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ABSTRACT (THAI) 

 กาซัน คยาชาน เฮตติเทวา : 
การแบ่งส่วนเนื้องอกในตบัอัตโนมัตดิ้วยการคำนวณจากถา่ยภาพเอกซเรย์คอมพิวเตอร์ (CT). ( Automatic 
liver tumor segmentation in computed tomography (CT) imaging) อ.ที่ปรึกษาหลัก : ธนารัตน์ 
ชลิดาพงศ ์

  
การแบ่งส่วนภาพของเนื้องอกในตับจากภาพถ่ายรังสีแบบอัตโนมัติ  เป็นวิธีการที่สําคัญในการวินิจฉัยและ 

รักษาโรคที่เกี่ยวกับเนื้องอกในตับ แต่ด้วยความที่ภาพถ่ายรังสีของเนื้องอกมีรูปร่างและความเข้มแสงที่หลากหลายมาก 
จึงทำให้การแบ่งส่วนภาพนั้นมีความท้าทายอย่างยิ่ง  

หลายปีมานี ้ โมเดลโครงข่ายประสาทเทียมเชิงลึกได้ถูกนำมาใช้ในการแยกส่วนภาพทางการแพทย์ 
โดยนำโมเดลมาใช ้ เพ ื ่ อการสก ัดค ุณล ักษณะเด ่นจากภาพ รวมถ ึ งการเร ียนร ู ้ ค ุณล ักษณะเด ่นเหล ่านั้น 
แต่อย่างไรก็ดีโมเดลโครงข่ายประสาทเทียมเชิงลึกเหล่านี้ ยังไม่แม่นยำเท่าสายตาและความเชี่ ยวชาญของรังสีแพทย์ 
เนื่องจากความซับซ้อนของภาพ แต่ด้วยการกลไกการทํางานของเทคนิค Attention mechanisms ในการ optimize 
การเลือกคุณลักษณะภาพ ได้รับการพัฒนาอย่างต่อเนื ่อง จนระบบมีความสามารถในการทํา Visual attention 
ที่มีประสิทธิภาพและใกล้เคียงมนุษย์มากขึ้น  

ในงานว ิจ ัยน ี ้  เราจ ึงเสนอเคร ือข ่ายใหม ่ท ี ่ เร ียกว ่า Multi Attention Network หร ือ MANet 
ซ ึ ่ ง เ ป ็ น ก า ร ผ ส ม ผ ส า น เ ท ค น ิ ค  A t t e n t i o n  เ พ ื ่ อ เ ร ี ย น ร ู ้ แ ล ะ เ น ้ น ค ุ ณ ล ั ก ษ ณ ะ ท ี ่ ส ํ า คั ญ 
ในขณะเดียวกันก็ตัดคุณลักษณะที่ไม่เกี่ยวข้องกับการแบ่งส่วนภาพเนื้องอก ซึ่ง MANet ใช้สถาปัตยกรรม U-Net เป็นฐาน 
และยังมีตัวเข้ารหัสที่ใช้กลไก Residual mechanism ด้วย อีกทั้งมีการใช้ร่วมกับ convolutional block attention 
module (CBAM) หรือโมเดลที่มีการแบ่งโมดูล ออกเป็นโมดูลที่สนใจฟีเจอร์ที่สําคัญและโมดูลที่สนใจพื้นที่ที่สําคัญ 
โดยจะนําไปใช้ในตัวเข้ารหัสและตัวถอดรหัสแยกกัน สรุปได้ว่าเราได้นํา Attention U-Net มาใช้ร่วมกับ CBAM 
เพื ่อรวมคุณสมบัติเด่นของทั ้งสองเข้าด้วยกัน โดยสถาปัตยกรรมการเรียนรู ้เชิงลึกที ่เราสร้างขึ ้นหรือ MANet 
ได้รับการฝึกฝนและประเมินประสิทธิภาพโดยใช้ตัววัดการประเมินหลายรายการ โดยใช้ชุดข้อมูล MICCAI 2017 Liver 
Tumor  Segmentat ion (L iTS17 )  และช ุดข ้อม ูล  D IRCADb ซ ึ ่ งผลจากการทดสอบพบว ่ า  MANet 
นั้นใช้พารามิเตอร์น้อยกว่าแต่ยังให้ผลลัพธ์ที่น่าพึงพอใจเมื่อเปรียบเทียบกับวิธีการที่ใช้ในปัจจุบัน (State-of-the- art)  
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ABSTRACT (ENGLISH) 

# # 6470369721 : MAJOR COMPUTER ENGINEERING 
KEYWORD: Deep learning, UNet, convolutional neural network (CNN), Channel Attention, Spatial 

Attention, Liver Tumor Segmentation 
 Kasun Gayashan Hettihewa : Automatic liver tumor segmentation in computed tomography 

(CT) imaging. Advisor: Assoc. Prof. Thanarat Chalidabhongse, PhD 
  

Automatic liver tumor segmentation is a highly important application for diagnosing and 
treating liver tumors. Due to the diversity of tumor shape and intensity alteration, it has become an 
extremely challenging procedure. Automatic liver tumor segmentation has the potential to establish a 
diagnostic standard for providing important radiological information to physicians.  

Recently, deep convolutional neural networks have shown numerous benefits in feature 
extraction and learning in terms of medical image segmentation. However, the model can be 
inconsistent in imitating visual attention as well as awareness of radiological expertise for tumor 
recognition and segmentation tasks due to multi-layer dense feature stacking. Attention mechanisms 
for optimized feature selection have evolved to bridge that gap in visual attention capabilities.  

