, DtR is the distance to roads, DtW is the distance to waterbodies, Geo is 

the geology, LU is the land use, R is the rainfall, SL is the slope, and S is the soil, 𝑤 is 

the weight of influencing factor, 𝑓 is rank of the classes of the influencing factor. 

The potential contamination index map of Ni in groundwater was based on 

the value of pixels calculated from equation (19). The GWCPI values were classified 

into three different levels, including high, moderate, low, using the Natural Breaks 

function in ArcGIS software. 
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3.3.2.4. Validation for contamination risk map of Ni in groundwater 

The results verification is an essential step in scientific and forecasting studies 

(Barzegar et al., 2018). In the current study, the data for validating the output map 

was based on 54 groundwater samples (30% database for testing). The receiver 

operating characteristic (ROC) and statistical indicators were proposed to evaluate the 

model's performance and accuracy of the output map (Tien Bui et al., 2019). The 

ROC is a graphical plot of a curve that represents the relationship between sensitivity 

and 1 – specificity or true positive rate and false positive rate (Pham et al., 2019). The 

ROC value is the area under the curve, namely the area under curve (AUC) (Tien Bui 

et al., 2019). The AUC value changes from 0 to 1. AUC value close to 1 means the 

high model's performance, and vice versa. The statistical indicators include positive 

predictive value (PPV), negative predictive value (NPV), accuracy, sensitivity, 

specificity. These statistics are calculated based on the equation (20, 21,22,23,24) and 

confusion matrix (Table 3.1) (Pham et al., 2019): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (20) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (21) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (22) 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (23) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
      (24) 

Where TP is the amount of pixels correctly classified as contamination 

samples (positive results), TN is the amount of pixels correctly classified as “non-

contamination samples” (negative results), FP is the amount of pixels incorrectly 

classified as “contamination samples” (positive results), FN is the amount of pixels 

incorrectly classified as “contamination samples” (negative results). 
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Table 3.1. Matrix for observed and predicted values 

 

3.3.3. Methodologies for mapping groundwater quality 

3.3.3.1. EWQI computation 

Entropy is a technique to calculate objective quality parameter weights 

(Peiyue et al., 2010). It overcomes the weighting system's subjectivity. The entropy 

creates a network of information to assess the indirect connections of variables. The 

influenced weight of a variable is mainly determined by the difference of alternative 

values when using another variable. Data is less information when the entropy value 

is high, and therefore the result is more unpredictable. In the procedures of 

calculating the EWQI, each parameter is given an entropy weight (Wu et al., 2018). In 

this study, groundwater samples and physicochemical parameters are assigned in the 

order of i from 1 to 180 (i.e., 180 groundwater samples) and j from 1 to 12 (i.e., 

twelve parameters), respectively. Mathematically, the formulas for computing the 

EWQI are presented as follows: 

A = [

a11 a12 … a1j

a21 a22 … a1j

ai1 ai2 … aij

]     (25) 

bij =
xij−xij min

xij max−xij min
      (26) 
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B = [

b11 b12 … b1j

b21 b22 … b2j

bi1 bi2 … bij

]      (27) 

Pij =
(1+bij)

∑ (1+ bij)m
i=1

       (28) 

ej = −
1

lnm
∑ PijlnPij

m
i=1       (29) 

wj =
(1−ej)

∑ (1− ej)m
i=1

       (30) 

qj =
Cj

Sj
× 100        (31) 

EWQI =  ∑ wj × qj
n
j=1       (32) 

where A is the Eigenvalue matrix, bij is standardized value, B is a standard-grade 

matrix, Pij is performance indices, ej is the information entropy, wj is the entropy weight, 

Cj is the concentration of parameters j, Sj is the permissible standard value, qj is the 

quality rating scale. After achieving the EWQI, the study has applied equation (9) to 

normalize this indicator into the scaling of 0 to 1. 

𝐸𝑊𝑄𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐸𝑊𝑄𝐼− 𝐸𝑊𝑄𝐼𝑚𝑖𝑛

𝐸𝑊𝑄𝐼𝑚𝑎𝑥−𝐸𝑊𝑄𝐼𝑚𝑖𝑛
   (33) 

where 𝐸𝑊𝑄𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 is the normalized value, EWQI is the original value,  

𝐸𝑊𝑄𝐼𝑚𝑖𝑛 and 𝐸𝑊𝑄𝐼𝑚𝑎𝑥 are the original minimum and maximum values. For 

visualization purposes and better decision making, the normalized EWQI was 

classified into five levels of groundwater quality, including excellent quality 

(𝐸𝑊𝑄𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 of 0-0.2), good quality (𝐸𝑊𝑄𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 of 0.2-0.4), moderate 

quality (𝐸𝑊𝑄𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 of 0.4-0.6), poor quality (𝐸𝑊𝑄𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 of 6-0.8), 

extremely poor quality (𝐸𝑊𝑄𝐼𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 of 0.8-1). 

3.3.3.2. Cross-validation and bootstrap techniques 

In this study, the initial database, including 16 columns and 180 rows, was 

designed based on a matrix structure in which the columns were the information on 

the groundwater parameters and the rows were the information on groundwater 
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samples (Supplementary Table S2). In the initial database, groundwater parameters 

were the independent variables, the normalized EWQI was the target variable. Cross-

validation and bootstrap techniques were then applied to build training and testing 

data subsets for the ML models. Cross-validation and bootstrap are resampling 

methods (Kohavi, 1995). While the cross-validation divides the initial dataset into 

multiple subsets for training and testing (Berrar, 2019), the bootstrap generates 

multiple subsets from the initial database after resampling with replacement (Chernick, 

2012). For the cross-validation, the initial database was split into five subsets, each 

subset is called a data block (fold) comprised of 36 groundwater samples (Fig. 3.16a). 

For the bootstrap, the initial database was divided into 100 multiple subsets after 

resampling with replacement (Fig. 3.16b).  

 

Fig. 3.16. Cross-validation (a) and bootstrap (b) 

3.3.3.3. Random forest (RF) 

Achievement in the application of the RF model has been recorded remarkably 

in branches of environmental science such as landslides (Cheng et al., 2021), floods 

(Schoppa et al., 2020), air pollution (Kumar, 2018), land use management (Wu et al., 

2021), and water quality (Wang et al., 2021). The RF, an ensemble learning method, is 

established from the decision trees. In the RF model, a decision tree is an option for 

forecasting results, in which tree branches are a combination of data classes based on 

different datasets and attributes (Ahmad et al., 2017). An ensemble output of the RF is 
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an aggregate of the decision trees, therefore, the information on the decision trees 

complements each other, resulting in a model with low bias and low variance (Goldstein 

et al., 2011). As a corollary, the RF model solves overfitting and underfitting problems on 

the validation/test subset. An RF model conducts the task of classification or regression 

(Liaw and Wiener, 2002). In the RF algorithm, the number of decision trees (n-tree) and 

attribute information (m-try) must declare to determine the optimal model. However, 

the RF model returns results in a long time because it processes many predictions. For 

our case study, the RF algorithm was implemented in the R program environment using 

the “Caret” package. To start, the study built the control subjects using the "trainControl 

function" based on the cross-validation and bootstrap, respectively. Then, the study 

integrated the control subjects into the RF algorithm, called RF-CV and RF-B models, 

respectively. The role of RF in this study was to conduct a regression task because the 

normalized EWQI is a continuous variable ranging between 0 and 1. The value of the 

normalized EWQI for locations in the study area was conducted by the prediction 

function. 

