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ABSTRACT (ENGLISH) 
# # 5787821320 : MAJOR HAZARDOUS SUBSTANCE AND ENVIRONMENTAL MANAGEMENT 
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Rubber industrial wastewater, Wastewater treatment 
 Saowaluk Krainara : Enrichment, characterization and application of bacterial consortia for degrading 

2-mercaptobenzothiazole in rubber processing wastewater. Advisor: Assoc. Prof. EKAWAN 
LUEPROMCHAI, Ph.D. Co-advisor: Benjaphon Suraraksa, Ph.D., Peerada Prommeenate, Ph.D. 

  
Benzothiazoles is widely used as vulcanized accelerator in rubber industry. The high volume of 2-

MBT usages resulted in its release into the environment and can cause adverse health impacts. This study aimed 
to obtain efficient 2-MBT-degrading bacteria for wastewater application. The bacterial consortia were enriched 
by incubating rubber wastewater sludge in a medium containing 2-MBT for 28 days followed by a stepwise 
acclimation by gradually increasing 2-MBT concentrations in an NH4Cl-containing medium for 76 days. The 
process significantly increased the bacterial number and changed the dominant populations and degradative 
genes. Among these consortia, the EN consortium had the highest specific 2-MBT biodegradation rate of 5.2 ± 
0.5 mg L-1 day-1 mg protein-1 and could degrade up to 300 mg L-1 2-MBT. From 16S rRNA gene analysis, 
Pseudomonas was the dominant genus at approximately 70% of the total population. Stenotrophomonas was 
the second most abundant populations and have never been reported for 2-MBT biodegradation. The 
abundance of genes involved in xenobiotic substance biodegradation and tolerance mechanism in the EN 
consortium were higher than those in original sludge sample. In addition, the EN consortium removed 65-79% 
and 90-93% of 112 mg L-1 2-MBT and ~4,000 mg L-1 COD in rubber wastewater under batch test, respectively. 
The values were significantly higher than that of natural attenuation. This research also developed a ready-to-
use inoculum by immobilizing the EN consortium in porous carriers. The immobilized cells could retain their 
activities over 4 cycles of repeated uses. This study further carried out the bioaugmentation of immobilized EN 
consortium in rubber processing wastewater treatment system. These results suggested that the system not only 
reduced 2-MBT at approximately 74-76% of its initial concentration, it also exhibited greater than 80% of COD 
removal at an OLR 3 kg COD m3 day-1. Thus, the bioaugmentation of immobilized EN consortium and activated 
sludge in the bioreactor at the ratio of 1:2 could enhance wastewater treatment efficiency of rubber processing 
industry under a continuous operation. Hence, the EN consortium could be an efficient bacterial consortium to 
remove benzothiazoles by applying it in the post-treatment system of rubber industrial wastewater. 
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CHAPTER 1  
INTRODUCTION 

 

1.1 Statement of problem  
  The presence of organic pollutants in the environment is mainly attributed to 
the discharge of wastewater from treatment plant (Petrie, Barden, & Kasprzyk-Hordern, 
2015). Thailand is currently the largest rubber producer in the world  (Jawjit, Kroeze, & 
Rattanapan, 2010). The rubber industry consumes a large volume of raw water through 
their manufacturing process, thus one of the most serious problems confronting rubber 
industries is organic compounds in wastewater. Many recalcitrant compounds such as 
heterocyclic aromatic, aromatic, indole derivatives, phthalates, phenol, 
thiocarbamates, acids and petroleum hydrocarbons are often detected in rubber 
wastewater (Dsikowitzky & Schwarzbauer, 2013; Faber, 1979; G. Jungclaus, Avila, & 
Hites, 1978; Palma, Carvajal, Vásquez, & Contreras, 2011). This discharged effluent can 
cause serious environmental impact (Anumol, Vijayanandan, Park, Philip, & Snyder, 
2016) .  The rubber wastewater also contains a high organic load and generates odor 
when discharged into receiving water bodies (Mukherjee et al. , 2013) .  Currently, the 
industry uses chemical flocculent to remove some organic compounds before 
transfers the treated wastewater to the conventional biological treatment pond.  The 
treatment process is considered an incomplete system.  

  One of the identified organic contaminants in rubber wastewater is heterocyclic 
aromatic group including 2-mercaptobenzothiazole (2-MBT)  and their derivatives.  2-
MBT is the most important members of the benzothiazole family, used as a 
vulcanization accelerator in rubber industry (Reddy & Quinn, 1997) .  Moreover, it also 
used as fungicide in leather ( H.  De Wever, Besse, & Verachtert, 2001)  and 
pharmaceutical industries (Bujdakova, Kuchta, Sidoova, & Gvozdjakova, 1993)  as well 
as anticorrosion (Yang et al. , 2008) .  2-MBT has been detected in various types of 
wastewater ( H.  De Wever et al. , 2001; Reddy & Quinn, 1997; Stasinakis, 2012; 
Umamaheswari & Rajaram, 2017; Valdes, Zaror, & Jekel, 2003) .  It is known to be toxic 
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and poorly biodegradable compound, the half- life of 2-MBT ranges from 92 to 248 
days (Kettrup, Maasfeld, Dubisch, & Kampschulze, 1982). In addition, it has been found 
to be refractory in activated sludge and anaerobic treatment systems (H. De Wever & 
Verachtert, 1994; M. A. Gaja & Knapp, 1998). The concentration of 2-MBT at 100 mg/L 
can inhibit the activity of microbes in biological wastewater treatment. It can solubilize 
cell membrane and lead to potassium leakage under bacteriostatic condition (Helene 
De Wever, Van den Neste, & Verachtert, 1997; Tölgyessy, Kollár, Vančo, & Piatrik, 1986). 
In addition, inhibitory effect of 2-MBT on aquatic organisms and human health was 
evaluated (Chen, Ortiz, Steele, & Stuckey, 2014; Liao, Kim, & Kannan, 2018; Whittaker, 
Gebhart, Miller, & Hammer, 2004). The 2-MBT has a potential allergenic and mutagenic 
effects to human (Geier, Uter, Schnuch, & Brasch, 2002; Gold, Slone, Stern, & Bernstein, 
1993). 

  Physical and chemical treatments have been introduced to transform 2-MBT 
to readily degradable compounds, but they cannot completely destroy the target 
pollutants and are considered non- environmental friendly (Al-Ansari, Steevensz, 
Taylor, Bewtra, & Biswas, 2010; Derco, Kassai, Melicher, & Dudas, 2014; F. Li, Liu, Liang, 
Li, & Zhang, 2008; A. Martins, Teixeira, da Fonseca, & Yokoyama, 2017; redouane salah, 
Malouki, Badis, Santaballa, & Canle López, 2018). Biological treatment can be a feasible 
treatment solution using microbial cultures to transform toxic chemical to less toxic 
product or complete mineralization ( Mamma, Papadopoulou, Petroutsos, 
Christakopoulos, & Kekos, 2006) .  Currently, only a few strains of 2-
mercaptobenzothiazole- degrading microorganisms have been reported in the 
literature (A. Drotar, G. A. Burton, Jr., J. E. Tavernier, & R. Fall, 1987a; El-Bassi, Iwasaki, 
Oku, Shinzato, & Matsui, 2010; Haroune et al., 2002; Umamaheswari & Rajaram, 2017; 
Wever, Cort, Noots, & Verachtert, 1997). Biodegradation pathways of 2-MBT have been 
partially elucidated in Rhodococcus species and Alcaligenes sp. (Haroune et al., 2004; 
Haroune et al., 2002). The biodegradation pathway in these bacterial strains have been 
presented in two main possible routes including oxidation and methylation reactions. 
The oxidation reaction of 2-MBT is further hydroxylated into catechol and entering to 
the Krebs cycle.  Moreover, methylation reaction produces sulfite and ammonia, then 
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the sulfite is subsequently metabolized to sulfur and later to thiocyanate as the end 
product.  Alcaligenes sp.  MH146 strain CSMB1 exhibited catechol 2, 3- dioxygenase 
activity while Rhodococcus rhodochrous OBT18 showed catechol 1, 2- dioxygenase 
activity.   Moreover, Pseudomonas putida strain HKT554 is the first Gram- negative 
bacteria that can transform benzothiazole derivatives via naphthalene dioxygenase 
system (El-Bassi et al. , 2010) .  From these results, they can be indicated that 2-MBT 
metabolism may related to various oxygenase reactions.  Currently, the 
biotransformation of 2-MBT biodegradation in mixed cultures is largely unknown and 
inconclusive (H. De Wever et al., 2001; Kloepfer, Jekel, & Reemtsma, 2005; Reemtsma 
et al. , 2006) .  Therefore, this study focused on elucidating the activities of various 
microorganisms on degrading 2- MBT and other benzothiazoles in rubber industrial 
wastewater. 

  Initially, 2- MBT degrading bacterial consortia were isolated from rubber 
processing wastewater sludges by enrichment and acclimatization processes. The use 
of complex microbial sources obtained from wastewater sludge, manure, paddy soil, 
freshwater sediment and compost has been proposed (Z. He et al., 2015; Simmons, 
Reddy, Simmons, Singer, & VanderGheynst, 2014; Zanaroli et al., 2010). These samples 
generally contain a high diversity of bacteria, because their environment can promote 
the activity of various microorganisms (Kachienga, Jitendra, & Momba, 2018; Wilkins, 
Rao, Lu, & Lee, 2015) .  This study was initially isolated the efficient bacterial consortia 
from rubber wastewater sludge through an enrichment and acclimatization process be 
increasing the concentration of 2-MBT in each subsequent transfer.  The process is 
important in introducing native microorganisms to foreign pollutant by adaptation to 
the higher concentrations of the interested compound (Zawani, Guan, Fakhru'l-Razi, & 
Abdan, 2013) .  The subsequent transfers of enrichment culture have advantages for 
selecting the specialized microorganisms which have increasing number during the 
acclimation phase and can enhance the degradation rate of pollutants effectively 
(Zhou, Pan, Xu, Xu, & Liu, 2016).  

  2-MBT may be used by microorganisms as a sole carbon, nitrogen and sulfur 
sources as described previously (Umamaheswari & Rajaram, 2017; Wever et al., 1997).  
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However, some bacteria such as P.  putida strain HKT554 do not grow on minimal 
medium with benzothiazole and 2-MBT as the sole nitrogen, and sulfur, it required the 
nitrogen and sulfur supplement in medium to enhance the biomass production (El-
Bassi et al., 2010; Y.-S. Liu, Ying, Shareef, & Kookana, 2011). Alternative carbon sources 
such as acetate, benzoate, glucose and glutamic acid can serve as a primary growth 
substrates and also act as a stimulatory substrate for inducing catabolic enzymes 
involved in 2-MBT metabolism (Arora, Alok, & Singh, 2010; Haroune et al. , 2002; Y.  Li, 
Hu, & Gao, 2018; Lovanh & Alvarez, 2004) .  Consequently, this work investigated the 
influence of organic carbon and nitrogen sources in the enrichment medium by 
comparing the degradation rate and community structure of 2-MBT degrading bacterial 
consortia after acclimatization process.   

An efficient 2- MBT degrading bacterial consortium was later selected and 
applied in bioreactors containing rubber processing wastewater.  Little information is 
available about the feasibility of 2- MBT treatment in bioreactor systems and the 
relationship between 2-MBT treatment performance and microbial structure is limited. 
In general, they can be concluded that non- specific microorganisms or non-
acclimatized cells in activated sludge have low 2-MBT degradation capacity.  Previous 
work also indicated that benzothiazole derivatives had an adverse effect on acid 
accumulation and membrane fouling in fluidized-bed membrane bioreactor (Y. Li, Hu, 
Chen, Wang, & Gao, 2017) .  Since the performance of 2-MBT treatment in wastewater 
are low and the sustainable of microbial community in wastewater is difficult, cell 
immobilization is recommended for improving 2-MBT treatment in wastewater.  The 
immobilized cells have several unique advantages over free cells such as considerable 
duration and prolong activity under stress environments (Aneez Ahamad & Mohammad 
Kunhi, 2011; Siripattanakul, Wirojanagud, McEvoy, & Khan, 2008).  

 Consequently, this study immobilized the efficient 2-MBT degrading bacterial 
consortium in a porous carrier and apply them for rubber wastewater treatment.  The 
immobilization process was expected to effectively maintain active bacteria in the 
bioreactor and protect the bacterial cells from 2-MBT and benzothiazole derivatives. 
This study further employed NGS technique and metatranscriptomic analyses to 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 
 
identify the diverse bacterial populations and their functional role in 2- MBT 
degradation and metabolism. The application of molecular approaches including next-
generation sequencing (NGS)  method, metagenomics, and metatranscriptomics allow 
the detection of overall microbial diversities and help linking the associated functions 
(Kachienga et al., 2018; D. P. Singh, Prabha, Gupta, & Verma, 2018; B. Wang et al., 2017). 
Finally, this work proposed an application of immobilized cells for 2- MBT 
biodegradation in rubber wastewater treatment system which could be extended to 
wastewater from other industries containing 2-MBT and benzothiazole derivatives. 

 

1.2 Research hypotheses    
1 The increasing of 2-MBT concentrations over time allows the bacterial consortia 

in wastewater sludge to acclimatize and consequently degrade 2- MBT at high 
degradation rates. 

2 The efficient 2-MBT degrading bacterial consortia contain diverse populations 
and functional genes associated with the 2-MBT metabolism, while the bacterial 
community structures will depend on source of wastewater sludge.  

3 Immobilization of 2- MBT degrading bacterial consortium can increase their 
activities and maintain the bacterial community structures in rubber processing 
wastewater. 
 

1.3 Research objectives 
 Our ultimate goal is to develop an efficient 2-MBT degrading bacterial consortia 
in order to be used as a bioaugmented culture for treatment of 2-MBT in rubber 
processing wastewater. 

1. To isolate 2- MBT degrading bacterial consortia from rubber processing 
wastewater sludge by acclimatization process 

2. To characterize the bacterial community structures and functional genes in the 
2-MBT degrading bacterial consortia by molecular analyses. 

3. To develop an immobilized 2-MBT degrading bacterial consortium for applying 
in rubber processing wastewater. 
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1.4 Scope of the study 

1. Rubber wastewater sludge was used as inoculum seeds for isolation process.  
2. Rubber wastewater sludge was analyzed for bacterial community structures 

and presence of organic pollutants. 
3. A sequential enrichment and acclimatization process by increasing the 

concentrations of 2-MBT in media with/without additional nitrogen or acetate 
was used to enrich and acclimatize the 2-MBT-degrading bacterial consortia. 

4. Acclimatized bacterial consortia were investigated for 2-MBT biodegradation 
at varying initial concentrations in minimal salt medium.  

5. Bacterial community structures in the efficient bacterial consortia were 
identified along with the factors influencing their development from the 
original rubber wastewater sludge.  

6. Bacterial community structures were identified by 16s rRNA metagenomics.  
7. The functional genes of 2-MBT degrading bacterial consortium were identified 

by metatranscriptome analysis.  
8. A porous carrier was used as supporting material to immobilize bacterial 

consortium.  
9. Immobilization of a selected 2- MBT degrading bacterial consortium was 

optimized to get the high number of attached cells.  
10. 2-MBT degradation and stability of the immobilized 2-MBT degrading bacterial 

consortium and suspended cells were compared in a minimal salt medium. 
11. The immobilized 2- MBT degrading bacterial consortium was applied in a 

continuous-batch reactor for treating rubber processing wastewater. 
12. All the experiments were carried out in the laboratory.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5 Experimental framework 

 
Figure 1.1 Experimental framework 

Phase II  

Characterization of the bacterial community 
structures and functional genes in the 2-MBT 
degrading bacterial consortia by molecular 
analyses  

Phase III  

Development of an immobilized 2-MBT 
degrading bacterial consortium for applying 
in rubber processing wastewater  

Influence of co-carbon and nitrogen 
(10 mM of sodium acetate and 1 g/L 
of NH

4
Cl) 

Acclimatization by increasing 2-MBT 
concentrations (50-200 mg/L) 

Sampling and collection  

Determination of 
wastewater characteristic  

Sampling and collection of rubber 
wastewater sludge from two rubber 
factories  

Phase I  

Enrichment of 2-MBT-degrading 
bacterial consortia from rubber 
wastewater sludge by 
acclimatization process  

Identification of organic 
compounds by GC-MS 

Determination of sludges 
characteristic by standard method 

Identification of microbial diversity in 
original sludge 

Adsorption capacity test  
(50, 100, 200, 300 and 500) mg/L) 

Optimization of cell immobilization 
to degrade 2-MBT  

Medium cultivation  

Immobilized cell 
preparation 

Biodegradation of 2-MBT and 
stability of immobilized 2-MBT 
degrading bacterial consortium and 
free cells    

Residual of 2-MBT 

Repeatability of immobilized 
cell in batch test 

Micrographs of 
immobilized cells by SEM 
analysis 

Application of immobilized cells for 
treating wastewater treatment  

Transcription of genes involved in 2-
MBT metabolism 

Identification of 2-MBT-degrading 
bacterial consortia by 16s rRNA 
metagenomics 

Enrichment system by acclimatization 
process under aerobic condition 

Effect of initial concentrations on 2-
MBT degradation (50, 100, 150, 200, 
300, 400, and 500 mg/L) 

Reactor set up and operation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

CHAPTER 2  
THEORETICAL BACKGROUND AND LITERATURE REVIEW 

 

2.1 Theoretical background 

2.1.1 Benzothiazole family 

 Benzothiazoles are a class of five-membered nitrogen containing heterocyclic 
ring featuring sulfur as part of aromatic ring system ( Patel & Patel, 2018) .  The 
benzothiazole group consisted of 2-mercaptobenzothiazole (2-MBT) , benzothiazole 
( BT) , 2- hydroxybenzothiazole ( OHBT) , benzothiazole- 2- sulfonate ( BTSO3) , 
methylbenzothiazole- 2- thione ( MBTT) , 2- ( methylthio)  benzothiazole ( MTBT) , 
methylbenzothiazole (MeBT) and 2-aminobenzothiazole (ABT). The general structure 
of these chemical substances is shown in Figure 2.1.  

 
Figure  2.1 General structure of benzothiazoles (Patel & Patel, 2018). 

 Among benzothiazoles, BT is liquid, while other benzothiazoles are solids at 
room temperature.  In addition, the polarity of the BT is higher than other 
benzothiazoles that led to its high solubility (Table 1). OHBT has also a good solubility 
of 2354 mg L-1 whereas 2-MBT, MTBT, and ABT are partial soluble.  The physical and 
chemical characteristics of benzothiazoles are shown in Table 2.1.  
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2.1.2 Uses and application 

 Benzothiazoles represent an important chemical of various industries (Table 2.2). 
In addition, some benzothiazoles are present in several potent pharmacologically 
active molecules include antimicrobial drug, antiretroviral drug, and antifungal drug 
(Kumawat, 2018) . In rubber processing industry, 2-MBT is the most important member 
of the benzothiazole group, which is used as vulcanization accelerators in vulcanization 
process (Gu et al., 2018; Y. Wang, Shuai, & Chen, 2020). 
 
Table 2.2 Industrial uses of benzothiazoles.  

Industry Purpose Reference 

Medical application Anti-fungal drug 
Bujdakova et al. 
(1993) 

Cooling system  Corrosion inhibitors 

Pharmaceutical industry Chemotherapeutic agents 

Leather industry Fungicides 
Reemtsma, Fiehn, 
Kalnowski, & Jekel 
(1995) 

Rubber processing industry Vulcanization accelerators 
Kloepfer, Gnirss, 
Jekel, & Reemtsma 
(2004) 

Flotation Agents Collectors - Sulfide Ores 

McDonald (1995) Lubricants and Additives Extreme Pressure Agents 

Plastics Secondary Antioxidants 

  Vulcanization is a cross linking process, in which individual polymer molecules 
of rubber are converted into a three dimensional network of interconnected chains 
through chemical additives (Lim, Park, & Kim, 2016). To improve the rubber quality and 
reduce time of vulcanization and used of vulcanizing chemical, 2-MBT is added into a 
rubber compound in order to increasing the speed of vulcanization ( J.  Zhao, Cheng, 
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Wang, Wang, & Song, 2017). For the BT and OHBT compounds, they are also generated 
as a byproduct in  rubber processing  product  (Brownlee, Carey, MacInnis, & Pellizzari, 
1992)  and are the major compounds in both tire and road dust samples (J.  Zhang et 
al. , 2018) .   In addition, ABT is commonly used in rubber products to accelerate the 
vulcanization of rubbers and the manufacturing of azo dyes (Podsiadły et al., 2005). 

2.1.3 Environmental occurrence of benzothiazoles  

 2-Mercaptobenzothiazole (MBT) exists in numerous industrial effluents, resulting 
in a large amount of release into the environment every year (Table 2.3). Benzothiazole 
(BT)  is produced from a variety of sources such as the leaching of robber processing 
product, the 2- MBT production and use of 2- MBT in vulcanization process ( G.  A. 
Jungclaus, Games, & Hites, 1976). These compounds are frequently found in effluents 
of wastewater from rubber related applications ( 20 mg L- 1)  ( Puig, Ormad, Sarasa, 
Gimeno, & Ovelleiro, 1996; Valdés & Zaror, 2005) , tannery wastewater (Reemtsma et 
al. , 1995)  and tap water (L.  Wang, Zhang, Sun, & Zhou, 2016)  at a concentration of 
40.1-1310 ng L-1. Methylbenzothiazole (MeBT) is identified in water originating from tire 

and rubber products at concentration of 0. 534 μg L- 1 ( Liao et al. , 2018) .  
Methylthiobenzothiazole (MTBT)  are also found in effluent of wastewater treatment 
plants (WWTPs)  (Asimakopoulos, Ajibola, & Thomaidis, 2013) .  It is also detected in 
tannery wastewater samples at concentration of 39 µg L-1 (Fiehn, Wegener, Jochimsen, 
& Jekel, 1998).   
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Table 2.3 Occurrence of 2-MBT in wastewater  

Industry Region 
Wastewater 

type 
Concentration 

(mg L-1) 
Reference 

Rubber and 
tire 
production 

USA Effluent 0.03 
G. A. Jungclaus et 
al. (1976) 

Spain 
Partially treated 
wastewater 

1.1 
Puig, Ormad, 
Roche, et al. 
(1996) 

Thailand Effluent 1.99 Worawit (2006) 

Japan 
rubber thread 
wastewater 

76 
(Ghin Yeoh et al., 
2002) 

Chile Wastewater 200 
Valdes et al. 
(2003) 

Iran Wastewater 200 
Habibi, 
Tangestaninejad, & 
Yadollahi (2001) 

Tannery Germany Untreated 0.1 
Reemtsma & Jekel 
(1997) 

 India Wastewater 50 
Umamaheswari & 
Rajaram (2017) 

 

2.1.4 Toxicity 

Many researches have shown the toxicity of 2-MBT to microorganisms and aquatic 
life.   Wastewater containing 2-MBT have toxicity effects on activated sludges (H.  De 
Wever & Verachtert, 1997; M.A. Gaja & Knapp, 1997; Tölgyessy et al., 1986) and 2-MBT 
affected several bacterial species and yeast cells.  Since 2- MBT can solubilize in 
membrane- bound system, it can caused potassium leakage under bacteriostatic 
condition (Helene De Wever et al. , 1997) .  The potassium leakage is known to be the 
indicator of membrane damage (Fuller et al. , 1985) .  Moreover, 2-MBT at 100 mg L-1 
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inhibited the bacterial growth and respiration (H.  De Wever, De Moor, & Verachtert, 
1994) .  2-MBT might interfere with oxido- reduction in membrane bound system and 
affect to the metabolic reaction (H.  De Wever et al. , 1994; Helene De Wever et al. , 
1997; Reemtsma, Zywicki, Stueber, Kloepfer, & Jekel, 2002) .   For aquatic toxicity test, 
2-MBT poses toxicity effects to fish and zooplanktons.  Daphnia magna is used as a 
planktonic crustacean model with the LC50 (48h)  of 19 mg L-1 (Reemtsma, Fiehn, & 
Jekel, 1999) .  In addition, the aquatic toxicity of 2- MBT on Vibrio fischeri was also 
demonstrated with the luminescence inhibition and EC50 (20 h) at 0.75 and 0.12 mg 
L-1, respectively (Reemtsma et al. , 1995) .  Moreover, 2-MBT is toxic to several aquatic 
life (Gold et al., 1993). The fish toxicity test was carried out in Rainbow Trout, Bluegill 
Sunfish and Fingerling Trout with the LC50 toxicity value of 0.75, 1.5 and 0.73 mg L-1 
respectively.  Moreover, it has a potential allergenic and mutagenic effects to human 
(Whittaker et al., 2004). 

2.1.5 Rubber processing industry   

 Rubber is cis-1,4-polyisoprene which is polymers naturally produced by Para 
rubber tree (Hevea brasiliensis) .  Indian and Central America were the first to use the 
natural rubber from latex releasing from the plant of H. brasiliensis (Simmonds, 1994). 
In addition, latex tapping and rubber preparation to produce the rubber products have 
been first discovered by Francois Fresneau (Jones & Allen, 1992). The growing demand 
of natural rubber product has been increased because of its performance to use as a 
raw material in more than 40,000 products which included more than 400 medical 
devices (Mooibroek & Cornish, 2000).   
 At present, Asia is considered as the crucial sources of natural rubber production.  
Thailand is the top three producers representing 35% of the global rubber output 
(Figure 2. 2) .  The high quality of rubber and rubber processing products caused the 
country’ s important cash crops ( Wangpimool, Pongput, Tangtham, Prachansri, & 
Gassman, 2016) .  Consequently, the government of Thailand is promoting the 
expansion of Para rubber plantation throughout the country and also pushing to export 
natural rubber (Ounsaneha, Suksaroj, & Chamondusit, 2012).    
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Figure  2.2 Natural rubber exports by various countries during 2018 (Modified from 
Trade Map, International Trade Centre. Accessed on May 7, 2019). 

