Thai medical population genomics based on Brugada syndrome cohort

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biomedical Sciences (Interdisciplinary Program) Inter-Department of Biomedical Sciences GRADUATE SCHOOL Chulalongkorn University Academic Year 2022 Copyright of Chulalongkorn University การศึกษาลักษณะทางพันธุกรรมของมนุษย์ในประชากรไทยจากโครงการวิจัยบรูกาดา

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาชีวเวชศาสตร์ (สหสาขาวิชา) สหสาขาวิชาชีวเวชศาสตร์ บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2565 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Thai medical population genomics based on Brugada
	syndrome cohort
Ву	Mr. John Mauleekoonphairoj
Field of Study	Biomedical Sciences (Interdisciplinary Program)
Thesis Advisor	Professor YONG POOVORAWAN, M.D.

Accepted by the GRADUATE SCHOOL, Chulalongkorn University in Partial Fulfillment of the Requirement for the Doctor of Philosophy

DISSERTATION COMMITTEE

_____Chairman

(Sissades Tongsima, Ph.D.)

(Professor YONG POOVORAWAN, M.D.)

Examiner

(Associate Professor DUANGDAO WICHADAKUL, Ph.D.)

จุฬาลงกรณ์มหาวิทยาลัย Examiner

(Professor SUNCHAI PAYUNGPORN, Ph.D.)

..... Examiner

(Professor Apichai Khongphatthanayothin, M.D.)

จอน เมาหีกุลไพโรจน์ : การศึกษาลักษณะทางพันธุกรรมของมนุษย์ในประชากรไทยจากโครงการวิจัยบรูกาดา. (Thai medical population genomics based on Brugada syndrome cohort) อ.ที่ปรึกษาหลัก : ศ. นพ.ยง ภู่วรวรรณ

้งานวิจัยทางพันธุกรรมของมนุษย์ส่วนใหญ่ศึกษาในประชากรที่มีลักษณะทางเชื้อชาติจากทวีปยุโรป จึงส่งผลให้ข้อมูลทาง พันธกรรมในประชากรอื่นรวมถึงประชากรไทยมีจำนวลจำกัด ส่งผลให้บางครั้งไม่สามารถผลที่ได้จากงานวิจัยทางพันธศาสตร์ในประชากรยุโรป มาใช้ในประชากรอื่นเนื่องจากความหลากหลายทางพันธุกรรมที่แตกต่างกัน งานวิจัยนี้จึงศึกษาความหลากหลายทางพันธุกรรมที่พบในประชากร ไทยโดยใช้ whole genome sequences (ส่วนที่ 1) เริ่มจากความหลากหลายทางพันธุกรรมที่ส่งผลต่อการใช้ยาหรือ pharmacogenomics (ส่วนที่ 2) ความหลากหลายทางพันธุกรรมที่เกี่ยวข้องกันโรค autosomal recessive และ(ส่วนที่ 3) ความหลากหลายทางพันธุกรรมที่มี รายงานว่าเกี่ยวข้องกับความรุนแรงจากติดเชื้อ COVID-19 นอกจากนี้ (ส่วนที่ 4) ยังได้ศึกษาผลกระทบของความหลากหลายทางพันธุกรรมต่อ การเลือก reference panel ที่ใช้ในการคาดการณ์ genotype หรือimputation ในส่วนที่ 1 ผลการศึกษาพบว่าในยืน CYP3A5, CYP2C19, CYP2D6, NAT2, SLCO1B1, และ UGT1A1 มี diplotype ที่ส่งผลต่อการตอบสนองต่อยาที่ผิดปกติมากกว่า 25% ของประชากรไทย รวมถึงยัง พบ variant CYP3A5*3 (rs776746), CYP2B6*6 (rs2279343), และ NAT2 (rs1041983) มากกว่าในคนไทยเมื่อเทียบกับชาวตะวันออกและ ประชากรโลกในฐานข้อมูล GnomAD อย่างมีนัยสำคัญ การศึกษายังพบอีกว่ามี 121 variants ที่ยังไม่เคยมีรายงานแต่ผลวิเคราะห์ชั่ว่าน่าจะ ส่งผลต่อการการทำงานของโปรตีน โดย 60.3% ของ variant ในกลุ่มนี้ไม่มีรายงานในฐานข้อมูลประชากร gnomAD ใน (ส่วนที่ 2) การศึกษา ความหลากหลายทางพันธุกรรมที่เกี่ยวข้องกันโรค autosomal recessive พบว่ามี 263 variants ที่เคยรายงานว่าสามารถก่อให้เกิดโรค โดย 6 variant พบว่ามีผู้ที่เป็นพาหะมากถึง 1% ของประชากรไทย การวิเคราะห์การกระจายตัวของ variants กลุ่มนี้ในประชากรไทยโดยการทำ finescale genetic structure analysis พบว่ามีความชุกของผู้เป็นพาหะของโรคธาลัสซีเมีย โรคแกลคโทซีเมีย และ โรคหูหนวกในบางกลุ่มของ ประชากรไทยจากการศึกษา (ส่วนที่ 3) ความหลากหลายทางพันธุกรรมที่มีรายงานว่าเกี่ยวข้องกับความรุนแรงจากติดเชื้อ COVID-19 พบว่า variant ที่ chromosome 3p21.31 ซึ่งมีความสัมพันธ์สูงกับความรุนแรงของโรคและได้รับการรับรองในหลายการศึกษามีความชุกที่แตกต่าง กันในแต่ละประเทศในภูมิภาคเอเชียตะวันออกเฉียงใต้ โดยพบในชาวฟิลิปปินส์ที่ความชก 0.21 แต่พบแค่ 0.06 ในประชากรไทยและแทบไม่พบ เลยในประชากรเอเชียตะวันออกเฉียงเหนือ จากศึกษา(ส่วนที่ 4) ผลกระทบของความหลากหลายทางพันธุกรรมในชาวไทยต่อการเลือก reference panel ใน genotype imputation พบว่า reference panel ที่แตกต่างกันสงผลต่อประสิทธิภาพในการคาดการณ์ โดย TOPMed สามารถคาดการณ์ variants ได้มากที่สุด (~271 ล้าน) ในขนาดที่ GenomeAsia 100K มีความแม่นยำในการคาดการณ์ที่สุด(0.97) ถึงแม้ความ แม่นยำลดลงถึง 30.3% ในกลุ่ม rare variants แต่ GenomeAsia 100K ยังให้ความแม่นยำที่สูงกว่า reference panel อื่น ผลจากการศึกษา ทั้งหมดนี้แสดงถึงความหลากหลายและความแตกต่างทางพันธกรรมในประชากรไทยเมื่อเปรียบกับประชากรอื่นในฐานข้อมูล โดยข้อมูลที่ได้จาก การศึกษานี้สามารถนำไปใช้เป็นแนวทางการออกแบบการตรวจพันธุกรรมและการออกแบบงานวิจัยเชิงพันธุกรรมในประชากรไทย ถึงแม้ขนาด ของตัวอย่างที่ใช้ในงานวิจัยนี้จะมีจำนวลจำกัดเมื่อเทียบกับฐานข้อมูลอื่น แต่พบ variant จำนวนมากมีลักษณะเฉพาะในกลุ่มประชากรไทย แสดงให้เห็นถึงความสำคัญของการจัดตั้งฐานข้อมูลทางพันธุกรรม ของประชากรไทย **เสงกรณมหาวิทย**าลัย

CHULALONGKORN UNIVERSITY

สาขาวิชา ปีการศึกษา ชีวเวชศาสตร์ (สหสาขาวิชา) 2565 ลายมือชื่อนิสิต ลายมือชื่อ อ.ที่ปรึกษาหลัก # # 6381006320 : MAJOR BIOMEDICAL SCIENCES (INTERDISCIPLINARY PROGRAM) KEYWORD:

> John Mauleekoonphairoj : Thai medical population genomics based on Brugada syndrome cohort. Advisor: Prof. YONG POOVORAWAN, M.D.

Human genomic research has been concentrated in populations of European descent resulted in large portion of the global populations, including Thais, underrepresented. The bias in representation limited transferability of genetics findings to understudied populations and exacerbate health disparities. This study aims to examine medically relevant genetic variation in Thai population uses whole genome sequences. The study examined prevalence of pharmacogenomics variants (part I), variant associated with autosomal recessive disorder (part II) and risk alleles recently identified to associate with severe COVID-19 infection symptoms (part III). The study further examined the effect of genetic variation in Thais on reference panel selection for genotype imputation (part IV). In pharmacogenomics, over 25% of Thais carried a high-risk diplotype in CYP3A5, CYP2C19, CYP2D6, NAT2, SLCO1B1, and UGT1A1 genes. Allele frequencies of CYP3A5*3 (rs776746), CYP2B6*6 (rs2279343), and NAT2 (rs1041983) were significantly higher in Thais than East-Asian and global populations. 121 variants, which is unreported, have potential to exert clinical impact, majority were rare and population-specific, with 60.3% of variants absent from gnomAD database. In examining variants associated with autosomal recessive disorder, 263 likely pathogenic/ pathogenic variants were identified with 6 well-established pathogenic variants have carrier rate of higher than 0.01. Analysis of variant distribution based on genetics structure shows significant enrichment of pathogenic variants associated with thalassemia, galactosaemic and deafness in some subpopulation. When examined prevalence of severe COVID-19 risk alleles, the frequency of risk allele at 3p21.31 locus, which was highly correlated with disease severity and replicated in multiple studies, found to differs vastly among Southeast Asians. Allele frequencies ranging from 0.21 in the Filipino population to 0.06 in the Thai population and are extremely rare in Northeast Asians. Lastly, the choice of reference panel showed to strongly affect imputation performance. While imputation using the TOPMed panel yielded the largest number of variants (~271 million), GenomeAsia 100K achieved the best imputation accuracy with a median genotype concordance rate of 0.97. GenomeAsia 100K also offered the best accuracy for rare variants with 30.3% reduction in concordance rates. In conclusion, this study reports genetic variations in Thai that are clinically relevance in different fields of medical science. This study findings provide an essential information that have wide range of application from the design of genetic testing through to conducting genomic research. In addition to the prevalence of multiple variants in Thai found to differ from other global populations, large number of the variants identified are population-specifics. This stresses the importance of constructing Thai genetic database with larger sample size to enable a better understanding of low frequencies and rare variants in the population that often exert higher clinical impact.

 Field of Study:
 Biomedical Sciences (Interdisciplinary
 Student's Signature

 Program)
 Academic Year:
 2022
 Advisor's Signature

ACKNOWLEDGEMENTS

I would like to thank Prof. koonlawee Nademanee, Prof. Yong Poovorawan and Prof. Apichai Khongphatthanayothin for the opportunity to conduct this research and their guidance throughout the project. The committee members, Dr. Sissades Tongsima, Assoc. Prof. Duangdao Wichadakul, Prof. Sunchai Payungporn and Prof. Apichai Khongphatthanayothin, for reviewing this dissertation and their valuable recommendations. Collaborators from Amsterdam University Medical Centre, University of Amsterdam for genotype array data and Connie R. Bezzina, Sean J. Jurgens, Dominic S. Zimmerman for reviewing the manuscript and for their comments.

I would like to acknowledge Duangkamon Ittipcharoen, Boosamas Sutjaporn and Pharawee Wandee for their dedication in collecting samples from various regions throughout Thailand. Members of the Brugada consortium and the Thai Red Cross Society for their contribution in samples collection. CMKL University, PMU-C, and Center of Excellence in Medical Genomics, Chulalongkorn University for computational resources. The Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University for technical assistance in laboratory work.

Lastly, I would like to thank the National Research Council of Thailand for the support of Preventing Lai-Tai among Thais: Discovering the Genetic Causes and Treatments of Lai-Tai (Sudden Unexpected Nocturnal Death Syndrome or Brugada Syndrome), where wholes genomes sequences form the project were used in this dissertation and for the support of the Second Century Fund (C2F), Chulalongkorn University.

John Mauleekoonphairoj

TABLE OF CONTENTS

Pag	зe
ABSTRACT (THAI)iii	
ABSTRACT (ENGLISH)iv	
ACKNOWLEDGEMENTSv	
TABLE OF CONTENTS	
LIST OF TABLESix	
LIST OF FIGURES	
Introduction	
Aim and Rational	
Background and Literature Review	
Human Genetic Variation in medical diagnostic	
Pharmacogenomics	
Autosomal recessive disorder	
Genetic risks and association with severe COVID-19 among global populations 7	
Genotype Imputation9	
Whole Genome Sequencing10	
Genotype-Phenotype database11	
Interpreting pathogenic variant	
Bioinformatic tools	
The "star" nomenclature system13	
Stargazer	

High sequence homologies regions	16
Spinal Muscular Atrophy (SMA)	17
Alpha-Thalassaemia in Thailand	19
Public reference panel	22
Population Structure	23
Haplotype Sharing use Whole genome sequences	27
Part I: Genetic variation in pharmacogenomics	29
Part I.I: Phenotype prediction of pharmacogenes in Thais from whole genome sequencing	29
Part I.II: Phenotype prediction and characterization of pharmacogenes in Thais 1	from
whole genome sequencing	36
PART II: Genetic variation in autosomal recessive variants	50
PART II.I: Identification of point mutation and structural variants in SMN1 and HI	BA2
gene located in high sequence homogenous region	50
PART II.II: Determine carrier rates of autosomal recessive disorder in Thai	
population	57
Part II.III: Identification of an enrichment in autosomal recessive carrier in Thai subpopulations	67
Part III: Genetic risks and association with severe COVID-19 among global population	
Part IV: The effect of Thai genetic variation on imputation performance	82
Part IV.I: Evaluate imputation performance	82
Part IV.II: Evaluate imputation accuracy of rare variants	93
Conclusion	99
REFERENCES	. 100

Supplementary	111
VITA	148

CHULALONGKORN UNIVERSITY

LIST OF TABLES

		Page
Table 1: Significa	ant loci from Pairo-Castineira et al., 2021	8
Table 2 Distribut	tion of CYP2D6 star alleles in Thais and East-Asian population	34
Table 3 Novel po	otentially deleterious pharmacogenomics variants	44
Table 4 Loss of f	function pharmacogenomics variants	46
Table 5 Sequence	ce and structural variants in HBA2 gene detected using informat	tics
tools		55
Table 6 Well-est	tablished (P1 group) likely pathogenic/pathogenic carrier variant	s that
were detected m	nore than once in the Thai cohort	62
Table 7 Variant o	carrier rate of carrier variants separated by population subgroup	os74
Table 8 Number	r of imputed genotypes when varying their confidence Minimac	-R2
levels		86

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

LIST OF FIGURES

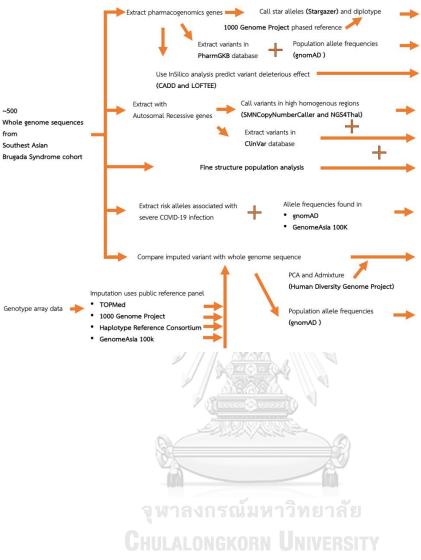
Page	9
Figure 1 Variation in allele frequencies of actional single nucleotide polymorphisms	
in 19 global populations5	
Figure 2: Distribution of CYP2C19*2 across different countries in Europe	
Figure 3 Gene carrier rates of the top ten genes for each ancestry	
Figure 4: Genome-wide association study of severe Covid-19 with respiratory failure.8	
Figure 5 Process of imputation	
Figure 6 A CYP2D6 assay design	
Figure 7 Stargazer workflow	
Figure 8 Diagram showing sequence read potentially inaccurately map to different	
part of the genome	
Figure 9 Contribution of SMN1 and SMN2 gene to SMA	
Figure 10 Diagram show common alpha-globin deletion	
Figure 11 Workflow of NGS4Thal21	
Figure 12 UMAP projection of the first 10 principal components form BioMe	
participants	
Figure 13 Population structure analysis of UK samples26	
Figure 14 Evaluating ChromoPainter against PBWT-paint	
Figure 15 Allele frequencies of star alleles relative to alleles found within this study	
cohort and predicted phenotypes of 24 CPIC evidence level A pharmacogenes called	
using Stargazer (version 1.0.8)	
Figure 16 Allele frequencies of star alleles with structural variation relative to CYP2D6	
alleles found within this study cohort and predicted phenotypes called using	
Stargazer (version 1.0.8)	

Figure 17. Distribution of variants found within 25 pharmacogenes
Figure 18: Allele frequencies of 39 high-evidence PGx variants in Thai (THA)
compared to East-Asian (EAS) and global population (GLB) in gnomAD database 42
Figure 19 Samples SMN1 gene copy number against SMN2 gene copy number54
Figure 20: Gene Carrier rate of 25 autosomal recessive genes
Figure 21: Thai population genetic structure based on PBWT-painting algorithm72
Figure 22 Geographical distribution by provinces of 4 Northeast clusters (4-NE, 5-NE, 6-NE and 7-NE-N) based on sample's place of birth
Figure 23 Analysis of the different frequencies of risk alleles known to be associated with the susceptibility and severity of COVID- 19 in different populations
Figure 24 Density plot of genotypes obtaining Minimac R^2 between 0.2 and 1.0 after
imputed using GAsP, 1KGP, TOPMed or HRC reference panel
Figure 25 Imputation accuracy measured by genotype concordance rate (GCR) using
GenomeAsia (GAsP), 1000 Genomes (1KGP), TOPMed and HRC reference panels88
Figure 26 Admixture analysis
Figure 27 Imputation accuracy of Thai cohort at varying the R ² cut-offs at 0.2, 0.4, 0.6
or 0.8
Figure 28 Imputation accuracy of chromosomes 21
Figure 29 The effect of imputation accuracy based on allele frequencies

Introduction

Aim and Rational

Sequencing human genome had advanced our understanding of human genetics and mechanisms of diseases that led to development of novel diagnostic tools and treatments. The technological advancement and cost reduction of next generation sequencing technology exponentially increase the availability of whole genome sequences (WGS). This led to construction of numerous WGS databases that enable the study of human genetic variation. The availability of WGS at a population level later become a valuable resource in medical research with wide range of applications including facilitate the interpretation of variant identified in rare mendelian disease patients, identifying of novel disease-causing variants or genes, use in studying the prevalence of clinically relevant variants and act as reference panel in genotype imputation.


Human genomic research, however, had been previously concentrated in populations of European descent resulted in large portion of the global populations underrepresented. Such bias in representation limited transferability of genetics findings to understudied populations and further exacerbate health disparities. Southeast Asians, including Thai, are often underrepresented in public databases. Despite a global effort to increase representation of diverse population, most East Asian populations currently represented are those of Northeast Asian ancestry. This limited the knowledge on the circulating genetic variation in Thai, including population specific variants.

This study is separated into four parts. The study aims to examine genetic variation in Thai population through WGSs and it effect on different area of medical science. For the first three parts, the study examine genetic variations in Thai population that influences medical diagnostic in different fields including predicting the effect of drug absorption, distribution, metabolism, and excretion based on pharmacogenomics variants (part I), detection of autosomal recessive carrier (part II), and genetic risk factors associated with severe symptom from COVID-19 infection (part III). The study further evaluate use of currently available reference panel in an imputation, method that are currently widely use in genomic research, of Thai and how genetic variation in Thais effect performance of these panels (part IV).

Different tool and resources were used to comprehensively analyse genetic variation of the Thai population. Information on genotype-phenotype association were extracted from multiple databases for interpretation of genetic variation identified. Different bioinformatic tools were also be used for different purposes from identify multiple variants on the same genomic strain to reanalysis of sequence reads in regions or types of variants that are not accessible using the short read WGS technology traditional pipeline. The study also leverage genetic data from multiple publicly available population databases to represent diverse global populations and to address similarities and differences of variation found in different populations. The study also employ multiple techniques used in examining population structure to study variation within Thai population and the effect it has on disease prevalence and genomic research.

Chulalongkorn University

Conceptual framework

PART I

I.I: Phenotype prediction of pharmacogenes in Thais I.II: Identify known pharmacogenomics variants and

examine allele frequencies

I.II: Compare allele frequencies with other global populations. I.II: Identify potential novel deleterious variants

PART II

II.I: Identify point mutation and structural variants in SMN1 and HBA2 gene

II.II: Determine carrier rates of autosomal recessive disorder

II.III: Identification of an enrichment in autosomal recessive

carrier PART III

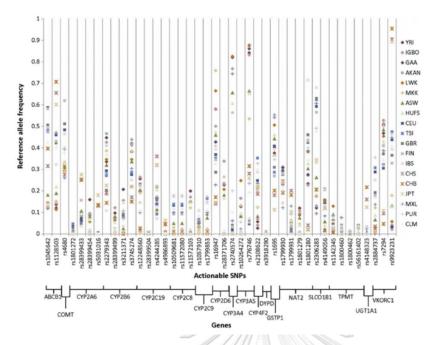
III: Identify frequencies of genetic risks allele associated with severe COVID-19 among global populations

PART IV

IV.I: Evaluate imputation performance uses different public reference panel in Thai population and effect of population structure on imputation accuracy.

IV.II: Evaluate imputation accuracy of rare variants

Background and Literature Review Human Genetic Variation in medical diagnostic


Understand a population genetic variation plays an important role in development of diagnostic tools and in human genomic research. Until now over 1.6 million genotype-phenotype submissions have been submitted into ClinVar. Knowing the prevalence of genetic variants within the population allow us to efficiently design diagnostic tools that identify individuals at risk. Different area uses genetic to identify individual at risk include predicting the effect of drug absorption, distribution, metabolism, and excretion based on pharmacogenomics variants and detection of autosomal recessive carrier.

Genome wide association study had been conducted on more than 3000 traits (3). Genetic variation can limit transferability of identified disease risk from one population to another. Moreover, the performance of genotype imputation, which has become a crucial step in conducting Genome wide association study, depends heavily on genetic variation between reference panel and the study population.

Pharmacogenomics

งหาลงกรณ์มหาวิทยาลัย

Pharmacogenomics study the effect of genetic variants on drug absorption, distribution, metabolism, and excretion. Studies have shown differences in prevalence of variants found in pharmacogenes between ethnicities and more recently closely related populations. The differences in prevalence of single nucleotide polymorphisms between ethnicities has long been established and commonly used in guidelines. A study examined allele frequencies of single nucleotide polymorphisms use in prediction of drug response and toxicity in 19 global populations found huge variation between populations (Figure 1)(4). Further study show evidence that these variations can be found down to countries when distribution of *CYP2C19* and *CYP2D6* alleles were examined in Europe(Figure 2)(5).

Figure 1 Variation in allele frequencies of actional single nucleotide polymorphisms in 19 global populations.

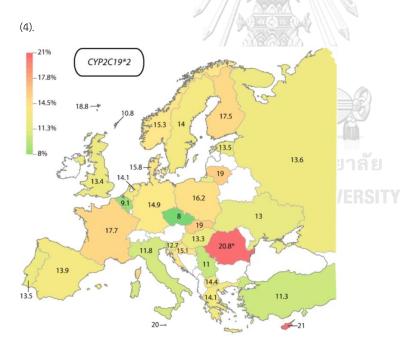
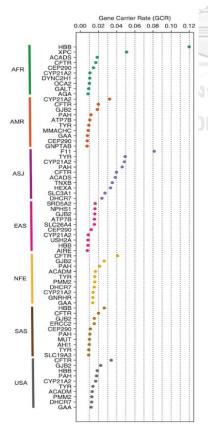
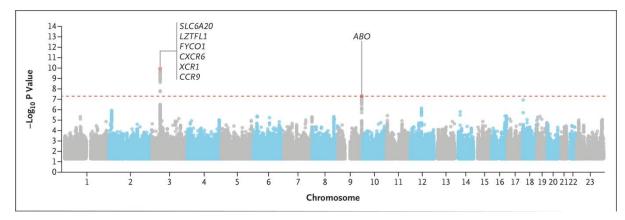


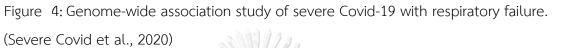
Figure 2: Distribution of CYP2C19*2 across different countries in Europe. (5).

Autosomal recessive disorder

Currently there are over 2,800 know genes in Clinical Genomic Database linked to autosomal recessive disorder with estimate of over 5000 autosomal recessive genes has been proposed(6, 7). Autosomal recessive disorder was estimated to effect 1.4 in 1,000 neonates and could increase to 10-20 per 1000 individuals in geographical region where carrier variant has an evolutionary advantage, such as malaria endemic regions (8). The landscape of AR variants had demonstrated to be highly population specific. A study examined carrier rate in 415 autosomal recessive genes across six major ancestries found a huge variation in gene carrier rate among different ancestries (Figure 3)(1). Within European populations, less than 20% of carrier variants was found to shared between the Dutch and Estonian cohort(9). These findings suggest screening for a carrier using panel that designed for a specific population may better capture autosomal recessive carrier than a universal carrier screening panel. The knowledge of population carrier frequencies of autosomal recessive variants would provide a crucial information in the selection of genes for screening.




Figure 3 Gene carrier rates of the top ten genes for each ancestry.


AFR African/African American, AMR Hispanic, ASJ Ashkenazi Jewish, EAS East Asian, NFE non-Finnish European, SAS South Asian, USA composite US (1).

Genetic risks and association with severe COVID-19 among global populations

The worldwide pandemic caused by the novel coronavirus infection (COVID-19) has continued unabated as multiple factors have influenced its transmission, morbidity, and mortality. Infected older adults and those with preexisting health conditions are at risk of increased disease severity. Progression to acute respiratory failure accompanies prolonged hospitalization and poor prognosis. Recent genome-wide association studies identified multiple host genetic factors associated with disease susceptibility and severity (10-12).

Chromosomal locus 3p21.31 was highly correlated with disease severity in hospitalized Italian and Spanish COVID-19 patients (rs11385942; 95% confidence interval (Cl), $p = 1.15\times10-10$)(figure 4)(10), which was confirmed in the United Kingdom (rs13078854; 95% Cl, $p = 1.6\times10-18$)(11) and in a multi-ethnic study (rs73064425; 95% Cl, $p = 4.77\times10-30$)(12). This gene-rich locus includes SLC6A20 (encoding sodium-imino acid transporter 1, which interacts with COVID-19 ACE2 receptor) and multiple chemokine receptors (CCR9, CXCR6, CCR1, and CCR2). The frequency of the risk allele at rs657152 located on 9q34.2 (linked to ABO blood group locus) found to be associated with European patients with respiratory failure (rs657152; 95% Cl, $p = 4.95\times10-8$)(10). In addition, another study found the same locus to be associated with COVID-19-infected individuals when compared to those uninfected at lower p-value (95% Cl, $p = 5.3\times10-20$)(11). Interestingly, three loci (rs11385942, rs74956615 and rs2109069) encode inflammatory response genes (CCR2, TYK2, and DPP9) and are hypothesized to influence COVID-19 severity through hyper-inflammatory response and subsequent organ injury (table 1)(11).

SNP	Chr.: pos.	Risk	Alt.	RAF _{gcc}	RAFukb	OR	CI	P _{gcc.ukb}	P _{gcc.gs}	P _{gcc.100k}	Locus
rs73064425	3: 45,901,089	Т	С	0.15	0.07	2.1	1.88-	4.8×10^{-30}	2.9×10^{-27}	3.6×10^{-32}	LZTFL1
				////		4	2.45				
rs2109069	19: 4,719,443	А	G	0.38	0.32	1.4	1.25-	4×10^{-12}	4.5×10^{-7}	2.4×10^{-8}	DPP9
			6	[]]].	ARAR		1.48				
rs74956615	19: 10,427,721	А	Т	0.079	0.05	1.6	1.35-	2.3 × 10 ⁻⁸	2.2×10^{-13}	3.9×10^{-6}	TYK2
							1.87				
rs2236757	21: 34,624,917	А	G	0.34	0.28	1.3	1.17-	5×10^{-8}	8.9×10^{-5}	8.3×10^{-7}	IFNAR2
				Ð		22	1.41				

Table 1: Significant loci from Pairo-Castineira et al., 2021.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Genotype Imputation

Variant imputation has become a mainstay in contemporary genome-wide association studies (GWAS), as the increased exploration and testing of unobserved genotypes improves statistical power(13). Imputation uses haplotype information from a reference panel to infer genetic variation not typed, or typed inaccurately, by genotyping arrays, thereby correcting some genotyping errors and vastly enhancing genome coverage (figure 5). The performance of imputation therefore relies heavily on the specific reference panel used.

Previous studies have demonstrated strong variations in imputation performance when common reference panels were applied to different populations(14, 15). For example, imputation using HRC offered better accuracy among European populations than among the Han-Chinese population(15).

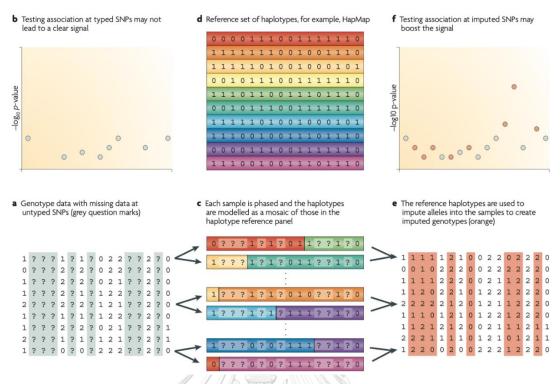


Figure 5 Process of imputation.

Many SNPs are not sequence in genotype array data and were not examined in association study(a and b). In an imputation, array data were phased (c) and match against haplotype reference data(d) to infer untyped genotype (e) allowing association to be tested in untyped genotypes(Das et al., 2018).

Whole Genome Sequencing

Chulalongkorn University

The advancement and cost reduction of whole genome sequencing (WGS) technology allow analysis of human genome at population level. The ability to simultaneously capture clinically significant variants in multiple genes gave WGS advantages over other technology. In addition, WGS can identify different types of variants including single point mutation, small insertion or deletion and large structural variations. Furthermore, reanalysis of the WGS data can be conduct when a novel disease associated gene is discovered. These reasons make WGS to be a very desirable method in examining population genetic variations.

Genotype-Phenotype database

Number of databases containing information on association between genotype and phenotype has been developed. These databases provide better understanding of genetic variation observed. Some databases are carefully constructed and reviewed by panel of experts, while some act as a data-sharing platform that is open for submission from wider communities.

In the field of pharmacogenomics, The Clinical Pharmacogenomics Implementation Consortium (CPIC) and the Pharmacogenomics Knowledge Base (PharmGKB) are initiatives which gathered evidence-based, peer-reviewed research and treatment recommendations of pharmacogenes(16, 17). This was done to encourage implementation of pharmacogenomics through efficient extraction and translation of genetic information into clinical action.

In detection of Autosomal recessive carrier, a Return of Results Committee had proposed a recommendation of 728 gene-condition pair for genetic testing of autosomal recessive carriers (Himes et al., 2017). These genes were reviewed by a committee comprise of experts in the field of genetics and public health includes medical geneticist, genetic counselors, molecular laboratory directors and PhD geneticists, a perinatologist, a medical ethicist, and a genetic epidemiologist. Genes were selected based on available evidence including clinical characteristics, associated mortality, and genotype-phenotype correlation(18).

Database such as ClinVar on the other hand is a data sharing database containing information on variant genotype-phenotype association submitted from various medical laboratories. ClinVar database is one of the most widely use database in examining variants' genotype-phenotype association with currently contain over 1.6 million submissions(19). However, high number of variant submissions in ClinVar has conflicting interpretation of variant pathogenicity(20). As interpretating of variant pathogenicity were made from different source and time, conflicting interpretation of

variant pathogenicity often arise due to inconsistency between each laboratory classification system, evidence available at the time of interpretation, and bias toward overestimating variant pathogenicity(21).

Interpreting pathogenic variant

The American College of Medical Genetics and the Association of Molecular Pathology proposed a standard and guideline to standardised classification of variant pathogenicity and encounter the inconsistency of laboratories classification system (22). The standard and guideline involve a scoring system that will categorise variants into 5 categories; pathogenic, likely pathogenic, uncertain significant, likely benign and benign, based on 28 criteria. These criteria are evidence supporting variant pathogenicity including the effect of variant demonstrated in a functional study, segregation analysis, population allele frequency and in silico analysis etc. The guideline is widely adopted among the clinical and molecular laboratories.

As interpreting variant required gathering large amount of data from different sources and the use of various tools, bioinformatic tool, InterVar, had been developed to facilitate variant interpretation (23). The tool involves variant annotation uses annotation tool such as ANNOVAR to classify the variant location and predict the affect variant has on the amino acid sequence, prediction variant deleterious effect uses in silico method that account for evolutionary constrain, position within the protein sequence and changes in biochemical properties and gathered information on previously reported clinical significance and functional study on the variant(24).

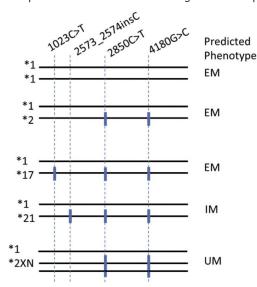
Variant misclassification is a known issue in data-sharing databases that could potentially lead reporting of false positive or false negative genetic result. When evaluate frequency of reported variant against expected disease prevalence, it was found that 11.5% of the pathogenic variant examined observed higher frequency when compared to the disease prevalence and up to 92.3% in variant with conflicting interpretation (25). As misclassification often arise from submitters' inconsistent classification system or limited evidence at the time of interpretation, ClinVar attempted to reduce variant misclassification through CLNREVSTAT. CLNREVSTAT is ClinVar's initiative to improve variant interpretation by leveraging information such as reported clinical significance, number of submitters and evaluating evidence provided by submitters, such as the implementation of the ACMG guideline. By incorporating information on variant submission Shah et al. demonstrated reduction in disease risk inflation which suggest reduction in variant misclassification.

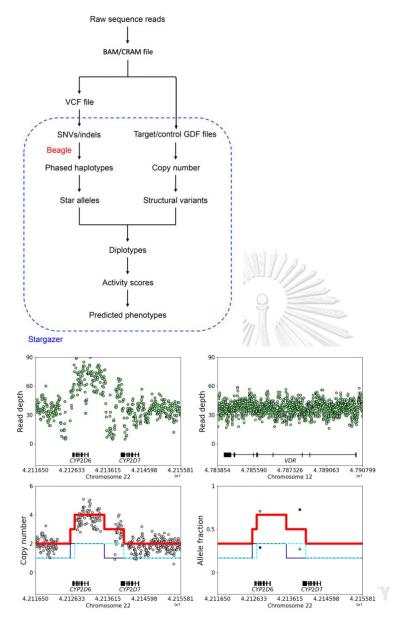
Bioinformatic tools

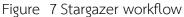
The "star" nomenclature system

The "star" nomenclature is a system to describe allelic variation and haplotypes of pharmacogenes. It is commonly use in treatment guidelines as it can provide accurate phenotype prediction. Application of "star" nomenclature system involved identification of star alleles, diplotypes and sometime complex structural variation (SV). Assigning star alleles could involve identification of multiple variants on the same haplotype.

Accurately assign alleles has been a challenge as tests designed by different laboratory examined different combination of variants. These differences can result in incorrect allele assignments, hence phenotype prediction (figure 6). For example in Figure 11, if a *CYP2D6* assay were designed to only detect variation at two points, c.2850C>T and c.4180G>C, the assay would not be able to distinguish *2 from *17, *21 or *2XN with duplication. This could later effect the predicted phenotype as *2 and *17 extensive metabolizer, *21 is an intermediate metabolizer and *2XN is an ultrarapid metabolizer. This create disparities in star allele reported for the same sample and further discourage the adaptation of PGx testing (26).

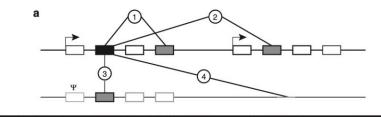



Figure 6 A CYP2D6 assay design. If assay was designed to only detects c.2850C>T and c.4180G>C could miss other star allele with different predicted phenotypes. EM, extensive metabolizer; IM, intermediate metabolizer; UM, ultrarapid metabolizer.


Stargazer

Whole genome sequencing has advantages over other platforms as it identifies all variants required for accurate allele assignment and novel clinically relevant PGx variants, which may account for unexplained differences in drug response. As alleles assignment required identifying large number of variants and detection of SV, bioinformatics tool was developed in facilitate calling of star alleles from next-generation sequencing data(27).

Stargazer perform multiple steps in identification of star alleles and diplotypes (figure 7 left). First, Stargazer identify all variants required for calling of star alleles. Secondly, phasing is performed on genotype data, uses 1000 genome project phased genotype as a reference. The phased genotype data enable identification of variants on the same strain, hence, determine the sample diplotypes. If structural variations are known to effect the phenotype, read depth will be examine in order to call structural variants (figure 7 right).


Workflow in calling diplotypes and predict phenotype (left). Illustration of calling complex structural variant using Stargazer (right). Read depth in the gene of interest were examined and standardized uses a control gene.

High sequence homologies regions

Some technical difficulties may arise when using WGS short read technology to identify pathogenic variants located in genomic regions with extensive sequence homologies(28). For example, sequence may inaccurately map to a to the non-functional pseudogene with high sequence homology resulting in reporting of false-positive or false negative result (Figure 8)(29).

Sequences produced by short read WGS are generally 150 bp. In genomic regions with repeated sequences or high sequences homology, short sequences read may have difficulties finding a unique match on the reference genome. This in turn result in variant within extensive sequence homologies regions having lower coverage or mis-mapped sequences. The mis-mapped sequence often led to variant calling that are low in confidence and produced low mapping quality score. These variants with low quality score might be excluded from further analysis during the quality control process. If not carefully assessed, this could lead reporting of false positive or negative results. *SMN1* and *HBA2* genes associated Spinal Muscular Atrophy (SMA) and a-thalassemia, respectively, are two of the commonly screen autosomal recessive disorder genes located in extensive sequence homologies region.

จุฬาลงกรณมหาวิทยาลัย

~	Homology type	%Match	Query region	Query coordinates	Target region	Target coordinates	psiDR pseudogene
1	Same gene	99.52%	TTN exon 194	chr2:179518479-179518689	TTN exon 176	chr2:179527000-179527210	-
(2)	Different gene	98.33%	MYH6 exon 33	chr14:23853586-23853991	MYH7 exon 34	chr14:23884199-23884502	-
3	Pseudogene	99.59%	STRC exon 17	chr15:43899996-43900238	-	chr15:43999470-43999712	ENST00000509801.1
(4)	Non-CDS	99.55%	OTOA exon 21	chr16:21742093-21742316	-	chr16:22558219-22558442	-
4							

Figure 8 Diagram showing sequence read potentially inaccurately map to different part of the genome.

(29)

Spinal Muscular Atrophy (SMA)

Carrier frequency of SMA has been reported to be around 1 in 40 to 80 individuals depending on ancestral group(30, 31). An examination of SMA carrier rate used quantitative PCR-based and MLPA in Thailand reported to be 1.78% when examined(32). In most cases, SMA cause by homozygous deletion of SMN1 gene that lead to loss of alpha motor neurons and result in presentation of muscle atrophy or severe muscle weakness in SMA patients (2, 33, 34).

Identification of SMA carrier include detection of *SMN1* gene copy number. Due to ancestral gene duplication, *SMN1* has a paralogous gene, *SMN2*, that has high sequences similarity and are almost indistinguishable from one another (2, 35). However, one major difference between these two genes is a variant NM_000344.3: c.840C>T found only on *SMN2* gene. The c.840C>T variant disrupt *SMN2* gene splice enhancer and lead to skipping of exon 7. The absence in exon 7 in majority (~90%) of *SMN2* protein causes *SMN2* protein to be unstable and not fully function (Figure 9).

CHULALONGKORN UNIVERSITY

When sequenced with WGS short read technology, the high sequences similarity between 2 genes makes sequences within this region difficult to accurately mapped and make it difficult to detect SMN1 gene copy number. Previous study used short read next-generation sequencing technology as a carrier testing would require additional laboratory work(36). In recent years, supplementary informatic tools targeting the region had demonstrated to improve the identification of sequences and structural variants(37). The SMNCopyNumberCaller target ~30 kb region that cover SMN1 and SMN2 gene. SMNCopyNumberCaller differentiate SMN2 from SMN1 gene by account for 16 bases unique to SMN2, including the variant c.840C>T and its surrounding intronic variants(37).

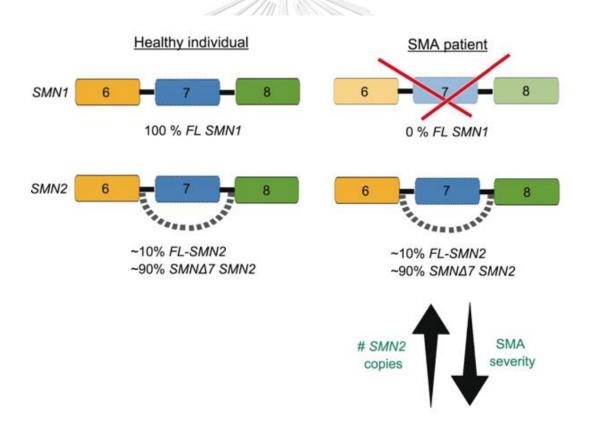
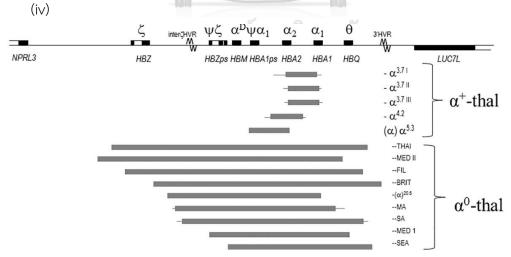


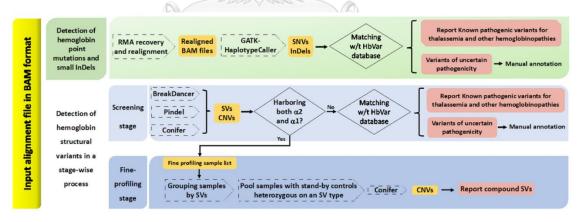
Figure 9 Contribution of SMN1 and SMN2 gene to SMA.

SMA patient loss full length (FL) SMN1 gene while majority (~90%) of SMN2 gene produce a not fully function protein due to the loss of exon 7. SMN2 gene produce some (~10%) functional protein, while not sufficient for survival, it correlates with disease severity (2).