3.3.3.4. Artificial neural network (ANN) 

 The ANN, a machine learning model, is applied by many researchers to make 

predictions (Soltani Mohammadi et al., 2017; Tamiru and Dinka, 2021; Xu et al., 2021). 

The ANN is developed from a structure that is similar to the behavior of neurons and 

synapses in the human brain. It allows computer programs to recognize complex 

relationships in a dataset and solve the problem of prediction (Lee et al., 2017). The 

structure of an ANN model includes an input layer, hidden layers, and an output 

layer (Ahmad et al., 2017). The input layer represents input data, hidden layers 

represent the intermediate nodes that divide the input space into boundary regions, 

and the output layer represents the output of the neural network (Monteiro et al., 

2021). Similar to the RF, the ANN can perform classification or regression missions. 

The ANN works based on the correlation of input data to make decisions. However, 
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ANN only works with numeric data and requires large datasets, which requires the 

categorical data need to be generalized coding (Tayyebi and Pijanowski, 2014). For 

our case study, the groundwater parameters were designated as the input layer, and 

the normalized EWQI was appointed as the output layer. The “nearalnet” package 

was performed directly in the R program. The cross-validation and bootstrap 

techniques were integrated into the ANN algorithm to build the ANN models, called 

the ANN-CV and ANN-B, respectively. The default number of hidden layers was one 

with a threshold of 0.05 because the more hidden layer is, the more complex the 

model is (Bedi et al., 2020). The ANN-CV and ANN-B algorithms were presented in 

supplementary materials. 

3.3.3.5. Model validation 

Modeling can lead to deviations between forecast and observed values. 

Therefore, model validation is an essential step for any model. For our case study, 

coefficient of determination (R2), root mean square error (RMSE), and mean absolute 

error (MAE) were utilized to accurately validate and compare the performance between 

the models (Bedi et al., 2020). The R2 is an indicator to explain the coefficient of variance 

explanation, which describes the relationship between a set of parameters on the target 

variable. The value of R2 varies from zero to one. The R2 goes to one, the model is good, 

and vice visa (Santhi et al., 2001). The RMSE, an error-index statistic, is used to compare 

the performance of models. The lower the RMSE is, the more reliable model is. Similar 

to RMSE, MAE is also applied to evaluate the models. The value of MAE goes to 0, which 

means that model is more suitable (Chai and Draxler, 2014). 

R2 =  
∑ (EWQIn−EWQI̅̅ ̅̅ ̅̅ ̅̅ n)∗(EWQIp−EWQI̅̅ ̅̅ ̅̅ ̅̅ p)n

i=1

(∑ (EWQIn−EWQI̅̅ ̅̅ ̅̅ ̅̅ n)2n
i=1 )0.5∗(∑ (EWQIn−EWQIp)

2n
i=1 )0.5

  (34) 

MAE =  
∑ (EWQIn−EWQIp)n

i=1

n
     (35) 

RMSE =  √
1

n
((EWQIn − EWQIp)2    (36) 
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where 𝐸𝑊𝑄𝐼𝑛 is the estimated value of normalized EWQI, 𝐸𝑊𝑄𝐼𝑝 is the predicted 

value of the normalized EWQI. 

Chapter 4. RESULTS AND DISCUSSION 

4.1. Exploring spatial distribution of groundwater yield in Kanchanaburi, 

Thailand using AHP, FR, and RF 

4.1.1. Influencing factors on groundwater yield 

Altitude: Altitude affects groundwater distribution as water often moves 

down the elevation gradient. Therefore, it is an indicator of groundwater potential 

(Chen et al., 2019c). In the study area, altitude values ranged from 2 m to 1,812 m 

and were divided into five subclasses: 2–50 (2,331 km2), 50–100 (2,278 km2); 100–150 

(1,263 km2); 150–200 (2,150 km2); and >200m (11,368 km2) (Fig. 4.1a). 

Distance to faults: Faults are hydraulic barriers hindering horizontal 

groundwater movement. Therefore, it is an important factor to invest groundwater 

yield (Naghibi and Pourghasemi, 2015). The distance to faults map of Kanchanaburi 

was generated with five subclasses: 0–10,000, 10,000–20,000, 20,000–30,000, 30,000–

40,000, and >40,000 m, in turn accounting for an area of 14,384, 2,480, 1,601, 857, 

and 67 km2, respectively (Fig. 4.1b). 

Distance to waterbodies: Distance to waterbodies affects the infiltration of 

groundwater and the recharge capacity of an aquifer (Chen et al., 2019c). The 

distance to waterbodies map was classified into five subclasses: 0–2,000 (13,315 km2), 

2,000–4,000 (3,956 km2), 4,000–6,000 (1,388 km2), 6,000–8,000 (489 km2), and >8,000 

m (242 km2) (Fig. 4.1c). 

Slope: Slope determines excess rainfall and runoff accumulation and thus 

influences the residence time of water on the surface and the ability of water to 

seep into the underground (Nguyen et al., 2020c). The slope in the study area was 
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classified into five subclasses: 0°–3° (3,304 km2), 3°–6° (3,820 km2), 6°–10° (3,122 km2), 

10°–16° (3,070 km2), and >16° (6,073 km2) (Fig. 4.1d). 

Geology: Geology is important for the distribution of groundwater. Indeed, 

good aquifers are often found on fractured rocks (limestone, basalts, conglomerates, 

sandstone) and unconsolidated sediments (sand, gravel), while poor aquifers are 

composed of igneous rocks (granite, shale) or sediments (mud, clay, slit) (MacDonald 

and Davies, 2000). In the study area, there are fourteen geological units, including 

Carboniferous-Permian (CPk), Devonian (D), Cambrian (E), Cambrian-Ordovician (EO), 

Jurassic (J), Cretaceous (Kgr), Ordovician (O), Pre-Cambrian (PE), Permian (Pr), 

Quaternary (Q), Silurian-Devonian (SD), Silurian-Devonian-Carboniferous (SDC), Tertiary 

(Tmm), Triassic (Tr) in which Q covers the highest area (5,474 km2), followed by SDC 

(3,180 km2), O (2,647 km2), Pr (2,430 km2), Tr (1,472 km2). Moreover, other geological 

units occupy a small area of Kanchanaburi (Fig. 4.1e). 

Land use: Land use reveals the current state of the surface coating of a 

geographic feature, which has a close relationship with groundwater through 

residence time and the infiltration process of surface water. It represents soil 

moisture, surface roughness, movement and recharge capacity of groundwater 

(Sameen et al., 2019). In Kanchanaburi, the land use factor comprises five land cover 

units, reclassified into agricultural land (5,323 km2), miscellaneous land (454 km2), 

forest land (12,224 km2), urban and built-up land (557 km2), and waterbody (506 km2) 

(Fig. 4.1f). Forest is primarily distributed in the West; moreover, agricultural, 

miscellaneous, urban and built-up lands concentrate in the East. 