 Value chain of rubber in Thailand consists of three major stages. The first stage 
is cultivated Para rubber tree, where is mostly located in southern of Thailand.  The 
second stage is the production of various natural rubber products such as ribbed 
smoked sheet (RSS), block rubber (Standard Thai Rubber, STR), and concentrated latex. 
The final stage is development of natural rubber product such as medical gloves, 
condoms, tires, and industrial rubber parts (Jawjit et al., 2010; Musikavong & Gheewala, 
2017) .  Since global rubber market is still growing consistently, the rubber industries 
have been continuously expanded and considered as the most importance economic 
sector and employment (Jawjit et al., 2010). Rubber entrepreneurs have challenged to 
seek for an appropriate tool to reduce several environmental problems such as global 
warming, acidification (water pollution) , eutrophication (water pollution) , malodorous 
problems ( air pollution) , combustion in drying process ( air pollution)  and toxicity of 
chemical uses (such as sulfuric acid and ammonia) (Jawjit, Pavasant, & Kroeze, 2015).  

34.5%

29.9%

7.5%

7.1%

5.7%

2.0%
1.5%

1.3%

10.5%

Thailand

Indonesia

Vietnam

Malaysia

Ivory coast

Myanmar

Belgium

Laos

Other



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 
 

 The rubber production process discharges a large amount of wastewater 
containing high concentration of COD, BOD, ammonia, and sulfate which caused a wide 
range impacts on human health and aquatic organisms. Without proper treatment, the 
industries have been complained from people who lived in vicinity area.  In addition, 
these environmental effects could contribute long lasting consequences to 
undesirable eutrophication that lead to death of some aquatic life. 

2.1.6 Characteristic of rubber processing wastewater 
An understanding of the rubber wastewater characteristics from various region is 

necessary for developing appropriate environmental management approaches.  Table 
2. 4 lists the chemical characteristics of rubber processing wastewater in different 
regions. The chemical oxygen demand (COD) of the rubber wastewater is varied in the 
range of 128-26,914 mg L-1 (Table 2.3). It is also contained high organic matter, nitrogen-
containing pollutants and high sulfate content ( Jing et al. , 2018; Massoudinejad, 
Mehdipour Rabori, & Dehghani, 2015; Nhu Nguyen & Thanh Luong, 2012; D.  Tanikawa 
et al. , 2016) .  According to Table 2. 5, there are high concentrations of organic 
contaminants in rubber processing wastewater.  To compare the different rubber 
processing industries, the wastewater characteristics of concentrated latex, ribbed 
smoked sheets (RSS), rubber glove and the wastewater from the indirect process such 
as washing the container and transport rail ( rubber slabs to the squeezing machine) 
are presented in Table 2.5.   

 Many hazardous organic substances in rubber wastewater have been 
characterized by Wongniramaikul ( 2 0 06 ) .  The result was shown that seven organic 
groups in the rubber wastewater such as acids, indoles, phthalates, alcohols and 
phenols, benzothiazoles, thiocarbamates and the other groups.  These organic 
compounds are recalcitrant to biodegrade and may potentially harmful to human 
health and aquatic life (Dsikowitzky & Schwarzbauer, 2013; Faber, 1979; G.  Jungclaus 
et al., 1978; Palma et al., 2011). In addition, one of the identified organic contaminants 
in rubber wastewater is benzothiazole family, including 2- mercaptobenzothiazole  
(2-MBT), benzothiazole, hydroxyl-benzothiazole and their derivatives (Ghin Yeoh et al., 
2002). 
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Table 2.4 Characteristics of rubber processing wastewater in different regions 

Region 

Parameter Reference 

pH 
BOD 
(mg L-1) 

COD 
(mg L-1) 

TSS 
(mg L-1) 

Sulfate 
(mg L-1) 

Total 
nitrogen 
(mg L-1) 

 

Thailand 
5.54-
7.84 

502-
8,670 

128-
9,700 

261-
1,780 

4-1,430 
229-
1,370 

D.  Tanikawa 
et al. (2016) 

China 6-9 
1,025-
3,561 

1,760-
6,884 

450-500  70-128 
Jing et al. 
(2018) 

Vietnam 
6.59-
9.42 

40-
13,820 

120-
26,914 

30-
2,220 

 
35. 3-
1306 

H. Nguyen & 
Luong (2012) 

Malaysia 
3. 7-
5.5 

1,500-
7,000 

3,500-
14,000 

200-700 
500-
2,000 

200-
1,800 

Mohammadi, 
Man, Hassan, 
& Yee (2010) 
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Table 2.5 Characteristics of rubber wastewater in different rubber industries of 
Thailand  

Type 

Parameter 

Reference 
pH 

BOD 
(mg  
L-1) 

COD 
(mg  
L-1) 

TSS 
(mg  
L-1) 

Sulfate 
(mg  
L-1) 

Total 
nitrogen 
(mg L-1) 

Concentrated 
latex 

5.54 8,670 9,700 1,780 1,430 1,370 
D. 
Tanikawa 
et al. (2016) 

Ribbed 
smoked 
sheets (RSS) 

5.9 
4,783-
9,433 

6,673-
15,069 

164-
525 

136-
472.6 

60.2-
190.9 Tekasakul 

& 
Tekasakul 
(2006a) 

Transport rail 5.3 3,433 5,371 93 225.8 79.5 

Washing 
process 

5.8 1,391 1,928 525 136 60.2 

 

2.2 Literature review 

2.2.1 Technologies for rubber wastewater treatment 

 Current technologies for treating wastewater from natural rubber latex and 
rubber industrial products ( rubber gloves and toys hygienic products)  factories have 
been developed with the aim to remove remaining latex and organic matter.   A 
decantation tank or physical method is usually used to separate the remaining latex 
particles in wastewater before it enters to treatment stage. This process has been used 
in all the processing factories because of low construction and low operating cost 
(Jover-Smet, Martín-Pascual, & Trapote, 2017). There are many advanced technologies 
including electrochemical treatment (Abraham, Radhakrishnan Nair, & Madhu, 2009) 
and advanced oxidation processes utilized the hydroxyl radicals to oxidize organic 
compounds to the preferred end products of carbon dioxide and water ( Amor, 
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Marchão, Lucas, & Peres, 2019). However, the disadvantages of chemical and physical 
technology are high operation costs, high electricity consumption and highly corrosive.   

 The additional technology of rubber wastewater treatment is conventional 
biological process. Several treatment methods, such as anaerobic digestion, activated 
sludge, oxidation ditch, pond process and lagoon systems have been developed for 
the rubber wastewater treatment (Table 2. 6) .  Moreover, the treatment system of 
benzothiazoles contaminated wastewater have been also studied in previous work, as 
presented in Table 2. 7.  Most of researchers had investigated the benzothiazoles 
removal in synthetic wastewater.  These might be due to the interference of organic 
compounds and biotic stresses contaminated in real wastewater, which could affect 
microbial activity in the bioreactor.  Consequently, biological treatment of rubber 
wastewater can be effectively improved by specialized microorganisms for reducing 
the thiazole compounds and COD concentrations.  
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Table 2.6 Anaerobic and aerobic treatment of wastewater from rubber processing 
industry 

Systems Advantage Disadvantage Reference 

Anaerobic 
baffled 
reactor (ABR) 
and down-
flow hanging 
sponge (DHS) 
reactor 

1. Easy construction 
2. High sludge 

retention in 
supporting media 
of DHS 

1. Difficult scale 
up 

2. Expensive (DHS) 
3. Potential of 

biomass 
sloughing off 

Nurmiyanto & 
Ohashi (2019) 
Daisuke Tanikawa, 
Kataoka, Hirakata, 
Hatamoto, & 
Yamaguchi (2020) 

Up flow 
anaerobic 
sludge 
blanket-Down 
flow hanging 
sponge 

1. Simple 
construction and 
low operation 

2. Less CO2 emissions 
3. Energy is 

generated as 
methane/hydrogen 
gas 

1. Long startup 
time 

2. Odor, toxicity, 
and corrosion 
problem 

3. Expensive (DHS) 

Watari et al. (2017) 
Nurmiyanto & 
Ohashi (2019) 

Membrane 
bioreactor 

1. Good quality 
filtered effluent 

2. Low sludge 
bulking 

3. Low energy 
consumption 

4. Higher rate of 
nitrification and 
gentrification 

1. High 
investment and 
operation cost 

2. Membrane 
lifetime and 
replacement 

3. Membrane 
fouling problem 

Nik Sulaiman, 
Ibrahim, & Abdullah 
(2010) 
Kootenaei & 
Aminirad (2014) 
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Table 2.6 Anaerobic and aerobic treatment of wastewater from rubber processing 
industry (Cont.) 

Systems Advantage Disadvantage Reference 

Sequential 
batch reactor 
and aerobic 
granular 
sludge 

1. High effluent 
quality 

2. Process is 
simplified 

3. Operating 
flexibility and 
control. 

4. Small footprint 

1. Higher level of 
maintenance a 

2. Excess Sludge 
3. High energy 

consumption 
4. To require post-

treatment  

Rosman et al. (2013) 
(Pal, 2017) 

Oxidation 
pond 

1. Easy to construct 
2. Low 

maintenance 
costs 

3. Handles varying 
wastewater 
types 

1. Requires a large 
land area 

2. High BOD and 
TSS with algae 
concentrations 

Madhu, George, & 
Francis (2000) 
Butler et al. (2017) 
 

Anaerobic 
filter 

1. Low space 
requirements 

2. Low space 
requirements 

3. Low sludge 
production 

1. High cost of the 
filter material. 

2. To require post-
treatment 

Anotai, Tontisirin, & 
Churod (2007) 
Manariotis & 
Grigoropoulos (2006) 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 
 
Table 2.7 Technology for treating benzothiazole-contaminated wastewater  

Type of substance in 
wastewater 

Country 
Treatment 
technology 

Reference 

Benzothiazole China 

Integrated 
anaerobic 
fluidized-bed 
membrane 
bioreactor 

Y. Li et al. 
(2018) 

Hydroxybenzothiazole Greece 
Hybrid moving 
bed biofilm 
reactor 

Mazioti, 
Stasinakis, 
Psoma, 
Thomaidis, & 
Andersen 
(2017) 

Benzothiazole China 
Fluidized-bed 
membrane 
reactor 

Y. Li et al. 
(2017) 

Benzothiazole Greece 

Activated sludge 
and moving bed 
biofilm reactor 
systems 

Mazioti, 
Stasinakis, 
Pantazi, & 
Andersen 
(2015) 

Benzothiazole, 
Hydroxybenzothiazole 
Mercaptobenzothiazole and 
Methylthiobenzothiazole 

Germany 
Activated sludge 
in sequential 
batch reactor 

Kirouani-Harani 
(2003) 

Mercaptobenzothiazole England Activated sludge 
(M. A. Gaja & 
Knapp, 1998) 
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2.2.2 Biotransformation of 2-mercaptobenzothiazole and derivatives 

2.2.2.1 Biodegradation of 2-mercaptobenzothiazole and derivatives by 
single bacterial strain 
   Various bacterial strains have been isolated and evaluated for their 2-

MBT biodegradation capability.  Table 2. 8 shows list of benzothiazoles- degrading 

bacteria such as Rhodococcus (H.  De Wever, Vereecken, Stolz, & Verachtert, 1998; 

Wever et al., 1997) Pseudomonas (El-Bassi et al., 2010) and Alcaligenes (Umamaheswari 

& Rajaram, 2017) .  These strains have been investigated for potential 2- MBT 

biodegradation pathway (Haroune et al., 2004; Haroune et al., 2002).  

  As illustrated in Figure 2. 3, the 2- MBT biodegradation pathway by 

Alcaligenes sp. MH146 strain CSMB1 has two main possible routes including oxidation 

and methylation reactions (Umamaheswari & Rajaram, 2017). Oxidation reaction of 2-

MBT is further hydroxylated into catechol before entering to the Krebs cycle.  On the 

other hand, methylation reaction leads to sulfite and ammonia production, then the 

sulfite is subsequently metabolized to sulfur and thiocyanate is obtained as end 

product (Umamaheswari & Rajaram, 2017) .  Moreover, Alcaligenes sp.  MH146 strain 

CSMB1 exhibited catechol 2, 3- dioxygenase activity.   In contrast, Rhodococcus 

rhodochrous OBT18 ( Figure 2. 4)  showed several of enzyme reactions in different 

biodegradation pathway routes, including 2-mercaptobenzothiazole monooxygenase, 

2-mercaptobenzothiazole dioxygenase and catechol 1, 2-dioxygenase (Haroune et al., 

2004) .  Pseudomonas putida strain HKT554 is the first bacterial strain on the 

biotransformation of benzothiazole derivatives by naphthalene dioxygenase (El-Bassi 

et al., 2010). Thus, it can be indicated that 2-MBT metabolism may related to several 

oxygenase systems.   Based on previous studies, single bacterial strains from three 

genera including Alcaligenes, Pseudomonas and Rhodococcus can completely remove 

2-MBT. Although benzothiazoles-degrading bacteria have been isolated, they have low 

degradation activity under high concentrations of 2-MBT (Table 2.7). This might due to 
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the accumulation of 2-MBT and intermediates which are toxic towards these bacterial 

species during biodegradation period (Fazzini et al., 2010). 

 
Figure  2.3 Biodegradation pathway of  2-MBT by Alcaligenes sp.  (Umamaheswari & 
Rajaram, 2017). 
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Figure  2.4 Biodegradation pathway and enzymes involved in 2-MBT metabolism by 
Rhodococcus rhodochrous OBT18  (Haroune et al., 2004). 
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Biodegradation of 2-mercaptobenzothiazole and derivatives by mixed 
culture 

The benefits of using mixed microorganisms for bioaugmentation are the 
sharing of biochemical steps among community members in order to completely 
substrate biodegradation. There is few studies on the biodegradation of benzothiazoles 
and 2-MBT using mixed cultures (Table 2.8) .  In addition, activated sludge has low 2-
MBT degradation capacity. At the initial concentration of 20 mg L-1, only 10% of MBT 
were methylated by the bacteria in activated sludge systems to intermediate product 
within 28 d, whereas 87% remained unchanged (H.  De Wever & Verachtert, 1994; 
Reemtsma et al. , 1995) .  These studies used non- specific microorganisms in activated 
sludge or non-acclimatized cells to treat 2-MBT (H. De Wever et al., 2001; H. De Wever 
& Verachtert, 1994, 1997; M.  A.  Gaja & Knapp, 1998) .   Figure 2. 5 shows bacterial 
consortium could transform the TCMTB to 2-MBT and further methylate to the MTBT, 
while the BT was completely degraded by aerobic treatment within 8 days.  

Although, the efficiency of 2- MBT and BT biodegradation by mixed 
microorganisms is inconclusive, high complexity of biochemical steps naturally 
occurring among microorganisms can overcome the obstacles present in the 
environment with high concentration of the 2-MBT. Many studies have been done on 
adaptive response to stress condition for selecting target group of microorganisms 
(Kovárová-Kovar & Egli, 1998; Kurbatov, Albrecht, Herrmann, & Petruschka, 2006; Miran, 
Jang, Nawaz, Shahzad, & Lee, 2018) .  Moreover, the induction of several key enzymes 
in diverse population could be considered as an alternative source to enhance the 
recalcitrant compound biodegradation (Fazzini et al., 2010). Thus, the use of adapted 
bacterial consortia of 2-MBT-degrading bacteria is interested in removing 2-MBT in 
higher concentration as compared with the single strains. 
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Table 2.8 Biodegradation of benzothiazoles by mixed cultures and single strains 

Microorganis
ms 

Type of 
benzothiazoles 

Initial 
concentrati

on 
(mg L-1) 

% 
remov

al 

Operati
on 

period 
(days) 

Reference 

Sludge from 
a rubber 
chemicals 
waste-water 
treatment 
plant  

2-MBT 200 100 % 95 
H. De Wever 
& Verachtert 
(1994) 

Activated 
sludge 

2-MBT 167 85% 25 
M. A. Gaja & 
Knapp (1998) 

Rhodococcus 
rhodochrous 
OBT18 

2-MBT 
251 (1.5 

mM) 
30% 128 

Haroune et 
al. (2004) 

Pseudomona
s putida 
strain HKT554 

Mixture 
compounds 

2-MBT, 20 
(120 µM) 

BT, 19 (140 
µM) 

MTBT, 18 
(100 µM) 

87% 1.6 
El-Bassi et al. 
(2010) 

Alcaligenes 
sp.  MH146 
strain CSMB1 

2-MBT 50 
86% 
(as 

TOC) 
3 

( Umamahes
wari & 
Rajaram, 
2017) 
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Figure  2.5 Biodegradation pathway of benzothiazoles by mixed cultures (Reemtsma 
et al., 1995). 
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2.2.3 Isolation of efficient bacterial consortia  
Application of isolated microbes has been a promising strategy to raise the 

efficiency of biological processes when dealing with hazardous substances that are 
refractory by natural conditions.  Microbial consortia owning to their diverse bacterial 
community and composition had more functional stability and efficiency than single 
strains (Kang et al. , 2020) .  However, microorganisms within the large diversity of the 
consortium are comprised of non- active and active microorganisms.  Thus, the 
biodegradation efficiency of the target compounds could be improved by selecting 
specific microorganisms.  The following review describes two main criteria for a proper 
bacterial consortia selection.  

2.2.3.1 Source of microorganisms  
  Features of proper cultures are fast growing, survival under high 
concentration of organic compounds and tolerant to a wide range of environmental 
changes (Mrozik & Piotrowska- Seget, 2010) .  Mixed cultures from contaminated soil 
(Poddar, Sarkar, & Sarkar, 2019) , wastewater (Panigrahy, Barik, Sahoo, & Sahoo, 2020) 
and sludge (Pattanasuttichonlakul, Sombatsompop, & Prapagdee, 2018)  have been 
widely used as inoculum starter for development of  microbial culture for the 
treatment of recalcitrant organic pollutants.  Thus, many researches have been 
proposed that the origin of the sludge (Prado, Ochoa, & Amrane, 2009) and history of 
soil or sludge contamination showed a significant impact on the biodegradation 
potential of hazardous compounds by bacterial cultures (Cerqueira et al., 2011).  

2.2.3.1 Artificial selection approaches  

 There are several selection approaches that allow the selection of effective 
single strain and microbial consortium for introducing as bioaugmented cultures. 
Enrichment process is one of the most efficient technique to select microbial consortia 
(Puentes-Téllez & Falcao Salles, 2018) .  This technique enriched the proportion of 
specialized bacteria by inoculating sample collected from contaminated sites in the 
culture media under controllable conditions in order to reinoculated back to the 
contaminated sites.  Another approach is acclimation, which allow the adaptation of 
bacteria under a stepwise increasing pollutant concentration.  The adaptation will 
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select enzymes for degrading a compound to which it is exposed (Knapp & Bromley-
Challoner, 2003). The acclimation process also increases the  bacterial resistant to high 
concentration of chemical compounds ( Chattaraj, Johnson, & Madamwar, 2016; H. 
Wang et al. , 2018) .  Consequently, the enrichment and acclimatization of microbial 
consortia are mainly recommended to select the cultures for degrading organic 
compounds (Bessa, Moreira, Tiritan, & Castro, 2017; Pattanasuttichonlakul et al., 2018; 
Poddar et al., 2019; Y. Wang et al., 2020).  

2.2.4 Bioaugmentation strategy 

2.2.4.1 Bioaugmentation for removal of recalcitrant compounds in 
wastewater 
 Bioaugmentation is the inoculation of specific and efficient pollutant-
biodegrading microorganisms harboring the functional genes into contaminated sites 
to enhance the degradation of contaminant ( Garbisu, Garaiyurrebaso, Epelde, 
Grohmann, & Alkorta, 2017) .  This strategy has been developed to enhance the 
performance of biological process in wastewater treatment (Guo et al. , 2009; Nzila, 
Razzak, & Zhu, 2016) .   The selection of a suitable bacterial strain is essential to the 
success of bioaugmentation.  Many researches have investigated the study of 
bioaugmentation to remove recalcitrant molecules in wastewater.  Example of using 
bioaugmentation for the pollutant removal from wastewater are presented in Table 
2.9.  

The inoculant of pure bacterial strains and mixed culture is attractive for 
addressing the emerging pollutants and pollutants that are present at high 
concentrations in industrial wastewater. However, the selection of bacteria suitable for 
introduction into the existing bioreactor have been concerned.  The number of 
exogenous bacteria can be decreased under stress environment, including abiotic and 
biotic stresses.  The abiotic stresses are depended on physical and chemical 
characteristic of chemical compounds, insufficient substrate, temperature, pH, high 
pollutant load, and nutrient limitation.  For the biotic stresses, including competition 
between exogenous microbes and indigenous microbes is the main factor of treatment 
failure due to carbon sources limitation  (Bouchez et al., 2000).  
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Table 2.9 Use of bioaugmentation for removal of recalcitrant compounds in 
wastewater 

Inoculum Pollutant Set up 
Bioaugmente

d bacteria 
Reference 

Mixed 
culture 

Phenolic 
compounds 

Electrocoagulation/bi
o-active fixed-bed 
absorber 

Actinomycete 
consortium 

Abdulla et al. 
(2019) 

Electroplating 
wastewater 

Membrane bioreactor 
Mixed 
consortium 

Wen et al. 
(2018) 

Thiabendazol
e 

Batch experiment 

Thiabendazole
-degrading 
bacterial 
consortium 

Papadopoulo
u et al. (2018) 

p-nitrophenol 
Sequence batch 
biofilm reactors 

Three 
bacterial 
consortia 

Yue, Chen, 
Cheng, Xie, & 
Li (2018) 

Petroleum 
hydrocarbons 

Biocluster bioreactor 

Microbial 
consortium (A) 
with 22 
microorganism
s 

Poi, 
Shahsavari, 
Aburto 
Medina, 
Chum Mok, & 
Ball (2016) 
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Table 2.9 Use of bioaugmentation for removal of recalcitrant compounds in 

wastewater (Cont.) 

Inoculum Pollutant Set up 
Bioaugmented 

bacteria 
Reference 

 2,4-
dichlorophenol 

Continuous flow 
complete-mixed 
reactors 

2,4-DCP 
degrading mixed 
culture 

Quan, Shi, 
Liu, Lv, & 
Qian 
(2004) 

Single 
strain 

Sulfamethoxazole 
Membrane 
bioreactors 

Achromobacter 
denitrificans 
strain PR1 

P. Y. 
Nguyen et 
al. (2019) 

Alcohol 
ethoxylates 

Activated sludge 
reactor 

Pseudomonas 
sp. LZ-B 

Ji et al. 
(2019) 

Tricyclazole Batch reactors 
Sphingomonas 
sp. NJUST37 

H. Wu et 
al. (2018) 

Crude oil, PAHs Batch reactors 
Comamonas 
testosteroni BR60 

X. Zhao, 
Yang, Bai, 
Ma, & 
Wang 
(2016) 

4-Fluoroaniline- Batch reactor 
Acinetobacter sp. 
TW 

M. Wang 
et al. 
(2013) 

2.2.4.2 Potential solutions for improvement of bioaugmentation  
Potential strategies have been introduced to overcome the limitations of 

bioaugmentation for recalcitrant compound contaminated wastewater treatment. The 
possible solutions can be separated into 3 main objectives to increase bacterial 
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growth/population, biochemical ability and efficiency of bioaugmentation (Nzila et al., 
2016).  
 The use of high inoculant at 106– 107 CFU mL- 1 can be addressed for 
increasing cell growth and enhancing survival of bioaugmented bacterial cells (Lyon & 
Vogel, 2013) .  Moreover, quorum sensing inducer could contribute to increase the 
colonization of bacteria that lead to bacterial cooperation and biofilm formation and 
thus to an increase in the bacterial population within bioaugmentation (Valle, Bailey, 
Whiteley, & Manefield, 2004; Yeon et al., 2009).   
 The use of plasmids encoding function genes is attractive to increase the 
biodegradation (Nusslein, Maris, Timmis, & Dwyer, 1992; J.  S.  Singh, Abhilash, Singh, 
Singh, & Singh, 2011) .   However this approach still has some limitations that include 
the high cost of enzyme production, stability of enzyme, the reusability and recovery 
of enzyme for large scale use (Ba, Arsenault, Hassani, Jones, & Cabana, 2013). 
 Bioaugmentation- based cell immobilization which embedded the cells 
within a gel or carrier materials can be used to enhance biodegradation of organic 
compounds in wastewater. Several advantages of immobilized cells have been provide 
over freely suspended cultures ( Zhu, 2007) .  Biological water treatment systems 
containing immobilized cells have been used for the degradation of various wastewater 
contaminants (Z. Bouabidi, El-Naas, & Zhang, 2018).  
 

2.2.5 Bacterial cell immobilization  

2.2.5.1 Cell immobilization methods 
There are many ways to immobilize cells in the materials.  They can be 

classified into two major groups: carrier binding and entrapment. 

2.2.5.1.1 Cell attachment onto surfaces through adsorption 
This method is performed directly in bioreactor by introducing the 

inoculum and the supporting matrix to the medium (F. W. Bai, Zhao, & Xu, 2011). The 
adsorption of cells (Figure 2. 6)  can be attached on surface matrix by van der Waals 
forces and ionic and hydrogen bonds.  Thus, the adsorption of cells is depended on 
chemical and physical characteristics of the support surface.  After cells are attached 
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to the support, it can release waste products, synthesize, and secrete exo-polymers. 
It is the so-called biofilm formation (Roig, 2000).  

 
 
Figure 2.6 Adsorption of cells on carrier; left and covalent bond between biocatalysts 
and a carrier; right (Z. B. Bouabidi, El-Naas, & Zhang, 2019). 

2.2.5.1.2 Cell entrapment in gel matrix  
   Cell entrapment is widely used in the field of cell immobilization 
and has several advantages including providing inexpensive and mild conditions for 
the reaction process.  The immobilization technique in which particles or cells are 
captured within a support matrix ( Bayat, Hassanshahian, & Cappello, 2015) , as 
illustrated in Figure 2.7.  

 
Figure  2.7 Entrapment of cells in gels and occlusion of cells within porous materials 
(F. W. Bai et al., 2011). 
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2.2.5.1.3 Cell immobilization in porous media 
Porous carrier is defined as solid containing pores.  The porous 

media are required for various industrial wastewater treatments ( Vayenas, 
Michalopoulou, Constantinides, Pavlou, & Payatakes, 2002) which used as a carrier for 
microorganisms in bioreactors.  The use of this kind of immobilization material can 
generate beneficial properties including mass transfer and permeability; however, its 
functionalities of this carrier depend on the structural characteristics such as pore size, 
pore geometries and framework materials (Doonan, Tranchemontagne, Glover, Hunt, 
& Yaghi, 2010) (Figure 2.8).  