Alpha thalassaemia is a disorder cause by deflect in haemoglobin production due to genetic variation that resulted in an absence or dysfunction in at least one of the four copies of the alpha globin genes(38). Alpha globin genes cluster is located on chromosome 16 (16p13.3). It contains three functional globin genes HBZ, HBA1 and HBA2, the embryonic haemoglobin gene and two foetal/adult haemoglobin gene(38). Over 121 disease causing alpha-globin variants have been identified in HbVar(http://globin.bx.psu.edu). These variants can be separated into three types:

- (i) deletions that resulted in the loss of both a-globin genes in cis (a^0 -thalassaemia) including --SEA and --THAI (Figure 10)
- (ii) deletions that resulted in the loss of one of the a-globin gene (a⁺- thalassaemia) this include the commonly found 3.7 and 4.2 kb deletion (- $a^{3.7}$ and $-a^{4.2}$) (Figure 10)
- (iii) non-deletional, such as point mutations or small insertion/deletion
 (indels) that interrupt the gene function. For instance, Hb Constant Spring
 or Hb Pakse that disrupt the stop codon and causes elongation of the
 alpha globin chain.




Figure 10 Diagram show common alpha-globin deletion.


Grey bar represent length of the deletion and it relative position on the genome(39).

Currently wide range of techniques are available for haemoglobin variant detection(40). The choice of diagnostic tool required the knowledge of population variant spectrum as variant endemic in each population can be different. Without prior knowledge of population variant frequency, technique uses must be able to detect any point mutation or large deletion in the alpha globin genes. Current gold standard involves the use of sanger sequencing in detecting point mutation and multiples ligation probe for detection of large deletions(40). However, performing both techniques could be labour intensive and require specialized equipment. WGS have benefit over other molecular techniques as it has potential to detect both point mutation and large structural variation simultaneously.

Alpha globin gene clusters is a gene-dense genomic region that is GC-rich and high Alu-repeat. The high homologous sequence within this region causes whole genome short-read sequences to ambiguously mapped to multiple position within the region. This led to the reduction of number of variants confidently called and the ability to detect point mutation. Furthermore, it effects the ability to detect structural variation as this required accurate read depth estimation.

NGS4Thal is a bioinformatics analysis pipeline that designed to detect pathogenic thalassemia variants from next generation sequencing data (Figure 11)(41). By specifically target the alpha-globin cluster and realign poorly mapped sequences, NGS4Thal had demonstrated to improve detection of alpha thalassemia variants. NGS4Thal identify reads with multiple alignment used bwa-based mapping quality score. NGS4Thal kept reads with high mapping quality score, remove read with mapping quality score equal to zero as it likely to map with other position outside of the region and realign read with low mapping score and has less than three base pair mismatches. Using this strategy, NGS4Thal demonstrated to improve the sensitivity of detecting pathogenic variants. The realigned bam files were then use as a template to detect structural variation. Because different structural variation detection tools are specialized at detecting different type of structural variants, NGS4Thal complementarily uses 3 different structural variation callers, including BreakDancer(42), Pindel (43) and CoNIFER (44), to improve detection of diverse type of structural variants.

NGS4Thal involves realign read with multiple alignment (RMA) and identify single nucleotide variant (SNV) and small insertion and deletion (InDel) under GATK pipeline. NGS4Thal also identify structural variant (SV) and copy number variation (CNV) using multiple SV callers.

Public reference panel

A wide range of public reference panels exists with varying sizes, sequencing coverages, and represented populations(13). These public reference panels include the 1000 Genomes Project phase 3 (1000G), the Haplotype Reference Consortium (HRC), the GenomeAsia 100K project (GenomeAsia), and the Trans-Omics for Precision Medicine (TOPMed) program.

1000G comprises 2,504 ancestrally diverse individuals from 26 global populations (45, 46). HRC covers 32,488 human genomes by combining WGS data from over 20 different studies including 1000G. WGS data from HRC have sequencing coverage of 4x to 8x and are predominantly of European descent (47). GenomeAsia was constructed to address the underrepresentation of Asian populations in the preceding reference panels. GenomeAsia contains WGS data on 1,739 individuals from over 219 populations across Asia, with high depth coverage (~36x)(48). In their most recent release, TOPMed contains WGS of 97,256 individuals publicly available for imputation. TOPMed's WGS data are high-depth coverage (~38x) including individuals from diverse ancestral backgrounds (49).

Population Structure

Studying population carrier frequencies based on self-reported population labels or ethnicity had demonstrated to be unreliable (50, 51). For example, when compared self-reported ancestry written in the requisition form with self-reported ancestry during consultation, the study found that there are inconsistencies between the two sources (50). These inconsistences depend on ancestral group with only 30.3% of individual who self-identified as having Mediterranean ancestry show concordance result between the two sources. Moreover, inconsistency was also found between self-reported ethnicity and genetic ancestry examined used genotype data. Up to 27.5% who of study population self-reported as Southeast Asian has genetic ancestry that are closer to South Asian ancestry rather than East Asian as expected (50). These discordances could arise from multiple reasons such as uncertainty in family origin or self-identification with a particular group due to personal or cultural reason. Furthermore, another study had shown that when examined genetic population structure used PCA method, the first 10 principal component shows number of clusters did not overlap with the reference panel (Figure 12) (51). This suggest that the population structure within a population can be complex and currently available population labels may not provide full description of all subpopulations.

CHULALONGKORN UNIVERSITY

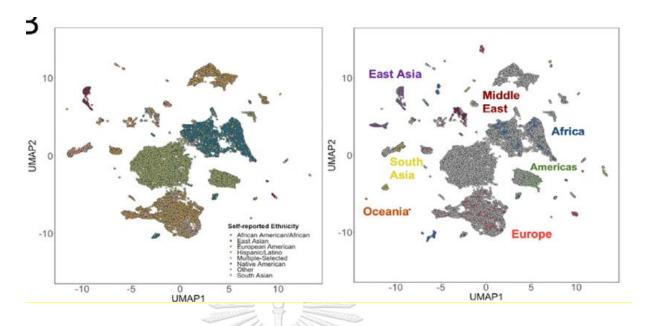


Figure 12 UMAP projection of the first 10 principal components form BioMe participants.

(left) samples were coloured according to self-reported ethnicity. (right) samples form BioMe participants were coloured in gray and reference samples from 87 global populations coloured by their continental region of origin(51).

Human genetic variation at a population level can provide insight into human evolutionary, migration and historical events. One of the widely use method in uncovering population structure is Principal Component Analysis, which uses dimensionality reduction method(52). PCA create a matrix quantifying genetic similarity between each pair of individuals within the cohort and observe grouping of individuals that are genetically close with each other through clustering form after visualisation of principle component. Because PCA projection identifies directions of maximal variance in the data and ignores variation in other directions, finer-scale patterns within population were often obscure and the subtle genomic structure were missed. Lawson et al. proposed fineSTRUCTURE, a method which took advantages of variants relative position within the genome instead of analysing each variant individually (53). Through haplotype phasing authors were able to exploit linkage disequilibrium pattern. These linkage disequilibrium patterns were then use in an identification of shared haplotype or genomic segments that reflect individual identical descent. Multiple studies demonstrated that when using fineSTRUCTURE to examine genetic population structure, shared haplotype method was able to reveal structure at a much finer resolution when compared to a single-marker PCA method (54, 55). Shared haplotype method was able to uncover subpopulations that sometime can be differentiate down to provinces (54). The identification of haplotype shared between individual captured shared identity that reflect a much more recent past when compare SNP sharing and enable identification of structure that are more recent and subtle. When applied to 2039 samples from the People of the British Isles collection, fineSTRUCTURE was able to differentiate population up to 53 clusters that correspond with the country geography (55). Clusters identified by fineSTRUCTURE was indistinguishable when uses PCA or admixture (Figure 13).

Chulalongkorn University

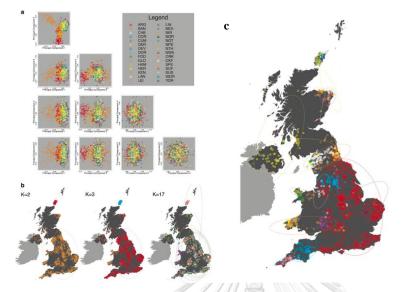


Figure 13 Population structure analysis of UK samples.

a) UK population structure was examined used Principle component analysis. The plot shows a pair of first 5 principle component. b) UK population structure was examined used program ADMIXTURE. The map shows when value of K in ADMIXTURE is set at 2, 3, and 17. Each dot represent individual within the cohort. Dot was plotted according to their grandparent's birthplace and were coloured according to cluster assigned by ADMIXTURE. C) UK population structure was examined used program fineSTRUCTURE(55).

CHULALONGKORN UNIVERSITY

Haplotype Sharing use Whole genome sequences

The haplotype sharing method (ChromoPainter/fineSTRUCTURE) had illustrated to identified fine-scale genetic substructure from genome-wide single nucleotide polymorphism array data in multiple studies (54, 56-58). Lawson et al. showed that performance of ChromoPainter/fineSTRUCTURE improved when applied to genotype data with a more densely packed markers as these markers provided LD pattern at a higher resolution.

WGS deliver a more complete picture of the genomic sequence when compared to genotype array. The more complete genomic sequences could have potential to identify a more accurate size of shared haplotype or identify variants that are private to that population subgroup, which could be missed when used a pre-designed genotype array. This can produce a more accurate clustering and improve resolution of the population from countries to regions within countries.

The high-density WGSs however are exceptionally large. Computational cost of running ChromoPainter depends on the number of individuals within the cohort and the number of SNPs. As ChromoPainter were designed based on genotype array data, running on the high density WGS can be very computational extensive.

Positional Burrows-Wheeler transform (PBWT) is a data compression algorithm that were designed to store haplotypes data (59). PBWT is an extension of the Burrows-Wheeler Transform (BWT), the widely use algorithm for matching read and sequence assembly. PWBT compress haplotypes data and allow efficient search and matching of haplotypes. The efficiency of PBWT reduces processing time and enable work on a much larger data set. A recent study demonstrated that using PBWT-paint, a scalable haplotype sharing algorithm based on the positional Burrows-Wheeler transform, was able to capture genetic structure similar to ChromoPainter (Figure 14)(54). PBWT-paint would allow detection of shared haplotypes in high-density WGS data.

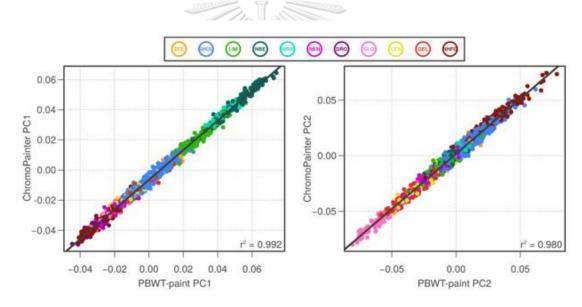


Figure 14 Evaluating ChromoPainter against PBWT-paint.

Principal components (PC) obtained from using ChromoPainter were evaluated against PC obtained from using PBWT-paint.

Part I: Genetic variation in pharmacogenomics

Part I.I: Phenotype prediction of pharmacogenes in Thais from whole genome sequencing

The "star" nomenclature system, commonly use in treatment guidelines, involved identification of alleles, diplotypes and complex structural variation (SV) for accurate phenotype prediction. Whole genome sequencing (WGS) has advantages over other platforms as it identifies all variants required for accurate allele assignment and novel clinically relevant PGx variants, which may account for unexplained differences in drug response. As alleles assignment required identifying large number of variants and detection of SV, bioinformatics tool was developed in facilitate calling of star alleles from next-generation sequencing data4.

Research Questions:

What is the prevalence of star alleles, diplotypes and predicted phenotype of high evidence pharmacogenes in Thai population?

Research Objectives:

To use Stargazer assign star allele and diplotype, which involve identifying multiple variants on the same haplotypes and calling complex structural variation, of 25 high evidence pharmacogenes for accurate phenotype prediction,

To determine prevalence of star alleles in Thai population and predict phenotype of these pharmacogenes.

Expected benefits and application:

The study will demonstrate the utilization of WGS in Pharmacogenomics testing, including accurate phenotype prediction using the "star" nomenclature system. Variations of pharmacogenes in Thai population will facilitate Pharmacogenomics-guided clinical decision making in Thailand for further application of precision public health including dosing guidelines, drug development, clinical trials, and development of population-specific screening.

Methods

All variants within the region specified in Stargazer (version 1.0.8) for 25 pharmacogenes, including CACNA1S, CFTR, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP4F2, DPYD, G6PD, GSTM1, GSTP1, IFNL3, NAT1, NAT2, NUDT15, RYR1, SLCO1B1, TPMT, UGT1A1, UGT1A4, UGT2B15, and VKORC1, will be extracted from genome Variant Call Format (gVCF) files using BCFtools (version 1.10.2). Variants will be excluded if they were with locus GQX < 30, with site genotype conflicted with proximal indel call, with locus in the region with conflicting indel calls, and with unbalanced phasing pattern. VCF files of all samples will be merged to generate a single VCF file. Non-variants will be excluded from the final VCF file.

Multidimensional scaling analysis was performed on single nucleotide polymorphism, excluding indels, within 25 pharmacogenes using Plink (version 1.9). Multidimensional scaling plot will be examine if there are separation between cases and control.

Star allele analysis

Stargazer require a VCF file on genome coordinate GRCh37 and a gdf file for SV detection. Genome coordinates, reference, and alternative allele on the VCF file will be converted from GRCh38 to GRCh37 using LiftoverVariants tools available in GATK package (version 4.1.6.0) and VCF file will be use as an input for Stargazer.

To generate the gdf file for SV detection of CYP2D6, first, Bazam (version 1.0.1) will be used to extract CYP2D6-CYP2D7 region from BAM file and realigned on GRCh37 coordinates. Samtools (version 1.9) will be used to extract read depth. Sdf2gdf script, available on Stargazer, was used to generate the gdf files. The haplotype, activity score, diplotype, and predicted phenotype called by Stargazer with VDR as a control gene. Results were combined and visualized using R program (version 3.6.3, dplyr and ggplot2 package).

Result Star allele analysis

Over 25% of Thais carried high-risk diplotypes in 5 pharmacogenes including CYP3A5, CYP2C19, NAT2, SLCO1B1, and UGT1A1 (Figure 15). CYP3A5*3, loss-of-function allele, was found in heterozygous intermediate metabolizing (IM) diplotype, CYP3A5*1/*3 (48.5%), and homozygous poor metabolizing (PM) diplotypes, CYP3A5*3/*3 (35.1%). CYP2C19 loss-of-function *2 and *3 alleles contributed to the prevalence of IM diplotype, CYP2C19*1/*2 (36%) and *1/*3 (3%), and PM diplotype, CYP2C19*2/*2 (10%) and *3/*3 (1%). CYP2C19 gain-of-function *17 allele was found in rapid metabolizing diplotype, CYP2C19*1/*17 (2.41%). NAT2 slow acetylator *5, *6, and *7 alleles were found in IM diplotypes, NAT2*6/*7 (5.5%), *6/*6 (5.2%), and *5/*6 (3.1%). SLCO1B1*1B/*17, *1B/*15, and *1/*17, which are the most prevalent diplotypes that carried decreased function *5, *15, and *17 alleles, were observed at 3.95%, 3.26%, and 1.72%, respectively. UGT1A1*60/*60, *6/*60, and *28/*60 were among the most prevalent diplotypes at 10.3%, 6.29%, and 5.14%, respectively.

On the other hand, high-risk diplotype frequencies were < 3% in 10 pharmacogenes, which were DYPD, CYP2C8, CACNA1S, RYR1, CFTR, NUDT15, CYP2C9, GTSM1, G6DP, and TPMT (Figure 15). Additionally, the functional effect of over 25% of detected alleles in GSTP1, NAT1, UGT2B15, and VKORC1 was currently unknown (Figure 15).

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

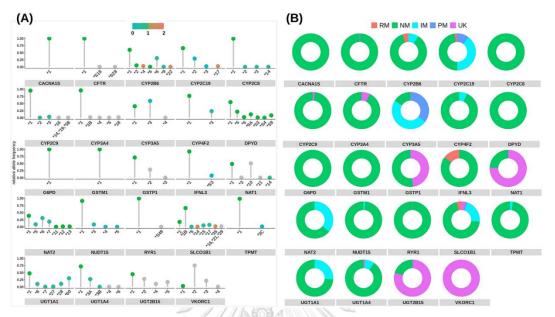


Figure 15 Allele frequencies of star alleles relative to alleles found within this study cohort and predicted phenotypes of 24 CPIC evidence level A pharmacogenes called using Stargazer (version 1.0.8).

(A) Colors on dots represent activity score ranging from blue (no function) to green (normal function) to red (increased function) and grey (unknown function). (B) Predicted phenotypes are presented as rapid metabolizer (RM) or unfavorable response for IFNL3, normal metabolizer (NM) or favorable response for IFNL3, intermediate metabolizer (IM), poor metabolizer (PM), and unknown function (UK).

Twenty different star alleles of CYP2D6 were observed. Among these, 5 were $(CYP2D6*1 \times 2,$ CYP2D6*2 \times 2, CYP2D6*10 × 2, duplication CYP2D6*34 \times 2, CYP2D6*71 × 2), 1 was deletion (CYP2D6*5), and 6 were rearrangement (CYP2D6*S1 + *1, *4N + *4, *36 + *10, *36 × 3 + *10, *68 + *4, *83 + *2), which accounted for 1.9%, 4.5%, and 34.7% of star alleles found, respectively. CYP2D6*36 + *10 and *10 alleles were the most prevalent of CYP2D6 decreased CYP2D6*1/*36 + *10, *36 + *10/*36 + *10, function alleles in this cohort. *10/*36 + *10, and *1/*10 were among the highest diplotypes found at 14.5%, 12.1%, 11.4%, and 9.31%, respectively (Figure 16).

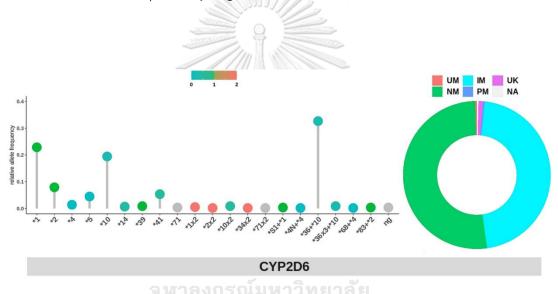


Figure 16 Allele frequencies of star alleles with structural variation relative to CYP2D6 alleles found within this study cohort and predicted phenotypes called using Stargazer (version 1.0.8).

(A) Colors on dots in star alleles plot represent activity score range from blue (no function) to green (normal function) to red (increased function) and grey (unknown function). Uncalled sample is denoted as ng. (B) Predicted phenotypes are presented as ultra-rapid metabolizer (UM), normal metabolizer (NM), intermediate metabolizer (IM), poor metabolizer (PM), unknown function (UK), and not applicable (NA).

Star alleles of frequencies of CYP2D6 called through Stargazer algorithm, were within the range of the previously published East-Asian allele frequencies (Table 2)(60).

Alleles	This study	Suwannasri <i>et</i>	Chamnanphon	Gaedigk e	t al., 2017 ²¹
		<i>al.</i> , 2011 ³²	et al., 2013 ³³	East-Asiar	i (n =
		(n = 288)	(n = 57)	14,816)	
				Average	Range
*1	22.93	22.91	35	35.24	17.5-93.79
*2	7.93	9.7	9.6	13.11	7.65-42.71
*4	1.38	0.7	0.9	0.59	0-4.35
*5	4.48	4.3	4.4	5.17	0-9.6
*10	19.48	44.6	45.6	42.58	8.6-64.1
*14	0.69	1.04	0.9	0.77	0-3
*36	-	16.4	0.9	1.52	0-16.4
*39	0.86	-	-	0.24	0-1.18
*41	5.34	///b=4	1.8	2.18	0-6.54
*71	0.34	-	-	0.52	0-1.5
*1x2	0.52		0	0.27	0-0.51
*2x2	0.17	-	0	0.38	0-0.99
*10x2	0.86	() [courted-) [000000]	0	0.4	0-1
*71x2	0.17	-	0	0.03	0-0.2
Other	0.17	0.35	- 0	1.39	0-6
duplication			10	0 < 11	22.45
*36+*10	32.76	-	-	26.41	22.45- 32.65
*36x3+*10	0.86 9 W 18	างกรณมหาว		1.02	32.03 1.02-1.02
Other rearrangements	1.03	-	-	5.51	5.51-5.51
rearrangements					

Table 2 Distribution of CYP2D6 star alleles in Thais and East-Asian population.

Discussion

This study report the prevalence of star alleles, diplotypes, and phenotype predictions of 25 clinically relevant pharmacogenes, including CYP2D6 SV, from WGS in the Thai population. The "star" nomenclature system used in this study is a powerful tool for predicting activity or function of enzymes, transporters, or drug targets, as it accounts for a combination effect of multiple variants within an allele(61). We found high clinical relevance cytochrome P450 genes (CYP3A5, CYP2C19, and CYP2D6) exhibiting high variation in predicted phenotype. This could reflect the low evolutionary constraint within these enzymes, as they lack essential endogenous function(62). SV, between CYP2D6 and its pseudogenes (CYP2D7, CYP2D8) established to alter enzymatic activity, found to exerted high importance in the Thai population17. It accounted for 60% of CYP2D6 star alleles detected and 83.8% of all high-risk diplotypes in this study. Interestingly, prevalence of CYP2D6 SV was also previously reported to be highest among Asians when compared to African Americans, Caucasians, and Hispanics17. Our finding emphasizes the importance of detecting CYP2D6 SV for accurate phenotype prediction especially in Thai population.

CHULALONGKORN UNIVERSITY

Part I.II: Phenotype prediction and characterization of pharmacogenes in Thais from whole genome sequencing

Current PGx resources and recommendations are based largely on a population of European descent. Studies have shown differences in pharmacogenes between ethnicities or even in closely related populations (4, 5, 63, 64). As race or ethnicity are often use in guideline for genetic screening recommendation (65). The genetic differences between Thai and other East Asian population in many of pharmacogenes remain uncertain. Furthermore, as Thai population are often underrepresented in genomic studies, there could be pharmacogenetic variants that are population specific to Thai (66).

Research Questions:

What is the allele frequency of well-studied PGx variants in Thai population and are prevalence of these variant different from East Asians and other population? Are there potential novel deleterious pharmacogenomic variants in the Thai population.

Research Objectives:

To identify known pharmacogenomics variants and examine allele frequencies found in Thai population.

To compare allele frequencies found in Thais with other global population.

To identify potential novel deleterious variants in the Thai population

Expected benefits and application:

The study will determine similarities or differences in allele frequencies of pharmacogenomics variants between Thai and East Asian. This knowledge will help determine if following guideline recommended for East Asian would be suitable.

Methods

Analysis of variants within pharmacogenes

The VCF file will be annotated with gnomAD allele frequencies of the global population using Ensemble Variant Effect Predictor (version 98.3). Annotated variants will be classified into common (MAF \geq 0.05), low frequency (0.05 > MAF \geq 0.01), rare (MAF < 0.01), or absent (MAF = 0). Variants within each group will be counted using VCFtools (version 0.1.15).

Number of missense variants per coding sequence was calculated by:

Number of missense variants/Ensembl transcript length

, where Ensembl transcript length will be obtained from BioMart database (https://www.Ensembl.org/biomart/martview/) and for transcript with APPRIS annotation value as "primary assembly".

Analysis of known pharmacogenomic variants

PGx variants will be retrieved from PharmGKB database (https://www.pharmgkb.org, accessed on 06/06/2020). Variants with evidence level 1A, 1B, and 2A will be identified as known PGx variants.

Allele frequencies of these variant will be compared with those of the population in gnomAD using Chi-square test or Fisher's exact test. A p-value of < 0.001 was used as a significant level after Bonferroni correction.

Identification of potential novel deleterious variants

Variants will be extracted to examine novel potentially deleterious variants. Variants reported in PharmGKB database or used in star allele analysis will be excluded.

CADD PHRED-normalized scores will be downloaded online. CADD PHREDnormalized scores \geq 20, or 1% most deleterious single nucleotide variants within the reference genome, will be considered potentially deleterious variants.

Loss-of-function variants include stop-gained, splice-site disrupting, frameshift insertion, and frameshift deletion variants. LOFTEE algorithm available in VEP-plugin will be used to determine loss-of-function variants, and variants annotated as "high confidence" were considered loss-of-function in this study.

Result and discussion Variant analysis of 25 pharmacogenes

A total of 18,825 variants were detected within 25 pharmacogenes of 291 individuals. Of 18,825 variants, 12,026 (63.8%) were rare, while 5766 (30.6%) variants were absent from the gnomAD database. An enrichment of rare variants was found within variants that impact protein function. For example, all of in-frame insertion, deletion and stop gained variants found were rare on gnomAD database in compare to 60.5% of synonymous variants and 63.5% of intron variants found were rare (figure 17). IFNL3, UGT1A4, and CYP2D6 reported the highest number of missense variants per coding sequence, while GSTM1, where null genotype link to development of cancers4, was the most conserved (figure 17 B).

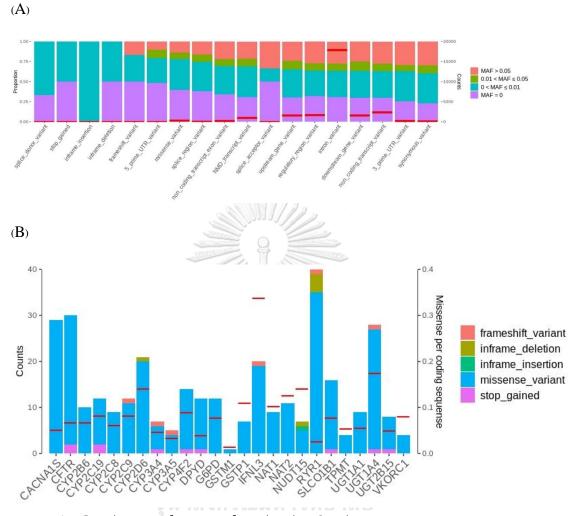


Figure 17. Distribution of variants found within 25 pharmacogenes. (A) Proportion of variants grouped by allele frequency relative to gnomAD database and number of variants found within each type of variant show in red dash (-). (B) Counts of variant that impact protein function within each gene and missense variant per coding sequence per gene show in red dash (-).

Known PGx variants

The prevalence of 39 high-evidence PGx variants found in Thais compared to East-Asian and global population in gnomAD database were shown in Figure 18. Of these, 19 high-evidence PGx variants were commonly found in Thais, with allele frequency of over 0.1. Fifteen variants were associated with increased risk of toxicity or adverse drug reactions are underlined in Fig. 18 (67). Six variants were associated with increased risk of toxicity were commonly found in Thais, including rs1041983 (NAT2), rs1799930 (NAT2), rs4244285 (CYP2C19), rs1695 (GSTP1), rs4149056 (SLCO1B1), and rs11045879 (SLCO1B1). Fifty-one percent of Thais were carriers of T allele in rs1041983 (NAT2 c.282C>T), which is associated with increased risk of liver toxicity upon treatment of anti-tuberculosis drugs (68, 69). Among the highest evidence level variants (1A), 49% of Thais carried A allele in rs4244285 (CYP2C19c.681G>A), which is associated with an increased risk for secondary cardiovascular events upon clopidogrel usage, and 24% of Thais carried C allele in rs4149056 (SLCO1B1 c.521T>C), which is associated with an increased risk of simvastatin-induced myopathy (70, 71). In comparison to other populations, 26 and 10 variants were significantly different from the global and East-Asian population, respectively (Figure 18). The rs776746 (CYP3A5), rs1041983 (NAT2), and rs2279343 (CYP2B6) were more frequent in Thais than both populations. Multiple variants within VKORC1 in this cohort exhibited a significant degree of deviation from both populations.

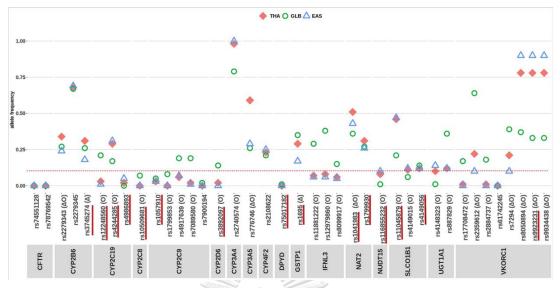


Figure 18: Allele frequencies of 39 high-evidence PGx variants in Thai (THA) compared to East-Asian (EAS) and global population (GLB) in gnomAD database. Variants associated with toxicity are underlined in red. Variants with significant p-value (p < 0.001) when comparing Thai allele frequency with gnomAD database, are denoted as (O), and when comparing Thai allele frequency with East-Asian population in gnomAD database, are denoted as (Δ).

Variability in drug response among ethnicities had long been observed, but a recent increase in the number of populations studied unveiled another layer of genetic variability within the sub-population, such as distribution gradient of CYP2C19*17 found from Western to Eastern Europe(72). In Thais, CYP3A5*3 (rs776746), CYP2B6*6 (rs2279343), and NAT2 (rs1041983) were significantly higher compared with East-Asian and global populations. Varying allele frequency of multiple VKORC1 variants to different populations found in this study supported the previously reported variation of rs9923231 among the East-Asian population where allele frequency of 0.96, 0.94, and 0.90 was observed in North-East Asians (Japanese, South Koreans, and Chinese) in comparison to 0.62, 0.69, 0.75 observed in South-East Asians (Filipinos, Malaysians, and Indonesians) (73).

Potentially deleterious PGx variants

Of 305 missense variants found in this cohort, 41 variants were previously reported to associate with drug response in PharmGKB database. Novel potentially deleterious missense variants found in Thais were reported in the Table 3.

One hundred and ten missense variants were considered novel, potentially deleterious, while 5 variants obtained Combined Annotation Dependent Depletion (CADD) PHRED-normalized scores of > 30 (Table 3). Seventy-eight percent (n = 86) of novel potentially deleterious missense variants were only found once in this cohort. Ninety-four percent (n = 103) were rare in gnomAD database, while 61% (n = 67) were absent. Thirty percent (n = 33) had not been reported in dbSNP 150 database. Sixty-two percent of Thais carry up to 4 novel potentially deleterious missense variants.

Table 3 Novel potentially deleterious pharmacogenomics variants.

Ref/Alt: Reference/Alternative nucleotide; **Ref_AA:** Reference Amino Acid; **Alt_AA:** Alternative Amino Acid; **CADD score:** Combined Annotation Dependent Depletion PHRED-normalized scores.

Position (GRCh38)	dbSNP150	Ref/Alt	Allele Count	Gene	Ref_AA	Alt_AA	CADD score
chr1:201062468		T/C	1	CACNA1S	E	G	33
chr7:117614633	rs1005269197	G/A	1	CFTR	G	S	32
chr1:201078026	rs780841536	T/C	1	CACNA1S	Y	С	31
chr19:38452983		T/G	1	RYR1	L	R	31
chr1:201048591	rs745558537	T/G	1	CACNA1S	Κ	Q	30
chr19:38516212	rs878984852	G/A	SIN DA	RYR1	R	Q	29.8
chr22:42127527	rs769351604	G/A	1	CYP2D6	R	С	29.2
chr7:117592595	rs377447726	A/G	01	CFTR	R	G	28.7
chr1:201083251		T/G	2	CACNA1S	Y	S	28.5
chr1:201078005	rs150590855	C/A	17 3	CACNA1S	R	L	28.5
chr1:201052633	rs555016254	C/T	1	CACNA1S	А	Т	28
chr1:201061410		G/A	/1	CACNA1S	R	С	27.4
chr1:97305348	rs570122671	G/A	1	DPYD	Т	Ι	27.3
chr6:18133821	rs777803269	T/G		TPMT	D	А	27.2
chr7:117504290	rs1800073	C/T	1	CFTR	R	С	27.1
chr7:117504306		A/C	2	CFTR	D	А	26.9
chr1:201047168	rs3850625	G/A	19	CACNA1S	R	С	26.8
chr1:201060666	rs145039828	C/T	1	CACNA1S	G	S	26.6
chr19:38536011		A/G	1	RYR1	Ν	S	26.6
chr7:117587821		T/C	a tables	CFTR	Ι	Т	26.6
chr1:201065924	rs571902899	C/T	1	CACNA1S	V	М	26.5
chr1:201077922	rs557195329	C/T	NA Mer	CACNA1S	V	М	26.4
chr16:31094573	rs781304132	G/T	1	VKORC1	R	S	26.2
chr11:67584499	rs755557033	C/G	1	GSTP1	Q	E	26
chr19:15879844	rs372871763	C/T	1	CYP4F2	R	Q	26
chr19:38444648		T/C	1	RYR1	М	Т	26
chr19:38512443		C/G	1	RYR1	F	L	25.9
chr2:233772309	rs114982090	C/T	5	UGT1A8	Р	L	25.9
chr1:201043401		A/G	1	CACNA1S	F	S	25.7
chr1:201083173	rs143202536	G/T	1	CACNA1S	Т	Ν	25.7
chr12:21224811	rs377350683	T/C	1	SLCO1B1	С	R	25.7
chr19:38502914		C/G	1	RYR1	R	G	25.7
chr19:39243685	rs77379751	G/A	31	IFNL3	R	С	25.6
chr19:38519384	rs201339536	G/A	2	RYR1	Е	Κ	25.6
chr1:201089374	rs186538122	G/A	1	CACNA1S	R	W	25.5
chr19:38519282	rs775895899	G/A	1	RYR1	G	R	25.5
chr19:38499811	rs575780192	C/T	1	RYR1	R	W	25.4
chr19:15892373	rs754089074	G/A	2	CYP4F2	А	V	25.3
chr1:201070353		G/A	1	CACNA1S	Р	L	25
chr1:201040054	rs12139527	A/G	68	CACNA1S	L	S	24.9
chr13:48041009	rs773719265	C/A	1	NUDT15	S	Y	24.9
chrX:154535348	rs886044847	A/G	1	G6PD	F	S	24.8
chr6:18147901	rs752440908	T/C	1	TPMT	Н	R	24.6
chr7:117540282	rs1800086	C/G	1	CFTR	Т	S	24.6
chr12:21178618		T/A	1	SLCO1B1	F	Y	24.5
chr19:38565511		G/A	2	RYR1	G	S	24.5
chr1:201047143		C/T	1	CACNA1S	R	Q	24.4
chr1:201110216	rs12406479	G/C	1	CACNA1S	А	G	24.4

chr19:15886018	rs145174239	G/C	1	CYP4F2	L	V	24.3
chr1:201076930	rs142356235	C/T	1	CACNA1S	S	Ν	24.2
chr19:38502628	rs754579512	T/G	1	RYR1	V	G	24.2
chr19:38448375	rs368711923	G/A	1	RYR1	R	Н	24.1
chr8:18222050		G/A	1	NAT1	М	Ι	24.1
chr19:38505076	rs566495420	G/A	3	RYR1	D	Ν	24
chr7:117592588	rs1800103	A/G	1	CFTR	Ι	М	24
chr8:18222649	rs768813958	A/T	3	NAT1	D	V	24
chr11:67584472	rs774305853	G/A	1	GSTP1	А	Т	23.8
chr7:117535318	rs121909046	A/G	2	CFTR	Е	G	23.8
chr8:18400392		A/C	1	NAT2	Q	Р	23.8
chr19:41006980		G/T	1	CYP2B6	R	L	23.7
chr19:41012471	rs201500445	T/C	3	CYP2B6	Y	Н	23.7
chr19:38565443		G/A	1	RYR1	G	D	23.7
chr4:68663024		G/T	1	UGT2B15	А	D	23.7
chr7:117530977		T/C	1	CFTR	S	Р	23.7
chr19:39243850	rs139076671	G/A	1	IFNL3	Н	Y	23.6
chr8:18222271		T/C	1///	NAT1	L	Р	23.6
chr7:117531043	rs145900055	C/T	1	CFTR	Р	S	23.5
chr1:201089385	rs35534614	C/T	10 3	CACNA1S	G	D	23.4
chr19:15878779	rs3093200	G/T	3	CYP4F2	L	М	23.4
chr19:38469044	rs780626994	С/Т	//	RYR1	L	F	23.4
chr4:68668066	rs192628779	A/G	5	UGT2B15	С	R	23.4
chr1:201051079		G/A	131	CACNA1S	Р	S	23.3
chr19:39244019	rs149832972	G/A	1	IFNL3	L	F	23.3
chr19:38504293		С/Т///	Mar 2	RYR1	Т	Ι	23.3
chr4:68654253	rs187815441	T/C	1	UGT2B15	Н	R	23.3
chr7:117592287		C/G/ //)1()	CFTR	S	С	23.3
chr7:117627561		C/T	2	CFTR	Р	S	23.3
chr10:94781959	rs764137538	C/T	1	CYP2C19	R	W	23.2
chr7:117559577		T/G	1	CFTR	Ι	М	23.2
chr19:39244114	rs145428712	G/A	11.7.7.8	IFNL3	Т	М	23.1
chr19:38570667		A/G	1	RYR1	Ι	V	23.1
chr19:38485972	rs192863857	C/T	4	RYR1	Р	S	23.1
chr10:94775447	rs150152656	C/T	1	CYP2C19	Т	М	22.9
chr2:233772416	rs371183955	C/T	4	UGT1A9	Н	Y	22.9
chr10:94947843		T/G	1	CYP2C9	Ι	М	22.8
chr2:233718944	rs553189135	C/A	ърми	UGT1A4	L	Ι	22.8
chr4:68670516	rs529876617	G/T	1	UGT2B15	Н	Ν	22.8
chr8:18400653	rs568110818	T/A	KURN	NAT2	F	Y	22.8
chr1:201083231	rs572977674	C/T	1	CACNA1S	V	Ι	22.7
chr11:67586206	rs4986949	G/T	3	GSTP1	D	Y	22.6
chr1:97193101	rs766833304	G/C	1	DPYD	Р	А	22.3
chr19:38492540	rs35364374	G/T	10	RYR1	G	С	22.3
chr19:41004380	rs535039125	C/T	1	CYP2B6	R	W	22.2
chr19:38485976	rs199837883	C/T	2	RYR1	Р	L	22.2
chr1:201110258	rs549107212	G/A	1	CACNA1S	Т	М	22
chr12:21200625	rs752196141	T/C	1	SLCO1B1	V	А	22
chr13:48041096		T/C	1	NUDT15	V	А	22
chr19:38578027	rs373919284	C/T	1	RYR1	Р	L	22
chr19:38527689	rs538497899	C/T	3	RYR1	R	W	22
chr1:201089392	rs190152688	T/C	2	CACNA1S	Ι	V	21.8
chr19:15892398	rs556151888	G/A	1	CYP4F2	R	С	21.8
chr8:18222637	rs1044890902	G/A	1	NAT1	R	Q	21.8
chr19:38527707	rs55876273	G/C	3	RYR1	Е	Q	21.5
chr10:95064936	rs750028311	A/G	1	CYP2C8	Ι	Т	21.4
chrX:154532206		A/G	1	G6PD	Ι	Т	21.1
chr11:67584478	rs12796085	C/G	1	GSTP1	L	V	21
chr19:38565544		G/C	1	RYR1	D	Н	20.8

chr7:117594979	rs562851847	A/G	1	CFTR	Ν	S	20.5
chr7:99660591		T/C	1	CYP3A5	S	G	20.5
chr8:18400082	rs765487420	A/C	1	NAT2	Ι	L	20.4

Eleven high-confidence loss-of-function variants were found in 9 pharmacogenes (Table 4), 8 variants were only found once in this cohort, 2 variants were rare (minor allele frequency [MAF] < 0.01), and 1 variant was found at low frequency (0.01 < MAF < 0.05). According to the gnomAD database, all loss-of-function variants were rare and 6 variants were absent. An enrichment of splice acceptor variant rs373134805 (CYP3A5) was found within the South East-Asian population in GenomeAsia 100 k database(73).

Table 4 Loss of function pharmacogenomics variants.

Ref/Alt: Reference/Alternative nucleotide;**MAF:** Minor Allele Frequency.

Position (GRCh38)	Ref/Al t	dbSNP150	GENE	Annotation	MAF in Thai	MAF gnomAE Globa l	in EAS	MAF in Genome NEA	
chr7:996666690	C/G	rs37313480 5	CYP3A5	splice_acceptor_varian t	0.017	3.18E- 05	0	0	0.022
chr10:9484288 9	C/A	rs37032093 6	CYP2C19	stop_gained	5.15E -03	0	0	0	1.45E -03
chr12:2122484 0	G/A	rs20099448 2	SLCO1B 1	splice_donor_variant	3.45E -03	1.60E- 04	3.22E -03	0	1.45E -03
chr7:11761170 8	G/A		CFTR	stop_gained	1.75E -03	0	0	0	0
chr7:99666950	A/G	rs55965422	CYP3A5	splice_donor_variant	1.72E -03	4.46E- 04	8.99E -03	5.70E -03	1.45E -03
chr10:9494197 8	AG/A		CYP2C9	frameshift_variant	1.72E -03	0	0	0	0
chr1:97828127	G/A	rs18976857 6	DPYD	stop_gained	1.72E -03	3.19E- 05	6.41E -04	1.42E -03	0
chr7:11755946 3	G/A	rs39750820 0	CFTR	splice_acceptor_varian t	1.72E -03	0	0	0	0
chr7:11759229 2	C/T	rs12190876 0	CFTR	stop_gained	1.72E -03	0	0	0	0
chr19:1589750 1	C/T	rs75202240 9	CYP4F2	stop_gained	1.72E -03	3.19E- 05	6.42E -04	0	0
chr19:3924390 8	C/T	rs54666611 4	IFNL3	splice_acceptor_varian t	1.72E -03	0	0	0	0

46

We identified 110 novel potentially deleterious missense variants and 11 highconfidence loss-of-function variants circulating within the population. Novel potentially deleterious variants were population specific with 94.2% identified were rare in gnomAD database, and 60.3% were absent. This reflect previous finding that high impact variants are often rare and geographically localized as a result of purifying selection (74). For example, potentially deleterious splice acceptor variant c.433-1G>C in CYP3A5 found at a low frequency in Thai (0.017) is population-specific South East-Asian populations including Vietnamese (0.018), Malaysian (0.039), and Indonesian (0.015), while extremely rare in the gnomAD database (73). These variations within subpopulations of East-Asians demonstrate the benefit of PGx testing and highlight the precaution that must be taken when associating PGx with ethnicity labels.

A focus on rare variants in explaining inter-individual variation in drug response is likely to increase as the cost of sequencing is reduced, making WGS more readily available. An important challenge remains in interpreting these rare variants of unknown significant. Repository SPHINX (Sequence, Phenotype, and pHarmacogenomics INtegration eXchange https://emergesphinx.org), that link PGx variants of unknown significance with patients clinical phenotypes would facilitate researchers on studying these variants of unknown significant for future PGx discovery (75).

Limitations

We acknowledge several limitations and ways the study could be improved. A portion of enrolled participants was Brugada syndrome patients. Although none of the genes associated with Brugada syndrome were examined, results could be enhanced with unknown genetic factors influencing the disease. Previous study reported an inconsistent in star alleles calling in samples with complex SV when three bioinformatics tools were compared, this suggest that further confirmation, such as using high-resolution long-read sequencing that allows accurate variant calling and phasing, might be required in some samples with CYP2D6 complex SV (76) . Computational prediction tools like Loss-of-Function Transcript Effect Estimator (LOFTEE) and Combinded Annotation Dependent Depletion (CADD) used in this study and other studies are useful in prioritizing deleterious effects in variants of unknown significance; however, variants must be reported with caution and validated through a functional study before implementation in clinical settings (77, 78).