Rainfall: Rainfall greatly influences the recharge of groundwater through 

surface input and subsurface infiltration (Khoshtinat et al., 2019). The rainfall map 

was divided into five subclasses as follows: <1,500 (8,091 km2), 1,500–1,650 (4,223 

km2), 1,650–1,800 (5,051 km2), 1,800–1,950 (1,964 km2), and >1,950 mm/year (60 km2) 
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(Fig. 4.1g).  

Soil type: Soil controls the infiltration and retention rate of water, which is 

decided by soil structure and texture (Martínez‐Santos and Renard, 2020). In 

Kanchanaburi, there are fourteen soil types in which clayey sand is the dominant 

type, comprising ~11,189 km2 of the total area, followed by sandy loam (2,759 km2) 

and clay loam (1,987 km2). The others cover only a small part of the area and are 

sparsely distributed in the province (Fig. 4.1h). 
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Fig. 4.1. Influencing factors include (a) altitude, (b) distance to faults, (c) distance to 

waterbodies, (d) slope, (e) geology, (f) land use, (g) rainfall, (h) soil type 
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4.1.2.  Application of AHP for delineating groundwater potential zones 

The AHP approach provides the weight of the influencing factors for the 

presence of wells with a groundwater yield above 10 m3/h. A pairwise comparison 

matrix of influencing factors determined by the judgment of experts in the 

groundwater field was used to calculate their diagonal matrix (Tables 4.1 and 4.2). 

The highest weight of 28.66% was found in altitude and distance to faults. It was 

followed by distance to water and slope at 14.40%. Meanwhile, the figures for 

geology, rainfall, and soil type were only 3.95%, and land use was the least impact 

factor with a weight of 2.03% (Tables 4.2 and 4.33). The consistency ratio was 0.055 

(Table 4.2) revealing the reasonability of the pair-wise comparison process. 

Table 4.1. Pairwise comparison matrix of influencing factors 

 

Abbreviations: Al – Altitude; DF – Distance to faults; DW – Distance to waterbodies; LU – Land 

use 

 While the high groundwater potential zones were observed mainly in the East 
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of Kanchanaburi Province, the poor groundwater potential zones were found in the 

western area (Fig. 4.3a). Specifically, 59.88% and 22.23% of GWP were represented by 

poor and moderate potential, respectively, while high potential accounted for 

17.89% (Fig. 4.4). 

Table 4.2. Diagonal matrix of influencing factors 

 

Abbreviations: Al – Altitude; DF – Distance to faults; DW – Distance to waterbodies; LU – 
Land use, S – Soil type 

Table 4.3. Normalized weights and Saaty's scale of factors’ subclasses in the AHP model 
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4.1.3. Application of FR for delineating groundwater potential zones 

 The occurrence probability of groundwater well locations with a yield >10 

m3/h on influencing factors and its spatial relationship with influencing factors was 

observed using the FR approach (Table 4.4, Fig. 4.3b). This spatial relationship was 

shown by the predicted value, which was considered an indicator for calculating the 

GWPI. The spatial relationship will be positive, average, and negative when the 

predicted values are >1, 1, and <1, respectively (Lee and Pradhan, 2006). It is clear 

that the well location with a yield of >10 m3/h and certain influencing factors, 

including distance to faults, distance to waterbodies, land use, and rainfall, had a 

positive spatial relationship. Meanwhile, a negative spatial relationship was observed 

between well location and altitude, slope, geology, and soil type. Besides, the 

relative frequency is also another important indicator of the impact of an influencing 

factor’s subclasses on the occurrence of groundwater yield above 10 m3/h (Muavhi 

et al., 2021). In the influencing factor of altitude, the subclasses with a low value had 

a high relative frequency and vice versa. The relative frequency value was higher 

when the distance was far from the faults. The influencing factors showed a sharp 

contrast with distance from waterbodies, slope, and rainfall. About geological units, 

the analysis of the FR approach indicated that the Quaternary had the highest value 

of relative frequency (0.41), followed by the Cambrian (0.21), and Silurian-Devonian 

(0.17). According to land-use type, urban and built-up land had the highest value of 

relative frequency (0.90) followed by agricultural land (0.07). Also, an assessment of 

soil type revealed that the largest relative frequency values of 0.28 and 0.20 were 

found in silt and silt loam, respectively. The majority of areas were affected by 

moderate (43.58%) and poor (30.92%) potential, while the remaining areas were 

correlated with high potential (25.50%) (Fig. 4.4). 
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Table 4.4. Frequency ratio values of the influencing factors 
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Abbreviations: FR - Frequency ratio; RFFri - Relative frequency of ith subclass; PVj - Predicted value 

of jth influencing factors 

4.1.4. Application of RF for delineating groundwater potential zones 

 As previously suggested in section 2.3.3, the RF model was conducted by the 

binary regression algorithm. The importance of influencing factors was also observed 
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by the RF model (Fig. 4.2). The contribution level to groundwater well occurrences 

with a yield >10 m3/h of distance to waterbodies was the highest (22.00%), followed 

by the altitude factor (20.40%). Distance to faults, slope and soil type was the next in 

the contribution level with 16.87%, 15.90%, and 11.88%, respectively. The other 

factors were insignificant or had a low impact. The final GWP map from the RF 

approach is presented in Fig. 4.3c. The majority of regions had poor potential at 

60.67% of the area, followed by the proportion of moderate potential (20.79 %). 

Meanwhile, only 18.54% of the area was defined by high GWP (Fig. 4.4). 

 

Fig. 4.2. Contribution level of influencing factors on groundwater yield >10 m3/h 

conducted by the RF 

4.1.5. Application ensemble model of AHP, FR, RF for delineating groundwater 

potential zones 

An ensemble model was created by averaging the normalized GWPIs predicted in 

this study by the AHP, FR, and RF models (Fig. 4.3d). Poor and moderate potential made 

up 36.42% and 30.15% of the area, respectively, while 33.43% of the area showed high 

potential (Fig. 4.4). 
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Fig. 4.3. Groundwater potential maps for yield >10 m3/h in Kanchanaburi Province, 

Thailand: (a) AHP model; (b) FR model; (c) RF model; (d) Ensemble model 

 

Fig 4.4. Area of GWP zones for groundwater yield >10 m3/h in Kanchanaburi Province  

4.1.6. Assessment of the model’s accuracy 

 The models’ results were assessed by comparing the cumulative GPWIs of 
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the testing set via AUC value. The AUCs of the AHP, FR, RF, and ensemble models 

were 0.72, 0.74, 0.76, and 0.80, respectively (Fig. 4.5), revealing that all models 

achieved similarly good predictions. Nevertheless, individual models exhibited 

different behaviors.  Specifically, the RF model did better at identifying the target 

groundwater yield at the GWPI above 0.6 (or 1-GWPI below 0.4) but worse at lower 

GWPI, compared to other models. The predictive power of FR was lower than that of 

the random classifier at the GWPI above 0.9 (that is, 1-GWPI below 0.1), but 

outweighed that of RF and AHP at the GWPI below 0.6.  The AHP model, on the 

other hand, expressed monotonic behavior across the GWPI range. Combining the 

results from all models into an ensemble did improve the overall model prediction. 

The ensemble model achieved an AUC score of 0.8 and performed better for the 

GWPI values between 0.2 and 0.8, whereas all the individual models fell short. 

