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models. The standard AR model was established using the normal distribution, which is

violated in some datasets, notably financial data. Therefore, alternative distributions are

proposed in the literature, such as the concept of mixture distributions. This concept is

also applied to time series modeling in the family of mixture autoregressive models that

combine different autoregressive components. Specifically, we consider both the univariate

mixture autoregressive model and the multivariate mixture autoregressive model based on

the normal and t distributions. In this study, we construct the EM algorithm to estimate

parameters and investigate the performance of this method compared with the MLE. The

analysis focuses on top stocks from two different sectors in the market, namely energy

and utility and electronic components, with each sector comprising three stocks. The

fitted models are compared with the family of mixture autoregressive models by using

AIC, HQIC, BIC, and MSE of predictions. The results indicate that the EM algorithm

is preferred for Thai stock market data.
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CHAPTER I

INTRODUCTION

A time series is an ordered sequence taken at successive equally spaced time intervals

and has been widely used in various applications, particularly in finance, actuarial science,

economics, methodology, and medicine. One of the most popular time series models is

the family of autoregressive (AR) models, which have the unimodal Gaussian distribution

as the underlying distribution, defined as follows.

Let yt represent the value of the series at time t. We designate the process yt as

an autoregressive model with, p, order of autoregressive, denoted as AR(p), if it can be

expressed as a weighted linear combination of order p most recent past values of itself.

Specifically,

yt =
p∑

i=1

φiyt−i + εt, (1.1)

where white noise, εt, is assumed to be normally distributed.

Even though the univariate AR(p) models have been widely applied in many dif-

ferent displines, the unimodity assumption of the autoregressive models might not be

applicable in some situations. For example, consider the Canadian lynx dataset and the

time series of common stock closing prices for International Business Machines (IBM).

For more details, refer to Wong and Li (2000). Therefore, alternative distributions for

multimodal data have been investigated in literature. One such concept for multimodal

data is to apply a mixture of different distributions. The finite mixture distribution is

a class of probability distributions particularly useful for modelling data that contains

relatively distinct subgroups or clusters of observations. In particular, the distribution of

ΦY is considered as a finite mixture of Φi for i = 1, 2, 3, . . . ,K if it can be written as



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

ΦY = α1Φ1 + α2Φ2 + · · ·+ αKΦK ,

where
∑K

i=1 αi = 1. Consequently, the density function φY corresponding to ΦY can be

written as

φY = α1φ1 + α2φ2 + · · ·+ αKφK ,

where φi represents the probability density function corresponding to the distribution Φi

for i = 1, 2, . . . ,K.

The concept of the mixture distribution was initially introduced into the time series

context by Le et al. in 1996 [1], when the authors created the class of Gaussian Mixture

Transition Distribution (GMTD) time series models.

In 2000, Wong and Li [2] generalized the concepts of the model to introduce a new

class of mixture model for time series data, known as the Mixture Autoregressive (MAR)

model. Moreover, they demonstrated that the MAR model outperforms other existing

time series models, as evidenced by its application to datasets such as the International

Business Machines stock prices and the Canadian lynx data.

Since then, the concepts of mixture time series models have attracted the attention

of researchers. The models were then extended to more general models. For example,

Fong et al. (2007) [3] extended the univariate MAR model to multivariate time series

data by introducing the mixture vector autoregressive model. Subsequently, the model

has been extended in various aspects. For instance, Lanne and Saikkonen [4] expanded the

model by incorporating GARCH errors and applied it to the U.S. short-term interest rate.

Meitz, Virolainen, and Savi [5] extended the model to a mixture of autoregressive and a

model based on the Student’s t-distribution. They developed the “uGMAR” R-package,

which provides tools for estimating and analysing the Gaussian mixture autoregressive

model. In 2022, Virolainen and Savi [6] developed the “gmvarkit” R-package, which offers

tools for estimating and analyzing the Gaussian mixture vector autoregressive model.
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In this study, we will construct appropriate mixture autoregressive models for Thai

stock data and multivariate mixture vector autoregressive models to studies the correla-

tion between different stock markets by using the maximum log-likelihood method and

EM algorithm to estimate parameters in Chapter 4 and choose the best model by AIC,

BIC, and HQIC. The thesis is organized as follows. In Chapter 2, we introduce the distri-

butions that we consider in this study, discuss some of the parameter estimation, model

selection, model diagnostic. At the end of the chapter, we introduce some basic ideas

in time series analysis such as mean, covariance, correlation functions, and the concept

of stationarity. Also, we take an overview of the basic linear time series models, which

consists of the stationary time series model, which are AR, MA, ARMA, and the VAR

models, and non-stationary time series models which are ARIMA models. In Chapter 3,

we introduce the family of univariate mixture autoregressive models, which have univari-

ate mixture autoregressive (MAR), t mixture autoregressive (TMAR) and describe the

properties of each model. We construct the EM algorithm for estimating parameters in

the univariate mixture autoregressive and the multivariate mixture vector autoregressive

model. We investigate the performance of our method by comparing it with the maxi-

mum log-likelihood estimator and conducting simulation studies to test the accuracy of

the estimation. After that, we apply the EM algorithm to analyze Thai stock market

data. In Chapter 4, we introduce the multivariate mixture autoregressive (MVAR) mod-

els and the multivariate t mixture autoregressive (TMVAR) models and describe their

properties. We investigate the performance of the parameter estimation of each method

to the MVAR and TMVAR model. We fitted the models to our data set, obtained the

best model for each dataset by using AIC, BIC, HQIC and mean square error (MSE), and

the corresponding regression coefficients. We summarized the main results and conclusion

in Chapter 5.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARY

In this chapter, we introduce the basic knowledge used in this thesis. The distri-

butions considered in this study are discussed in Section 2.1. In Section 2.2, we discuss

parameter estimation, the maximum likelihood estimator and the EM algorithm for effi-

cient model parameter estimation. Section 2.3 covers the selection of the best candidate

model for each model using selection criteria. In Section 2.4, we evaluate how well the

models fit the data through model diagnostics. Fundamental concepts time series and

time series model are discussed in Sections 2.5.

2.1 Distribution

In this study, we examine both the normal distribution and the Student’s t distri-

bution in the context of univariate and multivariate time series models. Additionally, we

explore the finite mixed distribution, which is applied to time series models, resulting in

a mixture model.

2.1.1 Normal distribution

Definition 1. Let X be a continuous random variable. We say that X follow a normal

distribution with mean µ, variance σ2 if the probability density function follows

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 . (2.1)

2.1.2 t distribution

Definition 2. Let X be a continuous random variable. We say that X follow a t distri-

bution with v degree of freedom if the probability density function follows

fv(x) =
Γ(v+1

2 )
√
vπΓ(v2 )

(
1 +

x2

v

)− v+1
2
, (2.2)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

where Γ(α) is the gamma function,

Γ(α) =

∫ ∞

0
xα−1e−xdx. (2.3)

2.1.3 Finite mixture distribution

A mixture distribution is the probability distribution of a random variable de-

rived from a collection of other random variables, which arises in various contexts in

the literature and naturally occurs when a statistical population contains two or more

subpopulations. The finite mixture distribution is a class of probability distributions par-

ticularly useful for modeling data that contains relatively distinct subgroups or clusters

of observations.

Definition 3. The distribution ΦY is considered as a finite mixture of Φi for i =

1, 2, . . . ,K component if it can be written as

ΦY = α1Φ1 + α2Φ2 + · · ·+ αKΦK , (2.4)

where αi > 0 and
∑K

i=1 αi = 1. Consequently, the corresponding density function φY to

ΦY can be written as

φY = α1φ1 + α2φ2 + · · ·+ αKφK , (2.5)

where φi is the corresponding probability density function to the distribution Φi for

i = 1, 2, . . . ,K.

2.2 Parameter estimation

Parameter estimation is the process of computing a model’s parameter values from

measured data. In this section, we introduce the basic concepts of the maximum likelihood

estimator and the Expectation-Maximization algorithm that we investigated in our study.
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2.2.1 The maximum likelihood estimator

Definition 4. Let f(y|θ) denote the joint probability distribution function of the sample

Y = (y1, y2, . . . , yn). Then, given that Y = y is observed, the function of θ defined by

L(θ|y) = f(y|θ) (2.6)

is called the likelihood function.

Definition 5. For each sample point y, let θ̂(y) be a parameter value at which L(θ|y)

attains its maximum as a function of θ, with y held fixed. The maximum likelihood

estimator (MLE) of the parameter θ based on a sample Y is θ̂(y).

Now that we have a likelihood function in the definition above, we set the partial

derivative with respect to the parameter to zero, and then we will obtain the parameter

estimate. The mixture components may not be solved in general [7] because, given the

log likelihood, it is hard to derive the parameter estimation in closed form. Subsequently,

the estimation of the parameters needed to be performed using a numerical method [5],

and the expectation-maximization algorithm is an approach for performing maximum

likelihood estimation in the presence of latent variables, addressing situations where the

complete data likelihood is challenging to maximize directly due to the unobservable

nature of certain variables.

2.2.2 The Expectation-Maximization Algorithm

The Expectation-Maximization algorithm, or EM algorithm, is an iterative method

commonly used to obtain the maximum likelihood estimate when direct calculation is

not applicable. In particular, in mixed effect models and mixture models that involve

latent variables, say Z = (Z1, . . . , Zn) , in addition of unknown parameters. To per-

form the EM algorithm, each iteration consists of two steps: the expectation step (E-

step) and the maximization step (M-step). The parameter of the mixture model are

θ = {φ1, . . . ,φK ,σ1, . . . ,σK ,α1, . . . ,αK} and the observations Y = (y1, . . . , yn) are con-

sidered as incomplete data which have unobserved random variables Z = (Z1, . . . , ZK)
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and αk, k = 1, 2, . . . ,K as mixture proportions. The probability distribution of yt is

defined as

P (yt|θ) =
K∑

k=1

αkP (yt|θ, Zt = k), (2.7)

the conditional log likelihood of mixture distribution is given by

l(θ) =
n∑

t=p+1

log
(

K∑

k=1

αkP (yt|θ, Zt = k)

)
. (2.8)

To obtain MLE, the two steps of the EM algorithm are performed iteratively until

convergence, as follows:

E step: suppose that θ is known and the missing data Z is replaced by the condi-

tional expectation τt,k of kth component which is defined as

τt,k = P (Zt = k|θ, yt) =
P (yt|Zt = k)P (Zt = k)

P (yt)
. (2.9)

M step: we evaluate τt,k from E step to the conditional log likelihood and then find

the estimates of parameters θ can be obtained by maximizing the log likelihood function

l(θ) with respect to the parameters θ.

2.3 Model selection Criteria

The three variable criteria used in this study are the Akaike information crite-

rion(AIC) which is defined as

AIC = −2l + 2K, (2.10)

where K represents the number of estimated parameters, and l denotes the maximized

log-likelihood, calculated from the conditional probability density function as defined in
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equation (2.8). Secondly, the Bayesian information criterion(BIC) is given by

BIC = −2l + log(S)K, (2.11)

where S is the sample size, K represents the number of estimated parameters, and l

denotes the maximized log-likelihood, calculated from the conditional probability density

function which defined in equation (2.8). Thirdly, the Hannan-Quinn information criterion

is defined as

HQIC = −2l + 2K log(log(S)), (2.12)

where S is the sample size, K represents the number of estimated parameters, and l

denotes the maximized log-likelihood, calculated from the conditional probability density

function which defined in equation (2.8), and the best model chosen from the smallest

value of each criterion.

2.4 Model diagnostics

All statistical models are collections of assumptions about the data generation pro-

cess, and estimation is useless if these assumptions do not hold true for the data. As

previously said, selecting a decent model is far more crucial than selecting a good prior.

2.4.1 Residual analysis

Definition 6. The residual for each observation is the difference between predicted values

and actual data which is defined as

êt = yt − ŷt, (2.13)

where êt is the residual for each observation, actual observation yt, and predicted ŷt.

If the model is correctly specified and the parameter estimates are reasonably close

to the true values, then the residuals should have nearly the properties of white noise.
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They should behave similarly to independently distributed, identically distributed normal

variables with zero means and common standard deviations. The plot of residuals over

time is examined as a diagnostic check. If the model is suitable, we expect the plot to

suggest a rectangular scatter around a zero horizontal level with no trends whatsoever.

Some tools for diagnostics include residual analysis, diagnostic plots, and checks

for the normality of residuals, such as residual plots, Q-Q plots, histograms of residu-

als, and normality tests. However, the empirical counterparts of error terms ekt cannot

be calculated because the process generating each observation is unknown. Therefore,

residual-based diagnostics are unavailable. Building on Kalliovirta’s work [8], the quan-

tile residuals are placed within a general framework. Computational tests are then derived

to detect autocorrelation, conditional heteroscedasticity, and non-normality in quantile

residuals.

Rt = Φ−1(F (yt|Ft−1)), (2.14)

where t = 1, 2, 3, . . . , n, Φ−1(·) is the standard normal quantile function and F (·|Ft−1) is

the conditional cumulative distribution function.

2.4.2 Normality test

A quantile-quantile (Q-Q) plot is an effective tool for assessing normality. It is

a plot of the quantile residuals of two distributions against each other or a graphical

representation based on quantile estimations. The pattern of points in the plot is utilized

to compare the two distributions. The most crucial stage in creating a Q-Q plot is

the calculation or estimation of the quantiles to be plotted. All quantiles are uniquely

defined and can be obtained by inverting the cumulative distribution function (CDF) if

one or both axes of a Q-Q plot are based on a theoretical distribution with a continuous

CDF. Additionally, the Shapiro-Wilk normality test and Kolmogorov-Smirnov test, when

applied to the residuals, yield a test statistic.

Definition 7. The Shapiro-Wilk goodness of fit test is a statistical test used to determine

if a random sample, Y = (y1, . . . , yt) is drawn from a normal distribution with mean µ
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and variance σ2 which the test following hypothesis:

H0 : The random sample was drawn from a normal distribution

Ha : The random sample does not follow normal distribution

Collect a sample of data to test the normality assumption, and then sort the data in

ascending order. Use the sorted data and the sample size to calculate the test statistic,

W , which is given by the formula

W =
(
∑n

t=1 atyt)
2

∑n
t=1(yt − ȳ)2

, (2.15)

where yt is the tth ordered observation, ȳ is the sample mean, and at is the coefficient.

Next, compare the calculated test statistic (W ) to the critical value from the Shapiro-Wilk

tables or use statistical software to obtain the p-value associated with the test statistic.

If the p-value is less than the chosen significance level (commonly 0.05), indicate that

the test rejects the null hypothesis and concludes that the data does not follow a normal

distribution. If the p-value is greater than the significance level, it means that the test

accepts the null hypothesis.

Definition 8. The Kolmogorov-Smirnov test is based on the empirical distribution func-

tion. Given t order data points Y = (y1, . . . , yt) which is defined by

H0 : The sample follow a specified distribution

Ha : The sample does not follow a specified distribution

Collect a sample of data to test the distribution and calculate the test statistic D which

is the maximum absolute difference between the observed CDF of the sample and the

expected CDF of the reference distribution

D = max
(
|Fn(y)− F (y)|

)
, (2.16)

where Fn(y) is is the empirical distribution function of the sample and F (y) is the cu-
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mulative distribution function of the reference distribution. Compare the calculated test

statistic (D) to the critical value from the Kolmogorov-Smirnov table or use statistical

software to obtain the p-value associated with the test statistic. If the p-value is less

than the chosen significance level (commonly 0.05), indicate that the test rejects the null

hypothesis and If the p-value is greater than the significance level, the test fails to reject

the null hypothesis.

2.5 Time series

A time series is a sequence of data points measured at successive points in time or

over successive periods. These data points are often collected, recorded, or observed in

sequential order. Time series analysis in statistics involves examining and modelling the

patterns, trends, and dependencies within the data to make predictions or understand

the underlying structure.

2.5.1 Means, Variances, and Covariances

For a stochastic process {Yt : t = 0,±1,±2,±3, . . .}, the mean function is defined

by

µt = E(Yt) for all t, (2.17)

where µt is the expected value of the process at time t.

The autocovariance function, γt,k, is given by

γt,k = Cov(Yt, Yk) for all t and k

= E[(Yt − µt)(Yk − µk)]

= E(YtYk)− µtµk. (2.18)

The correlation between a time series and a lagged version of itself. In simpler terms, it

quantifies the relationship between observations at different time points within the same
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time series. The autocorrelation function, ρt,k, is given by

ρt,k = Corr(Yt, Yk) for all t and k

=
Cov(Yt, Yk)√

V ar(Yt)V ar(Yk)

=
γt,k√

(γt,t)(γk,k)
. (2.19)

2.5.2 Stationarity

A stationary time series is one whose statistical properties, such as mean, variance,

and autocorrelation, remain constant over time. In other words, the behaviour of the time

series does not exhibit systematic changes or trends, and it is considered to be in a stable

and consistent state. There are two main two types, strictly stationary, in which the entire

probability distribution of the time series remains unchanged over time, and weakly or

second-order stationary, in which the mean, variance, and autocorrelation structure of

the time series remain constant over time, though individual observations may not be

identically distributed.

Definition 9. A process {Yt} is said to be strictly stationary if the joint distribution

of Yt1 , Yt2 , . . . , Ytn is the same as the joint distribution of Yt1−k, Yt2−k , . . . , Ytn−k for all

choices of time points t1, t2, . . . , tn and all choices of time lag k. Strictly stationary can

be written as

P (Xt1 ≤ x1, . . . , Xtn ≤ xn) = P (Xt1+k ≤ x1, . . . , Xtn+k ≤ xn). (2.20)

Definition 10. A time series {Yt} is said to be weakly stationary or second-order sta-

tionary as a stochastic process if

1. The mean function of the process does not depend on time as

E(Yt) = µ for all t, (2.21)
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2. The variance of the process is constant, which is defined as

V ar(Yt) = σ2 for all t, (2.22)

3. The covariance between Yt and Yt−k depends on time k which is defined by

γ(k) = Cov(Yt, Yt−k), (2.23)

this is called the autocovariance function.

2.5.3 Time series models

Stationary time series models are statistical models that are based on the assump-

tion that the underlying time series data is stationary. Stationarity is an important as-

sumption in many time series models since it simplifies analysis and makes making solid

predictions easier. The stationary time series models such as the autoregressive (AR),

moving average (MA), and autoregressive moving average (ARMA) models are the most

fundamental stationary models in time series analysis. There is also a non-stationary

model, including the autoregressive integrated moving average (ARIMA) model, which is

a generalization of the autoregressive moving average (ARMA) model, and the random

walk.

2.5.3.1 Autoregressive processes

The Autoregressive (AR) model is a type of time series model that expresses the

current observation in terms of its past values. Autoregressive process Yt is a linear

combination of the observation at p previous time in the past which denoted as AR(p) is

given by

Yt = φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + · · ·+ φpYt−p + et, (2.24)

where Yt is the value of the time series at time t, φ1,φ2, . . . ,φp are the autoregressive

coefficients and et is the error term or white noise at time t.
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We call such a series a Autoregressive of order p as AR(p) with AR characteristic

polynomial

φ(x) = 1− φ1x− φ2x
2 − φ3x

3 − · · ·− φpx
p, (2.25)

and corresponding AR characteristic equation

1− φ1x− φ2x
2 − φ3x

3 − · · ·− φpx
p = 0. (2.26)

Assuming that et is independent of Yt−1, Yt−2, Yt−3, Yt−4, . . . , Yt−p the stationary

solution to equation (2.26) occurs if and only if the absolute value (modulus) of the p

roots of the AR characteristic equation exceeds 1. Other relationships between polynomial

roots and coefficients can be used to demonstrate that the following two inequalities are

required for stationarity: That is, for the roots to have a modulus greater than one, it is

necessary but not sufficient that both






φ1 + φ2 + φ3 + · · ·+ φp < 1

and |φp| < 1.