Summary

In conclusion, we reported a comprehensive overview of the PGx spectrum in a Thai population and its differences with East-Asian populations. We demonstrated the utilization of WGS in PGx testing, including accurate phenotype prediction using the "star" nomenclature system, SV detection, and identification of known and unknown potentially deleterious PGx variants.

The WGS ability to access PGx variants and SV in a single methodology reduced time and labor involved. This study demonstrates WGS to be a highly efficient platform in research and PGx testing. The current high cost and bioinfomatics required to process and translate large data could limit WGS application as a PGx testing platform in routine clinical setting. Development of bioinformatics tools use in translating genotype data are moving toward a more automated manner, such as under developing PharmCAT (79). This would make interpreting WGS data more userfriendly and accessible to wider healthcare provider in the near future. In the meantime, an alternative more cost effective platform such as genotyping arrays could currently be a more applicable (80).

ู่หาลงกรณ์มหาวิทยาลัย

The reported findings and variations within pharmacogenes of the Thai population facilitate PGx-guided clinical decision making in Thailand and contribute to the database of the understudied South-East Asian population for further application of precision public health including dosing guidelines, drug development, clinical trials, and development of population-specific screening.

PART II: Genetic variation in autosomal recessive variants

PART II.I: Identification of point mutation and structural variants in *SMN1* and *HBA2* gene located in high sequence homogenous region.

While whole genome sequencing (WGS) technology can simultaneously capture wide range of clinically significant AR variants, difficulties arise when WGS short read technology were used to identify pathogenic variants located in genomic regions with extensive sequence homologies(28). The extensive sequence homologies cause short read sequences within this region to ambiguously mappings. The poor mapping of sequence resulted in variant calling with low confidence.

SMN1 and *HBA2* are two of Autosomal Recessive genes commonly screen in genetic testing for carrier of Spinal Muscular Atrophy and a-thalassemia, respectively, due to it high incidence rate and disease severity. *SMN1* and *HBA2* are both located in genomic regions with extensive sequence homologies. *SMN1* gene has high sequences similarity to *SMN2* gene making the two genes indistinguishable. *HBA2* gene is located in Alpha globin gene clusters (16p13.3) with high homologous sequences and interspersed repeats. For these reasons detecting carrier uses WGS were not possible for *SMN1* and *HBA2*. However, in recent year reanalysis of WGS data used targeted informatics tool had demonstrated to improve mapping quality and increase variants detection within these regions (37, 41).

จุฬาลงกรณํมหาวิทยาลัย Chulalongkorn University

Research Questions:

What is the prevalence of *SMN1* and *HBA2* of Spinal Muscular Atrophy and a-thalassemia carrier in Thai population?

Research Objectives:

To use bioinformatic tool in identifying point mutation and structural variants from WGS data in gene associated with Spinal muscular atrophy (*SMN1* gene) and alpha thalassemia (*HBA2* gene).

Expected benefits and application:

This study will demonstrate the use multiple bioinformatic tools in facilitating calling variants from WGS data that are unable to confidently call using the standard calling pipeline. This study will further demonstrate the benefit in using WGS in examining population carrier frequency and as a diagnostic tool for carrier testing in the future.

Methods Study population

WGSs from the Brugada cohort (Clinical Trial Registration Number NCT04232787) will be use in this study. The cohort consist of two groups, patients diagnosed with Brugada syndrome and controls. Controls are volunteers from blood donors at multiple sites of the National Blood Centre, Thai Red Cross Society or visitors for health check-ups and workers at King Chulalongkorn Memorial Hospital. Individual within the control group had no type I Brugada pattern or family history of sudden cardiac arrest. All subjects were of Thai ethnic origin by self-report from 5 major geographical regions: north, northeast, central, east, and south.

Sample size estimation and power of detection

The sample size was estimated used the following equation:

$$n = \underline{Z\alpha^2 P (1-P)}{e^2}$$

n = required a sample size

 $Z\mathbf{\alpha}$ = standard Z value (e.g. 1.96 for confidence level at 95%, two-tail)

P = Incidence proportion

e = acceptable margin of error at 5% (standard value of 0.05) or confident interval

According to sample size calculation, a sample size of 497 individual would achieve the statistically result in detecting variant at prevalence 3% within the population with marginal error does not exceed than 1.5% with 95% confidence level.

Ethical considerations

Informed consent was obtained from all participants. All methods were performed in accordance with relevant guidelines/regulations. The study was approved by the

Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (IRB No. 431/58). Informed consent was obtained from all participants. All methods were performed in accordance with relevant guidelines/regulations.

SMN1 Structural variants analysis

SMN structural variants were analysed using SMNCopyNumberCaller(37). BAM files were provided as input. The detection of full-length SMN1 copy number, full-length SMN2 copy number, deletion of SMN2 Exon7-8 and single nucleotide variant NM_000344.3: c.*3+80T>G were done following the SMNCopyNumberCaller's manual instructions.

HBA2 variants analysis

NGS4THAL pipeline was used to detect pathogenic point mutation, small insertion/deletion, and structural thalassemia variants. As databases in the NGS4THAL pipeline were constructed on genome coordinate GRCh37, Bazam (version 1.0.1) was used to extract haemoglobin regions from BAM files and realigned on GRCh37 coordinates(81). Bam files on GRCh37 genome coordinates were used as inputs into the NGS4THAL pipeline following the manual instructions. NGS4THAL realigned ambiguously mapped NGS sequences, and variant callings were under the GATK framework GATK-HaplotypeCaller version 3.8 to detect pathogenic point mutation and small insertion/deletion. used Complementary structural variant caller BreakDancer version 1.4.5, Pindel version 0.2.5 and CoNIFER version 0.2.2 were used to detect structural thalassemia variants.

Result Copy number variation of SMA

SMA carriers were identified by calling copy numbers of the SMN1 gene using targeted informatic tools, SMNCopyNumberCaller. 10 (VCR=0.017) individuals carrying one copy of the SMN1 gene were identified as SMA carriers. The copy number of SMN2 that contribute to stable FL-SMN protein and modulate disease severity were then analyzed (33, 82). SMA carriers show variation in SMN2 gene copy numbers from 3(n=2), 2(n=4) to 1(n=3) copy number. One SMA carrier does not carry the SMN2 gene.

Throughout the cohort, 2:2 was found to be the most common SMN1 to SMN2 copy number ratio (50.7%) follow by 2:1 (35.5%) (figure 19). 1 person has partial exon 7 and 8 deletions at the SMN2 gene. The silent carrier was not detected within the cohort, while c.*3+80 T>G that collates with two copies of SMN1 on the same haplotype was detected in 4 samples.

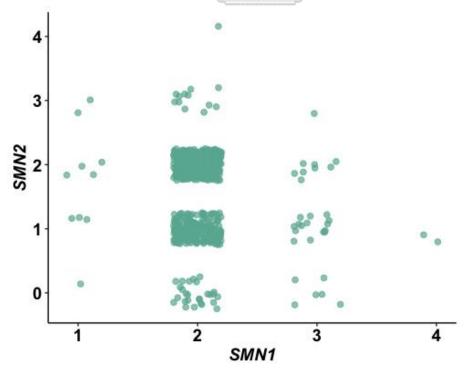


Figure 19 Samples SMN1 gene copy number against SMN2 gene copy number.

Alpha-thalassemia

All three forms of alpha-thalassemia variants were identified from WGS data: deletion in both copies of a-globin (a^0), deletion in one a-globin copy (a^+) and a nondeletional a-globin variant (a^{ND}). 20 individuals (VCR=0.033) are a carrier of -^{SEA} deletion, a ~20 kb a^0 -thalassemia deletion (Table 5). 13 individuals (VCR=0.021) are a carrier of - $a^{3.7}$, a 3.7 kb (type I) a^+ - thalassemia deletion. For a^{ND} -Thalassemia, Hb CS and Hb Paksé, are found in 43 (VCR=0.057) and 3 (VCR= 0.005) individuals, respectively.

Table 5 Sequence and structural variants in HBA2 gene detected using informatics tools.

Genes	HbVar_Name	Variants	VCR
HBA2	(SEA)		0.033
HBA2	3.7 kb (type I) deletion alpha-2		0.021
HBA2	Hb_Constant_Spring_(Hb_CS)	c.427T>C	0.057
HBA2	Hb_Paksé	c.429A>T	0.005

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Discussion

1.67% of the cohort identified as SMA carriers used supplementary informatic tool and all three forms of alpha-thalassemia variants (a0, a+ and aND) were identified used NGS4Thal pipeline. Supplementary informatic tools improve the identification of sequences and structural variants in difficult to reach high homology genomic regions that were previously overlooked or required supplementary laboratory work(36). The SMNCopyNumberCaller account for c.840C>T and surrounding intronic variants that are unique to SMN2 to differentiate its SMN1 gene(37). 1.67% of the Thai cohort were identified as SMA carriers by SMNCopyNumberCaller. SMA carrier rate is in concordance with previously reported prevalence in Thailand that used quantitative PCR-based and MLPA(32). NGS4Thal realign poorly mapped sequences to identify pathogenic variants in the HBA2 gene and uses a combination of SV caller to identify partial or whole gene deletion(41). The NGS4Thal realignment of alpha globin gene cluster enables calling structural variant and improve the poor-quality call at the Hb CS position from 3.14% (n=19) of the cohort to 1.98% (n=12). Incorporating specialized bioinformatics for calling structural would increase the economical mean of adapting WGS technology for carrier genetics testing in the future.

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

PART II.II: Determine carrier rates of autosomal recessive disorder in Thai population.

Carrier genetic testing aims to detect pathogenic variants with the potential to cause autosomal-recessive (AR) disorders. This allows the identification of individuals at risk of having a child with the tested conditions. The testing enables practitioners to provide genetic counselling on reproductive risks and options that aid couples in their family planning.

The landscape of AR variants can be highly population-specific (1). Within European populations, less than 20% of carrier variants were shared between the Dutch and Estonian cohort (9). The knowledge of population carrier frequencies could improve the choice of screening disorders.

Research Questions:

What is the prevalence of autosomal recessive variants circulating in Thai population?

Research Objectives:

To identify variants associated with autosomal recessive disorder circulating in Thai population.

To determine carrier rates of these autosomal recessive variants and if any variants are found at high prevalent.

CHULALONGKORN UNIVERSITY

Expected benefits and application:

The comprehensive overview of population carrier rates of autosomal recessive gene will be a useful resource for the development of carrier testing recommendations and estimation of disease burden.

Demonstration of using WGS in examining population carrier frequency.

Method

Whole genome sequences

Sequencings of paired-end 150 bp fragment read from polymerase chain reaction (PCR)-free sequencing libraries were performed on the HiSeqX (Illumina Ltd, Cambridge, UK). Sequencing, alignment, and variant calling were performed at Illumina Ltd, Cambridge, UK. Reads were aligned to NCBI GRCh38 human reference genome assembly.

Variants quality controls (QC) were performed as previously described15.

Variants were excluded if they were with locus GQX < 30,

with site genotype conflicted with proximal indel call,

with locus in the region with conflicting indel calls

with an unbalanced phasing pattern.

Only variants with GQ > 20 and DP > 10 were included in the analysis. Variants that did not pass QC were set as missing and variants that exceeded 5% missingness in the cohort were excluded from the analysis.

Variants within 672 genes associated with 728 AR disorders previously curated by the NextGen Return of Results Committee (RORC) were extracted and used in this study(18).

ุหาลงกรณ์มหาวิทยาลัย

Cases and Control CHULALONGKORN UNIVERSITY

Differences between case and control within AR genes were investigated. Multidimensional scaling analysis was performed in Plink (version 1.9). 174,887 variants within AR genes with a minor allele frequency of higher than 0.01 were selected. The multidimensional scaling plot was done for the first 4 principle components to illustrate no separation between cases and controls. Case and control were then collectively analysed.

Likely Pathogenic/Pathogenic Variant analysis

Variant annotations, including allele frequencies from population database gnomAD version 3.0, were performed using Annovar(24). Clinically relevant likely pathogenic, pathogenic variants and variants with conflicting interpretations of pathogenicity on ClinVar database version 2021-03-08 were extracted for this study analysis. Further variant interpretations were performed on variants with conflicting interpretations of pathogenicity using InterVar, a bioinformatic tool that automatically classified variants based on ACMG-AMP guideline(23).

Variants were then separated into 4 groups (P1, P2, P3 and CoP) based on CLNREVSTAT annotation in ClinVar. P1 group contains likely pathogenic/pathogenic variants that were either reviewed by an expert panel or have multiple submitters with assertion criteria provided. P2 is a superset of P1 that included likely pathogenic/pathogenic variants with only one submitter with assertion criteria provided. P3 included likely pathogenic/pathogenic variants with conflicting interpretations of pathogenicity with likely pathogenic/pathogenic variants submissions. Variants that contain a likely benign/benign submission, have minor allele frequencies of more the 0.03 within the cohort or were interpreted as likely benign/begin in InterVar annotation were excluded to reduce the chances of reporting false-positive results.

CHULALONGKORN UNIVERSITY

Carrier rates

Variant carrier rates (VCR) were calculated for each variant according to a previous study (1):

 $\Box \Box \Box = \frac{\Box \Box - \Box \Box \Box}{0.5 * \Box \Box},$

where AC is the total allele count, Hom is the number of homozygous individuals and AN is the total number of alleles.

The collective VCR were then used to calculate the gene carrier rate (GCR) for each gene where:

$\square \square \square = 1 - \prod_{n=1}^{\square} (1 - \square \square_n),$

where VCRi is the carrier rate for variant i and v is the number of variants detected for each gene.

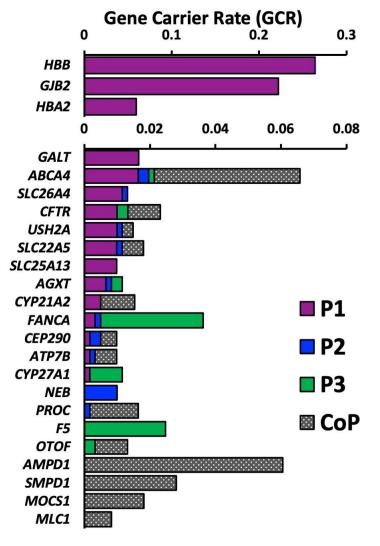
Result Carrier frequency

In the analysis of 672 genes associated with 731 autosomal recessive disorders, we identified 263 likely pathogenic/pathogenic variants in 605 Thai individuals. 198 (75.3%) variants in this group were found in singleton(n=1), where the variant was only detected once throughout the cohort. 60.4% of variants detected in Thais were absent from the East Asian reference population in the gnomAD database and 23.8% of the variants identified were absent from the gnomAD database.

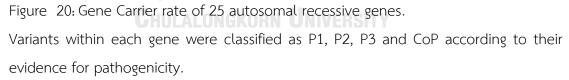
Likely pathogenic/pathogenic variants were grouped into P1, P2, P3 and CoP according to their level of evidence for pathogenicity, where P1 has the highest level of evidence. 100 variants were identified as P1 (Supplementary table 1). 58.2% of the cohort are a carrier for at least one P1 variant with up to 4 variants identified per person. When accounting for variants with lower evidence for pathogenicity, the number of variants identified increased to 180 (P2), 208 (P3) and 263 (CoP). The percentage of individuals in the cohort carrying at least one variant increased to 64.5% (P2), 68.0% (P3) and 76.7% (CoP). The maximum number of variants detected per person increased to 5 (P2) and 6 (P3 and CoP).

งหาลงกรณ์มหาวิทยาลัย

Variant carrier rates (VCR) were calculated for each variant (Supplementary Table 2). Non-singleton variants with high evidence for pathogenicity (P1) are shown in table 6. Four variants have a VCR of higher than 0.01; p.E27K(Hb E) in the HBB gene associated with Beta thalassemia (VCR = 0.26), p.V37I in the GJB2 gene associated with congenital Deafness (VCR = 0.22), p.X143Q(Hb CS) in HBA2 gene associated with Alpha thalassemia (VCR=0.06) and c.-119_-116delGTCA in GALT gene associated with galactosemia (VCR = 0.02). Several individuals were identified as homozygotes carrier for variants with high VCR. 9 individuals (1.5%) carry homozygotes p.E27K, 4 individuals (0.7%) carry homozygotes p.V37I and 3 individuals (0.5%) carry homozygotes p.X143Y.


Table 6 Well-established (P1 group) likely pathogenic/pathogenic carrier variants that were detected more than once in the Thai cohort.

GENE	Variants	VCR Disorder	Disorder Category				
	NM_000350:c.G5881A,p.G1961R	0.007	5 7				
	NM_000350:c.C1531T,p.R511C	0.003					
AGXT	NM_000030:c.T2C,p.M1?	0.005 HYPEROXALURIA	Serious				
BEST1	NM_001139443:c.C404T,p.A135V	0.005 BESTROPHINOPATHY, RETINITIS PIGMENTOSA	Mild				
CFTR	NM_000492:c.1393-1G>A	0.003 CYSTIC FIBROSIS	Serious				
CYP21A2	NM_001128590:c.G754T,p.V252L	0.003 CONGENITAL ADRENAL HYPERPLASIA	LSerious				
DHCR7	NM_001163817:c.G725A,p.R242H	0.003 SMITH-LEMLI-OPITZ SYNDROME	Serious				
FANCA	NM_000135:c.709+5G>A	0.003 FANCONI ANEMI/ COMPLEMENTATION	ASerious				
GAA	NM_000152:c.C1935A,p.D645E	0.003 GLYCOGEN STORAGE DISEASE	Serious				
GALT	NM_000155:c119116delGTCA,	0.017 GALACTOSEMIA	Serious				
GBA	NM_001171811:c.A419G,p.N140S	0.003 GAUCHER DISEASE	Unpredictable				
	NM_004004:c.G109A,p.V37I 0.216						
	NM_004004:c.235delC,p.L79Cfs*3	0.005					
	NM_000517:c.T427C,p.X143Q (Hb_CS)	0.055					
	NM_000517:c.A429T,p.X143Y (Hb_Paks)	10.005 ยาลัย					
	NM_000518:c.G79A,p.E27K	0.257 VERSITY					
	NM_000518:c.126_129del,p.F42Lfs*19	0.005					
	NM_000518:c78A>G	0.005					
РАН	NM_000277:c.284_286del,p.195del	0.003 PHENYLKETONURIA	Serious				
PKHD1	NM_138694:c.T2507C,p.V836A	0.003 POLYCYSTIC KIDNEY DISEASE	Lifespan Limiting				
RPGRIP1L	NM_001330538:c.3198_3199insTC,p.A1067Sfs*3	40.005 MECKEL SYNDROME	Lifespan Limiting				
SBDS	NM_016038:c.258+2T>C	0.005 SHWACHMAN-DIAMOND SYNDROME	Serious				
SLC22A5	NM_001308122:c.C51G,p.F17L	0.007 CARNITINE DEFICIENCY	Unpredictable				
	NM_001160210:c.1663_1664ins GAGATTACAGGTGGCTGCCCGGG,p.A555Gfs*17	0.003					


	NM_001160210:c.C958T,p.R320X	0.003	
	NM_001160210:c.852_855del,p.M285Pfs*2	0.003	
SLC26A4	NM_000441:c.1546dupC,p.S517Ffs*10	0.005 DEAFNESS, SYNDROME	PENDRED Mild
UROS	NM_000375:c.T217C,p.C73R	0.003 PORPHYRIA, ERYTHROPOIET	CONGENITAL Serious
USH2A	NM_206933:c.5572+1G>A	0.003 USHER SYNDRO	ME Serious

VCRs were used to calculate gene carrier rates (GCR) (Supplementary table 5). Genes with the 25 highest GCR are show in figure 20. For the high evidence variants (P1), genes associated with Beta thalassemia (HBB), Deafness (GJB2) and Alpha thalassemia (HBA2), obtained the highest GCR of 0.26, 0.22 and 0.06, respectively (Figure 20). 3 pathogenic variants were identified in the HBB gene including a non-synonymous (p.E27K), a variant in the promoter region (c.-78A>C) and a frameshift deletion (p.F42Lfs*19). In the GJB2 gene, one missense (p.V37I) and one frameshift deletion (p.L79Cfs*3) were identified. In HBA2 gene, Two stop loss variants (p.X143Q and p.X143Y) were identified.

Discussion

Here, we report an estimate of carrier rates in the Thai population for over 672 genes associated with AR disorders and found an enrichment of several AR variants in different subpopulations. Carrier rates for many genes reported in this study are the first to be reported in the Thai population. 263 reported likely pathogenic/pathogenic variants were identified. 62% (n=163) of variants identified showed limited supporting evidence for variant's pathogenicity. 100 AR variants were well-established with 6 variants found prevalent in Thai (VCR > 0.01) and 58.2% of the cohort carry at least one well-established AR variant. 1.67% of the cohort identified as SMA carriers used supplementary informatic tool and all three forms of alpha-thalassemia variants (a0, a+ and aND) were identified used NGS4Thal pipeline. The fine-scale population structure analysis revealed the Thai population complex genetics structure that can be separated into subgroups. Heterogeneity in VCR were observed between subgroups that reflects geographical and ethnic substructure.

p.E27K in HBB (Hb E), p.V37I in GJB2 and p.X143Y in HBA2 (Hb CS) are among the most prevalent AR variants in the Thai cohort with several homozygotes carriers detected. The detected allele frequencies correspond with frequencies reported in the Thai exomes database(83). Frequencies of these variants do not reflect the disease prevalence as these clinically significant variants may not be disease-causing(84-88). Previous studies reported carriers of homozygotes p.V37I to be associated with milder hearing impairment when compared to other pathogenic variants in the GJB2 gene and have a penetrance of only 17%(84, 85). In a longitudinal study, homozygotes p.V37I patients were found to have later age onsets of hearing impairment that progressively deteriorate(88). The variations in phenotypes of AR variant carriers suggested that interpreting variants, especially in carrier genetic testing, must be done with caution. Furthermore, variants can have different clinical outcomes when found in compound heterozygous with another pathogenic variant(85, 89). A study reported an increase in penetrance in patients with compound heterozygous p.V37I when compared to homozygote carriers26.

Differences in clinical outcomes between homozygotes and compound heterozygous states are not usually stated in the mutation database or are unknown. Because the complex relationship between variants on each allele can link to disease severity, the knowledge of alleles' combinational effect could influence reproductive decisions. Studying carriers' phenotypes, especially for variants prevalent in the population, could provide crucial information in couple counselling.

Variant misclassification is a recognised issue in data-sharing databases, such as ClinVar, and can lead to reporting false positive results (90). This study attempted to avoid reporting false positive result by used CLNREVSTAT, ClinVar's initiative to improve variant interpretation. Misclassification often arises from submitters' inconsistent classification system or limited evidence at the time of interpretation(90). CLNREVSTAT encountered the issues by evaluating evidence provided by submitters, such as the implementation of the ACMG guideline. While we focused on well-established likely pathogenic/pathogenic variants (P1) in this study analysis, over a hundred reported likely pathogenic/pathogenic variants were lacking evidence supporting their pathogenicity (P2 and P3). In addition, several variants with a conflicting interpretation of pathogenicity (CoP) show the potential to be clinically significant. For example, p.Val1106Ile in ATP7B gene that encoded for copper-transporting ATPase. While p.Val1106Ile did not disrupt copper transport function in a yeast functional analyse study, later studies found a 44.55% decrease in copper-ATPase activity in a patient carrying compound heterozygotes p.Val1106Ile and the variant obtained an odd-ratio of 10.5 (95%, CI=1.36-79.9) in another casecontrol study(91-93). Further study into variant pathogenicity would enable effective implementation of genetic data. The ongoing development of the Thai local genetic database is expected to improve interpretations and classifications of AR variants circulating in the Thai population(94). Reanalysis of these genetic results in the future could potentially increase yields of pathogenic variants(95).

Part II.III: Identification of an enrichment in autosomal recessive carrier in Thai subpopulations

An enrichment of carrier variants had been reported in some population subgroups as a result of past migration events or geographical isolation(96). A previous study compiling Thalassemia genetics surveyed in Thailand showed the distribution of Thalassemia variants to be highly geographically heterogeneous with variation observed in neighbouring provinces (97). The resources on population carrier frequencies at a fine scale could improve the estimation of the disease burden and choice of screening disorders. This will assist in guiding public health decisions in the prevention and management of AR disorders.

Studying population carrier frequencies based on self-reported population labels or ethnicity had demonstrated to be unreliable (50, 51). Assessing carrier rates based on genetic structure could provide an insight that was not available in existing population labels. Studies had illustrated the identification of fine-scale genetic substructure using the haplotype sharing method (ChromoPainter/fineSTRUCTURE) from genome-wide single nucleotide polymorphism array data (54, 56-58). WGS could provide a more detailed structure but running high-density genotype data on ChromoPainter can be computational extensive. A recent study demonstrated that PBWT-paint, a scalable haplotype sharing algorithm based on the positional Burrows-Wheeler transform, was able to capture genetic structure identical to ChromoPainter (54). PBWT-paint would allow detection of shared haplotypes in high-density WGS data.

Research Questions:

Are there an enrichment/s of autosomal recessive variant carrier in Thai subpopulation/s?

Research Objectives:

To uses haplotype sharing method in identifying Thai population genetic structure.

To classified Thai subpopulation based on population genetic structure.

To determine there is an enrichment of autosomal recessive variant carrier in any of the Thai subpopulation.

Expected benefits and application:

The information on enrichment of pathogenic variant in Thai subpopulation can be used to facilitate the development of disease prevention and control programs through precision public health approach by prioritizing economic resources and laboratory facilities that are limited to where disease poses the most burden.

Methods

Quality control of WGS samples for population structure analysis

Further QC will be performed for population structure analysis. PLINK2 were used to exclude: -

one individual from a closely related pair with KING kinship coefficients exceeding 0.125

Multidimensional scaling will then be performed to identify if there are any population outliers. Genotype data will be pruned with parameters --indep-pairwise 50 10 0.2. MDS will be performed using --mds-plot function and visualized using R (version 3.6.3). Through visual examination any outliers will be excluded for further analysis.

SNPs with missingness > 0.05.

Fine-scale population structure analysis

The QCed genotype data will be phased using SHAPEIT v2 following default parameter.

Phased genotype data will be used as an input for PBWT-paint.

The outputted PBWT-paint matrix will be used to calculate PCs using fineSTRUCTURE R tools (http://www.paintmychromosomes.com)

visualised in 2 dimensions using t-distributed stochastic neighbour embedding (t-SNE) implemented in the Rtsne package in R version 3.6.

Clustering based on population structure

Sample clustering will be done using a Gaussian mixture model implemented in the R package mclust. t-SNE dimensions will be used as an input for mclust. For each cluster assigned, samples' demographic data will be examined. Each cluster will be label according to the sample majority of geographical region or ethnic group. Variant carrier rate of prevalent variant within Thai population will be calculated for each cluster.

Statistical analysis

Descriptive statistics analysis will be performed using R version 3.6. The statistical chisquare test will be use in comparison between the cohort variant carrier rate and each cluster variant carrier rate. All informative data will be considered statistically significant at p-value less than 0.05.

Results

Fine-scale population structure analysis

Haplotype profiles of 589 Thais were mapped using PWBT-paint to examine the genetic structure of the Thai population. Separations were observed when the first 4 PWBT-paint PCs were projected in 2 dimensions using t-distributed stochastic neighbour embedding (figure 20a). Based on self-reported geographical regions and ethnicities data, the first-dimension display separation corresponds to the country's geographical north-to-south gradient. The second dimension follows the west to east gradient and separates Thai-Chinese ethnic group from the rest of the cohort. Clusters were assigned based on PWBT-paint matrix, at k=9 we observed clustering that segregate along with Thailand's 4 main geographical regions (central, north, north-east and south) and two major ethnic groups (Thai and Thai-Chinese) (figure 20b). Each cluster contains samples ranging from 50 to 89 individuals. Clusters were labelled based on the majority of samples' place of birth or ethnic group.

In the North-East region, sub-regional separation was observed. The population within this region were separated into four clusters (4-NE, 5-NE, 6-NE and 7-NE-N), where each cluster shows a distinct geographical pattern (figure 21). Population from 4-NE found to be located along the border between Thailand's central, north-east and north region. Majority of population from 5-NE were found in the lower part of north-east region that share boarder with Cambodia. 6-NE population were found the central of northeast region. Lastly, population in 7-NE-N were found in both north-east and north region along Thailand and Laos border.

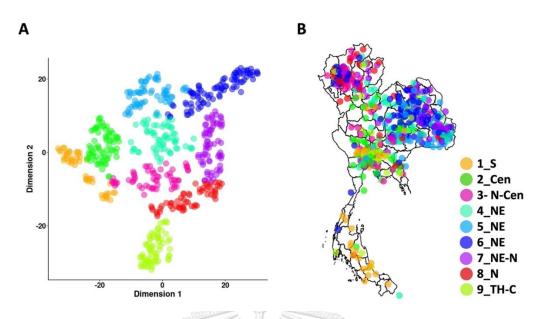


Figure 21: Thai population genetic structure based on PBWT-painting algorithm (a) t-SNE visualisation of Thai population genetic structure based on PBWT-painting algorithm. Samples were clustered into groups using mclust. (b) Geographical distribution of sample's place of birth. Samples were coloured based on assigned clusters. Source of shapefile: United Nations Office for the Coordination of Humanitarian Affairs <u>https://data.humandata.org/dataset/thailand-administrativeboundaries</u> retrieved on 19 august 2021

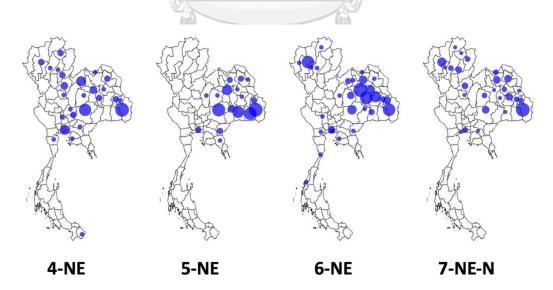


Figure 22 Geographical distribution by provinces of 4 Northeast clusters (4-NE, 5-NE, 6-NE and 7-NE-N) based on sample's place of birth.

The number of samples in each province is represented by the circle diameter.

Enrichment of AR variants in subpopulations

Carrier rates of well-established likely pathogenic/pathogenic AR variants(P1) prevalent in Thai (VCR > 0.01) were examined for each genetic cluster (Table 7). p.V37I(GJB2) VCR vary from 0.070 in the South cluster(1-S) to 0.107-0.138 in North-East clusters(4-NE, 5-NE, 6-NE and 7-NE-N). c.-119_-116delGTCA(GALT) VCR are highest in the North-Central cluster(3-N-Cen) at 0.025 but are absent in the North (8-N) and the Thai-Chinese(9-TH-C) cluster.

Thalassemia variants show the highest enrichment within different clusters. For Hb E, the highest elevation in VCR when compared to the rest of the cohort (VCR = 0.26) was observed in cluster 5-NE in the north-east at 0.49 (OR = 3.6, p < 1.65x10-6) follow by 7-NE-N at 0.34 (OR = 1.8, p < 0.03). Thai-Chinese (9-TH-C) and the north (8-N) cluster show lower carrier rate for Hb E than the rest of the cohort at 0.06 (OR = 0.31, p < 7.06 x10-3) and 0.12 (OR = 0.42, p < 0.03), respectively. For Hb CS, when compared to the rest of the cohort (VCR = 0.06) elevated carrier rates are found in North-East clusters, 5-NE at 0.12 (OR = 3.0, p < 0.01) and 6-NE at 0.11 (OR = 2.7, p < 0.02). Finally, higher VCR for - \Box 3.7 deletion was found in 6-NE at 0.06 (OR = 3.9, p < 0.01) when compared rest of the cohort at 0.02 and higher VCR for Hb Pakse was found in 7-NE-N at 0.03 (OR = 16.3, p < 0.02) when compared rest of the cohort at 0.03 (OR = 16.3, p < 0.02).

	GJB2	GALT	-SEA	- 3.7	Hb_CS	Hb_Pakse	Hb_E
1-S	0.070	0.010	0.000	0.000	0.000	0.000	0.260
2-Cen	0.097	0.015	0.045	0.000	0.045	0.000	0.149
3-N-Cen	0.100	0.025	0.033	0.017	0.050	0.000	0.167
4-NE	0.138	0.008	0.031	0.000	0.062	0.015	0.308
5-NE	0.121	0.015	0.030	0.045	0.121	0.000	0.485
6-NE	0.107	0.006	0.034	0.056	0.045	0.000	0.270
7-NE-N	0.086	0.000	0.014	0.029	0.114	0.029	0.343
8-N	0.121	0.000	0.052	0.017	0.052	0.000	0.121
9-TH-C	0.117	0.000	0.063	0.000	0.016	0.000	0.063

Table 7 Variant carrier rate of carrier variants separated by population subgroups.

Discussion

The fine-scale study of population genetic structure reveals heterogeneity in VCR within the Thai population that reflects geographical and ethnic substructure. Variation in VCR within the region has been previously reported for some AR variants. Tritipsombut et al. found Hb E carrier rates to vary from 39.3% to 43.1% in the Northeast when the region was separated based on geographical labels(98). In this study, a more distinct elevation of Hb E was observed in the Northeast (27.0% -48.5%). Categorised populations based on genetics could reveal a complex substructure that was missed when used self-identified geographical data and enables a better understanding of the disease's burden. Neighbouring countries in close proximity with identified clusters also reported similar elevations. Preah Vihear reported higher Hb E prevalence than other regions of Cambodia(99). Interestingly, Preah Vihear shares border with provinces where 5-NE are located (figure 4). Hb CS that was prevalent in the 5-NE and 7-NE-N clusters also found prevalent in So ethnic group in the south of Laos and the Có-Tu ethnic group in Vietnam(86, 100). High prevalence of Hb E and Hb CS within these regions could be resulted from a founder effect. A study found shared $\mathbf{\alpha}^{0}$ -thalassemia SEA deletion alleles haplotype between the Chinese population and carriers from Thai, Laos, and Cambodian(101). This may also explain the higher prevalence of SEA deletion within the Thai-Chinese community observed in this study(9-TH-C). The fine-scale population genetic structure analysis identifies population subgroups at risk for carriers of AR variant and provides insight into genetic factors underlying the disease.

Limitations

There are limitations to this study. The carrier rates in this study were calculated from a limited sample size. The reported carrier rate may not capture all rare AR variants circulating within the population and may affect the estimation of VCR in some variants. While the study included samples from multiple regions within Thailand, not all regions were equally represented. Sampled populations from the south only represented 4% of the cohort. An increase in sample size could reveal another layer of genetic structure.

Summary

Population carrier rates are an important resource for the development of carrier testing and estimations of disease burden. Here, we report an estimate of carrier rates in the Thai population for over 672 genes associated with AR disorders and found an enrichment of several AR variants in different subpopulations. Carrier rates for many genes reported in this study are the first to be reported in the Thai population. 263 reported likely pathogenic/pathogenic variants were identified. 62% (n=163) of variants identified showed limited supporting evidence for variant's pathogenicity. 100 AR variants were well-established with 6 variants found prevalent in Thai (VCR > 0.01) and 58.2% of the cohort carry at least one well-established AR variant. 1.67% of the cohort identified as SMA carriers used supplementary informatic tool and all three forms of alpha-thalassemia variants (a0, a+ and aND) were identified used NGS4Thal pipeline. The fine-scale population structure analysis revealed the Thai population complex genetics structure that can be separated into subgroups. Heterogeneity in VCR were observed between subgroups that reflects geographical and ethnic substructure.

Despite the limited sample size, 23.8% of likely pathogenic/pathogenic AR variants reported in this study are absent from the gnomAD population database. Current databases are not extensive with many populations, including Southeast Asians, being underrepresented (102-104). We believe carrier rates reported in this study are an underestimate of the disease-causing variants circulating in the Thai population. Thai population-specific variants may be absent from current mutation databases or are understudied, resulting in the "Variant of Unknown Significance" classification due to limited knowledge on variant pathogenicity.

In conclusion, we demonstrated WGS to be a powerful tool in examining population AR variants. It assists in identifying various types of pathogenic variants from point mutations and small insertion/deletions to large structural variation, which improve the estimation of population carrier rates. The population structure analysis used

WGS identify variant distribution within the population at the finest scale. The comprehensive overview of population carrier rates will be a useful resource for the development of carrier testing recommendations and estimation of disease burden. The information on enrichment of pathogenic variant in Thai subpopulation can be use to facilitate the development of disease prevention and control programs through precision public health approach by prioritizing economic resources and laboratory facilities that are limited to where disease poses the most burden(105, 106).

Chulalongkorn University

Part III: Genetic risks and association with severe COVID-19 among global populations

While population demographics and healthcare infrastructure influence mortality, genetic predisposition may also influence clinical severity of COVID-19. Recent genome-wide association studies identified multiple host genetic factors associated with disease susceptibility and severity (10-12). These studies examined mostly European populations, which prompted us to examine these disease-modifying loci in the Asian population.

Research Questions:

What is the allele frequency of severe COVID-19 risk alleles in different global populations?

Research Objectives:

To examine allele frequency of severe COVID-19 risk alleles in different global populations.

Expected benefits and application:

Finding of this study will determine prevalence of COVID-19 risk alleles in different global populations that is essential for studying the effect of COVID-19 risk alleles different global populations.

Chulalongkorn University

Methods

The allele frequencies of 5 risk alleles report associated with severe covid-19 (table 2) will be extracted from gnomAD, GenomeAsia 100k, and Brugada syndrome Southeast Asia database.

SNP	Chr.: pos.	Risk	Alt.	Locus
rs73064425	3: 45,901,089	Т	С	LZTFL1
rs657152	9: 133263862	А	С	ABO
rs2109069	19: 4,719,443	А	G	DPP9
rs74956615	19: 10,427,721	А	Т	TYK2
rs2236757	21: 34,624,917	А	G	IFNAR2

Different AC and AN will be use to examine allele frequencies of different populations within the database

Form gnomAD database allele frequencies will be calculated for:

East Asia

Africa

Ashkenazi Jewish

European(non-Finnish)

European(Finnish)

Latino

From GenomeAsia 100k database allele frequencies will be calculated for:

Northeast Asia Southeast Asia South Asia

Chulalongkorn Universi

Philippines

Indonesia

Malaysia

China

South Korea

Japan

From Brugada syndrome Southeast Asia database allele frequencies will be calculated for:

Control sample of Thai population

Results

Chromosomal locus 3p21.31 was highly correlated with disease severity in hospitalized Italian and Spanish COVID-19 patients (rs11385942; 95% confidence interval (CI), p = 1.15x10-10) (10), which was con- firmed in the United Kingdom (rs13078854; 95% CI, p = 1.6x10-18) (11) and in a multi-ethnic study (rs73064425; 95% CI, p = 4.77x10-30) (12). This gene- rich locus includes SLC6A20 (encoding sodium-imino acid transporter 1, which interacts with COVID-19 ACE2 receptor) and multiple chemokine receptors (CCR9, CXCR6, CCR1, and CCR2). Our analysis found that the frequency of the risk allele rs11385942 at this locus differs vastly among Southeast Asians, ranging from 0.21 in the Filipino population to 0.06 in the Thai population, but it was rare in Northeast Asians.(Figure 22). Surprisingly, frequencies of risk alleles at 19p13.2 (rs74956615) and 19p13.3 (rs2109069) were also low among Northeast Asians relative to other populations. Collectively, these three loci encode inflammatory response genes (CCR2, TYK2, and DPP9) and are hypothesized to influence COVID-19 severity through hyper-inflammatory response and subse- quent organ injury (11).

The frequency of the risk allele at rs657152 located on 9q34.2 (linked to ABO blood group locus) varies from 0.25 in Indonesians to 0.48 in South Koreans. This locus found to be associated with European patients with respiratory failure (rs657152; 95% CI, $p = 4.95 \times 10-8$) (10). In addition, another study found the same locus to be associated with COVID-19-infected individuals when compare to those uninfected at lower p-value (95% CI, $p = 5.3 \times 10-20$) (11).. On chromosome 21q22.1 where the interferon receptor gene IFNAR2 is located, the frequen- cies of the risk allele rs2236757 is 0.56 in Southeast and 0.46 in Northeast Asians (higher than 0.29 found in non-Finnish Europeans).

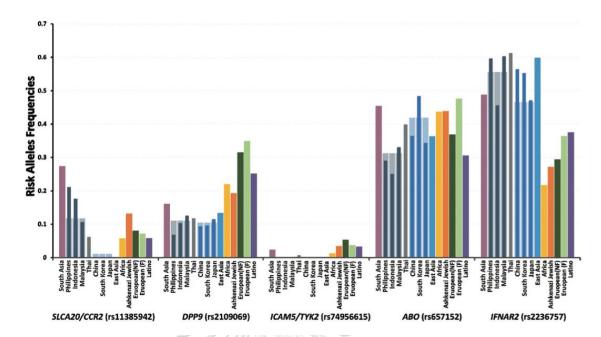


Figure 23 Analysis of the different frequencies of risk alleles known to be associated with the susceptibility and severity of COVID- 19 in different populations.

Allele frequencies available from the gnomAD database, which include East Asia, Africa, Ashkenazi Jewish, European(non-Finnish), European(Finnish) and Latino, GenomeAsia 100k database, which includes South Asia, Philippines, Indonesia, Malaysia, China, South Korea, and Japan, and from a control Thai population (n = 236) were analyzed.

Summary

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

Along with other factors, lower COVID-19 mortality in East Asian countries may be attributed to lower frequencies of risk alleles. The impact of known risk alleles may not be universal among the different human populations in predicting COVID-19 severity and susceptibility due to differences in the patterns of linkage disequilibrium in some loci. Supplementary studies in Latin America, Africa, and Asia may provide further explanation in the observed unequal disease severity in different populations.

Part IV: The effect of Thai genetic variation on imputation performance Part IV.I: Evaluate imputation performance.

Previous studies have demonstrated strong variations in imputation performance when common reference panels were applied to different populations(14, 15). For example, imputation using HRC offered better accuracy among European populations than among the Han-Chinese population(15). There are limited data regarding imputation performance when public reference panels are used in populations not widely represented in the reference. In turn, this causes difficulties in the reference selection, in understanding the limitations associated with each reference panel, and created challenges when performing genomic research in populations that are underrepresented. To our knowledge, the Thai population is not represented in any current public reference panel except for GenomeAsia (n=2), and therefore, issues relating to imputation accuracy and panel selection are particularly important to genetic studies in this population.

Research Questions:

What is the genotype yield and accuracy when used 1000G, HRC, GenomeAsia, and TOPMed to impute Thai population?

Does the population structure effect accuracy of imputed variant?

Research Objectives: USALONGKORN UNIVERSITY

To evaluate genotype yields and imputation accuracy when genotyping imputation of Illumina Global Screening Array (GSA) among Thai individuals using four different high-density reference panels (1000G, HRC, GenomeAsia, and TOPMed).

To evaluate the population structure effect on imputation accuracy.

Expected benefits and application:

Finding from this study will facilitate selection of reference panel when imputation is performed in Thai population allow researcher to understand the limitation of each reference panel used.