A numerous of pore can stimulate the biodegradation process for 
dealing with recalcitrant organic chemicals. Cell immobilization within porous matrices 
could allow the diffusion of substrate and product of metabolisms. In addition, it can 
be used as sorbent has been widely used in biodegradation of petroleum hydrocarbon 
(Quek, Ting, & Tan, 2006).  

 
 
Figure  2.8 Pore surface, pore size, pore geometry, and framework structure of porous 
media. Modified from previous work (D. Wu et al., 2012). 
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2.2.5.2 Selection of supporting material for cell immobilization 
  A supporting material selection is an important step in an immobilization 
process, because the carrier affects the cell viability and cell physiology that lead to 
the efficiency of wastewater treatment process (Siripattanakul et al., 2008; Zhu, 2007). 
The carrier must be biocompatible, insoluble, long shelf life, non-toxic, high cell mass 
loading capacity, inexpensive, easily to handle and reusability (Bayat et al., 2015). Three 
types of carriers have been developed for cell immobilization, including organic 
material, inorganic material and composite carriers (Z. B. Bouabidi et al., 2019) (Figure 
2. 9) .  Natural carrier provides higher diffusion rates and are more environmentally 
friendly, whereas synthetic carrier are more stable and high mechanical strength as 
well as high oxygen transfer (Hu, Tang, & Wang, 2014; L.-s. Zhang, Wu, & Wang, 2007). 
Many immobilized cells were used with both natural and synthetic materials (C. Chorao 
et al. , 2009; Nopcharoenkul, Netsakulnee, & Pinyakong, 2013; Zain, Suhaimi, & Idris, 
2011; Zia, Zia, Zuber, Rehman, & Ahmad, 2015) .  Moreover, the material for increasing 
the ability of cell entrapment is a porogen to make the porosity such as CaCO3 (Y. 
Zhang & Ye, 2011) and polyethylene glycol (X. Bai, Ye, Li, Zhou, & Yang, 2010; Xiangli, 
Zhe, Zhiwei, Yinglin, & Zhengjia, 2010). They were used to form a more porous matrix, 
providing channels for microbial metabolism.  

 
Figure  2.9 Types of immobilizing organic carrier, inorganic carriers, and composite 
carriers. Modified from Bouabidi et al (2019). 
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2.2.5.3 Application of immobilized cells for treating benzothiazoles 
and other recalcitrant compounds in wastewater  
  Immobilization technology is an effective and promising technique to 
enhance biological wastewater treatment processes (Abdulla et al. , 2019) .  Recently, 
the immobilized cells have been developed in bioreactor for treating wastewater. The 
immobilized cell- based bioreactor can delay the suspended biomass, bound 
extracellular polymeric substances and soluble microbial products during operation 
system (C. Juntawang, C. Rongsayamanont, & E. Khan, 2017; Juntawang, 
Rongsayamanont, & Khan, 2019; Kim et al., 2014; Meshram et al., 2016).  A feasibility 
studies of immobilized cell for removing benzothiazole family and the organic 
compounds in various wastewater were investigated in different material matrixes as 
presented in Table 2.10.    
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Table 2.10 Application of immobilized cells for treating benzothiazoles and other 
recalcitrant compounds in wastewater.  

Type of 
wastewater 

Pollutant Material carrier Microorganisms Reference 

Synthetic 
wastewater 

Benzothiazole 
Alginate, sand, 
diatomite, and 
activated carbon 

Rhodococcus 
rhodochrous 

Cincilei et al. 
(2011) 

Amino-
benzothiazole 

Ca-alginate 
Rhodococcus 
rhodochrous 

Charlène 
Chorao et al. 
(2009) 

Textile 
industry 

Synthetic 
dyes 

Polyurethane 
foam 

Coriolus 
versicolor RC3 

Kasamsuk & 
Khanongnuch 
(2019) 

Ammonia-
rich 
wastewater 

Ammonia 
A 
phosphorylated-
polyvinyl alcohol 

Nitrite- Oxidizing 
Bacteria 

Kunapongkiti 
et al. (2019) 

Petroleum 
refinery 
wastewater 

Phenol and 
m-cresols 

Polyvinyl alcohol 
(PVA) 

Pseudomonas 
putida 

El-Naas, 
Surkatti, & Al-
Zuhair (2016) 

 

2.2.6 Identification of bacterial diversity and functional genes in bacterial 
consortium 

Many researches have reported most persistent organic compounds especially 
benzothiazoles that were resistance to remove in conventional WWTPs.  Activated 
sludge (AS) (M. A. Gaja & Knapp, 1998) , aerobic granular sludge and anaerobic digestion 
(Y. Li et al., 2017) have been used to remove these pollutants in the wastewater with 
the complex microbial diversity in wastewater sludge.  There are the key drivers of 
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toxicant treatment that comprised the numerous biodegradation genes. Consequently, 
the utilization of microbial consortia is an increasing interest in removing or detoxifying 
organic pollutants.  Many culture- dependent conventionally analyses with isolating 
benzothiazoles- degrading bacteria was observed in the bacterial community are 
enriched in the artificial selection approach.  These observations suggest that 
Rhodococcus sp.  (Wever et al. , 1997) , Pseudomonas sp.  (El-Bassi et al. , 2010) , and 
Alcaligenase sp.  ( Umamaheswari & Rajaram, 2 0 1 7 )  jointly contribute to the 
benzothiazole biodegradation.  In addition, the enzyme involved in benzothiazoles 
metabolism also determined in the above- mentioned species.  Owing to the 
unfavorable condition of rubber wastewater habitat, a microbial consortium with 
different microorganisms endowed with diverse metabolic capacities had often shown 
greater in functional stability and efficiency than a pure culture (Cydzik-Kwiatkowska & 

Zielińska, 2016). Therefore, the utilization of the consortia is important process in the 
aerobic biodegradation of benzothiazoles.  

Traditionally, the culture-dependent tools were carried out to isolate the specific 
microbes by the enrichment procedure.   However, this method has not been 
established all community within enrichment cultures (Phulpoto, Maitlo, & Kanhar, 
2 0 2 0 ) .  Currently, omics are comprehensive approaches based on meta- genetic 
material directly isolated from environmental samples in order to be used for 
sequencing and data analysis (Datta, Rajnish, Samuel, Pugazlendhi, & Selvarajan, 2020). 
This technology consisted of metagenomics, metatranscriptomics, proteomics and 
metabolomics (Figure 2.10) .  These effective tools provide excellent opportunities for 
finding new bacterial strains and functional genes involved in bioremediation of 
xenobiotic compounds and also understanding how contaminants and treatments 
affect the complex communities ( Bhardwaj, Singh, Jadeja, Phale, & Kapley, 2020; 
Breton-Deval et al., 2020; Datta et al., 2020). 

To date, a few researches on biodegradation of benzothiazoles by mixed 
microorganisms have been investigated, there are shown low capacity of 
biodegradation and inconclusive knowledge of functional genes.  Consequently, the 
selection of keys microorganisms and construction of new consortium capable of 
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degrading recalcitrant organic compounds was investigated in order to be applied for 
reducing potential toxic of benzothiazoles in the rubber wastewater.  Microbial 
community involved benzothiazoles biodegradation process is available in anaerobic 
systems, as presented in Table 2.11.  Thus, the keys players in 2-MBT biodegradation 
under aerobic system are necessary to be investigated by metagenomics approach for 
determining the microbial diversity in the consortia.  

 
Figure  2.10 Overview of biotechnological tools for microbial community analysis. 

In addition, the knowledge of catabolic genes involved in benzothiazoles 
metabolism is inconclusive in mixed microorganisms (Table 2.12) .  There is not much 
knowledge based on meta RNA sequencing approach for a better understanding of the 
microbial enzymatic degradation of benzothiazoles in diverse community. 
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Table 2.11 Bacterial community of sludge samples for benzothiazole treatment 

Microbial inoculum 
Test system/ 

duration 
Type of 

benzothiazoles 
Reference 

Anaerobic granular 
sludge with 
Trichococcus and 
Clostridium sensu stricto 
as the dominant 
populations 

Anaerobic batch 
with mixed liquor 
suspended solids in 
synthetic 
wastewater/ 84 h 

Benzothiazole 
Y. Li et al. 
(2017) 

Diluted river mud with 
Geobacter, Bacterioides 
and Rhodococcus 
rhodochrous as the 
dominant populations 

Microbial 
electrolysis cells 
(MECs) conducting 
in fed-batch mode 
with mineral 
medium/ 30 h 

2-MBT 

San-Martin, 
Escapa, 
Alonso, Canle, 
& Moran (2020) 
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Table 2.12 Enzymes involved in benzothiazoles metabolism 

Microorganisms Pathway I Pathway 2 Reference 

Rhodococcus 
rhodochrous OBT18 

2-mercaptobenzothiazole 
monooxygenase 

2-
mercaptobenzothiazole 
dioxygenases 

Haroune et al. 
(2004) 

6-hydroxy-2-
mercaptobenzothiazole 
monooxygenase 

2-
mercaptobenzothiazole-
cis-6,7-dihydrodiol 
dehydrogenase 

catechol 1,2-dioxygenase 
catechol 1,2-
dioxygenase 

Escherichia coli 
HB101 

thiol S-methyltransferase 

A. Drotar, G. A. 
Burton, J. 
Tavernier, & R. 
Fall (1987b) 
Reemtsma et 
al. (1995) 

Corynebacterium sp. 
strain SO1A 
Pseudomonas sp. 
Strains PF4, PF12, 
FB1024 

Microbial consortium 
2-mercaptobenzothiazole 
desulfurase 

thiol oxidase or 
sulfhydryl oxidase 

Reemtsma et 
al. (1995) 

Alcaligenes sp. 
MH146 

catechol 2,3-dioxygenase 
thiol S-
methyltransferase 

Umamaheswari 
B. et al (2017) 

Pseudomonas putida 
HKT554 

naphthalene dioxygenase.  
El-Bassi et al. 
(2010) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

CHAPTER 3  
MATERIALS AND METHODS 

 

3.1 Materials and analytical methods 
3.1.1 Materials 

3.1.1.1 Chemical and media  

2-Mercaptobenzothiazole (2-MBT)  was purchased from TCI Company 
(Japan). The nitrogen-free minimal salt medium (NF medium) containing (g L-1): KH2PO4 
1; K2HPO4 1; MgSO4. 7H2O 0. 2; CaCl2. 2H2O 0. 02; FeCl3 0. 004 were used in this study 
based on Haroune et al. (2002). The nitrogen-containing MSM (N medium) included 1 
g L-1 of NH4Cl and yeast extract to NF medium composition.  When sodium acetate 
(AC) was applied at a concentration of 0.82 g L-1 (10 mM) for use as a co-carbon source 
(Haroune et al. , 2002) in NF and N media, the media were designated NF-AC+ and N-
AC+, respectively. The composition was dissolved in 1 liter of distilled water and adjust 
pH to 7.20 by 1.0 M NaOH.  Luria-Bertani (LB)  medium was used for quantification of 
cell number as colony forming unit (CFU) .  All other chemicals were of analytical 
grades. All media were autoclaved at 121°C for 15 min. 

3.1.1.2 Porous carriers  

 A commercial porous carrier, aquaporousgel ( Nisshinbo Chemical Inc. 
Tokyo, Japan) , was used as supporting media for immobilizing bacterial cells because 
of its high porosity, highly compatible with microorganisms and good mechanical 
properties.  This material is composed of polyurethane resin, polyethylene 
polypropylene glycol (porogen) and barium sulfate. The feature of this material is high 
water absorption and large surface area for bacterial affinity. The amounts of attached 
bacteria on material are approximately 10 to 12 gSS carrier- 1 L- 1, as described by 
Nisshinbo Chemical Inc.  
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Table  3.1 Characteristic of porous carrier used in this study 

3.1.2 Analytical methods 

3.1.2.1 2-MBT analysis  

Residual of 2- MBT in cultured medium was analyzed via UV– Vis 
spectrophotometer ( Spectroquant Pharo 100 Merck)  at OD320 (Redouane-Salah, 
Malouki, Khennaoui, Santaballa, & Canle, 2018).  The 2- MBT concentration was 
calculated from a standard curve plotting the absorbance of pure chemical of 2-MBT 
versus its concentration in MSM (R2, 0.9978). The detection limit was 1 mg L-1.   

Model 

 

 
CC-10B 

Material 

> 80% of Polyurethane 
< 10% barium sulfate 
< 3%  polyethylene polypropylene 
glycol 

Appearance Cube 

Size 0.7 × 0.7 cm 

Density 30 dry-Kg wet -1 m-3 

Amounts of attached bacteria 10-12 g SS carrier-1 L-1 
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3.1.2.2 Benzothiazoles analysis 

GC-MS in scan and selected ion monitoring (SIM) mode was employed to 
analyze the presence of benzothiazoles and 2-MBT in rubber processing wastewater. 
For sample preparation, the raw wastewater was filtered through 0. 7 µm glass fiber 
paper ( Whatman GF/ F)  and extracted twice with ethyl acetate at a 1: 1 ratio as 
described in Umamaheswari and Rajaram (2017). The extractant was further dried with 
Na2SO4 and dissolved in methanol before being subjected to GC- MS analysis 
(Umamaheswari & Rajaram, 2017).  GC-MS analysis was performed by using a model 
7890B Triple Quad MS (Agilent, USA)  equipped with an HP-5ms column (30 m × 0.25 

mm, 0.25 μm). The column temperature started at 70°C, was raised at a speed of 10°C 
min-1 to 180°C with a holding time of 1 min, and was increased further to 250°C at 15 
min with a final hold time of 15 min.  The injector temperature was set at 270°C.  The 
optimized MS conditions were as follows:  ionization energy, 70 eV; scan mode, full 
scan; and 50-550 amu. 

3.1.2.3 Wastewater analytical methods 
The analytical methods pertaining to parameters of wastewater 

characteristics and degradation, namely, COD (5220 D) , total Kjeldahl nitrogen (TKN) 
(4500-Norg B. ) , and sulfate (4500- SO4- E) , were estimated as per standard methods 
( APHA, 2005) .  pH was measured using a benchtop pH meter ( WTW Inolab 7110, 
Germany). 

3.1.2.4 Biomass determination  

3.1.2.4.1 Suspended cells  
  The volatile suspended solid (VSS)  content was analyzed using 
the standard method (USEPA, 2001) .  Briefly, the bacterial culture was harvested and 
filtered through a glass fiber paper (Whatman GF/ F) .  Filter paper with the samples 
were dried at 105 °C until a constant weight is obtained.  The dried filter papers with 
the sample were then heated at 550 °C, at this stage the organic matter was volatized. 
For cell turbidity, the bacterial culture was determined as cell optical density at 600 
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nm using a spectrophotometer. Biomass concentration was measured by a UV-visible 
spectrophotometer (Spectroquant Pharo 100 Merck, USA) at OD600.  

3.1.2.4.2 Bacterial numbers in porous carriers 

 To quantify the bacterial numbers in the porous carriers, 1 g of 
porous carrier were cut into small pieces, resuspended in 10 mL of 0.85% of NaCl in a 
test tube, sonicated by ultrasonicate bath for 10 min, and subjected to vigorous vortex 
mixing for 2 min, which designated as cell suspensions.  The dilution series of cell 
suspension were plated on LB agar by drop plate technique and incubated before 
calculating the bacterial numbers as CFU ml-1.  Since the bioreactor had high turbidity 
provided by the seed inoculum, the cell suspensions of immobilized activated sludge 
were measured as volatile suspended solids (VSS).  

3.1.2.5 Protein concentration determination 
The samples (1 mL) were collected and centrifuged at 10,000 rpm, 5 min. 

Then, the cell pellets were washed twice and suspended in 0.85% (w/v)  NaCl.   The 
protein in cells were extracted by heating at 100°C for 10 min and centrifuged at 10,000 

rpm for 5 min.  The cell- free supernatant ( 100 μL)  was used to examine protein 
concentration.  Protein determination was determined according to the method of 
Bradford (Bradford, 1976). Bovine serum albumin (BSA) was used as a standard protein. 
For the sample, the 30 µL extracted protein from cells was used and added 1.5 mL of 
Bradford reagent (F. He, 2011) into each tube.  The mixture was mixed and incubated 
at room temperature (RT) for at least 5 min. The sample protein reaction was measured 
absorbance at 595 nm.  The protein concentration of sample was calculated from the 
equation that provided by the standard curve of BSA.  

3.1.2.6 Quantification of bacterial survival by qPCR analysis  
Quantitative PCR of Pseudomonas genera was used to monitor the 

number of dominant populations in the bacterial consortium using an Agilent 
Mx3005PQPCR System ( Agilent Technologies) .  A pure culture of Pseudomonas 
aeruginosa CDRS2 ( Appendix C. 1) was used to make a standard curve, which was 
calculated as previously described (Park & Crowley, 2005).  Standards, unknown 
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samples, and negative controls were simultaneously quantified in triplicate using a 20 

μL reaction volume containing 10 μL of SYBR Green PCR Kit (Qiagen, USA) , 0. 7 μL 

each of 10 µM F and R primers, 1 μL of DNA, and 7. 6 μL of dH2O (Millipore, USA) . 
Total genomic DNA was quantified using the primer set Pse435F/Pse686R (Bergmark et 
al. , 2012)  with pre-denaturation at 95°C for 10 min, followed by 40 cycles at 95°C for 
30 s, 60°C for 20 s and 72°C for 25 s. The linear correlation coefficient for the standard 

curves was 0.997, and q-PCR was analyzed with an efficiency of 100 ± 10.  
 

3.1.2.7 Scanning electron microscopic (SEM) analysis 
The morphology and microstructure of porous carrier- immobilized cells 

were observed by a scanning electron microscope (SEM). The immobilized cells were 
prepared at Scientific and technology research equipment center, Chulalongkorn 
University, Thailand.  Each sample was examined using a JEOL scanning electron 
microscope; model JSM-6610LV ( Jeol, Tokyo, Japan)  at 15 kV.  The results of this 
experiment were used to confirm that the bacterial cells completely adhered and 
distributed on the surface and inside the carrier. In addition, the SEM observation was 
conducted after reusability test.  The result was useful for the investigation of cell 
damage or cell abundance after the application of immobilized cells in biodegradation 
process. 

3.2 Experimental procedure  

 The experiments were divided into four major sections including 1)  wastewater 
collection and characterization, 2) enrichment and characterization of 2-MBT-degrading 
bacterial consortia from rubber wastewater sludge, 3) characterization of the bacterial 
community structures and functional genes of 2-MBT degrading bacterial consortia by 
molecular analyses and 4)  development of an immobilized  
2-MBT degrading bacterial consortium for applying in rubber processing wastewater. 
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3.2.1 Wastewater collection and characterization 

3.2.1.1  Sample collection 
Two rubber wastewater sludge samples were collected from a block 

rubber production factory, E in Eastern part of Thailand and a latex concentrate 
production factory, S in Southern, Thailand. For factory S, the wastewater is discharged 
to the integrated wastewater pond, this wastewater derived from the skim crepe 
production at the rubber trap pond and concentrated latex wastewater.  This industry 
generated wastewater at approximately 500 m3 day-1 depending on the manufacturing 
practices.  In addition, the major products of factory E are Standard Thai Rubber (STR) 
and compound rubber.  This factory produces these products reach to 12,000 and 
4,500 metric tons per month, respectively.  The wastewater released from this factory 
is at approximately 800 m3 day 1 .  Rubber industrial wastewater treatment diagram of 
both S and E factories were presented in Figures 3.1 and 3.2. 

The samples were collected at the integrated wastewater ponds of both 
factories S and E representing the raw wastewater samples (influent), while the sample 
collected at the pond after releasing from activated sludge process in wastewater 
treatment of factory E representing treated wastewater sample (effluent). The samples 
were stored in PE bottles and sealed with Para-film to reduce the oxidation and further 

transferred to the laboratory. All the samples were refrigerated at 4◦C. Before analysis, 
all wastewater samples were filtered through a 0.7 µ glass filter paper (Whatman GF/C) 
to remove the suspended solids. The wastewater quality was tested as in topic 3.1.2. 

The original sludge samples were collected at the same period with 
wastewater collection, as presented in Figure 3. 3.  The initial biomass concentrations 
of the sludge E and S samples were measured by VSS determination.  The biomass 
concentrations of both original sludge E and S samples were 10.52 and 13.08 g VSS L-

1, respectively.  Before using the original sludge, the genomic DNA in all the sludge 
samples were extracted for bacterial community analysis.   
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Figure 3.1 Rubber industrial wastewater treatment diagram of factory S. Influent rubber 
wastewater was collected from the wastewater receiving tank (grey).  
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Figure 3.2 Rubber industrial wastewater treatment diagram of factory E.  Influent and 
effluent of rubber wastewater were collected from wastewater receiving tank ( grey) 
and secondary clarifier (green), respectively. 
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Figure 3.3 Original sludge samples i.e. sludge S and sludge E from full scale digesters 
in WWTPs of factories S and E, respectively. 

3.2.1.2 Characterization of organic compounds in rubber processing 
wastewater 

This work characterized organic compounds from the rubber wastewater 
using gas chromatography-mass spectrometry (GC-MS) analysis. Scan and selected ion 
monitoring (SIM)  modes were employed to analyze the presence of benzothiazoles 
and 2- MBT in rubber processing wastewater.  For preparing the samples before 
determining by GC-MS, the liquid- liquid extraction (LLE)  was selected to extract the 
wastewater samples.  The LLE was based on the partition of organic compounds 
between aqueous sample phase and organic solvent.  Ethyl acetate was selected to 
use as organic solvent which had the polarity index of 4. 4 (Wells, 2003) .  The use of 
ethyl acetate 1: 1 ( v/ v)  with the sample was according to the previous work 
(Umamaheswari & Rajaram, 2017).  In addition, the shaking time of samples with ethyl 
acetate was 15 min as described in previous work (Wongniramaikul, 2006).  
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3.2.2 Enrichment and characterization of 2- MBT- degrading bacterial 
consortia from rubber wastewater sludge 

3.2.2.1 Enrichment process 

The enrichment process was used to enrich active 2- MBT- degrading 
bacterial consortia and increase the number of 2-MBT- tolerant in rubber wastewater 
sludge from wastewater sludge collected from two rubber factories.  The effect of 
wastewater sludge sources on 2- MBT biodegrading consortia was compared.  This 
research hypothesized that the different characteristics of rubber wastewater from 
various rubber processing industries could affect the diverse and adaptation of 
microbial communities in wastewater sludge.  

Briefly, 2 g VSS L-1 of original sludge was applied to 100 mL of nitrogen-
containing medium (N medium)  which supplemented 25 mg L-1 of 2-MBT in 250-mL 
flasks and incubated for 14 days at 30 ± 2°C on a rotary shaker operated at 150 rpm. 
In this work, the 250-mL flasks are used to enrich the efficient 2-MBT degraders (Figure 
3.4). 

 

 

Figure 3.4 Photograph of the 250-mL flask containing sludge for enrichment process 
 

The enriched sludge was transferred at 10% ( v/ v)  to freshly medium 
containing 50 mg L-1 of 2-MBT and incubated for another 14 days.  After 28 days of 
incubation, the enriched sludge samples were analyzed for VSS concentration, and 2 
g VSS L-1 sludge was applied to a new medium containing 50 mg L-1 for the 2-MBT 
biodegradation test.  The study compared four media, including N, NF, N-AC+ and NF-
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AC+, to identify the necessary nutrients for further acclimatization of 2-MBT-degrading 
bacteria.  After 2 8  days, the enriched sludge samples were analyzed for VSS 
concentration, and 2 g VSS L−1 sludge was applied to a new medium containing 50 mg 
L−1 for the 2-MBT biodegradation test. 

 
The media conditions where nitrogen- free medium ( nitrogen in the 

substrate; NF medium), nitrogen-containing medium (1 g L-1 of NH4Cl; N medium) and 
co-substrate addition (10 mM of sodium acetate; AC as co-carbon)  at 30 °C and 150 
rpm. Sodium acetate have been used as co-carbon source for bacteria cultivation (H. 
De Wever et al., 2001; Y. Li et al., 2018), while 2-MBT is known to be toxic and rarely 
used as a primary growth substrate for  cultures derived from activated sludge (H. De 
Wever et al., 1994; M.A. Gaja & Knapp, 1997).  In this study, sodium acetate was 
therefore selected as co- carbon source for increasing population of bacterial cells 
obtaining from rubber wastewater sludge. 

There were sixteen of batch test that consisted of enriched sludges 
compared with the original sludge in the same media conditions (SN, SNF, SN-AC+, SNF-
AC+, EN, ENF, EN-AC+, and ENF-AC+) as shown in Figure 3.5. All tests were incubated at 
30 ± 2°C with constant shaking at 150 rpm and carried out in triplicate.  
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Figure 3.5 Scheme of biodegradation tests of enriched sludge and original sludge 
samples in various media conditions 
 

The samples were collected every 24 h to determine the residual 
concentration of 2-MBT and calculated by the following equation 1. 

 

Biodegradation efficiency (%) =
Initial 2−MBT concentration −Final 2−MBT concentration 

Initial 2−MBT concentration 
× 100    (eq. 1) 

 where the initial concentration is the original added concentration of 2-
MBT, and the final concentration is the remaining concentration of 2- MBT in the 
supernatant after removing the sludge by centrifugation.  The enriched sludges and 
media showing high 2-MBT biodegradation efficiency were selected for the following 
acclimatization process.  All data were statistically analyzed via Tukey’ s multiple 
comparisons following a two-way ANOVA with GraphPad Prism 8.0.1 software (CA, USA). 
The enriched sludges and media showing high 2-MBT biodegradation efficiency were 
selected for the following acclimatization process. 
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3.2.2.2 Acclimatization process 
Since 2- MBT concentrations at higher 100 mg L- 1 can interfere with 

membrane-bound system of bacterial cells, the condition of gradually increasing 2-
MBT concentrations in artificial bacterial selection system was studied for reducing the 
toxicity effect of 2- MBT and increasing the ability of bacterial cells to adapt in 2-MBT 
containing system.  