(2.27)

2.5.3.2 Moving average processes

The Moving Average (MA) model is a time series model used to explain the rela-

tionship between an observation and a residual error from a moving average process. It

is often denoted as MA(q), where q represents the order of the moving average.

Yt = et − θ1et−1 − θ2et−2 − θ3et−3 − · · ·− θqet−q, (2.28)

where Yt is the value of the time series at time t, θ1, . . . , θq are the parameters of the

model, representing the past error terms, and et is the error term or white noise at time
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t. The variance of MA(q) process is given by

V AR(Yt) = V AR(et − θ1et−1 − θ2et−2 − · · ·− θqet−q) (2.29)

= σ2(1 + θ21 + · · ·+ θ2q). (2.30)

The autocorrelation of general MA(q) process is defined as

ρk =






−θk+θ1θk+1+θ2θk+2+...++θqθq−k

1+θ2
1+θ2

2+...+θ2
q

0 for k > q,

(2.31)

where the numerator of ρq is simply θq. The autocorrelation function cuts off after lag q,

meaning it becomes zero. Its shape can take on almost any form for the earlier lags.

2.5.3.3 Autoregressive Moving average model

We assume that the mixed series between autoregressive and moving average, ob-

tained a time series model that is autoregressive moving model which defined as

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + et − θ1et−1 − θ2et−2 − . . .− θqet−q, (2.32)

where Yt is a mixed autoregressive moving average process of orders p and q, respectively,

which we call ARMA(p, q).

2.5.3.4 Vector autoregressive model

A vector autoregressive (VAR) model is a multivariate time series model comprising

a system of n equations with n distinct, stationary response variables represented as linear

functions of lagged responses and other terms. The VAR models are also characterized

by their degree p which is denoted VAR(p) is written as

Yt = Φ1Yt−1 + Φ2Yt−2 + Φ3Yt−3 + · · ·+ ΦpYt−p + en,t, (2.33)
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where Φ1,Φ2, . . . ,Φp are (n×n) coefficient matrices for lags 1 through p, Yt is a vector of

endogenous variables at time t, n is a dimension vector, et iid∼ N(0,σ2), mean E[et] = 0,

and covariance matrix E[ete′t] = Ω. The error term is related to the covariance matrix,

which is a k × k positive semi definite matrix labeled Ω.

Data points often exhibit non-stationary characteristics, such as varying means,

variances, and covariances across time. Non-stationary behaviours may manifest as

trends, cycles, random walks, or combinations of the three. In this study, we intro-

duce non-stationary time series, particularly the autoregressive integrated moving average

(ARIMA) model.

2.5.3.5 Autoregressive integrated Moving average model

An autoregressive integrated moving average (ARIMA) model is a generalisation

of an autoregressive moving average (ARMA) model, the order of which is commonly

expressed by the notation ARIMA(p, d, q), where p is the autoregressive component order,

d is the difference Dt = ∇dYt is a stationary ARMA process, and q is the moving-average

process order. With Dt = Yt − Yt−1, we have

Dt = φ1Dt−1 + φ2Dt−2 + . . .+ φpDt−p + et + θ1et−1 + . . .+ θqet−q, (2.34)

where φ1, . . . ,φp are the autoregressive coefficients, the θ1, . . . , θq are the parameter of the

moving average coefficients, and the et are the error terms, which are generally assumed

to be independent and identically distributed to the normal distribution.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

THE FAMILY OF UNIVARIATE MIXTURE

AUTOREGRESSIVE MODELS

In this chapter, we introduce the family of univariate mixture autoregressive

models and discuss their specifications. This family includes the mixture autoregressive

model and the t mixture autoregressive model, both of which are estimated using maxi-

mum likelihood estimation and the EM algorithm. Initially, we evaluate the performance

of the family of univariate mixture autoregressive models on individual stock markets.

We consider the top stocks from two different sectors, with each sector comprising three

stocks. These stocks include BANPU, ESSO, and BCP from the energy and utility sec-

tors, and HANA, TEAM, and KCE from the electronic components sector. Subsequently,

we compare the performance of parameter estimation using information criteria and mean

square error.

3.1 Mixture autoregressive model

The mixture autoregressive (MAR) model is a mixture of different autoregressive

components. Specifically, the time series {yt}t≥1 is said to be the K-component MAR

model, φki is the coefficients for the kth component, where i = 1, 2, . . . , pk, denoted as

MAR(K; p1, p2, p3, . . . , pK), if it satisfies

F (yt|Ft−1) =
K∑

k=1

αkΦ
(yt − φk0 − φk1yt−1 − · · ·− φkpk

yt−pk

σk

)
, (3.1)

where F (yt|Ft−1) is the cumulative distribution function of data yt given the past infor-

mation yt−1, yt−2, yt−3, . . . , y1, Ft is the information set up to time t, the function Φ(·)

represents the cumulative distribution function of the standard normal distribution and

α1 + α2 + · · ·+ αK = 1, 1 > αk > 0, k = 1, 2, 3, . . . ,K.
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The mixture autoregressive model’s conditional mean and variance are provided as

E(yt|Ft−1) =
K∑

k=1

αkµkt,

where µkt = φk0 + φk1yt−1 + · · ·− φkpk
yt−pk and

Var(yt|Ft−1) =
K∑

k=1

αkµ
2
kt +

K∑

k=1

αkσ
2
k −

(
K∑

k=1

αkµkt

)2

,

respectively.

In the case of the mixture autoregressive model, the maximum likelihood method

is the parameter estimation method used in this study. Specifically, given a time series

y = (y1, y2, . . . , yt), the likelihood function for the mixture autoregressive model is the

product of conditional density

L(φ,σ,α|y) =
n∏

t=p+1

K∑

k=1

αk

σk
φ
(yt −

∑pk

i=1 φkiyt−i

σk

)
, (3.2)

the log likelihood function of the mixture autoregressive model can be written as

l(φ,σ,α) =
n∑

t=p+1

log
[ K∑

k=1

αk

σk
φ
(yt −

∑pk

i=1 φkiyt−i

σk

)]
. (3.3)

Some parameters of the mixture autoregressive model may not be solved in general [7].

Consequently, the estimation of these parameters must be performed using a numerical

method [5].

3.1.1 Simulation study for the MAR model

In this section, we study the performance of parameter estimation using the max-

imum likelihood estimation procedure implemented in the “uGMAR”[5]. We examine

the correctness in choosing the number of components, K, and the, p, order of the au-

toregressive models. Furthermore, we examine the accuracy of parameter estimates. It’s

important to note that, under the restrictions of the package, the orders of autoregressive
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components for different components are assumed to be the same. Therefore, the models

considered in this study are denoted as (K; p), where K is the number of components and

p is the common order of autoregressive components. The two models investigated in this

study are the MAR(2; 2), where K component is 2 and order p is 2, and the MAR(3; 2)

model, where K component is 3 and order p is 2.

In the first experiment, we generated a time length of 1000 data points from the

MAR(2; 2) model, where the coefficients α1,α2,φ10,φ11,φ12,σ1,φ20,φ21,φ22,σ2 are 0.65,

0.35, 0.02, 1.25, -0.26, 0.02, 0.1, 1.26, -0.32, 0.06, respectively. The data are fitted to the

mixture autoregressive model for K = 1, 2, 3, 4 and p = 1, 2, 3, 4 to assess the accuracy of

the model selection. The corresponding AICs, HQICs, and BICs are obtained, and the

model with the smallest values of the criterion statistics is selected to match the generated

model.

Table 3.1: Criteria for the Simulation of the MAR(2;2) model

Models AIC HQIC BIC Models AIC HQIC BIC

MAR(1:1) 3329.921 3335.516 3344.642 MAR(3:1) 3337.778 3358.293 3391.752

MAR(1:2) 3296.972 3304.431 3316.595 MAR(3:2) 3263.439 3288.545 3331.120

MAR(1:3) 3290.448 3299.770 3314.971 MAR(3:3) 3271.536 3303.231 3354.917

MAR(1:4) 3288.045 3299.229 3317.467 MAR(3:4) 3278.134 3315.416 3376.208

MAR(2:1) 3331.997 3345.052 3366.344 MAR(4:1) 3340.433 3368.408 3414.034

MAR(2:2) 3262.900 3279.683 3307.052 MAR(4:2) 3278.041 3313.470 3371.250

MAR(2:3) 3273.840 3294.348 3327.792 MAR(4:3) 3277.415 3320.297 3390.224

MAR(2:4) 3274.082 3298.316 3337.831 MAR(4:4) 3282.092 3332.423 3414.493

From Table 3.1, The MAR(K; p) model, whose K component is equal to 1, such as

MAR(1;p), in the first four lines, is the original autoregressive model with order p, while

the other K components represent the MAR models with multiple components. The best

candidate model, determined by the smallest corresponding criterion, is the MAR(2;2)
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model. This result highlights the accuracy of the criterion in selecting the optimal model.

Table 3.2 presents the parameter estimation of the MAR(2;2) models compared with the

true values of the parameters we generated.

Table 3.2: Parameter estimates for MAR(2;2) models

α1 σ1 φ10 φ11 φ12

True value 0.65 0.02 0.02 1.25 -0.26

Mean of estimates 0.67 0.02 0.03 1.13 -0.15

Empirical standard error 0.02 0.00 0.01 0.12 0.11

Theoretical standard error 0.06 0.00 0.01 0.15 0.15

α2 σ2 φ20 φ21 φ22

True value 0.35 0.06 0.10 1.26 -0.32

Mean of estimates 0.33 0.06 0.12 1.23 -0.30

Empirical standard error 0.02 0.00 0.02 0.03 0.02

Theoretical standard error 0.06 0.00 0.06 0.08 0.09

From Table 3.2 show that the mean of the estimation using Maximum Likelihood

Estimation (MLE) is quite close to the true value we generated. The theoretical standard

error and the empirical standard error are close, except in the parameters of α1 and

α2. Therefore, the fitting of the data is correct to choose the model, and the parameter

estimate is quite accurate to the true value.

In the second experiment, we generated a time series with 1000 data points from

MAR(3; 2) model, which the coefficients α1,α2,α3,φ10,φ11,φ12,σ1,φ20,φ21,φ22,σ2,φ30,

φ31,φ32,σ3 are 0.08, 0.59, 0.33, 0.04, 1.24, -0.26, 0.03, 0.03, 1.44, -0.46, 0.01, 0.11, 1.25,

-0.32, 0.08, respectively. The data are fitted to the mixture autoregressive model for

K = 1, 2, 3, 4 and p = 1, 2, 3, 4 to assess the accuracy of the model selection. The

corresponding AICs, HQICs, and BICs are obtained, and the model with the smallest

criterion is then selected to match the generated model.
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Table 3.3: Criteria for the Simulation of the MAR(3;2) model

Models AIC HQIC BIC Models AIC HQIC BIC

MAR(1:1) 3366.566 3372.161 3381.286 MAR(3:1) 3368.609 3389.124 3217.291

MAR(1:2) 3197.668 3205.127 3422.583 MAR(3:2) 3177.452 3195.612 3252.414

MAR(1:3) 3195.831 3205.153 3220.355 MAR(3:3) 3190.232 3221.927 3273.613

MAR(1:4) 3193.981 3205.166 3223.404 MAR(3:4) 3185.144 3222.427 3283.219

MAR(2:1) 3369.439 3382.494 3403.787 MAR(4:1) 3375.655 3403.630 3449.257

MAR(2:2) 3178.829 3209.839 3222.981 MAR(4:2) 3190.324 3225.754 3283.533

MAR(2:3) 3180.831 3201.340 3234.784 MAR(4:3) 3184.771 3227.653 3297.581

MAR(2:4) 3188.115 3212.348 3251.863 MAR(4:4) 3183.734 3227.783 3309.853

From Table 3.3, the best candidate model, corresponding to AIC and HQIC, is the

MAR(3;2) model, but in the case of BIC, the best model is MAR(3;1). However, the 2

out of 3 criteria lead to the selection of the MAR(3;2) model as the best match, aligning

with the model we generated. Tables 3.4 shows the parameter estimation of MAR(3;2)

models comparing with the true values of parameters.
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Table 3.4: Parameter estimates for MAR(3;2) models

α1 σ1 φ10 φ11 φ12

True value 0.08 0.03 0.04 1.24 -0.26

Mean of estimates 0.10 0.02 0.04 1.17 -0.19

Empirical standard error 0.02 0.01 0.00 0.07 0.07

Theoretical standard error 0.16 0.01 0.05 0.18 0.20

α2 σ2 φ20 φ21 φ22

True value 0.59 0.01 0.02 1.44 -0.46

Mean of estimates 0.67 0.01 0.07 1.02 -0.23

Empirical standard error 0.08 0.00 0.05 0.42 0.23

Theoretical standard error 0.15 0.01 0.01 0.23 0.24

α3 σ3 φ30 φ31 φ32

True value 0.33 0.08 0.11 1.25 -0.32

Mean of estimates 0.23 0.09 0.26 1.15 -0.30

Empirical standard error 0.10 0.01 0.15 0.10 0.02

Theoretical standard error 0.15 0.03 0.13 0.16 0.20

From Table 3.4, the parameter estimation for the MAR(3; 2) model, the mean of the

estimates using Maximum Likelihood Estimation (MLE) is quite close to the true values

used to generate the data. The theoretical standard error and the empirical standard

error are close, except in the parameters of α1, α2 and α3. Therefore, we observe a small

bias in this simulation study, with the theoretical standard errors being smaller than the

empirical standard errors. In general, the empirical and theoretical standard errors for the

parameters are close, suggesting that the accuracy of the estimates is reasonably good.

Next, we will apply the model to the Thai stock data in the next section.
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3.1.2 Mixture autoregressive model for Thai stock markets

In this section, we investigate the performance of the mixture autoregressive model

on individual stock markets using the daily closing prices of the top stock from the energy

and utility, and electronic component sectors over the five-year period from August 1st,

2017, to August 1st, 2022 (1214 observations). In particular, BANPU, ESSO, and BCP

from the energy and utility sector, HANA, TEAM, and KCE from the electronic compo-

nents sector. The histogram of each dataset is shown in Figure 3.1, in which we can see

that the histogram has a multimodal. In the tables below, we show the AIC, HQIC, and

BIC values of each candidate model of the MAR model for each stock. Subsequently, we

provide an analysis of the best MAR model.

Figure 3.1: The histogram of stock market dataset

From Figure 3.1, the histogram reveals that the data exhibits various modes, in-

cluding bimodal, trimodal, and multimodal patterns. To begin the analysis, we fit the

BANPU stock from the energy and utility sectors with the MAR(K; p) model, where we

explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4 due to calculation complexity, and the

histograms suggest less than four peaks. The criteria values for each model are provided
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in Table 3.5.

Table 3.5: Criteria for the candidate MAR model for BANPU

Models AIC HQIC BIC Models AIC HQIC BIC

MAR(1:1) 291.96387 297.72516 307.26643 MAR(3:1) 26.40063 47.52535 82.51000

MAR(1:2) 293.92742 301.60821 314.32753 MAR(3:2) 66.93240 93.81516 138.33278

MAR(1:3) 296.50757 306.10740 322.00358 MAR(3:3) 83.92518 116.56458 170.61161

MAR(1:4) 299.07955 310.59795 329.66981 MAR(3:4) 99.62837 138.02301 201.59588

MAR(2:1) 60.79663 74.23964 96.50259 MAR(4:1) 17.12187 45.92831 93.63465

MAR(2:2) 89.71769 106.99947 135.61794 MAR(4:2) 58.82009 95.30384 155.72061

MAR(2:3) 104.73908 125.85869 160.83030 MAR(4:3) 76.42850 120.58768 193.71014

MAR(2:4) 118.70635 143.66286 184.98523 MAR(4:4) 98.11703 149.94979 235.77317

From Table 3.5, the MAR(K; p) model, whose K component is equal to 1, such

as MAR(1;p), in the first four lines, is the original autoregressive model with order p,

while the other K components represent the mixture autoregressive models with multiple

components. All the criterion values for multiple components are smaller than those for

the single component, confirming the motivation of the mixture distribution in the stock

dataset. Among these models, the one with the smallest AIC and HQIC is the MAR(4:1),

while the smallest BIC corresponds to the MAR(3;1). Based on the 2 out of 3 criteria,

the MAR(4;1) is identified as the best model. Therefore, the optimal model for BANPU

is the MAR(4;1) model.

Next, the diagnostic check involves quantile residuals, which are utilized for com-

putationally simple tests aimed at detecting autocorrelation, quantile residual plots, Q-Q

plots, and histograms of quantile residuals are shown in Figure 3.2 and Figure 3.3, re-

spectively. The normality test of the quantile residuals is presented in Table 3.6.
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Figure 3.2: Quantile residual plot of MAR(4:1) for BANPU

From Figure 3.2, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. The autocorrelation plot of quantile residuals shows a spike at lags 8

and 14, although it is not highly significant. Additionally, Figure 3.3 includes a histogram

of the quantile residuals. The results from normality tests, specifically the Shapiro-Wilk

test and Kolmogorov-Smirnov test, are presented in Table 3.6.
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Figure 3.3: Histogram of quantile residual of MAR(4:1) for BANPU

Table 3.6: Normality test of MAR(4:1) for BANPU

Test Statistic p-value

Shapiro-Wilk 0.9961 0.0033

Kolmogorov-Smirnov 0.0672 0.0000

In the normality test of the quantile residuals, it is evident that the histogram does

not fit the normal curve. Both normality tests, the Shapiro-Wilk test and the Kolmogorov-

Smirnov test, reveal p-values less than 0.05. Consequently, the distribution of the given

data does not conform to a normal distribution.

Next, we analyze ESSO stock data in the energy and utility sectors by fitting it

with the MAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4.