 

Fig. 4.5. Validation of models. 
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4.1.7. Discussion 

Quantifying the importance of the influence factors on groundwater processes 

helps policy-makers improve water resource planning. In our study, the models used have 

different mechanisms to weigh the influencing factors as they belong to different 

approaches. The AHP model used a decision system approach, so the weights of 

influencing factors were assigned completely based on expert opinions and domain 

knowledge, while the FR and RF models assigned weights based on data analysis. The FR 

method eliminated human interference and simply assigned weights based on the 

number of wells with a groundwater yield exceeding 10 m3/h that fell into different sub-

classes of the influencing factors. The RF, on the other hand, used more sophisticated 

optimization algorithms to compute the weight for each influencing factor based on the 

information gained between all models that included a specific influencing factor and all 

models that excluded that factor. Our results showed that the AHP and RF methods had 

similar rankings for the top four most important factors, including altitude, distance to 

faults, distance to waterbodies, and slope, that influence the occurrence of wells with 

groundwater yields exceeding 10 m3/h in the study area (Table 4.5). The FR identified 

distance to waterbodies and distance to faults as the first and third most important factors 

but assigned less weight to altitude and slope. This was because the FR employed a less 

sophisticated statistical approach, and thus might fail to capture the effects of interaction 

between the influencing factors. Nevertheless, our analysis indicated that the AHP could 

be a cost-effective and accurate method to identify the most important influencing factors 

for policy-making priorities. 
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Table 4.5. Ranking of influencing factors by a method based on the factor weights. The 

ranking score ranges from one to eight in descending order of importance 

 

Our analysis confirmed findings from previous studies regarding the influence of 

geophysical characteristics on groundwater yield. In particular, the study found that high 

groundwater yield was mostly observed in areas with an altitude below 100 m, which 

asserted the impact of gravity on groundwater. A similar study by Al-Abadi (2017a) also 

showed the occurrence of high groundwater yield in areas with an altitude below 99 m 

while Khoshtinat et al. (2019) indicated that the lower the altitude, the higher the GWP for 

their study region. Our study revealed the greater influence of faults as a natural barrier to 

impeding the occurrence of high groundwater yield, which was in line with a study by 

(Anderson and Bakker, 2008). However, some previous studies (Arulbalaji et al., 2019; 

Arunbose et al., 2021; Falah and Zeinivand, 2019) insisted that high fault density could be 

an advantage for the rechargeability of groundwater, which was often observed in areas 

with dominant vertical or mountainous areas with basement rocks (Chuma et al., 2013). 

The distance to waterbodies such as rivers, lakes, dams, and springs influenced 

groundwater yield because surface water was a recharging source of aquifers. The shorter 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 96 

the distance to waterbodies was, the higher the GWP was. The relationship has also been 

discussed intensively in previous studies (Chen et al., 2018; Machiwal et al., 2011; Mosavi et 

al., 2020; Tahmassebipoor et al., 2016). The slope was also identified as one of the top 

influencing factors for high groundwater yield in our study with higher yields observed in 

areas with a slope of below 10°. Similar conclusions were drawn by other studies (Al-Abadi, 

2017a; Ganapuram et al., 2009; Jothibasu and Anbazhagan, 2016; Kumar and Krishna, 

2018).  

The GWP with a yield >10 m3/h of the lowland areas was higher than that of 

the mountainous areas in Kanchanaburi, where the terrain was flat with a low slope 

and altitude (Ahmed and Sajjad, 2018; Falah and Zeinivand, 2019; Shao et al., 2020) 

(Fig. 4.3). This finding was consistent with a previous hydrogeology survey conducted 

by the DGR in Kanchanaburi province (DGR, 2006). The GWP maps using the RF and 

ensemble models were considerably similar compared to the AHP and RF, 

respectively. This can be explained by the Jenks natural break function allowing the 

equivalent GWPI values to be grouped into a cluster to minimize the variance between 

classes in the mapping (Papaioannou et al., 2015). The poor GWP zones estimated by 

the AHP and RF models were 60% of the entire area, which is almost twice as higher 

as that computed by FR and ensemble. Meanwhile, the moderate GWP represented 

approximately 30% and 60% of the maps produced using AHP or RF and FR or 

ensemble models, respectively. The area with high GWP was in a range of 17.89 - 33% 

from model to model (Fig 4.4). The model selection for GWPZ mapping is an important 

but difficult decision as it often involves trade-offs among resources, time, expertise, 

and accuracy. These trade-offs are different for different study areas and objectives. 

For this study, the study showed that all models achieved similarly good prediction 

outcomes (Fig. 4.5). However, the RF and FR were more complex, costly, and time-

consuming than the AHP model. Therefore, one might be better off just using the AHP 

model for similar regions where the ground truth data for groundwater yield is not 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 97 

available. This will save time and costs as well as reduce the complexity. However, in 

other cases when the accuracy of the GWPZ mapping is a priority, the study 

recommend the use of complex machine learning models (e.g., RF and artificial neural 

networks) and/or an ensemble of different models and approaches to improve the 

overall predictive power, as illustrated by our analysis. 

4.2. Exploring nickel contamination risk zones in groundwater in the eastern part 

of Kanchanaburi province, Thailand using Maxent and AHP 

Based on the results from the delineation of groundwater yield potential 

zones (section 4.1), sections 4.2 and 4.3 focus on in the eastern part of Kanchanaburi 

province, Thailand, including Nong Prue, Lao Khwan, Bo Phloi, Huai Krachao, Phanom 

Thuan, Mueang Kanchanaburi, Tha Maka, Tha Muang, Dan Makham Tia districts, 

where groundwater yield was evaluated high and moderate potential.  

4.2.1. Influencing factors on Ni contamination in groundwater 

Eight influencing factors, including altitude, distance to road, distance to 

waterbodies, geology, land use, rainfall, slope, and soil type, were used to delineate 

the Ni contamination risk zones. Figure 4a-h shows the details of the influencing 

factors.  

Altitude factor represents the influence of topography on groundwater depth 

and flow rate (Condon and Maxwell, 2015). When the flow rate and groundwater 

depth are significant, groundwater's chemical and physical characteristics can be 

altered in space and time (Alizamir et al., 2019). Altitude in the study area can be 

observed with elevation values ranging from 2 to 1812 meters above sea level, 

classified into five classes: 2–50 (2,265.64 km2), 50–100 (1,819.74 km2); 100–150 

(881.59 km2); 150–200 (578.12 km2); and >200m (1,278.38 km2) (Fig. 4.6a). The 

majority of the high elevation zones are on the northwest side. 

Distance to roads is considered an essential factor in assessing groundwater 
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quality (Wang et al., 2018). Road transport activities contribute significantly harmful 

substances to groundwater through the dry and wet deposition of effluents, dust, 

and exhaust gases (Uliasz-Misiak et al., 2022). For our case study, distance to roads 

map was categorized into five classes: 0–2,000 (5,588.13 km2), 2,000–4,000 (954.11 

km2), 4,000–6,000 (190.33 km2), 6,000–8,000 (71.61 km2), and >8,000 m (20.54 km2) 

(Fig. 4.6b). 