In this research, we propose a novel network called Multi Attention Network (MANet) as a 
fusion of attention techniques to learn and emphasize significant features while suppressing irrelevant 
features for liver tumor segmentation. The proposed deep learning network is based on the U-Net 
architecture. Furthermore, the encoder has a residual mechanism. The convolutional block attention 
module (CBAM) has been divided into channel attention and spatial attention modules to be 
implemented in the encoder and decoder separately. The spatial attention mechanism in Attention U-
Net has been integrated into the proposed network to capture low-level features to combine with high-
level ones. The constructed deep learning architecture is trained and evaluated using multiple 
evaluation metrics using the publically available MICCAI 2017 Liver Tumor Segmentation (LiTS17) dataset 
and 3DIRCADb dataset. MANet produced promising results when compared to state-of-the-art methods 
with relatively low parameter overhead. 
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1. Introduction 
One of the major cancer forms with the highest number of reported mortalities worldwide is liver cancer (Siegel et 

al., 2019, 2020). Early diagnosis of liver cancers is crucial for rapid clinical care to be successful in achieving survival. To assess 
the severity of the disease, tumor burden analysis, which includes key elements of quantifying the size and location of the 
tumor, is crucial. Medical imaging is a noninvasive method for classifying and assessing the severity of malignancy. Prior to the 
pathological examination, radiologists mostly rely on Computed Tomography (CT) scans for the diagnosis and clinical care. 
The contrast enhancement on CT scans allows doctors to differentiate the tumor location from the liver parenchyma. 
However, radiologists still face difficulties in identifying tumor locations because of the significant interclass similarity, intraclass 
variance, and fussy tumor boundaries. Computer-aided detection systems are extremely helpful in establishing diagnostic 
criteria to bridge the knowledge gap in all levels of radiological competence in order to address these difficulties.  

The development of computer-aided automatic liver tumor segmentation methods still faces significant difficulties. 
The high expense of data collection for experiments is a main challenge. To create a suitable medical dataset to train and 
evaluate the model, data labeling is a time-consuming and tedious activity. Tumor diversity is a significant factor that 
contributes to the incorrect classification of tumor areas. Tumors may appear in many forms, at various sites, and in varying 
numbers. It becomes more difficult to distinguish tumor regions from healthy liver due to the intensity dissimilarity in tumor 
regions. 

 

1.1. Liver 

As the largest organ of the human body, the liver accounts for approximately 2% to 3% of the average body weight 
(Sherif & Mark, 2010). The liver lies underneath the right lung where is the upper right abdominal cavity under the right 
hemidiaphragm. Mainly, the liver is divided into two lobes which are described by the morphological anatomy and functional 
anatomy illustrated in Figure  1.  Hepatocytes are the main cell type that forms the liver. There are other cells that line its 
blood vessels and small tubes called bile ducts (Society, 2019). It secretes a clear yellow or orange fluid called bile that helps 
with digestion. Moreover, the liver breaks down and stores nutrients that are required to maintain the function of the body. 
Apart from that some nutrients change (metabolize) in the liver to form energy or repair the tissues in the body. More 
importantly, the liver clears the blood of harmful substances and fights against infections by producing immune factors to 
remove bacteria from the bloodstream (HEALTH, 2023). 

 

 

 

 

 

 

 

 

 

Figure  1: Anatomy of the liver (HEALTH, 2023) 
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1.2. Liver Cancers 

Liver cancer has become the 6th most common cancer worldwide. It is the 5th most common cancer type among 
men while the 9th most common cancer time in women (Cancer, 2022). According to the study conducted in 2022, they have 
reported that 905,700 people were diagnosed with liver cancer and 830,200 people lost their lives due to liver cancer globally 
in 2020 (Harriet et al., 2022). Furthermore, they have predicted the number of new liver cancer cases and deaths can increase 
by more than 55% between 2020 to 2040, 1.4 million people can be diagnosed in 2040 and 1.3 million people could die due 
to liver cancer in 2040 based on the predictive analysis (Harriet et al., 2022). A summary of the study is graphically illustrated 
in Figure  2. 

Liver cancers can be divided into two main categories, primary liver cancers and secondary liver cancers (Society, 
2019). Primary liver cancers refer to the abnormal growth of cells within the liver that lead to form tumors in the liver. 
Secondary liver cancers are initiated in other parts of the body and spread into the liver. Hepatocellular carcinoma (HCC), 
which is also called hepatoma, is the most prevalent primary liver cancer type and forms in hepatocellular cells. It is the 
main type of cells in the liver (Hope, 2023). HCC is directly associated with chronic liver diseases such as hepatitis B, hepatitis 
C infections, and cirrhosis. High alcohol consumption could also increase the risk of HCC.  Intrahepatic cholangiocarcinoma is 
a primary liver cancer type that originates in bile ducts within the liver. Cholangiocarcinoma appears in approximately 10% to 
20% of liver cancers which is almost identical to 8,000 patients per year, according to the liver cancer statistics of the American 
Cancer Society (Society, 2019).  

 

 

Figure  2: The graphical abstract of the global burden of primary liver cancer in 2020 and predictions to 2040 (Harriet et al., 
2022). 
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Non-cancerous growths that can occur in the liver are known as benign liver tumors. These tumors do not spread 
to other parts of the body or invade tissues nearby. Most benign liver tumors do not produce symptoms and are frequently 
identified by chance during medical imaging for unrelated conditions. Some examples of benign liver cancers include 
Hemangiomas that made up of blood vessels, Hepatic adenomas develop from liver cells and Focal nodular hyperplasia 
(FNH) that mostly found in women. In contrast, malignant liver tumors are cancerous growths in the liver. Hepatocellular 
carcinoma (HCC), which develops from the liver's hepatocytes, is the most frequent type of malignant liver tumor. 
Cholangiocarcinoma (cancer of the bile ducts within the liver) and less common kinds such as angiosarcoma and fibrolamellar 
carcinoma are examples of malignant liver tumors (Society, 2019). Moreover, liver tumor classification is illustrated in Figure  
3. 

 

 

 

 

 

 

 

 

 

 

1.3. Radiological Imaging for Liver Cancers 

Radiological imaging plays a vital role in diagnosing and treatment monitoring for liver diseases. They allow 
healthcare professionals to visualize the liver to identify abnormalities and diseases. Medical experts always recommend 
detecting liver diseases in earlier stages to achieve better survival from liver cancer. Recognizing liver diseases or liver cancers 
is challenging since liver diseases are often asymptomatic until the final stage. The most traditional way to diagnose liver 
cancer is liver biopsy. However, radiological imaging has become a crucial technical development to monitor liver health in a 
non-invasive manner. 