The criteria values for each model are presented in Table 3.7.
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Table 3.7: Criteria for the candidate MAR model for ESSO

Models AIC HQIC BIC Models AIC HQIC BIC

MAR(1:1) 277.218070 282.97936 292.52063 MAR(3:1) 14.670105 35.79483 70.77948

MAR(1:2) 277.753155 285.43394 298.15326 MAR(3:2) 24.144946 51.02771 95.54533

MAR(1:3) 280.475325 290.07515 305.97133 MAR(3:3) 34.464661 67.10406 121.15109

MAR(1:4) 264.807048 276.32544 295.39730 MAR(3:4) 38.488671 76.88331 140.45618

MAR(2:1) 42.200631 55.64364 77.90659 MAR(4:1) 6.457981 35.26442 82.97076

MAR(2:2) 55.935559 73.21733 101.83580 MAR(4:2) 23.035381 59.51913 119.93590

MAR(2:3) 59.550001 80.66961 115.64122 MAR(4:3) 27.350684 71.50987 144.63232

MAR(2:4) 59.184602 84.14112 125.46348 MAR(4:4) 28.840646 80.67341 166.49679

From Table 3.7, the multiple components have smaller AIC, HQIC, and BIC values

than the single component model. However, the MAR(4;1) model exhibits the smallest

AIC and HQIC value, while the BIC criteria favours the MAR (3;1) model. Therefore,

considering the three criteria, two out of three indicate that the MAR (4;1) model is the

best model for ESSO stock data.
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Figure 3.4: Quantile residual plot of MAR(4:1) for ESSO

From Figure 3.4, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. The autocorrelation plot of quantile residuals shows a spike at lags 6

and 20, although it is not highly significant. Additionally, Figure 3.5 includes a histogram

of the quantile residuals. The results from normality tests, specifically the Shapiro-Wilk

test and Kolmogorov-Smirnov test, are presented in Table 3.8.
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Figure 3.5: Histogram residual of MAR(4:1) for ESSO

Table 3.8: Normality test of MAR(4:1) for ESSO

Test Statistic p-value

Shapiro-Wilk 0.9965 0.0081

Kolmogorov-Smirnov 0.0561 0.0010

In the normality test of the quantile residuals for ESSO, it is evident that the

histogram does not fit the normal curve. Both normality tests, the Shapiro-Wilk test and

the Kolmogorov-Smirnov test, yield p-values less than 0.05. Consequently, the distribution

of the given data does not follow a normal distribution.

Next, we analyze BCP stock data in the energy and utility sectors by fitting it with

the MAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4. The

criteria values for each model are presented in Table 3.9.
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Table 3.9: Criteria for the candidate MAR model for BCP

Models AIC HQIC BIC Models AIC HQIC BIC

MAR(1:1) 2001.458 2007.219 2016.760 MAR(3:1) 1876.064 1897.189 1932.174

MAR(1:2) 2002.554 2010.235 2022.954 MAR(3:2) 1893.043 1919.926 1964.443

MAR(1:3) 2003.298 2012.898 2028.794 MAR(3:3) 1876.633 1909.273 1963.320

MAR(1:4) 2003.598 2015.117 2034.188 MAR(3:4) 1887.430 1925.824 1989.397

MAR(2:1) 1882.570 1896.013 1918.276 MAR(4:1) 1868.379 1897.185 1944.892

MAR(2:2) 1901.797 1919.078 1947.697 MAR(4:2) 1880.222 1916.706 1977.122

MAR(2:3) 1886.544 1907.664 1942.636 MAR(4:3) 1867.738 1911.898 1985.020

MAR(2:4) 1904.845 1929.802 1971.124 MAR(4:4) 1875.381 1927.214 2013.037

From Table 3.9, the multiple components have smaller AIC, HQIC, and BIC values

than the single component model. However, the MAR(4;3) model exhibits the smallest

AIC value, while the HQIC and BIC criteria favour the MAR(2;1) model. Therefore,

considering the three criteria, two out of three indicate that the MAR(2;1) model is the

best model for BCP stock data.
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Figure 3.6: Quantile residual plot of MAR(2:1) for BCP

From Figure 3.6, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. The autocorrelation plot of quantile residuals shows a spike at lags 5

and 7, although it is not highly significant. Additionally, Figure 3.7 includes a histogram

of the quantile residuals. The results from normality tests, specifically the Shapiro-Wilk

test and Kolmogorov-Smirnov test, are presented in Table 3.10.
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Figure 3.7: Histogram residual of MAR(2:1) for BCP

Table 3.10: Normality test of MAR(2:1) for BCP

Test Statistic p-value

Shapiro-Wilk 0.9907 0.0000

Kolmogorov-Smirnov 0.0683 0.0000

In the normality test of the quantile residuals for BCP, it is evident that the his-

togram does not fit the normal curve. Both normality tests, the Shapiro-Wilk test and the

Kolmogorov-Smirnov test, reveal p-values less than 0.05. Consequently, the distribution

of the given data does not conform to a normal distribution.

Next, we analyze HANA stock data in the electronic components sectors by fitting

it with the MAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4.

The criteria values for each model are presented in Table 3.11.
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Table 3.11: Criteria for the candidate MAR model for HANA

Models AIC HQIC BIC Models AIC HQIC BIC

MAR(1:1) 4037.957 4043.718 4053.260 MAR(3:1) 3671.415 3692.540 3727.525

MAR(1:2) 4029.229 4036.910 4049.630 MAR(3:2) 3667.780 3694.663 3739.180

MAR(1:3) 4026.492 4036.092 4051.988 MAR(3:3) 3664.830 3697.470 3751.517

MAR(1:4) 4023.619 4035.137 4054.209 MAR(3:4) 3683.869 3722.264 3785.837

MAR(2:1) 3709.368 3722.811 3745.074 MAR(4:1) 3668.354 3697.161 3744.867

MAR(2:2) 3716.446 3733.727 3762.346 MAR(4:2) 3667.833 3704.317 3764.733

MAR(2:3) 3714.777 3735.896 3770.868 MAR(4:3) 3656.219 3700.378 3773.500

MAR(2:4) 3713.376 3738.333 3779.655 MAR(4:4) 3686.830 3738.663 3824.487

From Table 3.11, the multiple components have smaller AIC, HQIC, and BIC values

than the single component model. However, the MAR(4;3) model exhibits the smallest

AIC value, while the HQIC and BIC criteria favour the MAR(3;1) model. Therefore,

considering the three criteria, two out of three indicate that the MAR(3;1) model is the

best model for HANA stock data.
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Figure 3.8: Quantile residual plot of MAR(3:1) for HANA

From Figure 3.8, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. The autocorrelation plot of quantile residuals shows a spike at lags 1,

although it is not highly significant. Additionally, Figure 3.9 includes a histogram of the

quantile residuals. The results from normality tests, specifically the Shapiro-Wilk test

and Kolmogorov-Smirnov test, are presented in Table 3.12.
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Figure 3.9: Histogram residual of MAR(3:1) for HANA

Table 3.12: Normality test of MAR(3:1) for HANA

Test Statistic p-value

Shapiro-Wilk 0.9967 0.0112

Kolmogorov-Smirnov 0.0468 0.0098

In the normality test of the quantile residuals for HANA, it is evident that the

histogram does not conform to a normal distribution curve. Both normality tests, the

Shapiro-Wilk test and the Kolmogorov-Smirnov test, yield p-values less than 0.05. Con-

sequently, the distribution of the given data does not follow a normal distribution.

Next, we analyze TEAM stock data in the electronic components sectors by fitting

it with the MAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4.

The criteria values for each model are presented in Table 3.13.
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Table 3.13: Criteria for the candidate MAR model for TEAM

Models AIC HQIC BIC Models AIC HQIC BIC

MAR(1:1) -1996.893 -1991.132 -1981.590 MAR(3:1) -4194.116 -4172.991 -4138.006

MAR(1:2) -1997.430 -1989.749 -1977.029 MAR(3:2) -4163.073 -4136.191 -4091.673

MAR(1:3) -2008.362 -1998.762 -1982.866 MAR(3:3) -4062.829 -4030.189 -3976.142

MAR(1:4) -2013.303 -2001.785 -1982.713 MAR(3:4) -4021.485 -3983.090 -3919.517

MAR(2:1) -3961.356 -3947.913 -3925.650 MAR(4:1) -4228.198 -4199.391 -4151.685

MAR(2:2) -3899.877 -3882.596 -3853.977 MAR(4:2) -4211.877 -4175.393 -4114.976

MAR(2:3) -3781.215 -3760.096 -3725.124 MAR(4:3) -4155.016 -4110.857 -4037.734

MAR(2:4) -3708.141 -3683.185 -3641.862 MAR(4:4) -4114.097 -4062.264 -3976.441

From Table 3.13 shows that multiple components have smaller AIC, HQIC, and

BIC values than the single component. Among these, the MAR(4;1) model exhibits

the smallest AIC, HQIC, and BIC criteria. Therefore, considering the three criteria, it

indicates that the MAR(4;1) model is the best fit for TEAM stock data.

The diagnostics check are the quantile residuals, which are used to obtain compu-

tationally simple tests aimed at detecting autocorrelation, quantile residual plot and Q-Q

plot and the histogram of quantile residual are shown in Figure 3.10 and Figure 3.11,

respectively. The normality test of quantile residuals is shown in Table 3.14.
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Figure 3.10: Quantile residual plot of MAR(4:1) for TEAM

Figure 3.11: Histogram residual of MAR(4:1) for TEAM

Table 3.14: Normality test of MAR(4:1) for TEAM

Test Statistic p-value

Shapiro-Wilk 0.9882 0.0000

Kolmogorov-Smirnov 0.1158 0.0000
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In the normality test of the quantile residuals for TEAM, it is evident that the

histogram does not conform to a normal distribution curve. Both normality tests, the

Shapiro-Wilk test and the Kolmogorov-Smirnov test, reveal p-values less than 0.05. Con-

sequently, the distribution of the given data does not conform to a normal distribution.

Finally, we analyze KCE stock data in the electronic components sectors by fitting

it with the MAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4.

The criteria values for each model are presented in Table 3.15.

Table 3.15: Criteria for the candidate MAR model for KCE

Models AIC HQIC BIC Models AIC HQIC BIC

MAR(1:1) 3869.682 3875.443 3884.985 MAR(3:1) 3512.307 3533.432 3568.416

MAR(1:2) 3869.460 3877.140 3889.860 MAR(3:2) 3539.025 3565.908 3610.425

MAR(1:3) 3867.575 3877.175 3893.071 MAR(3:3) 3562.900 3595.540 3649.587

MAR(1:4) 3865.001 3876.520 3895.591 MAR(3:4) 3592.518 3630.912 3694.485

MAR(2:1) 3539.375 3552.818 3575.081 MAR(4:1) 3512.342 3541.149 3588.855

MAR(2:2) 3576.907 3594.188 3622.807 MAR(4:2) 3539.380 3575.863 3636.280

MAR(2:3) 3593.877 3614.996 3649.968 MAR(4:3) 3564.405 3608.564 3681.686

MAR(2:4) 3623.873 3648.829 3690.152 MAR(4:4) 3593.855 3645.687 3731.511

From Table 3.15 shows that multiple components have smaller AIC, HQIC, and

BIC values than the single component. Among these, the MAR(3;1) model exhibits

the smallest AIC, HQIC, and BIC criteria. Therefore, considering the three criteria, it

indicates that the MAR(3;1) model is the best fit for KCE stock data.

Next, the diagnostic check involves quantile residuals, which are utilized for compu-

tationally simple tests aimed at detecting autocorrelation, quantile residual plot, Q-Q plot

in Figure 3.12, the histogram of quantile residual and normality of the quantile residuals

are shown in Figure 3.13 and Table 3.16, respectively.
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Figure 3.12: Quantile residual plot of MAR(3:1) for KCE

Figure 3.13: Histogram residual of MAR(3:1) for KCE

Table 3.16: Normality test of MAR(3:1) for KCE

Test Statistic p-value

Shapiro-Wilk 0.9976 0.0715

Kolmogorov-Smirnov 0.0501 0.0045
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In the normality test of the quantile residuals for KCE, it is evident that the his-

togram does not conform to a normal distribution curve. In the normality tests, the

p-values of the Shapiro-Wilk test are greater than 0.05, but the Kolmogorov-Smirnov test

reveals p-values less than 0.05. Consequently, the distribution of the given data does not

follow a normal distribution.

As a result of the mixture autoregressive (MAR) model for the 6 stock datasets,

each table of criteria for the candidates shows that the best model for Thai stock data

is the multiple component model, which exhibits the smallest criteria values. However,

during the diagnostic modeling process, it became apparent that almost all the residuals

and histogram of residuals do not adhere to a normal distribution. As an alternative, we

considered the t distribution, which is known for its heavier tails compared to the normal

distribution. Therefore, we have opted for the t mixture autoregressive (TMAR) model

as an alternative.

3.2 t Mixture autoregressive model

The student t mixture autoregressive (TMAR) model is a collection of various au-

toregressive components that are extended from (3.1) by using the student t distribution.

The heavy tails of component distributions can be adjusted, making this model more

flexible than the mixture autoregressive model. Specifically, the time series {yt}t≥1 is

said to be the K component TMAR model, denoted as TMAR(K; p1, p2, p3, . . . , pK), if

it satisfies

F (yt|Ft−1) =
K∑

k=1

αkFvk

(yt − φk0 − φk1yt−1 − φk2yt−2 − · · ·− φkpk
yt−pk

σk

)
, (3.4)

where F (yt|Ft−1) is the conditional cumulative distribution function of yt given the past

information yt−1, yt−2, yt−3, . . . , y1, Ft is the information set up to time t, Fvk(·) is the

cumulative distribution function of the standardized t distribution with vk degrees of

freedom for the kth component, the mixing proportion αk > 0, k = 1, 2, 3, . . . ,K and

α1 + α2 + · · · + αK = 1 and assume that the error term of autoregressive et is follow t

distribution. The probability distribution function of a standardized t distribution with
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the unit variance is

fv(x) =
Γ(v+1

2 )
√
π(v − 2)Γ(v2 )

(
1 +

x2

v − 2

)− v+1
2
, (3.5)

where Γ(·) is the gamma function, and 2 < v < ∞.

The conditional mean and conditional variance of the student t mixture autoregres-

sive model similar to the mixture autoregressive model which is given as

E(yt|Ft−1) =
K∑

k=1

αkµkt,

where µkt = φk0 + φk1yt−1 + φk2yt−2 + · · ·− φkpk
yt−pk and

Var(yt|Ft−1) =
K∑

k=1

αkµ
2
kt +

K∑

k=1

αkσ
2
k −

(
K∑

k=1

αkµkt

)2

,

respectively.

3.2.1 Parameter estimation

In this section, we discuss the method to estimate the parameters that we developed

in this study, which is the EM algorithm, and compare it with the maximum likelihood

function.

3.2.1.1 Parameter estimation by maximum likelihood function

In the case of the t mixture autoregressive model, the maximum likelihood method is

the parameter estimation method used in this study to compare with the EM algorithm.

Specifically, given a time series y = (y1, y2, . . . , yt), the likelihood function for the t

mixture autoregressive model is the product of conditional density

L(φ,σ,α, v|y) =
n∏

t=p+1

K∑

k=1

αk

σk
fvk

(yt −
∑pk

i=1 φkiyt−i

σk

)
, (3.6)
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the log likelihood of the t mixture autoregressive model can be written as

l(φ,σ,α, v) =
n∑

t=p+1

log
[ K∑

k=1

αk

σk
fvk

(yt −
∑pk

i=1 φkiyt−i

σk

)]
, (3.7)

where fvk is the probability distribution function of a standardized t distribution. Some

parameters of the t mixture autoregressive model may not be solved in general [7]. Conse-

quently, the estimation of these parameters must be performed using a numerical method

[5].

3.2.1.2 Parameter estimation by the EM algorithm

In this section, parameter estimation is conducted using the EM algorithm, and

the log-likelihood is constructed using the normal scale mixture model. Assume that

we have observations y = (y1, y2, . . . , yt) generated from the TMAR model. Let Z =

(Z1, Z2, . . . , Zt) be a K × n unobservable random matrix, where Zt = (Zkt) for t =

1, 2, 3, . . . , n, is a K-dimensional column indicator vector showing the origin of the kth

observation, that is, Zkt = 1, if the observations yt is generated from the kth component

of the TMAR model and Zkt = 0 otherwise. Analogous to the formulation of Z, we

consider another missing random matrix, W = (W1,W2, . . . ,Wt), where Wt = (Wkt)

for t = 1, 2, 3, . . . , n is also a K-dimensional vector. Given Zkt = 1, the conditional

distribution of Wkt is Wkt|Zkt = 1 ∼ gamma(vk

2 ,
vk−2
2 ), and W1, . . . ,Wn are distributed

independently. The conditional loglikelihood function for t mixture autoregressive model

is

l = l1(α) + l2(v) + l3(θ), (3.8)
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where

l1(α) =
K∑

k=1

n∑

t=p+1

Zkt log(αk), (3.9)

l2(v) =
K∑

k=1

n∑

t=p+1

Zkt

[
− log

{
Γ
(1
2
vk
)}

+
(1
2
vk
)

log
(vk − 2

2

)

+
(vk
2

)
(logWkt −Wkt) +Wkt − log(Wkt)

]
, (3.10)

l3(θ) =
K∑

k=1

n∑

t=p+1

Zkt

(
− 1

2
{log(2π) + logσ2k − logWkt}−

e2ktWkt

2σ2k

)
, (3.11)

and ekt = yt − φk0 − φk1yt−1 − · · ·− φkpk
yt−pk .

The parameters are estimated by iteratively maximum likelihood through the

Expectation-Maximization(EM) procedure [9], which involves two main steps: the

Expectation(E-step) and the Maximization(M-step). These steps are repeated iteratively

until the algorithm converges. An illustration of the EM algorithm is presented in Figure

3.15.

The Expectation step. Assume that α, θ, and v are known. The unobserved random

variable Z, the missing data W and logW in the loglikelihood are replaced by their

expectations conditional on the parameters and the observed data y. Let τkt be the

conditional expectation of the kth component of unobserved data Z. Let ηkt be the

conditional expectation of the kth component of missing data W . The Expectation step

equations are

τkt = E(Zkt|yt) =
αkσ

−1
k fvk(δkt)∑g

j=1 αjσ
−1
j fvj(δjt)

(k = 1, . . . ,K), (3.12)

ηkt = E(Wkt|yt, zkt = 1) =
vk + 1

δ2kt + vk − 2
(k = 1, . . . ,K), (3.13)

E(logWkt|yt, zkt = 1) = log ηkt +
{
ψ
(vk + 1

2

)
− log

(vk + 1

2

)}
, (3.14)

where δ2kt =
e2kt

σ2
k

and ψ(s) = d log{Γ(s)}
ds is the digamma function.

The Maximization step. Suppose that the unobserved random variable, Z, and the
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missing random variable, W , is known. By maximizing the log-likelihood function (3.8),

the estimates of our model are obtained through the first derivatives with respect to the

parameters αk, vk,φki, and σk are

∂l1
∂αk

=
n∑

t=p+1

(Zkt

αk
− Zgt

αK

)
, (3.15)

∂l2
∂vk

=
n∑

t=p+1

Zkt

[
− 1

2
ψ
(1
2
vk
)
+

1

2
log
(vk − 2

2

)
+

1

2
log
( vk
vk − 2

)
+

1

2
{log(Wkt)−Wkt}

]
,

(3.16)

∂l3
∂φki

=
n∑

t=p+1

ZktWktu(yt, i)ekt
σ2k

, (3.17)

∂l3
∂σk

=
n∑

t=p+1

Zkt

σk

(Wkte2kt
σ2k

− 1
)
, (3.18)

where u(yt, i) = yt−i for i > 0, and u(yt, i) = 1 for i = 0.