Waterbodies represent the close relationship between surface water and 

groundwater in the hydrological cycle. Changes in groundwater's chemical and physical 

composition are also influenced by the recharge and discharge processes (Lipczynska-

Kochany, 2018). Distance to waterbodies factor was categorized into five classes: 0–2,000 

(5,081.24 km2), 2,000–4,000 (1,255.16 km2), 4,000–6,000 (254.47 km2), 6,000–8,000 (134.44 

km2), and >8,000 m (99.42 km2) (Fig. 4.6c). 

Geology plays a significant role in determining the chemical composition of 

groundwater because groundwater is contained in bedrock aquifer or host sediment 

(Golkarian and Rahmati, 2018). Twelve geological units are observed in the study 

area, including Tertiary (Tmm), Devonian-Carboniferous (SDC), Silurian-Devonian (SD), 

Quaternary (Q), Permian (Pr), Pre-Cambrian (PE), Ordovician (O), Cretaceous (Kgr), 

Jurassic (J), Cambrian-Ordovician (EO), Cambrian (E), Carboniferous-Permian (CPk), in 

which Q covers the highest area (4,413.86 km2), followed by SDC (474.25 km2), O 

(421.22 km2), Pr (330.14 km2), Tr (285.74 km2) (Fig. 4.6d). 

Land use reflects human activities on the land surface (Zhang et al., 2019). 

The wastes from human activities affect the quality of groundwater (McLay et al., 

2001). There are five main land use types in the study area, including urban land (446 

km2), agricultural land (4,253 km2), miscellaneous (362 km2), forest land (1688 km2), 

and waterbody (76 km2) (Fig. 4.6e). 

Rainfall is known as a recharge source of groundwater, meaning its chemical 
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components in the water can affect groundwater quality (Ali et al., 2020). In this 

study, the rainfall data was divided into five different regions as follows: <1,500 

(149.73 km2), 1,500–1,650 (1,692.15 km2), 1,650–1,800 (3,859.18 km2), 1,800–1,950 

(1,062.97 km2), and >1,950 mm/year (60.7 km2) (Fig. 4.6f).    

Slope reflects the direction and the speed of surface runoff, influencing the 

weathering and surface corrosion processes. Therefore, slope also affects surface 

water's and groundwater's chemical and physical composition (Arulbalaji et al., 2019). 

Slope value varies between 0° and 70° in the study area, classified into five classes: 

0°–3° (1,904.08 km2), 3°–6° (2,340.29 km2), 6°–10° (1,238.63 km2), 10°–16° (575.26 km2), 

and >16° (765.22 km2) (Fig. 4.6g). Regions with high slopes are concentrated in the 

western hilly areas. 

Soil type is known as a natural filter of the earth's crust for groundwater, 

meaning chemicals can be partially trapped as groundwater seeps into the soil 

(Keesstra et al., 2012). Fourteen different texture types are found in the study areas, 

including gravelly sandy loam (314.28 km2), loamy sand (462.70 km2), gravelly sandy 

clay loam (519.27 km2), sandy loam (2,759.57 km2), clay loam (1,987.16 km2), silt 

loam (503.45 km2), sandy clay loam (88.21 km2), loam (334.97 km2), silty clay loam 

(329.95 km2), clayey sand (11,189.83 km2), water (829.28 km2), rock complex (33.78 

km2), coarse sandy loam (1.83 km2), silt (32.13 km2) (Fig. 4.6h). 
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Fig. 4.6. Influencing factors: (a) altitude, (b) distance to roads, (c) distance to 

waterbodies, (d) geology, (e) land use, (f) rainfall, (g) slope, (h) soil type 
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4.2.2. Application of Maxent technique to estimate the contribution level and 

predicted value of influencing factors over Ni contamination. 

The Maxent approach provides information about the contribution level of 

influencing factors to the occurrence ability of Ni contamination in groundwater and 

the predicted value of classes of influencing factors (Wahyudi et al., 2013). Fig. 4.7 

illustrates the contribution level of influencing factors to Ni contamination 

determined by the Maxent technique. The result shows land use has the highest 

contribution of 65.4% to the delineation of Ni contamination in groundwater, 

followed by soil type (14.7%), slope (7.7%), and altitude (4.8%). The other factors 

contribute to the model by approximately 2%. Additionally, the impact of influencing 

factors on Ni contamination in groundwater is displayed in Fig. 4.8. The high response 

of Ni contamination in groundwater occurred at altitude of 0-50 m, distance to roads 

of 0-2000 m, distance to waterbodies of >8000 m, geology unit of Pre-Cambrian, land 

use of urban land, slope of 0o-3o, soil type of clay loam.  

 

Fig. 4.7. Role of influencing factors in predicting Ni contamination in groundwater 
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Fig. 4.8. The predicted values for classes of influencing factors on the occurrence 

ability of Ni contamination in groundwater 

4.2.3. Application of AHP for calculating the weight of influencing factors 

A pairwise comparison matrix was established from the contribution level of 

influencing factors to the occurrence ability of Ni contamination in groundwater 

(Table 4.6). Table 4.7 presents the weighted criteria of influencing factors for Ni 

contamination prediction in groundwater. The rank of classes was set based on the 

predictive value (Table 4.8). The result of the AHP analysis indicates that the 

consistency ratio of the matrix was 0.049. This consistency ratio proves that the 

analytical result of the model was acceptable (Arulbalaji et al., 2019; Saaty, 1990). 

Among influencing factors, land use had the highest AHP weight at 48.711, followed 

by soil type and geology. The other influencing factors had the same AHP weight of 

4.287. 
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Table 4.6. Pairwise comparison matrix of influencing factors 

 

Table 4.7. Matrix for calculating the consistency ratio 

 

Table 4.8. Normalized weights and rank of factors’ classes 
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4.2.4. Map of Ni contamination risk zone in groundwater 

Groundwater is known as a drinking water source in many regions of the 

world. Using groundwater with high Ni concentrations for domestic purposes will lead 

to cancer risk and health complications (Egbueri, 2020). Thus, a map of groundwater's 

Ni contamination risk zones is necessary in any region of the world. In this study, the 

map of groundwater's Ni contamination risk zone was identified by the potential 

contamination index to delineate the Ni contamination risk zone in groundwater. The 

output map was spatially categorized as low, moderate, and high zones (Fig. 4.9). 

Overall, 24.79% of the area (1691.82 km2) was very low contamination risk of Ni, 

whereas the zone of high Ni contamination risk accounted for around 6.56% (447.65 

km2). Moderate contamination risk zone of Ni occupied 68.65% of the study area 

(Table 4.9). 

 

Fig. 4.9. Map of Ni contamination risk zones in groundwater 
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Table 4.9. Statistics of Ni contamination risk zones in groundwater in the study area 

 

4.2.5. Validation 

The ROC technique and statistical indicators were utilized to confirm the Ni 

contamination risk zones in groundwater. A total of 54 groundwater samples (30% of 

the database) were used to validate the model's performance validation and the 

accuracy of the output map. The validation results clearly show that the model's 

AUC value index was 0.86 (Fig. 4.10), and the accuracy of the resulting map was 85%. 