1.3.1. Ultrasonography (US) 

A hepatic ultrasound is a noninvasive examination that captures images of the liver and its blood arteries. It can 
aid in the diagnosis of a variety of conditions of the liver, including fatty liver, liver cancer, and gallstones. The scanning process 
utilizes sound waves to generate the ultrasound image. This scanning procedure is safer and usually does not require a longer 
time for the scanning process. At the preliminary stage of liver disease diagnosis, healthcare experts recommend a US liver 
scan. It is a comparatively cheaper and highly available liver scanning tool for various liver conditions, such as cancer, hepatitis, 
fatty liver disease, and cirrhosis (Hennedige & Venkatesh, 2013). US images can be obtained with more details by using contrast 
materials. Injecting contrast dye can improve the visualization of the liver structure. However, some people might get allergic 
reactions due to contrast materials in very rare cases (Today, 2022). 

Figure  3: Liver tumor classification. 
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1.3.2. Computed Tomography (CT)  

Computed Tomography is a radiological imaging technique that combines with an X-ray imaging procedure. The X-
ray is aimed at the patient and rotates around the body while capturing X-ray images. Once the number of X-rays (slices) were 
obtained, the computer system in CT stacked all the slices to generate a three-dimensional (3D) image of the patient that 
can visualize body structures to perform diagnosis. The CT scan shows detailed images or 3D visualization of body parts 
including the bone, muscles, fat, organs, and blood vessels (Medicine, 2023). 

 

Figure  4: Ultrasonography (US) in liver diagnosis (Today, 2022). 

Figure  5: Computed Tomography (CT) in liver diagnosis. 
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CT scans are immensely useful to use as a diagnostic tool in life-threatening conditions such as blood clots, 
hemorrhage, and cancers. Early detection and faster diagnosis are highly important in such conditions to save lives. However, 
CT scan is developed based on X-ray technology that produces ionizing radiation. Ionizing radiation is not suitable for patients 
with kidney disease. 

CT scan is capable of visualizing body structures that can differentiate dense body structures such as bones. 
However, the soft tissues of the organs might not appear very clearly in a detailed manner. In such situations, contrast agents 
can be used to enhance the visibility of soft tissues by injecting contrast-based iodine into the bloodstream. However, contrast 
agents may cause allergic reactions or temporary kidney failures in rare cases (Medicine, 2023). 

 

1.3.3. Magnetic Resonance Imaging (MRI)  

Magnetic Resonance Imaging can produce three-dimensional anatomical imaging that can help healthcare 
professionals diagnose disease. MRI is a sophisticated technique that can visualize the liver with a very high spatial and 
temporal resolution. Powerful magnetic that produces a strong magnetic field is employed to simulate protons in the body 
to generate the visualization of the anatomical structures (Bioengineering, 2022). Due to the strong magnetic field, patients 
with metal implants are not suitable to undergo MRI scans. To enhance the visualization, contrast agents are given 
intravenously before or during the MRI scans (Lencioni et al., 2004). 

 

 

 

 

 

 

 

Figure  6: Magnetic Resonance Imaging (MRI) in liver diagnosis. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

1.4. Artificial Intelligence in Liver Diagnosis 

Researchers have explored developing segmentation methods using different deep learning approaches in an effort 
to overcome such difficulties. Convolutional neural networks (CNN), which have dramatically increased performance on a 
wide range of computer vision applications by automatically learning multi-level feature representations, have significantly 
advanced medical image analysis. 

 

 

 

 

 

 

 

 

Fully convolutional networks (FCN), which have developed quickly in deep learning, have displayed incredible 
pixel-level classification accuracy (Long et al., 2015). The formation of the FCN architecture is illustrated in Figure  7. The fully 
connected layer of the convolutional neural network follows a deconvolutional process with up-sampling to generate the 
pixel-level classification. Bilinear interpolation is used to up-sample the final pool layers before performing the fusion to 
generate the final prediction (See Figure  8). 

 

 

Ronneberger et al. (2015) proposed U-Net in 2015 based on the FCN and has demonstrated enormous potential 
for success in the segmentation of medical images. The U-Net architecture is designed with a contracting path and expansion 
path denoted by the encoder path and decoder path respectively (see Figure  9). Each path contains four blocks comprised 
of two convolutional layers and an activation function. In particular, the accuracy of the semantic segmentation depends on 
the contextual and location information. The skip connection is implemented in all the levels of the network that concatenate 

Figure  7: Graphical illustration of Fully convolutional network for semantic segmentation (Long et al., 2015). 

Figure  8: Fully convolutional network structure development (Long et al., 2015) 
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corresponding location information in the encoder path and contextual information in the decoder path to get better 
segmentation performance with precise localization. 

 

In history, convolutional neural network (CNN) model developers commonly suggested that the performance of 
the model is directly proportional to the number of layers in the model (Krizhevsky et al., 2017; Zisserman, 2015). In real 
applications, the performance was not increased with the depth of the network since gradient vanishment degraded the 
performance of the network. To address the gradient vanishing issue, He et al. (2016) proposed a Residual Network (ResNet) 
with an identity map that can bypass convolutional layers in the block and combine with the final output of the convolutional 
block as illustrated in Figure  10. The residual learning concept that is designed with the bypass pathway concept could lessen 
errors in the learning process. 

 

 

 

 

 

 

 

 

 

 

Figure  9: The design of the U-net architecture (Ronneberger et al., 2015). 

Figure  10: Residual learning concept: a building block (He et al., 2016). 
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The evolution of FCN-based architectures, H-DenseUnet (Li et al., 2018) and U-Net++ (Zhou et al., 2018) as the 
extended versions of the U-Net architecture. Furthermore, Zhang et al. (2018) proposed Deep Residual U-Net (ResUNet) which 
is constructed by combining the advantages of U-Net (Ronneberger et al., 2015) and deep residual learning (He et al., 2016). 
Residual learning is further utilized to improve the UNet-based networks (Devidas et al., 2023; Z. Li et al., 2022; Thomas et al., 
2021; Xiwang et al., 2022). Z. Li et al. (2022) proposed Residual attention unet++. In the development, the UNet++ network 
is further developed utilizing the strengths of residual learning and spatial attention mechanism in order to decrease learning 
errors and improve the semantic gap between the encoder and decoder of the network. RA-UNet demonstrated an attention 
method that uses the max-pooling operation between the encoder and decoder to emphasize key features while decreasing 
noise (Jin et al., 2020). Residual connections are used to keep the original features while highlighting the salient ones. 