Next, we substitute the conditional expectations of Zkt,Wkt, and log(Wkt) in (3.15)

to (3.18) and these equations are set to zero to find the optimal values. The estimates of

the mixing proportions α are

α̂k =

∑n
t=p+1 τkt

n− p
. (3.19)

The estimate of φki are obtained by solving the system of equations

n∑

t=p+1

τktηktytu(yt, i) =
pk∑

j=0

φkj

n∑

t=p+1

τktηktytu(yt, i)u(yt, j), (3.20)

where u(yt, i) = yt−i for i > 0, and u(yt, i) = 1 for i = 0. We can rewritten êkt =

yt − φ̂k0 − φ̂k1yt−1 · · ·− φ̂kpk
yt−pk , the estimate of σ is

σ̂k =
(∑n

t=p+1 τktηktê
2
kt∑n

t=p+1 τkt

) 1
2
. (3.21)
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The estimate of the degree of freedom must satisfy the equations

( vk
vk − 2

)
− ψ

(vk
2

)
+ ψ

(v(m)
k + 1

2

)
+ log

(vk − 2

2

)
− log

(v(m)
k + 1

2

)

+
1

∑n
t=p+1 τ

(m)
kt

n∑

t=p+1

τ (m)
kt

(
log(η(m)

kt )− η(m)
kt

)
= 0, (3.22)

where, v(m)
k represents the estimated vk in the mth iteration of the EM algorithm. This

estimation is employed to obtain a numerical solution using the Newton-Raphson method

following

vnk = v0k −
f(v0k)

f ′(v0k)
, (3.23)

where

f ′(v0k) =
vk − 4

(vk − 2)2 − 1
2ψ

′(vk

2 )
. (3.24)

In practice, it is feasible that the estimated values of vk are fewer than two. To prevent

this, we impose the condition vk > 2 during EM estimation.

The EM algorithm for the TMAR model, which the K is a number of components,

order of autoregressive p, weight of probability distribution αk, degree of freedom vk,

autoregressive coefficient Φ = φk0,φk1, . . . ,φkpk
, standard deviation σk. The expectation

step and maximization step are performed repeatedly to derive the parameters of the

probability distribution, as detailed in Figure 3.15.
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Figure 3.14: The EM algorithm for the TMAR model

The EM algorithm for the mixture autoregressive model based on the t distribution

that we mention and develop in Section 3.2.1.2 has the following steps in the programme:
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Figure 3.15: The programming part of the EM algorithm for the TMAR model

Next, the calculation example of the TMAR(2;2) model from the programme TMAR_EM

in the part of simulation which parameter α1,φ10,φ11,φ12,σ1, v1,α2, φ20, φ21, φ22,σ2 are

0.6, 0, 0.33, -0.36, 1.2, 8.68, 0.40, 0.00, -0.21, -0.1, 1.50, 6.37, respectively. The data
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length that we generate is 10 data points, and M is the iteration of the EM algorithm.

In the first step, we generate time series data from 10 data points.

y
1 0.443
2 -0.410
3 1.116
4 -0.091
5 -1.150
6 0.293
7 -0.382
8 -2.521
9 -0.898

10 0.779

and the initial value for the EM algorithm is

α = [α1,α2] = [0.791, 0.209]

Φ =





φ10 φ20

φ11 φ21

φ12 φ22




=





0.443 −2.261

−0.187 −0.405

−0.478 −0.996





σ = [σ1,σ2] = [0.856, 0.013]

v = [v1, v2] = [3.157, 3.634]
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In the initial step of the computation in the Expectation step, we calculate e〈1〉kt .

e〈1〉kt = yt − φk0 − φk1yt−1 − φk2yt−2

=





0.000 0.000

0.000 0.000

0.809 3.653

−0.521 2.214

−1.076 2.186

−0.408 1.998

−1.320 0.852

−2.895 −0.123

−1.994 −0.038

−1.037 0.165





In the Expectation step (m = 1), we need to compute δkt, ηkt, and τkt. Begin with

K = 1, 2 and t = p+ 1, . . . , T . In this example, we illustrate the case of t = p+ 1 = 3 to

T and for all k.

δ〈m〉
kt =

e〈m〉
kt

σ〈m〉
k

=





NA NA

NA NA

0.945 271.781

−0.608 164.760

−1.256 162.684

−0.477 148.636

−1.542 63.413

−3.381 −9.159

−2.329 −2.855

−1.212 12.300





,
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η〈m〉
kt =

v〈m〉
k + 1

δkt2〈m〉 + v〈m〉
k − 2

=





NA NA

NA NA

0.884 0.068

0.491 0.143

0.052 0.795

1.296 0.351

0.078 0.785

0.550 0.354

0.798 0.002

1.007 0.000





,

up〈m〉
kt =

α〈m〉
k

σ〈m〉
k

fvk(δ
〈m〉
kt ) =





NA NA

NA NA

0.211 0.000

0.005 0.000

0.000 0.000

2.380 0.000

0.000 0.000

0.010 0.000

0.110 0.000

0.480 0.000





,

where fv(x) =
Γ( v+1

2
)√

π(v−2)Γ( v
2
)

(
1 + x2

v−2

)− v+1
2 ,
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Sumup〈m〉 =
K∑

k=1

up〈m〉
kt =





0.00

0.00

0.21

0.01

0.00

2.38

0.00

0.01

0.11

0.48





,

τ 〈m〉
kt =

up〈m〉
kt

Sumup〈m〉 =





NA NA

NA NA

1.00 0.00

1.00 0.00

1.00 0.00

1.00 0.00

1.00 0.00

0.81 0.19

0.10 0.90

1.00 0.00





.

In the Maximization Step: we need to estimate α〈m+1〉
k ,Φ〈m+1〉

k ,σ〈m+1〉
k , and v〈m+1〉

k .

In this example, we illustrate the case of t = p+ 1 = 3 to T and for all k,
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α〈m+1〉
k =

∑n
t=p+1 τ

〈m〉
kt

n− p

= [α1,α2]

= [0.916, 0.084].

When estimating Φ〈m+1〉
k , we need to construct the matrix equation AΦk = B,

where

A〈m〉
k =

pk∑

j=0

φkj

T∑

t=p+1

τktηktu(yt, j)u(yt, i)

=





2.732 1.694 −0.139

1.694 2.867 −2.937

−0.139 −2.937 4.690




,

B〈m〉
k =

T∑

t=p+1

τktηktytu(yt, i)

=





1.564

0.038

1.312




,

Φ〈m+1〉
k = A−1〈m〉

k B〈m〉
k

=





0.226 −2.358

−0.175 −0.413

−0.334 −1.097




.
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Before estimating σ〈m+1〉
k , we update the term φ〈m+1〉

kp to e〈m+1〉
kt .

e〈m+1〉
kt = yt − φ〈m+1〉

k0 − φ〈m+1〉
k1 yt−1 − φ〈m+1〉

k2 yt−2

=





0.000 0.000

0.000 0.000

0.966 3.791

−0.259 2.278

−1.020 2.395

−0.165 2.076

−0.941 0.835

−2.717 −0.000

−1.692 0.000

−0.446 −0.000





,

Sumup.sigma =
( T∑

t=p+1

τ 〈m〉
kt η〈m〉

kt e2〈m+1〉
kt

)

= [6.0256, 0.0000],

σ〈m+1〉
k =

(Sumup.sigma
∑T

t=p+1 τ
〈m〉
kt

) 1
2

= [1.001, 0.000].

The estimate of degree of freedom must satisfy the equations fnk, which is defined
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as

fnk =
( vk
vk − 2

)
− ψ

(vk
2

)
+ ψ

(v(m)
k + 1

2

)
+ log

(vk − 2

2

)
− log

(v(m)
k + 1

2

)

+
1

∑n
t=p+1 τ

(m)
kt

n∑

t=p+1

τ (m)
kt

(
log(η(m)

kt )− η(m)
kt

)
,

fdk =
vk − 4

(vk − 2)2
− d2

dv2k
Γ
(vk
2

)
,

where, v(m)
k represents the estimated vk in the mth iteration of the EM algorithm. This

estimation is employed to obtain a numerical solution using the Newton-Raphson method

following

v〈m+1〉
k = v〈m〉

k − fnk

fdk

= [3.288, 3.574].

For now, we complete the mth iteration, where m = 1. We then repeat the Expectation

step and Maximization step until the parameter estimate Θ〈m〉 convergence by using

max(|Θ〈m〉 −Θ〈m+1〉|) < tol, where tol is the tolerance with a default value of 1× 10−6

in this study.

3.2.2 Simulation study for the TMAR model

In this section, we examine the performance of parameter estimation using two dif-

ferent methods. First, we employ the EM algorithm in Section 3.2.1.2 that we develop

and compare it with the maximum likelihood estimation procedure implemented in the

package “uGMAR”[5] in Section 3.2.1.1. Furthermore, we examine the accuracy of pa-

rameter estimates. It’s important to note that, under the restrictions of the package, the

orders of autoregressive components for different components are assumed to be the same.

Therefore, the models considered in this study are denoted as TMAR(K; p), where K is

the number of components and p is the common order of autoregressive components. Two

models investigated in this study are the TMAR(2; 2), where K component is 2 and order

p is 2, and the TMAR(3; 3) model, where K component is 3 and order p is 3. Comparing

the parameter estimate between the EM algorithm and the MLE. In the part of the EM
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algorithm using the parameter from the MLE to be an initial value and random uniform

to an initial for the degree of freedom vk. The best candidate models with the smallest

corresponding criterion are the TMAR (2;2) and the TMAR(3;3) models.

In the first experiment, we generated a time length of 1000 data points from the

TMAR(2; 2) model, where the coefficients α1,φ10,φ11,φ12,σ1, v1,α2, φ20, φ21, φ22,σ2 are

0.6, 0, 0.33, -0.36, 1.2, 8.68, 0.40, 0.00, -0.21, -0.1, 1.50, 6.37, respectively. The data are

fitted to the mixture autoregressive model for K = 1, 2, 3, 4 and p = 1, 2, 3, 4 to assess the

accuracy of the model selection. The corresponding AICs, HQICs, and BICs are obtained,

and the model with the smallest criterion is then selected to match the generated model.

Table 3.17 presents the parameter estimation for the TMAR(2;2) models, comparing the

exact values of parameters to the mean of estimates for each method, along with the error

of each method.
Table 3.17: Parameter estimates using EM algorithm of TMAR(2;2) models

α1 φ10 φ11 φ12 σ1 v1

Exact value 0.60 0.00 0.33 -0.36 1.20 8.68

Estimate of EM 0.76 -0.007 0.10 -0.23 1.17 9.43

Estimate of MLE 0.79 -0.013 0.08 -0.26 1.32 19076.05

Error of EM 0.16 0.007 0.23 0.13 0.03 0.75

Error of MLE 0.19 0.013 0.25 0.10 0.12 19069.68

α2 φ20 φ21 φ22 σ2 v2

Exact value 0.40 0.00 -0.21 -0.10 1.50 6.37

Estimate of EM 0.24 0.073 -0.03 -0.33 0.61 8.806

Estimate of MLE 0.21 0.107 -0.07 -0.43 1.27 19076.05

Error of EM 0.16 0.073 0.18 0.23 0.89 2.437

Error of MLE 0.19 0.107 0.14 0.33 0.23 19069.68

From Table 3.17, the results of the parameter estimates for TMAR(2:2) models are

presented. In the part α, the parameter estimates are quite close to the exact values.
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The performance of the EM algorithm is notably good in 5 out of the 8 parameters

based on the autoregressive coefficients φkp and standard deviation σk. In addition, we

also calculated the mean square error(MSE) of the parameter estimates obtained from

the EM algorithm and the maximum likelihood estimation (MLE), resulting in values of

1.242664 and 1.281587, respectively. Therefore, based on the parameter errors and the

MSE values, it is evident that the EM algorithm outperforms MLE.

In the second experiment, we generated a time length of 1000 data points from the

TMAR(3; 3) model with parameters α1,φ10,φ11,φ12,φ13,σ1, v1,α2,φ20,φ21,φ22, φ23,σ2,

v2,α3,φ30,φ31,φ32,φ33,σ3, v3 are 0.30, 0.00, 0.50, 0.24, 0.00, 2.00, 4.00, 0.30, 0.0, -0.90,

0.0, 0.0, 1.000, 6.000, 0.400, 0.0, 1.5, -0.740, 0.120, 0.500, 10.000, respectively. The

data are fitted to the mixture autoregressive model for K = 1, 2, 3, 4 and p = 1, 2, 3, 4

to assess the accuracy of the model selection. The corresponding AICs, HQICs, and

BICs are obtained, and the model with the smallest criterion is then selected to match

the generated model. Table 3.18 presents the parameter estimation for the TMAR(3;3)

models, comparing the exact values of parameters to the mean of estimates for each

method, along with the error of each method.
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Table 3.18: Parameter estimates using EM algorithm of TMAR(3;3) models

α1 φ10 φ11 φ12 φ13 σ1 v1

Exact value 0.30 0.0 0.50 0.24 0.0 2.0 4.00

Estimate of EM 0.455 0.008 0.642 0.161 -0.138 0.925 8.919

Estimate of MLE 0.535 0.071 0.690 -0.198 -0.013 1.844 8710.071

Error of EM 0.155 0.008 0.142 0.079 0.138 1.075 4.919

Error of MLE 0.235 0.071 0.190 0.438 0.013 0.156 8706.071

α2 φ20 φ21 φ22 φ23 σ2 v2

Exact value 0.30 0.0 -0.90 0.0 0.0 1.000 6.000

Estimate of EM 0.327 0.006 0.164 0.224 -0.010 0.914 8.787

Estimate of MLE 0.316 0.018 0.061 -0.145 -0.003 2.227 15686.806

Error of EM 0.027 0.006 1.064 0.224 0.110 0.086 2.787

Error of MLE 0.016 0.018 0.961 0.145 0.003 1.227 15680.806

α3 φ30 φ31 φ32 φ33 σ3 v3

Exact value 0.400 0.0 1.5 -0.740 0.120 0.500 10.000

Estimate of EM 0.217 0.064 0.076 0.173 0.001 0.544 8.166

Estimate of MLE 0.148 -0.058 -0.023 -0.161 -0.009 2.028 23903.901

Error of EM 0.183 0.064 1.424 0.913 0.119 0.044 1.834

Error of MLE 0.252 0.058 1.523 0.579 0.129 1.528 23893.901

Table 3.18 displays the parameter estimates for the TMAR(3:3) models. In the

part αk, the error from the EM algorithm is smaller than the error from the maximum

likelihood estimation (MLE) in 2 out of 3 parameters. Additionally, the performance of the

EM algorithm exceeds that of the MLE in 6 out of 12 parameters for the autoregressive

coefficient φkp. In terms of the standard deviation σk, the EM algorithm outperforms

MLE in 2 out of 3 parameters. Furthermore, the parameter estimates from the EM

algorithm exhibit better performance in terms of degree of freedom (vk). In addition, we

also calculated the mean square error (MSE) of the parameter estimates obtained from
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the EM algorithm and Maximum Likelihood Estimation (MLE), resulting in values of

0.924623 and 1.08726, respectively. Therefore, based on the parameter errors and the

MSE values, it is evident that the EM algorithm outperforms MLE.

3.2.3 t mixture autoregressive model for Thai stock markets

In part of the programme following the algorithm, we mention in Figure 3.15 and

developing in function: TMAR_EM (data, K, p, tol) which inputs the data, number of

components K, autoregressive order p, and tol is the tolerance, with default being 1×10−6.

The initial value of the parameter for this function is obtained by maximum likelihood

estimation.

The following code fits a TMAR model with autoregressive order p = 2 and K = 2

mixture components, sets the tolerance with 1×10−9 to the HANA stock in the electronic

components sector, and returns the list of elements, such as the information criteria IC,

the estimation of parameters, the loglikelihood, the quantile residual of MLE and EM, the

prediction of MLE and EM, and the mean square error of MLE and EM in Figure 3.17.

For example, Figure 3.18 returns the parameter estimate from the function TMAR_EM.

Figure 3.16: The EM function for HANA
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Figure 3.17: The list of elements in the EM function

Figure 3.18: The parameter estimate from EM function

In this section, we investigate the performance of the mixture autoregressive model

on individual stock markets using the daily closing prices of the top stock from the energy

and utility, and electronic components sectors over the five-year period from August 1st,

2017, to August 1st, 2022 (1214 observations). In particular, BANPU, ESSO, and BCP

from the energy and utility sector, HANA, TEAM, and KCE from the electronic compo-

nents sector. In the table below, we show the AIC, HQIC, and BIC of each candidate

model of the TMAR model using the EM algorithm to estimate parameters for each stock,

and we will show the analysis of the best model.

To begin the analysis, we fit the BANPU stock from the energy and utility sectors

with the TMAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4.

The criteria values for each model are provided in Table 3.19.
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Table 3.19: Criteria for the candidate TMAR model with using EM for BANPU

Models AIC HQIC BIC Models AIC HQIC BIC

TMAR(1:1) 1308.7010 1320.22362 1339.30615 TMAR(3:1) -427.7792 -397.05236 -346.16560

TMAR(1:2) 1188.0849 1201.52786 1223.79082 TMAR(3:2) 218.5742 255.06239 315.49041

TMAR(1:3) 1052.9590 1068.32246 1093.76584 TMAR(3:3) 1038.2250 1080.47444 1150.44373

TMAR(1:4) 907.9109 925.19473 953.81853 TMAR(3:4) -603.1273 -555.11654 -475.60598

TMAR(2:1) 446.1429 467.26758 502.25222 TMAR(4:1) -173.8239 -133.49488 -66.70601

TMAR(2:2) 2073.0176 2097.98320 2139.32869 TMAR(4:2) -60.4234 -12.41266 67.09790

TMAR(2:3) 1379.9607 1408.76715 1456.47349 TMAR(4:3) 405.1463 460.83872 553.07097

TMAR(2:4) 306.9051 339.55238 393.61956 TMAR(4:4) -703.0540 -639.67982 -534.72588

From Table 3.19, The TMAR(K; p) model, whose K component is equal to 1,

such as MAR(1;p), in the first four lines, is the original autoregressive model with order

p, while the other K components represent the t mixture autoregressive models with

multiple components. All the criterion values for multiple components are smaller than

those for the single component, confirming the motivation of the mixture distribution in

the stock dataset. Among these models, the one with the smallest AIC, HQIC, and BIC

is the MAR(4:4). Therefore, the optimal model for BANPU is the MAR(4;1) model.

Next, the diagnostic check involves quantile residuals, which are used to perform

computationally simple tests aimed at detecting quantile residual plots, Q-Q plots, and

test t distribution of the quantile residuals by using Kolmogorov Smirnov test is presented

in Figure 3.19 and Table 3.20.

Figure 3.19: Quantile residual plot of TMAR(4:4) for BANPU
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Table 3.20: t distribution test of TMAR(4:4) for BANPU

Test Statistic p-value

Kolmogorov-Smirnov 0.055 0.001283

From Figure 3.19, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. Additionally, Table 3.20 presents the t distribution test of the quantile

residuals. Specifically the Kolmogorov-Smirnov test for the quantile residuals of BANPU

reveals p-values less than 0.05, indicating that the distribution of the given data does not

conform to a t distribution. The summary of the family of univariate mixture autoregres-

sive models for BANPU is presented in Table 3.21, which includes criteria such as AIC,

HQIC, and BIC, as well as the mean square error (MSE).