Methods

Samples enrolled in this study will be selected based on availability of both Genome-wide genotyping and WGS data. Genome-wide genotyping was done using the GSA platform, as previously described24. WGS from South-east Asian Brugada Syndrome cohort will be use as an imputation validating genotype.

Genotype Imputation

Pre-imputation quality controls (QCs) will be performed on genotyping array data following Scelsi et al., 2018 recommendations. PLINK (version 1.9) will be used to exclude samples:-

with discordance between genetically inferred and self-reported sex,

with genotype missingness >0.05, and

with duplicates or first-degree relatives by using the --rel-cutoff command in PLINK (removing one member of each pair of samples with genomic relatedness >0.5)26.

Compatibility at variant level between geno-typing array data and each of the reference panels will be examined using the checking tools by W. Rayner (http://www.well.ox.ac.uk/~wrayner/tools/), to correct consistency of strand, alleles, positions, Ref/Alt assignments, and minor allele frequency differences.

Imputation will be performed on the Michigan Imputation Server (https://imputationserver.sph.umich.edu) using Eagle2 phasing and Minimac imputation. Based on the reference panels, 1000G, HRC, GenomeAsia, and TOPMed, four im-puted genotype datasets will be generated.

CHULALONGKORN UNIVERSITY

Evaluation of genotype yield

Genotypes will be extracted and counted using BCFtools (ver-sion 1.10.2). Minimac-R2 values, ranging from 0 (lowest confidence) to 1 (highest confidence), were used to reflect the imputation confidence for each imputed variant. Imputed variants were clustered according to five Minimac-R2 ranges: [0,0.2), [0.2,0.4), [0.4,0.6), [0.6,0.8), and [0.8,1].

Evaluation of imputation accuracy

Imputation accuracy of the four imputed datasets that used the 1000G, HRC, GenomeAsia, and TOPMed reference panel will be examined. Chromosome 1 variants from each of the imputed datasets will be validated against high coverage genotypes called from WGS (among the same samples).

The WGS data underwent QC using Starling's filtering criteria to filter out sites that have genotype conflicts with proximal indel calls, locus quality score <30, locus quality score <14 for heterozygous or homozygous variant, the fraction of basecalls at a site >0.4, locus read evidence displays unbal-anced phasing patterns, calls with a sample depth three times higher than the chromosomal mean, or genotype calls from variant callers not consistent with chromosome ploidy. Variant sites within the cohort with missingness >0.10 or deviation from Hardy-Weinberg equilibrium (P-value <1 x 10-6) will be excluded. Samples with >0.05 genotype missingness will be removed.

QCed WGS variant sites found in all four imputed genotyping datasets will be selected for evaluation of imputation accuracy. Accuracy will be measured in terms of genotype concordance rate (GCR) between the imputed and validating WGS data for each sample. The underlying GCR for each of the four reference panels will be examined and visualized used ggplot2 package in R (version 3.6.3). Evaluation of imputation accuracy will be further performed using chromosome 21 variants as validation.

Population structure and admixture analysis

The Thai cohort population structure will be examined using a multidimensional scaling (MDS) method implemented in PLINK (version 1.9). Genotyping array data will be pruned with parameters --indep-pairwise 50 10 0.2, leaving 135,661 markers. MDS was performed using --mds-plot function and visualized using R (version 3.6.3) to examine the presence of cohort population sub-structure. Chinese genetic admixture in the study cohort will be examined used genotype dataset of 44 North and South Han-Chinese samples acquired from the Human Diversity Genome Project. Genetic admixture will be estimated using ADMIXTURE software version 1.3 under the setting of K=2(107).

Results Genotype yield and confidence level

Four different public reference panels (1KGP, HRC, GenomeAsia, and TOPMed) were used to impute SNP-array of 415 Thais from the Southeast Asian Brugada Syndrome cohort. The number of genotypes obtained vary when different reference panels were used. The highest genotypes yield of 271 million (M) achieves when used TOPMed panel (Table 8). TOPMed obtains 6x more genotypes than that of 1KGP (43.8 M), 7x more than HRC (39.1 M), and 13x more than GAsP (21.5 M). In terms of insertion/deletion (INDEL), imputation uses TOPMed obtains 20.9 M INDELs and 1KGP obtains 3.23 M. Due to lack of INDEL in HRC and GenomeAsia reference panels, INDELs could not be infer when these two references were used.

When used Minimac-R2 to examine the number of genotypes obtain at different imputation confidence level, TOPMed offers the highest number of high-confidence imputed genotypes ($R^2 > 0.8$) at 6.99 M (Table 8). Imputation used 1KGP, GenomeAsia, and HRC obtain lower number of high-confidence genotypes ($R^2 > 0.8$) at 5.28 M, 5.06 M, and 4.89 M, respectively. The number of genotypes reduce substantially when R^2 cut-offs were applied with the largest reduction presented when used TOPMed. Imputation used TOPMed infer high portion of genotypes with low-confidence. We examined the distribution of imputed genotypes over the range of 0.2 to 1.0 R² (Figure 23). Imputation used GenomeAsia shows high concentration of genotypes within the very high-confidence range (R^2 of 0.9-1.0). TOPMed show the lowest density of high confidence genotypes.

Table 8 Number of imputed genotypes when varying their confidence Minimac-R2levels.

		or imputed	genotypes	in millions (N	VI)			
R ²	GAsP			1KGP	TOPMed		HRC	
Cut-off	#SNP	#INDEL	#SNP	#INDEL	#SNP	#INDEL	#SNP	#INDEL
none	21.50M	n/a	43.80M	3.230M	271.00M	20.900M	39.10M	n/a
0.2	9.87M	n/a	13.10M	1.420M	19.50M	1.460M	12.40M	n/a
0.4	8.26M	n/a	10.10M	1.130M	14.70M	1.090M	9.95M	n/a
0.6	6.86M	n/a	7.88M	0.866M	11.20M	0.815M	7.71M	n/a
0.8	5.06M	n/a	5.28M	0.532M	6.99M	0.496M	4.89M	n/a
								100.000
density 5 1						6	1K	ISP GP PMed C

Figure 24 Density plot of genotypes obtaining Minimac R^2 between 0.2 and 1.0 after imputed using GAsP, 1KGP, TOPMed or HRC reference panel.

Chulalongkorn University

Imputation accuracy

Imputation accuracies were examined uses genotype concordance rates (GCR). For each sample, GCR was calculated between imputed genotypes and validation genotypes called from WGS. Overall, imputation used GenomeAsia achieves the highest accuracy with cohort median GCR of 0.973 (Figure 24). Median GCRs reduce when used 1000G (0.964), TOPMed (0.945), and HRC (0.931). Imputation accuracies are consistently high for all samples within the cohort when used GenomeAsia (GCRs 0.970–0.978). Higher variation of GCR can be found when used TOPMed (0.935– 0.963). When used TOPMed panel, a group of samples achieve high GCR that depart from the cohort mean(outlier). The examination of demographic data shows that high number of individuals within this group self-identified as Thai-Chinese (data not shown).

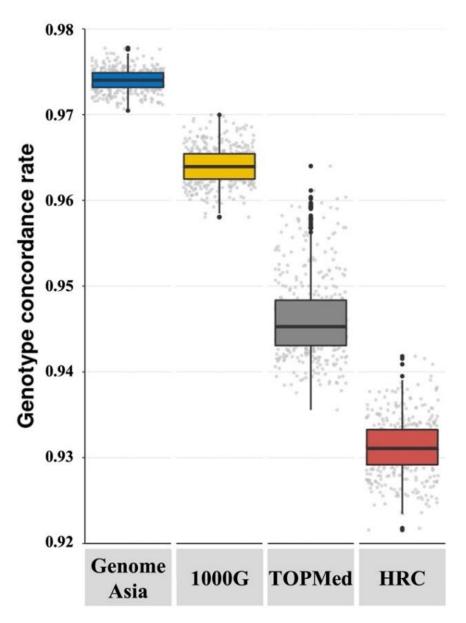
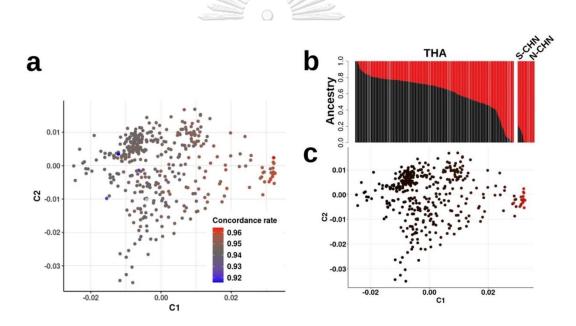
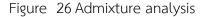




Figure 25 Imputation accuracy measured by genotype concordance rate (GCR) using GenomeAsia (GAsP), 1000 Genomes (1KGP), TOPMed and HRC reference panels. GCR was evaluated when genotype imputation was done on the known WGS

genotypes.

We then investigated the effect of population structure within the Thai cohort on imputation accuracy when used TOPMed panel. From multidimensional scaling analysis, samples outputted GCR correspond with the horizontal axis on the MDS plot (Figure 25a). Individuals obtaining high GCR when used TOPMed clustered together and separated from other samples. Admixture analyses were performed to determine if this cluster are Thai-Chinese as suggested by the demographic data. Using North and South Han-Chinese genotype datasets acquired from the Human Diversity Genome Project, admixture analysis reveal that individuals within the high GCR cluster also have high degree of Han-Chinese admix (Figures 25b and 25c).

(a) Multidimensional scaling plot of 415 individuals coloured with genotype concordance rate obtained when assessed genotypes imputed with TOPMed panel against genotypes from whole genome sequencing. (b) Admixture plot of genome-wide genotype data of Thai and south and north Han-Chinese (S-CHN and N-CHN) acquired from the Human Diversity Genome Project (c) Multidimensional scaling plot of 415 individuals coloured with Q estimate from genome-wide genotype data of Thai and south and N-CHN) from Admixture v. 1.3.

We examined the effect of R2 cut-offs on imputation accuracy. Imputation accuracy increases with more stringent R^2 cut-off (Figure 27). At high-confidence imputed genotypes ($R^2 > 0.8$), all samples achieve GCR above 0.967 regardless of reference panel used. TOPMed and HRC GCRs significantly improved with the median GCR approaching 0.974 and 0.973, respectively. GenomeAsia achieved the highest median GCR at 0.987.

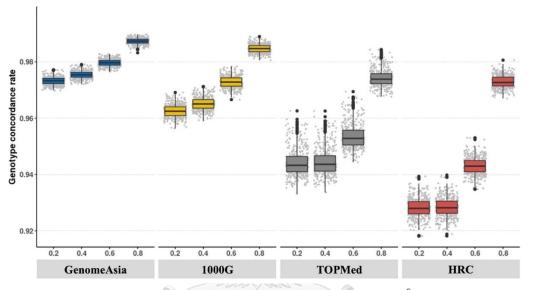


Figure 27 Imputation accuracy of Thai cohort at varying the R² cut-offs at 0.2, 0.4, 0.6 or 0.8.

Imputation was performed using the GAsP, 1KGP, TOPMed and HRC reference panels, The imputation accuracies were evaluated using GCR.

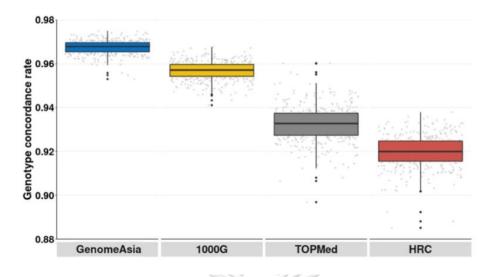


Figure 28 Imputation accuracy of chromosomes 21.

GCR was measured across 412 Thai individuals, using GenomeAsia, 1000G, TOPMed, and HRC reference panels. GCR was computed by comparison of imputed genotypes to validating genotypes from WGS. Data are presented as boxplots with distributions of sample GCR on the y-axis and imputation reference on the x-axis.

Discussion

TOPMed represents an exceptionally large reference sample (N=97,256). In concordance with previous studies, the larger reference size increases variant sites for imputation that can be beneficial in further association analysis(108, 109). Unfortunately, the larger TOPMed and HRC (N=32,488) datasets, when used to impute our Thai cohort, achieved lower imputation accuracy than the smaller 1000G (N=2,504) or GenomeAsia (N=1,739) reference panels. A reduced performance of HRC has previously been described in non-European datasets, including those of Han-Chinese and African ancestry; here, it was suspected that the overrepresentation of European ancestry individuals in the HRC panel may cause bias during phasing and haplotype selection processes(15, 110). While over 1,184 East Asian individuals are represented in TOPMed, it only accounted for 1.22% of the total reference samples. Similar to HRC, the overrepresentation of populations with low genetic similarity to this study cohort in TOPMed may also be responsible for the low accuracy observed.

The high imputation accuracy of GenomeAsia may be attributable to its diverse representation of populations genetically similar to our study cohort. The GenomeAsia reference contains data on >219 Asian populations. Indeed, a previous study demonstrated an improvement in imputation performance when additional populations were added to the reference(111). Thailand is located at the center of mainland Southeast Asia with a high degree of genetic admixture from neighbouring countries through past migrational events(112). While only 2 Thai WGS are represented in GenomeAsia, the diverse representation of genomes from neighboring countries likely provided a useful haplotype reference that benefited different subpopulations within our Thai cohort, leading to a higher accuracy throughout. In contrast, the diversity of Asian population subgroups underrepresented, as lower accuracies were observed in some samples within the cohort. The higher accuracy found in Thais with Han-Chinese admixture may reflect the high proportion of Han-Chinese ancestry represented in the East Asian population of the TOPMed database.

Part IV.II: Evaluate imputation accuracy of rare variants.

The advent of next-generation sequencing has led to an increase in whole genome sequencing (WGS) availability, enabling the construction of high-density reference panels. While initially reference panels could accurately infer variants with minor allele frequencies (MAFs) >5%, the increased size and sequencing coverage of recent high-density panels has enabled imputation down to low-frequency, 5% > MAF > 1%, and rare, MAF < 1%, variants(113-115). This has allowed examination of the human genome at a finer resolution, leading to identification of thousands of novel associations in GWAS(116-118).

Research Questions:

Does the accuracy of imputed variant effect by minor allele frequencies?

Research Objectives:

To evaluate the effect of variant minor allele frequencies on imputation accuracy.

Expected benefits and application:

Finding from this study will allow researcher to understand the use and limitation of imputing rare variant in Thai population.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Methods

Imputation accuracy and allele frequencies

Imputation accuracy of variants at different allele frequencies (AFs) were examined used total AF from Genome Aggregation Database (gnomAD) version 2.1.1.

The squared Pearson correlation between imputed and validating WGS variants were used to measure imputation accuracies.

Variants will be classified into AF bins according to gnomAD AFs. Variants were binned at 1, 0.05, and 0.01, to represent common, low-frequency, and rare variants, respectively. Finer examination of rare variants will be performed following AF bins at 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, and 0.001. Square Pearson correlation will be computed for each AF bin used GLIMPSE concordance tools(119).

Result

Imputation accuracy and allele frequency

At different minor allele frequencies (MAFs), imputation used GenomeAsia offers better accuracies than other reference panels (Figure 28a). The common variants (AF \geq 0.05) and low-frequency variants (0.05 > AF \geq 0.01) group show similar square Pearson correlation patterns. Accuracy decreases considerably in the rare variants group (AF < 1%) for all four reference-panels. For rare variants, Ge-nomeAsia achieves the highest accuracy with square Pearson correlation of 0.275 follows by 1000G (0.228), TOPMed (0.200) and HRC (0.184). Finer examination of rare variants shows imputation accuracy continue to decrease with AF. GenomeAsia outperforms other reference panels to 0.001 > AF \geq 0 group (Figure 28b).

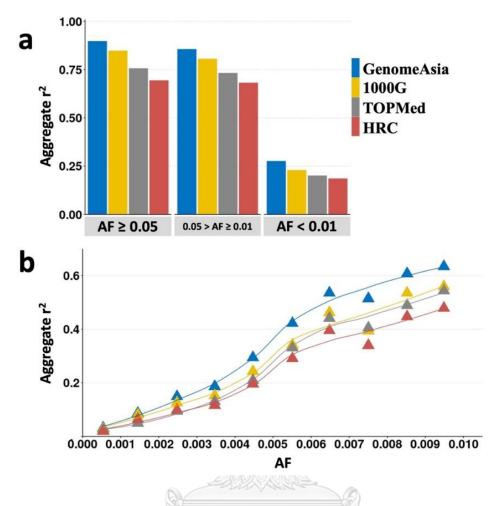


Figure 29 The effect of imputation accuracy based on allele frequencies. (a) Imputation accuracy of common (AF \geq 0.05), low-frequency (0.05 > AF \geq 0.01) and rare (AF < 0.01) variants. (b) Imputation accuracy of rare variants at a finer resolution. Accuracies were measured used the squared Pearson correlation between imputed and validating WGS variants. Variants r2 were aggregated into groups

according to AF from gnomAD (version 2.1.1).

Discussion

Although GenomeAsia yielded the best imputation accuracy for all AF bins, imputation accuracy strongly decreased with lower MAF as reported in other populations(120). We found a 30.3% reduction in squared Pearson correlation of rare variants when compared to common variants. Several approaches have been proposed to improve imputation accuracy for rare variants. First and foremost, an increase in reference size strongly benefits rare variant imputation(121, 122). As GenomeAsia currently has the smallest sample size of all four panels studied, an increase in Asian reference samples may vastly improve rare variant imputation accuracy. Secondly, using population-specific reference panels(115, 122, 123). As costs decrease and sequencing becomes more widely accessible, WGS should enable the construction of a Thai population-specific reference panel in the near future.

Limitations

We acknowledge several caveats and limitations of the present study. Imputation accuracy was not examined for all chromosomes, although similar results were obtained for chromosomes 1 and 21 (Figure 27). Evaluation of imputation accuracy was limited to WGS high-coverage regions. The accuracy of INDELs was not evaluated in this study, as this class of variation could only be obtained from imputation using TOPMed and 1000G reference panels.

Summary

This study evaluates the use of four different public reference panels (1000G, GenomeAsia, HRC, and TOPMed) in genotype imputation of Thai SNP-arrays data. The selection of a reference panel affects the number and accuracy of resulting genotypes. Although, TOPMed offers the highest number of genotypes after imputation, imputation used GenomeAsia achieves the best accuracy with low variability within the cohort (GCR from 0.96-0.98). Interestingly, imputation used TOPMed displays slightly higher variation in GCR (0.92-0.96). We demonstrate that the cohort population structure effects imputation accuracies when used TOPMed with Chinese admixed individuals obtain higher accuracy. When considering the accuracy at different MAF groups, imputation used GenomeAsia outperforms other reference panels to the very rare variants (0.002 > AF \ge 0.001).

In conclusion, our results demonstrate the benefit of having similar genetic profile between a reference panel and the study cohort in achieving high imputation accuracy. Diverse representation of population in the reference panel facilitates imputation of population not represented in the panel. GenomeAsia harbors a more diverse Asian populations that are genetically similar to the Thai. Hence, GenomeAsia outperformed the other 3 high-density reference panels in terms of imputation accuracy. We speculate that the diverse populations in the GenomeAsia reference panel would result in higher accuracy when using in the imputation of other understudied Asian populations.

Conclusion

The examinations of genome sequences in Thai population illustrated the distinct genetic variation found in Thais. When evaluated against currently available public databases, this study demonstrated that allele frequencies of many variants are unique to Thais. A considerable number of variants found in Thais are population-specifics and are absent form currently available database. A closer examination used fine-scale population structure analysis further revealed the heterogenicity in variant distribution within Thai population itself. Enrichment of several clinically significant variants were found in Thai subpopulation. This demonstrated that assessing prevalence of variants based on super-population label (East-asian) in currently available public database does not provide an accurate overview for many of the variants circulating in Thais.

WGS demonstrated to be a highly efficient platform and a powerful tool in examine population genetic variation. WGS can identify various types of pathogenic variants from point mutations and small insertion/deletions to large structural variation. While some genomic regions or type of variations are not accessible using the standard variant calling pipeline, when use in conjunction with specialised bioinformatic tools it was demonstrated to vastly improved these previously unidentifiable variants. WGS ability to access immense amount of information in a single methodology would reduced time and labor involved.

In summary, this study demonstrated that the knowledge of genetic variations in Thai population would benefit different fields of medical science from the design of genetic testing through to conducting genomic research. Despite a relatively small sample size large number of the variants identified are population-specifics, an increase in sample size would provide a better overview of low frequencies and rare variants within the population that often have clinical significance. This study findings stresses the importance of having Thai population genome database and the sequencing understudied population.

REFERENCES

 Guo MH, Gregg AR. Estimating yields of prenatal carrier screening and implications for design of expanded carrier screening panels. Genet Med. 2019;21(9):1940-7.

2. Bowerman M, Becker CG, Yanez-Munoz RJ, Ning K, Wood MJA, Gillingwater TH, et al. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech. 2017;10(8):943-54.

3. Watanabe K, Stringer S, Frei O, Umicevic Mirkov M, de Leeuw C, Polderman TJC, et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet. 2019;51(9):1339-48.

4. Ramos E, Doumatey A, Elkahloun AG, Shriner D, Huang H, Chen G, et al. Pharmacogenomics, ancestry and clinical decision making for global populations. Pharmacogenomics J. 2014;14(3):217-22.

5. Petrovic J, Pesic V, Lauschke VM. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 2020;28(1):88-94.

6. Solomon BD, Nguyen AD, Bear KA, Wolfsberg TG. Clinical genomic database. Proc Natl Acad Sci U S A. 2013;110(24):9851-5.

7. Makrythanasis P, Nelis M, Santoni FA, Guipponi M, Vannier A, Bena F, et al. Diagnostic exome sequencing to elucidate the genetic basis of likely recessive disorders in consanguineous families. Hum Mutat. 2014;35(10):1203-10.

Antonarakis SE. Carrier screening for recessive disorders. Nat Rev Genet.
 2019;20(9):549-61.

9. Fridman H, Yntema HG, Magi R, Andreson R, Metspalu A, Mezzavila M, et al. The landscape of autosomal-recessive pathogenic variants in European populations reveals phenotype-specific effects. Am J Hum Genet. 2021;108(4):608-19.

10. Severe Covid GG, Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-34.

11. Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al.

Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92-8.

12. Shelton JF, Shastri AJ, Ye C, Weldon CH, Filshtein-Sonmez T, Coker D, et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat Genet. 2021;53(6):801-8.

13. Das S, Abecasis GR, Browning BL. Genotype Imputation from Large Reference Panels. Annu Rev Genomics Hum Genet. 2018;19:73-96.

Huang L, Li Y, Singleton AB, Hardy JA, Abecasis G, Rosenberg NA, et al.Genotype-imputation accuracy across worldwide human populations. Am J Hum Genet.2009;84(2):235-50.

15. Lin Y, Liu L, Yang S, Li Y, Lin D, Zhang X, et al. Genotype imputation for Han Chinese population using Haplotype Reference Consortium as reference. Hum Genet. 2018;137(6-7):431-6.

16. Thorn CF, Klein TE, Altman RB. PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Methods Mol Biol. 2005;311:179-91.

Relling MV, Klein TE. CPIC: Clinical Pharmacogenetics Implementation
 Consortium of the Pharmacogenomics Research Network. Clin Pharmacol Ther.
 2011;89(3):464-7.

18. Himes P, Kauffman TL, Muessig KR, Amendola LM, Berg JS, Dorschner MO, et al. Genome sequencing and carrier testing: decisions on categorization and whether to disclose results of carrier testing. Genet Med. 2017;19(7):803-8.

19. Hunter JE, Irving SA, Biesecker LG, Buchanan A, Jensen B, Lee K, et al. A standardized, evidence-based protocol to assess clinical actionability of genetic disorders associated with genomic variation. Genet Med. 2016;18(12):1258-68.

20. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen--the Clinical Genome Resource. N Engl J Med. 2015;372(23):2235-42.

21. Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, et al. Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium. Am J Hum Genet. 2016;98(6):1067-76.

22. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus

recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24.

23. Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. Am J Hum Genet. 2017;100(2):267-80.

24. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.

25. Shah N, Hou YC, Yu HC, Sainger R, Caskey CT, Venter JC, et al. Identification of Misclassified ClinVar Variants via Disease Population Prevalence. Am J Hum Genet. 2018;102(4):609-19.

26. Pratt VM, Everts RE, Aggarwal P, Beyer BN, Broeckel U, Epstein-Baak R, et al. Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes: A GeT-RM Collaborative Project. J Mol Diagn. 2016;18(1):109-23.

27. Lee SB, Wheeler MM, Thummel KE, Nickerson DA. Calling Star Alleles With Stargazer in 28 Pharmacogenes With Whole Genome Sequences. Clin Pharmacol Ther. 2019;106(6):1328-37.

28. Trier C, Fournous G, Strand JM, Stray-Pedersen A, Pettersen RD, Rowe AD. Nextgeneration sequencing of newborn screening genes: the accuracy of short-read mapping. NPJ Genom Med. 2020;5(1):36.

29. Mandelker D, Schmidt RJ, Ankala A, McDonald Gibson K, Bowser M, Sharma H, et al. Navigating highly homologous genes in a molecular diagnostic setting: a resource for clinical next-generation sequencing. Genet Med. 2016;18(12):1282-9.

30. Hendrickson BC, Donohoe C, Akmaev VR, Sugarman EA, Labrousse P,

Boguslavskiy L, et al. Differences in SMN1 allele frequencies among ethnic groups within North America. J Med Genet. 2009;46(9):641-4.

31. Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs EM, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. 2012;20(1):27-32.

32. Dejsuphong D, Taweewongsounton A, Khemthong P, Chitphuk S, Stitchantrakul W, Sritara P, et al. Carrier frequency of spinal muscular atrophy in Thailand. Neurol Sci. 2019;40(8):1729-32.

33. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al.

Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155-65.

34. Lunn MR, Wang CH. Spinal muscular atrophy. Lancet. 2008;371(9630):2120-33.

35. Rochette CF, Gilbert N, Simard LR. SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet. 2001;108(3):255-66.

36. Westemeyer M, Saucier J, Wallace J, Prins SA, Shetty A, Malhotra M, et al. Clinical experience with carrier screening in a general population: support for a comprehensive pan-ethnic approach. Genet Med. 2020;22(8):1320-8.

37. Chen X, Sanchis-Juan A, French CE, Connell AJ, Delon I, Kingsbury Z, et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genet Med. 2020;22(5):945-53.

38. Galanello R, Cao A. Gene test review. Alpha-thalassemia. Genet Med. 2011;13(2):83-8.

39. Farashi S, Harteveld CL. Molecular basis of alpha-thalassemia. Blood Cells Mol Dis. 2018;70:43-53.

40. Traeger-Synodinos J, Harteveld CL. Advances in technologies for screening and diagnosis of hemoglobinopathies. Biomark Med. 2014;8(1):119-31.

41. Cao Y, Yin Ha S, So CC, For TM, Sze-Man Tang C, Zhang H, et al. NGS4THAL, a one-stop molecular diagnosis and carrier screening tool for thalassemia and other hemoglobinopathies by next-generation sequencing. J Mol Diagn. 2022.

42. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6(9):677-81.

43. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865-71.

44. Krumm N, Sudmant PH, Ko A, O'Roak BJ, Malig M, Coe BP, et al. Copy number variation detection and genotyping from exome sequence data. Genome Res. 2012;22(8):1525-32.

45. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM,

et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65.

46. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74.

47. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279-83.

48. GenomeAsia KC. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature. 2019;576(7785):106-11.

49. Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590(7845):290-9.

50. Shraga R, Yarnall S, Elango S, Manoharan A, Rodriguez SA, Bristow SL, et al. Evaluating genetic ancestry and self-reported ethnicity in the context of carrier screening. BMC Genet. 2017;18(1):99.

51. Belbin GM, Cullina S, Wenric S, Soper ER, Glicksberg BS, Torre D, et al. Toward a fine-scale population health monitoring system. Cell. 2021;184(8):2068-83 e11.

52. Menozzi P, Piazza A, Cavalli-Sforza L. Synthetic maps of human gene frequencies in Europeans. Science. 1978;201(4358):786-92.

53. Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet. 2012;8(1):e1002453.

54. Byrne RP, van Rheenen W, Project Min EALSGC, van den Berg LH, Veldink JH, McLaughlin RL. Dutch population structure across space, time and GWAS design. Nat Commun. 2020;11(1):4556.

55. Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, Day T, et al. The finescale genetic structure of the British population. Nature. 2015;519(7543):309-14.

56. Takeuchi F, Katsuya T, Kimura R, Nabika T, Isomura M, Ohkubo T, et al. The finescale genetic structure and evolution of the Japanese population. PLoS One. 2017;12(11):e0185487.

57. Kerminen S, Havulinna AS, Hellenthal G, Martin AR, Sarin AP, Perola M, et al. Fine-Scale Genetic Structure in Finland. G3 (Bethesda). 2017;7(10):3459-68. 58. Pankratov V, Montinaro F, Kushniarevich A, Hudjashov G, Jay F, Saag L, et al. Differences in local population history at the finest level: the case of the Estonian population. Eur J Hum Genet. 2020;28(11):1580-91.

59. Durbin R. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266-72.

60. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, Klein T, Leeder JS. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69-76.

61. Kalman LV. Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting. Clin Pharmacol Ther. 2016;99.

62. Fujikura K, Ingelman-Sundberg M, Lauschke VM. Genetic variation in the human cytochrome P450 supergene family. Pharmacogenet Genomics. 2015;25.

63. Hernandez W, Danahey K, Pei X, Yeo KJ, Leung E, Volchenboum SL, et al. Pharmacogenomic genotypes define genetic ancestry in patients and enable population-specific genomic implementation. Pharmacogenomics J. 2020;20(1):126-35.

64. Zhang H, De T, Zhong Y, Perera MA. The Advantages and Challenges of Diversity in Pharmacogenomics: Can Minority Populations Bring Us Closer to Implementation? Clin Pharmacol Ther. 2019;106(2):338-49.

65. Exner DV, Dries DL, Domanski MJ, Cohn JN. Lesser response to angiotensinconverting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction. N Engl J Med. 2001;344(18):1351-7.

66. Ahn E, Park T. Analysis of population-specific pharmacogenomic variants using next-generation sequencing data. Sci Rep. 2017;7(1):8416.

67. Thorn CF, Klein TE, Altman RB. PharmGKB: The pharmacogenetics and pharmacogenomics knowledge base. Methods Mol Biol. 2005;311.

68. An HR, Wu XQ, Wang ZY, Zhang JX, Liang Y. NAT2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. Clin Exp Pharmacol Physiol. 2012;39.

69. Chan SL. Association and clinical utility of NAT2 in the prediction of isoniazidinduced liver injury in Singaporean patients. PLoS ONE. 2017;12.

70. Verschuren JJ. Value of platelet pharmacogenetics in common clinical practice of patients with ST-segment elevation myocardial infarction. Int J Cardiol. 2013;167.

71. SLCO1B1 variants and statin-induced myopathy—A genomewide study. N Engl J Med. 2008;359.

72. Petrovic J, Pesic V, Lauschke VM. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 2020;28.

73. GenomeAsia KC. The GenomeAsia 100K project enables genetic discoveries across Asia. Nature. 2019;576.

74. Nelson MR. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science. 2012;337.

75. Rasmussen-Torvik LJ. Design and anticipated outcomes of the eMERGE-PGx project: A multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther. 2014;96.

76. Caspar SM, Schneider T, Meienberg J, Matyas G. Added value of clinical sequencing: WGS-based profiling of pharmacogenes. Int J Mol Sci. 2020.

77. Bush WS. Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network. Clin Pharmacol Ther. 2016;100.

78. Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum Genomics. 2018.

79. Sangkuhl K. Pharmacogenomics clinical annotation tool (PharmCAT). Clin Pharmacol Ther. 2020;107.

80. Reisberg S. Translating genotype data of 44,000 biobank participants into clinical pharmacogenetic recommendations: Challenges and solutions. Genet Med. 2019;21.

81. Sadedin SP, Oshlack A. Bazam: a rapid method for read extraction and realignment of high-throughput sequencing data. Genome Biol. 2019;20(1):78.

82. Gennarelli M, Lucarelli M, Capon F, Pizzuti A, Merlini L, Angelini C, et al. Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun. 1995;213(1):342-8.

83. Shotelersuk V, Wichadakul D, Ngamphiw C, Srichomthong C, Phokaew C,
Wilantho A, et al. The Thai reference exome (T-REx) variant database. Clin Genet.
2021;100(6):703-12.

84. Chai Y, Chen D, Sun L, Li L, Chen Y, Pang X, et al. The homozygous p.V37I variant of GJB2 is associated with diverse hearing phenotypes. Clin Genet.

2015;87(4):350-5.

85. Shen J, Oza AM, Del Castillo I, Duzkale H, Matsunaga T, Pandya A, et al. Consensus interpretation of the p.Met34Thr and p.Val37Ile variants in GJB2 by the ClinGen Hearing Loss Expert Panel. Genet Med. 2019;21(11):2442-52.

86. Nguyen VH, Sanchaisuriya K, Wongprachum K, Nguyen MD, Phan TT, Vo VT, et al. Hemoglobin Constant Spring is markedly high in women of an ethnic minority group in Vietnam: a community-based survey and hematologic features. Blood Cells Mol Dis. 2014;52(4):161-5.

87. Prajantasen T, Teawtrakul N, Fucharoen G, Fucharoen S. Molecular characterization of a beta-thalassemia intermedia patient presenting inferior vena cava thrombosis: interaction of the beta-globin erythroid Kruppel-like factor binding site mutation with Hb E and alpha(+)-thalassemia. Hemoglobin. 2014;38(6):451-3.

88. Wu CC, Tsai CH, Hung CC, Lin YH, Lin YH, Huang FL, et al. Newborn genetic screening for hearing impairment: a population-based longitudinal study. Genet Med. 2017;19(1):6-12.

89. Winichagoon P, Fucharoen S, Chen P, Wasi P. Genetic factors affecting clinical severity in beta-thalassemia syndromes. J Pediatr Hematol Oncol. 2000;22(6):573-80.

90. Yang S, Lincoln SE, Kobayashi Y, Nykamp K, Nussbaum RL, Topper S. Sources of discordance among germ-line variant classifications in ClinVar. Genet Med. 2017;19(10):1118-26.

91. Park S, Park JY, Kim GH, Choi JH, Kim KM, Kim JB, et al. Identification of novel ATP7B gene mutations and their functional roles in Korean patients with Wilson disease. Hum Mutat. 2007;28(11):1108-13.

92. Liu XQ, Zhang YF, Liu TT, Hsiao KJ, Zhang JM, Gu XF, et al. Correlation of ATP7B genotype with phenotype in Chinese patients with Wilson disease. World J Gastroenterol. 2004;10(4):590-3.

93. Dong Y, Ni W, Chen WJ, Wan B, Zhao GX, Shi ZQ, et al. Spectrum and Classification of ATP7B Variants in a Large Cohort of Chinese Patients with Wilson's Disease Guides Genetic Diagnosis. Theranostics. 2016;6(5):638-49.

94. Shotelersuk V, Tongsima S, Pithukpakorn M, Eu-Ahsunthornwattana J, Mahasirimongkol S. Precision medicine in Thailand. Am J Med Genet C Semin Med Genet. 2019;181(2):245-53.

95. Fung JLF, Yu MHC, Huang S, Chung CCY, Chan MCY, Pajusalu S, et al. A threeyear follow-up study evaluating clinical utility of exome sequencing and diagnostic potential of reanalysis. NPJ Genom Med. 2020;5(1):37.

96. Apidechkul T, Yeemard F, Chomchoei C, Upala P, Tamornpark R. Epidemiology of thalassemia among the hill tribe population in Thailand. PLoS One. 2021;16(2):e0246736.

97. Hockham C, Ekwattanakit S, Bhatt S, Penman BS, Gupta S, Viprakasit V, et al. Estimating the burden of alpha-thalassaemia in Thailand using a comprehensive prevalence database for Southeast Asia. Elife. 2019;8.

98. Tritipsombut J, Sanchaisuriya K, Phollarp P, Bouakhasith D, Sanchaisuriya P, Fucharoen G, et al. Micromapping of thalassemia and hemoglobinopathies in diferent regions of northeast Thailand and Vientiane, Laos People's Democratic Republic. Hemoglobin. 2012;36(1):47-56.

99. Munkongdee T, Tanakulmas J, Butthep P, Winichagoon P, Main B, Yiannakis M, et al. Molecular Epidemiology of Hemoglobinopathies in Cambodia. Hemoglobin. 2016;40(3):163-7.

100. Sengchanh S, Sanguansermsri T, Horst D, Horst J, Flatz G. High frequency of alpha-thalassemia in the So ethnic group of South Laos. Acta Haematol.2005;114(3):164-6.

101. Jomoui W, Fucharoen G, Sanchaisuriya K, Charoenwijitkul P, Maneesarn J, Xu X, et al. Genetic origin of alpha(0)-thalassemia (SEA deletion) in Southeast Asian populations and application to accurate prenatal diagnosis of Hb Bart's hydrops fetalis syndrome. J Hum Genet. 2017;62(8):747-54.

102. Mauleekoonphairoj J, Chamnanphon M, Khongphatthanayothin A, Sutjaporn B, Wandee P, Poovorawan Y, et al. Phenotype prediction and characterization of 25 pharmacogenes in Thais from whole genome sequencing for clinical implementation. Sci Rep. 2020;10(1):18969.

103. Need AC, Goldstein DB. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 2009;25(11):489-94.

104. Kessler MD, Yerges-Armstrong L, Taub MA, Shetty AC, Maloney K, Jeng LJB, et al.

Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nat Commun. 2016;7:12521.

105. Khoury MJ, Iademarco MF, Riley WT. Precision Public Health for the Era of Precision Medicine. Am J Prev Med. 2016;50(3):398-401.

106. Chaibunruang A, Sornkayasit K, Chewasateanchai M, Sanugul P, Fucharoen G, Fucharoen S. Prevalence of Thalassemia among Newborns: A Re-visited after 20 Years of a Prevention and Control Program in Northeast Thailand. Mediterr J Hematol Infect Dis. 2018;10(1):e2018054.

107. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655-64.

108. Flannick J, Korn JM, Fontanillas P, Grant GB, Banks E, Depristo MA, et al. Efficiency and power as a function of sequence coverage, SNP array density, and imputation. PLoS Comput Biol. 2012;8(7):e1002604.

109. Nelson SC, Stilp AM, Papanicolaou GJ, Taylor KD, Rotter JI, Thornton TA, et al. Improved imputation accuracy in Hispanic/Latino populations with larger and more diverse reference panels: applications in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Hum Mol Genet. 2016;25(15):3245-54.

110. Vergara C, Parker MM, Franco L, Cho MH, Valencia-Duarte AV, Beaty TH, et al. Genotype imputation performance of three reference panels using African ancestry individuals. Hum Genet. 2018;137(4):281-92.

111. Jostins L, Morley KI, Barrett JC. Imputation of low-frequency variants using theHapMap3 benefits from large, diverse reference sets. Eur J Hum Genet. 2011;19(6):662-6.

112. Wangkumhang P, Shaw PJ, Chaichoompu K, Ngamphiw C, Assawamakin A, Nuinoon M, et al. Insight into the peopling of Mainland Southeast Asia from Thai population genetic structure. PLoS One. 2013;8(11):e79522.

113. Deelen P, Menelaou A, van Leeuwen EM, Kanterakis A, van Dijk F, Medina-Gomez C, et al. Improved imputation quality of low-frequency and rare variants in European samples using the 'Genome of The Netherlands'. Eur J Hum Genet. 2014;22(11):1321-6.

114. Huang J, Howie B, McCarthy S, Memari Y, Walter K, Min JL, et al. Improved

imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat Commun. 2015;6:8111.

115. Mitt M, Kals M, Parn K, Gabriel SB, Lander ES, Palotie A, et al. Improved imputation accuracy of rare and low-frequency variants using population-specific highcoverage WGS-based imputation reference panel. Eur J Hum Genet. 2017;25(7):869-76. 116. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and power in genetic association studies. Nat Genet. 2005;37(11):1217-23.

Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al.
Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505-13.
Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, et al. Use of >100,000
NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet. 2019;15(12):e1008500.
Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing and

imputation of low-coverage sequencing data using large reference panels. Nat Genet. 2021;53(1):120-6.

120. Van Hout CV, Tachmazidou I, Backman JD, Hoffman JD, Liu D, Pandey AK, et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature. 2020;586(7831):749-56.

121. Chou WC, Zheng HF, Cheng CH, Yan H, Wang L, Han F, et al. A combined reference panel from the 1000 Genomes and UK10K projects improved rare variant imputation in European and Chinese samples. Sci Rep. 2016;6:39313.

Halldorsson BV, Eggertsson HP, Moore KHS, Hauswedell H, Eiriksson O, Ulfarsson MO, et al. The sequences of 150,119 genomes in the UK Biobank. Nature.
2022;607(7920):732-40.

123. Pistis G, Porcu E, Vrieze SI, Sidore C, Steri M, Danjou F, et al. Rare variant genotype imputation with thousands of study-specific whole-genome sequences: implications for cost-effective study designs. Eur J Hum Genet. 2015;23(7):975-83.

Supplementary

Supplementary table 1: Likely pathogenic/pathogenic variants detected in autosomal recessive genes categorized according to their level of evidence for pathogenicity.

Variants grouped into P1, P2, P3 and CoP, with P1 having the highest evidence for pathogenicity.