Recently, ResUNet++ (Zhang et al., 2018) has been constructed as a more complex version of ResUNet. Dense 
predictions in multi-stage Cascaded CNNs serve to illustrate how well the majority of the aforementioned architectures work. 
This method uses unnecessary and redundant computational requirements for feature processing during the segmentation 
task. Researchers have developed spatial modules with attention methods to suppress unnecessary features while highlighting 
the most significant spatial information for the segmentation task. 

Attention U-Net (Oktay et al., 2018) is a U-Net and end-to-end-trainable attention module (Jetley, 2018) based 
architecture proposed for image classification. Skip connection uses an attention method that Attention U-Net is designed to 
retrieve salient features for fusing with high-level semantic features. The attention mechanism is illustrated in Figure  11. The 
enhancement of the crucial features and reduction of redundant regions for the segmentation task could significantly improve 
learning. 

 

 

Moreover, ResUNet++ architecture incorporates a squeeze-and-excitation attention mechanism (Hu et al., 2018) to 
recalibrate channels in each level of the encoder path. Woo et al. (2018) proposed an attention mechanism that is a 
combination of the channel attention mechanism and the spatial attention mechanism that creates the Convolutional Block 
Attention Module (CBAM) as illustrated in Figure  12. CBAM is a simple, lightweight technique that has been effectively applied 
in recent research developments (Chaoqun et al., 2021; Chen et al., 2020; Lee et al., 2020). It is very simple to include in 
neural networks. Also, researchers who created attention mechanisms have observed that attention mechanisms considerably 
increased the accuracy and sensitivity of the prediction with comparatively fewer parameters. 

Figure  11: The proposed additive attention gate (AG) (Oktay et al., 2018) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

 

Recent developments in fully convolutional networks still need performance improvement for liver tumors with 
fuzzy boundaries. There is a higher possibility of overfitting the training set and less generalizable when the model is heavy. 
To address these issues, we investigate the potential of attention mechanisms and residual learning by integrating it with U-
Net-based architecture to improve the sensitivity of the model to recognize tumors with fuzzy boundaries. Furthermore, we 
investigate how well attention-based architecture can minimize the computational cost of the liver tumor segmentation task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  12: The CBAM overview. The module is divided into two sub-modules: channel and spatial. At each convolutional 
block of deep networks, the intermediate feature map is adaptively refined by the module (CBAM) (Woo et al., 2018) 
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1.5. Objectives and Contribution 

The objective of our study is to develop a Computer-Aided Diagnosis (CAD) tool to segment liver tumors from 
computed tomography (CT) imaging by utilizing less computational cost. Assess and validate the applicability of the developed 
liver tumor segmentation tool with a radiologist. 

The contribution of the study is summarized as follows, 

• We propose a novel semantic segmentation neural network design that exploits the strengths of residual blocks, 
channel attention, and spatial attention methods developed in CBAM. The spatial attention mechanism is 
implemented to extract spatial features from the encoder and combine them with corresponding high-level 
semantic features in the decoder. Channel attention and spatial attention are implemented in the encoder and 
decoder paths. The proposed design uses the U-Net architecture as the base for development. 
 

• The integration of attention techniques in the encoder path, skip connection, and decoder path significantly 
improved the target segmentation's focus on the region of interest, obtaining the best sensitivity score in all 
experiments. 

 

1.6. Scope of Study 

The liver tumor segmentation tool is trained and evaluated with two publicly available datasets and the scope, 
and the constraints are as follows, 

• The proposed model can correctly segment liver tumors compared to the baseline methods. 
 

• The proposed model utilizes less computational cost compared to baseline methods. 
 

• The study is conducted using scans (slices) with liver tumors. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11 

2. Literature Review 
2.1. Background 

The automatic segmentation of liver tumors has become a popular topic in the field of deep learning-based 

medical research. Deep learning breakthroughs provide substantial contributions to the quality and accuracy of the diagnosis 

by providing quick and helpful opinions for therapeutic intervention. The recent advancements in machine learning technology 

in liver tumor segmentation have reached the diagnostic capabilities of radiologists (Kim et al., 2020; Zhen et al., 2020). 

Kim et al. (2020) proposed a deep learning system to detect hepatocellular carcinoma (HCC) using contrast-

enhanced magnetic resonance imaging (CE-MRI). They have designed and experimented with a simple convolution neural 

network (CNN) based architecture that is stacked with four convolutional layers as shown in  Figure  13. The architecture is 

trained and tested with over 50,000 images obtained from 549 patients. 

 

 

 

 

 

 

All the images are preprocessed by applying normalization. ROI is generated to recognize lesions to create the 

mask. Data augmentation includes rotating and shifting to increase the training samples and minimize the overfitting. The 

network training optimization is tested with four optimizers, Adam optimizer could demonstrate better performance in network 

optimization. The process of the deep learning system is illustrated in Figure  14. The deep learning system demonstrated 6 

times faster HCC detection compared to junior radiologists. 

 

 

 

 

 

 

 

A multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI)-based computer-aided diagnosis method 

for identifying and classifying liver cancers proposed by (Alksas et al., 2021). Support vector machine (SVM), Naive Bayes 

Figure  13: The CNN structure of the model for detecting HCC in MR images (Kim et al., 2020). 

Figure  14: Proposed Deep Learning system for HCC detection (Kim et al., 2020). 
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classifier (NB), k-nearest neighbors (KNN), and linear discriminant analysis (LDA) have all been used to evaluate the effectiveness 

of imaging markers. Spherical harmonics that can describe morphological complexity, are used to generate morphological 

markers. Functional markers are generated based on the characteristics enhanced in different phases in MRI. Textural markers 

that are considered histogram markers are calculated based on the gray-level co-occurrence matrix (GLCM) and gray-level 

run-length matrix (GLRLM) to recognize the texture patterns according to the liver tumor grades in the final classification. 