Table 3.21: The best of each candidate model for BANPU

Model AIC HQIC BIC MSE

TMAREM(4;4) -703.0540 -639.67982 -534.72588 0.5633856

TMARMLE(4;1) -83.07111 -46.58295 13.84507 1.0105105

MARMLE(4;1) 17.12187 45.92831 93.63465 1.0005787

From Table 3.21, the summary of the family of univariate mixture autoregressive

models, which includes the MAR model, the TMAR model with parameter estimates by

MLE, and the TMAR model with parameter estimates using the EM algorithm, reveals

that the best candidate model for BANPU is the TMAR model estimated with the EM

algorithm. This conclusion is based on the smallest criterion and MSE values.

Next, we analyze ESSO stock data in the energy and utility sectors by fitting it

with the TMAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4.

The criteria values for each model are presented in Table 3.22.
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Table 3.22: Criteria for the candidate TMAR model with using EM for ESSO

Models AIC HQIC BIC Models AIC HQIC BIC

TMAR(1:1) 1001.7015 1013.2241 1032.3066 TMAR(3:1) -1152.7885 -1122.0617 -1071.1749

TMAR(1:2) 851.3204 864.7634 887.0264 TMAR(3:2) 747.2210 783.7092 844.1372

TMAR(1:3) 660.1353 675.4987 700.9421 TMAR(3:3) 1867.1625 1909.4119 1979.3812

TMAR(1:4) 520.3834 537.6673 566.2911 TMAR(3:4) 1242.6832 1290.6939 1370.2045

TMAR(2:1) 993.0267 1014.1515 1049.1361 TMAR(4:1) -861.8696 -821.5406 -754.7517

TMAR(2:2) 901.8843 926.8499 968.1954 TMAR(4:2) 490.6107 538.6214 618.1320

TMAR(2:3) -1064.1187 -1035.3123 -987.6059 TMAR(4:3) -553.7844 -498.0919 -405.8597

TMAR(2:4) 961.2732 993.9205 1047.9877 TMAR(4:4) 532.6991 596.0732 701.0272

From Table 3.22, the multiple components have smaller AIC, HQIC, and BIC values

than the single component model. The TMAR(3:1) model exhibits the lowest AIC, HQIC,

and BIC values, indicating that it is the best model for ESSO stock data. Next, the

diagnostic check involves quantile residuals, which are used to perform computationally

simple tests aimed at detecting quantile residual plots, Q-Q plots, and test t distribution

of the quantile residuals by using Kolmogorov Smirnov test is presented in Figure 3.20

and Table 3.23.

Figure 3.20: Quantile residual plot of TMAR(3:1) for ESSO

Table 3.23: t distribution test of TMAR(3:1) for ESSO

Test Statistic p-value

Kolmogorov-Smirnov 0.17115 2.2e-16
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From Figure 3.20, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. Additionally, Table 3.23 presents the t distribution test of the quantile

residuals. Specifically the Kolmogorov-Smirnov test for the quantile residuals of BANPU

reveals p-values less than 0.05, indicating that the distribution of the given data does not

conform to a t distribution. The summary of the family of univariate mixture autore-

gressive models for ESSO is presented in Table 3.24, which includes criteria such as AIC,

HQIC, and BIC, as well as the mean square error (MSE).

Table 3.24: The best of each candidate model for ESSO

Model AIC HQIC BIC MSE

TMAREM(3;1) -1152.7885 -1122.0617 -1071.1749 0.3804303

TMARMLE(4;1) -23.73528 12.75288 73.18090 0.9937875

MARMLE(4;1) 6.45798 35.26442 82.97076 0.9946433

From Table 3.24, the summary of the family of univariate mixture autoregressive

models reveals that the best candidate model for ESSO is the TMAR model estimated

with the EM algorithm. This conclusion is based on the smallest criterion values and

MSE values.

Next, we analyze BCP stock data in the energy and utility sectors by fitting it with

the TMAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4. The

criteria values for each model are presented in Table 3.25.
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Table 3.25: Criteria for the candidate TMAR model with using EM for BCP

Models AIC HQIC BIC Models AIC HQIC BIC

TMAR(1:1) 1605.9925 1617.5151 1636.5976 TMAR(3:1) 2999.2762 3030.0031 3080.8899

TMAR(1:2) 1461.5116 1474.9547 1497.2176 TMAR(3:2) 549.7641 586.2522 646.6803

TMAR(1:3) -491.9944 -476.6310 -451.1876 TMAR(3:3) 2033.7533 2076.0028 2145.9721

TMAR(1:4) -335.1214 -317.8375 -289.2137 TMAR(3:4) 1254.1858 1302.1965 1381.7071

TMAR(2:1) 2536.4205 2557.5452 2592.5299 TMAR(4:1) 590.5399 630.8689 697.6578

TMAR(2:2) 2812.8611 2837.8267 2879.1722 TMAR(4:2) 2274.9069 2322.9177 2402.4282

TMAR(2:3) 1402.3748 1431.1813 1478.8876 TMAR(4:3) 1133.206 1188.899 1281.131

TMAR(2:4) 3590.3761 3623.0234 3677.0906 TMAR(4:4) 1150.7145 1214.0886 1319.0426

From Table 3.25, the multiple components have smaller AIC, HQIC, and BIC values

than the single component model. The TMAR(3:2) model exhibits the lowest AIC, HQIC,

and BIC values, indicating that it is the best model for BCP stock data. Next, the

diagnostic check involves quantile residuals, which are used to perform computationally

simple tests aimed at detecting quantile residual plots, Q-Q plots, and test t distribution

of the quantile residuals by using Kolmogorov Smirnov test is presented in Figure 3.21

and Table 3.26.

Figure 3.21: Quantile residual plot of TMAR(3:2) for BCP

Table 3.26: t distribution test of TMAR(3:2) for BCP

Test Statistic p-value

Kolmogorov-Smirnov 0.032672 0.1497
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From Figure 3.21, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. Additionally, Table 3.26 presents the t distribution test of the quantile

residuals. Specifically the Kolmogorov-Smirnov test for the quantile residuals of BANPU

reveals p-values greater than 0.05, indicating that the distribution of the given data con-

form to a t distribution. The summary of the family of univariate mixture autoregressive

models for BCP is presented in Table 3.27, which includes criteria such as AIC, HQIC,

and BIC, as well as the mean square error (MSE).

Table 3.27: The best of each candidate model for BCP

Model AIC HQIC BIC MSE

TMAREM(3:2) 549.7641 586.2522 646.6803 0.6821307

TMARMLE(3:1) 1710.122 1737.008 1781.534 0.9942205

MARMLE(2:1) 1882.570 1896.013 1918.276 0.9951634

From Table 3.27, the summary of the family of univariate mixture autoregressive

models reveals that the best candidate model for BCP is the TMAR(3:2) model estimated

with the EM algorithm. This conclusion is based on the smallest criterion values and MSE

values.

Next, we analyze HANA stock data in the electronic components sector by fitting it

with the TMAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4,

and the criteria values for each model are presented in Table 3.28.
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Table 3.28: Criteria for the candidate TMAR model with using EM for HANA

Models AIC HQIC BIC Models AIC HQIC BIC

TMAR(1:1) 4951.816 4963.339 4982.422 TMAR(3:1) 2744.888 2775.615 2826.502

TMAR(1:2) 4842.794 4856.237 4878.500 TMAR(3:2) 4004.121 4040.610 4101.038

TMAR(1:3) 4698.406 4713.769 4739.212 TMAR(3:3) 2734.783 2777.033 2847.002

TMAR(1:4) 4549.531 4566.815 4595.439 TMAR(3:4) 5689.577 5737.588 5817.098

TMAR(2:1) 4564.979 4586.104 4621.089 TMAR(4:1) 2699.12 2739.449 2806.238

TMAR(2:2) 1576.191 1601.156 1642.502 TMAR(4:2) 3802.404 3850.415 3929.926

TMAR(2:3) 4349.171 4377.978 4425.684 TMAR(4:3) 2528.586 2584.278 2676.510

TMAR(2:4) 4361.067 4393.714 4447.781 TMAR(4:4) 3998.370 4061.745 4166.699

From Table 3.28, the multiple components have smaller AIC, HQIC, and BIC values

than the single component model. The TMAR(2:2) model exhibits the lowest AIC, HQIC,

and BIC values, indicating that it is the best model for HANA stock data. Next, the

diagnostic check involves quantile residuals, which are used to perform computationally

simple tests aimed at detecting quantile residual plots, Q-Q plots, and test t distribution

of the quantile residuals by using Kolmogorov Smirnov test is presented in Figure 3.22

and Table 3.29.

Figure 3.22: Quantile residual plot of TMAR(2:2) for HANA
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Table 3.29: t distribution test of TMAR(2:2) for HANA

Test Statistic p-value

Kolmogorov-Smirnov 0.030268 0.216

From Figure 3.22, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. Additionally, Table 3.29 presents the t distribution test of the quantile

residuals. Specifically the Kolmogorov-Smirnov test for the quantile residuals of BANPU

reveals p-values greater than 0.05, indicating that the distribution of the given data con-

form to a t distribution. The summary of the family of univariate mixture autoregressive

models for HANA is presented in Table 3.30, which includes criteria such as AIC, HQIC,

and BIC, as well as the mean square error (MSE).

Table 3.30: The best of each candidate model for HANA

Model AIC HQIC BIC MSE

TMAREM(2;2) 1576.191 1601.156 1642.502 1.186730

TMARMLE(4;1) 3649.325 3685.814 3746.242 0.6950017

MARMLE(3;1) 3671.415 3692.540 3727.525 1.0053008

From Table 3.30, the summary of the family of univariate mixture autoregressive

models reveals that the best candidate model for HANA, based on the criteria, is the

TMAR(3:2) model estimated with the EM algorithm. However, the MSE values indicate

that the best model is the TMAR(4:1) model estimated with the MLE. Therefore, both

criteria and MSE lead to the same result, indicating that the TMAR model is preferred

over the MAR model.

Next, we analyze TEAM stock data in the electronic components sector by fitting it

with the TMAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4,
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and the criteria values for each model are presented in Table 3.31.

Table 3.31: Criteria for the candidate TMAR model with using EM for TEAM

Models AIC HQIC BIC Models AIC HQIC BIC

TMAR(1:1) 6714.593 6726.116 6745.198 TMAR(3:1) 6445.419 6466.544 6501.529

TMAR(1:2) 5088.825 5102.268 5124.531 TMAR(3:2) 737.3544 773.8425 834.2705

TMAR(1:3) 4149.540 4164.903 4190.346 TMAR(3:3) 924.5772 966.8266 1036.7959

TMAR(1:4) 3495.515 3512.799 3541.423 TMAR(3:4) 2225.2418 2273.2526 2352.7631

TMAR(2:1) 6445.419 6466.544 6501.529 TMAR(4:1) 3417.119 3457.448 3524.237

TMAR(2:2) 5265.5946 5290.5602 5331.9057 TMAR(4:2) 326.1886 374.1993 453.7099

TMAR(2:3) 8632.9837 8661.7902 8709.4965 TMAR(4:3) -1175.9961 -1120.3036 -1028.0714

TMAR(2:4) 1945.7314 1978.3787 2032.4459 TMAR(4:4) -396.8455 -333.4713 -228.5174

From Table 3.31, the multiple components have smaller AIC, HQIC, and BIC values

than the single component model. The TMAR(4:3) model exhibits the lowest AIC, HQIC,

and BIC values, indicating that it is the best model for TEAM stock data. Next, the

diagnostic check involves quantile residuals, which are used to perform computationally

simple tests aimed at detecting quantile residual plots, Q-Q plots, and test t distribution

of the quantile residuals by using Kolmogorov Smirnov test is presented in Figure 3.23

and Table 3.32.

Figure 3.23: Quantile residual plot of TMAR(4:3) for TEAM

Table 3.32: t distribution test of TMAR(4:3) for TEAM
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Test Statistic p-value

Kolmogorov-Smirnov 0.0857 3.466e-08

From Figure 3.23, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. Additionally, Table 3.32 presents the t distribution test of the quantile

residuals. Specifically the Kolmogorov-Smirnov test for the quantile residuals of BANPU

reveals p-values less than 0.05, indicating that the distribution of the given data does not

conform to a t distribution. The summary of the family of univariate mixture autoregres-

sive models for TEAM is presented in Table 3.33, which includes criteria such as AIC,

HQIC, and BIC, as well as the mean square error (MSE).

Table 3.33: The best of each candidate model for TEAM

Model AIC HQIC BIC MSE

TMAREM(4;3) -1175.9961 -1120.3036 -1028.0714 0.6678313

TMARMLE(4;4) -4922.316 -4862.804 -4764.266 0.9977746

MARMLE(4;1) -4228.198 -4199.391 -4151.685 0.9929871

From Table 3.33, the summary of the family of univariate mixture autoregressive

models reveals that the best candidate model for TEAM, based on the criteria, is the

TMAR(4:4) model estimated with the MLE. However, the MSE values indicate that the

best model is the TMAR(4:3) model estimated with the EM algorithm. Therefore, both

criteria and MSE lead to the same result, indicating that the TMAR model is preferred

over the MAR model.

Next, we analyze KCE stock data in the electronic components sector by fitting it

with the TMAR(K; p) model, where we explore values of K = 1, 2, 3, 4 and p = 1, 2, 3, 4,

and the criteria values for each model are presented in Table 3.34.
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Table 3.34: Criteria for the candidate TMAR model with using EM for KCE

Models AIC HQIC BIC Models AIC HQIC BIC

TMAR(1:1) 5560.454 5571.977 5591.059 TMAR(3:1) 3873.866 3904.593 3955.48

TMAR(1:2) 5341.030 5354.473 5376.736 TMAR(3:2) 3356.733 3393.221 3453.649

TMAR(1:3) 5129.536 5144.899 5170.343 TMAR(3:3) 3077.612 3119.861 3189.830

TMAR(1:4) 4953.420 4970.704 4999.328 TMAR(3:4) 3411.2 3459.211 3538.722

TMAR(2:1) 2881.607 2902.731 2937.716 TMAR(4:1) 2339.492 2379.821 2446.61

TMAR(2:2) 3081.329 3106.294 3147.640 TMAR(4:2) 3295.044 3343.055 3422.566

TMAR(2:3) 3090.927 3119.733 3167.440 TMAR(4:3) 1884.784 1940.477 2032.709

TMAR(2:4) 4959.662 4992.309 5046.376 TMAR(4:4) 2648.045 2711.420 2816.374

From Table 3.34, the multiple components have smaller AIC, HQIC, and BIC values

than the single component model. The TMAR(4:3) model exhibits the lowest AIC, HQIC,

and BIC values, indicating that it is the best model for KCE stock data. Next, the

diagnostic check involves quantile residuals, which are used to perform computationally

simple tests aimed at detecting quantile residual plots, Q-Q plots, and test t distribution

of the quantile residuals by using Kolmogorov Smirnov test is presented in Figure 3.24

and Table 3.35.

Figure 3.24: Quantile residual plot of TMAR(4:3) for KCE
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Table 3.35: t distribution test of TMAR(4:3) for KCE

Test Statistic p-value

Kolmogorov-Smirnov 0.035523 0.0934

From Figure 3.24, In the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, there

are some outliers. Additionally, Table 3.35 presents the t distribution test of the quantile

residuals. Specifically the Kolmogorov-Smirnov test for the quantile residuals of BANPU

reveals p-values greater than 0.05, indicating that the distribution of the given data con-

form to a t distribution. The summary of the family of univariate mixture autoregressive

models for KCE is presented in Table 3.36, which includes criteria such as AIC, HQIC,

and BIC, as well as the mean square error (MSE).

Table 3.36: The best of each candidate model for KCE

Model AIC HQIC BIC MSE

TMAREM(4:3) 1884.784 1940.477 2032.709 1.198544

TMARMLE(1:1) 3522.908 3530.589 3543.311 0.9684834

MARMLE(3:1) 3512.307 3533.432 3568.416 0.9971298

From Table 3.36, the summary of the family of univariate mixture autoregressive

models reveals that the best candidate model for KCE, based on the criteria, is the

TMAR(4:3) model estimated with the EM algorithm. However, the MSE values indicate

that the best model is the TMAR(1:1) model estimated with the MLE. Therefore, both

criteria and MSE lead to the same result, indicating that the TMAR model is preferred

over the MAR model.

From two different sectors in the stock market, namely energy and utility, and

electronics components, each sector having three stocks, we selected the best model using

the selection criteria outlined in Section 2.3, which include the AIC, HQIC, and BIC
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criteria. We then assessed the validity of the chosen model through model diagnostics,

as discussed in Section 2.4. The comparison involved the best candidate models in each

sector, considering both MAR model and the TMAR model. We used maximum likelihood

estimation and the EM algorithm to estimate parameters for each dataset, selecting the

best model based on mean square error (MSE), as presented in Table 3.37.

Table 3.37: The best of each candidate model for the Thai stock market

MLE MSE MLE MSE EM algorithm MSE

BANPU MAR(4;1) 1.0005787 TMAR(4;1) 1.0105105 TMAR(3;4) 0.5633856

ESSO MAR(4;1) 0.9946433 TMAR(4;1) 0.9937875 TMAR(3;1) 0.3804303

BCP MAR(2;1) 0.9951634 TMAR(3;1) 0.9942205 TMAR(3;2) 0.6821307

HANA MAR(3;1) 1.0053008 TMAR(4;1) 0.6950017 TMAR(2;2) 1.186730

TEAM MAR(4;1) 0.9929871 TMAR(4;4) 0.9977746 TMAR(4;3) 0.6678313

KCE MAR(3;1) 0.9971298 TMAR(1;1) 0.9684834 TMAR(4;3) 1.198544

Table 3.37 presents the results of the TMAR models, considering different param-

eter estimation methods based on mean square error (MSE). For BANPU, ESSO, BCP,

and TEAM, almost all instances of the EM algorithm yield significantly lower MSE val-

ues compared to maximum likelihood estimation. Conversely, HANA and KCE prefer

parameter estimates from maximum likelihood estimation. This table indicates that in 4

out of 6 stock datasets, the EM algorithm outperforms in parameter estimation.

In this chapter, we introduce the family of univariate mixture autoregressive mod-

els, comprising the mixture autoregressive (MAR) model, the t mixture autoregressive

(TMAR) model, and employ both the EM algorithm and maximum likelihood estimation

(MLE) for parameter estimation. We conduct a simulation study to test the accuracy of

the model and then apply it to Thai stock market data. For the mixture autoregressive

(MAR) model, all criteria for each stock indicate that the multiple component model

is better than the single component model. However, almost the entire residual of the
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model does not follow a normal distribution. Consequently, the alternative distribution,

the t mixture autoregressive model, is considered, which is suitable for data exhibiting

heavy tails, such as stock market data. In Table 3.37, the t mixture autoregressive model,

utilizing both the maximum likelihood estimator and EM algorithm developed in Section

3.2.1.2 to estimate parameters, is preferred over the mixture autoregressive model. The

next chapter introduces into the multivariate mixture autoregressive model, employing

multiple variables to forecast potential outcomes, examining the correlation within each

dataset, and applying the model to various stock sectors.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

THE FAMILY OF MULTIVARIATE MIXTURE

AUTOREGRESSIVE MODELS

In this chapter, we introduce the family of multivariate mixture autoregressive

models and discuss their specifications. We construct the EM algorithm for estimat-

ing parameters in the multivariate mixture vector autoregressive model. The simulation

study of the mixture vector autoregressive (MVAR) model and the t mixture vector au-

toregressive (TMVAR) model and investigates the performance of the EM algorithm that

we develop compare with the maximum likelihood estimation. Initially, we consider the

top stocks from two different sectors, with each sector comprising of three stocks. The en-

ergy and utility sectors include BANPU, ESSO, and BCP, and the electronic components

sector includes HANA, TEAM, and KCE. Subsequently, we compare the performance of

parameter estimation using information criteria and the mean square error.