Variant numbe r	GROUP	VARIANTS
1	P1	HBB:NM_000518:exon1:c.G79A:p.E27K
2	P1	GJB2:NM_004004:exon2:c.G109A:p.V371
3	P1	HBA2:NM_000517:exon3:c.T427C;p.X143Q
4	P1	GALT:NM_000155.4:c119116delGTCA
5	P1	ABCA4:NM_000350:exon42:c.G5881A:p.G1961R
6	P1	SLC22A5:NM_001308122:exon1:c.C51G:p.F17L,SLC22A5:NM_003060:exon1:c.C51G:p.F17L
7	P1	HBA2:NM_000517:exon3:c.A429T;p.X143Y
8	P1	NM_016038:exon2:c.258+2T>C
9	P1	SLC26A4:NM_000441:exon14:c.1546dupC:p.S517Ffs*10
10	P1	HBB:NM_000518:exon2:c.126_129del:p.F42Lfs*19
11	P1	HBB:NM_000518.5:c78A>G
12	P1	BEST1:NM_001139443:exon4:c.C404T:p.A135V,BEST1:NM_001300786:exon4:c.C404T:p.A135V,BEST1:NM_001300787:exon4:c.C404T: p.A135V,BEST1:NM_004183:exon5:c.C584T:p.A195V
13	P1	GJB2:NM_004004:exon2:c.235detC:p.L79Cfs*3
14	P1	RPGRIP1L:NM_001330538:exon22:c.3198_3199insTC:p.A1067Sfs*34,RPGRIP1L:NM_015272:exon23:c.3300_3301insTC:p.A1101Sfs*34
15	P1	AGXT:NM_000030:exon1:c.T2C:p.M1?
16	P1	NM_206933:exon27:c.5572+1G>A
17	P1	PKHD1:NM_138694:exon24:c.T2507C:p.V836A,PKHD1:NM_170724:exon24:c.T2507C:p.V836A
18	P1	CYP21A2:NM_001128590;exon6:c.G754T:p.V252L,CYP21A2:NM_000500;exon7:c.G844T:p.V282L
19	P1	ABCA4:NM_000350:exon11:c.C1531T:p.R511C
20	P1	GBA:NM_001171811:exon5:c.A419G:p.N140S,GBA:NM_001171812:exon5:c.A533G:p.N178S,GBA:NM_000157:exon6:c.A680G:p.N227S, GBA:NM_001005741:exon7:c.A680G:p.N227S,GBA:NM_001005742:exon7:c.A680G:p.N227S
21	P1	UROS:NM_000375:exon4:c.T217C:p.C73R,UROS:NM_001324036:exon4:c.T217C:p.C73R,UROS:NM_001324037:exon4:c.T217C:p.C73R, UROS:NM_001324038:exon4:c.T217C:p.C73R,UROS:NM_001324039:exon4:c.T217C:p.C73R
22	P1	DHCR7:NM 001163817:exon7:c.G725A:p.R242H,DHCR7:NM 001360:exon7:c.G725A:p.R242H
23	P1	PAH:NM 000277:exon3:c.284 286del:p.195del
24	P1	FANCA:NM_000135.4:c.709+5G>A
25	P1	GAA:NM_000152:exon14:c.C1935A:p.D645E,GAA:NM_001079804:exon14:c.C1935A:p.D645E,GAA:NM_001079803:exon15:c.C1935A:p. D645E
26	P1	SLC25A13:NM_001160210:exon16:c.1663_1664insGAGATTACAGGTGGCTGCCCGGG:p.A5555Gfs*17,SLC25A13:NM_014251:exon16:c.16 60_1661insGAGATTACAGGTGGCTGCCCGGG:p.A554Gfs*17
27	P1	SLC25A13:NM_001160210:exon10:c.C958T:p.R320X,SLC25A13:NM_014251:exon10:c.C955T:p.R319X
28	P1	SLC25A13:NM_001160210:exon9:c.852_855del:p.M285Pfs*2,SLC25A13:NM_014251:exon9:c.852_855del:p.M285Pfs*2

29	P1	NM 000492:exon11:c.1393-1G>A
30	P1	
31	P1	 CFTR:NM_000492:exon20:c.G3197A:p.R1066H
32	P1	NM 138694:exon42:c.6809-2A>T;NM 170724:exon42:c.6809-2A>T
33	P1	LYST:NM 000081:exon6:c.C3310T:p.R1104X,LYST:NM 001301365:exon6:c.C3310T:p.R1104X
34	P1	USH2A:NM 007123:exon13:c.C2209T;p.R737X,USH2A:NM 206933:exon13:c.C2209T;p.R737X
35	P1	ALMS1:NM 015120:exon16:c.C11413T:p.R3805X
36	P1	NM 000441:exon8:c:919-2A>G
37	P1	SLC26A4:NM_000441:exon10:c.C1229T:p.T410M GBA:NM_001171811:exon4:c.C214T:p.R72W,GBA:NM_001171812:exon4:c.C328T:p.R110W,GBA:NM_000157:exon5:c.C475T:p.R159W,
38	P1	GBA:NM_001005741:exon6:c.C475T:p.R159W,GBA:NM_001005742:exon6:c.C475T:p.R159W
39	P1	CEP290:NM_025114:exon50:c.6869dupA:p.N2290Kfs*6
40	P1	CYP21A2:NM_001128590:exon3:c.T428A;p.I143N,CYP21A2:NM_000500:exon4:c.T518A;p.I173N
41	P1	PAH:NM_000277:exon8:c.G890A:p.R297H
42	P1	AGXT:NM_000030:exon1:c.26dupC;p.K12Qfs*156
43	P1	GUSB:NM_001284290:exon5:c.C631T:p.R211X,GUSB:NM_001293105:exon5:c.C412T:p.R138X,GUSB:NM_001293104:exon6:c.C499T:p. R167X,GUSB:NM_000181:exon7:c.C1069T:p.R357X
43	P1	CFTR:NM 000492:exon13:c.G1753T;p.E585X
44	P1	MPL:NM 005373:exon3:c.235_236del:p.L79Efs*84
	D1	MUTYH:NM_001350650:exon5:c.G38A:p.W13X,MUTYH:NM_001350651:exon5:c.G38A:p.W13X,MUTYH:NM_001048171:exon6:c.G425A :p.W142X,MUTYH:NM_001048172:exon6:c.G386A:p.W129X,MUTYH:NM_001048173:exon6:c.G383A:p.W128X,MUTYH:NM_001048174: exon6:c.G383A:p.W128X,MUTYH:NM_001128425:exon6:c.G467A:p.W156X,MUTYH:NM_001293190:exon6:c.G428A:p.W143X,MUTYH:N M_001293191:exon6:c.G416A:p.W139X,MUTYH:NM_001293192:exon6:c.G107A:p.W36X,MUTYH:NM_001293196:exon6:c.G107A:p.W3 CX_NUTYH:NM_001293191:exon6:c.G416A:p.W139X,MUTYH:NM_001293192:exon6:c.G107A:p.W36X,MUTYH:NM_001293196:exon6:c.G107A:p.W36X
46	P1	6X,MUTYH:NM_012222:exon6:c.G458A:p.W153X,MUTYH:NM_001293195:exon7:c.G383A:p.W128X
47	P1	ABCA4:NM_000350:exon46:c.C6316T:p.R2106C
48	P1	ABCA4:NM_000350:exon29:c.G4328A:p.R1443H
49	P1	ABCA4:NM_000350:exon22:c.C3292T:p.R1098C
50	P1	ABCA4:NM_000350:exon21:c.C3056T:p.T1019M NM_001171812:exon2:c.115+1G>A;NM_000157:exon2:c.115+1G>A;NM_001005742:exon3:c.115+1G>A;NM_001005741:exon3:c.115+
51	P1	1G>A
52	P1	NPHS2:NM_001297575:exon6:c.C667T:p.R223W,NPHS2:NM_014625:exon7:c.C871T:p.R291W
53	P1	LAMB3:NM_001017402:exon15:c.2346delC:p.T783Pfs*48,LAMB3:NM_000228:exon16:c.2346delC:p.T783Pfs*48,LAMB3:NM_00112764 1:exon16:c.2346delC:p.T783Pfs*48
54	P1	USH2A:NM_206933:exon63:c.C13576T:p.R4526X
55	P1	USH2A:NM_206933:exon63:c.13112_13115del:p.Q4371Rfs*19
56	P1	USH2A:NM_206933:exon63:c.C13010T:p.T4337M
57	P1	PRF1:NM_001083116:exon2:c.C160T:p.R54C,PRF1:NM_005041:exon2:c.C160T:p.R54C
58	P1	CYP17A1:NM_000102:exon8:c.1459_1467del:p.D487_F489del ABCC8:NM_000352:exon23:c.C2797T:p.R933X,ABCC8:NM_001287174:exon23:c.C2800T:p.R934X,ABCC8:NM_001351295:exon23:c.C2
59	P1	AGCC6.INM_000552;ex0125.c.C27911;p.R953X;AGCC6.INM_001261174;ex0125.c.C2001;p.R954X;AGCC6.INM_001551295;ex0125.c.C2 863T:p.R955X;ABCC8:NM_001351296;exon23:c.C2797T:p.R933X;ABCC8:NM_001351297;exon23:c.C2794T:p.R932X
60	P1	PYGM:NM_001164716:exon12:c.C1462T:p.R488X,PYGM:NM_005609:exon14:c.C1726T:p.R576X
61	P1	GYS2:NM_021957:exon5:c.C736T:p.R246X
62	P1	GNPTAB:NM_024312:exon19:c.C3565T:p.R1189X
63	P1	
64	P1	MMAB:NM 052845:exon7:c.577 578insTGTGCCGCCGGGCCG:p.A192 E193insVCRRA
	l : *	

65	P1	ACADS:NM_000017:exon9:c.A1031G:p.E344G,ACADS:NM_001302554:exon9:c.A1019G:p.E340G
66	P1	GJB2:NM 004004:exon2:c.299 300del:p.H100Rfs*14
67	P1	GJB2:NM_004004:exon2:c.G71A:p.W24X
68	P1	
00	F1	BRCA2:NM_000059:exon15:c.C7558T:p.R2520X ATP7B:NM_001005918:exon12:c.T2822C:p.I941T,ATP7B:NM_001330579:exon14:c.T3191C:p.I1064T,ATP7B:NM_001330578:exon15:c.
69	P1	T3209C:p.I1070T,ATP7B:NM_000053:exon16:c.T3443C:p.I1148T,ATP7B:NM_001243182:exon17:c.T3110C:p.I1037T
70	P1	RDH12:NM_152443:exon4:c.C164T:p.T55M
71	P1	GALC:NM_000153:exon1:c.G136T:p.D46Y,GALC:NM_001201401:exon1:c.G136T:p.D46Y
72	P1	FAH:NM_000137:exon9:c.C782T:p.P261L
73	P1	NM_144672:exon17:c.1880+1G>A;NM_001161683:exon13:c.1643+1G>A;NM_170664:exon8:c.908+1G>A
74	P1	BBS2:NM_031885:exon17:c.C2107T:p.R703X
75	P1	CNGB1:NM_001286130:exon26:c.2526dupG:p.L843Afs*3,CNGB1:NM_001297:exon26:c.2544dupG:p.L849Afs*3
76	P1	NM_001195798:exon5:c.695-1G>A;NM_000527:exon5:c.695-1G>A;NM_001195803:exon4:c.314-1G>A;NM_001195799:exon4:c.572-1G>A
77	P1	CYP27A1:NM_000784:exon6:c.C1072T:p.Q358X
78	P1	COL4A3:NM_000091:exon21:c.C1216T:p.R406X
79	P1	COL4A3:NM_000091:exon48:c.4344_4350del:p.R1450Vfs*77
80	P1	NM_000383:exon5:c.652+1G>T
81	P1	NM_001848:exon23:c.1575+1G>A PLA2G6:NM 001004426:exon13:c.C1741T:p.R581X,PLA2G6:NM 001199562:exon13:c.C1741T:p.R581X,PLA2G6:NM 001349865:exon1
		3:c.C1741T:p.R581X,PLA2G6:NM_001349866:exon13:c.C1741T:p.R581X,PLA2G6:NM_001349868:exon13:c.C1225T:p.R409X,PLA2G6:N
82	P1	M_001349864:exon14:c.C1903T:p.R635X,PLA2G6:NM_001349869:exon14:c.C1207T:p.R403X,PLA2G6:NM_003560:exon14:c.C1903T:p. R635X,PLA2G6:NM_001349867:exon15:c.C1369T:p.R457X
02		PLA2G6:NM_001004426:exon11:c.G1451A:p.R484H,PLA2G6:NM_001199562:exon11:c.G1451A:p.R484H,PLA2G6:NM_001349865:exon 11:c.G1451A:p.R484H,PLA2G6:NM_001349866:exon11:c.G1451A:p.R484H,PLA2G6:NM_001349868:exon11:c.G935A:p.R312H,PLA2G6:
		NM_001349864:exon12:c.G1613A:p.R538H,PLA2G6:NM_001349869:exon12:c.G917A:p.R306H,PLA2G6:NM_003560:exon12:c.G1613A:
83	P1	p.R538H,PLA2G6:NM_001349867:exon13:c.G1079A;p.R360H ARSA:NM_000487:exon8:c.1344dupC:p.G449Rfs*124,ARSA:NM_001085428:exon8:c.1086dupC:p.G363Rfs*124,ARSA:NM_001085425:e
84	P1	xon9:c.1344dupC:p.G449Rfs*124,ARSA:NM_001085426:exon9:c.1344dupC:p.G449Rfs*124,ARSA:NM_001085427:exon9:c.1344dupC:p. G449Rfs*124
85	P1	KLHL40:NM_152393:exon4:c.A1516C:p.T506P
86	P1	ACAD9:NM_014049;exon12:c.G1237A:p.E413K
87	P1	SLC26A1:NM_022042:exon2:c.C554T:p.T185M,SLC26A1:NM_134425:exon2:c.C554T:p.T185M,SLC26A1:NM_213613:exon3:c.C554T:p. T185M
88	P1	SLC22A5:NM 003060:exon8:c.C1400G:p.S467C,SLC22A5:NM 001308122:exon9:c.C1472G:p.S491C
89	P1	SLC22A5:NM 003060:exon8:c.G1412A:p.R471H,SLC22A5:NM 001308122:exon9:c.G1484A:p.R495H
90	P1	PEX7:NM 000288:exon7:c.G649A:p.G217R
91	P1	GUSB:NM 000181:exon3:c.C526T:p.L176F
92	P1	POR:NM 000941:exon12:c.G1370A:p.R457H
93	P1	SLC26A4:NM_000441:exon18:c.C2086T:p.Q696X
94	P1	SLC26A4:NM_000441:exon19:c.A2168G;p.H723R
95	P1	CFTR:NM_000492:exon14:c.G1865A:p.G622D
96	P1	CFTR:NM_000492:exon14:c.C2125T:p.R709X
97	P1	CNGB3:NM_019098:exon16:c.C1810T;p.R604X GNE:NM_001190388:exon3:c.G722A:p.R241Q,GNE:NM_001128227:exon4:c.G830A:p.R277Q,GNE:NM_001190383:exon4:c.G737A:p.R24
98	P1	6Q,GNE:NM_005476:exon4:c.G737A:p.R246Q
99	P1	FBP1:NM_000507:exon7:c.960_961insG:p.S321Vfs*13,FBP1:NM_001127628:exon8:c.960_961insG:p.S321Vfs*13

100	P1	ASS1:NM_054012:exon13:c.C1087T:p.R363W,ASS1:NM_000050:exon14:c.C1087T:p.R363W
101	P2	NEB:NM_004543:exon143:c.19106_19127del:p.T6369Rfs*36,NEB:NM_001164507:exon176:c.24710_24731del:p.T8237Rfs*36,NEB:NM 001164508:exon176:c.24710_24731del:p.T8237Rfs*36,NEB:NM_001271208:exon177:c.24815_24836del:p.T8272Rfs*36
102	P2	GJC2:NM 020435:exon2:c.C1199A:p.A400E
103	P2	HPS6:NM 024747:exon1:c.155delT:p.V52Efs*6
104	P2	CHKB:NM 005198:exon5:c.598delC:p.Q200Rfs*11
105	P2	NM 000102:exon1:c.297+2T>C
106	P2	MYO15A:NM 016239:exon2:c.3524dupA:p.S1176Vfs*14
107	P2	RPE65:NM 000329:exon14:c.C1543T:p.R515W
108	P2	ALMS1:NM 015120:exon8:c.G7399T:p.E2467X
109	P2	HBB:NM 000518:exon2:c.126delC:p.F43Lfs*19
110	P2	PAH:NM 000277:exon11:c.C1123G:p.Q375E
111	P2	ALMS1:NM_015120:exon16:c.11113_11131del:p.R3705Lfs*11
112	P2	NM_152388:exon6:c.529+1G>A;NM_001044385:exon6:c.553+1G>A
113	P2	FH:NM_000143:exon5:c.T653C:p.L218P
114	P2	CC2D2A:NM_001080522:exon35;c.C4407G:p.S1469R
115	P2	NM 031475:exon7:c.1464+1G>A
116	P2	NM 000478:exon9:c.997+1G>T;NM 001177520:exon7:c.766+1G>T;NM 001127501:exon8:c.832+1G>T
117	P2	FUCA1:NM 000147:exon2:c.T393A:p.Y131X
118	P2	LDLRAP1:NM 015627:exon1:c.65dupG:p.G25Rfs*9
119	P2	RPE65:NM 000329:exon4:c.G272A:p.R91Q
120	P2	ABCA4:NM 000350:exon40:c.G5646A:p.M1882I
121	P2	NM 000350:exon29:c,4352+1G>A
400	6	GBA:NM_000157:exon3:c.203dupC:p.T69Dfs*12,GBA:NM_001171812:exon3:c.203dupC:p.T69Dfs*12,GBA:NM_001005741:exon4:c.203
122	P2	dupC:p.T69Dfs*12,GBA:NM_001005742:exon4:c.203dupC:p.T69Dfs*12
123	P2	USH2A:NM_206933;exon22:c.C4732T;p.R1578C
124	P2	MYO3A:NM_017433;exon30:c.3498delT;p.S1167Pfs*26 ABCC8:NM_000352;exon33:c.G4051A:p.V1351M,ABCC8:NM_001287174:exon33:c.G4054A:p.V1352M,ABCC8:NM_001351295:exon33:c.
125	P2	G4117A:p.V1373M,ABCC8:NM_001351296:exon33:c.G4051A:p.V1351M,ABCC8:NM_001351297:exon33:c.G4048A:p.V1350M BEST1:NM_001139443:exon3:c.C241A:p.R81S,BEST1:NM_001300786:exon3:c.C241A:p.R81S,BEST1:NM_001300787:exon3:c.C241A
126	P2	815,BEST1:NM_001139443:exon3:c.C241A:p.R615,BEST1:NM_001300766:exon3:c.C241A:p.R615,BEST1:NM_001300767:exon3:c.C241A:p.R 815,BEST1:NM_004183:exon4:c.C421A:p.R141S
127	P2	NDUFV1:NM_001166102:exon9:c.1175dupG:p.D394Gfs*27,NDUFV1:NM_007103:exon9:c.1202dupG:p.D403Gfs*27
128	P2	NM_025114:exon47:c.6358-1G>A
129	P2	NM_025114:exon5:c.251-2A>G
130	P2	NM_024312.5:c.637-6T>G
131	P2	PAH:NM_000277:exon6:c.G516T:p.Q172H
132	P2	BRCA2:NM_000059:exon11:c.G4531T:p.E1511X
133	P2	SLC25A15:NM_014252:exon4:c.407delC:p.M137Cfs*10
134	P2	ATP7B:NM_001005918:exon15:c.G3339C:p.R1113S,ATP7B:NM_001330579:exon17:c.G3708C:p.R1236S,ATP7B:NM_001330578:exon18 :c.G3726C:p.R1242S,ATP7B:NM_000053:exon19:c.G3960C:p.R1320S,ATP7B:NM_001243182:exon20:c.G3627C:p.R1209S
135	P2	TGM1:NM 000359:exon6:c.C943T;p.R315C
136	P2	TGM1:NM 000359:exon3:c.A420G:p.I140M
	P2	NM 001159508:exon4:c.376-2A>G;NM 002225:exon5:c.466-2A>G

138	P2	NM 001159508:exon5:c.470-1G>A;NM 002225:exon6:c.560-1G>A
139	P2	POLG:NM 001126131:exon21:c.C3412T:p.R1138C,POLG:NM 002693:exon21:c.C3412T:p.R1138C
140	P2	
141	P2	TK2:NM_001172644:exon3:c.C193T:p.R65C,TK2:NM_001172643:exon4:c.C175T:p.R59C,TK2:NM_001271935:exon4:c.C175T:p.R59C,TK 2:NM_004614:exon4:c.C268T:p.R90C,TK2:NM_001271934:exon5:c.C121T:p.R41C
142	P2	FANCA:NM 000135:exon32:c.G3188A:p.W1063X,FANCA:NM 001286167:exon32:c.G3188A:p.W1063X
143	P2	ALOX12B:NM 001139:exon9:c.C1156T:p.R386C
144	P2	
144	P2	NM_016239:exon37:c.7396-1G>A GAA:NM_000152:exon7:c.G1129C:p.G377R,GAA:NM_001079804:exon7:c.G1129C:p.G377R,GAA:NM_001079803:exon8:c.G1129C:p.G37 7R
	P2	
146	PZ	GCDH:NM_000159:exon8:c.T797C:p.M266T,GCDH:NM_013976:exon8:c.T797C:p.M266T SLC7A9:NM_001126335:exon5:c.C511T:p.R171W,SLC7A9:NM_001243036:exon5:c.C511T:p.R171W,SLC7A9:NM_014270:exon5:c.C511
147	P2	T;p.R171W
148	P2	ETFB:NM_001014763:exon2:c.G505A:p.A169T,ETFB:NM_001985:exon3:c.G232A:p.A78T
149	P2	FAM161A:NM_032180:exon4:c.1635delA:p.E546Kfs*4,FAM161A:NM_001201543:exon5:c.1803delA:p.E602Kfs*4
150	P2	CNGA3:NM_001079878:exon7:c.G1723A:p.E575K,CNGA3:NM_001298:exon8:c.G1777A:p.E593K
151	P2	PROC:NM 000312:exon9:c.G1000A:p.G3345
152	P2	NM_001257343:exon7:c.889+1G>A;NM_001257342:exon7:c.889+1G>A;NM_001318836:exon5:c.529+1G>A;NM_004328:exon7:c.889+1G>A;NM_001257344:exon6:c.889+1G>A;NM_001320717:exon7:c.889+1G>A;NM_001079866:exon6:c.889+1G>A
153	P2	WNT10A:NM 025216:exon2:c.G311A:p.R104H
154	P2	NM 025216:exon2:c.376+1G>A
155	P2	COL6A3:NM_057164:exon3:c.C604T:p.R202X,COL6A3:NM_057166:exon3:c.C604T:p.R202X,COL6A3:NM_057165:exon4:c.C1207T:p.R4 03X,COL6A3:NM_057167:exon4:c.C1207T:p.R403X,COL6A3:NM_004369:exon5:c.C1825T:p.R609X
156	P2	AGXT:NM_000030:exon4:c.G481A:p.G161S
157	P2	MKKS:NM_018848:exon3:c.G862A:p.V288I,MKKS:NM_170784:exon3:c.G862A:p.V288I
158	P2	COL7A1:NM_000094;exon51:c.C4888T:p.R1630X
159	P2	NM 014049:exon15:c.1563+1G>A
160	P2	NM 001184:exon12:c.2533-1G>A
161	P2	HPS3:NM_032383:exon2:c.402delG:p.A135Pfs*10
101	ΓZ	PDE6B:NM_001350155:exon9:c.C523T:p.R175C,PDE6B:NM_001145292:exon11:c.C841T:p.R281C,PDE6B:NM_001350154:exon11:c.C84
162	P2	1T:p.R281C,PDE6B:NM_000283:exon13:c.C1678T:p.R560C,PDE6B:NM_001145291:exon13:c.C1678T:p.R560C
163	P2	EVC:NM_001306090:exon13:c.C1864T:p.R622X,EVC:NM_153717:exon13:c.C1864T:p.R622X
		PROM1:NM_001145851:exon10:c.T1211A:p.V404D,PROM1:NM_001145852:exon10:c.T1211A:p.V404D,PROM1:NM_001145847:exon11
164	P2	:c.T1211A:p.V404D,PROM1:NM_001145848:exon11:c.T1211A:p.V404D,PROM1:NM_001145849:exon11:c.T1238A:p.V413D,PROM1:NM_001145850:exon11:c.T1238A:p.V413D,PROM1:NM_006017:exon11:c.T1238A:p.V413D
165	P2	MTTP:NM_001300785:exon12:c.G1700A:p.R567H,MTTP:NM_000253:exon13:c.G1619A:p.R540H
166	P2	ETFDH:NM_001281738:exon3:c.G341A:p.R114H,ETFDH:NM_001281737:exon4:c.G383A:p.R128H,ETFDH:NM_004453:exon5:c.G524A:p. R175H
167	P2	ETFDH:NM_001281738:exon5:c.A587G;p.Y196C,ETFDH:NM_001281737:exon6:c.A629G;p.Y210C,ETFDH:NM_004453:exon7:c.A770G;p. Y257C
168	P2	SLC22A5:NM_001308122:exon1:c.C283G;p.L95V,SLC22A5:NM_003060:exon1:c.C283G;p.L95V
169	P2	RARS2:NM_001350505:exon1:c.T2G:p.M1?,RARS2:NM_020320:exon1:c.T2G:p.M1?
170	P2	NM_000426:exon1:c.112+2T>C;NM_001079823:exon1:c.112+2T>C
171	P2	GUSB:NM 000181:exon2:c.C328T:p.R110X,GUSB:NM 001284290:exon2:c.C328T:p.R110X
172	P2	SLC26A4:NM 000441:exon4:c.349delC:p.L1175fs*9
173 174	P2 P2	NM_153704:exon14:c.1413-2A>G;NM_001142301:exon15:c.1170-2A>G TMEM67:NM_153704:exon16:c.C1645T:p.R549C,TMEM67:NM_001142301:exon17:c.C1402T:p.R468C

175	P2	NM 004260:exon5:c.1131+1G>A
176	P2	RMRP:NR_003051.3:n.41G>A GNE:NM 001190384:exon3:c.C457T:p.R153X,GNE:NM 001190388:exon4:c.C772T:p.R258X,GNE:NM 001128227:exon5:c.C880T:p.R29
177	P2	4X,GNE:NM_001190383:exon5:c.C787T:p.R263X,GNE:NM_005476:exon5:c.C787T:p.R263X
170	00	VPS13A:NM_001018037:exon46:c.C6223T:p.R2075X,VPS13A:NM_001018038:exon47:c.C6340T:p.R2114X,VPS13A:NM_015186:exon47
178	P2	:c.C6340T;p.R2114X,VPS13A:NM_033305:exon47:c.C6340T;p.R2114X INVS:NM_001318382:exon15:c.C1909T;p.Q637X,INVS:NM_014425:exon15:c.C2887T;p.Q963X,INVS:NM_001318381:exon16:c.C2599T:
179	P2	p.Q867X
100	D0	POMT1:NM_001136114:exon13:c.1127dupA:p.Y376*,POMT1:NM_001077366:exon14:c.1316dupA:p.Y439*,POMT1:NM_001077365:ex
180	P2	on15:c.1478dupA:p.Y493*,POMT1:NM_001136113:exon15:c.1478dupA:p.Y493*,POMT1:NM_007171:exon15:c.1544dupA:p.Y515*
181	P3	FANCA:NM_000135.4:c.710-142_710-141dup
182	P3	F5:NM_000130:exon7:c.A1000G:p.R334G
183	P3	CYP27A1:NM_000784:exon8:c.G1415C:p.G472A
184	P3	FREM2:NM_207361:exon6:c.G5920A:p.E1974K
185	P3	OTOF:NM_001287489:exon13:c.C1273T:p.R425X,OTOF:NM_194248:exon13:c.C1273T:p.R425X
186	P3	CFTR:NM_000492:exon20:c.G3267A:p.W1089X
187	P3	LDLR:NM_001195800:exon15:c.G2026A:p.G676S,LDLR:NM_001195803:exon15:c.G1996A:p.G666S,LDLR:NM_001195799:exon16:c.G24 07A:p.G803S,LDLR:NM_000527:exon17:c.G2530A:p.G844S,LDLR:NM_001195798:exon17:c.G2530A:p.G844S
188	P3	GJB3:NM_001005752:exon2:c.421_423del:p.1141del,GJB3:NM_024009:exon2:c.421_423del:p.1141del
189	P3	ABCA4:NM_000350:exon6:c.C763T:p.R255C
		SCNN1A:NM_001159576:exon10:c.C1699T:p.R567X,SCNN1A:NM_001038:exon11:c.C1522T:p.R508X,SCNN1A:NM_001159575:exon11:
190	P3	c.C1591T:p.R531X
191	P3	RPGRIP1:NM_020366:exon5:c.C799T:p.R267X
192	P3	ZNF469:NM_001127464:exon1:c.C290T:p.P97L
193	P3	USH1G:NM_001282489:exon2:c.G784A:p.D262N,USH1G:NM_173477:exon2:c.G1093A:p.D365N
194	P3	FAM161A:NM_001201543:exon3:c.A943T;p.K315X,FAM161A:NM_032180:exon3:c.A943T;p.K315X
195	P3	CNGA3:NM_001079878;exon7;c.G1714A:p.E572K,CNGA3:NM_001298;exon8:c.G1768A:p.E590K
196	P3	CHRNG:NM_005199:exon2:c.C136T:p.R46X
197	P3	AGXT:NM 000030:exon1:c.G22C:p.V8L
198	P3	AGXT:NM 000030:exon2:c.G175A:p.E59K
190	P3	BTD:NM_000060:exon4:c.G1369A:p.V457M,BTD:NM_001281723:exon4:c.G1375A:p.V459M,BTD:NM_001281725:exon4:c.G1309A:p.V43 7M,BTD:NM_001323582:exon5:c.G1309A:p.V437M,BTD:NM_001281724:exon6:c.G1375A:p.V459M
200	P3	CRTAP:NM 006371:exon1:c.G3A:p.M1?
201	P3	
202	P3	HPS3:NM_032383.5:c.2888-1612G>A
		-
203	P3	PDE6B:NM_000283:exon1:c.G293A:p.R98H,PDE6B:NM_001145291:exon1:c.G293A:p.R98H
204	P3	EVC:NM_001306090:exon12:c.C1668G:p.Y556X,EVC:NM_153717:exon12:c.C1668G:p.Y556X PROM1:NM_001145849:exon1:c.139delC:p.H47lfs*12,PROM1:NM_001145850:exon1:c.139delC:p.H47lfs*12,PROM1:NM_001145851:e
		xon1:c.139delC:p.H47lfs*12,PROM1:NM_001145852:exon1:c.139delC:p.H47lfs*12,PROM1:NM_001145651:e
205	P3	ROM1:NM_001145847:exon2:c.139delC:p.H47lfs*12,PROM1:NM_001145848:exon2:c.139delC:p.H47lfs*12
206	P3	MOCS2:NM_176806:exon1:c.C16T:p.Q6X
207	P3	MAK:NM_001242957:exon6:c.G497A:p.R166H,MAK:NM_005906:exon6:c.G497A:p.R166H,MAK:NM_001242385:exon7:c.G497A:p.R166H
208	P3	CFTR:NM_000492:exon11:c.C1518G:p.I506M
209	P4	MLC1:NM_015166:exon2:c.G65A:p.R22Q,MLC1:NM_139202:exon2:c.G65A:p.R22Q
210	P4	LDLR:NM_001195800:exon10:c.G1217A:p.R406H,LDLR:NM_001195799:exon11:c.G1598A:p.R533H,LDLR:NM_001195803:exon11:c.G13 40A:p.R447H,LDLR:NM_000527:exon12:c.G1721A:p.R574H,LDLR:NM_001195798:exon12:c.G1721A:p.R574H
211	P4	GCDH:NM_000159:exon11:c.G1144A:p.A382T,GCDH:NM_013976:exon11:c.G1144A:p.A382T

		ACADVL:NM_001033859:exon8:c.761_763del:p.E255del,ACADVL:NM_001270448:exon8:c.599_601del:p.E201del,ACADVL:NM_00001
212	P4	8:exon9:c.827_829del:p.E277del,ACADVL:NM_001270447:exon10:c.896_898del:p.E300del ACADVL:NM_001033859:exon11:c.C1160T:p.T387M,ACADVL:NM_001270448:exon11:c.C998T:p.T333M,ACADVL:NM_000018:exon12:c
213	P4	.C1226T;p.T409M,ACADVL:NM_001270447:exon13:c.C1295T;p.T432M
214	P4	GAA:NM_000152:exon6:c.C971T:p.P324L,GAA:NM_001079804:exon6:c.C971T:p.P324L,GAA:NM_001079803:exon7:c.C971T:p.P324L
215	P4	SGSH:NM_000199:exon8:c.G1063A:p.E355K
216	P4	MEFV:NM_000243:exon10:c.G2282A:p.R761H
217	P4	NM_001297.5:c.2893-7G>A
218	P4	POLG:NM_001126131:exon20:c.C3139T:p.R1047W,POLG:NM_002693:exon20:c.C3139T:p.R1047W
219	P4	POLG:NM_001126131:exon10:c.G1790A:p.R597Q,POLG:NM_002693:exon10:c.G1790A:p.R597Q
220	P4	ATP7B:NM_001005918:exon11:c.G2695A:p.V899I,ATP7B:NM_001330579:exon13:c.G3064A:p.V1022I,ATP7B:NM_001330578:exon14:c. G3082A:p.V1028I,ATP7B:NM_000053:exon15:c.G3316A:p.V1106I,ATP7B:NM_001243182:exon16:c.G2983A:p.V995I
001	D4	ATP78:NM_001330579:exon10:c.C2503T;p.R835W,ATP78:NM_001330578:exon11:c.C2521T;p.R841W,ATP7B:NM_000053:exon12:c.C2
221	P4	755T:p.R919W,ATP7B:NM_001243182:exon13:c.C2422T:p.R808W ATP7B:NM_001005918:exon8:c.G2119A:p.G707RATP7B:NM_001330579:exon9:c.G2353A:p.G785R,ATP7B:NM_001330578:exon10:c.G2
222	P4	371A:p.G791R,ATP7B:NM_000053:exon11:c.G2605A:p.G869R,ATP7B:NM_001243182:exon12:c.G2272A:p.G758R
223	P4	SMPD1:NM_000543:exon2:c.C995G:p.P332R,SMPD1:NM_001007593:exon2:c.C992G:p.P331R,SMPD1:NM_001318087:exon2:c.C995G:p .P332R,SMPD1:NM_001318088:exon2:c.C34G:p.P12A
224	P4	RAPSN:NM_005055:exon2:c.C264A:p.N88K,RAPSN:NM_032645:exon2:c.C264A:p.N88K
225	P4	GLDC:NM_000170:exon25:c.A2938G:p.N980D
226	P4	GNE:NM 001128227:exon1:c.T18A:p.Y6X
227	P4	ASL:NM_001024943:exon6:c.C467T:p.P156L,ASL:NM_001024944:exon6:c.C467T:p.P156L,ASL:NM_001024946:exon6:c.C467T:p.P156L ASL:NM_000048:exon7:c.C467T:p.P156L
		PEX1:NM_001282677:exon18:c.T2795C:p.I932T,PEX1:NM_000466:exon19:c.T2966C:p.I989T,PEX1:NM_001282678:exon19:c.T2342C:p.
228	P4	1781T
229	P4	NM_000492:c34C>T
230	P4	CFTR:NM_000492:exon10:c.C1364T:p.A455V
231	P4	CFTR:NM_000492:exon20:c.G3205A:p.G1069R
232	P4	FARS2:NM_001318872:exon2:c.C467T;p.T156M,FARS2:NM_006567:exon2:c.C467T;p.T156M
		HFE:NM_139010:exon2:c.G305A:p.C102Y,HFE:NM_139003:exon3:c.G527A:p.C176Y,HFE:NM_139004:exon3:c.G569A:p.C190Y,HFE:NM_ 139007:exon3:c.G581A:p.C194Y,HFE:NM_139008:exon3:c.G539A:p.C180Y,HFE:NM_000410:exon4:c.G845A:p.C282Y,HFE:NM_0013007
233	P4	49:exon4:c.G845A:p.C282Y,HFE:NM 139006:exon4:c.G803A:p.C268Y,HFE:NM 139009:exon4:c.G776A:p.C259Y
234	P4	CYP21A2:NM_001128590:exon8:c.G1084A:p.A362T,CYP21A2:NM_000500:exon9:c.G1174A:p.A392T
235	P4	MOCS1:NM_005943:exon2:c.C394T:p.R132W,MOCS1:NM_001075098:exon3:c.C394T:p.R132W
236	P4	PKHD1:NM_138694:exon46:c.T7280C:p.l2427T,PKHD1:NM_170724:exon46:c.T7280C:p.l2427T
237	P4	EYS:NM_001142800:exon31:c.G6416A:p.C2139Y,EYS:NM_001292009:exon31:c.G6416A:p.C2139Y
238	P4	SLC22A5:NM_003060:exon3:c.C641T;p.A214V,SLC22A5:NM_001308122:exon4:c.C713T;p.A238V
239	P4	BTD:NM_000060:exon4:c.A968G:p.H323R,BTD:NM_001281723:exon4:c.A974G:p.H325R,BTD:NM_001281725:exon4:c.A908G:p.H303R, BTD:NM_001323582:exon5:c.A908G:p.H303R,BTD:NM_001281724:exon6:c.A974G:p.H325R
237	1.4	BTD:HMI_001225362:EX015:C.A9086:D.H305K,BTD:HMI_001281724:EX016C.A9746:D.H325K BTD:NM_000060:exon4:c.G1330C:p.D444H,BTD:NM_001281723:exon4:c.G1336C:p.D446H,BTD:NM_001281725:exon4:c.G1270C:p.D42
240	P4	4H,BTD:NM_001323582:exon5:c.G1270C:p.D424H,BTD:NM_001281724:exon6:c.G1336C:p.D446H
241	P4	ILDR1:NM_001199800:exon4:c.C505T;p.Q169X,ILDR1:NM_001199799:exon6:c.C772T;p.Q258X
242	P4	OTOF:NM_194322:exon22:c.G3028C:p.E1010Q,OTOF:NM_004802:exon23:c.G2797C:p.E933Q,OTOF:NM_194323:exon23:c.G2797C:p.E 933Q,OTOF:NM_001287489:exon40:c.G5098C:p.E1700Q,OTOF:NM_194248:exon40:c.G5098C:p.E1700Q
243	P4	LRPPRC:NM_133259:exon37:c.4128delT:p.E1377Kfs*10
244	P4	PROC:NM 000312:exon7:c.572 574del:p.K193del
245	P4	TTN:NM 001267550.2:c.55432+5G>C
245	P4	NM_133378:exon11:c.1800+1G>A;NM_001267550:exon11:c.1800+1G>A;NM_001256850:exon11:c.1800+1G>A;NM_133379:exon11:c. 1800+1G>A
247	P4	ACADM:NM_001286044:exon4:c.A13G:p.N5D,ACADM:NM_001286042:exon6:c.A472G:p.N158D,ACADM:NM_000016:exon7:c.A580G:p.