The results of other statistical indicators are presented in Table 4.10. From the 

model validation result and the accuracy of the output map, it can be concluded 

that combining the maxent method to set the weighted criteria and the AHP 

technique to delineate the heavy metal contamination risk zone in groundwater is an 

effective model. 
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Fig. 4.10. Model performance 

Table 4.10. Results of model’s validation and output map 

 

4.2.6. Discussion 

Mapping the Ni contamination risk zone in groundwater is necessary for the 

long-term management of water resources. In this study, the maxent algorithm was 

selected to replace the expert's opinions in the AHP technique. By comparison to the 

previous studies (Arunbose et al., 2021; Azimi et al., 2018; Chakraborty et al., 2016), 

the criteria score has been given based on the contribution level of influencing factor 

to Ni contamination in groundwater from the output of maxent approach, which help 

to eliminate the subjective from judges as using the AHP technique. Additionally, the 

limitation of controlling factor was also broken compared to previous studies on 

groundwater vulnerability and risk (Barzegar et al., 2018). In our case study, eight 

influencing factors was considered conditional variables for predicting Ni 

contamination risk, including altitude, distance to roads, distance to waterbodies, 
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geology, land use, rainfall, slope, and soil type, which had never done in assessing 

groundwater contamination risk. 

Regarding sensitivity analysis, the model shows the role of influencing factors 

in determining the Ni contamination, in which land use is the influencing factor with 

the largest contribution, followed by soil type. The analysis results indicated that 

land use and soil type factors explain approximately 67.8% variation in Ni 

contamination in groundwater. Our analysis unveiled the correlation between 

influencing factors and Ni contamination risk. The higher the altitude value is, the 

lower the Ni contamination is. Distance to roads and slopes are inversely 

proportional to the Ni contamination risk, while distance to water bodies is 

proportional to the Ni contamination risk. Geologically, the Ni contamination risk in 

groundwater of the Pre-Cambrian unit is higher than that of other units.  Regarding 

land use, the urban areas were defined as the highest-risk zone with Ni 

contamination in groundwater, followed by the miscellaneous zones, agricultural 

zones, and forest land. Indeed, human activities were the leading cause of Ni 

contamination in groundwater (Egbueri, 2020; Khatri and Tyagi, 2015). In terms of soil 

type, the Ni contamination in groundwater of locations with clay loam, sandy loam, 

and clay loam is higher than that of locations with other soil textures. The findings of 

the present study were consistent with previous studies on the causes of 

groundwater contamination (Egbueri, 2020; Sajedi-Hosseini et al., 2018; Singha et al., 

2020; Tiankao and Chotpantarat, 2018). In addition, our study indicated that the 

effect of rainfall is the same in any value. 

Compared to other administrative districts, the groundwater in the Mueang 

Kanchanaburi district was found to be a high Ni contamination risk, raising concern 

over groundwater pollution management, particularly in urban areas. Therefore, strict 

policies for discharging waste materials should be applied in this region (Hu et al., 

2014). The Ni contamination in groundwater used in the present study is considered 
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a striking example to show the geographical distribution of possibly polluted regions 

and to investigate the critical cause in identifying contaminated risk areas using the 

Maxent and AHP techniques. The AUC value indicated that the used model was a 

relatively effective solution for mapping Ni contamination susceptibility in 

groundwater. 

4.3. Deciphering groundwater quality in the eastern part of Kanchanaburi 

province, Thailand using RF and ANN 

4.3.1. Groundwater quality in Kanchanabui 

Table 4.11 provides information on twelve physicochemical parameters in 

groundwater samples in Kanchanaburi, Thailand. The mean value of Ca2+ (97.09 mg/l) 

and HCO3
− (461.94 mg/l) in the groundwater of the study area were the above-

recommended limits. The Kolmogorov-Smirnov test shows the p-value of 

physicochemical parameters ranging from 0 to 0.002. In terms of calculating the EWQI, 

the entropy weight of NO3
− was the highest, followed by SO4

2−, Cl−, K+, Na+, EC, Mg2+, 

Ca2+, TH, TDS, HCO3
−, and pH. Groundwater parameters exceeded the allowed limit in 

some groundwater samples except for the Cl−. The concentration of HCO3
−, Ca2+, and 

Mg2+ were normally found above the allowed limit with a number of 173, 132, and 70 

groundwater samples, respectively. Regarding hydrogeochemical properties, alkaline 

earth (Mg+Ca) dominated over alkalis (Na+K), while, and weak acids (HCO3) and strong 

acids (SO4+Cl) were not clearly distinguished in distribution (Fig. 4.11). The concentration 

of Mg and Ca increased when the concentration of alkalis (Na+K) decreased. The 

groundwater samples were predominated by Ca-Cl, mixed Ca-Mg-Cl, mixed Ca-Mg-HCO3, 

and Ca-HCO3. The correlation matrix of physicochemical parameters in groundwater is 

shown in Fig. 4.12. Groundwater parameters were positively correlated with the 

normalized EWQI except for the pH. Out of these, the Na+, HCO3
−, SO4

2−, TH, Ca2+, EC, 

Mg2+, Cl−, and TDS had more than a correlation value of 0.5. The spatial distribution of 
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groundwater parameters is displayed in Fig. 4.13. 

Table 4.11. Parameters relevant to groundwater samples 

 

 

 

 

 

 

 

Note: * Standard value based on Thailand guidline, ** Standard value based on WHO. 

 

Fig. 4.11. Hydrogeochemical properties in groundwater samples 
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Fig. 4.12. Pearson correlation between groundwater parameters and the normalized EWQI 
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Fig. 4.13.  Spatial distribution of groundwater parameters in the study area 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 113 

4.3.2. Application of the RF and ANN with cross-validation and bootstrap in 

deciphering groundwater quality 

The regression task of RF and ANN was conducted to predict the normalized 

EWQI in this study. Then, the normalized EWQI was deciphered into groundwater 

quality zones. The CV and B techniques were directly integrated into the RF and ANN 

algorithms, called RF-CV, RF-B, ANN-CV, and ANN-B models, respectively. For this task, 

the RF model was optimized from the error estimate to determine the n-tree (that 

is., the optimal number of trees). The optimal number of n-tree was 36 and 134 for 

the RF-CV and RF-B, respectively (Fig. 4.14).  Compared to the RF, the ANN was 

established based on back-propagated feed-forward processes using the neural 

networks. Both the ANN-CV and ANN-B were optimal when the hidden layer was 

determined to be three nodes and a weight decay of 0.1 (Fig. 4.15).  Fig. 4.16 

presents the groundwater quality map using the RF-CV, RF-B, ANN-CV, and ANN-B 

models. For the RF-CV, 64.78% and 29.39% of the study area were good and very 

good groundwater quality, respectively. Meanwhile, only 0.58% and 0.08% were poor 

and very poor groundwater quality, respectively. The remaining 5.17% was 

designated to be moderate groundwater quality. For the RF-B, 62.92% and 30.24% of 

the study area were deciphered into good and very good groundwater quality. 

Moderate, poor, and very poor groundwater quality zones accounted for 6.23 %, 

0.56%, and 0.05% of the whole region, respectively (Table 4.12). For the ANN-CV 

model, 41.94% and 52.66% of the total area were estimated to be of very good and 

good groundwater quality. Moderate and poor groundwater quality areas account for 

4.50% and 0.90% of the total area, respectively. For the ANN-B, 53.46% and 39.90% 

of the total area were deciphered to be good and very good groundwater quality. 