All acclimatization experiments started by adding 2 g VSS L-1 enriched 
sludge to 250-mL flasks containing 100 mL medium and incubating the flasks at 30 ± 
2°C with constant shaking at 150 rpm.  The acclimatization process was divided into 
three stages, I, II and III, based on the 2-MBT concentrations in the medium, which 
were 50, 100 and 200 mg L-1, respectively.  The 2-MBT concentrations in this work 
corresponded to the ranges existed in rubber processing wastewater (Derco et al. , 
2014) .  In each stage, dilution- to-extinction approaches was employed, there were 
three rounds of cultivation. When the 2-MBT concentration was reduced by 80%, 10% 
(v/v) of the cell suspension was transferred to freshly medium supplemented with 100 
mg L-1.  After three rounds, the 10% (v/v)  of cell suspension further transferred to a 
new flask with 100 mL of MSM supplemented with 200 mg L-1 of 2-MBT. All enrichment 
cultures were cultured at 30°C and 150 rpm and performed in triplicates.  All 
acclimatized cultures were performed in triplicate and sampled at 24-h intervals to 
determine the residual 2-MBT, soluble chemical oxygen demand (CODs) and bacterial 
growth.  Autoclaved cells were also used as abiotic control to account for 2- MBT 
absorption. The 2-MBT biodegradation efficiencies of the bacterial consortia at the end 
of each acclimatization stage were determined as described and using equation 1.  

All the data were statistically analyzed via two-way ANOVA followed by 
Tukey's multiple comparison test with GraphPad Prism 8.0.1 software (CA, USA) .  The 
bacterial consortia obtained from acclimatization after stage III were preserved in MSM 
containing 20% glycerol and 50 mg L-1 2-MBT and stored at -80°C until use.  The 
bacterial consortia obtained from acclimatization after stage III were preserved in MSM 
containing 20% glycerol and 50 mg L-1 2-MBT and stored at -80°C until use.  The 
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acclimatized bacterial consortia were then characterized for biodegradation of 2-MBT 
in both MSM and rubber wastewater.  

 

3.2.2.3 Efficiency of bacterial consortia on degrading 2- MBT at 
varying concentrations  

The bacterial consortia (SN, SN-AC+ , EN and EN-AC+ )  were achieved by 
gradually increasing the 2-MBT concentrations from 50 mg L-1 until it reached 200 mg 
L-1. In this study, their biodegradation ability at different 2-MBT concentrations (50, 100, 
150, 200, 300, and 500 mg L-1)  were examined to comparative analysis of the specific 
degradation rate under resting cell experiments.  This result was used for selecting an 
efficient consortium in order to be applied in benzothiazoles- contaminated rubber 
wastewater.   Resting cells condition has been carried out for batch biodegradation 
tests to minimize changes in physiological and biochemical properties of cells 
(Chudoba, Capdeville, & Chudoba, 1992).  

To prepare the resting cells, bacterial consortia were individually cultured 
in LB broth with shaking condition at 150 rpm and 30 °C for overnight in order to 
increase their cell number, designed as cell starter.  The active starter culture at 5% 
was transferred into 100 mL of minimal medium containing 50 mg L-1 of 2-MBT as 
activator substrate and incubated for 16-18 h at 30 °C and 150 rpm.  The bacterial 
cultures were centrifugal collected at 10,000 rpm, for 10 min and washed twice with 
sterile 0.85% NaCl.  After adjusting the cell density to 2.0 OD at 600 nm, 1 mL of the 
active cells corresponded with an initial protein content of approximately 1.6 mg cell 
protein was added into 9 mL of N medium supplemented 2- MBT in different 
concentrations.  

All batch experiments were incubated at 30 ± 2°C with constant shaking 
at 150 rpm. The duplicate samples were collected at 24 h intervals to determine the 
residual of 2- MBT occurred in the liquid medium and protein concentration.  The 
specific biodegradation rates were calculated by a plot of the 2-MBT concentration 
versus time based on the protein content of the biomass at each sampling time. 
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3.2.2.4 Efficiency of the bacterial consortium on degrading 2-MBT 
in rubber wastewater 

The efficient bacterial consortium from acclimatization process stage III 
was selected by the result of highest specific degradation rate to evaluate its the 
potential application with wastewater collected from an activated sludge plant at the 
E factory.  Prior to characterizing bacterial consortium on 2- MBT removal, the 
wastewater sample was analyzed by GC-MS in SIM/scan mode.  

To simulate the 2-MBT concentration range generally found in rubber 
wastewater, 2-MBT was spiked at 100 mg L-1 into the sample prior to the experiment. 
For biodegradation assay, the loading amount an initial bacterial consortium at 
approximately 107 CFU mL-1 was inoculated into a 250-mL flask containing 100 mL of 
the 2-MBT-amended wastewater. The wastewater samples were consisted of into non-
sterile and sterile wastewater conditions to investigate the effect of indigenous 
microorganisms on the added bacterial consortium.  Additionally, non- sterile 
wastewater without bacterial inoculation was used to evaluate the efficiency of natural 
attenuation.  

All experimental samples were incubated at 30 ± 2°C and 150 rpm and 
performed in triplicate.  During the treatment period, the sample was analyzed the 
COD and 2-MBT concentrations.  At the end of the experiment, benzothiazoles, TKN 
and sulfate were analyzed.  Finally, the dominant population of the bacterial 
consortium was determined by quantitative PCR.  

3.2.3 Characterization of bacterial community structures and functional 
genes in 2-MBT degrading bacterial consortia  

 Microbial community structure and functional genes in bacterial consortium 
influence the performance of wastewater reactor and have an impact on the treated 
water quality (Henze, van Loosdrecht, Ekama, & Brdjanovic, 2008).  This phase was 
separated into 2 main parts to identify the dominant populations and functional genes 
within the bacterial consortia.  
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3.2.3.1 Identification of bacterial community structures in original 
sludge and enriched 2-MBT-degrading bacterial consortium by 16s rRNA gene 
sequencing technique  

Bacterial community structure of the two original sludges and bacterial 
consortia from enrichment and acclimatization process were investigated and 
compared. The obtained data from this part was used to describe the biodiversity and 
the potential active bacteria in each bacterial consortium.  Moreover, the results of 
metagenomics profiling were used as a supporting data for selecting the efficient 
bacterial consortium.  

3.2.3.1.1 DNA extraction 

   Briefly, 0. 25 g of rubber wastewater sludge and 1. 5 mL of 
bacterial consortium were collected and extracted to obtain genomic DNA by using a 
PowerSoil® DNA isolation kit ( Mo Bio Laboratories, USA)  according to the 
manufacturer's protocol.  Prior to the extraction, lysozyme was added to the samples 
at 35 mg mL-1 to remove the cell wall of gram-positive bacteria, and the samples were 
incubated for 1 h at 37°C (Sarma, Nava, Manriquez, Dominguez, & Lee, 2019).  Then, 
the quality and quantity of the extracted DNA were measured using a NanoDrop™ND-
1000 (Thermo Scientific, USA) and stored at -20°C before analysis.  

3.2.3.1.2  PCR amplification, sequencing, and data analysis  

In this work, the extracted genomic DNA was amplified by 
primers targeting the V4 region of 16s rRNA gene, because these primers are 
recommended to assess environmental sample (Kuczynski et al. , 2011) .  They also 
provide the short-read length that has sufficient resolution for the accurate taxonomic 
analysis. The specific primers targeting the V4 region (515F-806R) with the barcode are 
shown in Table 3.2 as previously described (Caporaso et al. , 2011) .  All PCR reactions 
were carried out with Phusion® High- Fidelity PCR Master Mix (New England Biolabs) . 
Then, the mixture PCR products were purified with Qiagen Gel Extraction Kit (Qiagen, 
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Germany) .  The libraries were generated with DNA Library Prep Kit, quantified, and 
analyzed by Illumina platform.  

 
Table  3.2 PCR primer sequences used in this study 

Primer 
name 

Primer sequence Reference 

515F GTGYCAGCMGCCGCGGTAA Caporaso et al. (2011) 

806R GGACTACNVGGGTWTCTAAT Caporaso et al. (2011) 

 

3.2.3.1.3 Bioinformatics analysis 
The resulting sequence read files were processed by Mothur 

software (Version 1.39.5) .  Sequences with 97% similarity were assigned to the same 
OTUs.  Taxonomic classification of each OTU was assigned by the SILVA database 
(Version 132). Alpha diversity was measured to obtain the number of observed OTUs, 
representing the microbial richness. In addition, the bacterial community richness was 
obtained by Chao1, and the community diversity was obtained by the Shannon 
diversity index.  The sequencing data were deposited into the European Nucleotide 
Archive ( ENA)  database with submission number ERP120594 and BioProject ID 
PRJEB37286. 

3.2.3.2 Functional gene analysis in the 2-MBT degrading bacterial 
consortium by metatranscriptome analysis 

The selected bacterial consortium (EN)  was investigated for the full set 
of genes by the metatranscriptome analysis and compared with the original sludge 
from rubber industry E.  This experiment was examined on RNA- seq platforms.  The 
result of this part was used to measure gene expression of all populations in the 
bacterial consortium and to predict genes involved in 2- MBT biodegradation. 
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Functional genes in the entire microbial community of the efficient bacterial 
consortium were analyzed to understand the mechanisms involving 2- MBT 
biodegradation.  

3.2.3.2.1 Sampling of cultures 
Prior the RNA extraction, the EN consortium was cultivated in the 

N medium under aerobic condition at 30 ± 2◦C. When the cells are growing, inducible 
promoters that related to the metabolism- linked genes are highly expressed during 
late log phase. Preliminary result showed that cell suspensions should be collected at 
21-30 h (late log phase) for RNA extraction. The analysis of 2-MBT and cell growth was 
described in topic 3.4. The experiment was carried out in triplicates.  

3.2.3.2.2  RNA extraction, library preparation and 
sequencing  

For RNA extraction, 2 mL of culture suspensions and 0. 25 g of 
original sludge were extracted by Total RNA Miniprep Kit ( NEB)  following 
manufacturers’  protocol.  The RNA samples were eluted using salt buffer and re-
suspended in Rnase- Free water.  Then, the RNA extracting samples were treated with 
Dnase to remove DNA contamination. Quantity of total RNA samples were assessed by 
three main methods including Nanodrop, Agarose Gel Electrophoresis for tests RNA 
degradation and potential contamination and measurement of RNA integrity and 
quantitation.  After the quality of RNA assessment, the samples were further reversed 
to cDNA by Revert Aid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, USA) , 
following manufacturers protocol.  The double- stranded cDNA library of samples was 
completed through size selection and PCR enrichment.  Then, the qualified libraries 
were subsequence fed into Illumina sequencers. 

3.2.3.2.3  Bioinformatic analysis  

The fastQ files from paired end sequencing will be analyzed 
using MG-RAST server (http: / /metagenomics. nmpdr. org)  (Meyer et al. , 2008) .  The 
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protein sequence homology was investigated using M5NR database that integrates 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. 

3.2.4 Development of an immobilized 2- MBT degrading bacterial 
consortium for applying in rubber processing wastewater  

The selected bacterial consortium was maintained in minimal medium 
supplemented with 50 ppm 2-MBT and preserved in 30% glycerol at -80°C refrigerator 
prior to use.  This study aimed to develop an immobilized 2-MBT degrading bacterial 
consortium for applying in rubber processing wastewater.  The efficient bacterial 
consortium that obtained from 3. 2. 2 was immobilized in a porous carrier under 
optimum conditions.  Moreover, this phase optimized the preparation process of 
immobilized cells and evaluated the treatment performance of 2- MBT in rubber 
wastewater.  The work focused on immobilization- based bioaugmentation in the 
bioreactor with the indigenous microbes for treating 2- MBT and other organic 
compounds in real wastewater. Thus, this study proposes the use of porous carriers as 
a suitable matrix for bacterial consortium immobilization and its bioaugmentation 
application in treatment of high strength rubber processing wastewater. 

3.2.4.1 2-MBT adsorption capacity of aquaporousgel  

The adsorption process was carried out to investigate sorption capacity 
of a porous carrier.  Two g of aquaporousgel was used in 100 mL of minimal medium 
containing various concentrations 100 mg L-1 of 2-MBT (pH 7.20) at 150 rpm and room 
temperature for at least 48 hours to ensure that adsorption equilibrium was achieved. 
The obtained result of abiotic sorption was used to estimate the carrier concentrations 
in bioreactor.  The result obtained as an amount of solute adsorbed onto the carriers 
as followed the equation 2.  
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𝑄𝑒 = ((𝐶0 − 𝐶𝑒)𝑉0) ⁄ 𝑚 (eq. 2) 
 

  When Qe is the amount of solute adsorbed per weight of solid at 
equilibrium, C0 is the initial concentration of the 2- MBT, Ce is the equilibrium 
concentration of solute remaining in solution, V0 is initial volume of the solution and 
m is the weight of porous carriers added in the solution.  

 
3.2.4.2 Optimization of cell immobilization conditions  

3.2.4.2.1 Medium cultivation condition 

Since rich medium may interfere with enzyme involved in the 
degradation of aromatic compounds (Díaz, Jiménez, & Nogales, 2013).  This study 
investigated the influence of rich medium and minimal medium on growth and 
degradation activity of EN consortium. Benzoate was demonstrated to induce catechol 
dioxygenase (Cenci, Caldini, & Biotechnology, 1997) and it is used as a co-carbon source 
in benzothiazole degradation (Haroune et al. , 2002) .  Thus, this work aimed to use 
benzoate to induce the enzymes in 2-MBT metabolic pathway. The effects of benzoate 
on 2-200 mg L-1 MBT biodegradation and cell growth were investigated.  This 2-MBT 
concentrations were chosen based on the highest degrading activity of EN consortium. 
The experiment was conducted in 250 mL Erlenmeyer flask containing 100 mL of 
minimal medium supplemented with benzoate at 2, 5, and 7. 5 mM, and then 
incubated at 150 rpm shaking condition at 30 ºC.  The cell suspension was collected 
every 24-h for analysis of 2-MBT and cell growth.  The analysis was described in topic 
4.3. The optimum condition was selected for preparing immobilized bacteria in section 
3.3.3.2.3. 

3.2.4.2.2 Cell concentration and incubation time  

In this part, cell loading, and incubation time were varied to 
determine an optimum cell density inside the porous carrier. Different concentrations 
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of inoculants (2% , 5% , and 10%  v/ v)  were added into the N medium under aerobic 
condition.  The incubation time was tested at 16, 24, and 48 h.  The suitable 
immobilized bacteria refer to those with high cell density in a carrier and high 
degradation activity in a shorter time.  Briefly, the inoculum was added to 100 mL 
medium which containing 2 % (w/v) sterilized porous carrier in order to provide good 
mixing of submerged carriers in the medium and then incubated with shaking at 150 
rpm at 30ºC.  After incubation, the immobilized cells were filtered through a sterilized 
stainless- steel sieve and washed twice with a normal saline (0. 85% w/ v NaCl) .   All 
steps were performed under sterilized condition.   The determination of cell 
concentration in the porous carriers was described in analytical methods.  In addition, 
the morphology and microstructure of the porous carrier- immobilized cells was 
observed by SEM analysis. 

3.2.4.3 Biodegradation of 2- MBT by free and immobilized EN 
consortium under batch test  

After the optimum immobilization condition was obtained.  This 
experiment compared the biodegradation ability of suspended and immobilized cells 
on 2- MBT biodegradation.  Moreover, the stability of immobilized cells was also 
investigated. This obtained results can be used to predict the immobilized cell activity 
in further work.  

3.2.4.3.1 Suspended and immobilized EN cells preparation 

 
For suspended cell preparation, 5% , v/ v inoculum (2×106 CFU 

mL- 1)  of the cell starter of EN were transferred into 100 mL of 5 mM benzoate 
containing MSM and incubated for 18 h at 30 ± 2°C and 150 rpm.  Benzoate can be 
acts as a stimulatory substrate for inducing enzymes which involved in the 2-MBT 
metabolism (Haroune et al., 2004). The cells were harvested by centrifugation at 10,000 
rpm, for 10 min, washed twice with sterile 0.85% NaCl and then resuspended in freshly 
MSM to use as an active cell in degradation batch test.   For immobilized cell 
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preparation, EN consortium was added at 5% ( v/ v)  into 100 mL of 5 mM benzoate-
containing MSM which containing 2 % (w/v) sterilized porous carrier and incubated for 
a suitable incubation time at 150 rpm shaking condition at 30 ± 2°C.  

3.2.4.3.2 Comparison of suspended and immobilized EN 
consortium on 2-MBT biodegradation  

The immobilized cells at 2% (w/v) represented a 1012 CFU mL-1 
of EN cells were transferred to 100 mL MSM containing 300 mg L-1 2-MBT in 250 mL 
Erlenmeyer flask.  Similarly, the suspended cells at the same cell concentration were 
added to another flask.  Biodegradation tests operated under growth dependent 
condition because this work aimed to measure the cell viability during biodegradation 
assay.  The concentration of 2-MBT was selected based on the previous result by the 
authors.  All experiment tests were carried out at 30 ± 2°C and 150- rpm.  The 
supernatant of the cultured broth was taken at the indicated times for 2-MBT analysis 
and determination of biomass concentration in the porous media. Control experiment 
was also carried out using heat- killed immobilized cells to investigate the abiotic in a 
sterile medium. All experiments were conducted in triplicates.  

3.2.4.4 Reusability of immobilized EN consortium in a batch test 
This experiment investigated the long term and operational stability of 2-

MBT biodegradation by immobilized cells.  After 80% of degradation in the first cycle 
of batch test, 300 mg L-1 2-MBT was added into the spent medium, designed as second 
batch cycle.  Since the effect of spent medium recycle might increase the 2- MBT 
accumulation that might adversely effect on bacterial activity.  In the repeated batch 
test, the immobilized cells were removed from the spent medium after 10- day 
operation time, washed with 0.85% NaCl and added into fresh medium containing 300 
mg L- 1 of 2- MBT for the third recycle.  The reusability of immobilized cells was 
continued to the fourth recycle under the same condition, until low degradation 
activity was investigated.  All experiment batch tests were incubated at 30 ± 2°C and 
150- rpm and conducted in triplicated.  SEM analysis was used to monitor the cell 
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damage and cell abundance of reused immobilized cells and compared with the initial 
immobilized cells.  

3.2.4.5 Performance of immobilized EN cells in a continuous test 
Although the suspended EN cells were proved to be efficient in the 

effluent from rubber wastewater treatment plant, the continuous operation of 
biological processes may face the challenges of system instability and low 
performance biodegradation under high strength of rubber processing wastewater. 
Bioaugmentation-based immobilization has been used to resolve the potential risk of 
functional failure and bioaugmented cell loading retention (Q.-Q. Zhang et al., 2017). 
In addition, advantages of the immobilized cells are a long shelf life and the capability 
to recycle during treatment operation and to reduce the costly processes of cell 
recovery (Bayat et al., 2015).  

The present work determined the possibility of augmenting immobilized 
EN bacterial consortium in activated sludge to enhance removal of 2-MBT and other 
organic compounds from high strength rubber processing wastewater.  A porous carrier 
immobilized EN bacterial consortium was applied in bioreactor containing activated 
sludge. It was hypothesized that the application of porous carrier did not only support 
bacterial consortium colonization but also provide space for activated sludge 
attachment and retention. Consequently, the system simultaneously increased the 2-
MBT, COD and other toxic compounds under continuous operation.  

3.2.4.5.1 Efficiency of immobilized EN consortium in 
synthetic wastewater  

To compare 2-MBT biodegradation performance of EN cells and 
indigenous microorganisms in activated sludge from rubber processing industry, three 
lab-scale stirred reactors (R1, R2 and R3) were used. Stirred tank bioreactors have been 
used in aerobic treatment for treatment of industrial effluents (Schirmer et al., 2018). 
An impeller is generally used to disperse the oxygen bubbles by agitation and thus to 

promote mass transfer of the gas bubbles through the gas-liquid (culture medium) 
(Narayanan & Narayan, 2019; Schirmer et al., 2018). Although sole agitation in the 
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bioreactor limits the oxygen transfer rate across the medium surface in the bioreactor 
(Huang, Chen, & Chen, 2006), this system would support the growth of facultative 
bacteria existing in the activated sludge as well as in the EN consortium. Consequently, 
this work used a stirred tank bioreactor that was made from borosilicate glass with four 
of side arms and a Teflon impeller was installed to provide vigorous mixing. The 
working volume was 1. 8 L.  The first reactor contained the immobilized AS only (R1) , 
the second one contained both the suspended activated sludge and EN consortium 
( R2)  and the third one contained both immobilized- activated sludge and EN 
consortium (R3) (Figure 3.6). The concentration of attached biomass within 20 g L-1 of 
porous carriers was approximately 2.5 g VSS L-1.  As the previous work suggested that 
the mixed ratio of exogenous bacterial consortium and indigenous bacteria should be 
1:2 (w/w) (Tao et al., 2016), thus the activated sludge were added at approximately 5 
g VSS L-1.  These inoculum amounts were used as a seed starter and added into the 
individual bioreactor containing N medium.  The pH was adjusted to 7. 0 with the 
addition of sodium bicarbonate. The 2-MBT was used as a sole carbon source and fed 
from 50-150 mg L-1, which were represented the 2-MBT concentration in real rubber 
wastewater as previously reported.   
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Figure 3.6 Scheme of bioreactor which had side arms for adding influent and taking 
effluent out while the upper arms (left and right) were used to provide airflow (a). The 
reactor was fed with wastewater and mixed by an impeller to reach the speed of 200 
rpm (b).   

All the bioreactors were carried out with the organic loading rate 
(OLR) of 0.25, 0.75 and 1.0 kg COD.m-3. d-1 and at hydraulic retention time (HRT) of 6, 
4 and 4.  All bioreactors were incubated at room temperature under stirring condition 
and conducted in a closed chamber to avoid possible photolysis. Since the hydraulic 
retention time (HRT)  was closely related to the amount of influent, the flow rate of 
influent at 300 ml d-1 was initially fed by peristaltic pump (Master flex L/S) , while an 
equal volume of medium in reactor were removed as effluent to analyze parameter 
analysis.  

  

R1 

 a 

 b 

  

R1 R2 R3 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

67 
 

3.2.4.5.2 Efficiency of immobilized EN consortium in rubber 
processing wastewater from factory E  

The bioaugmentation of R3 reactor was continued to operate 
with real rubber wastewater at the OLR from 1.0 to 3.0 kg COD.m-3. d-1 with decrease 
in HRT from 4 to 3 days.  Consequently, the flow rate of rubber wastewater was 0.6 L 
which was fed into the bioreactor. The concentration of 2-MBT was varied from 20 to 
100 mg L-1 amended in the rubber wastewater to obtain the concentration of COD in 
range 3000-9000 mg L-1 (Figure 3.7). 

Organic loading rate (OLR) and hydraulic retention time (HRT) are 
regarded as most of important operating parameters affecting the performance of 
wastewater treatment system (Z. Wang et al., 2014).  The work further increased the 
OLR to 3 kg COD.m-3. d-1 and decreased the HRT to 3 days. As a matter of fact, higher 
OLR and shorter HRT values represented great performance of bioreactor treatment. 
Shorter HRT is desirable due to the reduction of cost of wastewater treatment (Shi et 
al., 2017). However, too short HRT might cause incomplete biodegradation (Magdalena, 
Greses, & González-Fernández, 2019).  Consequently, the performance of the 
bioaugmentation of a bioreactor with immobilized EN consortium (R3) was conducted 
to evaluate its performance removal for real 2-MBT-contaminated rubber wastewater 
at different OLR (Figure 3.7). The bioreactor was conducted in a closed reactor with a 
commercial black bag to avoid possible photolysis (Figure 3.8).  

Briefly, the treated rubber wastewater from activated sludge 
process in factory E (Table 4.1) was used to simulate the COD concentration of 3,000-
4,000 mg L-1 in the laboratory bioreactors resulted in OLR 1 kg COD.m-3. d-1. When the 
performance became stable, an OLR was further increased to 2 and up to 3 kg COD.m-

3. d- 1. This step was used the COD concentration of 6,000-9,000 mg L-1 (Figure 3.7). This 
work used the real rubber processing wastewater from the production process of 
factory E (Table 4. 1)  as diluted wastewater for studying the real performance of the 
bioreactor to treat the rubber wastewater.  The 2- MBT residual and the COD 
concentration were observed during operation 
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Figure 3.7 The operating conditions of organic loading rate (OLR) during periods (a) and 
the COD and 2-MBT concentrations were operated at different OLR (b). 
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Figure 3.8 Photograph of the bioaugmentation reactor with immobilized EN consortium 
(R3)  for treating rubber wastewater at different OLRs with HRT 4 days under agitation 
by a controllable turbine of 200 rpm.  
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CHAPTER 4  
RESULTS AND DISCUSSION 

 

4.1 Wastewater characterization 

4.4.1 Wastewater characteristics  
 The raw wastewater samples from production process of two rubber 
manufacturing industries including the concentrated latex ( factory S)  and the block 
rubber production ( factory E) .  The wastewater was generated during manufacturing 
processes at approximately 500 and 800 m3 day-1 from S and E factories, respectively. 
The major sources of the wastewater of both factories were from the washing and 
cleaning processes, centrifugation of concentrated latex process, rubber content 
separation and crushing process which was released after the coagulation with the 
acid. Figure 4.1 shows the wastewater samples from rubber processing factories.   

 
Figure 4.1 Wastewater samples from rubber processing factories. 

 The influent wastewater samples (Figures 4. 1a and c)  were collected from 
wastewater receiving tank which derived from the rubber production in factories E and 
S, respectively.  The effluent wastewater of factory E was collected at the secondary 
clarify which was treated by activated sludge system.  The color of both influent 
wastewater samples was more turbidity than the effluent.  The influent of factory E 

E: Influent E: Effluent S: InfluentInfluent wastewater 
from factory E 

Effluent wastewater 

from factory E 

Influent wastewater 

from factory S 
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was milky white color, whereas the color of influent from factory S was light brown.  
Moreover, the influent from factory E had stronger odor than the effluent from factory 
S. It was associated with noxious smell of rotten-egg gas, which could be the hydrogen 
sulfide gas. Similar to previous reports, the rubber sheet wastewater can contribute to 
odors which was influenced significantly by organic compounds loading   (Kornochalert, 
Kantachote, Chaiprapat, & Techkarnjanaruk, 2014; Tekasakul & Tekasakul, 2006b).  
 As presented in Table 4. 1, the wastewater characteristics from both industries 
were different, the COD and suspended solid concentrations in factory E was higher 
than the factory S.  This was caused by the larger size of factory E, which generated 
larger amount of wastewater than concentrate latex in factory S.  After treatment, the 
effluent from factory E had neutral pH; however, the COD and suspended solid 
concentrations did not meet the Thai standard ( i. e.  less than 120 mg L-1 of COD and 
50 mg L-1 suspended solid). The results suggested that the effluent should be treated 
further, or the current wastewater treatment process should be improved.  
 