Random forest classifier demonstrated more enhanced diagnostic performance among other classifiers experimented in the 

study. The proposed computer-aided diagnosis (CAD) system is visualized in Figure  15. 

 

 

Seven different types of liver lesions and clinical data were used in a large-scale deep learning-based investigation 

(Zhen et al., 2020). Seven models have tested their abilities to classify liver lesions using clinical information, unenhanced 

MRI, and enhanced MRI. Two models that were created using MRI imaging and clinical data demonstrated superiority in terms 

of diagnosis compared to experienced radiologists. The graphical summary of the study is illustrated in Figure  16. 

 (Hamm et al., 2019) proposed a deep learning system for the purpose of evaluating the viability of classifying liver 

lesions. It is a classifier with a multi-phasic MRI-based convolutional neural network. The designed custom CNN is comprised 

of three convolutional layers integrated with rectifier linear units, two maximum pooling layers, and two fully connected 

layers for final lesion classification. Imaging Reporting and Data System (LI-RADS), experts in radiology developed generic 

classification guidelines that were referred to in the study. They have obtained MRI scans from a heterogeneous collection of 

scanners and multi-phasic scans including the Arterial phase, Venous phase, and Equilibrium phase to train and evaluate the 

model. The sample image categorization followed by three MRI phases and based on LI-RADS categories is illustrated in Figure  

Figure  15: The computer-aided diagnostic (CAD) method for detecting and classifying cancers in the liver 
(Alksas et al., 2021). 
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17. They recommended using automatic categorization criteria based on deep learning for systems like LI-RADS in order to 

reduce the diversity in picture interpretation and improve the quality assurance of the research. 

 

 

 

 

Figure  16: Overview of the study (Zhen et al., 2020). 

Figure  17: Sample images of lesion classes and corresponding derived LI-RADS categories (Hamm et al., 
2019). 
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2.2. Fully Convolutional Network Based Approaches 

Due to the creation of the fully convolutional network (FCN), the research area took a different turn away from 

deep learning-based classification (Long et al., 2015). End-to-end training using FCN pixel-level classification could produce 

segmentation output. U-Net architecture is becoming more popular in the field of medical research which is an extension of 

FCN. Several adaptations based on the U-Net architecture (He et al., 2016; Huimin Huang et al., 2020; Jha et al., 2019; Li et 

al., 2018; Zhou et al., 2018) have become popular deep learning architectures to segment liver and tumors. 

Alirr (2020) proposed an architecture based on U-Net, an automated approach for segmenting tumors and the liver 

was suggested. Preprocessing procedures involve the use of HU windowing and median filtering and a tensor-based 3D edge 

enhancing diffusion (EED) to improve training data for the model training. Ayalew et al. (2021) developed a U-Net-based liver 

and tumor segmentation approach with parameter reduction. When compared to the original U-Net, the class imbalance 

method and data refinement techniques are used to improve segmentation performance while minimizing computing costs. 

U-Net++ is designed with nested and dense skip connections (Zhou et al., 2018). UNet 3+ is a more advanced 

version with deep supervision at each stage of the decoder (Huimin Huang et al., 2020). B. Li et al. (2022) improved the UNet++ 

architecture design by implementing a channel attention mechanism to the long-hop connections. Channel attention could 

help to reduce eigenvalue loss. Moreover, CE-Net (Gu et al., 2019) and DefED-Net (Lei et al., 2022) architectures are developed 

to improve the feature representation using multi-scale feature extractors and deformable convolutions. However, both 

networks needed more parameters to improve performance and require comparatively higher computational power for the 

segmentation task. 

2.3. Attention Mechanism Based Approaches 

In recent developments in attention mechanisms for liver and tumor segmentation studies, Attention U-Net gained 

popularity which was proposed by Oktay et al. (2018). For the segmentation task, the attention mechanism investigates the 

potential to highlight critical information while suppressing unimportant ones in spatial dimensions. Attention UNet++ (Li et 

al., 2020) employs the same spatial attention approach for upgrading UNet++ architecture. The modified architecture shows 

a significantly superior focus on target regions while suppressing irrelevant regions. By using spatial attention gates to highlight 

important features, liver segmentation has improved recently by Wang et al. (2022). 

Channel attention, in addition to the spatial attention process, is crucial for improved feature propagation. The 

mechanisms of global attention and hybrid attention are created to effectively focus on both local and global features of the 

segmentation (Huaxiang et al., 2023; Jiang et al., 2019). To improve the feature representation for liver and tumor segmentation, 

self-attention-based architecture is constructed (Fan et al., 2020). However, the encoder path and skip connections of the 

network are not improved by implementing feature recalibration utilizing the strengths of the attention mechanisms. 

Lately, the inter-channel connection has been created utilizing global average-pooled features to determine 

channel-wise attention. Squeeze-and-excitation (Hu et al., 2018) is a method designed to take advantage of this relationship. 

In order to boost its sensitivity to important features while suppressing irrelevant features, several deep learning architectures 

have successfully segmented medical images using the squeeze-and-excitation module  (Jha et al., 2019; Wang et al., 2022). 

The SE module is incorporated into MS-UNet's design to enhance channel-wise feature recalibration (Devidas & Sanjay, 2021). 

HFRU-Net is designed by implementing an SE module in skip connection to recalibrate encoder features to fuse with deep 

features in the decoder (Devidas & Sanjay, 2022). Eventually, Woo et al. (2018) proposed and demonstrated better channel 
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attention utilizing average-pooling and max-pooling, which is named Convolutional Block Attention Module (CBAM), a 

sequential combination of channel attention with spatial attention. 