4.1 Mixture vector autoregressive model

The n dimensional vector time series Yt is said to be the mixture vector autore-

gressive model denoted as MVAR(n:K; p1, p2, p3, . . . , pk) if the distribution function of Yt
given pass information can be written as

F (Yt|Ft−1) =
K∑

k=1

αkΦ(Ω
−1/2
k (Yt −Θk0 −Θk1Yt−1 − · · ·−Θkpk

Yt−pk)), (4.1)

where F (Yt|Ft−1) is the cumulative distribution function of Yt given the past information

Yt−1, Yt−2, Yt−3, . . . , Y1, Φ(·) represents the cumulative distribution function of the mul-

tivariate Gaussian distribution with mean zero and variance-covariance matrix equal to

identity matrix, Θk0 is an n dimension vector, Θk1, . . . ,Θkpk
are n×n coefficient matrices

and Ωk is the n×n variance covariance matrix for kth component, the mixing proportion
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αk > 0, k = 1, 2, 3, . . . ,K and α1 + α2 + · · ·+ αK = 1.

In this study, we will construct an appropriate mixture autoregressive model for

Thai stock data and a suitable multivariate mixture vector autoregressive model to study

correlation between different stock markets by using the EM algorithm to estimate pa-

rameters.

4.1.1 Parameter estimation

In this section, we discuss the method to estimate the parameters that we developed

in this study, which is the EM algorithm, and compare it with the maximum likelihood

function.

4.1.1.1 Parameter estimation by the maximum likelihood function

In the case of the mixture vector autoregressive model, the maximum likelihood

method is the parameter estimation method used in this study to compare with the EM

algorithm. Specifically, given a time series Y = (Y1, Y2, Y3, . . . , Yt), the likelihood function

for the mixture vector autoregressive model is the product of conditional density

L(Θ̃,Ω,α|Y) =
T∏

t=p+1

K∑

k=1

αk

(2π)
n
2 |Ωk|

1
2

exp
(
− 1

2
(Yt − µkt)

TΩ−1
k (Yt − µkt)

)
, (4.2)

where Ωk is a n×n variance covariance matrix for kth component, and µkt = Yt− Θ̃kXkt

is a n× n autoregressive matrices, Xkt = (1, Y T
t−1, Y

T
t−2), and Θ̃k = [Θk0,Θk1, . . . ,Θkpk

].

The maximum likelihood function to estimate Υ̂ which is defined as

Υ̂ = arg max
Υ

.(Υ|Y), (4.3)

where Υ = (αk, Θ̃k,Ωk).

The estimation of parameters requires the use of a numerical technique [6]. In the

context of the mixture components of the mixture vector autoregressive model, finding a

general solution may not be feasible [7]. The alternative to the parameter estimate is the
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EM algorithm.

4.1.1.2 Parameter estimation by the EM algorithm

The parameter estimation is conducted using the EM algorithm, and the log-

likelihood is constructed using the normal scale mixture model. Assume that the n

dimension vectors of observations YT are generated from MVAR(n,K; p) model for t =

1, 2, . . . , T and let Zt = (Z1t, Z2t, Z3t, . . . , Zkt)T , where

Zit =






1 if if Yt comes from the ith component component; 1 ≤ i ≤ K,

0 otherwise.

and the conditional log likelihood function of the mixture vector autoregressive model at

time t is

lt =
K∑

k=1

Zkt log(αk)−
1

2

K∑

k=1

Zkt log |Ωk|−
1

2

K∑

k=1

Zkt(ekt
TΩ−1

k ekt), (4.4)

where

Θ̃k = [Θk0,Θk1,Θk2, . . . ,Θkpk
], (4.5)

Xkt = (1, Y T
t−1, Y

T
t−2, . . . , Y

T
t−pk

)T , (4.6)

ekt = Yt − Θ̃kXkt. (4.7)

The log likelihood function of the mixture vector autoregressive model is given by

l =
T∑

t=p+1

{ K∑

k=1

Zkt log(αk)−
1

2

K∑

k=1

Zkt log |Ωk|−
1

2

K∑

k=1

Zkt(ekt
TΩ−1

k ekt)
}
. (4.8)

The parameters are estimated by iteratively maximizing the log-likelihood through

the Expectation-Maximization(EM) procedure [3], which involves two main steps: the

Expectation(E-step) and the Maximization(M-step). These steps are repeated iteratively

until the algorithm converges. An illustration of the EM algorithm is provide in Figure
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4.1.

The Expectation step. Assume that the parameters αk, Θ̃k,Ωk is known. The

unobserved random variable Z are replaced by their expectations, conditional over the

parameters and the observed data Y1, . . . , YT . Let τkt be the conditional expectation of

the kth component of Zt which defined as

τkt =
αk|Ωk|−

1
2 exp(−1

2ektTΩ
−1
k ekt)

∑K
k=1 αk|Ωk|−

1
2 exp(−1

2ektTΩ
−1
k ekt)

. (4.9)

The Maximization step. Suppose that the unobserved random variable is actually

known. By maximizing the loglikelihood function (4.8), the estimates of our model are

obtained through the first derivatives with respect to the parameters αk, Θ̃k, and Ωk are

∂l

∂αk
=

T∑

t=p+1

(Zkt

αk
− ZKt

αk

)
, (4.10)

∂l

∂Θ̃k

= Ω−1
( T∑

t=p+1

ZktYtX
T
kt −

T∑

t=p+1

ZktXktX
T
kt

)
, (4.11)

∂l

∂Ωk
=

1

2

{
Ω−1

T∑

t=p+1

(Zktektekt
T )−

T∑

t=p+1

Zkt, (4.12)

where ekt = Yt−Θk0−Θk1Yt−1−Θk2Yt−2− · · ·−Θkpk
Yt−pk . Subsequently, we substitute

the conditional expectation of Zkt in (4.10) to (4.12) and setting equation to zero. The

estimates of the parameter are

α̂k =
1

T − p

T∑

t=p+1

τkt, (4.13)

ˆ̃ΘT
k =

( T∑

t=p+1

τktXktX
T
kt

)−1( T∑

t=p+1

τktXktY
T
t

)
, (4.14)

Ω̂k =

∑T
t=p+1 τktêktêTkt∑T

t=p+1 τkt
, (4.15)

where k = 1, 2, . . . ,K.
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Figure 4.1: The EM algorithm for the MVAR model

The EM algorithm for the multivariate mixture autoregressive model that we men-

tion and develop in Section 4.1.1.2 has the following steps in the programme, are show in

Figure 4.2:
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Figure 4.2: The programming part of the EM algorithm for the MVAR model

In this section, we will show the calculation example by using the MVAR_EM

program for simulation. The model considered in this example is the MVAR(3:2;2) model

with generate length of each time series is 10 data points, a dimension vector of 3, K

components, and an autoregressive order of 2. The parameter M represents the number

of iterations in the EM algorithm.

In the initial step, we generate time series data comprising 10 data points. For the

purpose of this illustration, the calculation example is presented with m iterations limited

to 1.
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YT,1 YT,2 YT,3

1 0.65 0.00 -0.11
2 1.55 -1.36 -0.14
3 2.96 -0.03 -0.33
4 2.09 0.43 0.48
5 3.17 -0.11 -0.24
6 -1.86 1.22 1.34
7 -0.44 1.08 0.53
8 0.68 1.64 0.47
9 1.04 0.43 1.24

10 -0.57 1.49 1.64

and the initial values for the EM algorithm are

α = [α1,α2]

= [0.50, 0.50],

Θ̃1 =
[
Θ10 Θ11 Θ12

]

=





−0.648 −0.537 0.212 0.319 0.279 0.108 −0.580

0.114 −0.083 1.054 0.607 0.638 −1.026 0.097

0.048 0.106 1.425 −0.978 0.619 0.251 −0.849




,

Θ̃2 =
[
Θ20 Θ21 Θ22

]

=





0.15 0.514 −0.363 0.019 0.259 −0.398 −0.767

0.43 −0.050 0.256 0.209 −0.010 0.356 −0.500

0.45 0.092 0.459 0.292 −0.205 0.233 −0.030




,

Ω1 =





1.772 0.495 0.100

0.495 1.560 1.151

0.100 1.151 0.972




,

Ω2 =





5.538 −1.188 −1.242

−1.188 0.364 0.341

−1.242 0.341 0.330




.

In the initial step of the computation in the Expectation step, we calculate ekt〈1〉 =
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Yt − Θ̃kXkt, where Xkt = (1, Y T
t−1, Y

T
t−2) :

e1t
〈1〉 =





NA NA 4.536 4.077 3.675 0.236 −2.488 1.857 1.865 0.052

NA NA 1.100 −1.571 −2.693 0.694 −3.402 2.345 −0.307 1.463

NA NA 0.758 −0.902 −2.765 −0.112 −1.884 1.434 −0.310 1.649




.

In the Expectation step we have to compute τkt =
αk|Ωk|−

1
2 exp(− 1

2
eTktΩ

−1
k ekt)

∑K
k=1 αk|Ωk|−

1
2 exp(− 1

2
eTktΩ

−1
k ekt)

.

Begin with K = 1, 2 and t = p + 1, . . . , T . In this example, we illustrate the case of

t = p+ 1 = 3 to T and for all k.

up〈m〉
kt = αk|Ωk|−

1
2 exp(−1

2
eTktΩ

−1
k ekt) =





NA NA

NA NA

0.000 18.745

0.000 7.925

0.000 6.314

0.084 4.718

0.006 25.551

0.121 0.000

0.229 0.011

0.110 15.770





,

sumup〈m〉 =
K∑

k=1

αk|Ωk|−
1
2 exp(−1

2
eTktΩ

−1
k ekt)

= (0.000, 0.000, 0.306, 0.838, 0.487, 0.500, 0.338, 0.129, 0.104, 0.419),
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τ 〈m〉
kt =

up〈m〉
kt

sumup〈m〉 =





NA NA

NA NA

0.000 1.000

0.000 1.000

0.000 1.000

0.018 0.982

0.000 1.000

1.000 0.000

0.955 0.045

0.007 0.993





.

In the Maximization Step: we need to estimate α〈m+1〉
k , Θ̃〈m+1〉T

1 , and Ω〈m+1〉
k . In

this example, we illustrate the case of t = p+ 1 = 3 to T and for all k.

α〈m+1〉
k =

∑T
t=p+1 τ

〈m〉
kt

T − p

= [α1,α2]

= [0.5620.438].

When estimating Θ̃〈m+1〉T
k , we need to construct the matrix equation

A〈m〉T
k Θ̃〈m+1〉T

k = B〈m+1〉T
k , where

A〈m〉
k =

( T∑

t=p+1

τ 〈m〉
kt XktX

T
kt

)−1
,

B〈m〉
k =

T∑

t=p+1

τ 〈m〉
kt XktY

T
t ,
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Θ̃〈m+1〉T
1 = A〈m〉

1 B〈m〉
1

=





−0.012 0.028 0.034 0.030 −0.001 0.029 0.015

−0.020 0.046 0.056 0.049 −0.001 0.048 0.024

−0.019 0.043 0.052 0.046 −0.001 0.045 0.022




.

Before estimating Ω〈m+1〉
k , we update the term Θ̃〈m+1〉T

1 to e1t〈m+1〉.

e1t
〈m+1〉 = Yt − Θ̃kXkt

=





NA NA 3.294 2.422 3.494 −1.530 −0.111 1.006 1.371 −0.246

NA NA 0.508 0.972 0.427 1.759 1.618 2.185 0.975 2.034

NA NA 0.170 0.983 0.263 1.845 1.029 0.976 1.745 2.145




,

Sumup.omega =
T∑

t=p+1

τ 〈m〉
kt e〈m+1〉

kt e〈m+1〉T
kt

=





39.216 23.503 22.665

23.503 44.052 28.440

22.665 28.440 23.798




,

Ω〈m+1〉
k =

(Sumup.omega
∑T

t=p+1 τ
〈m〉
kt

) 1
2

=





1.366 1.214 1.057

21.214 2.096 1.376

1.057 1.376 1.159




.

For now, we complete the mth iteration, where m = 1. We then repeat the Expecta-

tion(E) step and Maximization(M) step until the parameter estimate Υ̃ = (αk
〈M〉, Θ̃〈M〉

k ,Ωk
〈M〉)

convergence by using max(|Υ̃〈m〉−Υ̃〈m+1〉|) < tol, where tol is the tolerance with a default
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value of 1× 10−6 in this study.

4.1.2 Simulation study for the MVAR model

In this section, we examine the performance of parameter estimation using two

different methods. First, we employ the EM algorithm in Section 4.1.1.2 that we develop

and compare it with the maximum likelihood estimation procedure implemented in the

package “uGMAR” [6] in Section 4.1.1.1. Furthermore, we examine the accuracy of

parameter estimates. It’s important to note that, under the restrictions of the package, the

orders of autoregressive components for different components are assumed to be the same.

Therefore, the models considered in this study are denoted as MVAR(n:K; p), where n

is the dimensional vector, K is the number of components and p is the common order of

autoregressive components. The model investigated in this study are the MVAR(3:2; 2),

where K component is 2 and order p is 2, and n dimensional vector is 3. Comparing

the parameter estimate between the EM algorithm and the MLE. In the part of the EM

algorithm using the parameter from the MLE to be an initial value. The best candidate

models with the smallest corresponding criterion is the MVAR(3:2; 2).

For the experiments, we generate a time series from the MVAR(3:2;2) which the

dimension, n, is 3, the number of component, K, is 2, order of autoregressive model is 2

with a time length of 1000 data points and simulation 1000 replications. In comparing

parameter estimates obtained with the maximum likelihood estimation(MLE) and the

Expectation-Maximization(EM) algorithm, the EM algorithm utilized parameters from

the MLE as an initial value. The best candidate models, identified based on the smallest

corresponding criterion, were determined to be MVAR(3:2;2) models, which were correctly

chosen. Table 4.1 presents parameter estimates for both methods, comparing them with

the exact values.
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Table 4.1: Parameter estimates for the MVAR(3:2;2) model using the EM algorithm,
when K = 1.

φ10 φ20 φ30

Exact value 0.00 0.00 0.00

Estimate of EM 0.004 -0.014 -0.011

Estimate of MLE -0.648 0.114 0.048

Error of EM 0.004 0.014 0.011

Error of MLE 0.648 0.114 0.048

p = 1

φ11,1 φ21,1 φ31,1 φ12,1 φ22,1 φ32,1 φ13,1 φ23,1 φ33,1

Exact value 0.500 0.100 0.000 0.000 0.100 0.200 0.000 0.300 0.30

Estimate of EM -0.009 0.030 0.026 -0.011 0.037 0.032 -0.010 0.033 0.03

Estimate of MLE -0.537 -0.083 0.106 0.212 1.054 1.425 0.319 0.607 -0.98

Error of EM 0.509 0.070 0.026 0.011 0.063 0.168 0.010 0.267 0.27

Error of MLE 1.037 0.183 0.106 0.212 0.954 1.225 0.319 0.307 1.28

p = 2

φ11,2 φ21,2 φ31,2 φ12,2 φ22,2 φ32,2 φ13,2 φ23,2 φ33,2

Exact value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Estimate of EM 0.000 -0.001 -0.001 -0.009 0.032 0.027 -0.005 0.016 0.01

Estimate of MLE 0.279 0.638 0.619 0.108 -1.026 0.251 -0.580 0.097 -0.85

Error of EM 0.000 0.001 0.001 0.009 0.032 0.027 0.005 0.016 0.01

Error of MLE 0.279 0.638 0.619 0.108 1.026 0.251 0.580 0.097 0.85

Ω11 Ω21 Ω31 Ω22 Ω32 Ω33 α1

Exact value 2.250 0.000 0.000 1.000 0.500 0.740 0.400

Estimate of EM 2.718 1.201 1.282 2.445 1.554 1.292 0.519

Estimate of MLE 1.772 0.495 0.100 1.560 1.151 0.972 0.981

Error of EM 0.468 1.201 1.282 1.445 1.054 0.552 0.119

Error of MLE 0.478 0.495 0.100 0.560 0.651 0.232 0.581
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Table 4.2: Parameter estimates for the MVAR(3:2;2) model using the EM algorithm,
when K = 2.

φ10 φ20 φ30

Exact value 2.000 1.00 0.00

Estimate of EM 0.016 0.01 0.011

Estimate of MLE 0.150 0.43 0.450

Error of EM 1.984 0.99 0.011

Error of MLE 1.850 0.57 0.450

p = 1

φ11,1 φ21,1 φ31,1 φ12,1 φ22,1 φ32,1 φ13,1 φ23,1 φ33,1

Exact value 0.700 0.000 0.900 0.100 -0.400 0.000 0.000 0.100 0.800

Estimate of EM -0.037 -0.023 -0.026 -0.045 -0.029 -0.032 -0.040 -0.025 -0.028

Estimate of MLE 0.514 -0.050 0.092 -0.363 0.256 0.459 0.019 0.209 0.292

Error of EM 0.737 0.023 0.926 0.145 0.371 0.032 0.040 0.125 0.828

Error of MLE 0.186 0.050 0.808 0.463 0.656 0.459 0.019 0.109 0.508

p = 2

φ11,2 φ21,2 φ31,2 φ12,2 φ22,2 φ32,2 φ13,2 φ23,2 φ33,2

Exact value -0.200 0.000 0.000 0.000 0.100 0.000 0.000 0.100 0.000

Estimate of EM 0.001 0.001 0.001 -0.039 -0.025 -0.027 -0.020 -0.012 -0.014

Estimate of MLE 0.259 -0.010 -0.205 -0.398 0.356 0.233 -0.767 -0.500 -0.030

Error of EM 0.201 0.001 0.001 0.039 0.125 0.027 0.020 0.112 0.014

Error of MLE 0.459 0.010 0.205 0.398 0.256 0.233 0.767 0.600 0.030

Ω11 Ω21 Ω31 Ω22 Ω32 Ω33 α2

Exact value 0.260 0.030 0.000 0.090 0.000 0.810 0.600

Estimate of EM 3.164 -0.376 -0.575 0.654 0.744 0.867 0.481

Estimate of MLE 5.538 -1.188 -1.242 0.364 0.341 0.330 0.019

Error of EM 2.904 0.406 0.575 0.564 0.744 0.057 0.119

Error of MLE 5.278 1.218 1.242 0.274 0.341 0.480 0.581

The results of the parameter estimates for MVAR(3:2;2) models are presented in

Table 4.1. In the part of α, the parameter estimates are quite close to the exact values.