Moderate, and poor zones constitute 5.67%, and 0.97% of the total area, 

respectively (Table 4.12).  
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Table 4.12. Statistical area in the models 

 

 

Fig. 4.14. Relationship between n-tree and predictive error in the RF-CV and RF-B 

models 

 

Fig. 4.15. Neural network of the ANN-CV (a) and ANN-B (b)  
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Fig. 4.16. Groundwater quality zones: RF-CV (a), RF-B (b), ANN-CV (c), ANN-B (d) 

4.3.3. Validation 

The validation process plays a key role to confirm the performance of 

machine learning models, which assists in choosing the best predicting model for 

mapping groundwater quality. Table 4.13 presents the validation indexes estimated 

by the models. Regarding the values of RMSE and MAE, the ANN-B model was the 

highest (RMSE = 0.101 and MAE = 0.065), followed by ANN-CV (RMSE = 0.098 and 

MAE = 0.061), RF-B (RMSE = 0.078 and MAE = 0.047), ANN-CV (RMSE = 0.067 and MAE 

= 0.043). However, the R2 value of RF-CV was the highest (0.873) compared to the 

other three models. The RF-V’s R2 of 0.081 was second only to that of the RF-CV. 

The ANN-CV and ANN-B placed third and fourth when comparing the R2 values with 

0.709 and 0.617, respectively. 
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Table 4.13. Validation of the models 

 

4.3.4. Role of parameters in deciphering the groundwater quality 

A stable and powerful model is normally decided by input variables (Şakar, 2018). 

Therefore, the importance of groundwater parameters needs revelation to decipher the 

groundwater quality maps, which helps to determine the contribution of physiochemical 

parameters to normalized EWQI. There was a great difference among models regarding the 

role of groundwater parameters in predicting the normalized EWQI (Table 4.14). In the RF 

models, TDS was the most important contribution to predicting the normalized EWQI (100) 

while the contribution of pH was zero. In the ANN-CV, the important parameters included 

pH (100), Na+ (30.25%), Cl− (29.54%), SO4
2− (25.31%), Ca2+ (20.86%), and NO3

− (20.79%). 

In the ANN-B, pH (100%), SO4
2−(29.05%), and NO3

− (28.39%) were the important 

parameters in deciphering groundwater quality. 

Table 4.14. Contribution levels of groundwater parameters in deciphering the normalized EWQI 
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4.3.5. Discussions 

The protection of groundwater resources is a vital mission in many countries, 

especially where groundwater is used mainly for domestic and productive activities 

(Doveri et al., 2015). As a result, evaluating and delineating the groundwater quality 

zones is necessary to orient the groundwater use and management plan. For this reason, 

hydrologists have attempted to find an appropriate approach for delineating 

groundwater quality zones. This study pioneered integrating the CV and B techniques 

with two famous algorithms with high accuracy (RF and ANN). For this integration, four 

ML models were considered in deciphering groundwater quality in the eastern part of 

Kanchanaburi province, Thailand. The physicochemical parameter was referred to the 

previous publications in prestigious journals. In the comparison with previous studies 

(Adimalla, 2021; Amiri et al., 2014; Kumar and Augustine, 2022; Raheja et al., 2022; Singha 

et al., 2021), the normalized EWQI applied to delineate the groundwater quality zones, 

which contributes a general guideline for global groundwater investigations. 

 Our study indicated that there is a dramatic difference in the role of groundwater 

parameters in predicting the normalized EWQI in the four models, which can be 

explained by the nature of the approaches themselves. The RF models use decision 

trees to deal with data (Belgiu et al., 2016).  While the ANN models are developed based 

on the neural network (Noori et al., 2010). In this analysis, our study found that TDS was 

the most important parameter in the RF models while pH was the most important 

parameter in the ANN models, which was not the same as a previous study by Singha et 

al. (2021). For this difference, the CV and B techniques were applied to the initial dataset 

while Singha et al. (2021) divided the initial dataset into two subsets with different ratios 

for the training and testing missions. This study indicated that the RF models were better 

than the ANN models in deciphering groundwater quality zones, which coincided with 
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some publications (Bui et al., 2020; Mallick et al., 2021; Nafouanti et al., 2021). In 

addition, the CV technique outperforms the B technique, which could be explained by 

the difference in building subsets (Brodeur et al., 2020). The CV technique uses the entire 

initial database while the B technique applies only a part of the initial database. Among 

four models, the most optimal model was the RF-CV (RMSE = 0.067, R2 = 0.873, MAE = 

0.043), followed by the RF-B (RMSE = 0.078, R2 = 0.801, MAE = 0.047), ANN-CV (RMSE = 

0.098, R2 = 0.709, MAE = 0.061), and ANN-B (RMSE = 0.101, R2 = 0.671, MAE = 0.065). As a 

result, this study proposes the RF-CV model could apply to map groundwater quality 

not only in Thailand but also in other parts of the world. Our study also indicated that 

the performance of the RF models depends on the number of trees (Bernard et al., 

2009). While the performance of the RF models depends on the number of intermediate 

nodes (Zannou et al., 2021).  

According to the RF-CV model, approximately 94% of the study's area was 

good to very good groundwater quality. The rest of the territory (about 6%) was 

medium, poor, and very poor groundwater quality, which was distributed in the 

middle regions of the study area. In the comparison with the land use map, poor, 

and very poor groundwater quality occurred in the agricultural and urban regions, 

which agrees with a study by Sajedi-Hosseini et al. (2018). Agricultural activities (like 

lime and inorganic fertilizer practices), limestone quarries, and geological settings 

were the main reasons leading to poor quality in the study area (Deshmukh, 2013; 

Ghaffari et al., 2021; Saha et al., 2019; Sridharan and Senthil Nathan, 2017). This study 

suggests that zones with good and very good groundwater quality can be used for 

daily purposes of local people while the zones classified very poor, poor and 

moderate groundwater quality should be used for agricultural or industrial purposes. 

However, the calcium, magnesium, and bicarbonate in groundwater should be 

handled before drinking because our physicochemical analysis showed that 

groundwater in the study area was mainly polluted by Ca2+, HCO3
−, Mg2+. 
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Chapter 5. CONCLUSION AND SUSGESTION 

5.1. Conclusion 

The AHP, FR, and RF models were used in this study to represent the expert 

decision, statistical, and machine learning approaches for the GWPZ mapping method 

comparison. In particular, the study aimed to map the potential of achieving a 

groundwater yield above 10 m3/h for Kanchanaburi Province in Thailand. An 

ensemble of the three models was also created and compared to the individual 

models in the mapping of GWPZ. The results showed that all models achieved 

similarly good prediction with an AUC value of 0.72, 0.74, 0.76, and 0.80 for the AHP, 

FR, RF, and ensemble models, respectively. The ensemble model improved the 

overall predictive power and performed better in areas where all the individual 

models failed. This study illustrated the usefulness of the ensemble of models from 

different approaches in mapping GWPZ and discussed how future studies can adopt 

similar approaches to improve the delineation of GWPZ for policy foci in sustainable 

groundwater management. This study recommends that the GWPZ map achieved by 

the ensemble model be integrated with the surface water planning map, land use 

planning map, and economic map to assist scientists, policymakers, and managers in 

Kanchanaburi Province, Thailand, in inclusive and sustainable development. 