Shuchao et al. (2021) developed TA-Net, which improves performance in medical image segmentation by achieving 

improved feature representation through the use of multiple deep learning techniques such as inception blocks, context 

blocks, and attention blocks. When employed in the shallow feature extraction path and the deep feature extraction path 

independently, they have found that channel attention with both average pooling and max pooling performs better than 

channel attention with merely average pooling. In order to highlight significant features in input-level shallow features and 

semantically high-level features in output, Zhao et al. (2020) used CBAM by separating it to channel attention for the extraction 

of deep features at the bottom of the architecture and spatial attention for both encoder and decoder at the top level. CBAM 

is used in Small Attention-UNet (SmaAt-UNet) to skip connection and bottleneck of the network. Important encoder features 

are amplified using CBAM in order to concatenate them with deep features in the decoder (Kevin et al., 2021). The depthwise-

separable convolutions have significantly contributed to minimizing the training parameters of the network. Additionally, S-

Net uses CBAM to increase spatial features and optimize channel weights at a deeper layer of the network, resulting in a 

notable improvement in liver tumor segmentation (Luan et al., 2021). 
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3. Proposed Method  
In this chapter, we present a novel network named Multi Attention Network (MANet) for the liver tumor 

segmentation task. The network is developed as a fusion of attention mechanisms to extract important features while 

suppressing irrelevant features for liver tumor segmentation. The proposed deep learning network has followed U-Net as the 

basic architecture. Moreover, the residual learning and attention mechanisms are implemented in the network. 

3.1. MANet Architecture 

We present the MANet design, which has been tested for segmenting liver tumors.  Figure  18 displays the proposed 

architecture's block diagram. The Table  1 illustrates the structure of the proposed network. By exploiting the benefits of 

attention mechanisms (Oktay et al., 2018; Woo et al., 2018) and deep residual learning (He et al., 2016), MANet architecture 

is an upgraded version of U-Net (Ronneberger et al., 2015). Encoder, bridge, and decoder are the primary elements of 

architecture. The encoder utilizes channel attention and residual blocks to propagate information by the input image. In order 

to calculate semantic segmentation, the decoder creates pixel-wise classifications. The deepest level feature propagation 

across the residual unit, channel, and spatial level is determined in the bridge. 

We have used deep residual learning to construct encoder residual blocks to solve the degradation issue in the 

network since deep neural networks often suffer from degradation due to erroneous feature learning. The encoder residual 

block is coupled with two convolution layers, batch normalization, and Rectified Linear Unit (ReLU) activation, as can be seen 

in the diagram. To overcome the gradient vanishing issue and accelerate the network's convergence, ReLU activation is used 

after batch normalization. Each encoder block's feature propagation output is sent to the channel attention module, which 

calibrates the channel weights for a more advantageous inter-channel relationship to improve semantic feature extraction. 

The first convolution layer in each residual block is applied with a stride of 2, which is used for the spatial dimension down-

sampling procedure. Using the gate signal, which is obtained by deep features in the lower stage, the spatial attention 

mechanism is used in the skip connection to extract significant shallow features. Transposed convolution is used to up-sample 

lower-stage deep features, which are then combined with matching shallow features that were retrieved using the attention 

mechanism. 

Spatial attention is applied to the input of the decoder block in order to highlight semantic information and keep 

it throughout the decoding process. Batch normalization and ReLU activation are implemented after each convolution layer 

in decoder blocks, which is similar to the encoder block. The decoder block uses two succussive convolution layers with 3 × 

3 kernels for feature propagation. The segmentation output was generated using sigmoid activation after 1 × 1 convolution to 

the output of the decoder path. 
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Figure  18: Block diagram of the proposed MANet architecture. 
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3.2. U-Net and Residual Blocks 

To improve segmentation performance in semantic segmentation, high-resolution low-level features, and high-level 

semantic features must be combined (Long et al., 2015; Ronneberger et al., 2015). The U-Net skip connection, which is used 

at each level of the network, has the potential to improve segmentation performance and be successful in the field of 

medical image segmentation. In deep residual learning (He et al., 2016), which suggested reducing the training errors in deep 

neural networks, it was further emphasized that using skip connections at each level of the network improves information 

propagation without degradation. And confirmed with state-of-the-art approaches (Jha et al., 2019; Zhang et al., 2018). We 

created an encoder using residual blocks, which consists of two 3 × 3 convolution blocks and one residual connection, inspired 

by residual learning. Because of the memory restrictions, the input and output of the residual block are added using a 

convolution block with a 1 × 1 kernel applied to control channels. In the residual block with skip connection, batch 

normalization, and ReLU activation are used to reduce performance deterioration, and gradient vanishment, and help 

accelerate the propagation of features. 

 

 

 

 

 

 

 

Block name Operation 
Filter 
size 

Number of 
filters 

Stride Output size 

Input Image 512 × 512 × 3 

Encoder 1 
Conv 1 3 × 3 68 1 512 × 512 × 68 

Conv 2 3 × 3 68 1 512 × 512 × 68 

Encoder 2 
Conv 3 3 × 3 136 2 256 × 256 × 136 

Conv 4 3 × 3 136 1 256 × 256 × 136 

Encoder 3 
Conv 5 3 × 3 272 2 128 × 128 × 272 

Conv 6 3 × 3 272 1 128 × 128 × 272 

Bridge 
Conv 7 3 × 3 544 2 64 × 64 × 544 

Conv 8 3 × 3 544 1 64 × 64 × 544  

Decoder 1 
Conv 9 3 × 3 136 1 128 × 128 × 136 

Conv 10 3 × 3 136 1 128 × 128 × 136 

Decoder 2 
Conv 11 3 × 3 68 1 256 × 256 × 68 

Conv 12 3 × 3 68 1 256 × 256 × 68 

Decoder 3 
Conv 13 3 × 3 68 1 512 × 512 × 68 

Conv 14 3 × 3 34 1 512 × 512 × 34 

Output Conv 15 1 × 1 3 1 512 × 512 × 3 

Table  1: The network structure of the proposed MANet architecture. 
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3.3. Attention Mechanisms 

Attention processes are crucial in the segmentation task because they enable the extraction of more accurate 

contextual information. We presented a novel MANet that was inspired by two attention methodologies (Oktay et al., 2018; 

Woo et al., 2018). By using a very limited number of parameters, attention mechanisms enable the potential to improve 

feature representations. Generally, there are two types of attention mechanisms: channel attention and spatial attention. The 

statistical weight of each channel is determined by global average pooling, which is performed through channel attention. 