The performance of the EM algorithm is good in 39 out of the 54 parameters base on the

autoregressive coefficients φn×n,p and standard deviation Ωk. Furthermore, we compute

the mean square error (MSE) for the parameter estimates obtained from both the EM

algorithm and the maximum likelihood estimation(MLE). The resulting MSE values are

0.7405123 for the EM algorithm and 1.720199 for MLE. Consequently, judging from the

parameter errors and MSE values, it is evident that the EM algorithm outperforms MLE.
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4.1.3 Mixture vector autoregressive model for Thai stock market data

In this section, we are up to analysing a dataset, which we refer to as the sector

dataset. We apply the MVAR model to analyze the sector dataset including three stocks

in the energy and utility sectors, as well as the electronic sector. The goal is to explore

the correlation within each dataset. In the program, following the algorithm outlined in

Figure 4.2, we develop a function called MVAR_EM(yT×n, K, p, tol). This function takes

input parameters such as the data (yT×n, where T is the length of the data points and n

is the number of dimensional time series), the number of components (K), autoregressive

order (p), and tolerance (tol, with a default value of 1 × 10−6). The initial parameter

values for this function are obtained through maximum likelihood estimation.

The following code fits an MVAR model to the energy data, using two components

and an autoregressive order of 3 mixture components, as illustrated in Figure 4.3. The

MVAR_EM function returning a list of elements including the information criteria (IC),

log-likelihood, quantile residuals for both Maximum Likelihood Estimation(MLE) and

Expectation-Maximization(EM), as well as mean square error for MLE and EM, as illus-

trate in Figure 4.4. For instance, Figure 4.5 displays some elements from the MVAR_EM

function, which is the information criteria.

Figure 4.3: The MVAR_EM function for Energy sector
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Figure 4.4: The list of elements in the MVAR_EM function

Figure 4.5: The information criteria from EM function

We analyze the energy sector data, which includes three stocks: BANPU, ESSO,

and BCP. The stock plots for this sector, displayed in Figure 4.6, exhibit a similar pattern.

We then examine the corresponding correlation values, which are presented in Table 4.3.

Figure 4.6: The plot of Energy sector
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Table 4.3: The correlation between the stock in Energy sector

BANPU ESSO BCP

BANPU 1.00 0.87 0.91

ESSO 0.87 1.00 0.88

BCP 0.91 0.88 1.00

From Figure 4.6, the plot shows that the data exhibits similar patterns and displays

a correlation. To initiate the analysis, we apply the MVAR(n:K; p) model to the Energy

sector. We explore values of K from 1 to 4, p from 1 to 4, and since the dataset includes

3 stocks, the number of dimension, n, is set to 3. The criteria values for each model are

present in Table 4.4.

Table 4.4: The criteria for candidate MVAR models applied to Energy sector data
using the EM algorithm

Models AIC HQIC BIC Models AIC HQIC BIC

MVAR(1:1) -4539.33 -4502.85 -4442.43 MVAR(3:1) -5098.47 -4989.02 -4807.77

MVAR(1:2) -4514.08 -4460.32 -4371.30 MVAR(3:2) -5165.11 -5003.83 -4736.78

MVAR(1:3) -4497.82 -4426.79 -4309.18 MVAR(3:3) -5053.58 -4840.49 -4487.66

MVAR(1:4) -4472.31 -4384.01 -4237.82 MVAR(3:4) -4672.74 -4407.85 -3969.28

MVAR(2:1) -5145.72 -5072.75 -4951.92 MVAR(4:1) -5225.11 -5079.18 -4837.51

MVAR(2:2) -2996.60 -2889.08 -2711.04 MVAR(4:2) -5120.87 -4905.83 -4549.76

MVAR(2:3) -3230.99 -3088.93 -2853.71 MVAR(4:3) -5033.49 -4749.37 -4278.93

MVAR(2:4) -4888.88 -4712.29 -4419.91 MVAR(4:4) -4221.64 -3868.45 -3283.69

From Table 4.4, the MVAR(n:K; p) model, where the number of dimension vec-

tor, n, and the number of component K is equal to 1, MVAR(n:1; p), represents the

original vector autoregressive model with order p in the first four lines while the other

K components represent the MVAR models with multiple components. However, the

MVAR(3:2;1) model exhibits the smallest BIC value while the AIC and HQIC criteria

favor the MVAR(3:4;1) model. Therefore, considering the three criteria, two out of three
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indicate that the MVAR(3:4;1) model is the best model. Next, the diagnostic check in-

volves quantile residuals, which are used to perform computationally simple tests aimed

at detecting autocorrelation, quantile residual plots, Q-Q plots, and test normality test

of the quantile residuals by using Kolmogorov Smirnov test is present in Figure 4.7 and

Table 4.5.

Figure 4.7: Quantile residual plot of MVAR(3:4:1) for Energy sector

Table 4.5: Normality test of MVAR(3:4:1) for Energy stock

Stock Statistic p-value

BANPU 0.05438 0.0015

ESSO 0.032046 0.1658

BCP 0.021262 0.6437

From Figure 4.7, in the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, some

outliers are observed. Furthermore, in Figure 4.5, the Kolmogorov-Smirnov test for the
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quantile residuals of ESSO and BCP reveals p-values greater than 0.05, indicating that

the distribution of the given data conforms to a normal distribution, while BANPU does

not conform to a normal distribution.

Finally, we analyze the energy sector data, which includes three stocks: HANA,

TEAM, and KCE. The stock plots for this sector, displayed in Figure 4.8, exhibit a similar

pattern. We then examine the corresponding correlation values, which are presented in

Table 4.6.

Figure 4.8: The plot of Electronic sector

Table 4.6: The correlation between the stock in Electronic sector

HANA TEAM KCE
HANA 1.00 0.81 0.94
TEAM 0.81 1.00 0.88
KCE 0.94 0.88 1.00

From Figure 4.8, the plot shows that the data exhibits similar patterns and displays

a correlation. To initiate the analysis, we apply the MVAR(n:K; p) model to the Energy

sector. We explore values of K from 1 to 4, p from 1 to 4, and since the dataset includes
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3 stocks, the n dimension is set to 3. The criteria values for each model are show in Table

4.7.

Table 4.7: The criteria for candidate MVAR models applied to Electronic sector data
using the EM algorithm

Models AIC HQIC BIC Models AIC HQIC BIC

MVAR(1:1) -1380.55 -1344.06 -1283.65 MVAR(3:1) -3560.35 -3450.90 -3269.65

MVAR(1:2) -1375.10 -1321.34 -1232.32 MVAR(3:2) -3539.36 -3378.09 -3111.03

MVAR(1:3) -1387.67 -1316.64 -1199.03 MVAR(3:3) -3506.46 -3293.37 -2940.54

MVAR(1:4) -1367.90 -1279.60 -1133.41 MVAR(3:4) -3446.61 -3181.72 -2743.15

MVAR(2:1) -3367.23 -3294.27 -3173.43 MVAR(4:1) -3694.24 -3548.30 -3306.64

MVAR(2:2) -3352.07 -3244.55 -3066.51 MVAR(4:2) -3747.04 -3532.00 -3175.93

MVAR(2:3) -3177.15 -3035.09 -2799.87 MVAR(4:3) -1867.85 -1583.73 -1113.29

MVAR(2:4) -3282.16 -3105.57 -2813.19 MVAR(4:4) -1718.10 -1364.92 -780.15

From Table 4.7, the MVAR(n:K; p) model, where the number of dimension vec-

tor, n, and the number of component K is equal to 1, MVAR(n:1; p), represents the

original vector autoregressive model with order p in the first four lines while the other

K components represent the MVAR models with multiple components. However, the

MVAR(3:4;2) model exhibits the smallest AIC value while the HQIC and BIC criteria

favor the MVAR(3:4;1) model. Therefore, considering the three criteria, two out of three

indicate that the MVAR(3:4;1) model is the best model for Electronic sector. Next, the

diagnostic check involves quantile residuals, which are used to perform computationally

simple tests aimed at detecting autocorrelation, quantile residual plots, Q-Q plots, and

test normality test of the quantile residuals by using Kolmogorov Smirnov test is present

in Figure 4.9 and Table 4.8.
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Figure 4.9: Quantile residual plot of MVAR(3:4:1) for Electronic sector

Table 4.8: Normality test of MVAR(3:4:1) for Electronic stock

Stock Statistic p-value

HANA 0.032871 0.1457

TEAM 0.045641 0.0128

KCE 0.05033 0.0043

From Figure 4.9, in the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, some

outliers are observed. Furthermore, Figure 4.8, the Kolmogorov-Smirnov test for the

quantile residuals of TEAM and KCE reveals p-values less than 0.05, indicating that the

distribution of the given data does not conforms to a normal distribution, while HANA

conform to a normal distribution.

4.2 t Mixture vector autoregressive model

The n dimensional vector time series Yt is said to be the mixture vector autoregres-

sive model denoted as TMVAR(n : K; p1, p2, p3, . . . , pk) if the distribution function of Yt
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given pass information can be written as

F (Yt|Ft−1) =
K∑

k=1

αkFvk(Ω
−1/2
k (Yt −Θk0 −Θk1Yt−1 − · · ·−Θkpk

Yt−pk)), (4.16)

where F (Yt|Ft−1) is the cumulative distribution function of Yt given the past information

Yt−1, Yt−2, Yt−3, . . . , Y1, Fvk(·) is the cumulative distribution function of the multivariate

standardized t distribution with vk degrees of freedom, Θk0 is an n dimension vector,

Θk1, . . . ,Θkpk
are n × n coefficient matrices and Ωk is the n × n variance covariance

matrix for kth component, the mixing proportion αk > 0, k = 1, 2, 3, . . . ,K and α1 +

α2 + · · · + αK = 1. The probability distribution function of a multivariate standardized

t - distribution with unit variance is

fv(X) =
Γ(v+n

2 )

π
n
2 (v − 2)

n
2 Γ(v2 )

(
1 +

1

v − 2
XTX

)− v+n
2
, (4.17)

where X = (X1, . . . , Xn)T is a real random vector, 2 < v < ∞, and Γ(·) is the gamma

function.

4.2.1 Parameter estimation

In this section, we discuss the method we developed in this study to estimate

parameters, namely the EM algorithm, and compare it with the maximum likelihood

function.

4.2.1.1 Parameter estimation by maximum likelihood function

In the case of the t mixture vector autoregressive model, the maximum likelihood

method is the parameter estimation method used in this study to compare with the EM

algorithm. Specifically, given a time series Y = (Y1, Y2, Y3, . . . , Yt), the likelihood function

for the t mixture vector autoregressive model is the product of conditional density
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L(Θ̃,Ω,α, v|Yt) =
T∏

t=p+1

K∑

k=1

αk|Ωk|−
1
2Γ(v+n

2 )

π
n
2 (v − 2)

n
2 Γ(v2 )

(
1 +

1

v − 2
(Yt − µkt)

TΩ−1
k (Yt − µkt)

)− v+n
2
,

(4.18)

where Ωk is a n×n variance covariance matrix for kth component, and µkt = Yt− Θ̃kXkt

is a n× n autoregressive matrices, Xkt = (1, Y T
t−1, Y

T
t−2), and Θ̃k = [Θk0,Θk1, . . . ,Θkpk

].

The maximum likelihood estimate Θ̂ which is defined as

Υ̂ = arg max
Υ

#(Υ|Y), (4.19)

where Υ = (Θ̃,Ω,α, v).

The estimation of parameters requires the use of a numerical technique [6]. In the

context of the mixture components of the t mixture vector autoregressive model, finding

a general solution may not be feasible [7]. The alternative to the parameter estimate is

the EM algorithm.

4.2.1.2 Parameter estimation by the EM algorithm

The parameter estimation method used in this study is the EM algorithm. Assume

that the n dimension vectors of observations YT are generated from TMVAR(n,K; p)

model for t = 1, 2, . . . , T and let Zt = (Zt,1, Zt,2, . . . , Zkt)T , where

Zit =






1 if if Yt comes from the ith component component; 1 ≤ i ≤ K,

0 otherwise,

and we consider another missing random variable matrix, W = (W1,W2, . . . ,Wt), where

Wt = (Wkt) for t = 1, 2, 3, . . . , n is also a K-dimensional vector. Given Zkt = 1, the

conditional distribution of Wkt is Wkt|Zkt = 1 ∼ gamma(vk

2 ,
vk−2
2 ), and W1, . . . ,Wn are

distributed independently. The conditional loglikelihood function of the TMVAR model
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is

l = l1(α) + l2(v) + l3(θ), (4.20)

where

l1(α) =
K∑

k=1

n∑

t=p+1

Zkt log(αk), (4.21)

l2(v) =
K∑

k=1

n∑

t=p+1

Zkt

[
− log

{
Γ
(vk
2

)}
+
(vk
2

)
log
(vk − 2

2

)

+
(vk
2

)
(logWkt −Wkt) +Wkt − log(Wkt)

]
, (4.22)

l3(θ) =
K∑

k=1

n∑

t=p+1

Zkt

(
− 1

2
{log(2π) + logΩk − logWkt}−

ektT ektWkt

2Ωk

)
, (4.23)

where ekt = Yt − Θ̃kXkt and Xkt = (1, Y T
t−1, Y

T
t−2, . . . , Y

T
t−pk

)T .

The parameters are estimated by iteratively maximizing the log-likelihood through

the Expectation-Maximization(EM) procedure [3], which involves two main steps: the

Expectation(E-step) and the Maximization(M-step). These steps are repeated iteratively

until the algorithm converges. An illustration of the EM algorithm is provide in Figure

4.10.

The Expectation step. Assume that the parameters Θ̃,Ω,α, v is known. The un-

observed random variable Z, the missing data W , and logW in the loglikelihood are

replaced by their expectations, conditional over the parameters and the observed data

Y1, . . . , YT . Let τkt be the conditional expectation of the kth component of unobserved

data Z. And then let ηkt be the conditional expectation of the kth component of missing

data W which defined as

τkt =
αk|Ωk|−

1
2 fvk(ektΩ

−1
k )

∑K
k=1 αk|Ωk|−

1
2 fvk(e

T
ktΩ

−1
k ekt)

, (4.24)

ηkt =
vk + 1

eTktΩ
−1
k ekt + vk − 2

. (4.25)
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The Maximization step. Suppose that the unobserved random variable, Z, and the

missing random variable, W , is actually known. By maximizing the loglikelihood function

(4.20), the estimates of our model are obtained through the first derivatives with respect

to the parameters αk, Θ̃k, Ωk and vk are

α̂k =
1

T − p

T∑

t=p+1

τkt, (4.26)

ˆ̃ΘT
k =

( T∑

t=p+1

τktηktXktX
T
kt

)−1( T∑

t=p+1

τktηktXktY
T
t

)
, (4.27)

Ω̂k =

∑T
t=p+1 τktηktêktêTkt∑T

t=p+1 τkt
, (4.28)

where k = 1, 2, . . . ,K. The estimate of degree of freedom must satisfy the equations

( vk
vk − 2

)
+ log

(vk − 2

2

)
− ψ

(vk
2

)
+ ψ

(v(m)
k + 1

2

)
− log

(v(m)
k + 1

2

)

+
1

∑n
t=p+1 τ

(m)
kt

n∑

t=p+1

τ (m)
kt

(
log(η(m)

kt )− η(m)
kt

)
= 0. (4.29)
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Figure 4.10: The EM algorithm for the TMVAR model

The EM algorithm for the multivariate mixture autoregressive model that we men-

tion and develop in Section 4.2.1.2 has the following steps in the programme, are show in

Figure 4.11:
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Figure 4.11: The programming part of the EM algorithm for the TMVAR model

In this section, we will show the calculation example by using the TMVAR_EM

program for simulation. The model consider in this example is the TMVAR(2:2;1) model

with generate length of each time series is 10 data points, a dimension vector of 2, the

number of component, K, is 2, and the order of autoregressive is 1. The parameter M

represents the number of iterations in the EM algorithm.

In the initial step, we generate time series data comprising 10 data points. For the

purpose of this illustration, the calculation example is presented with m iterations limited

to 1.
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YT,1 YT,2

1 -0.13 2.87
2 -0.44 2.30
3 -1.01 2.27
4 0.48 2.53
5 1.85 2.06
6 2.09 1.99
7 1.66 2.26
8 0.11 2.25
9 0.91 2.35

10 -0.13 1.93

and the initial values for the EM algorithm are

α = [α1,α2]

= [0.7, 0.3],

Θ̃1 =
[
Θ10 Θ11

]

=



1.568 0.224 −1.509

0.938 0.108 −0.492



 ,

Θ̃2 =
[
Θ20 Θ21

]

=



0.130 −0.279 0.497

1.247 0.030 −0.495



 ,

Ω1 =



0.327 0.016

0.016 0.009



 ,

Ω2 =



0.097− 0.074

−0.0740.057



 ,

v = [v1, v2]

= [7.568, 9.33].

In the initial step of the computation in the Expectation step, we calculate ekt〈1〉 =

Yt − Θ̃kXkt where Xkt = (1, Y T
t−1, Y

T
t−2) :
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e1t
〈1〉 =



NA 0.40 1.38 −0.85 0.53 −0.46 1.11 −0.94 0.02 −0.21

NA 0.38 −0.17 −0.22 −0.40 −0.52 −0.74 −0.67 −0.37 −0.25



 .

In the Expectation step we have to compute τkt =
αk|Ωk|−

1
2 exp(− 1

2
eTktΩ

−1
k ekt)

∑K
k=1 αk|Ωk|−

1
2 exp(− 1

2
eTktΩ

−1
k ekt)

.

Begin with K = 1, 2 and t = p + 1, . . . , T . In this example, we illustrate the case of

t = p+ 1 = 3 to T and for all k.

up〈m〉
kt = αk|Ωk|−

1
2 exp(−1

2
eTktΩ

−1
k ekt) =





NA NA

0.06 0.00

0.15 0.00

1.21 0.11

0.02 3.41

0.01 0.67

0.00 0.00

0.00 0.00

0.05 0.00

0.74 0.00





,
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ηkt =
vk + 1

(eTktΩ
−1
k ekt)2 + vk − 2

=





NA NA

0.41 0.02

0.54 0.00

0.86 0.33

0.28 0.71

0.18 0.52

0.03 0.00

0.08 0.01

0.39 0.10

0.78 0.06





,

sumup〈m〉 =
K∑

k=1

αk|Ωk|−
1
2 exp(−1

2
eTktΩ

−1
k ekt)

= (0.000, 0.061, 0.153, 1.316, 3.425, 0.675, 0.000, 0.001, 0.053, 0.737),

τ 〈m〉
kt =

up〈m〉
kt

sumup〈m〉 =





NA NA

1.00 0.00

1.00 0.00

0.92 0.08

0.01 0.99

0.01 0.99

1.00 0.00

0.99 0.01

0.95 0.04

1.00 0.00





.

In the Maximization Step: we need to estimate α〈m+1〉
k , Θ̃〈m+1〉T

1 , and Ω〈m+1〉
k . In

this example, we illustrate the case of t = p+ 1 = 3 to T and for all k.
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α〈m+1〉
k =

∑T
t=p+1 τ

〈m〉
kt

T − p

= [α1,α2]

= [0.848, 0.152].