Table 4.1 Characteristics of wastewater samples from rubber processing factories. 

Parameters (unit) 

Production 
process 

wastewater from 
factory S 

Production 
process 

wastewater from 
factory E 

Effluent 
from factory 

E 

pH 4.84-4.94 4.4-5.15 7.6-7.8 

Total COD (mg L-1) 9,900-11,700 32,500-35,000 2,500-3,100 

Soluble COD (mg L-1) 8,700-9,100 25,500-29,200 1,900-2,850 
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Table 4.1 Characteristics of wastewater samples from rubber processing factories. 
(Cont.) 

 Parameters (unit) 

Production 
process 

wastewater from 
factory S 

Production 
process 

wastewater from 
factory E 

Effluent 
from factory 

E 

Sulfate (mg L-1) 364-396 323-370 46.17-62.80 

TKN (mg L-1) 542 1,707-2,293 1,145-1,236 

2-MBT (mg L-1)a n.d. 118.7 14.1 

Suspended solid 820 800 650 

a Concentration was detected by GC-MS analysis which compared with the standard 
of 2-MBT.  
 

4.4.2 Identification of organic compounds in the rubber processing 
wastewater by GC-MS 

 The characterization was performed in order to identify the organic contaminant 
compounds in the rubber wastewater.  By using the information from the wastewater 
characteristic, the further experiments would be designed accordingly.  The influents 
from both E and S factories and the effluent from factory E were collected and 
analyzed by gas chromatographic mass spectrometry (GC-MS)  with scan mode.  The 
results of the identified organic compounds in wastewater from two rubber factories 
were shown in Figure 4.2 and 4.3. 

 As presented in Figure 4. 2 and 4. 3, 28 and 34 identified of hazardous organic 
compounds contaminated in the influent wastewater from S and E factories, 
respectively. Benzothiazole family was found at 34% of the total area in influent from 
factory E, while the influent from factory S was shown approximately 2.2%. Figure 4.3 
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shows the peak of 3- (methylsulfanyl) -4,5,6,7- tetrahydro-2,1-benzisothiazole (1.65%) 
and 2- (methylmercapto)  benzothiazole (0. 67%) , whereas the major compounds of 
benzothiazoles group include benzothiazole (28.6) , 2-mercaptobenzothiazole (4.0%) 
and 2- (methylmercapto)  benzothiazole (0. 6%)  were the dominant fractions in the 
influent from factory E. Benzothiazole and 2-MBT are used as vulcanization catalyst to 
add in the concentrated latex and produce the block rubber.  In addition, the 
benzothiazole compounds can be used in rubber product industry ( i. e.  rubber glove 
industry). The main source of wastewater is from the production process that used the 
2-MBT as a chemical additive to form the hand- shaped model in the production of 
glove.  

 From Figure 4. 2 and 4. 3, two dominated species in the influent from factory S 
were benzene methanol and cyclohexane carboxylic acid, which show high relative 
peak abundance of 31.1% and 11%, respectively (Figure 4.2). Conversely, the benzene 
methanol in the influent from factory E was found only 2.5%. The benzene methanol 
is an aromatic alcohol used to extend and soften rubber formulations in the rubber 
process.  Moreover, indole and its derivatives include 3-methly indole and 1H- indole 
were found in both influent wastewater samples, they could be obtained from the 
tryptophan biodegradation during in the rubber serum. The compounds are known as 
carcinogen to human and cause bad smelling problem in rubber industry.  Moreover, 
petroleum hydrocarbon compounds such as medium-  and long- chain alkanes were 
also found in both influent wastewater samples.  Both influent wastewater samples 
contained many fatty acids, which have been frequently found in the natural rubber 
latex processing wastewater. 
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Figure 4.2 Organic compounds in influent wastewater obtained from wastewater 
receiving tank in factory S as evidenced by GC-MS. 
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Figure 4.3 Organic compounds in influent wastewater obtained from wastewater 
receiving tank in factory E as evidenced by GC-MS. 

0 5 10 15 20 25 30 35

2',4'-Dihydroxyacetophenone oxime

2-(Methylmercapto)benzothiazole

2-Thiophen-2-yl-1H-pyrrole

Oxalic acid, bis(6-ethyloct-3-yl) ester

Tridecane

Docosane

Heptadecane

Oxalic acid, 6-ethyloct-3-yl propyl ester

Decanedioic acid, didecyl ester

Indole, 3-methyl-

2-Methoxy-5-methylphenol

N,5-Dimethyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine

4-Fluoro-3-methyl-6-nitro-o-phenylenediamine

Nonadecane

Cyclohexasiloxane, dodecamethyl-

Heptadecane

1,9-Dimethyl-hypoxanthine

Triacontane, 1-iodo-

Eicosane

Hexadecanal

cis-4-Acetoxy-5-hydroxy-N-methoxycarbonylmethyl-2-pyrrolidinone

Bis(2-ethylhexyl) phthalate

Benzenemethanol

pentadecane

Octadecane

1,3-Isobenzofurandione

Dodecane

2-Mercaptobenzothiazole

Tetradecane

Eicosane

Octadecanal

6-(2,5-Dihydro-1H-pyrrol-1-yl)-2H-chromen-2-one

Cyclohexanecarboxylic acid

Benzothiazole

Area percentage (%)

Ch
em

ica
l n

am
e



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76 
 

 
 

 Since the existing wastewater treatment system in the rubber industry could 
treat the COD at lower concentration (Table 4. 1)  and could not completely degrade 
emerging contaminants. The effluent was also full of recalcitrant compounds from GC-
MS analysis ( Figure 4. 4) .  Phenol and its derivatives were the predominant toxic 
compounds in the effluent derived from factory E. In addition, the effluent wastewater 
contained both benzothiazole (2%) and benzothiazolone (4.8%). Indole and phthalic 
acid esters were also detected. Since phthalates could be leached from the adhesive 
and PVC products, suggesting that these compounds were leached from non-point 
sources ( Wongniramaikul, 2006) .  Consequently, the post treatment of rubber 
processing wastewater was recommended for efficiently treating the target compound 
and excessive COD to meet the standard.  The biological treatment process using 
efficient microorganisms is an alternative approach for solving these problems.  
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Figure 4.4 Organic compounds in treated wastewater obtained from activated sludge 
process (effluent) in factory E as evidenced by GC-MS. 
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4.2 Enrichment, acclimatization and characterization of 2- MBT degrading 
consortium 

4.2.1 Enrichment of 2-MBT degrading bacteria 
This part of research aimed to use an enrichment approach for obtaining efficient 

2-mercaptobenzothiazole-degrading microorganisms. The gradual increasing of 2-MBT 
concentrations was used to allow the adaptation of microorganisms to 2-MBT in the 
original sludges.  The research initially constructed the enrichment system from two 
sources of rubber wastewater sludges, which were collected from wastewater 
treatment plants with high and low benzothiazoles contamination.  The system was 
initially conducted in N medium supplemented with 25 mg L-1 2-MBT as a sole carbon 
source for 14 days, then the enriched sludge was transferred at 10% v/ v to a new 
medium containing 50 mg L-1 2-MBT and incubated for another 14 days.   

The 2-MBT biodegradation efficiency of enriched sludge E was higher than that 
of enriched sludge S ( Figure 4. 5) .  The results corresponded with the higher 
concentrations of 2- MBT and various benzothiazoles in the production process 
wastewater from the factory E than that from the factory S (Figures 4.2 and 4.3). Several 
studies have shown the exposure to environmental pollution in pristine sites can be a 
major condition leading to bacterial adaptation to pollutant degradation (Itrich et al., 
2015; Tezel & Pavlostathis, 2015; van der Meer, 2006). 
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Figure 4.5 2-MBT biodegradation efficiency of microorganisms in original sludge and 
enriched sludge samples which were incubated in each 25 mg L-1 of 2-MBT and 50 mg 
L-1 containing N medium. 
 

As shown in Figure 4. 5, after the first 14-days of incubation, 25 mg L-1 2-MBT 
decreased over 80 % of the total concentration in all batch reactors.  After 28 days of 
enrichment incubation, enriched sludge E in the enrichment reactor degraded 91. 5% 
of 50 mg L-1 2-MBT, while the enriched sludge S showed ability to degrade 2-MBT at 
78. 6%.  The highest biodegradation capability of the enriched sludge samples was 
observed in the enrichment sludge system with 50 mg L- 1 of 2- MBT ( Figure 4. 5) , 
indicating that the bacterial cells in the rubber wastewater sludge required the time of 
incubation for their bacterial adaptation to degrade and tolerate the higher 2-MBT 
concentrations.  This suggestion was in agreement with other similar studies (Fosso-
Kankeu, Marx, & Brink, 2017; van der Meer, 2006), they had indicated that substrate 
concentration and exposure time clearly stimulated biotransformation in the bacteria. 
In respect to biodegradation results, microorganisms in rubber wastewater sludge may 
display different levels of 2-MBT and its derivative degradation with respect to changing 
their physio-biochemistry under 2-MBT-containing system for 28 days. In addition, the 
biomass concentrations of enriched sludge in both reactors were increased to 
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approximately 3 gvss L-1.  In the present work, the influences of the inoculum ( sludge) 
source and pre-exposure of original sludges to 25 and 50 mg L-1 of 2-MBT were found 
to increase the 2-MBT biodegradation ability of enriched sludges.  

4.2.2 Effect of nutrient supplement on 2-MBT biodegradation of enriched 
sludge under batch test 

 Although, the factors affecting the biodegradability of various recalcitrant 
compounds have been characterized, the key factors affecting 2-MBT biodegradation 
have not yet been elucidated.   To increase the biodegradation efficiency of the 
enriched sludge (Section 4. 2. 1) , this experiment investigated the factors affecting 2-
MBT degradation including exogenous nitrogen and co- carbon substrate during the 
enrichment of 2-MBT degraders.  

 
Table 4.2 Efficiency of original and enriched sludges on degrading 50 mg L-1 2-MBT in 
different media after 96-h incubation.  

Sludge 
source 

Nitrogen 
availability 

Carbon 
availability 

Enrichment 
code 

2- MBT Biodegradation 
efficiency (%) * 

Original 
sludge 

Enriched 
sludge 

Factory S 

N 
W/o AC SN 28 ± 3.5Aa 82 ± 0.4Bc 

W/ AC SN-AC+ 59 ± 0.9Ac 80 ± 0.2Bc 

NF 
W/o AC SNF 41 ± 5.5Ab 31 ± 0.5Aa 

W/ AC SNF-AC+ 60 ± 1.2Bc 35 ± 1.8Aab 

Factory E 

N 
W/o AC EN 42 ± 3.3Ab 86 ± 1.7Bc 

W/ AC EN-AC+ 40 ± 8.2Ab 81 ± 3.3Bc 

NF 
W/o AC ENF 56 ± 2.5Bc 46 ± 1.7Ab 

W/ AC ENF-AC+ 46 ± 1.6Ab 41 ± 1.5Aab 
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N; nitrogen supplement in MSM (N): NH4Cl (1 g L-1) and yeast extract (1 g L-1) 
NF; without nitrogen supplement in MSM 
AC; 10 mM sodium acetate was supplemented in MSM 
Superscript capital letters ( A and B)  represent statistically significant differences 
( P<0. 05)  between the results obtained by original and enriched sludges.  Both 
treatments were cultured in the same medium (row). The superscript lowercase letters 
( a, b, c)  indicate statistically significant differences (P<0. 05)  of the results from the 
same sludge source among different media ( column) .  Data are the mean and SD of 
the three replicates.  Tukey’ s multiple comparisons following a two-way ANOVA was 
used. 

 Table 4. 2 presents the biodegradation efficiencies of enriched sludges and 
original sludge from both sources of sludge under various media conditions which 
containing 2-MBT at 50 mg L-1.  Original sludge samples collected from the E and S 
rubber factories degraded 50 mg L-1 2-MBT at efficiencies ranging from 28 to 60% when 
applied as inocula in various cultured media (Table 4.2).  Both sludge samples gave a 
higher 2-MBT degradation efficiency after cultivation in NF medium than in N medium. 
The results suggested that the original sludges had sufficient nitrogen concentrations 
to support bacterial activities and that the excess nitrogen in N medium might interrupt 
their activity. However, the nitrogen remaining in the sludge samples was diluted after 
transfer to the new enrichment medium; thus, an additional nitrogen source was 
required. 

 The enriched sludges from both the E and S rubber factories had significantly 
higher 2- MBT biodegradation efficiencies in media supplemented with a nitrogen 
source regardless of acetate addition, among which SN, SN- AC+ , EN and EN- AC+ 
degraded 80-86% 2-MBT.  These results indicated that the nitrogen content in the 
inoculating sludge was not sufficient for the 2-MBT-enriched cultures. Moreover, in this 
study, acetate addition enhanced 2-MBT degradation only in the original sludge from 
the factory S. The organic substrate might be a co-substrate or might stimulate the co-
metabolism activity of some microorganisms in the system. External organic substrates 
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(Feng et al., 2019) and nitrogen sources (Xiong, Kurade, Kim, Roh, & Jeon, 2017) allow 
microorganisms to transform persistent organic compounds for growth and induce non-
specific enzymes for co- metabolism of recalcitrant substrates.  Thus, ammonium 
chloride and yeast extract positively affected the growth of the 2- MBT- degrading 
bacterial community.  Consequently, these nitrogen sources were used as auxiliary 
nutrients in the following experiments. 

4.2.3 Effect of acclimatization stage on 2-MBT biodegradation 
 To further increase the efficiency of the enriched sludge samples, a series of 
acclimatization processes in N medium with/without sodium acetate was conducted 
by applying a stepwise increase in 2-MBT concentration, with values of 50, 100 and 
200 mg L-1. The time courses of 2-MBT degradation, COD removal and bacterial growth 
from the last round of acclimatization in stage II (100 mg L-1)  and III (200 mg L-1)  are 
shown in Figure 4.6.  

 A similar time course pattern was also found in other acclimatization rounds. In 
general, the abiotic control using heat-killed cells showed a minor reduction in 2-MBT 
and COD over time, while the SN, SN- AC+ , EN and EN- AC+  acclimatized cultures 
exhibited gradually decreasing concentrations of 2-MBT and COD.  The biomass from 
all acclimatized cultures increased without a lag period for both 2-MBT concentrations, 
but the higher 2-MBT concentration required a longer time (Figure. 4.6.).   
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Figure 4.6 Time course of 2-MBT biodegradation (a, d), COD removal (b, e) and bacterial 
growth (c, f) when applied the bacterial consortia from different acclimated conditions 
in the MSM medium with 2-MBT at a concentration of 100 mg L-1 (left) and 200 mg L-

1 (right). Experiments with heat-killed cultures were used as abiotic control.  

 Importantly, approximately 60 mg L-1 sulfate in all consortia was released into 
the medium during the last round of acclimatized stage III. The results confirmed that 
the disappearance of 2-MBT occurred due to the biological activity of the acclimatized 
sludge.  Similarly, a previous report showed that the degradation of 2- MBT was 
observed with the liberation of sulfate in the system (Umamaheswari & Rajaram, 2017). 
Although the activities of acclimatized samples from different media were quite similar 
at the end of the experiment (Figure.  4. 6) , the color of the samples ( red and green) 
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changed over time and depended on the culture conditions and sludge sources (Table 
4.3). 
 
Table 4.3 Enrichment sludge and acclimated bacterial consortia in different culture 
conditions  

Stages 

2- MBT 
Concentration 
in N medium 

(mg L-1) 

Period 
(day) 

Conditions 

Sludge S Sludge E 

Enrichment 25-50  28 

  

Acclimation 

2- MBT 
Concentration in 
N medium ( mg 

L-1) 

Period
s (day) 

SN SN-AC+ EN 
EN-

AC+ 

I 50 28 

    

II 100 21 

    

III 200 25 

    

 The red color of bacterial culture during 2-MBT biodegradation (Table 4. 3)  is 
suggested to be due to complexes between in the medium or the formation of ferrous 
isothiocyanate after the release of thiazole rings (Umamaheswari & Rajaram, 2017). 
When comparing values of biodegradation efficiency between acclimatization stages, 
the 2-MBT biodegradation efficiencies of all samples were in the range of 78-90% 
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(Figure 4. 7) .  The biodegradation efficiencies and specific degradation rates were not 
significantly different among the cultures with or without acetate carbon in this 
experiment.  The specific degradation rates significantly increased ( P<0. 05)  from 
acclimatization stage I to III (Figure 4.7). 

I II III I II III I II III I II III

0

20

40

60

80

100

Acclimation stage

B
io

d
e
g
r
a
d

a
ti

o
n

 e
ff

ic
ie

n
c
y
 (

%
)

SN

SN-AC+

EN

EN-AC+

a

b

a
ac

b

c

b b
bc c

b
b

 
Figure 4.7 Percentage of biodegradation efficiency of acclimated bacterial consortia in 
stage I- III under different acclimated conditions.  Different letters represent significant 
differences (P<0.05). 

 The bacterial consortia from acclimatization stage III were exposed to 2-MBT 
for 76 days. They had the highest degradation rates of 1.8-2.3 mg L-1 d-1 mg cell prot-1 

(Figure 4. 8) , which were approximately 61% higher than those of the acclimatization 
stage I consortia. This result indicated that the 2-MBT biodegradation rate significantly 
improved by bacterial acclimation.  The acclimatized consortia from stage III were 
therefore selected for further experiments.  
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Figure 4.8 The specific biodegradation rates of acclimatized consortia were calculated 
as the average of slopes within the first 72 hour of acclimation periods and were 
normalized with total protein concentration.  Different letters represent significant 
differences (P<0.05).  

 Similarly, several studies have suggested that long periods of acclimatization 
can select for specific populations and increase the magnitude of microbial adaptation 
in the cultivated community (Elcey & Kunhi, 2010; Herzog, Yuan, Lemmer, Horn, & 
Müller, 2014; Poursat, van Spanning, de Voogt, & Parsons, 2019). In addition, induction 
of bacterial adaptation by subsequent transfer during long- term exposure can be 
selected specific populations in order to be applied in environmentally realistic 
conditions (Poursat et al. , 2019) .  In this work, the stepwise acclimation strategy was 
the major factor leading to an adaptation at the community level which undergone a 
series of enzyme induction process and resulting the biodegradation of 2-MBT changes. 
Our results confirmed that the sequential enrichment and acclimatization process 
allowed for the development of efficient 2-MBT-degrading bacterial consortia.  

4.2.4 2-MBT biodegradation rates of bacterial consortia in resting cell assay 
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 To further compare the activity of the SN, SN-AC+, EN and EN-AC+ acclimatized 
bacterial consortia, the effect of the initial 2- MBT concentration on the specific 
biodegradation rate was investigated using a resting cell assay in N medium (Figure 4.9).  
 Figure 4. 9 shows the EN bacterial consortium had a higher 2-MBT degradation 
efficiency than the other consortia, with the highest specific biodegradation rate of 5.2 
± 0.5 mg L-1 day-1 mg cell protein-1 and an optimal 2-MBT concentration of 300 mg L-

1. 
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Figure 4.9 Effect of initial 2- MBT concentrations in the MSM medium on specific 
degradation rate of bacterial consortia from different acclimated conditions when used 
as resting cells.  Specific degradation rates were calculated as the average of slopes 
within the first 72 hour of degradation periods and were normalized with total protein 
concentration.  

 The SN bacterial consortium had a slightly lower efficiency than the EN 
bacterial consortium, with a highest specific biodegradation rate of 4. 8 ± 0. 31 mg L-1 
day-1 mg cell protein-1. Interestingly, the bacterial consortia enriched and acclimatized 
in medium containing acetate, EN-AC+ and SN-AC+, had considerably low 2-MBT specific 
biodegradation rates and were effective at low 2-MBT concentrations (< 200 mg L-1) . 
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The results indicated that different bacterial communities were obtained whose 2-MBT 
degrading activity was probably dependent on the presence of acetate.  For the non-
inoculated experiment ( abiotic control, approximately 5. 1 2- MBT removal was 
observed at all 2-MBT concentrations. 
 Compared with the results of other studies, the EN consortium had higher  
2-MBT degradation efficiency.  This consortium was able to degrade 93% of 100 mg  
L-1 2-MBT after 72 h (Figure 4.6a), while Alcaligenes sp. CSMB1 degraded only 34% of 
100 mg L-1 2-MBT (measured as TOC)  (Umamaheswari & Rajaram, 2017).  In addition, 
most isolated bacteria degrade 2- MBT at concentrations lower than 100 mg L- 1  
(El-Bassi et al., 2010; Kowalska & Felis, 2015). Such a result, most isolated bacteria and 
sludge samples degrade 2-MBT efficiently at concentrations lower than 200 mg L-1 
(Table 4. 4) .  The high efficiency of the EN bacterial consortium could be due to the 
activity of various bacterial strains that were acclimatized to high 2-MBT concentrations. 
The EN bacterial consortium was chosen for further investigation.  
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Table 4.4 Comparison of benzothiazole removal efficiency by the obtained bacterial 
consortia with those by bacterial isolates and sludge samples. 

Microbial 
inoculum 

Test 
system/ 
duration 

Type of 
benzothi
-azoles 

Concentration 
(mg L-1) 

Efficiency 
(%) 

References 

Rhodococcus 
rhodochrous 
OBT18 

Aerobic 
batch with 
resting 
cells in 
water/ 128 
h 

2-MBT 
251 

(1.5 mM) 
30 

Haroune 
et al. 
(2004) 

Pseudomonas 
putida 
HKT554 

Aerobic 
batch with 
resting 
cells in 
mineral 
medium/ 
30 h 

A mixture 
of 
benzothi
azoles 
 

2-MBT, 20 (120 
µM) 

Benzothiazole, 
19 

(140 µM) 
2-

methylthiothia
zole, 18 (100 

µM) 

ca. 80 
El-Bassi 
et al. 
(2010) 

Alcaligenes 
sp.  MH146 
strain CSMB1 

Microaero
bic batch 
with 
growing 
cells in 
mineral 
medium/ 
72 h 

2-MBT 50 
86 

(as TOC) 

Umamah
eswari & 
Rajaram 
(2017) 
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Table 4.4 Comparison of benzothiazole removal efficiency by the obtained bacterial 
consortia with those by bacterial isolates and sludge samples. (Cont.) 

Microbial 
inoculum 

Test 
system/ 
duration 

Type of 
benzothi
-azoles 

Concentration 
(mg L-1) 

Efficiency 
(%) 

References 

Activated 
sludge 

Aerobic 
batch with 
activated 
sludge in 
mineral 
medium/ 
25 days 

2-MBT 
167 
(1 mM) 

85 
M. A. Gaja 
& Knapp 
(1998) 

Anaerobic 
granular 
sludge  

Anaerobic 
batch with 
mixed 
liquor 
suspende
d solids in 
synthetic 
wastewate
r/ 84 h 

Benzothia
zole 

50 98 
Y. Li et al. 
(2017) 
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Table 4.4 Comparison of benzothiazole removal efficiency by the obtained bacterial 
consortia with those by bacterial isolates and sludge samples. (Cont.) 

Microbial 
inoculum 

Test 
system/ 
duration 

Type of 
benzothi
-azoles 

Concentration 
(mg L-1) 

Efficiency 
(%) 

References 

Diluted river 
mud 

Microbial 
electrolysi
s cells 
(MECs) 
conductin
g in fed-
batch 
mode 
with 
mineral 
medium/ 
30 h 

2-MBT 8.35 
70 
(as TOC) 

San-
Martin et 
al. (2020) 

Consortium 
SN-AC+  
 Aerobic 

batch with 
resting 
cells in 
mineral 
medium/ 
72 h 

2-MBT 300 56 

This 
study 

Consortium 
SN  
 

2-MBT 300 82 

Consortium 
EN-AC+  
 

2-MBT 300 68 

Consortium 
EN  

2-MBT 300 85 
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4.2.5 Application of a bacterial consortium for the removal of 2-MBT and 
benzothiazoles in rubber processing wastewater 
 The EN bacterial consortium was initially applied to rubber processing 
wastewater ( influent)  from factory E, but the microorganisms did not survive.  This 
result could be due to the high strength of the influent wastewater ( Table 4. 1) . 
Consequently, wastewater sample was collected from the effluent of the activated 
sludge plant at factory E.  The wastewater was used to determine the activity of EN 
bacterial consortium in the treatment of 2- MBT and benzothiazoles as a post-
treatment process.  The effects of indigenous microbes on the performance of EN 
bacterial consortium were also evaluated in a comparative study using non-sterile and 
sterile wastewater.  Moreover, the control was non- sterilized wastewater (3. 7× 104 
CFU/mL) without EN bacterial inoculum, representing the effect of natural attenuation 
after treated effluent is discharged to the environment. 
 After 7 days of operation, the 2- MBT and COD removal efficiencies of EN 
consortium were higher than those of natural attenuation, which displayed only 7% 
removal of both 2- MBT and COD compared with the initial concentrations in 
wastewater (control in Figures.  4.10a and 4.10b) .  The biodegradation profiles of EN-
inoculated sterile and non-sterile wastewater revealed the retention of 22-37 and 253-
407 mg L-1 2-MBT and COD, respectively, indicating that biodegradation proceeded by 
metabolic reaction of the bacterial communities in the EN bacterial consortium.  This 
conclusion is consistent with previous work suggesting that the removal of 2-MBT can 
proceed through biological reactions in conventional wastewater treatment but 2-MBT 
cannot be efficiently removed due to its tolerance to biological degradation (H. De 
Wever & Verachtert, 1997). EN bacterial consortium showed a faster 2-MBT degradation 
rate in sterile wastewater than in non- sterile wastewater (Figure 4. 10) .  At the end of 
the study, 80% and 65% of 112 mg L-1 2-MBT was removed from sterile and non-sterile 
wastewater, respectively (Figure 4.10a). These results indicated competition between 
the EN bacterial consortium and the indigenous microorganisms in the wastewater. On 
the other hand, there was no significant difference in COD removal efficiency between 
sterile and non- sterile wastewater samples, where the EN bacterial consortium 
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removed 90-93% of ~4,000 mg L-1 COD (Figure 4.10b). Thus, most organic contaminants 
in the activated sludge- treated wastewater were readily biodegradable, while 2-MBT 
was refractory and could be used only by the inoculated bacterial consortium.  
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Figure 4.10 Time course of 2-MBT biodegradation ( a)  and COD removal (b)  when 
applied the EN bacterial consortium in the sterilized and non-sterilized treated rubber 
wastewater from activated sludge process. Control was the non-sterilized wastewater 
without EN culture inoculation.  Different letters denote significant differences among 
treatments (P < 0.05). 
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 The high 2- MBT removal efficiency of EN bacterial consortium in sterile 
wastewater corresponded with the presence of the dominant bacterial genus 
Pseudomonas until the end of the experiment. On day 7, the number of Pseudomonas 
spp- specific 16S rRNA genes in sterile wastewater was maintained at 2. 2×1010 copies 
number mL- 1, while the number in non- sterile wastewater effluent significantly 
decreased to 3×108 copies number mL-1 (P < 0.05) (Figure 4.11).  Many studies have 
shown that complex interactions, including interference from toxic substances and 
indigenous microbes in real wastewater effluent, might be responsible for reducing the 
performance of augmented cultures (Abtahi et al., 2020; Viero et al., 2008).  Notably, 
the number of Pseudomonas in non-sterile wastewater determined by qPCR could be 
higher than that indicated by the plate counting technique due to the unculturable 
fraction and multiple numbers of 16S gene copies in this genus (Stoddard, Smith, Hein, 
Roller, & Schmidt, 2015).  
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Figure 4.11 Quantity of Pseudomonas spp. population when applied the EN bacterial 
consortium in the sterilized and non- sterilized treated rubber wastewater from 
activated sludge process. 