The global pooling operation across the channel dimension is performed by spatial attention to retrieve contextual data. 

Moreover, channel attention instructs the network to concentrate on "what" salient features to represent, whereas spatial 

attention investigates "where" significant elements are situated in the feature map. Spatial attention, channel attention, skip 

connection attention gate, and convolutional block attention module (CBAM) are the four attention mechanisms included in 

the proposed MANet. 

 

The skip connection attention gate is aimed at capturing crucial shallow encoder features and concatenating them 

with semantically high-level decoder information. The attention is calculated by combining shallow features 𝑥𝑆𝐹 and deep 

features 𝑥𝐷𝐹 from the network's previous decoder block. Figure  19 shows the block diagram of the skip connection attention 

gate, which can be stated as follows: 

Equation 1 

𝑥𝑐𝑜𝑛𝑣_1×1(𝑆𝐹) = 𝑊𝑥. 𝑥𝑆𝐹 , 𝑥𝑆𝐹 𝜖 ℝ𝑏×𝑐𝑥×𝑤𝑥×ℎ𝑥 , 𝑥𝑐𝑜𝑛𝑣_1×1(𝑆𝐹) 𝜖 ℝ𝑏×𝑐𝑥/2×𝑤𝑔×ℎ𝑔       

𝑥𝑐𝑜𝑛𝑣_1×1(𝐷𝐹) = 𝑊𝑔. 𝑥𝐷𝐹 + 𝑏𝑔 , 𝑥𝐷𝐹 𝜖 ℝ𝑏×𝑐𝑔×𝑤𝑔×ℎ𝑔 , 𝑥𝑐𝑜𝑛𝑣_1×1(𝐷𝐹) 𝜖 ℝ𝑏×𝑐𝑥/2×𝑤𝑔×ℎ𝑔                                           

𝐴𝑡𝑡𝑆𝐶𝐴𝐺(𝑥𝑆𝐹 ,  𝑥𝐷𝐹;  𝜃𝑆𝐶𝐴𝐺) = 𝜎2(𝑊Ø. 𝜎1(𝑥𝑐𝑜𝑛𝑣_1×1(𝑆𝐹) + 𝑥𝑐𝑜𝑛𝑣_1×1(𝐷𝐹)) + 𝑏Ø)    

Thus, in order to produce the final attention map, σ1 represents for the ReLU activation function and σ2 for the 

sigmoid activation function. The number of channels is 𝑐, the size of the feature maps is 𝑤 × ℎ, and the batch size is 𝑏. 

The parameters for the attention mechanism (𝐴𝑡𝑡𝑆𝐶𝐴𝐺(𝑥𝑆𝐹 ,  𝑥𝐷𝐹;   𝜃𝑆𝐶𝐴𝐺))  are 𝜃𝑆𝐶𝐴𝐺 = {𝑊𝑥, 𝑊𝑔, 𝑏𝑔, 𝑊Ø, 𝑏Ø}, 

where 𝑊 and 𝑏 represent the weights and bias terms of the convolutions respectively. As stated in Equation 1, input feature 

maps (𝑥𝑆𝐹 , 𝑥𝐷𝐹) are linearly mapped to half of the shallow feature mappings (ℝ𝑏×𝑐𝑥/2×𝑤𝑔×ℎ𝑔) in the dimensional space. 

The refined feature representation  𝑥𝑆𝐶𝐴𝐺  is formulated as follows: 

Figure  19: Schematic diagram of Skip Connection Attention Gate (SCAG). 
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Equation 2 
𝑥𝑆𝐶𝐴𝐺 = 𝑥𝑆𝐹 ⊗ 𝐴𝑡𝑡𝑆𝐶𝐴𝐺(𝑥𝑆𝐹 ,  𝑥𝐷𝐹;  𝜃𝑆𝐶𝐴𝐺), 𝑥𝑆𝐶𝐴𝐺  𝜖 ℝ𝑏×𝑐𝑥×𝑤𝑥×ℎ𝑥 

Where, element-wise multiplication denotes by ⊗  

 

The inter-channel relationship is captured by channel attention, which then recalibrates it to improve segmentation 

performance. When compared to the "Squeeze and Excitation" channel attention technique, which is based solely on global 

average pooling, the channel attention that comprises both global max pooling and global average pooling demonstrated 

better performance. The feature fusion of Max-pooling and average-pooling improves inter-channel interactions compared to 

average-pooling feature extraction alone when it comes to channel recalibration (Shuchao et al., 2021; Woo et al., 2018). Due 

to the benefits, we employ the channel attention mechanism in the proposed architecture, which is strengthened by average 

pooling and max-pooling techniques. As shown in Figure  20, input feature maps (𝑥) are subjected to global pooling 

procedures to determine the global maximum and average pooling feature descriptors 𝐶𝑀𝑃 and 𝐶𝐴𝑃 respectively 

(𝐶𝑀𝑃, 𝐶𝐴𝑃 𝜖 ℝ𝑏×𝑐×1×1), formulated in Equation 3. 

Equation 3 
𝐶𝑀𝑃 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑥) 

𝐶𝐴𝑃 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑥) 

The result of the global polling operations is used to create a shared multi-layer perceptron that captures channel-

wise correlation (MLP). MLP is built using two hidden layers and ReLU, which was formulated in Equation 5. The first hidden 

layer's output size is set to half of the input channels (ℝ𝑏×𝑐/2×1×1)  in order to decrease the total amount of parameters. 

Then, the summation of feature descriptors generated through MLP is subjected to sigmoid activation (σ2). 