		N194D,ACADM:NM_001127328:exon7:c.A592G:p.N198D,ACADM:NM_001286043:exon8:c.A679G:p.N227D
		ACADM:NM_001286044:exon9:c.T680C:p.l227T,ACADM:NM_001286042:exon11:c.T1139C:p.l380T,ACADM:NM_000016:exon12:c.T124
248	P4	7C:p.I416T,ACADM:NM_001127328:exon12:c.T1259C:p.I420T,ACADM:NM_001286043:exon13:c.T1346C:p.I449T
249	P4	ABCA4:NM_000350:exon44:c.G6119A:p.R2040Q
250	P4	ABCA4:NM_000350:exon42:c.G5882A:p.G1961E
251	P4	ABCA4:NM_000350:exon36:c.G5077A:p.V1693i
252	P4	ABCA4:NM_000350:exon33:c.T4685C:p.I1562T
253	P4	ABCA4:NM_000350:exon31:c.C4610T:p.T1537M
254	P4	ABCA4:NM_000350:exon29:c.G4297A:p.V1433I
255	P4	ABCA4:NM_000350:exon19:c.C2827T:p.R943W
256	P4	ABCA4:NM_000350:exon12:c.G1715A:p.R572Q
257	P4	DPYD:NM_000110:exon3:c.C220T;p.R74X,DPYD;NM_001160301:exon3:c.C220T;p.R74X
		AGL:NM_000028:exon33:c.C4459T:p.R1487X,AGL:NM_000642:exon33:c.C4459T:p.R1487X,AGL:NM_000643:exon33:c.C4459T:p.R1487
258	P4	X,AGL:NM_000644:exon33:c.C4459T;p.R1487X,AGL:NM_000646:exon33:c.C4411T;p.R1471X
259	P4	AMPD1:NM_001172626:exon9:c.G1361A;p.R454H,AMPD1:NM_000036:exon10:c.G1373A;p.R458H
260	P4	AMPD1:NM_001172626:exon6:c A947T:p.K316I,AMPD1:NM_000036:exon7:c.A959T:p.K320I
261	P4	NPHS2:NM_014625:exon5:c.G686A:p.R229Q
262	P4	USH2A:NM_206933:exon63:c.A13339G;p.M4447V
263	P4	USH2A:NM_007123:exon13:c.T2802G:p.C934W,USH2A:NM_206933:exon13:c.T2802G:p.C934W

Supplementary table 2 Variant carrier rate (VCR), genome coordinate and

consequence of likely pathogenic/pathogenic variants detected in autosomal

Tece.	ssive g	enes.							
	GROU GENE								
Varian t #	P	NAME	VCR	CHR OM	POS	RS ID	REF	ALT	CONSEQUENCE
1	P1	HBB	0.256622	chr1	522694 3	rs3395050 7	โทยาลัย	Т	nonsynonymous SNV
2	P1	GJB2	0.215588 723	chr1 3	201894 73	rs7247422 4	LIVERSITY	т	nonsynonymous SNV
3	P1	HBA2	0.054700 855	chr1 6	173598	rs4146495 1	т	С	stoploss
4	P1	GALT	0.016556 291	chr9	346465 75	rs1110336 40	CCAGT	С	upstream
5	P1	ABCA4	0.006611 57	chr1	940082 52	rs1422536 70	с	Т	nonsynonymous SNV
6	P1	SLC22 A5	0.006611 57	chr5	132370 023	rs1156852 0	С	G	nonsynonymous SNV
7	P1	HBA2	0.005102 041	chr1 6	173600	rs4141204 6	A	Т	stoploss
8	P1	SBDS	0.004975 124	chr7	669942 10	rs1139939 93	A	G	splicing
9	P1	SLC26 A4	0.004975 124	chr7	107698 042	rs7862044 50	т	тс	frameshift insertion
10	P1	HBB	0.004958 678	chr1 1	522676 2	rs8035682 1	CAAAG	С	frameshift deletion
11	P1	HBB	0.004958 678	chr1 1	522709 9	rs3393174 6	Т	С	upstream
12	P1	BEST1	0.004958 678	chr1 1	619569 46	rs2002774 76	С	Т	nonsynonymous SNV

recessive genes.

		i	1	1	1	1	ı	i i	1
			0.004958	chr1	201893	rs8033894			frameshift
13	P1	GJB2	678	3	46	3	AG	A	deletion
		RPGRIP	0.004958	chr1	536223	rs7970451			frameshift
14	P1	1L	678	6	50	04	С	CGA	insertion
			0.004958		240868	rs1385844			
15	P1	AGXT	678	chr2	867	08	Т	С	startloss
			0.003338		216078	rs7752935			
16	P1	USH2A	898	chr1	088	51	C	Т	splicing
			0.003338		520460	rs1995685			nonsynonymous
17	P1	PKHD1	898	chr6	89	93	A	G	SNV
		CYP21	0.003333		320401				nonsynonymous
18	P1	A2	333	chr6	10	rs6471	G	т	SNV
-			0.003305		940777	rs7527861			nonsynonymous
19	P1	ABCA4	785	chr1	13	60	G	А	SNV
17	11	ADCA4	0.003305	CIIII	155238	00	9	~	nonsynonymous
20	P1	GBA	785	chr1	215	rs364897	т	С	SNV
20	F 1	GBA					1	C	
01	D1	LIDOC	0.003305	chr1	125815	rs1219080		<i>c</i>	nonsynonymous
21	P1	UROS	785	0	061	12	A	G	SNV
			0.003305	chr1	714389	rs8033885	12-		nonsynonymous
22	P1	DHCR7	785	1	85	7	C	Т	SNV
			0.003305	chr1	102894	rs6250872			nonframeshift
23	P1	PAH	785	2	800	77 5	TTGA	Т	deletion
			0.003305	chr1	898052	rs7598770			
24	P1	FANCA	785	6	75	08	C	Т	intronic
			0.003305	chr1	801129	rs2894086	N M B		nonsynonymous
25	P1	GAA	785	7	22	8	C	А	SNV
		SLC25	0.003305	1	961219	rs8033872	11/10/08	GCCCGGGCAGCCACCTG	frameshift
26	P1	A13	785	chr7	28	5	G	ТААТСТС	insertion
20		SLC25	0.003305	CIIII	961849	rs7631917			linger don't
27	P1	A13	785	chr7	901849	89	G	А	stopgain
21	F I	SLC25	0.003305	CHIT	961893	CONTRACTOR OF T	9	~	stopgain
20	D1			.17	//	rs8033872	TCATA	-	frameshift
28	P1	A13	785	chr7	71	0	ТСАТА	Т	deletion
			0.003305		117559	rs3975082	2		
29	P1	CFTR	785	chr7	463	00	G	A	splicing
			0.001700	chr1	891912	rs6175437			nonsynonymous
30	P1	TYR	68	1	78	5	G	A	SNV
			0.001697	7.5	117611	rs1219090			nonsynonymous
31	P1	CFTR	793	chr7	638	19	G	A	SNV
			0.001677	1000	519040	rs1582470			
32	P1	PKHD1	852	chr6	44	309	าทยาลย	A	splicing
			0.001672		235805	rs8033865			
33	P1	LYST	241	chr1	826	2	GIVERCITV	А	stopgain
			0.001666		216247	rs1110333	MITCHOIL I		
34	P1	USH2A	667	chr1	185	34	G	A	stopgain
			0.001666		735732	rs3760917			
35	P1	ALMS1	667	chr2	90	80	С	т	stopgain
J	1 1	SLC26	0.001663	LIIZ	107683	rs1110333		1	Jopgan
21	P1	A4		chr7		13	A	G	colicing
36	F 1		894	CULT.	453		^	u	splicing
~-	D.1	SLC26	0.001661		107690	rs1110332	<i>c</i>	-	nonsynonymous
37	P1	A4	13	chr7	203	20	С	Т	SNV
			0.001658		155238				nonsynonymous
38	P1	GBA	375	chr1	630	rs439898	G	A	SNV
		CEP29	0.001658	chr1	880556	rs5877830			frameshift
39	P1	0	375	2	66	17	A	AT	insertion
		CYP21	0.001658		320394				nonsynonymou
40	P1	A2	375	chr6	26	rs6475	Т	A	SNV
			0.001655	chr1	102851	rs6264293			nonsynonymou
41	P1	PAH	629	2	709	9	С	т	SNV
	1	1	0.001655	1	240868	rs3981223			frameshift
42	P1	AGXT	629	chr2	890	22	А	AC	insertion
74		10/1	0.001655	CI12	659747	rs1219181			inscrion
		1	0.001000	i i	009141				1
61	D1	CLICD	(00	ch-7	A1	OE	C	٨	ctongoin
43	P1	GUSB	629	chr7	01	85	G	A	stopgain

I	1	1	629	I	426	96		I	1
			0.001652		433385	rs5877785			frameshift
45	P1	MPL	893	chr1	435365	14	ССТ	с	deletion
45	FI	MUTY	0.001652	CIIII	453329	rs7623076		C	detetion
16	D1			ala s1			С	т	at a second
46	P1	Н	893	chr1	55	22		Т	stopgain
47		10011	0.001652		940010	rs6175064	<i>c</i>		nonsynonymous
47	P1	ABCA4	893	chr1	72	8	G	A	SNV
			0.001652		940304	rs6175014			nonsynonymous
48	P1	ABCA4	893	chr1	52	2	С	Т	SNV
			0.001652		940427	rs7568400			nonsynonymous
49	P1	ABCA4	893	chr1	97	95	G	A	SNV
			0.001652		940434	rs2018556			nonsynonymous
50	P1	ABCA4	893	chr1	70	02	G	А	SNV
			0.001652		155240	rs1048864			
51	P1	GBA	893	chr1	629	60	С	Т	splicing
			0.001652		179552	rs7431534			nonsynonymous
52	P1	NPHS2	893	chr1	605	8	G	A	SNV
			0.001652		209623	rs1057516	0		frameshift
53	P1	LAMB3	893	chr1	516	486	TG	Т	deletion
			0.001652		215674	rs1003869			
54	P1	USH2A	893	chr1	335	920	G	А	stopgain
51	1		0.001652		215674	rs7681613			frameshift
55	P1	USH2A	893	chr1	795	13	CATTT	с	deletion
55	11	UJIIZA		CHILI	215674	rs5272361	CATT	C	
57	D1	1101124	0.001652	abut	11 11 11 11	1200	C C		nonsynonymous
56	P1	USH2A	893	chr1	901	37	G	A	SNV
		2251	0.001652	chr1	706007	rs2004304			nonsynonymous
57	P1	PRF1	893	0	43	42	G	A	SNV
		CYP17	0.001652	chr1	102830	rs7561351	11 11 16		nonframeshift
58	P1	A1	893	0	761	68	TGAAAGAGTC	Т	deletion
			0.001652	chr1	174084	rs5703888			
59	P1	ABCC8	893	1	15	61	G	A	stopgain
			0.001652	chr1	647519	rs1191032	9		
60	P1	PYGM	893	1	66	55	G	А	stopgain
			0.001652	chr1	215689	rs1219184			
61	P1	GYS2	893	2	52	19	G	А	stopgain
		GNPTA	0.001652	chr1	101753	rs1378528	A		
62	P1	В	893	2	409	97	G	A	stopgain
		GNPTA	0.001652	chr1	101764	rs2818649	Price P		frameshift
63	P1	В	893	2	362	96	ATTTTC	А	deletion
			0.001652	chr1	109561	rs7474993	<u>วทยาลย</u>		nonframeshift
64	P1	MMAB	893	2	046	04	т	TCGGCCCGGCGGCACA	insertion
			0.001652	chr1	120739	rs3879069	NIVERSITY	10000000000000000	nonsynonymous
65	P1	ACADS	893	2	141	50		G	SNV
00	r 1	ACADS					A	9	
	D1	C 100	0.001652	chr1	201892	rs1110332	CAT	C	frameshift
66	P1	GJB2	893	3	81	04	CAT	С	deletion
		0.00	0.001652	chr1	201895	rs1048943		-	
67	P1	GJB2	893	3	11	96	С	Т	stopgain
			0.001652	chr1	323565	rs8035898			
68	P1	BRCA2	893	3	50	1	С	Т	stopgain
			0.001652	chr1	519411	rs6043198			nonsynonymous
69	P1	ATP7B	893	3	94	9	Α	G	SNV
			0.001652	chr1	677245	rs7666314			nonsynonymous
70	P1	RDH12	893	4	68	62	С	Т	SNV
			0.001652	chr1	879930	rs7519759			nonsynonymous
71	P1	GALC	893	4	29	87	С	А	SNV
	İ		0.001652	chr1	801730	rs8033889			nonsynonymous
72	P1	FAH	893	5	89	8	С	т	SNV
			0.001652	chr1	217229	rs1486907			
73	P1	OTOA	893	6	79	40	G	А	splicing
	1 4	UTUR	0.001652	chr1	564848	rs5675733	3		spacing
15			 V/V/100Z 	L L L L	204040	CCICICICCCI	1		1
	D1	BBCO		6	20	86	G	^	stopgain
74	P1	BBS2	893	6 chr1	20	86	G	A	stopgain framoshift
	P1 P1	BBS2 CNGB1		6 chr1 6	20 579048 23	86 rs7604300 56	G	A GC	stopgain frameshift insertion

	i	1	1			1	1	1	Í
			0.001652	chr1	111065	rs8792546			
76	P1	LDLR	893	9	64	52	G	A	splicing
		CYP27	0.001652		218814	rs5338856			
77	P1	A1	893	chr2	075	72	С	Т	stopgain
		COL4A	0.001652		227263	rs3713342			
78	P1	3	893	chr2	845	39	С	Т	stopgain
		COL4A	0.001652		227307	rs7480268			frameshift
79	P1	3	893	chr2	800	87	TCACCCGA	Т	deletion
			0.001652	chr2	442884	rs1996121			
80	P1	AIRE	893	1	59	15	G	Т	splicing
		COL6A	0.001652	chr2	459981	rs1002726			
81	P1	1	893	1	72	737	G	А	splicing
		PLA2G	0.001652	chr2	381156	rs5877843			1 3
82	P1	6	893	2	58	39	G	А	stopgain
02		PLA2G	0.001652	chr2	381208	rs5354860	3		nonsynonymous
83	P1	6	893	2	88	98	с	т	SNV
65	F1	0	0.001652		506253		C	1	frameshift
0.4	D1	4004		chr2		rs7615551	<i>c</i>	66	
84	P1	ARSA	893	2	30	67	С	CG	insertion
		KLHL4	0.001652		426889	rs7780225	12	_	nonsynonymous
85	P1	0	893	chr3	63	82	A	С	SNV
			0.001652	1	128906	rs1497536			nonsynonymous
86	P1	ACAD9	893	chr3	208	43	G	A	SNV
			0.001652		///	rs1390243			nonsynonymous
87	P1	IDUA	893	chr4	991150	19	G	A	SNV
		SLC22	0.001652	1	132392	rs6037662			nonsynonymous
88	P1	A5	893	chr5	565	4	C	G	SNV
		SLC22	0.001652	/	132392	rs3861342	111 112 113		nonsynonymous
89	P1	A5	893	chr5	577	23	G	А	SNV
			0.001652	ý	136869	rs1219091	11/11/10/10/10/10/10/10/10/10/10/10/10/1		nonsynonymous
90	P1	PEX7	893	chr6	905	52	G	A	SNV
			0.001652	1	659797	rs1219181			nonsynonymous
91	P1	GUSB	893	chr7	82	81	G	А	SNV
			0.001652		759851	rs2893160			nonsynonymous
92	P1	POR	893	chr7	79	8	G	А	SNV
		SLC26	0.001652		107704	rs7528079			
93	P1	A4	893	chr7	382	25	c Si	т	stopgain
75	11	SLC26	0.001652	Criti	107710	rs1219083			
94	P1	A4	893	chr7	132	62	A	G	nonsynonymous SNV
94	F1	A4	0.001652	CHIT		-	A	G	
0.5		CETO		80-9	117592	rs1219087	กิ่งยาวัย		nonsynonymous
95	P1	CFTR	893	chr7	032	59	GIEIGE	A	SNV
			0.001652		117592	rs1219087		_	
96	P1	CFTR	893	chr7	292	60	CIVERSITY	Т	stopgain
			0.001652		865792	rs2008050			
97	P1	CNGB3	893	chr8	24	87	G	A	stopgain
			0.001652		362368	rs1219086			nonsynonymous
98	P1	GNE	893	chr9	64	29	С	Т	SNV
			0.001652		946034	rs7576531			frameshift
99	P1	FBP1	893	chr9	37	54	А	AC	insertion
			0.001652		130494	rs1219086			nonsynonymou
100	P1	ASS1	893	chr9	983	40	С	Т	SNV
	Ι		0.009917		151493	rs7610679	CTCCATCTCTGGAGTA		frameshift
101	P2	NEB	355	chr2	386	11	ACAGGTG	С	deletion
	1		0.004958		228158	rs7612610			nonsynonymou
102	P2	GJC2	678	chr1	957	49	с	А	SNV
	-		0.004958	chr1	102065	rs1590262		1	frameshift
103	P2	HPS6	678	0	628	450	GT	G	deletion
100			0.004958	chr2	505806	rs7573695		-	frameshift
104	DO	CUVD					TG	т	
104	P2	CHKB	678	2	43	51	TG	Т	deletion
		CYP17	0.003305	chr1	102837	rs7647236		<i>c</i>	
105	P2	A1	785	0	063	54	A	G	splicing
		MYO15	0.003305	chr1	181223	rs7661879			frameshift
	_			_			-		
106	P2	A	785	7	23	94	с	CA	insertion

	1		449		35	45	l		SNV
			0.001663		734539	rs1198051			
108	P2	ALMS1	894	chr2	26	503	G	т	stopgain
100		71277101	0.001661	chr1	522676	rs3575533	3		frameshift
109	P2	HBB	13	1	522010	1	AG	А	deletion
107		1100	0.001661	chr1	102843	rs1841481	,10		nonsynonymous
110	P2	PAH	13	2	722	04	G	С	SNV
110			0.001661	-	735729	rs3981229	GAGGTCTAATCAAATTA	3	frameshift
111	P2	ALMS1	13	chr2	89	92	AAA	G	deletion
	12	TMEM	0.001658	CITZ	201632	rs8003429	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	detetion
112	P2	237	375	chr2	050	9	с	т	splicing
112	12	231	0.001655	CITZ	241508	rs1553341	C		nonsynonymous
113	P2	FH	629	chr1	688	345	А	G	SNV
115	12	CC2D2	0.001655	CIT	155961	rs5877797		3	nonsynonymous
114	P2	A	629	chr4	77	32	С	G	SNV
114	12	-	0.001652	CIII4	644593	rs7526496	C	G	5111
115	P2	ESPN	893	chr1	6	06	G	A	splicing
115	12	LJIN	0.001652	CIIII	215738	rs1292415	G	~	spacing
116	P2	ALPL	893	chr1	00	045	G	т	splicing
110	12	ALIL	0.001652	CIIII	238656	rs7812301	0	1	spacing
117	P2	FUCA1	893	chr1	230030	82	A	т	stopgain
	12	10011	075	CIII 2					500954111
		LDLRA	0.001652		255437	rs1201229			frameshift
118	P2	P1	893	chr1	62	554	T	TG	insertion
110	12	11	0.001652	CIIII	684448	rs6175287		10	nonsynonymous
119	P2	RPE65	893	chr1	57	3	С	т	SNV
117	12	11/200	0.001652	CIII	940108	rs7521609			nonsynonymous
120	P2	ABCA4	893	chr1	68	46	С	т	SNV
			0.001652	1	940304	rs2009672			
121	P2	ABCA4	893	chr1	27	29	С	т	splicing
		7.0011	0.001652	CITZ	155239	rs1170895			frameshift
122	P2	GBA	893	chr1	989	261	с	CG	insertion
			0.001652	-	216097	rs2015291			nonsynonymous
123	P2	USH2A	893	chr1	109	24	G	A	SNV
			0.001652	chr1	261737	rs7520469			frameshift
124	P2	МҮОЗА	893	0	61	45	СТ	С	deletion
			0.001652	chr1	173969	rs1493313			nonsynonymous
125	P2	ABCC8	893	1	84	88	С	Т	SNV
			0.001652	chr1	619558	rs2818652			nonsynonymous
126	P2	BEST1	893	A 161	91	36	วิทยาลัย	А	SNV
		NDUFV	0.001652	chr1	676121	rs7668308			frameshift
127	P2	1	893	1	58	64	A IVERSITY	AG	insertion
		CEP29	0.001652	chr1	880609	rs7666702			
128	P2	0	893	2	95	48	С	Т	splicing
		CEP29	0.001652	chr1	881391	rs9519794			
129	P2	0	893	2	93	48	т	С	splicing
		GNPTA	0.001652	chr1	101780	rs7507937			
130	P2	В	893	2	292	12	А	С	intronic
			0.001652	chr1	102855	rs1925921			nonsynonymous
131	P2	PAH	893	2	326	11	С	А	SNV
			0.001652	chr1	323388	rs3763382			
132	P2	BRCA2	893	3	86	26	G	Т	stopgain
		SLC25	0.001652	chr1	408052	rs7802014			frameshift
133	P2	A15	893	3	09	05	AC	А	deletion
			0.001652	chr1	519373	rs7787326			nonsynonymous
134	P2	ATP7B	893	3	37	81	С	G	SNV
			0.001652	chr1	242597	rs3975145			nonsynonymous
135	P2	TGM1	893	4	45	25	G	А	SNV
155			0.001652	chr1	242617	rs1392088			nonsynonymous
155			0.001052	-					
135	P2	TGM1	893	4	83	06	Т	С	SNV
	P2	TGM1			83 404112	06 rs7719147	Т	С	SNV

	1	1	I	1		I	I	I	1
100	50		0.001652	chr1	404115	rs1057517	<i>c</i>		
138	P2	IVD	893	5	54	043	G	A	splicing
			0.001652	chr1	893186	rs7671380			nonsynonymou
139	P2	POLG	893	5	11	32	G	A	SNV
		VPS33	0.001652	chr1	910144	rs1064793			frameshift
140	P2	В	893	5	30	614	CA	С	deletion
			0.001652	chr1	665369	rs2818654			nonsynonymou
141	P2	TK2	893	6	81	89	G	A	SNV
			0.001652	chr1	897497	rs1166286			
142	P2	FANCA	893	6	81	386	С	т	stopgain
		ALOX1	0.001652	chr1	807710	rs7500668	-		nonsynonymou
143	P2	2B	893	7	9	36	G	А	SNV
145	12	-					g	~	5111
	50	MYO15	0.001652	chr1	181508	rs7604618	<i>c</i>		1
144	P2	A	893	7	35	23	G	A	splicing
			0.001652	chr1	801085	rs7520026			nonsynonymou
145	P2	GAA	893	7	42	66	G	С	SNV
			0.001652	chr1	128963	rs7716508			nonsynonymou
146	P2	GCDH	893	9	66	94	Т	С	SNV
		SLC7A	0.001652	chr1	328625	rs7582420	9 20		nonsynonymou
147	P2	9	893	9	54	98	G	А	SNV
			0.001652	chr1	513532	rs5480462			nonsynonymou
148	P2	ETFB	893	9	75	12	C	т	SNV
140	14	FAM16		1	618360				frameshift
		-	0.001652		111				
149	P2	1A	893	chr2	57		СТ	С	deletion
			0.001652	1	983969	rs7746764	NN -		nonsynonymou
150	P2	CNGA3	893	chr2	47	15	G	A	SNV
			0.001652	1	127428	rs1219181	111 112 113		nonsynonymou
151	P2	PROC	893	chr2	560	50	G	А	SNV
			0.001652	1	218662	rs1553597	11/1/1 🖼		
152	P2	BCS1L	893	chr2	680	661	G	А	splicing
		WNT10	0.001652	1	218882	rs3749102			nonsynonymou
153	P2	A	893	chr2	358	16	G	А	SNV
155	ΓZ			CHIZ	e Verana			^	2140
		WNT10	0.001652		218882	rs5615031			
154	P2	A	893	chr2	424	17	G	A	splicing
		COL6A	0.001652		237380	rs7553828			
155	P2	3	893	chr2	987	29	G	A	stopgain
			0.001652	20	240871	rs1801772			nonsynonymou
156	P2	AGXT	893	chr2	406	27	G	A	SNV
			0.001652	chr2	104126	rs1130323	0		nonsynonymou
157	P2	MKKS	893	016	53	43	โลยาลัย	Т	SNV
-		COL7A	0.001652		485812	rs1219128			
158	P2	1	893	chr3	71	47	GIWEDCITV	А	stopgain
156	۲Z	1		CIIIS			GIVERSIIY	A	stopgain
			0.001652		128909	rs1936041			
159	P2	ACAD9	893	chr3	422	020	G	A	splicing
			0.001652		142553	rs7552727			
160	P2	ATR	893	chr3	741	69	С	Т	splicing
			0.001652		149140	rs7488839			frameshift
161	P2	HPS3	893	chr3	187	97	AG	A	deletion
			0.001652			rs2015411			nonsynonymou
162	P2	PDE6B	893	chr4	662197	31	С	т	SNV
	1		0.001652		579369	rs1329006			
163	P2	EVC	893	chr4	517507	994	С	т	stopgain
100	12	LVC		C1114			~	·	
1 - 1	00	000111	0.001652		160090	rs5634157		-	nonsynonymou
164	P2	PROM1	893	chr4	12	11	A	Т	SNV
			0.001652		996088	rs1994222			nonsynonymou
165	P2	MTTP	893	chr4	27	20	G	A	SNV
			0.001652		158685	rs1219649			nonsynonymou
166	P2	ETFDH	893	chr4	137	55	G	A	SNV
			0.001652		158695	rs7800154			nonsynonymou
167	P2	ETFDH	893	chr4	582	93	А	G	SNV
201	<u> </u>	SLC22	0.001652	0.117	132370	rs3861341		-	nonsynonymou
	1	JLCZZ	0.001002	1				1	
160	D0	15	002	chrE	255	Q1	C	G	SVIV/
168	P2	A5	893	chr5	255	91	С	G	SNV

	1		893		56	50	I	I	1
170	DO	LAMA2	0.001652	alare	128883	rs1211322	т	С	and ining
170	P2	LAMAZ	893	chr6	359	465	1	L	splicing
171	DO	CLICR	0.001652	ala x7	659802	rs1053785	C		storenin
171	P2	GUSB	893	chr7	92	648 rs1275009	G	A	stopgain frameschift
170	0.0	SLC26	0.001652	- la - 7	107672		TC	т	frameshift
172	P2	A4	893	chr7	181	555	TC	1	deletion
170	50	TMEM	0.001652		937878	rs7862056		<i>c</i>	11.1
173	P2	67	893	chr8	42	08	A	G	splicing
171	50	TMEM	0.001652		937932	rs7470256	<i>c</i>	-	nonsynonymous
174	P2	67	893	chr8	67	17	С	Т	SNV
		RECQL	0.001652		144515	rs1050860		_	
175	P2	4	893	chr8	987	620	С	Т	splicing
			0.001652		356579	rs1156413		_	
176	P2	RMRP	893	chr9	78	585	С	Т	ncRNA_exonic
		C 1.17	0.001652		362341	rs2006431			
177	P2	GNE	893	chr9	15	06	G	A	stopgain
		VPS13	0.001652		773374	rs1417854	9		
178	P2	A	893	chr9	99	249	C	Т	stopgain
			0.001652		100297	rs1425211			
179	P2	INVS	893	chr9	017	517	С	Т	stopgain
			0.001652		131518	rs7275028			
180	P2	POMT1	893	chr9	948	54		ТА	stopgain
			0.031456	chr1	898034	rs1723234			
181	P3	FANCA	954	6	81	4	T	TGA	intronic
			0.024793	//	169555	rs1182039			nonsynonymous
182	P3	F5	388	chr1	300	05	T	С	SNV
		CYP27	0.009917		218814	rs2008838	11 111 6		nonsynonymous
183	P3	A1	355	chr2	696	71	G	С	SNV
			0.003305	chr1	387847	rs1214343			nonsynonymous
184	P3	FREM2	785	3	09	55	G	A	SNV
			0.003305		264835	rs3975155			
185	P3	OTOF	785	chr2	81	82	G	A	stopgain
			0.001706		117611	rs1500202			
186	P3	CFTR	485	chr7	708	60	G	A	stopgain
			0.001655	chr1	111296	rs1555809			nonsynonymous
187	P3	LDLR	629	9	53	614	G	A	SNV
			0.001652		347851	rs7702473			nonframeshift
188	P3	GJB3	893	chr1	82	78	CATT	С	deletion
			0.001652	W 161	940987	rs6264595			nonsynonymous
189	P3	ABCA4	893	chr1	99	2	G	A	SNV
		SCNN1	0.001652	chr1	634898	rs1378526	INIVERSIIY		
190	P3	Α	893	2	1	34	G	А	stopgain
		RPGRIP	0.001652	chr1	213035	rs5543965			
191	P3	1	893	4	42	90	С	Т	stopgain
		ZNF46	0.001652	chr1	884277	rs2735856			nonsynonymous
192	P3	9	893	6	60	17	С	Т	SNV
			0.001652	chr1	749197	rs5389833			nonsynonymous
193	P3	USH1G	893	7	43	93	С	Т	SNV
		FAM16	0.001652		618400	rs1572879			_
194	P3	1A	893	chr2	61	569	Т	А	stopgain
			0.001652		983969	rs7630413			nonsynonymous
195	P3	CNGA3	893	chr2	38	73	G	А	SNV
			0.001652		232540	rs1219126			_
196	P3	CHRNG	893	chr2	072	72	С	Т	stopgain
			0.001652		240868	rs7960520			nonsynonymous
197	P3	AGXT	893	chr2	887	57	G	С	SNV
			0.001652		240869	rs7675863			nonsynonymous
198	P3	AGXT	893	chr2	179	62	G	А	SNV
			0.001652	İ	156452	rs1466006			nonsynonymous
199	P3	BTD	893	chr3	25	71	G	А	SNV
			0.001652		331140	rs7265935			1
200	P3	CRTAP	893	chr3	80	7	G	А	startloss
	<u> </u>		0,0			<u> </u>	1	1	

		1	1		1	ı	1	I	1
		KLHL4	0.001652		426908	rs3975094			nonsynonymous
201	P3	0	893	chr3	63	21	G	С	SNV
			0.001652		149170	rs2818650			
202	P3	HPS3	893	chr3	483	96	G	A	intronic
			0.001652			rs7760504			nonsynonymous
203	P3	PDE6B	893	chr4	625919	13	G	А	SNV
205	15	TDEOD	0.001652	CIII-		rs7652696	9	11	5111
001	50	5.00			578365		<i>c</i>	<i>c</i>	
204	P3	EVC	893	chr4	6	19	С	G	stopgain
			0.001652		160757	rs7475124			frameshift
205	P3	PROM1	893	chr4	67	50	TG	Т	deletion
			0.001652		531097	rs1219086			
206	P3	MOCS2	893	chr5	14	07	G	A	stopgain
			0.001652		108038	rs3879066			nonsynonymous
207	P3	MAK	893	chr6	86	48	С	Т	SNV
201			0.001652	cino	117559	10			nonsynonymous
	50	CCTT0				1000000	<i>c</i>	<i>c</i>	, ,
208	P3	CFTR	893	chr7	589	rs1800092	С	G	SNV
			0.008264	chr2	500848	rs1842417			nonsynonymous
209	P4	MLC1	463	2	38	59	С	Т	SNV
			0.003305	chr1	111168	rs7771887	23		nonsynonymous
210	P4	LDLR	785	9	74	64	G	A	SNV
			0.001652	chr1	128977	rs5675640			nonsynonymous
211	P4	GCDH	893	9	64	95	G	А	SNV
211	14	ACADV	0.001652	chr1	722225	rs7960519	5		nonframeshift
010	64			11	1/11		1166		
212	P4	L	893	7	0	13	AAGG	A	deletion
		ACADV	0.001652	chr1	722368	rs1139941			nonsynonymous
213	P4	L	893	7	7	69	C	Т	SNV
			0.001652	chr1	801083	rs7500308	111 112		nonsynonymous
214	P4	GAA	893	7	05	87	С	Т	SNV
			0.001652	chr1	802108	rs7669381	111111 111		nonsynonymous
215	P4	SGSH	893	7	98	11	С	т	SNV
215	14	50511	0.001652	chr1	324320	rs1048950			
017	D4				JU Links	WALLSON WALLSON		-	nonsynonymous
216	P4	MEFV	893	6	5	97	С	Т	SNV
			0.001652	chr1	579014	rs7491997			
217	P4	CNGB1	893	6	42	21	C	Т	splicing
			0.001652	chr1	893190	rs1818606			nonsynonymous
218	P4	POLG	893	5	65	32	G	А	SNV
			0.003305	chr1	893256	rs1001570	13		nonsynonymous
219	P4	POLG	785	5	09	418	C	Т	SNV
			0.001652	chr1	519424	rs5412088			nonsynonymous
220	D4	47070		3	0000	I O LO O O	โลยาลัย	-	
220	P4	ATP7B	893		82	27	34121612	Т	SNV
			0.003305	chr1	519497	rs1219079			nonsynonymous
221	P4	ATP7B	785	3	72	93	GIVERGITV	A	SNV
			0.001652	chr1	519501	rs1913120			nonsynonymous
222	P4	ATP7B	893	3	32	27	С	Т	SNV
	l		0.028099	chr1	639206	rs2020819			nonsynonymous
223	P4	SMPD1	174	1	0	54	С	G	SNV
223	. 4	JIVIT D1					~		
		04000	0.001652	chr1	474480	rs1048942	-	-	nonsynonymous
224	P4	RAPSN	893	1	79	99	G	Т	SNV
			0.001652		653314	rs7725745			nonsynonymous
225	P4	GLDC	893	chr9	2	30	Т	С	SNV
			0.004958		362769	rs2007636			
226	P4	GNE	678	chr9	27	27	A	т	stopgain
			0.001652		660866	rs7690175	1		nonsynonymous
207	D4	ACI		ch-7			C	т	, ,
227	P4	ASL	893	chr7	05	08	С	Т	SNV
			0.001652		924943	rs6175042			nonsynonymous
		PEX1	893	chr7	57	7	A	G	SNV
228	P4		0.001/00		117480	rs7563147			
228	P4		0.001652			10	С	-	UTR5
228 229	P4 P4	CFTR	0.001652 893	chr7	061	10		Т	0110
		CFTR	893	chr7			-		
229	P4		893 0.001652		117548	rs7455112			nonsynonymous
		CFTR CFTR	893 0.001652 893	chr7 chr7	117548 795	rs7455112 8	C	T	nonsynonymous SNV
229 230	P4 P4	CFTR	893 0.001652 893 0.006791	chr7	117548 795 117611	rs7455112 8 rs2003211	С	Т	nonsynonymous SNV nonsynonymous
229	P4		893 0.001652 893		117548 795	rs7455112 8			nonsynonymous SNV

		1	629		7	68			SNV
			0.001652		260929		_		nonsynonymous
233	P4	HFE	893	chr6	13	rs1800562	G	A	SNV
		CYP21	0.010380		320407	rs2022427			nonsynonymous
234	P4	A2	623	chr6	23	69	G	A	SNV
			0.018181		399257	rs3771679			nonsynonymous
235	P4	MOCS1	818	chr6	02	49	G	А	SNV
			0.001652		518831	rs3981244			nonsynonymous
236	P4	PKHD1	893	chr6	63	92	A	G	SNV
			0.001652		642306	rs7499098			nonsynonymous
237	P4	EYS	893	chr6	00	63	С	Т	SNV
		SLC22	0.006611		132384	rs3861341			nonsynonymous
238	P4	A5	57	chr5	290	99	С	Т	SNV
			0.003305		156448	rs3975071			nonsynonymous
239	P4	BTD	785	chr3	24	76	A	G	SNV
			0.003305		156451	rs1307888			nonsynonymous
240	P4	BTD	785	chr3	86	1	G	С	SNV
			0.003305		121994	rs1427461	0		
241	P4	ILDR1	785	chr3	188	63	G	А	stopgain
			0.009917		264639	rs1997664			nonsynonymous
242	P4	OTOF	355	chr2	69	65	C	G	SNV
		LRPPR	0.001652	3	438897	rs7590522	0000	-	frameshift
243	P4	С	893	chr2	33	46	CA	с	deletion
245		<u> </u>	0.014876	CITZ	127426	rs1994694	0.	C	nonframeshift
244	P4	PROC	0.014870	chr2	12/420	69	GAGA	G	deletion
244	F 4	TTN-	0.001769	CHIZ	178601	rs7547173	UAUA	G	detetion
245	P4	AS1	912	chr2	653	90	c	G	splicing
240	F4	ASI	0.001655	CHIZ	178790			G	splicing
247	D4	TTA		-	// //. 6	rs3975174	c	т	a a li a in a
246	P4	TTN	629	chr2	707	97		Т	splicing
047	D4	ACAD	0.001652	1.1	757400	rs7736773		c	nonsynonymous
247	P4	M	893	chr1	91	27	A	G	SNV
0.10		ACAD	0.001652		757627	rs7608921		<i>c</i>	nonsynonymous
248	P4	М	893	chr1	44	23	T	С	SNV
			0.018181		940054	rs1484601		_	nonsynonymous
249	P4	ABCA4	818	chr1	69	46	C	Т	SNV
			0.003305	43	940082			_	nonsynonymous
250	P4	ABCA4	785	chr1	51	rs1800553	C	Т	SNV
			0.001652		940197	rs6175056			nonsynonymous
251	P4	ABCA4	893	chr1	01	3	CARLO R	Т	SNV
			0.001652		940219				nonsynonymous
252	P4	ABCA4	893	chr1	34	rs1762111	A	G	SNV
			0.004958	IAL	940249	rs6264257	JNIVERSII I		nonsynonymous
253	P4	ABCA4	678	chr1	78	5	G	A	SNV
			0.008264		940304	rs5635706			nonsynonymous
254	P4	ABCA4	463	chr1	83	0	С	Т	SNV
			0.003316		940470	rs6174944			nonsynonymous
255	P4	ABCA4	75	chr1	10	6	G	A	SNV
			0.004958		940631	rs6174855			nonsynonymous
256	P4	ABCA4	678	chr1	57	9	С	Т	SNV
			0.003311		978281	rs1897685			
257	P4	DPYD	258	chr1	27	76	G	A	stopgain
			0.001655		999167	rs1211805			
258	P4	AGL	629	chr1	09	8	С	Т	stopgain
			0.049586		114677	rs1219126			nonsynonymous
259	P4	AMPD1	777	chr1	465	82	С	Т	SNV
			0.003305		114679	rs3452619			nonsynonymous
260	P4	AMPD1	785	chr1	616	9	Т	А	SNV
			0.006611		179557	rs6174772			nonsynonymous
261	P4	NPHS2	57	chr1	079	8	С	Т	SNV
			0.001652	İ	215674	rs1394748			nonsynonymous
	1			ala s1	572	06	т	С	SNV
262	P4	USH2A	893	chr1	512			C	SINV
262	P4	USH2A		CHL			1	с. 	
262 263	P4 P4	USH2A USH2A	893 0.001663 894	chr1	216246 592	rs2015276 62	A	c	nonsynonymous SNV

		GnomAD Allele Frequency											
Variant number	AF	AF_afr	AF_ami	AF_amr	AF_asj	AF_eas	AF_fin	AF_nfe	AF_oth	AF_sas			
1	0.0003	0.0001	0	0	0	0.0013	0	0	0	0.0111			
2	0.0035	0.0008	0	0.0033	0.0075	0.0854	0.0014	0.0015	0.0074	0			
3	0.0000282	0.0000255	0	0	0	0.0006	0	0	0	0			
4	0.0467	0.0128	0.1626	0.0495	0.0472	0.008	0.0679	0.0642	0.0437	0.0618			
5	0.0000698	0.0000952	0	0	0	0.0003	0	0.0000775	0	0			
6	0.0000488	0	0	0	0	0.0022	0	0	0	0			
7				111/10	ai.								
8	0.0034	0.0021	0	0.0015	0.0012	0.0061	0.0081	0.0036	0.0032	0.0043			
9	0.00000697	0	0	0 0	0	0.0003	0	0	0	0			
10	0.0000698	0	0	0	0	0.0022	0	0	0	0.001			
11	0.000014	0	0	0	0	0.0003	0	0	0	0			
12	0.0002	0	0		0	0.0029	0	0.0002	0	0			
13	0.0002	0	0	0	0	0.0093	0	0.0000155	0	0			
14	0.0000282	0	0		0	0.0013	0	0	0	0			
15	0.00000697	0	0	0	0	0.0003	0	0	0	0			
16	0.00000698	0	0	0	0	0.0003	0	0	0	0			
17	0.0000209	0	100		0	0.0006	0	0	0.0005	0			
18	0.0139	0.0048	0	0.0288	0.0737	0.0032	0.001	0.0103	0.0156	0.001			
19	0.0000558	00	0	0	0	0.0022	0	0.0000155	0	0			
20	0.0001	0.0002	0	0.0000733	0	0	0.0000956	0.000031	0.0005	0			
21	0.0002	0.0002	0	0.0004	0	0	0	0.0002	0.0009	0			
22	0.0000349	0	0	0	0	0	0	0.0000774	0	0			
23	0.0001		0.0144	0.0000732	0	าลยู	0	0.0000774	0	0			
24	0.00000698	0	010-		0	0.0003	0	0	0	0			
25	0.0000418	0	0	0	0	0.0019	0	0	0	0			
26	0.000014	0	0	0	0	0.0006	0	0	0	0			
27	0.00000698	0	0	0	0	0	0	0.0000155	0	0			
28	0.0001	0	0	0.0001	0	0.0061	0	0	0	0			
29	0.00000698	0	0	0	0	0	0	0	0	0.0003			
30	0.0000628	0.0000477	0	0.0002	0	0.0003	0	0.000031	0.0005	0			
31	0.000014	0.0000238	0	0	0	0	0	0.0000155	0	0			
32													
33	0.000014	0.0000238	0	0	0	0	0	0.0000155	0	0			
34													
35	0.0000349	0.0000476	0	0	0	0	0	0.0000465	0	0			
36	0.0002	0	0	0	0	0.0077	0	0.0000155	0	0			
37	0.0000419	0.0000238	0	0	0.0003	0.0006	0.0000955	0.0000155	0	0			
38	0.0000349	0.0000239	0	0	0	0.0003	0	0.000031	0	0			
39													

Supplementary table 3: Allele frequencies of likely pathogenic/pathogenic variants

detected in autosomal recessive genes in GenomAD database.