 GC-MS chromatograms were used to confirm the degradation of 2-MBT and 
other benzothiazoles resulting from the addition of EN bacterial consortium.  The 
relative abundances of 2-MBT (no.  18)  and benzothiazole (no.  6)  were significantly 
decreased in both treated wastewater samples (Figures 4. 12b and 4. 12c)  compared 
with those in untreated wastewater ( Figure 4. 12a) .  In addition, intermediate 
compounds such as 2-aminobenzothiazole (no. 23), 2-hydroxybenzothiazole (no. 24) 
and methylbenzothiazole-2-thione (no. 25) were observed in low abundances in both 
wastewater conditions (Figures 4.12b and 4.12c). 2-MBT bacterial metabolism can lead 
to the formation of several metabolite compounds (Umamaheswari & Rajaram, 2017). 
Interestingly, a decrease in the relative abundance of 2- (methylthio)  benzothiazole 
(no. 13) was observed when sterile wastewater was treated in comparison with that in 
non-sterile wastewater. The cooperative behaviors among bacterial populations in the 
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consortium under sterile conditions were probably more efficient than those under 
non-sterile conditions; thus, 2-MBT was transformed into 2-(methylthio)benzothiazole 
through a thiol S- methyltransferase reaction as previously described (Drotar et al., 
1987a).  

According to the GC-MS analysis, catechol was not detected after 7 days of 
operation.  This could be due to the degradation of catechol by the activities of 
catechol 1,2-dioxygenase (Setlhare, Kumar, Mokoena, & Olaniran, 2019).  In addition, 
the result of metatranscriptomic showed high level of catechol 1,2 dioxygenase at 
approximately 363±30 reads (Table 4.13).  

 Under natural conditions, such as non-sterile wastewater, the diverse bacterial 
communities could facilitate the development of competitive strategies to face a 
constant battle for resources and compete with their neighbors for space (Freilich et 
al., 2011; Hibbing, Fuqua, Parsek, & Peterson, 2010).   Another beneficial effect of EN 
bacterial consortium was the reduction of sulfate and TKN in the wastewater from 
46.15-62.80 and 1,145-1,235 mg L-1 to 9.5- 20.5 and 76-80 mg L-1, respectively (Table 
4. 5) .  The sulfate removal efficiency of the bacterial consortium in sterile wastewater 
(79%) was higher than that in non-sterile wastewater (56%) , while the TKN removal 
efficiencies in both wastewater samples were similar at > 90%. 
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Table 4.5 Rubber processing wastewater treatment efficiency for the performance 
parameter in the effluent and after applying EN bacterial consortium. 

Parameters (unit) 

Effluent from activated sludge treatment  
plant at factory E 

Before treatment After applying EN consortiumb 

pH 7.6-7.8 7.4- 7.6 

Total COD (mg L-1) 2,500-3,100 n/a 

Soluble COD (mg L-1) 1,900-2,850 253-407 

Sulfate (mg L-1) 46.17-62.80 9.5- 20.5 

TKN (mg L-1) 1,145-1,236 76-80 

2-MBT (mg L-1)a 14.1 21.7-37.1 

n.d., compound analyzed but not detected; n/a, total COD not analyzed. 
a Concentration was detected by GC-MS analysis which compared with the standard 
of 2-MBT.  
b Ranges of average data obtained from sterile and non-sterile wastewater which were 
spiked with 100 mg L-1 of 2-MBT after 7-day treatment.  
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Figure 4.12 Profile of GC-MS chromatogram presented 21 out of 43 organic compounds 
(Table D-1 in appendix D)  account for the majority of the total organic contaminants 
using 1% of area across the original rubber processing wastewater sample ( a)  and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99 
 

 
 

treated wastewater after 7 days of operation; sterilize (b) and non-sterile (c) wastewater 
samples.  The compound identification was performed with scan mode in the same 
samples— 1:Ethylbenzene; 2:Decane; 3:1-Hexanol, 2-ethyl- ; 4:Undecane, 2-methyl- ; 
5:Benzoic acid, methyl ester; 6:Benzothiazole; 7:Benzene, 1,3-bis(1,1-dimethylethyl)-; 
8:Pentadecane; 9:unidentified; 10:Tetradecane; 11:unidentified; 12:Phenol, 2,4-bis(1,1-
dimethylethyl) - ; 13:2- (methylthio) -Benzothiazole,; 14:Heptadecane; 15:unidentified; 
16:1-Octadecanol; 17:Hexadecanoic acid, methyl ester; 18:2-Mercaptobenzothiazole; 
19: Methyl stearate; 20: unidentified; 21: Di- n- octyl phthalate; 22: Benzaldehyde, 2-
hydroxy- ; 23: 2- Aminobenzothiazole; 24: 2- hydroxy- 1,3- benzothiazole; 25: 2( 3H) -
Benzothiazolethione, 3-methyl-. 
 
4.3 Characterization of the bacterial community structures and functional 

genes of 2-MBT degrading bacterial consortia by molecular analyses  

4.3.1 Identification of bacterial community structures in original sludge 
and enriched 2-MBT-degrading bacterial consortium by 16S rRNA gene sequencing 
technique 
 The shifts in bacterial populations in response to 2- MBT and different 
acclimatization conditions were explored by 16S rRNA gene amplicon sequencing of 
the sludge samples (S and E) and acclimatized bacterial consortia, i.e., SN, SN-AC+, EN 
and EN- AC+ .  A total of 403,286 quantified sequences were generated by high-
throughput sequencing, which were assigned to 5,265 OTUs in all samples.  According 
to the obtained OTUs, sludge S had the richest diversity, followed by sludge E and the 
acclimatized bacterial consortia ( Table 4. 6) .  The low diversity in the acclimatized 
bacterial consortia was due to the selection of 2-MBT-degrading bacterial communities 
during the long-term acclimatization process.  
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Table 4.6 Alpha-diversity indices of the bacterial diversity of the original sludge and 
acclimated bacterial consortia samples.  

Samples 
High-quality 
sequence 
numbers 

Observed OTUs Richness Diversity Index 

Original 
sludge S 

92,934 2406 2792.252 5.254318 

SN-AC+ 39,842 63 99.14286 0.66382 

SN 32,923 73 115.2727 0.895895 

Original 
sludge E 

76,996 2530 2772.612 5.576249 

EN-AC+ 58,954 83 114.1667 0.232455 

EN 101,637 110 126.1111 1.000994 

 For the high-quality sequence (HQ)  numbers which were presented in Table 
4.6, they were obtained from pre-processing in the samples. The present work showed 
the HQ-sequences of the samples more than 80% to total of each sample while most 
of low-quality sequence (LQ)  comes low quality score of each base in its sequence, 
indicating the sequencing error occur on PCR primer region (Figure 4.13).  
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Figure 4.13 Mothur pre- processing steps represent the relative abundance of the 
sequence after the sequencing barcode and PCR primers were identified and removed. 
 The changes in the bacterial community at the phylum and genus levels are 
represented in Figures 4.14a and b. A total 13 out of 52 phyla are revealed, using 1% 
relative abundance across sample as criteria to determine dominant phylum ( Fig. 
4. 14a) .  Firmicutes (E:  22. 3%  and S:  12. 6%) , Proteobacteria (E; 17. 3% , S; 14. 5%) , 
Bacteroidetes (E:  14. 3%  and S:  13. 8%) , Chloroflexi (E:  8. 2% and S:  17. 4%)  and 
Euryarchaeota (E: 9.7% and S: 11.2%) were found as the top five most abundant phyla 
in the original sludge from both factories (Figure 4.14a). Among phyla in original sludge 
samples, Firmicutes, Proteobacteria and Bacteroidetes were the higher relative 
abundances in the sludge E than those in sludge S.  In previous studies, these phyla 
are commonly found as the predominant members in sewage sludge and anaerobic 
digesters treating natural rubber wastewater (N. Li, Liu, Zhou, Dai, & Kong, 2019; Watari 
et al., 2016).  On the other hand, Chloroflexi was the most predominant phylum in 
sludge S, accounting for 17. 4%.  This phylum was also reported to be the dominant 
populations in anaerobic digesters (Buettner & Noll, 2018).  
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Figure 4.14 Comparison of bacterial compositions in original sludges from S and E 
rubber processing industries and bacterial consortia established after three stepwise 
acclimatization stages, presented on the phylum levels (a) and genus levels (b). The 
results determined based on the targeting the V4 variable regions of the 16S rRNA gene 
marker.   
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 In addition, a high relative abundance of uncultured accounted for 20. 9 and 
15. 9% of S and E, respectively, suggesting that the sludges from both factories are 
good reservoir of new microorganisms. After long-term acclimation period of this work, 
two phyla, Proteobacteria and Bacteroidetes were found to be dominant in consortia. 
Particularly, Proteobacteria phylum showed the highest relative abundant in the 
bacterial consortia, accounting for about 70-99% of the total bacteria, distinguishing 
from original sludge samples (Fig. 4.14a). Previous studied has reported that members 
of Proteobacteria were potential as persistence organic compound degraders (B. Li, 
Qiu, Zhang, Liang, & Huang, 2019; F. Wang, Li, Wang, Chen, & Huang, 2016).  

A total of 663 genera were found in the original sludge samples, whereas a total 
of 29 genera were prevalent in the consortia. Seven dominant genera in each sample 
were revealed as dominant genera among samples using 5% relative abundance across 
samples for comparison, as shown in Figure 4. 14b) .  The bacterial consortia were 
dominated by members of Pseudomonas, Stenotrophomonas and unclassified 
Caulobacteraceae.  Most of the detected bacteria in the consortia of this study have 
been reported in heterocyclic aromatic-degrading bacterial consortia (Ahmad et al. , 
2019).   

Among the acclimated consortia, distinct patterns of bacterial community 
profiles between different consortia were revealed at the OTU resolution, as illustrated 
in Figure 4.15.  The relative abundance of Pseudomonas (OTU0001)  was significantly 
increased in all of the acclimatized consortia, accounting for 71.36-96.07% , while the 
original sludge samples contained Pseudomonas at abundances in the range of 0. 5-
0.72%, as presented in Figure 4.15. Species belonging to the Pseudomonas genus have 
been proposed to degrade benzothiazoles through dioxygenase and methylation 
reactions (El-Bassi et al., 2010; Y. Li et al., 2017).  Stenotrophomonas (OTU0002)  was 
the second largest genus, contributing to high proportions of 20. 89% and 20. 59% in 
bacterial consortia SN and EN, respectively, which were much higher than those in the 
original sludges ( 0. 05- 0. 14% )  and bacterial consortia from the sodium acetate-
containing acclimatization system (EN-AC+ :  0.51 and SN-AC+ :  3.07) .  All acclimatized 
bacterial consortia contained unclassified Caulobacteraceae (OTU0003)  as the third 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

104 
 

 
 

most abundant population.  There was a higher relative abundance of unclassified 
Caulobacteraceae in SN-AC+ (9.31%) and EN-AC+ (2.35%) than in the other acclimatized 
consortia ( 0. 60- 1. 47% )  and the original sludges ( 0. 01- 0. 02% ) .  The additional 
supplementation of a co- organic carbon source in the acclimatization systems of 
sludge S and E might have led to an increase in unclassified Caulobacteraceae 
abundance.  Members of unclassified Caulobacteraceae have also never been 
reported as 2-MBT biodegrading bacteria, but they are newly identified lignocellulose 
degraders (Puentes-Téllez & Salles, 2020; Wilhelm, Singh, Eltis, & Mohn, 2019).  

 
Figure 4.15 Heat map plot relied on relative abundance of OTU across samples.  The 
horizontal and vertical dendrogram were calculated based on Bray-Curtis dissimilarity. 
Color represent the range of relative from 0 ( light yellow)  to 1 ( red) .  The label 
represents the OTU with taxonomic annotation at genus level. 
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Interestingly, the Stenotrophomonas genus has never been reported to exhibit 
2-MBT biodegradation, but they are known degraders of heterocyclic aromatic rings 
(Galíndez-Nájera et al., 2011; Rajini, Sasikala, & Ramana, 2010).  Across all sites, the 
Pseudomonas, Stenotrophomonas and unclassified Caulobacteraceae genera were 
found in higher abundance in the consortia which were expected to be the major 2-
MBT- degrading bacteria in the consortia.  These results indicate that the stepwise 
acclimatization process played an important role in selecting for these bacteria and 
maintaining the community composition over long-term cultivation.  

Currently, there is limited study on the microbial community composition of 
bacterial consortia capable of degrading 2-MBT.  This study was the first to show the 
distinct shifts in bacterial community composition from sludge S and E to bacterial 
consortia SN and EN with high 2-MBT degradation efficiency under aerobic condition 
(Table 4.7).  

 
Table 4.7 Bacterial community of published reports and the obtained bacterial 
consortia.  

Microbial inoculum 
Test system/ 

duration 
Type of 

benzothiazoles 
References 

Anaerobic granular 
sludge with 
Trichococcus and 
Clostridium sensu stricto 
as the dominant 
populations 

Anaerobic batch 
with mixed 
liquor 
suspended solids 
in synthetic 
wastewater/ 84 
h 

Benzothiazole 
Y. Li et al. 
(2017) 
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Table 4.7 Bacterial community of published reports and the obtained bacterial 
consortia. (Cont.) 

Microbial inoculum 
Test system/ 

duration 
Type of 

benzothiazoles 
References 

Diluted river mud with 
Geobacter, Bacterioides 
and Rhodococcus 
rhodochrous as the 
dominant populations 

Microbial 
electrolysis cells 
(MECs) 
conducting in 
fed-batch mode 
with mineral 
medium/ 30 h 

2-MBT 
San-Martin et al. 

(2020) 

Consortium SN-AC+ with 
Pseudomonas,  
Stenotrophomonas and 
Caulobacteraceae as 
the dominant 
populations 

Aerobic batch 
with resting cells 
in mineral 
medium/ 72 h 

2-MBT This study 
Consortium SN with 
Pseudomonas and 
Stenotrophomonas as 
the dominant 
populations 
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Table 4. 7 Bacterial community of published reports and the obtained bacterial 
consortia. (Cont.) 

Microbial inoculum 
Test system/ 

duration 
Type of 

benzothiazoles 
References 

Consortium EN-AC+ with  
Pseudomonas, 
Stenotrophomonas and 
Caulobacteraceae as 
the dominant 
populations 

Aerobic batch 
with resting cells 
in mineral 
medium/ 72 h 

2-MBT This study 
Consortium EN with 
Pseudomonas and 
Stenotrophomonas as 
the dominant 
populations 

  
 On the other hand, various bacterial populations are reported during the 
biodegradation of benzothiazole and 2- MBT under anaerobic condition by mixed 
bacterial culture.  For example, Trichococcus and Clostridium sensu stricto are the 
dominant populations in anaerobic granular sludge (Y. Li et al., 2017), while Geobacter, 
Bacterioides and Rhodococcus rhodochrous are the dominant populations in microbial 
electrolysis cells (MECs) (San-Martin et al., 2020) (Table 4.6). This study suggested that 
the mixed bacterial inoculum for the treatment of benzothiazole-contaminated rubber 
wastewater under aerobic condition should contain bacteria in the genera of 
Pseudomonas and Stenotrophomonas.  

 The cooperation of Pseudomonas and Stenotrophomonas for 2- MBT-
biodegradation was first identified here.  However, these two genera have been 
reported as dominant populations during the degradation of polycyclic aromatic 
hydrocarbons (PAHs) by a bacterial consortium isolated from petroleum polluted soil 
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(González et al. , 2011) .  This study provided a better understanding of the microbial 
community structure relevant to 2-MBT degradation.  This knowledge would facilitate 
the development of a bacterial inoculum for the treatment of thiazole-contaminated 
rubber wastewater.  From these results, EN bacterial consortium was selected for 
treating 2-MBT in rubber processing wastewater due to its higher diversity and 2-MBT 
biodegradability than other consortia.  

4.3.2 Functional gene profiling through metatranscriptome approach in 
the 2-MBT degrading bacterial consortium community 
 Gene expression associated with 2-MBT degradation in EN bacterial consortium 
was examined.  In this study, the metatranscriptomics was used to profile and 
characterize the difference in gene expression in response to both original sludge and 
EN bacterial consortium.   

4.3.2.1 Effect of cell growth state on 2-MBT degradation activity  
 In order to collect the EN bacterial consortium for obtaining high 
concentration of RNA and further identify the transcript genes among diverse 
microorganisms in the EN bacterial consortium, the state of the cells was investigated 
in response to 2-MBT degrading activity.  Growth rate of bacterial cells is phenotypic 
characteristics that has potentially impact on specific gene expression and gene 
regulation system (Wytock & Motter, 2019).  
 Figure 4.16 depicts bacterial growth and degradation curves of the bacterial 
consortium when incubating in the N medium containing 2-MBT at 100 mg L-1 as the 
sole carbon source.  During the incubation period, the growth result was obtained by 
measuring the growth of cell population increase over time.  The result showed no 
noticeable lag phase during growth period due to the initial inoculum size of this work 
was 5% ( v/ v)  that contained more than 108 CFU mL-1 cells in the culture medium. 
Moreover, the acclimated consortium can be physiologically adapted themselves to 
synthesize the appropriate enzymes for 2- MBT metabolism.  The length of the 
exponential growth appeared between 3 h to 30 h of incubation periods.  This phase 
can be divided into three sub phase by microbial biomass at the point of time including 
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early log (0 h-6 h) , mid-log (6 h-24 h) and late log (24 h-30 h). Nadaf & Ghosh (2011) 
suggested that the genes were potential expressed given by late log phase growth. 
Consequently, the cell suspension was collected at time point of 21-24 h of incubation 
for RNA extraction which was used to compare with the transcript genes of original 
sludge.  
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Figure 4.16 Representative growth curve of 2-MBT-grown cells (○) is measured as the 

OD600 and the residual of 2-MBT presented in the N medium (■). Error bars represent 
errors (n = 3).  
 The RNA of the consortium was extracted and further analyzed the quality 
and quantity of the extracted RNA by agarose gel electrophoresis, as shown in Figure 
4. 17.  This method can be used to test the RNA degradation and the RNA 
contamination. In addition, overall results of the RNA quality of the original sludge and 
the EN bacterial consortium were presented in Table 4.8. 
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Figure 4.17 Agarose Gel Electrophoresis for RNA quality of the original sludge from E 
industry (left) and the bacterial consortium EN (right). M: Trans 2K plus DNA ladder, 1 
loaded is 2 µL.  
 
Table 4.8 Overall results of RNA concentration, rRNA ratio and RNA integrity number 
for the original sludge and acclimated consortium   

Sample name 
RNA 
concentration 
(ng/µl) 

Amt 
(ng) 

OD260/280 OD260/230 RIN 

EN cells, R1 378 15.88 2.03 2.15 9.70 

EN cells, R2 298 5.66 2.04 1.62 9.80 

Original sludge E R1 306 5.8 1.94 1.70 8.40 

Original sludge E R2 306 5.8 2.04 1.65 8.40 

 

4.3.2.2 Functional and phylogenetic characteristics of the 2- MBT 
degrading bacterial community 

 The goal of this experiment was to compare the transcript levels between 
original sludge (non-acclimatized cultures) and EN bacterial consortium (acclimatized 
cultures) .  In this study, RNA- seq metatranscriptomic approach was used to quantify 
the level of a specific degradation genes in a complex community and compare gene 
expression profiles of both original sludge and EN bacterial consortium.  Functional 
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genes associated to metabolism of 2- MBT in the EN consortium were probably 
determinant factors controlling benzothiazoles biodegradation.  This work employed 
metatranscriptomic analysis as a promising approach to shed new light on the 
metabolic processes involved in the response of microbial communities to 
benzothiazole adaptation. 
 After normalizing the sequence counts for each taxonomic by the total 
reads.  The paired reads of Pseudomonas genera were merged into 2,650,288 and 
2,203,473 of EN consortium R1 and R2, respectively.  The sequences were compared 
against the original sludge, as presented in Table 4. 9.  The sequences from 
metatranscriptomic data matched well with data of 16S rRNA sequencing which 
revealed that Pseudomonas was the most abundant population at community level.  
 
Table 4.9 Relative abundance of genera involving 2-MBT degradation in EN consortium 
and original sludge based on metatranscriptomic analyses 

Sample 
Total 
read 

Reads 

Pseudomonas Stenotrophomonas 

Shared protein 
between 

Pseudomonas and 
Stenotrophomonas 

EN R1 2,650,288 2,150,164 8,306 5,392 

EN R2 2,203,473 2,000,677 10,016 6,607 

Original 
sludge E 

1241079 2618 34 0 

 
 The genus- level analysis showed that duplicate result of 81% and 91% of 
Pseudomonas was among most abundant genera that exist in the EN consortium. 
Stenotrophomonas was 0.3% and 0.45% in R1 and R2, respectively.  
 Interestingly, this work also indicated that the cooperation between 
Pseudomonas and Stenotrophomonas was observed the shared protein together in 
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the EN consortium, accounting to 0.20% (5,392 reads) and 0.29% (6,607), in R1 and R2, 
respectively (Table 4.10) .  Thus, the functional capabilities of bacterial communities, 
especially Pseudomonas and Stenotrophomonas had potential impact on 2- MBT 
metabolism.  
 
Table 4.10 Ratio of reads associated to genera in the EN consortium and the original 
sludge based on metatranscriptomic analyses  

Samples 

% ratio of reads 

Pseudomonas Stenotrophomonas 

Shared protein 
between 

Pseudomonas and 
Stenotrophomonas 

Other 
genera 

EN R1 81.1294 0.3134 0.2034 18.3538 

EN R2 90.7965 0.4546 0.2998 8.4491 

Original 
sludge E 

0.2109 0.0027 0 99.7864 

 
 The annotation of contigs of the EN bacterial consortium more highly 
transcribed during 2-MBT metabolism. This result revealed the adaptation of bacterial 
community in the EN bacterial consortium after long- term acclimatization process. 
Most of the detected protein contigs related to a more resistance proteins.  As 
illustrated in Table 4. 11, the observed protein contigs in the EN bacterial consortium 
were also found in specific xenobiotic degraders.  For example, hypothetical protein 
(AGA75498. 1)  of an antibiotic resistance gene (Molina et al. , 2014)  was the highest 
abundance in the EN bacterial consortium ( 3,779,405)  compared with the original 
sludge (1,252). In addition, the EN bacterial consortium were dominated by conserved 
exported protein (SPO57603.1) and hypothetical protein (SDM81684.1) that containing 
288,831 and 212,290.5 abundances, respectively. These predicted proteins have been 
expressed in Pseudomonas sp.  strain Chol1, which is a model microorganism for the 
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naphthalene degrading bacteria and bile salt- degrading bacteria (Holert et al. , 2013) . 
Moreover, the other hypothetical proteins were expressed in the bacterial consortium 
that were related to the xenobiotic degraders (S. Li, Zhao, Li, Niu, & Cai, 2012).  
 
Table 4.11 Difference in top ten contigs of original sludge and EN bacterial consortium 

Accession number 
Reads 

Annotation 
EN R1 EN R2 

Original 
sludge E 

SDM81684.1 263389 161192 293 

hypothetical protein 
SAMN05660875_109145 
[Pseudomonas balearica 
DSM 6083] 

AGA75498.1 259189 496692 1252 

hypothetical protein 
B479_23045 
[Pseudomonas putida 
HB3267] 

SPO57603.1 217512 360150 191 

conserved exported 
protein of unknown 
function [Pseudomonas 
sp. JV551A1] 

SPO57553.1 105858 102643 42 

conserved protein of 
unknown function 
[Pseudomonas sp. 
JV551A1] 
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Table 4.11 Difference in top ten contigs of original sludge and EN bacterial consortium 
(Cont.) 

Accession number 
Reads 

Annotation 
EN R1 EN R2 

Original 
sludge E 

EKM96396.1 98302 91792 312 
hypothetical protein 
C211_08439 
[Pseudomonas sp. Chol1] 

WP_133975529.1 88066 115322 41 
hypothetical protein 
[Pseudomonas inefficax] 

WP_003248687.1 80171 67150 31 
MULTISPECIES: 
hypothetical protein 
[Gammaproteobacteria] 

SPO61030.1 74975 85286 33 
conserved protein of 
unknown function 
[Pseudomonas inefficax] 

WP_003253897.1 66919 40905 26 
MULTISPECIES: 
hypothetical protein 
[Pseudomonas] 

WP_134939841.1 50256 59778 23 
hypothetical protein 
[Pseudomonas veronii] 

 

 In order to assign annotation to potential genes of interest, all filter contigs 
were blasted and determined the putative function.  The differential gene expression 
analysis between original sludge and EN bacterial consortium was analyzed and 
compared.  The majority of these contigs were annotated as gene involved in 2-MBT 
metabolism.  In general, the oxygenase enzymes including monooxygenase and 
dioxygenase were up-regulated which have been associated with the breakdown of 2-
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MBT (El-Bassi et al., 2010; Haroune et al., 2004; Haroune et al., 2002; Umamaheswari & 
Rajaram, 2017).  