When estimating Θ̃〈m+1〉T
k , we need to construct the matrix equation

A〈m〉T
k Θ̃〈m+1〉T

k = B〈m+1〉T
k , where

A〈m〉
k =

( T∑

t=p+1

τ 〈m〉
kt η〈m〉

kt XktX
T
kt

)−1
,

B〈m〉
k =

T∑

t=p+1

τ 〈m〉
kt η〈m〉

kt XktY
T
t ,

Θ̃〈m+1〉T
1 = A〈m〉

1 B〈m〉
1

=



0.42 −0.02 0.24

0.52 0.02 0.23



 .

Before estimating Ω〈m+1〉
k , we update the term Θ̃〈m+1〉T

1 to e1t〈m+1〉.

e1t
〈m+1〉 = Yt − Θ̃kXkt

=



NA −0.13 1.10 0.03 0.55 0.53 1.76 0.60 0.59 0.43

NA 0.10 −0.34 0.07 −0.44 −0.17 −0.54 −0.11 −0.20 −0.05



 ,
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Sumup.omega =
T∑

t=p+1

τ 〈m〉
kt η〈m〉

kt e〈m+1〉
kt e〈m+1〉T

kt

=



4.965− 0.188

−0.1880.136



 ,

Ω〈m+1〉
k =

(Sumup.omega
∑T

t=p+1 τ
〈m〉
kt

) 1
2

=



0.327 0.016

0.016 0.009



 .

The estimate of degree of freedom must satisfy the equations fnk, which is defined as

fnk =
( vk
vk − 2

)
+ log

(vk − 2

2

)
− ψ

(vk
2

)
+ ψ

(v(m)
k + 1

2

)
− log

(v(m)
k + 1

2

)

+
1

∑n
t=p+1 τ

(m)
kt

n∑

t=p+1

τ (m)
kt

(
log(η(m)

kt )− η(m)
kt

)
,

fdk =
vk − 4

(vk − 2)2
− d2

dv2k
Γ
(vk
2

)
,

where, v(m)
k represents the estimated vk in the mth iteration of the EM algorithm. This

estimation is employed to obtain a numerical solution using the Newton-Raphson method

following

v〈m+1〉
k = v〈m〉

k − fnk

fdk

= [4.223, 5.674].

For now, we complete the mth iteration, where m = 1. We then repeat the Expecta-

tion step and Maximization step until the parameter estimate Υ̃ = (αk
〈M〉, Θ̃〈M〉

k ,Ωk
〈M〉)

convergence by using max(|Υ̃〈m〉 − Υ̃〈m+1〉|) < tol.
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4.2.2 Simulation study for TMVAR model

In this section, we study the performance of parameter estimation using the maxi-

mum likelihood estimation procedure implemented in the “gmvarkit”[6] in Section 4.1.1.1.

We examine the correctness in choosing the number of components, K, and the, p, order

of the autoregressive models. Furthermore, we examine the accuracy of parameter esti-

mates. It’s important to note that, under the restrictions of the package, the orders of

autoregressive components for different components are assumed to be the same. There-

fore, the models considered in this study are denoted as TMVAR(n:K; p), where K is the

number of components and p is the common order of autoregressive components. The

model investigated in this study are the MAR(2:2; 1), where n dimensional vector is 2, K

component is 2, and order p is 1.

For the experiments, we generate a time series from the TMVAR(2:2;1) which the

dimension is 2, the number of component is 2, order of autoregressive model is 1 with a

time length of 1000 data points and simulation 1000 replications. In comparing parame-

ter estimates between the Expectation-Maximization(EM) with the Maximum Likelihood

Estimation(MLE). The EM algorithm utilized parameters from MLE as an initial value.

The best candidate models, identified based on the smallest corresponding criterion, were

determined to be TMVAR(2:2;1) models, which were correctly chosen. Table 4.9 presents

the parameter estimation for TMVAR(2:2;1) models, comparing the exact values of pa-

rameters to the mean of estimates for each method, along with the error of each method,

respectively.
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Table 4.9: Parameter estimates for the TMVAR(2:2;1) model using the EM
algorithm.

φ10,1 φ20,1 φ11,1 φ21,1 φ12,1 φ22,1

Exact value 0.545 0.116 0.331 0.054 -0.042 0.709

Estimate of EM 0.588 0.141 0.298 0.049 -0.040 0.67

Estimate of MLE 0.493 0.073 0.275 0.035 -0.041 0.760

Error of EM 0.043 0.025 0.033 0.005 0.002 0.031

Error of MLE 0.052 0.043 0.056 0.019 0.001 0.051

φ10,2 φ20,2 φ11,2 φ21,2 φ12,2 φ22,2

Exact value 1.598 0.483 0.126 -0.031 -0.613 0.723

Estimate of EM 1.218 0.453 0.107 0.003 -0.399 0.613

Estimate of MLE 1.198 0.289 0.012 -0.016 -0.470 0.818

Error of EM 0.380 0.030 0.019 0.034 0.214 0.110

Error of MLE 0.400 0.194 0.114 0.015 0.143 0.095

Ω11,1 Ω21,1 Ω22,1 Ω11,2 Ω21,2 Ω22,2

Exact value 0.418 0.002 0.041 1.212 -0.036 0.138

Estimate of EM 0.318 0.003 0.033 0.748 -0.013 0.094

Estimate of MLE 0.291 0.001 0.031 0.595 -0.001 0.047

Error of EM 0.100 0.001 0.008 0.464 0.023 0.044

Error of MLE 0.127 0.001 0.010 0.617 0.035 0.091

α1 α2 v1 v2

Exact value 0.834 0.166 7.568 9.33

Estimate of EM 0.787 0.129 6.932 8.546

Estimate of MLE 0.834 0.166 972.902 13307.56

Error of EM 0.047 0.037 0.636 0.784

Error of MLE 0 0 965.334 13298.23

From Table 4.9, the results of the parameter estimates for the TMVAR (2:2;1)
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models compare between the Maximum Likelihood Estimation and the EM algorithms.

In the part α, the parameter estimates are quite close to the exact values by using the

maximum likelihood estimation. In the other parameter, the performance of the EM

algorithm is good in 15 out of the 22 parameters base on the autoregressive coefficients

φki, standard deviation Ωk, and degree of freedom vk. Furthermore, we compute the mean

square error (MSE) for the parameter estimates obtained from both the EM algorithm

and the maximum likelihood estimation(MLE). The resulting MSE values are 0.891 for

the EM algorithm and 1.046 for the MLE. Consequently, judging from the parameter

errors and MSE values, it is evident that the EM algorithm outperforms MLE.

4.2.3 t Mixture vector autoregressive model for Thai stock market data

In this section, we are up to analysing a dataset, which we refer to as the sector

dataset. We apply the TMVAR model to analyze the sector dataset including three stocks

in the energy and utility sectors, as well as the electronic sector that we mention in Section

4.1.3. The goal is to explore the correlation within each dataset. In the program, following

the algorithm outlined in Figure 4.11, we develop a function called TMVAR_EM(yT×n,

K, p, tol). This function takes input parameters such as the data yT×n, where T is the

length of the data points and n is the number of dimensional time series, the number

of components (K), autoregressive order (p), and tolerance (tol, with a default value of

1× 10−6). The initial parameter values for this function are obtained through maximum

likelihood estimation.

The following code fits an TMVAR model to the energy data, using two components

and an autoregressive order of 3 mixture components, as illustrated in Figure 4.12. The

TMVAR_EM function returning a list of elements including the information criteria

(IC), log-likelihood, quantile residuals for both Maximum Likelihood Estimation(MLE)

and Expectation-Maximization(EM), as well as mean square error for MLE and EM,

as illustrate in Figure 4.13. For instance, Figure 4.14 displays some elements from the

TMVAR_EM function, which is the information criteria.
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Figure 4.12: The TMVAR_EM function for Electronic sector

Figure 4.13: The list of elements in the TMVAR_EM function

Figure 4.14: The information criteria from EM function

We analyze the energy sector data, which includes three stocks: BANPU, ESSO,

and BCP that mentioned in Section 4.1.3. The stock plots for this sector show in Fig-

ure 4.6, exhibit a similar pattern, and the corresponding correlation values, which are

presented in Table 4.3.

Since the data exhibits similar patterns and displays a correlation. We apply the

TMVAR(n:K; p) model to the Energy sector and explore values of K from 1 to 4, p from

1 to 4, and since the dataset includes 3 stocks, the number of dimension, n, is set to 3.

The criteria values for each model are present in Table 4.10.
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Table 4.10: The criteria for candidate TMVAR models applied to Energy sector data
using the EM algorithm

Models AIC HQIC BIC Models AIC HQIC BIC

TMVAR(1:1) -4211.82 -4173.42 -4109.82 TMVAR(3:1) -3758.02 -3642.81 -3452.02

TMVAR(1:2) -4198.04 -4142.36 -4050.16 TMVAR(3:2) -4415.12 -4248.08 -3971.49

TMVAR(1:3) -4192.60 -4119.65 -3998.86 TMVAR(3:3) -4376.17 -4157.32 -3794.96

TMVAR(1:4) -4179.38 -4089.16 -3939.79 TMVAR(3:4) -4326.34 -4055.69 -3607.59

TMVAR(2:1) -4508.71 -4431.90 -4304.70 TMVAR(4:1) -4428.57 -4274.95 -4020.56

TMVAR(2:2) -4472.65 -4361.29 -4176.90 TMVAR(4:2) -4356.69 -4133.97 -3765.18

TMVAR(2:3) -4451.27 -4305.37 -4063.79 TMVAR(4:3) -3063.24 -2771.44 -2288.29

TMVAR(2:4) -4418.94 -4238.51 -3939.77 TMVAR(4:4) -3869.609 -3508.44 -2911.27

From Table 4.10, the TMVAR(n:K; p) model, where the number of dimension vec-

tor, n, and the number of component K is equal to 1 ,TMVAR(n:1; p), represents the

original vector autoregressive model with order p in the first four lines while the other

K components represent the TMVAR models with multiple components. However, the

TMVAR(3:2;1) model exhibits the smallest AIC, HQIC, and BIC value. Therefore, con-

sidering the three criteria, indicate that the TMVAR(3:2;1) model is the best model.

Next, the diagnostic check involves quantile residuals, which are used to perform compu-

tationally simple tests aimed at detecting autocorrelation, quantile residual plots, Q-Q

plots, and test normality test of the quantile residuals by using Kolmogorov Smirnov test

is present in Figure 4.15 and Table 4.11.
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Figure 4.15: Quantile residual plot of TMVAR(3:2:1) for Energy sector

Table 4.11: t distribution test of TMVAR(3:4:1) for Energy stock

Stock Statistic p-value

BANPU 0.081831 1.785e-07

ESSO 0.081713 1.87e-07

BCP 0.057935 0.0005855

From Figure 4.15, in the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, some

outliers are observed. Furthermore, in Figure 4.11, the Kolmogorov-Smirnov test for the

quantile residuals of BANPU, ESSO, and BCP reveals p-values less than 0.05, indicating

that the distribution of the given data does not conform to a t distribution.

Finally, we analyze the energy sector data, which includes three stocks: HANA,

TEAM, and KCE that mentioned in Section 4.1.3. The stock plots for this sector show

in Figure 4.8, exhibit a similar pattern. We then examine the corresponding correlation

values, which are presented in Table 4.6. Since the data exhibits similar patterns and

displays a correlation. We apply the TMVAR(n:K; p) model to the Electronic sector and

explore values of K from 1 to 4, p from 1 to 4, and since the dataset includes 3 stocks,
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the number of dimension, n, is set to 3. The criteria values for each model are present in

Table 4.12.

Table 4.12: The criteria for candidate TMVAR models applied to Electronic sector
data using the EM algorithm

Models AIC HQIC BIC Models AIC HQIC BIC

TMVAR(1:1) -834.8752 -796.4713 -732.8747 TMVAR(3:1) -1356.374 -1241.162 -1050.373

TMVAR(1:2) -839.6012 -783.9222 -691.724 TMVAR(3:2) -1396.63 -798.506 -1197.59

TMVAR(1:3) -868.9479 -795.9981 -675.209 TMVAR(3:3) -680.1413 -693.8274 -733.4976

TMVAR(1:4) -859.7261 -769.5096 -620.1413 TMVAR(3:4) -1204.38 -1186.249 -998.632

TMVAR(2:1) -1396.864 -1320.056 -1192.863 TMVAR(4:1) -1316.079 -1162.463 -908.0765

TMVAR(2:2) -1380.917 -1269.56 -1085.164 TMVAR(4:2) -1055.824 -967.664 -1129.342

TMVAR(2:3) -1385.094 -1239.195 -997.6177 TMVAR(4:3) -1172.976 -884.726 -1014.760

TMVAR(2:4) -1353.939 -1173.507 -874.7699 TMVAR(4:4) -659.4661 -769.5096 -850.1413

From Table 4.12, the TMVAR(n:K; p) model, where the number of dimension vec-

tor, n, and the number of component K is equal to 1 ,TMVAR(n:1; p), represents the

original vector autoregressive model with order p in the first four lines while the other

K components represent the TMVAR models with multiple components. However, the

TMVAR(3:2;1) model exhibits the smallest AIC, HQIC, and BIC value. Therefore, con-

sidering the three criteria, indicate that the TMVAR(3:2;1) model is the best model.

Next, the diagnostic check involves quantile residuals, which are used to perform compu-

tationally simple tests aimed at detecting autocorrelation, quantile residual plots, Q-Q

plots, and test normality test of the quantile residuals by using Kolmogorov Smirnov test

is present in Figure 4.16 and Table 4.13.
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Figure 4.16: Quantile residual plot of TMVAR(3:2:1) for Electronic sector

Table 4.13: Normality test of TMVAR(3:2:1) for Electronic stock

Stock Statistic p-value

HANA 0.076517 1.372e-06

TEAM 0.23319 2.2e-16

KCE 0.072948 5.001e-06

From Figure 4.16, in the quantile residual analysis, the quantile residual plot is

randomly dispersed around 0. While part of the Q-Q plot follows a diagonal line, some

outliers are observed. Furthermore, in Figure 4.13, the Kolmogorov-Smirnov test for the

quantile residuals of HANA, TEAM, and KCE reveals p-values less than 0.05, indicating

that the distribution of the given data does not conform to a t distribution.

From two different sector dataset, we select the best model using the AIC, HQIC,

and BIC that we mention in section 2.3. We assessed the validity of the best model, which

using the EM algorithm to estimate parameter, through model diagnostic and compare

the mean square error(MSE) for each stock data, as show in Table 4.14.
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Table 4.14: The mean square error best candidate of the multivariate mixture
autoregressive model for the Thai stock market

Model MSE Model MSE

BANPU 1.092 0.893

ESSO MVAR(3:4;1) 1.049 TMVAR(3:2;1) 0.806

BCP 1.067 0.809

HANA 1.080 1.075

TEAM MVAR(3:4;1) 1.049 TMVAR(3:2;1) 1.136

KCE 1.067 1.03

From Table 4.14, when comparing the mean square error (MSE) of the mixture

vector autoregressive model with the t mixture vector autoregressive model, the mean

square error (MSE) from the multivariate mixture autoregressive model based on the

t distribution outperforms, which suitable for data exhibiting heavy tails such as stock

market data.

In this chapter, we construct the family of multivariate mixture autoregressive mod-

els, which includes the mixture vector autoregressive (MVAR) model, the t mixture vector

autoregressive (TMVAR) model using maximum likelihood estimation (MLE) to estimate

parameters, and the t mixture autoregressive model using the EM algorithm for parame-

ter estimation. We conduct a simulation study to test the accuracy of the method which

is the EM algorithm is preferred over the MLE and then apply it to Thai stock market

data. For the MVAR model, all criteria for each stock indicate that the multiple com-

ponent model is better than the single component model. However, almost the entire

residual of the model does not follow a normal distribution. Consequently, the alter-

native distribution, the t mixture autoregressive model, is considered, which is suitable

for data exhibiting heavy tails, such as stock market data. In Table 4.14, the TMVAR

model, utilizing the EM algorithm developed in Section 4.2.1.2 to estimate parameters,

is preferred over the mixture autoregressive model.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS AND FUTURE WORK

In this chapter, we discuss and conclude this thesis, encompassing the family of

univariate mixture autoregressive models and multivariate mixture autoregressive models

based on normal and t distributions. The chapter examines the performance of the EM

algorithm we constructed, compares it with the MLE, and explores the application of

each model to Thai stock market data.

5.1 Conclusions

In Chapter I, we delved into the background of time series models and the concept

of mixture distributions. In 1996, Le et al. introduced the class of mixture Gaussian

transition distribution(GMTD) models [1]. Wong and Li [2] later extended these concepts,

introducing a new class of the mixture models known as the mixture autoregressive(MAR)

model in 2000. Following this, Meitz, Virolainen, and Savi [5] further extended the model

to a mixture autoregressive model based on Student’s t distribution. They developed the

“uGMAR” R-package, which provides tools for estimating and analyzing the mixture

autoregressive model base on normal distribution.

In Chapter II, we studied the time series and stochastic processes, exploring con-

cepts such as stationarity, time series models including both stationary and non-stationary

models, the vector of time series models, parameter estimation employing the maximum

likelihood estimator and the Expectation-Maximization algorithm, model diagnostics,

model selection criteria, and distributions, encompassing the normal distribution, the

t distribution, and the finite mixture distribution.

In Chapter III, we introduced the family of the univariate mixture autoregres-

sive model, including the mixture autoregressive(MAR) model, the t mixture autoregres-

sive(TMAR) model, and the t mixture autoregressive model using the EM algorithm to
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estimate parameters, simulated a simulation study and test the accuracy of the model,

and then applied it to the Thai stock market data. In the mixture autoregressive(MAR)

model. The AIC, HQIC, and BIC values for each stock suggest that the multiple com-

ponent model is better than the single component model, but almost the entire residual

of the model does not follow a normal distribution. The t mixture autoregressive model

is the alternative model, which is satisfied for data that has a heavy tail, such as stock

market data. In which the first two models in Section 3.1 and 3.2 use maximum likelihood

to estimate the parameter. After that, we developed the program for the TMAR model

using the EM algorithm to estimate parameters in Section 3.2.1.2. The summary of the

family of univariate mixture autoregressive models is shown in Table 3.37. The t-mixture

autoregressive model, in which the maximum likelihood estimator and EM algorithm that

we developed for the TMAR model are used to estimate the parameter, outperforms the

mixture autoregressive model.

In Chapter IV, we introduced a family of multivariate mixture autoregressive mod-

els, including the mixture vector autoregressive (MVAR) model and the t mixture vector

autoregressive (TMVAR) model, using the EM algorithm that we constructed to estimate

parameters, simulate a simulation study, test the accuracy of the model, and then apply

it to Thai stock market data. In the multivariate mixture autoregressive models, the

information criteria for each stock suggest that the multiple component model is better

than the single component model, but almost the entire residual of the model does not

follow a normal distribution. The t mixture autoregressive model is the alternative model,

which is satisfied for data that has a heavy tail, such as stock market data. The sum-

mary of the family of multivariate mixture autoregressive models is shown in Table 4.14.

The t mixture vector autoregressive model, in which using the EM algorithm are used to

estimate the parameter, outperforms the mixture vector autoregressive model.

5.2 Future work

Some directions of future work can be done such as developing the program based

on the independence order of the autoregressive model. Another direction is to extend

the mixture model of time series, which does not have a constant variance.
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