40	0.002	0.001	0	0.0014	0.0006	0.001	0.0029	0.0011	0.0005	0.0007
41	0.0000279	0.0000238	0	0.0000733	0	0	0	0.0000155	0.0005	0
42	0.0001	0.0000963	0	0.0001	0	0.0003	0.0000966	0.0001	0	0.0003
43	0.0000209	0	0	0	0	0	0	0.0000465	0	0
44	0.000014	0	0	0	0	0	0	0.000031	0	0
45	0.0000488	0.0000476	0	0.0000732	0	0.0006	0	0.000031	0	0
46	0.0000209	0	0	0.0000132	0	0.001	0	0.000031	0	0
40	0.0003	0.0009	0	0.0001	0	0.001	0	0.0001	0	0
48	0.0000279	0.0000238	0	0.0001	0	0	0	0.0000465	0	0
40	0.0000279	0.0000238	0	0.0006	0	0	0	0.0000155	0	0
50	0.0000209	0	0	0.0000	0	0	0.0002	0.0000155	0	0
51	0.0000837	0	0	0	0.0003	0	0.0002	0.0000929	0.0005	0.0003
52	0.00000697	0	0	0	0.0005	0.0003	0	0.00000725	0.0005	0.0005
53	0.00000071				2	0.0003			Ŭ	
55	. 0.00000698	. 0	. 0	0.0000733	. 0	. 0	. 0	. 0	. 0	. 0
55	0.000014	0	0	0.0000133	0	0	0	0.000031	0	0
56		. 2	1	7/1						
57	0.0000209	0.0000238	0	0	0	0.0003	0	0.0000155	0	0
58	0.000014	0	0		0	0.0006	0	0	0	0
59	0.00000697	0	0		0	0	0	0.0000155	0	0
60	0.00000697	0.0000238	0	0	0	0	0	0	0	0
61	0.0001	0.0000714	0	0	0	0	0	0.0001	0	0.002
62	0.000014	0	1.80	0	0	0.0003	0	0.0000155	0	0
63	0.00000698	0.0000239	0	0	0	0	0	0	0	0
64	0.00000716	0.0000247	0		0	0	0	0	0	0
65	0.000014	0	0	0	0	0.0006	0	0	0	0
66	0.0000279	0	0	0	0	0.0013	0	0	0	0
67	0.0001	0	0	0	0	0	0	0.0000465	0	0.0043
68	0.000014	0.0000476	1งกรี	ถเมหา	3 M 8	าสย	0	0	0	0
69	0.0000349	0.0000476	00		0		0	0.000031	0.0005	0
70		UNULAI	UNG			cnai				
71	0.000014	0	0	0	0	0	0	0.000031	0	0
72	0.0000628	0.0000238	0	0	0.0015	0.0003	0	0.0000155	0	0
73	0.000014	0	0	0	0	0	0	0.000031	0	0
74	0.000014	0.0000476	0	0	0	0	0	0	0	0
75	0.0000628	0.0000238	0	0	0	0	0	0.0001	0	0
76										
77	0.0000209	0	0	0	0	0.001	0	0	0	0
78	0.0000488	0.0001	0	0	0	0	0	0.0000155	0	0
79										
80	0.0000418	0.0000238	0	0	0	0.0013	0	0	0.0005	0
81										
82	0.00000698	0	0	0	0	0	0	0.0000155	0	0
83										
84	0.000014	0	0	0	0	0.0006	0	0	0	0

95	0.0000200		0	0	0	0.001	0	0	0	0
85	0.0000209	0	0	0	0	0.001	0	0	0	0
86	0.00000697	0	0	0	0	0	0	0	0	0
87	0.0002	0.0000476	0	0	0	0	0	0.0003	0	0
88	0.0000837	0	0	0	0	0.0035	0	0	0.0005	0
89										
90	0.0000488	0.0000238	0	0	0	0	0	0.0000929	0	0
91	0.0000697	0.0000713	0	0	0	0	0	0.0001	0	0
92	0.000014	0	0	0	0	0.0006	0	0	0	0
93										
94	0.0000349	0	0	0	0	0.0016	0	0	0	0
95	0.0004	0.0012	0	0.0000733	0	0.001	0	0	0.0009	0
96	0.00000698	0	0	0	0	0	0	0	0.0005	0
97	0.00000698	0.0000238	0	0	0	0	0	0	0	0
98	0.000014	0	0	0	0.0003	0	0	0.0000155	0	0
99	0.0002	0.0003	0	0.0007	0	0	0	0.0001	0.0005	0
100	0.0000419	0.0000238	0	0	0	0	0	0.0000775	0	0
101	•	· _	///					•		
102	0.0000488	0	0	0	0	0.0022	0	0	0	0
103		· /	////							
104			(-///S			-				
105	0.0000209	0	0	0	0	0.0003	0	0.000031	0	0
106	0.0000628	0	0	0	0	0.0029	0	0	0	0
107	0.0000279	0.0000952	0	0	0	0	0	0	0	0
108					2					
109										
110					•	2.0				
111	0.00000698	0	0	0	0	0.0003	0	0	0	0
112	0.0000279	0.0000238	0	0		0	0	0.000031	0	0.0003
113					a N C	เสย				
114	0.000014	0		0.0001	0	ERS ⁰	0	0	0	0
115										
116	0.00000697	0	0	0	0	0.0003	0	0	0	0
117										
118	0.00000699	0	0	0	0	0	0	0.0000156	0	0
119	0.0001	0.0003	0	0.0000733	0	0	0	0	0	0
120										
121	0.000014	0.0000238	0	0	0	0	0	0.0000155	0	0
122										
123	0.0000209	0.0000714	0	0	0	0	0	0	0	0
124	0.000014	0	0	0	0	0.0006	0	0	0	0
125	0.0000279	0.0000238	0.0022	0	0	0	0	0.0000155	0	0
126	0.00000697	0	0	0	0	0	0	0.0000155	0	0
127										
128	0.000014	0	0	0	0	0.0006	0	0	0	0
129										

120	0 00000 (07	<u>^</u>	0		0	0.0003	0		0	0
130	0.00000697	0	0	0	0	0.0003	0	0	0	0
131	0.0000349	0	0	0	0	0.0013	0	0	0	0
132										
133	0.00000698	0	0	0	0	0.0003	0	0	0	0
134	•	•	•	•	•	•	•	•	•	•
135		. 0.0002				. 0.001	. 0			. 0
136 137	0.0000767	0.0002	0	0	0	0.001	0	0	0	0
137	•		•				•	-		
130			•					•		
140				•				•		
141	0.00000698	. 0	. 0	. 0	. 0	. 0	0.0000958	. 0	. 0	. 0
141	0.00000000			8.00 0 A .	0		0.0000750		Ŭ	
142	. 0.0000349	0.0000238	. 0			. 0	. 0	0.000062	. 0	. 0
145	0.000014	0.0000230	0	0	0	0.0006	0	0.000002	0	0
145	0.000014	0	0	0	0	0	0	0.000031	0	0
146		. 2	11	7/1						
147	0.0000419	0.0000714	0	0	0	0	0	0.0000465	0	0
148	0.0000279	0.0000714	0	0	0	0	0	0.0000155	0	0
149			///R	N @ K	1111					
150	0.000014	0	0	0	0	0	0	0.000031	0	0
151	0.00000697	0	0	0.0000732	0	0	0	0	0	0
152			15	114(7))-1140 (************************************	N V					
153			- 2710	(O)(C)-KORON	2					
154			- And	Rev and						
155	0.000014	0.0000238	0	0.0000732	0	N/o	0	0	0	0
156	0.000014	0	0	0	0	0.0003	0.0000954	0	0	0
157	0.0000419	0.0001	0	0	0	0	0	0.0000155	0	0
158	0.00000698	ຈູພາ	1งกร	ฉเมหว	J N E	าลย	0	0.0000155	0	0
159			ONC	KODN I		EDEI	v			
160	0.000014	0.0000476	0		0		0	0	0	0
161										
162	0.00000698	0.0000238	0	0	0	0	0	0	0	0
163	0.00000698	0	0	0	0	0.0003	0	0	0	0
164										
165	0.0000349	0.0000238	0	0	0	0	0	0.000062	0	0
166										
167	0.0000349	0.0000238	0	0	0	0.0013	0	0	0	0
168										
169										
170	0.00000698	0.0000238	0	0	0	0	0	0	0	0
171										
172	0.00000698	0	0	0	0	0.0003	0	0	0	0
173										
174	0.0000279	0	0	0.0001	0	0	0	0.000031	0	0

175										
175								•		
176	•	•		•				•		
177 178	. 0.0000209	. 0.0000476	. 0	. 0	. 0	. 0	. 0	. 0.0000155	. 0	. 0
178	0.0000209	0.0000478	0	0	0	0	0	0.0000155	0	0
180	•	•	•					•		
181	. 0.0719	. 0.2076	. 0	. 0.0233	. 0.022	0.0064	. 0.011	0.0097	. 0.0515	0.0968
182	0.0002	0.2010	0	0.0235	0.022	0.0064	0.011	0.0000155	0.0014	0.0900
183	0.00000697	0	0	0.0004	0	0.0003	0	0.0000135	0.0014	0
184	0.00000697	0	0	0	0	0.0003	0	0	0	0
185	0.00000697	0	0	0	0	0.0003	0	0	0	0
186	0.00000071	Ŭ			Ŭ	0.0003	Ŭ		Ŭ	Ŭ
187	0.00000698	0.0000238	. 0		. 0	. 0	0	0	. 0	. 0
188	0.00000000	0.0000250			2	, ,	Ŭ		Ŭ	Ŭ
189	0.0000209	. 0	. 0	0.0000733	. 0	. 0.0006	. 0	0	. 0	. 0
190	0.000014	0.0000238	0	0.0000135	0	0.0000	0	0.0000155	0	0
190										
192	0.0000419	0.0000476	0	/ o	0	0	0	0.000062	0	0
193	0.000014	0	0		0	0.0003	0	0	0	0.0003
194			////	NOA	1111					
195	0.00000698	-0	0	0	0	0.0003	0	0	0	0
196	0.0000279	0	0	0.0000732	0	0	0	0	0	0.001
197			1	MERIO MARIO	N C					
198	0.00000697	0	0	0	0	0	0	0.0000155	0	0
199	0.00000698	0.0	0	0	0	0	0	0.0000155	0	0
200						181				
201		. 75	/			2				
202	0.0000698	0.0000715	0	0	0	0	0	0.0001	0	0
203	0.0000209	จุพ ๅส	เงกร	ถไมหว	J M B	0.0003	0	0.0000155	0	0.0003
204		.	010							
205		JULA	.UNG			LUQI				
206	0.00000698	0	0	0	0	0.0003	0	0	0	0
207	0.0000209	0.0000238	0	0	0	0	0	0.000031	0	0
208	0.00000698	0	0	0	0	0	0	0	0	0.0003
209	0.0001	0.00002378	0	0	0	0.0032	0	0.00003097	0.0009	0.002
210	0.00003491	0.00009517	0	0	0	0	0	0.00001549	0	0
211	0.00002793	0.00009527	0	0	0	0	0	0	0	0
212	0.0002	0.00009522	0	0	0	0	0	0.0004	0	0.0003
213	0.00009774	0	0	0.0007	0	0.0003	0	0	0.0019	0
214	0.00002094	0.00004759	0	0	0	0	0	0.00001549	0	0
215	0.00004188	0.00004758	0	0.0001	0	0	0	0.00003097	0	0
216	0.0001	0.0000476	0	0.00007332	0	0.0022	0	0.00006194	0	0.0007
217	0.00002791	0.00004757	0	0	0	0	0	0.00003097	0	0
218	0.00009079	0.00004762	0	0.0004	0	0.0003	0	0.00006197	0	0
219	0.000006979	0	0	0	0	0	0.00009551	0	0	0

220	0.00006279	0	0	0	0	0.0022	0	0	0	0.0007
221	0.00004888	0.0001	0	0	0	0	0	0.00001549	0	0
222	0.001	0.0004	0	0.0006	0	0.0003	0.0000956	0.0018	0.0019	0
223	0.0001	0.00007139	0	0.0000	0	0.0038	0	0.00001548	0.0013	0
224	0.0015	0.0003	0	0.0023	0.0003	0.00000	0.0006	0.0024	0.0028	0.0013
225	0.00001396	0.0003	0	0.0025	0.0005	0.0003	0.0000	0.00001549	0.0020	0.0015
226	0.00004188	0	0	0.00007332	0	0.0016	0	0.00001343	0	0
220	0.000006978	0.00002378	0	0.00001352	0	0.0010	0	0	0	0
228	0.0000279	0.00002510	0	0	0	0.0013	0	0	0	0
220	0.0000217	0	0	0	0	0.0015	0	0	0	0
229	. 0.00007067	. 0.00002412	. 0	. 0.0002	. 0	. 0	. 0	. 0.00007803	. 0	. 0.0003
230	0.0002	0.00002412	0	0.0007352		0.0016	0.0006	0.0003	0	0.0003
					0					
232	0.00005584	0.0001	0	0	0	0.0003	0	0.00003097	0	0
233	0.038	0.0113	0.0456	0.0189	0.0135	0.0006	0.0352	0.0649	0.0279	0.0026
234	0.0053	0.0019	0	0.0057	0.0066	0.0068	0.0049	0.0068	0.0042	0.0221
235	0.0004	0.001	0	0.00007321	0	0.0038	0.00009546	0.00001549	0	0.002
236	0.00001395	0	0	0	0	0	0	0.00003098	0	0
237	0.00006979	0	0	0.00007331	0	0.0022	0	0.00003098	0	0
238	0.0002	0	0	0	0	0	0	0	0	0.0085
239	0.0003	0.00004757	0	0	0	0	0	0	0.0009	0.0128
240	0.0292	0.0083	0	0.0297	0.028	0	0.0548	0.0402	0.0279	0.0339
241	0.0002	0.00007136	0	0.0002	0	0.0061	0	0	0.0005	0.0007
242	0.0001	0	200	0.	0	0.0061	0	0	0.0005	0
243	0.0001	0.00004758	0	0.00007323	0	0.0029	0	0.00001549	0.0005	0.0007
244	0.0002	0	0	0	0	0.0099	0	0	0	0
245	0.00002096	0	0	0	0	0.0007	0	0	0	0.0003
246	0.00005583	0	0	0	0	0.0019	0	0.00001549	0	0.0003
247										
248	0.00005585	0.00007135	N13	0.0000733	0	0.0003	0	0.00003099	0.0005	0
249	0.0003	0.0005	0		0	0.0019	0	0.00009291	0	0.0013
250	0.003	0.0006	0	0.0039	0.0232	0	0.001	0.0032	0.0028	0.0155
251	0.0009	0.0027	0	0.0002	0	0	0	0.00007743	0.0005	0
252	0.0013	0.0003	0	0.0006	0.0027	0	0.0011	0.0022	0.0005	0
253	0.00005583	0	0	0	0	0.0006	0	0.00009293	0	0
254	0.0018	0.0009	0.0022	0.0022	0	0.0013	0.0006	0.0028	0.0023	0
255	0.00002095	0	0	0	0	0	0	0.00004647	0	0
256	0.00004887	0.00007139	0	0	0	0.0003	0	0.00004646	0	0
257	0.00006288	0.00004765	0	0.0004	0	0.0006	0	0	0	0
258	0.0001	0.0001	0	0.0003	0	0	0	0.00007747	0	0
259	0.0003	0.00002404	0	0.0006	0	0.0099	0	0	0.0014	0.0007
260	0.027	0.0056	0.1244	0.0167	0.0239	0	0.0839	0.0348	0.0192	0.0118
261	0.0281	0.0062	0.0633	0.0193	0.0566	0.0003	0.0663	0.0374	0.0214	0.0325
262	0.00004188	0	0	0	0	0.001	0.00009549	0.00001549	0	0.0003

Supplementary table 4 Clinical significance reported in ClinVar and variant

interpretation used InterVar for variant with conflicting interpretation of

pathogenicity.

Varian	CLINVAR			
t				INTERVAR
numb	CLINSIG	CLNREVSTAT	submissions	
er				
		criteria_provided,_mul		
		tiple_submitters,_no_		
1	Pathogenic	conflicts		
		reviewed_by_expert_		
2	Pathogenic	panel		
		criteria_provided,_mul		
		tiple_submitters,_no_		
3	Pathogenic	conflicts		
		criteria_provided,_mul	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	
	Pathogenic/Likely_	tiple_submitters,_no_	000000	
4	pathogenic,_other	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
5	pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
6	Pathogenic	conflicts		
		criteria_provided,_mul	ACCA	
		tiple_submitters,_no_		
7	Pathogenic	conflicts	ANTIONA	
		criteria_provided,_mul		
		tiple_submitters,_no_	000000000	
8	Pathogenic	conflicts		
		criteria_provided,_mul	Zannon non non se	
	Pathogenic/Likely_	tiple_submitters,_no_	ANN AREA	
9	pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
10	pathogenic	conflicts		
		criteria_provided,_mul	ารณ์มหาวิทย	เวลัย
	Pathogenic/Likely_	tiple_submitters,_no_		ាតខ
11	pathogenic	conflicts		
		criteria_provided,_mul	IGKORN UNIV	ERSITY
	Pathogenic/Likely_	tiple_submitters,_no_		
12	pathogenic	conflicts		
		reviewed_by_expert_		
13	Pathogenic	panel		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
14	pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
15	pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
16	pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
17	pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
18	Pathogenic	conflicts		
	Pathogenic/Likely_	criteria_provided,_mul		
19	pathogenic	tiple_submitters,_no_		

		conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
20	pathogenic	conflicts		
		criteria_provided,_mul		
21	Pathogenic	tiple_submitters,_no_ conflicts		
21	Fathogenic	criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
22	pathogenic	conflicts		
23	Pathogonic	reviewed_by_expert_		
25	Pathogenic	panel criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
24	pathogenic	conflicts		
		criteria_provided,_mul		
25	Pathogenic	tiple_submitters,_no_ conflicts	which is a	
20	Fathogenic	criteria_provided,_mul		
		tiple_submitters,_no_		
26	Pathogenic	conflicts		>
		criteria_provided,_mul	1111	
27	Pathogenic	tiple_submitters,_no_ conflicts		
		criteria provided, mul		
		tiple_submitters,_no_		
28	Pathogenic	conflicts	ADDIA	
29	Pathogenic	reviewed_by_expert_ panel	A ARASA	
27	ratilogenic	criteria_provided,_mul		2
		tiple_submitters,_no_	116664	
30	Pathogenic	conflicts	V () Keeree (Corroral)	
31	Pathogonic	reviewed_by_expert_	Lawyoron	
51	Pathogenic	panel criteria_provided, mul	er and a second a se	NB)
	Pathogenic/Likely_	tiple_submitters,_no_		2.67
32	pathogenic	conflicts		
	Dath a gap is // il al.	criteria_provided,_mul		
33	Pathogenic/Likely_ pathogenic	tiple_submitters,_no_ conflicts	ารณ์มหาวิทย	เาลัย
		criteria_provided,_mul		
		tiple_submitters,_no_	igkorn Univ	ERSITY
34	Pathogenic	conflicts		
		criteria_provided,_mul tiple_submitters,_no_		
35	Pathogenic	conflicts		
		reviewed_by_expert_		
36	Pathogenic	panel		
37	Pathogenic	reviewed_by_expert_ panel		
	. suriogenite	criteria_provided,_mul		
		tiple_submitters,_no_		
38	Pathogenic	conflicts		
		criteria_provided,_mul tiple_submitters,_no_		
39	Pathogenic	conflicts		
	-	criteria_provided,_mul		
		tiple_submitters,_no_		
40	Pathogenic	conflicts		
41	Pathogenic	reviewed_by_expert_ panel		
		criteria_provided,_mul		
42	Pathogenic	tiple_submitters,_no_		

1	I	conflicts	I	l
	Pathogenic/Likely_	criteria_provided,_mul tiple_submitters,_no_		
43	pathogenic	conflicts		
15	patrioserile	reviewed_by_expert_		
44	Pathogenic	panel		
		criteria_provided,_mul		
		tiple_submitters,_no_		
45	Pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
46	pathogenic	conflicts		
	Pathogenic/Likely_	criteria_provided,_mul tiple_submitters,_no_		
47	pathogenic	conflicts		
	petrie 3erine	criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
48	pathogenic	conflicts	an111111	
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no		
49	pathogenic	conflicts		2
		criteria_provided,_mul	1111	
50	Pathogenic	tiple_submitters,_no_ conflicts		
50	ratilogenic	criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
51	pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_	A TOTAL A	
52	pathogenic	conflicts		
		criteria_provided,_mul		
52	Pathogenic/Likely_	tiple_submitters,_no_	Treesee Summit	
53	pathogenic	conflicts criteria_provided,_mul	CONTRACTOR SE	
		tiple_submitters,_no_	-mary and	
54	Pathogenic	conflicts		3.51
	-	criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		- and -
55	pathogenic	conflicts	501919000	
		criteria_provided,_mul	1.2 FRY N. 1.3 ME	ាតខ
54	Pathogenic/Likely_	tiple_submitters,_no_ conflicts		FRAITY
56	pathogenic	conflicts criteria_provided,_mul	IGKOKN UNIN	EKSIIY
	Pathogenic/Likely_	tiple_submitters,_no_		
57	pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
58	Pathogenic	conflicts		
		criteria_provided,_mul		
50	Pathogenic/Likely_	tiple_submitters,_no_		
59	pathogenic	conflicts criteria provided, mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
60	pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
61	pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
62	Pathogenic	conflicts		
		criteria_provided,_mul		
63	Likely_pathogenic	tiple_submitters,_no_ conflicts		
05	Encorpatiogenic	conneco	1	

	1	1	i .	
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
64	pathogenic	conflicts		
		criteria_provided,_mul		
(5	Pathogenic/Likely_	tiple_submitters,_no_		
65	pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
66	Pathogenic	conflicts		
(7	Datherania	reviewed_by_expert_		
67	Pathogenic	panel		
68	Pathogenic	reviewed_by_expert_ panel		
00	1 denoscinic	criteria_provided,_mul		
		tiple_submitters,_no_		
69	Pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_	s had a second	
70	pathogenic	conflicts	a 6 1 1 1 2 -	-
		criteria provided, mul		
		tiple_submitters,_no_		5
71	Pathogenic	conflicts		
		criteria_provided,_mul	////	
	Pathogenic/Likely_	tiple_submitters,_no_		
72	pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
73	Pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
74	pathogenic	conflicts		
		criteria_provided,_mul	V Maarton Province	
		tiple_submitters,_no_		
75	Pathogenic	conflicts	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL	
		criteria_provided,_mul		≥ 45
7.6	Pathogenic/Likely_	tiple_submitters,_no_		
76	pathogenic	conflicts		
	Dath a secola di baba	criteria_provided,_mul		during-
77	Pathogenic/Likely_ pathogenic	tiple_submitters,_no_ conflicts	ารถ์เมหาวิทศ	
	patriogenic	criteria provided, mul	12THTN. LINE	1712
		tiple_submitters,_no_		
78	Pathogenic	conflicts	IGKORN UNIV	ERSITY
		criteria_provided,_mul		
		tiple_submitters,_no_		
79	Pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
80	Likely_pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
81	Likely_pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
82	Pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
83	pathogenic	conflicts		
	Dalla a contra da se	criteria_provided,_mul		
0.1	Pathogenic/Likely_	tiple_submitters,_no_		
84	pathogenic	conflicts		
		criteria_provided,_mul		
05	Pathogonic	tiple_submitters,_no_		
85	Pathogenic	conflicts		

1	1	1	1	1
		criteria_provided,_mul		
		tiple_submitters,_no_		
86	Pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
87	Likely_pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
88	pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
89	pathogenic	conflicts		
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
90	pathogenic	conflicts		
		criteria_provided,_mul		
		tiple_submitters,_no_		
91	Pathogenic	conflicts	a la fut fut de a	
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
92	pathogenic	conflicts		2
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_	////	
93	pathogenic	conflicts		2
		criteria_provided,_mul		
	Pathogenic/Likely_	tiple_submitters,_no_		
94	pathogenic	conflicts		
		criteria_provided,_mul	BR O R	
	Pathogenic/Likely_	tiple_submitters,_no_		
95	pathogenic	conflicts		7
		reviewed_by_expert_		
96	Pathogenic	panel	V Average and a second	
		criteria_provided,_mul		
		tiple_submitters,_no	SCONTRACTS	
97	Pathogenic	conflicts	- PIPP A delet -	
		criteria_provided,_mul		251
	Pathogenic/Likely_	tiple_submitters,_no_		12
98	pathogenic	conflicts		
		criteria_provided,_mul	2 0	
		tiple_submitters,_no_	ารณ์มหาวิทย	าลัย
99	Pathogenic	conflicts		
		criteria_provided,_mul		FREITV
	Pathogenic/Likely_	tiple_submitters,_no_		
100	pathogenic	conflicts		
		criteria_provided,_sing		
101	Pathogenic	le_submitter		
		criteria_provided,_sing		
102	Pathogenic	le_submitter		
		criteria_provided,_sing		
103	Pathogenic	le_submitter		
		criteria_provided,_sing		
104	Pathogenic	le_submitter		
		criteria_provided,_sing		
105	Pathogenic	le_submitter		
		criteria_provided,_sing		
106	Pathogenic	le_submitter		
		criteria_provided,_sing		
107	Pathogenic	le_submitter		
		criteria_provided,_sing		
108	Pathogenic	le_submitter		
		criteria_provided,_sing		
109	Pathogenic	le_submitter		
110	Likely pathogenic	criteria provided, sing		
110	putriogenic	sincena_provided,_sing	1	

1	1	le_submitter	l	
		_		
111	Dathagonic	criteria_provided,_sing le submitter		
111	Pathogenic	criteria_provided,_sing		
112	Pathogenic	le submitter		
	5	criteria_provided,_sing		
113	Pathogenic	le_submitter		
		criteria_provided,_sing		
114	Likely_pathogenic	le_submitter		
115	Likely pathogenic	criteria_provided,_sing le submitter		
115	Elkety_pathogenic	criteria_provided,_sing		
116	Pathogenic	le_submitter		
		criteria_provided,_sing		
117	Pathogenic	le_submitter		
		criteria_provided,_sing		
118	Pathogenic	le_submitter	1 5 M 10 10 10 10	
119	Pathogenic	criteria_provided,_sing le submitter	SS 112 2	
		criteria_provided,_sing	S' 12	
120	Likely_pathogenic	le_submitter		A
		criteria_provided,_sing	1100	
121	Pathogenic	le_submitter		
100	Dath a gap'-	criteria_provided,_sing		
122	Pathogenic	le_submitter criteria_provided,_sing		
123	Pathogenic	le_submitter		
		criteria_provided,_sing		
124	Likely_pathogenic	le_submitter	A	
		criteria_provided,_sing		
125	Likely_pathogenic	le_submitter	Dilat(6))914(0)	
100	Libely anthermatic	criteria_provided,_sing	Tradad Anno 10	
126	Likely_pathogenic	le_submitter criteria_provided,_sing	AND CHARTER CONTRACT	
127	Pathogenic	le_submitter		-62)
		criteria_provided,_sing		
128	Likely_pathogenic	le_submitter		
		criteria_provided,_sing		
129	Likely_pathogenic	le_submitter	ารณ์มหาวิทย	าลัย
130	Likely_pathogenic	criteria_provided,_sing le_submitter		
		criteria_provided,_sing	igkorn Univ	ERSITY
131	Pathogenic	le_submitter		
		criteria_provided,_sing		
132	Pathogenic	le_submitter		
122	Pathogonic	criteria_provided,_sing		
133	Pathogenic	le_submitter criteria provided, sing		
134	Pathogenic	le_submitter		
	-	 criteria_provided,_sing		
135	Likely_pathogenic	le_submitter		
		criteria_provided,_sing		
136	Likely_pathogenic	le_submitter		
137	Likely_pathogenic	criteria_provided,_sing le_submitter		
1.51	_meg_patriogenic	criteria_provided,_sing		
138	Likely_pathogenic	le_submitter		
		criteria_provided,_sing		
139	Likely_pathogenic	le_submitter		
	Della sur	criteria_provided,_sing		
140	Pathogenic	le_submitter criteria_provided,_sing		
141	Likely_pathogenic	le_submitter		
	/		L	1

142 Palugenic use yunkelle 141 Lieby pathogenic testing proceded, and 141 Lieby pathogenic testing proceded, and 145 Lieby pathogenic testing proceded, and 146 Lieby pathogenic testing proceded, and 147 Pathogenic testing proceded, and 148 Lieby pathogenic testing proceded, and 149 Pathogenic testing proceded, and 144 Lieby pathogenic testing proceded, and 145 Pathogenic testing proceded, and 146 Lieby pathogenic testing proceded, and 145 Pathogenic testing proceded, and 146 Pathogenic testing proceded, and 151 Pathogenic testing proceded, and 152 Lieby pathogenic testing proceded, and 153 Pathogenic testing proceded, and 154 Pathogenic testing proceded, and 155 Pathogenic testing proceded, and 156 Pathogenic testing pr					
132 Parlogerk ls submitter 135 Lösky pathogerk ls submitter 146 Lösky pathogerk ls submitter 147 Pathogerk ls submitter 148 Lösky pathogerk ls submitter 146 Lösky pathogerk ls submitter 147 Pathogerk ls submitter 148 Lösky pathogerk ls submitter 148 Lösky pathogerk ls submitter 149 Pathogerk ls submitter 141 Lösky pathogerk ls submitter 142 Lösky pathogerk ls submitter 143 Lösky pathogerk ls submitter 144 Lösky pathogerk ls submitter 145 Lösky pathogerk ls submitter 146 Lösky pathogerk ls submitter 147 Pathogerk ls submitter 148 Lösky pathogerk ls submitter 149 Pathogerk ls submitter 151 Pathogerk ls submitter 152 Pathogerk ls submitter 153 Pathogerk ls submitter 154 Pathogerk ls submitter 155 Pathogerk ls submitter 156 <td></td> <td></td> <td>criteria provided, sing</td> <td></td> <td></td>			criteria provided, sing		
iber participant. intering particles, programments 143 iber particles, programments intering provided, programments 144 iber particles, provided, programments intering provided, programments 145 Patrogenic is submitter 146 iber provided, programments is submitter 147 Patrogenic is submitter 148 patrogenic is submitter 149 Patrogenic is submitter 141 Patrogenic is submitter 142 ikely patrogenic is submitter 148 Patrogenic is submitter 149 Patrogenic is submitter 141 Patrogenic is submitter 142 ikely patrogenic is submitter 143 Patrogenic is submitter 144 Patrogenic is submitter 145 Patrogenic is submitter 146 patrogenic is submitter 151 Patrogenic is submitter 152 Patrogenic	142	Pathogenic			
143 Likey pathogenic lie submitter 144 Likey pathogenic lie submitter 145 Perlogenic lie submitter 146 Likey pathogenic lie submitter 147 Perlogenic lie submitter 148 Likey pathogenic lie submitter 148 Likey pathogenic lie submitter 148 Likey pathogenic lie submitter 149 Perlogenic lie submitter 149 Pathogenic lie submitter 149 Pathogenic lie submitter 151 Pathogenic lie submitter 152 Likely pathogenic lie submitter 153 Pathogenic lie submitter 154 Pathogenic lie submitter 155 Pathogenic lie submitter 156 Pathogenic lie submitter 157 Pathogenic lie submitter 158 Pathogenic lie submitter 159 Pathogenic lie submitter 151 Pathogenic lie submitter 152			-		
Hely pathogenic Ciffant pockeds, prig 144 Hely pathogenic Le submitter 145 Pathogenic Ciffant pockeds, prig 146 Hely pathogenic Ciffant pockeds, prig 147 Pathogenic Le submitter 148 Hely pathogenic Le submitter 147 Pathogenic Le submitter 148 Likely pathogenic Le submitter 149 Pathogenic Le submitter 141 Dathogenic Le submitter 142 Likely pathogenic Le submitter 143 Likely pathogenic Le submitter 144 Dathogenic Le submitter 145 Pathogenic Le submitter 146 Likely pathogenic Le submitter 147 Dathogenic Le submitter 148 Pathogenic Le submitter 149 Pathogenic Le submitter 149 Pathogenic Le submitter 149 Pathogenic Le submitter 151	1/12	Likely, pathogenic			
140 Likely pathogeni. lis jurniter 145 Pathogenic. lis dumiter 146 Criteria provided, jing 147 Pathogenic. lis dumiter 148 Likely pathogenic. lis dumiter 147 Pathogenic. lis dumiter 148 Likely pathogenic. lis dumiter 149 Pathogenic. lis dumiter 149 Pathogenic. lis dumiter 151 Pathogenic. lis dumiter 152 Pathogenic. lis dumiter 153 Pathogenic. lis dumiter 154 Pathogenic. lis dumiter 155 Pathogenic. lis dumiter 156 Pathogenic. lis dumiter 157 Pathogenic. lis dumiter 158 Pathogenic. lis dumiter 159 Pathogenic. lis dumiter 150 Pathogenic. lis dumiter 151 Pathogenic. lis dumiter 152 Pathogenic. lis dumit	145	Likety_pathogenic	-		
165 Pathogenic ic submitter 146 Likely pathogenic ic submitter 147 Mathogenic ic submitter 148 Likely pathogenic ic submitter 149 Athogenic ic submitter 141 Mathogenic ic submitter 142 Likely pathogenic ic submitter 148 Likely pathogenic ic submitter 149 Pathogenic ic submitter 151 Pathogenic ic submitter 152 Likely pathogenic ic submitter 153 Pathogenic ic submitter 154 Pathogenic ic submitter 155 Pathogenic ic submitter 156 Pathogenic ic submitter 157 Pathogenic ic submitter 158 Pathogenic ic submitter 159 Pathogenic ic submitter 151 Pathogenic ic submitter 156 Pathogenic ic submitter 157 Pathogen					
145 Pathogenic Leg. Jubritter 146 Likely pathogenic Leg. Jubritter 147 Pathogenic Leg. Jubritter 148 Likely pathogenic Leg. Jubritter 149 Pathogenic Leg. Jubritter 141 Likely pathogenic Leg. Jubritter 142 Likely pathogenic Leg. Jubritter 143 Pathogenic Likely pathogenic Leg. Jubritter 144 Likely pathogenic Likely Jubritter Likely pathogenic 154 Pathogenic Contral provided, sing Likely Jubritter 155 Pathogenic Contral provided, sing Likely Jubritter 156 Pathogenic Contral provided, sing Likely Jubritter 157 Pathogenic Contral provided, sing Likely Jubritter 158 Pathogenic Contral provided, sing Likely Jubritter 159 Pathogenic Likely Jubritter Likely Jubritter 151 Pathogenic Likely Jubritter Likely Jubritter 155 Pathogenic Likely Jubritter Likely Jubritter 156	144	Likely_pathogenic	le_submitter		
146 Ukely pathogenic is submitter 147 Pathogenic is submitter 148 Ukely pathogenic is submitter 149 Likely pathogenic is submitter 141 Pathogenic is submitter 142 Likely pathogenic is submitter 143 Ukely pathogenic is submitter 144 Dathogenic is submitter 155 Pathogenic is submitter 151 Dathogenic is submitter 152 Likely pathogenic is submitter 153 Pathogenic is submitter 154 Pathogenic is submitter 155 Pathogenic is submitter 156 Pathogenic is submitter 157 Likely pathogenic is submitter 158 Pathogenic is submitter 159 Pathogenic is submitter 151 Pathogenic is submitter 152 Likely pathogenic is submitter 153 Pathogenic is submitter 154 Pathogenic is submitter 155 Pathogenic is submitter 156 Pathogenic is submitter 157			criteria_provided,_sing		
146 Likely pathogenic le submitter 147 Pathogenic le submitter 148 Likely pathogenic le submitter 149 Fathogenic le submitter 141 Likely pathogenic le submitter 141 Hathogenic le submitter 142 Fathogenic le submitter 143 Fathogenic le submitter 144 Hathogenic le submitter 151 Pathogenic le submitter 152 Pathogenic le submitter 153 Pathogenic le submitter 154 Fathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Pathogenic le submitter 158 Pathogenic le submitter 159 Pathogenic le submitter 151 Pathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic le submitter 159 Hubgenic cheria proxided, sing 160 Likely pa	145	Pathogenic	le_submitter		
147 Pathogenic Le submitter 148 Ukady pathogenic Le submitter 148 Ukady pathogenic Le submitter 149 Pathogenic Le submitter 140 Pathogenic Le submitter 150 Pathogenic Le submitter 151 Pathogenic Le submitter 152 Likely pathogenic Le submitter 153 Pathogenic Criteria provided, sing 154 Pathogenic Criteria provided, sing 155 Pathogenic Criteria provided, sing 156 Pathogenic Criteria provided, sing 157 Pathogenic Criteria provided, sing 158 Pathogenic Criteria provided, sing 159 Pathogenic Le submitter 150 Pathogenic Le submitter 151 Pathogenic Le submitter 152 Likely pathogenic Le submitter 153 Pathogenic Le submitter 154 Pathogenic Le submitter			criteria_provided,_sing		
147 Pathogenic Le submitter 148 Ukady pathogenic Le submitter 148 Ukady pathogenic Le submitter 149 Pathogenic Le submitter 140 Pathogenic Le submitter 150 Pathogenic Le submitter 151 Pathogenic Le submitter 152 Likely pathogenic Le submitter 153 Pathogenic Criteria provided, sing 154 Pathogenic Criteria provided, sing 155 Pathogenic Criteria provided, sing 156 Pathogenic Criteria provided, sing 157 Pathogenic Criteria provided, sing 158 Pathogenic Criteria provided, sing 159 Pathogenic Le submitter 150 Pathogenic Le submitter 151 Pathogenic Le submitter 152 Likely pathogenic Le submitter 153 Pathogenic Le submitter 154 Pathogenic Le submitter	146	Likely pathogenic	le submitter		
141 Pathogenic le submitter 143 Ulledy pathogenic le submitter 144 Ulledy pathogenic le submitter 151 Pathogenic le submitter 151 Pathogenic le submitter 151 Pathogenic le submitter 152 Ulledy pathogenic le submitter 153 Pathogenic le submitter 154 Pathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Pathogenic le submitter 158 Pathogenic le submitter 159 Pathogenic le submitter 151 Pathogenic le submitter 153 Pathogenic le submitter 154 Pathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Ulleky pathogenic le submitter 158 Pathogenic le submitter 159 Ulleky pathogenic le submitter 150 Ulleky pathogenic le submitter 151 Ulleky pathogenic le submitter 152		/			
148 Likely pathogenic ie submitter 149 Likely pathogenic ie submitter 150 Pathogenic ie submitter 151 Pathogenic ie submitter 152 Likely pathogenic ie submitter 153 Pathogenic ie submitter 154 Likely pathogenic ie submitter 155 Pathogenic ie submitter 156 Pathogenic ie submitter 157 Pathogenic ie submitter 158 Pathogenic ie submitter 159 Pathogenic ie submitter 151 Pathogenic ie submitter 152 Likely pathogenic ie submitter 154 Pathogenic ie submitter 155 Pathogenic ie submitter 156 Pathogenic ie submitter 157 Pathogenic ie submitter 158 Pathogenic ie submitter 159 Pathogenic ie submitter 150 Pathogenic ie submitter 151 Likely pathogenic ie submitter 155 Pathogenic ie submitter 156 Pathogenic coffeiti provided, sing 157	147	Pathogenic			
188 Likely pathogenic le submitte 149 Pathogenic le submitte 150 Pethogenic le submitte 151 Pathogenic le submitte 152 Likely pathogenic le submitte 153 Pathogenic le submitte 154 Pathogenic le submitte 155 Pathogenic le submitte 156 Pathogenic le submitte 157 Ulletly pathogenic le submitte 158 Pathogenic le submitte 159 Pathogenic le submitte 150 Pathogenic le submitte 151 Pathogenic le submitte 155 Pathogenic le submitte 156 Pathogenic le submitte 157 Likely pathogenic le submitte 158 Pathogenic le submitte 159 Pathogenic le submitte 151 Likely pathogenic le submitte 152 Likely pathogenic le submitte 154 Pathogenic le submitte 155 Pathogenic le submitte 161 Pathogenic le submitte 162 Likely pathogenic	147	1 atriogenie	_		
140 Pathogenic is aubmitter 151 Pathogenic is aubmitter 152 Likely pathogenic is aubmitter 153 Pathogenic is aubmitter 154 Pathogenic is aubmitter 155 Pathogenic is aubmitter 156 Pathogenic criteria provided, sing 157 Pathogenic is aubmitter 158 Pathogenic is aubmitter 159 Pathogenic is aubmitter 151 Pathogenic is aubmitter 152 Likely pathogenic is aubmitter 154 Pathogenic is aubmitter 155 Pathogenic is aubmitter 156 Pathogenic is aubmitter 157 Likely pathogenic is aubmitter 158 Pathogenic is aubmitter 159 Likely pathogenic is aubmitter 159 Likely pathogenic is aubmitter 159 Likely pathogenic is aubmitter 159 Likely pathogenic is aubmitter 161 Likely pathogenic is aubmitter 171 Likely pathogenic is aubmitter 172 Likely pathogenic is aubmitter <					
140 Pathogenic le submitter 150 Pathogenic Le submitter 151 Pathogenic Le submitter 151 Pathogenic Le submitter 152 Likely pathogenic Le submitter 153 Pathogenic Le submitter 154 Pathogenic Le submitter 155 Pathogenic Le submitter 156 Pathogenic Le submitter 157 Likely pathogenic Le submitter 158 Pathogenic Le submitter 159 Pathogenic Le submitter 155 Pathogenic Le submitter 156 Pathogenic Le submitter 157 Likely pathogenic Le submitter 158 Pathogenic Le submitter 159 Likely pathogenic Le submitter 151 Likely pathogenic Le submitter 154 Pathogenic Le submitter 155 Likely pathogenic Le submitter 156	148	Likely_pathogenic	-		
130 Pathogenic Lie submitter 131 Pathogenic Lie submitter 132 Pathogenic Lie submitter 133 Pathogenic Lie submitter 134 Pathogenic Lie submitter 135 Pathogenic Lie submitter 136 Pathogenic Lie submitter 137 Pathogenic Lie submitter 138 Pathogenic Lie submitter 139 Pathogenic Lie submitter 130 Pathogenic Lie submitter 131 Pathogenic Lie submitter 139 Pathogenic Lie submitter 130 Pathogenic Lie submitter 131 Pathogenic Lie submitter 133 Pathogenic Lie submitter 134 Pathogenic Lie submitter 135 Pathogenic Lie submitter 136 Pathogenic Lie submitter 137 Likely pathogenic Lie submitter 138 Pathogenic Lie submitter 139 Likely pathogenic Lie submitter 139 Likely pathogenic Lie submitter 130 Likely pathogenic Lie submitter 131			criteria_provided,_sing		
150 Pathogenic le submitter 151 Pathogenic le submitter 151 Pathogenic le submitter 152 Likely pathogenic le submitter 153 Pathogenic le submitter 154 Criteria provided, sng 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Ukely pathogenic le submitter 158 Pathogenic le submitter 159 Pathogenic le submitter 150 Pathogenic le submitter 151 Pathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Ukely pathogenic le submitter 158 Pathogenic le submitter 159 Pathogenic le submitter 159 Pathogenic le submitter 159 Ukely pathogenic le submitter 160 Likely pathogenic le submitter 161 Likely pathogenic le submitter 162 Pathogenic le submitter 163 Pathogenic le submitter 164 Likely pathogenic </td <td>149</td> <td>Pathogenic</td> <td>le_submitter</td> <td></td> <td></td>	149	Pathogenic	le_submitter		
151 Pathogenic criteria provided_sing 152 Likely pathogenic le submitter 153 Pathogenic le submitter 154 Pathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic le submitter 159 Pathogenic le submitter 151 Pathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic le submitter 159 Likely pathogenic le submitter 150 Likely pathogenic le submitter 151 Likely pathogenic le submitter 152 Likely pathogenic le submitter 153 Pathogenic le submitter 154 Pathogenic le submitter 155 Likely pathogenic le submitter 160 Likely pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter </td <td></td> <td></td> <td>criteria_provided,_sing</td> <td></td> <td></td>			criteria_provided,_sing		
151 Pathogenic le submitter 152 Likely pathogenic criteria provided, sing 153 Pathogenic criteria provided, sing 154 Pathogenic criteria provided, sing 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Pathogenic le submitter 158 Pathogenic le submitter 159 Pathogenic le submitter 156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic criteria provided, sing 159 Likely pathogenic le submitter 159 Likely pathogenic le submitter 160 Likely pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter 163 Pathogenic le submitter 164 Pathogenic le submitter 165 Pathogenic le submitter 166 Likely pathogenic le submitter 1	150	Pathogenic	le_submitter	a la la la la la la la la la la la la la	
151 Pathogenic le submitter 152 Likely pathogenic criteria provided, sing 153 Pathogenic criteria provided, sing 154 Pathogenic criteria provided, sing 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Pathogenic le submitter 158 Pathogenic le submitter 159 Pathogenic le submitter 156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic criteria provided, sing 159 Likely pathogenic le submitter 159 Likely pathogenic le submitter 160 Likely pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter 163 Pathogenic le submitter 164 Pathogenic le submitter 165 Pathogenic le submitter 166 Likely pathogenic le submitter 1			criteria provided, sing		
152 Likely pathogenic is submitter 153 Pathogenic is submitter 154 Pathogenic is submitter 154 Pathogenic is submitter 154 Pathogenic is submitter 154 Pathogenic is submitter 155 Pathogenic is submitter 156 Pathogenic is submitter 157 Likely pathogenic is submitter 158 Pathogenic is submitter 159 Pathogenic is submitter 151 Pathogenic is submitter 158 Pathogenic is submitter 159 Likely pathogenic is submitter 159 Likely pathogenic is submitter 160 Likely pathogenic is submitter 161 Pathogenic is submitter 162 Likely pathogenic is submitter 163 Pathogenic is submitter 164 Likely pathogenic is submitter 165 Pathogenic is submitter 166 Pathogenic	151	Pathogenic	1.25		
132 Likely pathogenic le submitter 138 Pathogenic le submitter 141 Pathogenic le submitter 154 Pathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic le submitter 159 Pathogenic le submitter 151 Likely pathogenic le submitter 152 Likely pathogenic le submitter 153 Pathogenic le submitter 154 Likely pathogenic le submitter 155 Likely pathogenic le submitter 156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic le submitter 159 P					
153 Pathogenic criteria_provided_ing 154 Pathogenic is submitter 155 Pathogenic criteria_provided_ing 156 Pathogenic is submitter 157 Pathogenic is submitter 158 Pathogenic is submitter 157 Pathogenic is submitter 158 Pathogenic is submitter 159 Likely pathogenic is submitter 159 Likely pathogenic is submitter 160 Likely pathogenic is submitter 161 Pathogenic criteria_provided_sing 162 Likely pathogenic is submitter 163 Pathogenic criteria_provided_sing 164 Likely pathogenic is submitter 165 Pathogenic is submitter 164 Likely pathogenic is submitter 165 Pathogenic is submitter 164 Likely pathogenic is submitter 165 Pathogenic is submitter 166 Pathogenic is submitter	150	Likely nathogonic			
153 Pathogenic le submitter 154 Pathogenic le submitter 155 Pathogenic le submitter 156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic criteria provided, sing 157 Likely pathogenic le submitter 158 Pathogenic criteria provided, sing 159 Likely pathogenic le submitter 159 Likely pathogenic le submitter 160 Likely pathogenic le submitter 161 Pathogenic criteria provided, sing 162 Likely pathogenic le submitter 163 Pathogenic criteria provided, sing 164 Likely pathogenic le submitter 165 Pathogenic le submitter 164 Likely pathogenic le submitter 165 Pathogenic le submitter 166 Likely pathogenic le submitter 167 Pathogenic le submitter 168 Pathogenic le submitter <	152	Likely_patriogenic	-	Cin. all	<i>9</i>
154 Pathogenic criteria provided, sing 155 Pathogenic le submitter 156 Pathogenic criteria provided, sing 157 Pathogenic le submitter 158 Pathogenic le submitter 159 Likely pathogenic le submitter 159 Likely pathogenic le submitter 160 Likely pathogenic le submitter 161 Pathogenic criteria provided, sing 162 Likely pathogenic le submitter 164 criteria provided, sing criteria provided, sing 165 Likely pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter 163 Pathogenic le submitter 164 Likely pathogenic le submitter 165 Pathogenic le submitter 166 Pathogenic le submitter 167 Pathogenic le submitter 168 Pathogenic le submitter 169 Pathogenic le submitter 164 Likely pathogenic le submitter 165 Pathogenic le submitter 166 Pathogenic <td></td> <td></td> <td></td> <td></td> <td></td>					
154 Pathogenic Le submitter 155 Pathogenic Le submitter 156 Pathogenic Le submitter 157 Likely pathogenic Le submitter 158 Pathogenic Le submitter 157 Likely pathogenic Le submitter 158 Pathogenic Le submitter 159 Likely pathogenic Le submitter 159 Likely pathogenic Le submitter 160 Likely pathogenic Le submitter 161 Pathogenic Le submitter 162 Likely pathogenic Le submitter 163 Pathogenic Le submitter 164 Likely pathogenic Le submitter 163 Pathogenic Le submitter 164 Likely pathogenic Criteria provided, sing 165 Pathogenic Le submitter 166 Pathogenic Le submitter 167 Pathogenic Le submitter 168 Pathogenic Le submitter 166 Pathogenic Le submitter 167 <	153	Pathogenic	le_submitter		
155 Pathogenic criteria_provided_sing 156 Pathogenic criteria_provided_sing 157 Likely pathogenic le_submitter 158 Pathogenic criteria_provided_sing 159 Likely pathogenic le_submitter 150 Likely pathogenic le_submitter 151 Likely pathogenic le_submitter 152 Likely pathogenic le_submitter 154 Likely pathogenic le_submitter 155 Likely pathogenic le_submitter 156 Likely pathogenic le_submitter 157 Likely pathogenic le_submitter 158 Pathogenic le_submitter 159 Likely pathogenic le_submitter 161 Pathogenic le_submitter 162 Likely pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic </td <td></td> <td></td> <td>criteria_provided,_sing</td> <td></td> <td></td>			criteria_provided,_sing		
155 Pathogenic Le submitter 16 Pathogenic Le submitter 157 Likely pathogenic Le submitter 158 Pathogenic Le submitter 159 Likely pathogenic Le submitter 159 Likely pathogenic Le submitter 159 Likely pathogenic Le submitter 160 Likely pathogenic Le submitter 161 Pathogenic Le submitter 162 Likely pathogenic Le submitter 163 Pathogenic Le submitter 164 Likely pathogenic Le submitter 165 Pathogenic Le submitter 166 Likely pathogenic Le submitter 167 Pathogenic Le submitter 168 Pathogenic Le submitter 164 Likely pathogenic Le submitter 165 Pathogenic Le submitter 166 Pathogenic Le submitter 167 Pathogenic Le submitter 168 Pathogenic Le submitter 169 Pa	154	Pathogenic	le_submitter		
155 Pathogenic Le submitter 16 Pathogenic Le submitter 157 Likely pathogenic Le submitter 158 Pathogenic Le submitter 159 Likely pathogenic Le submitter 159 Likely pathogenic Le submitter 159 Likely pathogenic Le submitter 160 Likely pathogenic Le submitter 161 Pathogenic Le submitter 162 Likely pathogenic Le submitter 163 Pathogenic Le submitter 164 Likely pathogenic Le submitter 165 Pathogenic Le submitter 166 Likely pathogenic Le submitter 167 Pathogenic Le submitter 168 Pathogenic Le submitter 164 Likely pathogenic Le submitter 165 Pathogenic Le submitter 166 Pathogenic Le submitter 167 Pathogenic Le submitter 168 Pathogenic Le submitter 169 Pa			criteria provided, sing		100 m
156 Pathogenic criteria_provided_sing 157 Likely_pathogenic le_submitter 157 Likely_pathogenic le_submitter 158 Pathogenic le_submitter 159 Likely_pathogenic le_submitter 160 Likely_pathogenic le_submitter 161 Pathogenic le_submitter 162 Likely_pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic </td <td>155</td> <td>Pathogenic</td> <td></td> <td>(/B) (C) (A) (() ()</td> <td></td>	155	Pathogenic		(/B) (C) (A) (() ()	
156 Pathogenic le submitter 157 Likely pathogenic le submitter 158 Pathogenic le submitter 158 Pathogenic le submitter 159 Likely pathogenic le submitter 161 Pathogenic le submitter 159 Likely pathogenic le submitter 161 Pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter 163 Pathogenic le submitter 164 Pathogenic le submitter 165 Pathogenic le submitter 166 criteria provided, sing lie submitter 167 Criteria provided, sing lie submitter 168 Pathogenic le submitter lie submitter 169 Likely pathogenic le submitter lie submitter 161 Pathogenic le submitter lie submitter 163 Pathogenic le submitter lie submitter 164 Likely pathogenic le submitter lie subm				/ AYANA	
157 Likely pathogenic criteria_provided_sing 158 Pathogenic le_submitter 159 Likely pathogenic le_submitter 159 Likely pathogenic le_submitter 160 Likely pathogenic le_submitter 161 Likely pathogenic le_submitter 162 Likely pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely pathogenic le_submitter 165 Pathogenic le_submitter 166 Likely pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 164 Likely pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 166 Pathogenic le_submitter 167	154	Dathogonic			
157 Likely pathogenic le submitter 158 Pathogenic le submitter 159 Likely pathogenic le submitter 159 Likely pathogenic le submitter 160 Likely pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter 163 Pathogenic le submitter 164 Likely pathogenic le submitter 165 Likely pathogenic le submitter 166 Pathogenic le submitter 167 Rikely pathogenic le submitter 168 Pathogenic le submitter 166 Pathogenic le submitter 167 Pathogenic le submitter 168 Pathogenic le submitter 169 Pathogenic le submitter 160 Pathogenic le submitter 161 Pathogenic le submitter 162 Pathogenic le submitter 163 Pathogenic le submitter 164 Likely p	150	Pathogenic	-		
158 Pathogenic Le submitter 159 Likely pathogenic Le submitter 159 Likely pathogenic Le submitter 160 Likely pathogenic Le submitter 161 Pathogenic Le submitter 162 Likely pathogenic Le submitter 163 Pathogenic Le submitter 164 Likely pathogenic Le submitter 165 Likely pathogenic Le submitter 166 Likely pathogenic Le submitter 167 Pathogenic Le submitter 168 Pathogenic Le submitter 166 Pathogenic Le submitter 167 Pathogenic Le submitter 168 Pathogenic Le submitter 166 Pathogenic Le submitter 167 Pathogenic Le submitter 168 Pathogenic Le submitter 169 Pathogenic Le submitter 168 Pathogenic Le submitter 169 Pathogenic Le submitter 170 Likely pathogen				000000000	
158 Pathogenic le submitter 159 Likely pathogenic le submitter 160 Likely pathogenic le submitter 160 Likely pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter 163 Pathogenic le submitter 164 Likely pathogenic le submitter 165 Pathogenic le submitter 166 Likely pathogenic le submitter 167 Pathogenic le submitter 168 Pathogenic le submitter 166 Pathogenic le submitter 167 Pathogenic le submitter 168 Pathogenic le submitter 169 Pathogenic le submitter 168 Pathogenic le submitter 169 Pathogenic le submitter 169 Pathogenic le submitter 169 Pathogenic le submitter 169 Pathogenic le submitter 170 Likely pathogenic	157	Likely_pathogenic	le_submitter	(courses)	
159 Likely_pathogenic criteria_provided_sing 160 Likely_pathogenic le_submitter 161 Pathogenic le_submitter 162 Likely_pathogenic le_submitter 163 Pathogenic le_submitter 164 Pathogenic le_submitter 165 Likely_pathogenic le_submitter 166 Likely_pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic			criteria_provided,_sing	Sector Contraction of the sector of the sect	
159 Likely pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter 163 Pathogenic le submitter 164 Pathogenic le submitter 165 Pathogenic le submitter 166 Pathogenic le submitter 167 Pathogenic le submitter 168 Pathogenic le submitter 169 Pathogenic le submitter 160 Pathogenic le submitter 161 Pathogenic le submitter 162 Likely pathogenic le submitter 163 Pathogenic le submitter 164 Likely pathogenic le submitter 165 Pathogenic le submitter 166 Pathogenic le submitter 167 Pathogenic le submitter 168 Pathogenic le submitter 169 Pathogenic le submitter 169 Pathogenic le submitter 170 Likely pathogenic le	158	Pathogenic	le_submitter	SAN AND	
160 Likely_pathogenic criteria_provided, sing le_submitter 161 Pathogenic le_submitter 162 Likely_pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 161 Pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic </td <td></td> <td></td> <td>criteria_provided,_sing</td> <td></td> <td></td>			criteria_provided,_sing		
160 Likely_pathogenic criteria_provided, sing le_submitter 161 Pathogenic le_submitter 162 Likely_pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 161 Pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic </td <td>159</td> <td>Likely pathogenic</td> <td>le submitter</td> <td></td> <td></td>	159	Likely pathogenic	le submitter		
160 Likely_pathogenic le_submitter 161 Pathogenic e_submitter 161 Pathogenic le_submitter 162 Likely_pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter		/			123
161 Pathogenic criteria_provided_sing 162 Likely_pathogenic le_submitter 163 Pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 criteria_provided_sing criteria_provided_sing 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Criteria_provided_sing criteria_provided_sing 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter 171	160	Likely nathogenic			
161 Pathogenic Le submitter 162 Likely_pathogenic te submitter 163 Pathogenic te submitter 164 Likely_pathogenic te_submitter 165 Pathogenic te_submitter 166 Pathogenic te_submitter 167 Pathogenic te_submitter 168 Pathogenic te_submitter 169 Pathogenic te_submitter 167 Pathogenic te_submitter 168 Pathogenic te_submitter 169 Pathogenic te_submitter 161 Pathogenic te_submitter 162 Pathogenic te_submitter 163 Pathogenic te_submitter 164 Pathogenic te_submitter 165 Pathogenic te_submitter </td <td>100</td> <td>Elkety_pathogenic</td> <td>-</td> <td></td> <td></td>	100	Elkety_pathogenic	-		
101 Pathogenic Re_submitter 162 Likely_pathogenic le_submitter 163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter 171 Pathogenic le_submitter				າຮຸດໂຄຍອຸດລິຍາຍ	1000
162 Likely pathogenic Le submitter ERSITY 163 Pathogenic Le submitter Image: Submitter 164 Likely pathogenic Le submitter Image: Submitter 164 Likely pathogenic Le submitter Image: Submitter 165 Pathogenic Le submitter Image: Submitter 166 Pathogenic Le submitter Image: Submitter 166 Pathogenic Le submitter Image: Submitter 167 Pathogenic Le submitter Image: Submitter 168 Pathogenic Le submitter Image: Submitter 168 Pathogenic Le submitter Image: Submitter 169 Pathogenic Le submitter Image: Submitter 169 Pathogenic Le submitter Image: Submitter 169 Pathogenic Le submitter Image: Submitter 170 Likely pathogenic Le submitter Image: Submitter 171 Pathogenic Le submitter Image: Submitter 171 Pathogenic Le submitter Image: Submitter 171	161	Pathogenic		13PPPN 19N5	เลย
101 Envy_provgend criteria_provided_sing ites ubmitter 103 Pathogenic le_submitter 104 Likely_pathogenic le_submitter 105 Pathogenic le_submitter 106 Pathogenic le_submitter 107 Pathogenic le_submitter 108 Pathogenic le_submitter 109 Pathogenic le_submitter 110 Likely_pathogenic le_submitter 111 Pathogenic le_submitter 112 Pathogenic le_submitter 111 Pathogenic le_submitter 112 Pathogenic le_submitter 113 Pathogenic le_submitter 114 Pathogenic le_submitter 117 Pathogenic le_submitter 117 Pathogenic <			criteria_provided,_sing		
163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	162	Likely_pathogenic	le_submitter	IGKORN I NIV	FRGITY
163 Pathogenic le_submitter 164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter			criteria_provided,_sing		
164 Likely_pathogenic criteria_provided, sing 165 Pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	163	Pathogenic			
164 Likely_pathogenic le_submitter 165 Pathogenic le_submitter 165 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter			_		
165 Pathogenic Icriteria_provided,_sing 166 Pathogenic Ie_submitter 166 Pathogenic Ie_submitter 166 Pathogenic Ie_submitter 166 Pathogenic Ie_submitter 167 Pathogenic Ie_submitter 168 Pathogenic Ie_submitter 168 Pathogenic Ie_submitter 169 Pathogenic Ie_submitter 169 Pathogenic Ie_submitter 170 Likely_pathogenic Ie_submitter 170 Likely_pathogenic Ie_submitter 171 Pathogenic Ie_submitter 172 Pathogenic Ie_submitter	164	Likely nathogenic			
165 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 166 Pathogenic le_submitter 167 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	104	_meg_patriogenic			
166 Pathogenic criteria_provided,_sing 166 Pathogenic le_submitter 167 Pathogenic le_submitter 167 Pathogenic le_submitter 167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	175	Dethe gap :-			
166 Pathogenic le submitter 167 Pathogenic le submitter 167 Pathogenic le submitter 168 Pathogenic le submitter 168 Pathogenic le submitter 169 Pathogenic le submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	165	ratnogenic	-		
167 Pathogenic criteria_provided,_sing 167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter					
167 Pathogenic le_submitter 168 Pathogenic le_submitter 168 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	166	Pathogenic	le_submitter		
168 Pathogenic criteria_provided,_sing 169 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter			criteria_provided,_sing		
168 Pathogenic criteria_provided,_sing 169 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	167	Pathogenic	le_submitter		
168 Pathogenic le_submitter 169 Pathogenic le_submitter 169 Pathogenic le_submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter			_		
169 Pathogenic criteria_provided,_sing le_submitter 170 Likely_pathogenic le_submitter 170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	168	Pathogenic			
169 Pathogenic Le_submitter 170 Likely_pathogenic Le_submitter 170 Likely_pathogenic Le_submitter 171 Pathogenic Le_submitter 171 Pathogenic Le_submitter 172 Pathogenic Le_submitter	100		-		
170 Likely_pathogenic criteria_provided,_sing le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	1/0	Dathogonia			
170 Likely_pathogenic le_submitter 171 Pathogenic le_submitter 172 Pathogenic le_submitter	169	raunogenic	-		
171 Pathogenic criteria_provided,_sing 172 Pathogenic le_submitter					
171 Pathogenic Le submitter 172 Pathogenic Le submitter	170	Likely_pathogenic	le_submitter		
172 Pathogenic criteria_provided,_sing Le_submitter			criteria_provided,_sing		
172 Pathogenic criteria_provided,_sing Le_submitter	171	Pathogenic	le_submitter		
172 Pathogenic le_submitter			_		
	172	Pathogenic			
173 Pathogenic criteria_provided,_sing			_		
	173	Pathogenic	criteria_provided,_sing		