 In this study, metatranscriptome results revealed transcripts mapped to 
oxidation reaction including monooxygenase and dioxygenase, which were expressed 
at higher level than in the original sludge as presented in Table 4.12. The EN bacterial 
consortium could convert the 2-MBT into two metabolites included a cis- dihydrodiol 
derivative and a hydroxylated compound and further degraded by catechol 1, 2 
dioxygenases, as given in Table 4. 13.  Other metabolites might be produced later by 
various microorganisms.  In this work, the possible route of 2-MBT biodegradation by 
the EN consortium was based on the result of transcript genes that existed in the 
consortium (Figure 4.18).  However, the biodegradation pathway should be further 
investigated in minimal salt medium and metabolites analysis.  

 Interestingly, the genes involved in methylation reaction were observed at 
great abundance in the EN bacterial consortium (Table 4. 14) .  Methyltransferase has 
been proposed in 2- MBT biodegradation pathway (Reemtsma et al., 1995; 
Umamaheswari & Rajaram, 2017).  Umamaheswari & Rajaram (2017) suggested that 
inorganic compounds including ammonia and sulfate were released during 
biodegradation process.  In this study, metatranscriptomic results also revealed the 
genes associated with sulfite, sulfate, and ammonia degradation.  Transcripts genes 
mapped to ammonium transportation and sulfate/ sulfite metabolism are provided in 
Tables 4.15 and 4.16. 
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Table 4.12 Difference in reads of EN bacterial consortium (duplicates)  and original 
sludge, using 5 reads as cut-off point. 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

Oxidation 
(Monoxyge
nase) 

AEJ15752.
1 

44 48 0 

putative flavin-binding 
monooxygenase 
[Pseudomonas putida 
S16] 

WP_01527
1638.1 

150 191 0 
antibiotic biosynthesis 
monooxygenase 
[Pseudomonas] 

AEJ15752.
1 

44 48 0 

putative flavin-binding 
monooxygenase 
involved in arsenic 
resistance 
[Pseudomonas putida 
S16] 

WP_13716
4335.1 

37 55 0 
nitronate 
monooxygenase 
[Pseudomonas asiatica] 
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Table 4.12 Difference in reads of EN bacterial consortium (duplicates)  and original 
sludge, using 5 reads as cut-off point. (Cont.) 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

Oxidation 
(Dioxygena
se) 

WP_11225
4175.1 35 42 0 

TauD/TfdA family 
dioxygenase 
[Pseudomonas 
putida]RAM66298.1 SyrP 
[Pseudomonas putida] 

WP_03840
9121.1 

19 27 0 
dioxygenase 
[Pseudomonas putida] 

WP_03369
9720.1 14 19 0 

MULTISPECIES: 
TauD/TfdA family 
dioxygenase 
[Pseudomonas] 

OII58920.1 14 17 0 
dioxygenase 
[Pseudomonas putida] 

WP_08570
6364.1 

4 7 0 
dioxygenase 
[Pseudomonas sp. 
B8(2017)] 

AZR96215.
1 

5 4 0 
dioxygenase [Bordetella 
trematum] 
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Table 4.13 Difference in reads of EN bacterial consortium (duplicates)  and original 
sludge, using the abundance of 5 reads as cut-off point.  

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

Ring- hydroxylating 
dioxygenase 

WP_0856156
38.1 

8 5 0 

MULTISPECIES: 
ring-
hydroxylating 
dioxygenase 
ferredoxin 
reductase family 
protein 
[Pseudomonas 
incertae sedis] 

WP_0613052
94.1 

5 4 0 

ring-
hydroxylating 
dioxygenase 
ferredoxin 
reductase family 
protein 
[Pseudomonas 
monteilii] 
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Table 4.13 Difference in reads of EN bacterial consortium (duplicates)  and original 
sludge, using the abundance of 5 reads as cut-off point. (Cont.) 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

Ring- hydroxylating 
dioxygenase 

AAF19975.1 5 9 0 

putative class I 
ring-
hydroxylating 
dioxygenase, 
partial 
[Pseudomonas 
putida] 

WP_0045762
75.1 6 5 0 

MULTISPECIES: 
ring-
hydroxylating 
dioxygenase 
ferredoxin 
reductase family 
protein 
[Pseudomonas] 

Intradiol 
dioxygenase using 
an Fe3+ cofactor. 

WP_1020836
60.1 

120 95 0 

catechol 1,2-
dioxygenase 
[Pseudomonas 
plecoglossicida] 

WP_0139730
65.1 

99 90 0 

MULTISPECIES: 
catechol 1,2-
dioxygenase 
[Pseudomonas] 

 WP_1084806
22.1 

52 54 0 

catechol 1,2-
dioxygenase 
[Pseudomonas 
plecoglossicida] 
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Table 4.13 Difference in reads of EN bacterial consortium (duplicates)  and original 
sludge, using the abundance of 5 reads as cut-off point. (Cont.) 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

Intradiol 
dioxygenase using 
an Fe3+ cofactor. 

WP_0476030
49.1 

32 33 0 

catechol 1,2-
dioxygenase 
[Pseudomonas 
putida] 

WP_1333266
20.1 

36 35 0 

catechol 1,2-
dioxygenase 
[Pseudomonas 
putida] 

WP_0231185
42.1 

21 22 0 

MULTISPECIES: 
catechol 1,2-
dioxygenase 
[Pseudomonas] 

WP_0031200
81.1 

16 20 0 

catechol 1,2-
dioxygenase 
[Pseudomonas 
aeruginosa] 

WP_0750451
81.1 

9 9 0 

catechol 1,2-
dioxygenase 
[Pseudomonas 
putida] 

HBK49450.1 7 7 0 

catechol 1,2-
dioxygenase 
[Pseudomonas 
sp.] 
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Figure 4.18 The possible route of 2-MBT biodegradation pathway based on prediction 
of transcribed genes expressing in the EN bacterial consortium. 
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Table 4.14 Predicted putative genes for methyltransferase route in 2-MBT metabolism, 
using the abundance of 5 reads as cut-off point. 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

Conjugation of 
the reduced 
form of 
glutathione 
(GSH) to 
xenobiotic 
substrates  

WP_12308
5110.1 

17 25 0 

glutathione S-
transferase 
[Pseudomonas 
putida]  

A class of 
enzymes that 
catalyze the 
transfer of a 
methyl group 
from methyl 
donor S-
adenylyl-l-
methionine 
(SAM) to their 
substrates 

WP_13500
2037.1 

10 18 0 
methyltransferase 
[Pseudomonas 
putida] 

EJT85006.
1 

20 29 0 

type 11 
methyltransferase 
[Pseudomonas 
putida S11] 

WP_05457
3585.1 

8 12 0 

Bifunctional cobalt-
precorrin-7 (C(5))-
methyltransferase/c
obalt-precorrin-6B 
(C(15))-
methyltransferase 
[Pseudomonas 
putida] 
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Table 4.14 Predicted putative genes for methyltransferase route in 2-MBT metabolism, 
using the abundance of 5 reads as cut-off point. (Cont.) 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

A class of 
enzymes that 
catalyze the 
transfer of a 
methyl group 
from methyl 
donor S-
adenylyl-l-
methionine 
(SAM) to their 
substrates 

WP_10208
3892.1 

19 23 0 

MULTISPECIES: class 
I SAM-dependent 
methyltransferase 
[Pseudomonas] 

WP_15134
5791.1 

26 48 0 

methyltransferase 
domain-containing 
protein, partial 
[Pseudomonas 
putida] 

WP_01527
0906.1  

15 20 0 

MULTISPECIES: class 
I SAM-dependent 
methyltransferase 
[Pseudomonas]  
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Table 4.15 Predicted putative genes for sulfate/ sulfite metabolism and ammonium 
transportation, using the abundance of 5 reads as cut-off point. 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

An enzyme 
transfers a 
sulfate group 
from 
phenolic 
sulfate esters  
  

AEJ14547.1 8 11 0 

conserved 
hypothetical protein 
[Pseudomonas putida 
S16] 

WP_0122737
73.1 

7 9 0 
 aryl-sulfate 
sulfotransferase 
[Pseudomonas putida]  

WP_1250331
36.1 

8 7 0 

 aryl-sulfate 
sulfotransferase 
[Pseudomonas 
aeruginosa] 

WP_0549010
98.1 

196 274 0 

IscS subfamily cysteine 
desulfurase 
[Pseudomonas 
incertae sedis]  

WP_0902614
55.1 

15 25 0 
IscS subfamily cysteine 
desulfurase 
[Pseudomonas] 

WP_1268673
87.1 

22 30 0 

IscS subfamily cysteine 
desulfurase 
[Pseudomonas 
aeruginosa]  
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Table 4. 15 Predicted putative genes for sulfate/ sulfite metabolism and ammonium 
transportation, using the abundance of 5 reads as cut-off point. (Cont.) 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

An enzyme 
transfers a 
sulfate group 
from 
phenolic 
sulfate 
esters   

WP_0604794
12.1 

28 38 0 

IscS subfamily cysteine 
desulfurase 
[Pseudomonas 
monteilii] 

An enzyme 
of the 
esterase 
class that 
catalyze 
sulfate 
esters.  

BBH46543.1 29 42 0 
alkyl sulfatase 
[Pseudomonas sp.] 

OII56077.1 28 39 0 
sulfatase, partial 
[Pseudomonas putida] 

An enzyme 
catalyzes the 
formation of 
disulphide 
bonds.  

WP_0122713
57.1 

24 36 0 
Si-specific NAD(P)(+) 
transhydrogenase 
[Pseudomonas] 

Ammonium 
transport 
(Amt) 
proteins for 
uptake and 
assimilation 
of nitrogen 

TXI07667.1 11 12 0 
ammonium 
transporter, partial 
[Pseudomonas] 

WP_0869741
86.1 

5 6 0 
ammonium transporter 
[Pseudomonas putida] 
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Table 4.16 Predicted putative genes for sulfate/ sulfite metabolism and ammonium 
transportation, using the abundance of 5 reads as cut-off point  

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

An enzyme 
that 
catalyzes 
the chemical 
reaction 
ATP + 
sulfate, 
pyrophospha
te + 
adenylyl 
sulfate 

WP_03961
3009.1 

12 21 0 

sulfate 
adenylyltransferase 
subunit CysN 
[Pseudomonas sp. 
C5pp] 

WP_07033
1229.1 

25 35 0 

sulfate 
adenylyltransferase 
subunit CysD 
[Pseudomonas 
aeruginosa] 

WP_09977
5736.1 

21 33 0 

sulfate 
adenylyltransferase 
subunit CysD 
[Pseudomonas incertae 
sedis] 

WP_05683
4179.1 

15 23 0 

sulfate 
adenylyltransferase 
subunit CysD 
[Pseudomonas] 

WP_13469
1113.1 

15 28 0 

sulfate 
adenylyltransferase 
subunit CysD 
[Pseudomonas sp. 
RIT623] 
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Table 4.16 Predicted putative genes for sulfate/ sulfite metabolism and ammonium 
transportation, using the abundance of 5 reads as cut-off point (Cont.) 

Reaction 
Accession 
number 

Reads 
Annotation 

EN R1 EN R2 
Original 
sludge E 

An enzyme 
that 

catalyzes 
the chemical 

reaction 
ATP + 

sulfate, 
pyrophospha

te + 
adenylyl 
sulfate 

WP_02337
8799.1 

9 19 0 

sulfate 
adenylyltransferase 
subunit CysD 
[Pseudomonas] 

WP_02791
8026.1 

9 12 0 

sulfate 
adenylyltransferase 
subunit CysD 
[Pseudomonas incertae 
sedis] 

WP_11225
2290.1 

44 68 0 

sulfite exporter 
TauE/SafE family 
protein [Pseudomonas 
putida] 

WP_05457
2886.1 

30 49 0 

PQQ-dependent 
catabolism-associated 
CXXCW motif protein 
[Pseudomonas] 

WP_01397
4448.1 

19 26 0 
sulfurtransferase 
[Pseudomonas] 

WP_06130
3896.1 

31 26 0 
thiosulfate 
sulfurtransferase GlpE 
[Pseudomonas] 

WP_13284
6689.1 

12 22 0 

molybdopterin-
synthase 
adenylyltransferase 
MoeB [Pseudomonas 
putida] 
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2-MBT is reported for antimicrobial activities and has a potential to inhibit 
several membrane proteins like acyl coenzyme A cholesterol acyltransferase, 
monoamine oxidase, heat shock protein, cathepsin D, and c- Jun N- terminal kinases 
(Azam & Suresh, 2012). Moreover, 2-MBT may interact with membrane bound protein 
system and reduce the level of flavoproteins or Quinone and Fe- S clusters (H. De 
Wever et al., 1994).  For this work, metatranscriptomic profiling revealed dominant 
proteins that related to membrane bound system in the EN bacterial consortium at 
higher relative abundance than that in the original sludge (Table 4.17). Previous reports 
showed that several microorganisms use multidrug resistance proteins to persist 
intrinsic agents with adapted efflux pump resistance mechanisms (Daniels & Ramos, 
2009).  The membrane protein (WP_025341148.1) was found only in the acclimatized 
EN consortium (Table 4.17) but not in the original sludge.  

This might contribute to the ability to resistant the 2- MBT in the EN 
bacterial consortium.  In addition, the AdeC/ AdeK/ OprM family multidrug efflux 
complex outer membrane factor, multidrug transporter was found in the EN bacterial 
consortium at higher abundance than in the original sludge (Table 4.12) .  This type of 
protein is one of the mechanism that bacteria use to evade the toxic effects of the 
bioactive agents (Putman, van Veen, & Konings, 2000).  According to Table 4. 17, this 
work indicated that the bacterial cells in the EN bacterial consortium had developed 
various ways to resist the toxic effects of 2- MBT and their derivatives during 
acclimatization process. 
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Table 4.17 Predicted membrane bound proteins in the EN bacterial consortium 
compared with the original sludge. 

Accession number 
Reads 

Annotation 
EN R1 EN R2 

Original 
sludge E 

WP_054573880.1 431 949 0 
MULTISPECIES: DUF485 
domain-containing 
protein [Pseudomonas] 

WP_025341148.1 120 150 0 
MULTISPECIES: TIM44-
like domain-containing 
protein [Pseudomonas] 

WP_046614836.1 63 86 0 

MULTISPECIES: 
AdeC/AdeK/OprM family 
multidrug efflux 
complex outer 
membrane factor 

WP_056801870.1 54 75 0 
chaperonin GroEL 
[Pseudomonas sp. 
Leaf58] 

WP_033701830.1 120 157 0 

MULTISPECIES: 
membrane integrity-
associated transporter 
subunit PqiC 
[Pseudomonas] 

WP_025340591.1 52 69 0 

efflux transporter outer 
membrane subunit 
[Pseudomonas sp. 
FGI182] 
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Table 4.17 Predicted membrane bound proteins in the EN bacterial consortium 
compared with the original sludge. (Cont.) 

Accession number 
Reads 

Annotation 
EN R1 EN R2 

Original 
sludge E 

WP_112254220.1 67 91 0 

outer membrane 
protein assembly factor 
BamC [Pseudomonas 
putida] 

WP_015272354.1 292 380 0 

MULTISPECIES: 
GlsB/YeaQ/YmgE family 
stress response 
membrane protein 
[Pseudomonas] 

WP_012051471.1 55 97 0 

MULTISPECIES: OprD 
family porin 
[Pseudomonas], outer 
membrane porin 
[Pseudomonas putida 
F1] 

WP_027615814.1 41 52 0 
MULTISPECIES: outer 
membrane protein 
assembly factor BamA 

WP_003253367.1 147 131 0 
MULTISPECIES: TonB 
system transport protein 
ExbD [Pseudomonas] 
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Table 4.17 Predicted membrane bound proteins in the EN bacterial consortium 
compared with the original sludge. (Cont.) 

Accession number 
Reads 

Annotation 
EN R1 EN R2 

Original 
sludge E 

WP_019097259.1 52 89 0 

MULTISPECIES: toluene 
efflux RND transporter 
periplasmic adaptor 
subunit TtgA 
[Pseudomonas] 

WP_003259010.1 63 100 0 
MULTISPECIES: 
hypothetical protein 
[Gammaproteobacteria] 

WP_046613482.1 90 122 0 

MULTISPECIES: DUF924 
domain-containing 
protein 
[Gammaproteobacteria] 

AAF64240.1 95 148 0 
outer membrane porin, 
partial [Pseudomonas 
putida] 
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4.4 Development of an immobilized 2-MBT degrading bacterial consortium for 
applying in rubber processing wastewater  

 In this phase, the EN bacterial consortium was selected to apply as a 
bioaugmented culture for treating rubber wastewater under continuous operation. 
Since the colonization and maintenance of the active bacteria in complex rubber 
contaminated wastewater are important for efficient bioaugmentation, the embedded 
immobilization strategy was chosen for this study.  In the present work, bacterial 
consortium was immobilized into a porous carrier as described in Chapter 3.  
 The objectives of this phase were: 1) to investigate the biodegradation of 2-MBT 
by suspended and immobilized EN bacterial consortium; 2)  to determine the 
reusability of the immobilized EN bacterial consortium; 3)  to start up lab- scale 
bioreactors to evaluate the performance of the immobilized bacterial consortium on 
real rubber processing wastewater treatment at different organic loading rates (OLR).  

4.4.1 2-MBT adsorption capacity of the carrier  
 2-MBT adsorption capacity of the carrier was investigated by using 2 g of porous 
carrier (55-57 pieces) in 100 mL of minimal medium (pH 7.20). Figure 4.19 shows the 
concentration of 2-MBT in the solution as an equilibrium 2-MBT concentration.  This 
result indicated that the porous carrier could adsorb the 2-MBT in low concentration 
when the 2- MBT concentration of 50- 300 mg L- 1 were tested.  The result was 
corresponded with the high-water solubility of the 2-MBT, which were 118 mg L-1 and 
230 mg L-1 in water and buffer medium at pH 7 and 7.5, respectively.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

133 
 

 
 

0 1 2 3 4

0

50

100

150

200

250

300

350

400

450

500

550

Time (Day)

E
q

u
li

b
r
iu

m
 c

o
n

c
e
n

tr
a

ti
o

n

o
f 

2
-M

B
T

 :
C

e
 (

m
g

/L
)

Porous carrier in 50 mg L-1

Porous carrier in 100 mg L-1

Porous carrier in 200 mg L-1

Porous carrier in 300 mg L-1

Porous carrier in 500 mg L-1

 
Figure 4.19 The equilibrium concentration of 2-MBT after applying the 2% (w/ v)  of 
porous carrier in the MSM containing 50 to 500 mg L-1 of 2-MBT at room temperature, 
150 rpm for 4 days of operation. 

Adsorption capacity (qe) of the carrier as a function of time was later investigated 
in a batch mode. In this study, 2-MBT at 100 mg L-1 was chosen to mimic the real level 
of 2-MBT in the rubber processing wastewater.  Figure 4. 20 presents the adsorption 
capacity of the porous carrier at different time intervals.  After the first 15- min of 
operation, the adsorption capacity ( qe)  was fluctuated.  This might be due to the 
adsorption of 2-MBT on rough surface of porous, thereafter the 2-MBT residual was 
released and detected.  After 24-h operation, the adsorption capacity (qe)  was found 
to be 0.60-0.66 mg g-1 (mg of substrate adsorbed into 1 g of carrier). The low adsorption 
capacity was due to the high-water solubility of 2-MBT, even though the carrier has 
porous structure and high surface area.  In addition, this type of material did not have 
swelling property because of high porosity and well- defined surface properties. 
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Previous work also suggested that the impact of narrow micro-pore and pore size 
distribution related to the adsorption capacity of organic compound ( Lorenc-
Grabowska, 2016) .  The porous carriers can easily adsorb diesel fuel or liquid oil 
component in the pores of the carrier (Atta, El-Hamouly, Al Sabagh, & Gabr, 2007; H.-
D. Liu, Wang, Yang, & He*, 2014). The sorption capacity of the porous carriers could be 
varied depending on the type of the organic compounds, the volume of porous carriers 
and affinity to the pollutant.  Given the low 2-MBT adsorption capacities, the toxicity 
of 2- MBT to immobilized bacteria on porous carrier would be low.  These results 
suggested that the porous carrier was suitable for applying in the bioreactor. 

0 2 4 6 8 10 12 14 16 18 20 22 24

0.0

0.2

0.4

0.6

0.8

1.0

Operation time (day)

A
d

so
r
p

ti
o

n
 c

a
p

a
c
it

y
 (

m
g

 g
-1

)

qe

 
Figure 4.20 Adsorption capacity (qe) of 2 % (w/v) porous carriers in medium solution 
containing 100 mg L-1 2-MBT under batch mode. 

4.4.2 Optimization of cell immobilization conditions  
 Cell immobilization has been described to be the most efficient and cost 
effective strategy to overcome the problems faced by suspended cells in bioreactor 
for wastewater treatment (Farag, Soliman, & Abdel-Fattah, 2018). In order to obtain the 
high density of bacterial cells in the supporting material, this work used benzoate as 
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co- carbon source to produce high cell concentration and enhance 2-MBT degrading 
activity. The results suggested that 5 mM benzoate promoted the highest growth and 
did not inhibit 2- MBT degradation activity ( Figure 4. 21) .  It was possible that co-
metabolic degradation of 2-MBT was occurred by the EN bacterial consortium in the 
presence of 5 mM of benzoate as an additional carbon source.  This co- substrate has 
been proposed to support cell growth and increase biomass concentration, and also 
induce some speficic enzymes (Nowak & Mrozik, 2016). These bacteria growth profiles 
suggested that 48-h incubation was optimum for bacterial culturing and immobilization 
processes. 
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Figure 4.21 Time courses of 200 mg L-1 2-MBT degradation (a) and cell growth (OD600) 
(b) for EN bacterial consortium in MSM medium supplemented with different sodium 
benzoate concentrations. 

 Among three initial cell concentrations, the number of cells significantly 
increased in the medium inoculated with cell starter of 5% and 10% (v/v)  while the 
attached growth in porous carriers from 2% ( v/ v)  exhibited at lower concentration 
(p<0.05) (Figure 4.22). The 5% and 10% of inoculum gave similar cell concentration of 
2 x1013 CFU g carrier 1 .  Similarly, other work indicated that polyurethane, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

137 
 

 
 

polyacrylamide and agar in MSM containing optimum carbon source can immobilize 
bacterial cells at 1.7 × 1012, 1.8 × 1012 and 1.6 × 1012 CFU g carrier-1, respectively (Tallur, 
Mulla, Megadi, Talwar, & Ninnekar, 2015).  Consequently, 5% (v/v)  of cell starter was 
chosen for cell immobilization prepreration.  
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Figure 4.22 Numbers of bacteria in N medium containing 5 mM benzoate after 48-h 
immobilization of EN bacterial cells ( in terms of Log CFU mL-1) in porous carriers with 
different cell loadings.   

4.4.3 Biodegradation of 2-MBT by suspended and immobilized bacterial 
consortium in batch test  
  This experiment was conducted to compare the 2-MBT biodegradation ability 
of suspended and immobilized EN consortium. The initial concentrations of suspended 
and immobilized EN bacterial consortium were approximately 1012-1013 CFU mL 1. The 
cell numbers were determined from both attached cells in porous carrier and 
suspended cells.  The 2-MBT was added at 300 mg L-1 into the 100 mL of medium 
suspension. Figure 4.23a shows the course of 2-MBT biodegradation. The immobilized 
EN bacterial consortium showed higher degradation efficiency than that of suspended 
cells.  It has ability to degrade 77. 9% of 300 mg L-1 2-MBT, while the efficiency of 
suspended cells was only 35.9% (Figure 4.23).  
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Figure 4.23 Time course profiles for removal of 300 mg L
-1
2-MBT (a)  and number (b) 

of both immobilized and suspended cells of EN bacterial consortium during batch 
degradation test.  The cell numbers were determined from both attached cells in 
porous carrier and suspended cells. 
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  Previous work by Dzionek, Wojcieszyńska, Hupert-Kocurek, Adamczyk-
Habrajska, & Guzik (2018) suggested that naproxen (6-methoxy-2-naphthyl)  propionic 
acid) was completely biodegraded using cell immobilization onto sponge material. The 
good performance of immobilized cells is caused by the synthesis of large amounts of 
extracellular polymeric substance (EPS)  that increased the tolerance of the bacterial 
cells to the substrate (Dzionek et al. , 2018) .  In addition, the viable cell number was 
determined by plating on LB agar for overnight, at room temperature, immobilized EN 
bacterial consortium exhibited the higher cell number concentrations than the 
suspended cells (Figure 4. 23b) .  These results suggested that the immobilized cells 
could better tolerate and more degrade than freely suspend cells.   Our results were 
consistent with previous works suggested that the use of porous carriers including 
polyurethane foam (Kotresha & Vidyasagar, 2017) and loofa sponge (Y.-K. Liu, Seki, 
Tanaka, & Furusaki, 1998) showed faster degradation than free cells and the porous 
carriers immobilized cells capable of degrading high concentration of xenobiotic 
compounds. Similarly, previous work also indicated that the bacterial cells are retained 
better in the immobilization form (S. Martins, Martins, Oliveira, Fiúza, & Santaella, 2013).  

4.4.4 Reusability of immobilized EN bacterial consortium in batch test 

 After completing the test in section 4. 4. 3, 2-MBT at 300 mg L-1 was further 
added into the fresh medium solution in order to determine the reusability of the 
immobilized EN bacterial consortium. This observation could be used to estimate the 
stability of the immobilized EN bacterial consortium in the bioreactor. The immobilized 
cells showed up to 84-77% biodegradation of 2-MBT in all 4th repeated uses (Figure 
4. 24) .  Further increase in the cycle of test, decreased the rate of degradation, which 
was 14.24, 16.99, 14.80 and 11.34 mg L-1 d-1 g carrier1, respectively. Thus, the porous 
carrier immobilized cells could be reused for up to 4 cycles at the initial 2- MBT 
concentration of 300 mg L-1.  It shows that the immobilized EN bacterial consortium 
could be recycled with more than 70% of 2-MBT removal.   Additionally, the cell 
number of immobilized bacteria in the system was decreased from 1012 to 108 CFU 
mL-1 after reaching the 4th cycle (Figure 4.24). Although this attached cell concentration 
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in a porous carrier was decreased, this concentration has been reported to be able to 
degrade xenobiotic compounds (Quek et al., 2006). Thus, this experiment might extend 
the incubation time of the 4th cycles to completely biodegrade the 2-MBT for obtaining 
greater biodegradation in later cycles.  During 44 days of operation, the color of 
immobilized EN bacterial consortium was changed (Figure 4. 24) .  To confirm that the 
microorganisms in the EN bacterial consortium can support colonization, scanning 
electron microscopy (SEM) was used in this study.   
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Figure 4.24 Reusability of immobilized EN bacterial consortium in a series of repeated 
batch-experiments with 2-MBT concentrations of 300 mg L-1 ( a)  and the number of 
bacterial cells in the immobilized system (b). The cell numbers were determined from 
both attached cells in porous carrier and suspended cells. 