This study attempted to delineate the Ni contamination risk zones using a 

hybrid model of the Maxent and AHP modeling approach. This model works well 

with an AUC value of 0.86 and an accuracy of 0.85 in delineating the geographical 

distribution of Ni contamination risk in groundwater. Eight factors, including altitude, 

distance to roads, distance to waterbodies, geology, land use, rainfall, slope, and soil 

type, were selected to set up the model. Among the eight investigated factors in this 

study, land use was the most relevant factor for identifying possibly contaminated 

locations, followed by soil type. The urban area was the most likely Ni 
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contamination in groundwater. The map of Ni contamination risk zones in 

groundwater could provide information for residents and decision-makers in using 

groundwater resources for various purposes. It could help Thailand's groundwater 

resource management agencies grasp the practical basis and find solutions for the 

protection of groundwater resources in areas with high Ni contamination risk. 

 This study evaluated groundwater quality in the eastern part of Kanchanaburi 

province and developed four ML models by integrated the RF and ANN algorithms 

with the CV and B techniques. The EWQI was converted into the normalized EWQI. 

The study found that groundwater quality in the study area was polluted with 

calcium, magnesium, and bicarbonate and that the RF-CV was the best in deciphering 

the groundwater quality map, compared to the RF-B, ANN-CV, and ANN-B. In the RF-

CV, TDS was the most important parameter while other parameters were little 

contribution to predicting the normalized EWQI. The groundwater quality zones were 

classified into five levels in the study area. Regarding the best model (RF-CV), poor 

and very poor groundwater quality occurred in the agricultural areas. The results 

from the present study can be a reference document for developing and mapping 

groundwater quality in the future. 

5.2. Suggestion 

For mapping groundwater yield potential, the AHP, FR, and RF models were 

used in this case study to represent the expert decision, statistical, and machine 

learning approaches in GWPZ mapping. However, this study acknowledges that these 

approaches are broad topics on their own and thus this study's comparison of the 

particular models might not be representative. This study strongly encourages future 

studies to explore different model combinations to fortify this study's initial findings, 

as this study pioneered the research. For studies that wish to follow this study's 

approach to GWPZ mapping, this study recommends that they first employ the AHP 
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methods to generate the GWPZ map and then collect a small set of ground truth 

data to validate the model results. If the results do not meet expectations, more 

ground truth data can be collected to create the FR model, and if further accuracy 

improvement is required, much more data should be collected to build the RF 

model. As illustrated by this study's analysis, one should always attempt ensemble 

models when data is available to improve the overall predictive power. Additionally, 

this study also suggests that groundwater resources in the Western part of 

Kanchanaburi, including Sangkhla Buri, Thong Pha Phum, Si Sawat, Sai Yok districts, 

should be strictly protected due to the low groundwater yield potential and that in 

the Eastern part of the province, including Nong Prue, Lao Khan, Bo Phloi, Huai 

Krachrao, Muong Kanchanaburi, Tha Muang, Tha Maka, Dan Makham districts, can 

exploit for purposes of socio-economic development. 

For mapping contamination risk in groundwater, this study recommends that 

the hybrid model between Maxent and AHP can also be applied to investigate other 

heavy metal elements in groundwater because of its own advantages. The input 

influencing factors of the model could be easily collected from the field, 

government agencies, and free satellite images. Consequently, budget, human labor, 

and time could be saved using this process. However, Ni concentration depends on 

the accuracy of the analysis instrument. Although the modeling approach for 

mapping the Ni contamination risk zone gives a good result, groundwater is 

constantly moving, so the groundwater quality at different times will be different. 

Therefore, the assessment of Ni content in groundwater should be carried out 

regularly in the future. Additionally, the present model still has limitations in terms 

of the data on solid wastes, wastewater, waste gas, surface water pollution, and soil 

contamination. Hence, these influencing factors should be used to control the future 

model. This study also recommends local people in areas with a high risk of 

groundwater pollution, especially urban regions, should not use groundwater for 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 122 

daily drinking purposes.  

For mapping groundwater quality, this study suggests that the RF-CV model 

should be applied to map groundwater quality not only in Thailand but also in other 

parts of the world. However, this study focuses only on the physicochemical 

parameters to estimate the EWQI, the study recommends that future studies should 

consider the heavy metal elements in deciphering groundwater quality maps. 

Additionally, this study limits in considering the RF and ANN combined with the 

cross-validation and bootstrap, therefore an exploration of the performance of other 

machine learning is needed to be conducted in the future to determine the best 

model for deciphering groundwater quality map. Simultaneously, groundwater 

samples were collected at a time due to the limitation of financial support, 

therefore, the seasonal variations of groundwater quality are not considered, which 

can affect the results.  

From the results, groundwater agencies can release policies on groundwater. 

It can be done by publicizing the list of restricted areas from the exploitation of 

groundwater and orienting in reasonable groundwater exploitation and usage with 

different purposes. 
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Structure of algorithm 

Algorithm 1. Random forest for predicting GW yield 
1: # Install package “randomForest” and “Java environment” 
2: # Import databases 
3: # Set training and testing dataset 
3: # Construct Random Forest model 
4: RF = randomForest(‘environmental factors’, ‘train data’, 'ntree', 'cross-validation') 
5: # Get the map 
6: plot(RF) 

 

Algorithm 2. Maxent approach 
1: # Install package “SDM” and “Java environment” 
2: # Import databases 
3: # Construct maxent model 
4: MX = max(‘environmental factors’, ‘train data’) 
5: # Get the contribution variable 
6: plot(MX) 
7: # Get the predicted value 
8: response(MX) 

 

Algorithm 3. Random forest for deciphering GW quality 
1: # Install package “randomForest” and “plyr” 
2: # Import databases 
3: # Set Cross-validation 
4: # Set Bootstrap 
5: # Construct RF-CV and RF-B models 
6: RF_CV = train(‘influencing factors’, ‘dataset’, 'RF', 'trControl = method'CV', 'number 
=5'') 
7: RF_B = train(‘influencing factors’, ‘dataset’, 'RF', 'trControl = method'boot', 
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'number =100'') 
8: # Determine the best model 
9: which.min(plot(RF_CV$finalModel,fallen.leaves = F)) 
10: which.min(plot(RF_B$finalModel,fallen.leaves = F)) 
11: Get the maps 
12: plot(RF_CV) 
13: plot(RF_B) 
14: # Determine the important value 
15: varImp(RF_CV)  
16: varImp(RF_B) 

 

Algorithm 4. Artificial Neural Networks for deciphering GW quality 
1: # Install package “neuralnet” 
2: # Import databases 
3: # Set Cross-validation 
4: # Set Bootstrap 
5: # Construct ANN-CV and ANN-B models 
6: ANN_CV = train(‘influencing factors’, ‘dataset’, 'nnet', 'trControl = method'CV', 
'number =5'') 
7: ANN_B = train(‘influencing factors’, ‘dataset’, 'nnet', 'trControl = method'boot', 
'number =100'') 
8: Get the maps 
9: plot(ANN_CV) 
10: plot(ANN_B) 
11: # Determine the important value 
12: varImp(ANN_CV)  
13: varImp(ANN_B) 
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