1	I	le_submitter	l	
174	Pathogenic	criteria_provided,_sing le submitter		
114	ratiogenic	criteria_provided,_sing		
175	Likely_pathogenic	le_submitter		
	· · · · · · · · · · · · · · · · · · ·	criteria_provided,_sing		
176	Likely_pathogenic	le_submitter		
		criteria_provided,_sing		
177	Pathogenic	le_submitter		
		criteria_provided,_sing		
178	Pathogenic	le_submitter		
170	Datha and	criteria_provided,_sing		
179	Pathogenic	le_submitter		
180	Pathogenic	criteria_provided,_sing le submitter		
100	i denoșenie	no_assertion_criteria_		
181	Pathogenic	provided	5 A A A	
		no_assertion_criteria_	2011/20	
182	Pathogenic	provided		
		no_assertion_criteria_		
183	Pathogenic	provided		7 12.
104	Dathografia	no_assertion_criteria_	1111	
184	Pathogenic	provided no_assertion_criteria_		
185	Pathogenic	provided		
105	T denoserne	no assertion criteria		
186	Likely_pathogenic	provided		
		no_assertion_criteria_		
187	Pathogenic	provided	ANTONIA	
		no_assertion_criteria_		
188	Pathogenic	provided	Dilicit(O)Ch(A)	
100		no_assertion_criteria_	[reaced-2-2020221]0	
189	Pathogenic	provided		
190	Pathogenic	no_assertion_criteria_ provided	DED V data	
170	1 denogenie	no_assertion_criteria_		10
191	Pathogenic	provided		
		no_assertion_criteria_		and and a second second second second second second second second second second second second second second se
192	Pathogenic	provided	າວໃນພາລີທ	າວັນ
		no_assertion_criteria_	1 3 5 16 61 17 1 3 7 1 C	J 161 CJ
193	Likely_pathogenic	provided	CKODN HND	EDGITY
104	Dathografia	no_assertion_criteria_		ENJIII
194	Pathogenic	provided		
195	Pathogenic	no_assertion_criteria_ provided		
		no_assertion_criteria_		
196	Pathogenic	provided		
		no_assertion_criteria_		
197	Pathogenic	provided		
		no_assertion_criteria_		
198	Pathogenic	provided		
100	Dathogon:-	no_assertion_criteria_		
199	Pathogenic	provided no assertion criteria		
200	Pathogenic	provided		
		no_assertion_criteria_		
201	Pathogenic	provided		
		no_assertion_criteria_		
202	Pathogenic	provided		
		no_assertion_criteria_		
203	Likely_pathogenic	provided		
204	Pathogenic/Likely_	no_assertion_criteria_		
204	pathogenic	provided	1	

1	I	no assertion criteria		
205	Pathogenic	provided		
		no_assertion_criteria_		
206	Pathogenic	provided		
007	Datha and	no_assertion_criteria_		
207	Pathogenic	provided no_assertion_criteria_		
208	Pathogenic	provided		
	Conflicting_interpr			InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Likely_pathogenic(2),Unce	PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
209	genicity		rtain_significance(3)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr			InterVar: Likely pathogenic PVS1=0 PS=[0, 0, 0, 0, 0] PM=[1, 1,
210	etations_of_patho genicity		Likely_pathogenic(4),Unce rtain significance(2)	0, 0, 0, 0, 0] PP=[0, 1, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[1, 0, 0, 0, 0, 0, 0, 0, 0]
210	Conflicting interpr		rtuin_significance(2)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Pathogenic(2),Uncertain_si	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
211	genicity		gnificance(2)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr		Likely_pathogenic(1),Path	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
010	etations_of_patho	2	ogenic(1),Uncertain_signifi	PM=[0, 1, 0, 1, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0]
212	genicity Conflicting interpr		cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations of patho	1000000	Pathogenic(2),Uncertain si	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0]
213	genicity		gnificance(2)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr		7///	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Likely_pathogenic(2),Unce	PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
214	genicity		rtain_significance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr		Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0, 0] PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0,
215	etations_of_patho genicity		cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr	JI	Likely_pathogenic(2),Path	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho	V //	ogenic(12),Uncertain_signi	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
216	genicity	1	ficance(1)	0] BP=[0, 0, 0, 1, 0, 0, 0, 0]
	Conflicting_interpr		5	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
217	etations_of_patho genicity		Pathogenic(1),Uncertain_si gnificance(1)	PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
211	Conflicting interpr		Likely pathogenic(2),Path	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		ogenic(1),Uncertain_signifi	PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0,
218	genicity		cance(3)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr		ď A	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
219	etations_of_patho	จุฬาลงเ	Pathogenic(1),Uncertain_si	PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0]
219	genicity Conflicting interpr	· · · · · · · · · · · · · · · · · · ·	gnificance(1) Likely pathogenic(2),Path	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations of patho	GHULALON	ogenic(1),Uncertain signifi	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
220	genicity		cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr		Likely_pathogenic(2),Path	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		ogenic(1),Uncertain_signifi	PM=[0, 1, 0, 0, 1, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0, 0]
221	genicity Conflicting interpr		cance(1) Likely pathogenic(3),Path	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	Conflicting_interpr etations of patho		ogenic(7),Uncertain signifi	PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0, 0]
222	genicity		cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr			InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Pathogenic(1),Uncertain_si	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
223	genicity		gnificance(5)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr etations_of_patho		Likely_pathogenic(3),Path ogenic(13),Uncertain signi	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0, 0] PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
224	genicity		ficance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] PF=[0, 0, 1, 0, 0, 0] BA1=0 B3=[0, 0, 0, 0, 0, 0]
	Conflicting_interpr			InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Likely_pathogenic(1),Unce	PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
225	genicity		rtain_significance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr		Likely_pathogenic(1),Path	InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1,
226	etations_of_patho genicity		ogenic(1),Uncertain_signifi cance(1)	0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
227	Conflicting_interpr		Likely_pathogenic(1),Unce	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]

	etations of patho		rtain significance(1)	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
	genicity			0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting interpr		Likely pathogenic(1),Path	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		ogenic(1),Uncertain_signifi	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
228	genicity		cance(2)	0] BP=[1, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr			InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations of patho		Likely_pathogenic(1),Unce	PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
229	genicity		rtain significance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting interpr			InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Likely_pathogenic(1),Unce	PM=[0, 1, 0, 0, 1, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
230	genicity		rtain significance(4)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr		Likely pathogenic(4),Path	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		ogenic(3),Uncertain signifi	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
231	genicity		cance(4)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting interpr		concerty	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
			Likely, pathogonic(1) Linco	-
232	etations_of_patho		Likely_pathogenic(1),Unce	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0]
232	genicity		rtain_significance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr			InterVar: Likely pathogenic PVS1=0 PS=[0, 0, 0, 1, 0] PM=[1, 0,
	etations_of_patho	4	Pathogenic(14),Uncertain_	0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] BP=[0,
233	genicity		significance(1)	0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr		Likely_pathogenic(1),Path	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho	. later	ogenic(1),Uncertain_signifi	PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0,
234	genicity		cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr			InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Likely_pathogenic(1),Unce	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
235	genicity		rtain_significance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr	11		InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Likely_pathogenic(2),Unce	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
236	genicity		rtain significance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting interpr		8.9 a(0) 12 (0.45	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho		Pathogenic(5),Uncertain si	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0]
237			gnificance(1)	0] BP=[1, 0, 0, 0, 0, 0, 0, 0]
231	genicity	1	A CONTRACTOR DE LE CERTER O	
	Conflicting_interpr		Likely_pathogenic(3),Path	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho	the second second	ogenic(1),Uncertain_signifi	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0]
238	genicity		cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
	Conflicting_interpr			InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	etations_of_patho	43	Likely_pathogenic(1),Unce	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0,
239	etations_of_patho genicity		Likely_pathogenic(1),Unce rtain_significance(5)	PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
239				Edwards .
239	genicity	จหาลงก	rtain_significance(5)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
239 240	genicity Conflicting_interpr	จุหาลงก	rtain_significance(5) Likely_pathogenic(1),Path	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
	genicity Conflicting_interpr etations_of_patho	จุฬาลงก	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0,
	genicity Conflicting_interpr etations_of_patho genicity	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0, 0]
	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0, 0]
240	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0]
240	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
240 241	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] O] BP=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0]
240	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] O] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0]
240 241	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PJ=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 1]
240 241 242	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PJ=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0] BP=[0, 0, 0, 0] BP=[0, 0, 0, 0] BP=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0] BP=[0, 0, 0, 0] BP=[0, 0, 0] BP=[0, 0, 0, 0] BP=[0, 0, 0] BP=[0, BP=[0, 0] BP=[0, 0] BP=[0, 0] BP=[0, 0] BP=[0, 0
240 241	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PJ=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0]
240 241 242	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0]
240 241 242 243	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] DI BP=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] O] InterVar: Likely pathogenic PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0]
240 241 242	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] D] BP=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] O] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 1, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0]
240 241 242 243	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] DI BP=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] O] InterVar: Likely pathogenic PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0]
240 241 242 243	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] D] BP=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] O] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 1, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0]
240 241 242 243	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] D] BP=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0]
240 241 242 243 244	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] D] BP=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0]
240 241 242 243 244	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(7)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0,
240 241 242 243 244 245	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(7) Likely_pathogenic(3),Unce	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=
240 241 242 243 244	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(7) Likely_pathogenic(3),Unce rtain_significance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] D] BP=[0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0] InterVar: Pathogenic PVS1=1
240 241 242 243 244 245	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Likely_pathogenic(3),Unce rtain_significance(1) Likely_pathogenic(1),Path	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] O] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0]
240 241 242 243 244 245 246	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(7) Likely_pathogenic(3),Unce rtain_significance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] O] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0] InterVar: Pathogenic PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar:
240 241 242 243 244 245	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity	จุหาลงก Chulalor	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(7) Likely_pathogenic(3),Unce rtain_significance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1)	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 1, 0, 0, 0] PA=[0, 0, 1, 0, 0, 0] BA1=0 BS=
240 241 242 243 244 245 246	genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho genicity Conflicting_interpr etations_of_patho	จุฬาลงก Chulalon	rtain_significance(5) Likely_pathogenic(1),Path ogenic(17),Uncertain_signi ficance(1) Pathogenic(1),Uncertain_si gnificance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(2) Pathogenic(1),Uncertain_si gnificance(7) Likely_pathogenic(3),Unce rtain_significance(1) Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi	0] BP=[0, 0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0, 0] InterVar: Likely pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] O] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 1, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0] InterVar: Pathogenic PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] InterVar:

	genicity			0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
249	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(2),Path ogenic(1),Uncertain_signifi cance(1)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
250	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(6),Path ogenic(13),Uncertain_signi ficance(1)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
251	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(2),Path ogenic(1),Uncertain_signifi cance(1)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
252	Conflicting_interpr etations_of_patho genicity		Pathogenic(3),Uncertain_si gnificance(6)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
253	Conflicting_interpr etations_of_patho genicity		Pathogenic(1),Uncertain_si gnificance(3)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
254	Conflicting_interpr etations_of_patho genicity	V	Likely_pathogenic(1),Unce	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
255	Conflicting_interpr etations_of_patho genicity		Pathogenic(1),Uncertain_si gnificance(1)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
256	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(1),Unce rtain_significance(4)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
257	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(1),Path ogenic(1),Uncertain_signifi cance(1)	InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0, 0]
258	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(2),Path ogenic(1),Uncertain_signifi cance(1)	InterVar: Pathogenic PVS1=1 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0, 0]
259	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(1),Unce rtain_significance(1)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0, 0] PM=[1, 0, 0, 0, 0, 0, 0] PP=[0, 1, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
260	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(2),Unce rtain_significance(1)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[1, 0, 0, 0, 0, 0, 0] PP=[0, 1, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
261	Conflicting_interpr etations_of_patho genicity	จุฬาลงเ	Likely_pathogenic(1),Path ogenic(3),Uncertain_signifi cance(3)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[1, 0, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[1, 0, 0, 0, 0] 0] BP=[0, 0, 0, 0, 0, 0, 0, 0]
262	Conflicting_interpr etations_of_patho genicity	CHULALO	Likely_pathogenic(1),Unce rtain_significance(2)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[0, 1, 0, 0, 0, 0, 0] PP=[0, 0, 0, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] BP=[1, 0, 0, 0, 0, 0, 0, 0]
263	Conflicting_interpr etations_of_patho genicity		Likely_pathogenic(1),Path ogenic(6),Uncertain_signifi cance(2)	InterVar: Uncertain significance PVS1=0 PS=[0, 0, 0, 0, 0] PM=[1, 1, 0, 0, 0, 0, 0] PP=[0, 0, 1, 0, 0, 0] BA1=0 BS=[0, 0, 0, 0, 0] 0] BP=[1, 0, 0, 0, 0, 0, 0, 0]

Supplementary table 5 Gene Carrier Rates (GCR) of genes associated with autosomal

recessive disorder

Gene	P1	P2	P3	CoP
НВВ	0.26397658	0.26519921	0.26519921	0.26519921
GJB2	0.22205647	0.22205647	0.22205647	0.22205647
HBA2	0.05952381	0.05952381	0.05952381	0.05952381
GALT	0.01655629	0.01655629	0.01655629	0.01655629
ABCA4	0.01642543	0.01967423	0.02129461	0.06579242
SLC26A4	0.01155656	0.01319035	0.01319035	0.01319035

CFTR	0.00992642	0.00992642	0.01324966	0.02318801
USH2A	0.00992574	0.01156222	0.01156222	0.01483794
SLC22A5	0.00989279	0.01152933	0.01152933	0.01806467
SLC25A13	0.00988461	0.00988461	0.00988461	0.00988461
AGXT	0.0066061	0.00824807	0.01152388	0.01152388
GBA	0.00660337	0.00824535	0.00824535	0.00824535
PKHD1	0.00501115	0.00501115	0.00501115	0.00665576
CYP21A2	0.00498618	0.00498618	0.00498618	0.01531504
SBDS	0.00497512	0.00497512	0.00497512	0.00497512
BEST1	0.00495868	0.00660337	0.00660337	0.00660337
RPGRIP1L	0.00495868	0.00495868	0.00495868	0.00495868
PAH	0.00495594	0.00825081	0.00825081	0.00825081
GUSB	0.00330579	0.00495321	0.00495321	0.00495321
FANCA	0.00330579	0.00495321	0.03625435	0.03625435
GAA	0.00330579	0.00495321	0.00495321	0.00659792
DHCR7	0.00330579	0.00330579	0.00330579	0.00330579
UROS	0.00330579	0.00330579	0.00330579	0.00330579
GNPTAB	0.00330305	0.00495049	0.00495049	0.00495049
COL4A3	0.00330305	0.00330305	0.00330305	0.00330305
PLA2G6	0.00330305	0.00330305	0.00330305	0.00330305
TYR	0.00170068	0.00170068	0.00170068	0.00170068
LYST	0.00167224	0.00167224	0.00167224	0.00167224
ALMS1	0.00166667	0.00498339	0.00498339	0.00498339
CEP290	0.00165837	0.00495595	0.00495595	0.00825897
CYP17A1	0.00165289	0.00495321	0.00495321	0.00495321
АТР7В	0.00165289	0.00330305	0.00330305	0.00987918
GNE	0.00165289	0.00330305	0.00330305	0.00824535
ABCC8	0.00165289	0.00330305	0.00330305	0.00330305
ACAD9	0.00165289	0.00330305	0.00330305	0.00330305
BRCA2	0.00165289	0.00330305	0.00330305	0.00330305
CYP27A1	0.00165289	0.00165289	0.01155386	0.01155386
LDLR	0.00165289	0.00165289	0.00330579	0.00660064
KLHL40	0.00165289	0.00165289	0.00330305	0.00330305
NPHS2	0.00165289	0.00165289	0.00165289	0.00825353
CNGB1	0.00165289	0.00165289	0.00165289	0.00330305
ACADS	0.00165289	0.00165289	0.00165289	0.00165289
AIRE	0.00165289	0.00165289	0.00165289	0.00165289
ARSA	0.00165289	0.00165289	0.00165289	0.00165289
ASS1	0.00165289	0.00165289	0.00165289	0.00165289
BBS2	0.00165289	0.00165289	0.00165289	0.00165289

CNGB3	0.00165289	0.00165289	0.00165289	0.00165289
COL6A1	0.00165289	0.00165289	0.00165289	0.00165289
FAH	0.00165289	0.00165289	0.00165289	0.00165289
FBP1	0.00165289	0.00165289	0.00165289	0.00165289
GALC	0.00165289	0.00165289	0.00165289	0.00165289
GYS2	0.00165289	0.00165289	0.00165289	0.00165289
IDUA	0.00165289	0.00165289	0.00165289	0.00165289
LAMB3	0.00165289	0.00165289	0.00165289	0.00165289
ММАВ	0.00165289	0.00165289	0.00165289	0.00165289
MPL	0.00165289	0.00165289	0.00165289	0.00165289
МИТҮН	0.00165289	0.00165289	0.00165289	0.00165289
ΟΤΟΑ	0.00165289	0.00165289	0.00165289	0.00165289
PEX7	0.00165289	0.00165289	0.00165289	0.00165289
POR	0.00165289	0.00165289	0.00165289	0.00165289
PRF1	0.00165289	0.00165289	0.00165289	0.00165289
PYGM	0.00165289	0.00165289	0.00165289	0.00165289
RDH12	0.00165289	0.00165289	0.00165289	0.00165289
NEB	0	0.00991736	0.00991736	0.00991736
СНКВ	0	0.00495868	0.00495868	0.00495868
GJC2	0	0.00495868	0.00495868	0.00495868
HPS6	0	0.00495868	0.00495868	0.00495868
MYO15A	0	0.00495321	0.00495321	0.00495321
RPE65	0	0.00331958	0.00331958	0.00331958
ETFDH	0	0.00330305	0.00330305	0.00330305
IVD	0	0.00330305	0.00330305	0.00330305
TGM1	0	0.00330305	0.00330305	0.00330305
TMEM67	GHO	0.00330305	0.00330305	0.00330305
WNT10A	0	0.00330305	0.00330305	0.00330305
TMEM237	0	0.00165837	0.00165837	0.00165837
CC2D2A	0	0.00165563	0.00165563	0.00165563
FH	0	0.00165563	0.00165563	0.00165563
CNGA3	0	0.00165289	0.00330305	0.00330305
EVC	0	0.00165289	0.00330305	0.00330305
FAM161A	0	0.00165289	0.00330305	0.00330305
PDE6B	0	0.00165289	0.00330305	0.00330305
PROM1	0	0.00165289	0.00330305	0.00330305
PROC	0	0.00165289	0.00165289	0.01650434
POLG	0	0.00165289	0.00165289	0.00659792
GCDH	0	0.00165289	0.00165289	0.00330305
ALOX12B	0	0.00165289	0.00165289	0.00165289

ALPL	0	0.00165289	0.00165289	0.00165289
ATR	0	0.00165289	0.00165289	0.00165289
BCS1L	0	0.00165289	0.00165289	0.00165289
COL6A3	0	0.00165289	0.00165289	0.00165289
COL7A1	0	0.00165289	0.00165289	0.00165289
ESPN	0	0.00165289	0.00165289	0.00165289
ETFB	0	0.00165289	0.00165289	0.00165289
FUCA1	0	0.00165289	0.00165289	0.00165289
HPS3	0	0.00165289	0.00165289	0.00165289
INVS	0	0.00165289	0.00165289	0.00165289
LAMA2	0	0.00165289	0.00165289	0.00165289
LDLRAP1	0	0.00165289	0.00165289	0.00165289
МККЅ	0	0.00165289	0.00165289	0.00165289
MTTP	0	0.00165289	0.00165289	0.00165289
МҮОЗА	0	0.00165289	0.00165289	0.00165289
NDUFV1	0	0.00165289	0.00165289	0.00165289
POMT1	0	0.00165289	0.00165289	0.00165289
RARS2	0	0.00165289	0.00165289	0.00165289
RECQL4	0	0.00165289	0.00165289	0.00165289
RMRP	0	0.00165289	0.00165289	0.00165289
SLC25A15	0	0.00165289	0.00165289	0.00165289
SLC7A9	0	0.00165289	0.00165289	0.00165289
ТК2	0	0.00165289	0.00165289	0.00165289
VPS13A	0	0.00165289	0.00165289	0.00165289
VPS33B	0	0.00165289	0.00165289	0.00165289
F5	0	0	0.02479339	0.02479339
OTOF	GHO	LALONGKO	0.00330579	0.01319036
FREM2	0	0	0.00330579	0.00330579
BTD	0	0	0.00165289	0.00824262
CHRNG	0	0	0.00165289	0.00165289
СР	0	0	0.00165289	0.00165289
CRTAP	0	0	0.00165289	0.00165289
GJB3	0	0	0.00165289	0.00165289
МАК	0	0	0.00165289	0.00165289
MOCS2	0	0	0.00165289	0.00165289
RPGRIP1	0	0	0.00165289	0.00165289
SCNN1A	0	0	0.00165289	0.00165289
USH1G	0	0	0.00165289	0.00165289
ZNF469	0	0	0.00165289	0.00165289
AMPD1	0	0	0	0.00165289

SMPD1	0	0	0	0.02809917
MOCS1	0	0	0	0.01818182
MLC1	0	0	0	0.00826446
TTN	0	0	0	0.00342261
DPYD	0	0	0	0.00331126
ILDR1	0	0	0	0.00330579
ACADM	0	0	0	0.00330305
ACADVL	0	0	0	0.00330305
AGL	0	0	0	0.00165563
FARS2	0	0	0	0.00165563
ASL	0	0	0	0.00165289
EYS	0	0	1120 0	0.00165289
GLDC	0	0	0	0.00165289
HFE	0	0	0	0.00165289
LRPPRC	0	0	0	0.00165289
MEFV	0	0	0	0.00165289
PEX1	0	0	0	0.00165289
RAPSN	0	0	0	0.00165289
SGSH	0	0	0	0.00165289

0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Chulalongkorn Universit

VITA

NAME	John Mauleekoonphairoj
DATE OF BIRTH	19 November 1990
PLACE OF BIRTH	Bangkok
INSTITUTIONS ATTENDED	Chulalongkorn University
HOME ADDRESS	104/20 soi Ronnachai 2, Setsiri Rd. Samsen Nai
PUBLICATION	1: Chitcharoen S, Phokaew C, Mauleekoonphairoj J,
	Khongphatthanayothin A,
2	Sutjaporn B, Wandee P, Poovorawan Y, Nademanee K,
2	Payungporn S. Metagenomic
	analysis of viral genes integrated in whole genome
2	sequencing data of Thai
	patients with Brugada syndrome. Genomics Inform. 2022
	Dec;20(4):e44. doi:
	10.5808/gi.22047. Epub 2022 Dec 30. PMID: 36617651;
	PMCID: PMC9847385.

CHULA 2: Chimparlee N, Prechawat S, Khongphatthanayothin A,

Mauleekoonphairoj J,

Lekchuensakul S, Wongcharoen W, Makarawate P,

Sahasatas D, Krittayaphong R,

Amnueypol M, Anannab A, Ngarmukos T, Vardhanabhuti S,

Sutjaporn B, Wandee P,

Veerakul G, Bezzina CR, Poovorawan Y, Nademanee K.

Clinical Characteristics of

SCN5A p.R965C Carriers: A Common Founder Variant

Predisposing to Brugada

Syndrome in Thailand. Circ Genom Precis Med. 2021

Jun;14(3):e003229. doi:

10.1161/CIRCGEN.120.003229. Epub 2021 Jun 7. PMID: 34092119.

3: Mauleekoonphairoj J, Vongpunsawad S,

Khongphatthanayothin A, Nademanee K,

Poovorawan Y. Genetic risks and association with severe COVID-19 among global

populations. Pathog Glob Health. 2021 Jun;115(4):209-210. doi:

10.1080/20477724.2021.1881371. Epub 2021 Feb 3. PMID: 33533704; PMCID: PMC8168748.

4: Pasittungkul S, Lestari FB, Puenpa J, Chuchaona W, Posuwan N, Chansaenroj J,

Mauleekoonphairoj J, Sudhinaraset N, Wanlapakorn N,

Poovorawan Y. High

prevalence of circulating DS-1-like human rotavirus A and genotype diversity in

CHILLA children with acute gastroenteritis in Thailand from 2016

to 2019. PeerJ. 2021

Feb 26;9:e10954. doi: 10.7717/peerj.10954. PMID:

33680579; PMCID: PMC7919534.

5: Makarawate P, Glinge C, Khongphatthanayothin A, Walsh

R, Mauleekoonphairoj J,

Amnueypol M, Prechawat S, Wongcharoen W,

Krittayaphong R, Anannab A, Lichtner P,

Meitinger T, Tjong FVY, Lieve KVV, Amin AS, Sahasatas D,

Ngarmukos T, Wichadakul

D, Payungporn S, Sutjaporn B, Wandee P, Poovorawan Y, Tfelt-Hansen J, Tanck MWT,

Tadros R, Wilde AAM, Bezzina CR, Veerakul G, Nademanee

K. Common and rare

susceptibility genetic variants predisposing to Brugada syndrome in Thailand.

Heart Rhythm. 2020 Dec;17(12):2145-2153. doi:

10.1016/j.hrthm.2020.06.027. Epub

2020 Jun 30. PMID: 32619740.

6: Mauleekoonphairoj J, Chamnanphon M,

Khongphatthanayothin A, Sutjaporn B,

Wandee P, Poovorawan Y, Nademanee K, Pongpanich M,

Chariyavilaskul P. Phenotype

prediction and characterization of 25 pharmacogenes in Thais from whole genome

sequencing for clinical implementation. Sci Rep. 2020 Nov

3;10(1):18969. doi:

10.1038/s41598-020-76085-3. PMID: 33144648; PMCID:

PMC7641128.

CHULALONGKORN UNIVERSITY

7: Saprungruang A, Khongphatthanayothin A,

Mauleekoonphairoj J, Wandee P,

Kanjanauthai S, Bhuiyan ZA, Wilde AAM, Poovorawan Y.

Genotype and clinical

characteristics of congenital long QT syndrome in

Thailand. Indian Pacing

Electrophysiol J. 2018 Sep-Oct;18(5):165-171. doi:

10.1016/j.ipej.2018.07.007.

Epub 2018 Jul 20. PMID: 30036649; PMCID: PMC6198685.

8: Thongpan I, Mauleekoonphairoj J, Vichiwattana P,

Korkong S, Wasitthankasem R,

Vongpunsawad S, Poovorawan Y. Respiratory syncytial virus genotypes NA1, ON1,

and BA9 are prevalent in Thailand, 2012-2015. PeerJ. 2017 Oct 27;5:e3970. doi:

10.7717/peerj.3970. PMID: 29085762; PMCID: PMC5661434.

9: Chansaenroj J, Auphimai C, Puenpa J,

Mauleekoonphairoj J, Wanlapakorn N,

Vuthitanachot V, Vongpunsawad S, Poovorawan Y. High

prevalence of coxsackievirus

A2 in children with herpangina in Thailand in 2015.

Virusdisease. 2017

Mar;28(1):111-114. doi: 10.1007/s13337-017-0366-8. Epub 2017 Feb 14. PMID:

28466062; PMCID: PMC5377860.

10: Mauleekoonphairoj J, Puenpa J, Korkong S,

Vongpunsawad S, Poovorawan Y.

CHULA PREVALENCE OF HUMAN ENTEROVIRUS AMONG PATIENTS

WITH HAND, FOOT, AND MOUTH

DISEASE AND HERPANGINA IN THAILAND, 2013. Southeast

Asian J Trop Med Public

Health. 2015 Nov;46(6):1013-20. PMID: 26867359.

11: Mauleekoonphairoj J, Vongpunsawad S, Puenpa J, Korkong S, Poovorawan Y.

Complete genome sequence analysis of enterovirus 71

isolated from children with

hand, foot, and mouth disease in Thailand, 2012-2014.

Virus Genes. 2015 Oct;51(2):290-3. doi: 10.1007/s11262-015-1239-0. Epub 2015 Aug 25. PMID: 26303899.

12: Puenpa J, Mauleekoonphairoj J, Linsuwanon P,

Suwannakarn K, Chieochansin T,

Korkong S, Theamboonlers A, Poovorawan Y. Prevalence and characterization of

enterovirus infections among pediatric patients with hand foot mouth disease,

herpangina and influenza like illness in Thailand, 2012.

PLoS One. 2014 Jun

2;9(6):e98888. doi: 10.1371/journal.pone.0098888. PMID: 24887237; PMCID:

PMC4041783.

13: Linsuwanon P, Puenpa J, Huang SW, Wang YF,

Mauleekoonphairoj J, Wang JR,

Poovorawan Y. Epidemiology and seroepidemiology of GHULA human enterovirus 71 among

Thai populations. J Biomed Sci. 2014 Feb 18;21(1):16. doi: 10.1186/1423-0127-21-16. PMID: 24548776; PMCID: PMC3937078.