SEM images represented that bacterial cells completely adhered and 
attached in a porous carrier at the beginning of experiment (Figure 4.25a-d) , whereas 
the bacterial cells in the 44-day old porous carrier were reduced and damaged (Figure 
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4.25e-h). This could be due to the extent of nutrient acquisition from support materials 
and loss of catalytic activity under high 2- MBT doses.  This test used higher 
concentrations of 2-MBT than the real environmental contaminant. A longer period of 
operation and lower concentration of 2-MBT might prolong the efficiency of the 2-MBT 
biodegradation by immobilized EN bacterial consortium.  

 
Figure 4.25 Photograph of SEM image of EN cells grown in porous carrier at 0-  ( left) 
and 44-day old porous carrier after repeated batch-experiments with 2-MBT (right); 50x 
(a, b), 1,000x (c, d), 5,000x (e, f) and 10,000X (g, h). 
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 This study revealed that the EN bacterial consortium immobilized in the porous 
carriers was more effective for the degradation of 2- MBT than suspended cells. 
Although, the cell in the porous carriers could be damaged during reusability test. The 
immobilized bacterial cells had the advantage of an increase in degradation rate, 
resistant to a higher substrate concentration and its reusability.  

4.4.5 Performance of immobilized EN consortium in continuous test  
 This study investigated the performance of EN consortium in bioreactor 
containing activated sludge to simulate the wastewater treatment plant with 
bioaugmented cultures.   Laboratory bioreactors were designed to illustrate the 
bioremediation efficiency of the suspended cells and immobilized bacterial 
consortium.  The experiment was divided into two main studies following the 
methodology in Section 3.2.4.5.  

4.4.5.1 Efficiency of immobilized EN consortium in synthetic 
wastewater containing the 2-MBT  

 To determine the potential of immobilized EN bacterial consortium for 
treating the 2-MBT in wastewater, three laboratory scale bioreactors were performed: 
(1)  immobilized AS only (R1 ) , (2)  suspended EN bacterial consortium and activated 
sludge (R2) and immobilized EN bacterial consortium and activated sludge (R3). The 
bioreactors with controllable stirring speed were run continuously and fed with artificial 
wastewater which containing organic load rate (OLR) at 0.25, 0.75 and 1 kg COD.m-3. d-

1, and at HRT of 6, 4 and 4, respectively.  
 Figures 4. 26-4. 28 presents the 2-MBT and COD concentrations of the three 

bioreactors and their removal percentages at different OLR.  When the OLR was 0. 25 
kg COD.m-3.  d-1 and hydraulic retention time was 6 d, the 2-MBT concentration in R3 
(Figure 4.28) was decreased in the average of 61.3% and corresponded to 80.2 % of 
the COD removal. While the other bioreactors, R1 and R2 had low 2-MBT degradation 
efficiencies of 41.4% and 34.5%, respectively (Figures 26 and 27). This result indicated 
that reactor with immobilized EN bacterial consortium and activated sludge exhibited 
a higher performance that that with suspended cells. This might be due to high porosity 
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of carrier, thus there was no mass transfer problem and it could support 2- MBT 
degrading to mitigate from indigenous microbes in the activated sludge. Thus, this work 
indicated that the immobilized EN bacterial consortium could contribute to rapid 
startup periods.  These findings also correspond to various previous reports using 
porous carrier (Basak et al., 2019; Kurade, Waghmode, Xiong, Govindwar, & Jeon, 2019).   
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Figure 4.26 Profiles of 2-MBT (a) and COD (b) in the influent (■) and effluent (□), and 
their removal efficiencies of R1 bioreactor containing only immobilized activated 
sludge (c) during an experimental period of 16 d. 
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Figure 4.27 Profiles of 2-MBT (a) and COD (b) in the influent (■) and effluent (□), and 
their removal efficiencies of R2 bioreactor containing suspended EN bacterial 
consortium and activated sludge (c) during an experimental period of 16 d. 
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Figure 4.28 Profiles of 2-MBT (a) and COD (b) in the influent (■) and effluent (□), and 
their removal efficiencies of R3 bioreactor containing immobilized EN consortium and 
activated sludge (c) during an experimental period of 16 d. 
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 When the OLR was increased to 0.75 kg COD.m-3. d-1 (100 mg L–1 of 2-MBT), 
the average percentages of 2-MBT removal of R1 and R2 were 51.7 and 34.9% at a 7 
day-operation respectively, while the R3 had the highest 2-MBT removal of 88. 2 % 
with an average COD removal of 95.4 % (Figures 4.26 to 4.28) .  This result indicated 
that the increase in the OLR and decrease in the HRT led to the decrease in the 
degradation ability of suspended cells bioreactor ( R2) , while the degradation 
efficiencies of immobilized bacterial consortium (R3) were maintained. Consequently, 
R3 was chosen to explore at higher OLR of 1 kg COD.m-3. d-1 at HRT of 4 days.  

 Figure 4.29 depicts the R3 bioreactor and immobilized EN augmented with 
activated sludge after operating with synthetic wastewater at OLR 1 kg COD. m-3.  d-1. 
The porous carriers displayed a dark color, which caused from the activated sludge in 
the bioreactor. The degradation efficiency of immobilized bacteria and activated sludge 
in R3 also began to slightly reduce to reach 74. 13%  of 2- MBT removal.  The 
effectiveness of immobilized bacterial consortium in the presence of activated sludge 
was comparable with those of the system containing only immobilized cells (Section 
4.4.3). 

 
 
Figure 4.29 Photographs of the bioaugmentation reactor ( R3)  ( a)  which fed with 
synthetic wastewater at OLR 1 kg COD m-3 d-1 and contained activated sludge and 
immobilized EN consortium (b) after 16-day operation period.  
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 Accordingly, the immobilized EN bacterial consortium could be applied to 
improve the efficiency of activated sludge system and accelerate the removal rate of 
2- MBT in wastewater.   In further investigation, the R3 was chosen to evaluate its 
performance in real rubber wastewater with higher OLR.  

4.4.5.2 Efficiency of immobilized EN consortium in rubber processing 
wastewater from factory E 
 To successfully treat real rubber wastewater with high OLR and short HRT, 
this work evaluated the performance of bioaugmentation reactor (R3) fed with rubber 
wastewater at different organic loading rates (OLRs between 1 and 3 kg COD L-1 d-1) .  
The characteristic of the rubber processing wastewater from industry E was presented 
in Table 4.1. The effluent pH in the bioreactor ranged from 7.6-8.3 throughout the 71-
day operation. These pH values are closed to the ranges that considered ideal for the 
wastewater treatment.  

 When OLR was 1 kg COD m- 3 d- 1, this reactor exhibited high removal 
efficiencies of approximately 90% of COD and 80% 2-MBT at HRT of 3 days (Figure 
4.30). Further increase in OLR from 1.33 to 3.0 kg COD m-3 d-1 (at COD concentration 
4000-9000 mg L-1), the 2-MBT and COD removal efficiencies were ranged 70-79% and 
83-96%, respectively (Figure 4.30).  

 Throughout the 116-day operational period, the bioaugmentation reactor 
(R3) showed high performance with respect to the removal of 2-MBT and COD in the 
rubber processing wastewater.  This result was consistent with the previous work 
studied by Loh, Chung, & Ang (2000), which proposed that the effectiveness of cell 
immobilization had found for delaying the effects of substrate inhibition. The obtained 
results indicated that the immobilized cells were superior to suspended cells for 
rubber wastewater treatment.  
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Figure 4.30 Removal of the chemical oxygen demand (COD)  (a)  and 2-MBT (b)  from 
rubber wastewater at different organic loading rate (OLR)  in the R3 bioaugmentation 
reactor. 
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 The biomass concentration inside the bioreactor was determined from 
both attached cells in porous carrier and suspended cells. The 2% (w/v) filling density 
of porous carriers in the R3 reactor achieved the maximum biomass concentration at 
6.68 gvss L-1 (0.33 gvss g-1

carrier) , while initial cells in porous carriers was 2.5 gvss L-1 (0.12 
gvssg-1

carrier) (Figure 4.31). The high bacterial density in carriers might be due to their high 
hydrophilicity and macrostructure, which can provide a large surface for bacterial cells 
of activated sludge to immobilize and colonize in the carriers. Previous work has shown 
that the amount of biomass as mass of biofilm on the surface of polyurethane in 
anaerobic continuous- flow packed-bed bioreactor was approximately 0. 02 g g-1

carrier 

(Kerčmar & Pintar, 2017). They suggested that the surface architecture and pore size of 
support materials influenced the biofilm formation and metabolic activity. Similarly, a 
recent research has indicated that biofilm formation was important factor to enhance 
the bacterial cells attached in a support material like polyurethane in order to increase 
their microbial metabolic activity (Kerčmar & Pintar, 2017).  This result indicated that 
the support material had an influence on the bacterial behavior to relocate 
themselves for cell proliferation.  
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Figure 4.31 Total biomass concentration of the bioaugmentation reactor (R3) , which 
included both attached and suspended cells after 116-day of operation. 
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Figure 4.32 Photographs of the bioaugmentation reactor (R3)  ( a)  and immobilized 
porous carriers after 116-day operation (b). 

 Figure 4. 32 depicts the bioaugmentation reactor (R3)  and immobilized cells 
after 116-day operation.  The color of the immobilized cells after applying for real 
rubber wastewater treatment was different from the color of operation process with 
synthetic wastewater (Figure 4.29). The color change might be due to the physical and 
chemical properties of rubber processing wastewater and long operational period.  In 
addition, the physical observation of the immobilized bacterial cells suggested that 
the porous carriers were not clogged and damaged.  
 Therefore, the ratio of 1: 2 between immobilized bacterial consortium and 
activated sludge in porous carriers was sufficient for treatment of 2-MBT and COD in 
real rubber wastewater.  Thus, the bioaugmentation reactor with immobilized EN 
bacterial consortium was advantageous for rubber processing factory.   
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CHAPTER 5  
Conclusions and recommendations 

5.1 Conclusions 
This research successfully obtained a stable 2- MBT- degrading bacterial 

consortium by a sequential enrichment and acclimatization process when wastewater 
sludge containing benzothiazoles was used as the inoculum.  The immobilization of 
bacterial consortium in porous carriers increased the consortium’ s efficiency on 
degrading 2-MBT and COD in rubber wastewater.  

In conclusion:  

1. The medium for enrichment, acclimatization and cultivation of the efficient 
bacterial consortium was composed of minimal salts, co-nitrogen sources and 
long- term of incubation amended with a gradual of 2-MBT concentrations as 
the sole source of carbon and energy.  

2. Bacterial consortia possessed high biodegradation activities over a wide range 
of 2-MBT concentrations (50-200 mg L-1) , especially, EN consortium degraded 
up to 300 mg L-1 of 2-MBT, which had never been reported.  

3. When applied to rubber wastewater, EN consortium removed 79 % 2-MBT and 
93 % COD. Thus, the EN consortium could be an ideal inoculum for the post-
treatment of benzothiazoles in rubber industrial wastewater. 

4. The enrichment associated with long- term acclimatization had significantly 
increased bacterial adaptation to the use of higher concentration of the 2-MBT 
resulting in changes in abundances of the dominant bacterial populations and 
majority of genes. 

5. The dominant populations in the consortia were Pseudomonas, 
Stenotrophomonas and Caulobacteraceae. 
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6. Abundance of the transcripts related to the degradation of aromatic 
compounds, benzothiazoles, benzoates, phenols, sulfate, sulfite, ammonia and 
other xenobiotic compounds indicated diverse capabilities of the EN bacterial 
consortium. 

7. The expression of various outer membrane proteins in the acclimatized 
consortium was proposed as a part of the detoxification and tolerance 
mechanisms of bacterial cells.  

8. The taxonomic classification of metatranscriptomic sequence data revealed 
Pseudomonas putida as a generalist participating in the initial degradation of 
2-MBT. 

9. EN consortium as immobilized cells in a porous carrier exhibited high cell 
density and could be reused for at least 4 cycles.  

10. The bioaugmentation of the activated sludge system with immobilized EN 
consortium was able to treat rubber processing wastewater with high organic 
loading rate. 

11. Porous carrier-immobilized cells at 2% (w/v) was an optimum filling density in 
a bioreactor to achieve high microorganism retention and treatment 
performance.   

12. The biomass ratio of immobilized consortium and activated sludge at 1:2 (w/w) 
could accelerate and increase the efficiency of rubber wastewater treatment.  

13. This study is the first to reveal the potential application of an efficient bacterial 
consortium for degrading 2-MBT and other benzothiazoles in rubber industrial 
wastewater.  

14. These findings emphasized the advantages of using bacterial consortia for 
degrading recalcitrant compounds in industrial wastewater. 
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5.2 Recommendations for future work  
1. There are other co- nitrogen sources such as  KNO2, KNO3,  NaH2PO4, 

(NH4)2SO4, NH4NO3 (Feng et al., 2019; Heylen et al., 2006; Kwapisz, Wszelaka, 
Marchut-Mikolajczyk, & Bielecki, 2008) that could be supplied to replace 
the NH4Cl and the yeast extract for enrichment of recalcitrant compound -
degrading bacteria .  

2. Other selection approaches such as dilution ( Kang et al. , 2020) , toxicity 
acclimation (Ho, Chen, & Lee, 2010) and heat acclimation (Chaitanya et al., 
2016; Fang et al., 2017) could be used to increase the desired microbial 
populations and to reduce adaptation period .  

3. The medium containing sodium benzoate could be used to select the 
efficient 2-MBT degraders and reduce the period of acclimation process . 

4. To confirm the important genes in the EN consortium, qPCR could be 
employed to quantify the levels of specific genes expressing during 2 -MBT 
degradation. 

5. Since the microbial consortium is a complicated system, the active 
degraders and its activity should be confirmed by DNA- stable isotope 
probing (DNA-SIP)  and RNA- stable isotope probing (RNA-SIP)  with labeled 
substrate (Aoyagi et al., 2018; J. Li et al., 2019; Sul et al., 2009) . 

6. In the bioreactors, the performance of EN consortium could be improved 
by increasing the biomass concentration and extending the hydraulic 
retention time for the effective implementation of 2-MBT bioremediation. 

7. To apply bacterial community of the EN consortium as a bioagent product 
in the real fild, a defined bacterial consortium consisting of non -pathogenic 
bacterial species should be constructed. Briefly, the dominant populations 
should be isolated from the 2- MBT- degrading bacterial consortium and 
screened for non- pathogenic species before mixing them together .  This 
approach would allow for the application of bacterial consortium in the 
wastewater treatment plant without potential environmental and health 
risks.   
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8. The defined immoblizing EN consortium could be applied as a post-
treatment for treating residual of 2- MBT and other xenobiotic compounds 
in the treated rubber wastewater (Figure 5.1). In addition, the process could 
be extended to other benzothiazoles containing industrial wastewater . 
 

 
Figure 5.1 Application of immobilized EN cells system (Dark green) in the bioreactor 
for co-operating in wastewater treatment plant of rubber industrial wastewater 
treatment. 
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9. These immobilized cells with high mass loading rate could be applied in 
membrane bioreactor (Chaipon Juntawang, Chaiwat Rongsayamanont, & 
Eakalak Khan, 2017) in order to control biofouling of diverse microbiota in 
activated sludge (Xu, Zhao, Lee, Wang, & Xu, 2019).  

10. For long-term performance, the dynamic of bacterial diversity in the consortium 
during treatment period should be identified by 16S rRNA sequencing analysis. 

11. To reactivate the immobilized bacteria after long term treatment period, 
the washed immobilizing carriers could be incubated in benzoate 
containing medium for 48 h to promote bacterial growth and activity .  

12. To apply the defined immoblizing EN consortium in an on- site pilot scale 
study, the effects of environmental stresses such as pH, salinity and 
temperature on 2-MBT biodegradation should be investigated .  

13. The application of immoblizing EN consortium in various rubber industries  
could provide an easy access to module compartments of the reactors and 
options for membrane cleaning and replacement .  The cost-benefit study 
of this process should be carried out . 

14.  Several researchers have conducted post- treatment studies on aerobic 
down-flow hanging sponge (DHS) reactor  (Machdar, Onodera, Syutsubo, & 
Ohashi, 2018; Daisuke Tanikawa et al., 2020; D. Tanikawa et al., 2016) . 
According to the manufacturer, this porous material could be used in the 
similar reactor for enhancing water distribution and mass oxygen dissolved 
in the wastewater.  It is thus possible to apply the immobilized EN 
consortium in various types of bioreactor. 
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5.3 Benefits of the research 

The outcome from this study is useful for the development of industrial 
wastewater treatment plant containing eco- friendly immobilized bioagent.  The 
immobilized cells had been tested, verified, implemented as clean alternative, and 
cost effective bioagent for removal of benzothiazoles from contaminated wastewater 
without generating hazardous substances or toxic by-products. Therefore, the findings 
will be valuable for environmental decision-making to offer the opportunity to employ 
the treated rubber industrial wastewater for irrigation and other uses.  This approach 
would reduce the conflicts between factories and surrounding communities. 
Additionally, the acquired knowledges will be published in international journals, while 
the technical knowledges will be used for intellectual property development and 
further commercialization. 
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APPENDIX A 

MEDIA 

Table A.1 LB broth (Luria-Bertani broth) 

Component Amount (g) 

Tryptone 10.0 

Yeast extract 5.0 

Sodium Chloride 10.0 

 
All components were dissolved in 1 L of distilled water 
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APPENDIX B 

STANDARD CURVES 

 
1. Standard curve of 2-MBT 

 Standard curve was used to analyst absorbance of spectrophotometry results 
in order to calculate the concentration of 2-MBT compound. The pure 2-MBT standard 
was prepared in methanol as a stock solution.  Thus, 2-MBT at various concentrations 
was obtained by doing a serial dilution from the stock solution.  The standard curve 
was plotted between absorbance at OD320 and concentration of 2-MBT.  The graph 
was plotted as linear regression and displayed the R2 value ≈ 1.  

 
Figure B-1 2-MBT standard curve for calculation of 2-MBT concentration 
 
The calculation to determine amount of 2-MBT in sample is follow  

The amount of 2-MBT (mg L-1) = 
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

0.0239
  Eq .1 
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2. Standard curve of sulfate 
 Sulfate ( turbidimetric)  was used to determine the sulfate ion in medium and 
wastewater suspension. Barium chloride (BaCl2) was used to form barium sulfate that 
can cause the turbidity. Standard sulfate solution was prepared from Na2SO4. 147.9 mg 
of anhydrous Na2SO4 was dissolved in purified water in a 1 L of volumetric flask and 
diluted to the mark concentration by the water.  The standard curve was plotted 
between absorbance at OD420 and concentration of Na2SO4.  

 
Figure B-2 Na2SO4 standard curve for calculation of sulfate concentration 
 
The calculation to determine amount of sulfate in sample is follow  

The amount of sulfate (mg) = 
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒+0.0085

0.0004
  Eq 2 

The amount of sulfate (mg L-1)  in 1 L =  
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑙𝑓𝑎𝑡𝑒 (𝑒𝑞.2)∗1000

𝑣𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
Eq 3 
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3. Standard curve of protein 
 The research used the Bradford protein assay to measure the concentration of 
total protein in samples. The principle of this method is that molecules of protein was 
to bind with Coomassie dye under acidic conditions that presented a color change 
from brown to blue.  A graph of Bradford standard protein assay performed with BSA 
as a standard.  The concentration of BSA was plotted on the x-axis and measured OD 
at 595 nm values was plotted on the y- axis.  The equation was made by linear 
regression of the data in chart. 

 
Figure B-3 BSA standard curve for calculation of protein concentration 
 
The calculation to determine amount of sulfate in sample is follow  

The amount of protein (ug) = 
𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒−0.0171

0.1131
   Eq. 4 

 

The amount of protein (mg mL-1) = 
𝑎𝑚𝑜𝑢𝑛𝑡 (𝑒𝑞..4) ∗1000 

𝑣𝑜𝑙𝑢𝑚𝑛 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒
   Eq. 5 
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APPENDIX C 

STANDARD CURVE OF QUANTITATIVE PCR 
 

1. Fasta format of 16s gene sequence of Pseudomonas aeruginosa CDRS2 
used for a   standard curve for qPCR 

>CDRS2 
TTGCTCCTGGATTCAGCGGCGGACGGGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGA
TAACGTCCGGAAACGGGCGCTAATACCGCATACGTCCTGAGGGAGAAAGTGGGGGATCTTCGG
ACCTCACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGG
CGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACT
CCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGC
GTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGTTAAT
ACCTTGCTGTTTTGACGTTACCAACAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGT
AATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAGCA
AGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTAC
GGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGT
GGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGG
ATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTAGCCGTTGGGATCCTTGAGATCT
TAGTGGCGCAGCTAACGCGATAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCA
AATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAG
AACCTTACCTGGCCTTGACATGCTGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCA
GACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGTAACG
AGCGCAACCCTTGTCCTTAGTTACCAGCACCTCGGGTGGGCACTCTAAGGAGACTGCCGGTGAC
AAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACG
TGCTACAATGGTCGGTACAAAGGGTTGCCAAGCCGCGAGGTGGAGCTAATCCCATAAAACCGAT
CGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGTGAATC
AGAATGTCACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGG
TTGCTCCAGAAGT 
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2. Standard curve of quantitative PCR of Pseudomonas genera 

 Standard curve for the detecting of Pseudomonas spp. used the extractant DNA 
of pure strain of Pseudomonas aeruginosa.  Known amount of copies of the target 
sequence were measured by quantitative PCR and calibrated in a second assay to 
copies per ml of sample. The calculation for the number of copies DNA is follow 

Number of copies = (amount x (6.022x1023)) / (length (bp) x (1x109) x 650)  Eq 4 

 This work generates a standard curve from the pure strain template by plotting 
the Ct values against the log initial concentration of copies number as presented in 
equation 4  

 
Figure C-1 A standard curve for detecting Pseudomonas genera 
 
After obtaining the standard curve, the efficiency of amplification of the 
standard template is 90- 110%  and that the R2> 0. 9.  This standard curve 
presented the equation is follow 

 
 
 
 
 The concentration of unknown samples was calculated from the known 
concentration based on the standard curve generated from pure strain template as 
shown in Figure C-1.  

Y= -3.302*LOG(X) + 45.72  

R2 = 0.997 

Efficiency = 100.8% 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
APPENDIX D  

SUPPLYMENTARY DATA OF GC-MS PROFILES  

Table D-1 Lists of investigated compounds presented in rubber wastewater samples 

Chemical name 
RT 

(min) 
m/z 

+EI TIC MS 

Initial 
wastewater 

Treated 
sterilized 

wastewater 

Treated 
non-

sterilized 
wastewater 

2-Mercaptobenzothiazole 18.394 167 2.21E+07 259371.36 278814.84 
Benzothiazole 9.436 135 1.11E+07 759542.5 554112.81 

Benzene, 1,3-bis(1,1-
dimethylethyl)- 

9.844 175 
3.90E+06 2903556.75 5517657.5 

Methyl stearate 19.563 74 3.63E+06 513553.53 671507.5 

Hexadecanoic acid, methyl 
ester 

18.009 74 
3.60E+06 3412349 6144126.5 

Di-n-octyl phthalate 23.595 149 2.90E+06 2384732.75 2920445.25 
Pentadecane 10.178 57 2.40E+06 1999135.88 3059377.25 

14-Octadecenal 18.793 82 2.01E+06 341194.72 360537.63 

Phenol, 2,4-bis(1,1-
dimethylethyl)- 

13.293 191 
1.85E+06 1794289.88 1980590.13 

1-Octadecanol 16.731 55 1.78E+06 1601669.13 2774686.5 
Benzothiazole, 2-
(methylthio)- 

14.523 181 
1.66E+06 1053822.63 8856417 

Ethylbenzene 3.401 91 1.45E+06 1426706.88 1494671 

Undecane, 2-methyl- 6.614 43 1.42E+06 1332774 1855408.38 

1-Hexanol, 2-ethyl- 6.144 57 1.29E+06 1057044.13 1292536.13 
Acetic acid, 2-phenylethyl 
ester 

3.830 104 
1.27E+06 1177587.63 1309157.13 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table D-1 Lists of investigated compounds presented in rubber wastewater samples 
(Cont.) 

 

 
 

 

Tetradecane 11.831 57 1.20E+06 1098529.38 1590215.13 

Decane 5.568 43 1.15E+06 1186748.5 1190424.88 
Benzoic acid, methyl ester 7.326 105 1.11E+06 864764.63 868497.06 

Tetradecane 9.933 57 1.04E+06 912501.19 1406506.75 

Heptadecane 15.658 57 9.57E+05 874378.94 1265580.25 
Dodecane 8.958 57 8.74E+05 3535854.75 1075397.13 

Decane, 2-methyl- 5.817 43 7.89E+05 871117.88 926871.81 

Octadecane 16.799 57 7.60E+05 707971.69 1020500.81 
Hexadecane 14.329 57 7.55E+05 744075.94 989846.94 

Dodecane, 4,6-dimethyl- 9.643 175 7.00E+05 660341.25 802752.06 

Silane, 
cyclohexyldimethoxymethyl- 

8.386 105 
6.75E+05 619400.63 967073.75 

Decane, 4-methyl- 5.967 43 6.71E+05 700147.56 799510.69 
2-Aminobenzothiazole 14.492 150 3.38E+05 369690.63 987184.5 

2-Hydroxybenzothiazole 15.371 151 4.90E+05 414772.47 453568.53 

2(3H)-Benzothiazolethione, 
3-methyl- 16.956 181 341979.41 394132.34 871421.81 
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