Equation 4 
𝐴𝑡𝑡𝐶𝐴(𝑥; 𝜃𝐶𝐴) = σ2(𝑀𝐿𝑃(𝐶𝑀𝑃)  +  𝑀𝐿𝑃(𝐶𝐴𝑃)) 

Where 𝑀𝐿𝑃 is formulated as follows, 

Equation 5 
𝑀𝐿𝑃(𝑥; 𝜃𝑀𝐿𝑃) = 𝑊𝐻𝐿2. σ1(𝑊𝐻𝐿1. 𝑥) 

The formula for the channel attention mechanism is Equation 4, where σ1 and σ2 stand for the ReLU and sigmoid 

activation functions respectively. The channel attention parameters are 𝑊𝐻𝐿1 and 𝑊𝐻𝐿2 (𝜃𝐶𝐴 = 𝜃𝑀𝐿𝑃 =

Figure  20: Schematic diagram of Channel Attention (CA). 
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{𝑊𝐻𝐿1,  𝑊𝐻𝐿2}), which are used in two hidden layers of the 𝑀𝐿𝑃. Following the channel attention computation, element-

wise multiplication is used to determine the calibrated feature representation 𝑥𝐶𝐴 (see Equation 6). 

Equation 6 
𝑥𝐶𝐴 = 𝑥 ⊗ 𝐴𝑡𝑡𝐶𝐴(𝑥; 𝜃𝐶𝐴) 

 𝑥𝐶𝐴 𝜖 ℝ𝑏×𝑐×𝑤×ℎ 

 

 

In order to improve segmentation performance, spatial attention is designed to gather significant spatial information. 

To take advantage of significant tumor features while suppressing non-tumor features in the decoder path, a spatial attention 

technique is used in the decoder block. To determine the spatial feature descriptors 𝑆𝑀𝑃, 𝑆𝐴𝑃 𝜖 ℝ𝑏×1×𝑤×ℎ of global max 

pooling and average pooling are carried out together with the channel axis for the input features (𝑥), as shown in Figure  21. 

The two spatial feature maps are then concatenated. The contextual tumor feature aggregation across the spatial locations 

is represented by those feature maps with two channels. To further extract crucial contextual data that is highly relevant to 

segmenting liver tumors, convolution with a 7 × 7 kernel is performed. The spatial attention map produced by the 7 × 7 

convolution layer is later subjected to the sigmoid activation function (σ2).  As seen below, a spatial attention mechanism 

has been formulated in Equation 7. 

Equation 7 
𝐴𝑡𝑡𝑆𝐴(𝑥; 𝜃𝑆𝐴) = σ2(𝑊𝑐𝑜𝑛𝑣_7×7. ([𝑆𝑀𝑃 , 𝑆𝐴𝑃])) 

Where ([𝑆𝑀𝑃, 𝑆𝐴𝑃]) stands for the concatenation of global maximum and average pools, and  𝜃𝑆𝐴 =

{𝑊𝑐𝑜𝑛𝑣_7×7} represents the parameters of the convolution operation in the spatial attention mechanism. By elementwise 

multiplying the spatial attention map produced by  𝐴𝑡𝑡𝑆𝑃(𝑥; 𝜃𝑆𝑃) with the input feature maps, features that correlate to 

the attention feature map are recalibrated. The following formula represents the enhanced feature representation 𝑥𝑆𝐴 (see 

Equation 8). 

Equation 8 
𝑥𝑆𝐴 = 𝑥 ⊗ 𝐴𝑡𝑡𝑆𝐴(𝑥; 𝜃𝑆𝐴)  

𝑥𝑆𝐴 𝜖 ℝ𝑏×𝑐×𝑤×ℎ 

Figure  21: Schematic diagram of Spatial Attention (SA). 
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The Convolutional Block Attention Module (CBAM) is created by sequentially applying 1D channel attention and 

2D spatial attention illustrated in Figure  22. In the proposed network, CBAM is used in the bridge that connects the network's 

encoder path and decoder path. In order to improve segmentation performance, CBAM is used at the deepest level of the 

network to extract significant features in the channel dimension and sequentially acquire spatial feature representations in 

the spatial dimension. Channel attention (see Equation 4) and spatial attention (see Equation 7) are the basis for the calibrated 

feature maps 𝑥𝐶𝐵𝐴𝑀 , which is the convolutional block attention mechanism formulated in Equation 9. 

Equation 9 
𝑥𝐶𝐵𝐴𝑀 = 𝑥 ⊗ 𝐴𝑡𝑡𝐶𝐴(𝑥; 𝜃𝐶𝐴) ⊗ 𝐴𝑡𝑡𝑆𝐴(𝑥 ⊗ 𝐴𝑡𝑡𝐶𝐴(𝑥; 𝜃𝐶𝐴); 𝜃𝑆𝐴)                                                                          

𝑥𝐶𝐵𝐴𝑀 𝜖 ℝ𝑏×𝑐×𝑤×ℎ 

 

 

 

  

 

 

 

 

 

 

 

Figure  22: Schematic diagram of Convolutional Block Attention Module (CBAM). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23 

4. Experimental Setup  
4.1. Dataset and Preprocessing 

The proposed architecture is tested and evaluated with the LiTS17 dataset, which is a publicly available dataset 

used for the MICCAI 2017 Liver Tumor Segmentation challenge (Bilic et al., 2023) and 3DIRCADb dataset (Luc Soler, 2010). The 

LiTS17 dataset contains 131 CT scans in the training set and 70 CT scans in the testing set, however, ground truth is available 

only for the 131 CT scans which are under the training set. The dataset is gathered from various clinical sites around the 

world. The collection includes a variety of liver tumor diseases that were found using various CT scanners. Each clinical 

location has trained radiologists to annotate segmentation masks, and three more experienced radiologists then confirm these 

annotations. The CT scan volume has slices with an image size of 512 × 512 and a range of 42 to 1026. The 3DIRCADb dataset 

consists of 20 CT volumes with liver tumors in 15 CT volumes. The LiTS dataset is created by including 20 CT volumes of the 

3DIRCADb dataset, those from volume 28 to volume 47 (Jiang et al., 2019). There are typically 0 to 75 tumors that appear in 

the scan, ranging in size from 38 𝑚𝑚3 to 349 𝑐𝑚3. 

The CT scan slices use a wide range of intensity values, from -1000 to 3000, to represent various organs and regions. 

The image intensities of all scans are clipped to the range of [-150, 250] Hounsfield Units (HU) to enhance the liver area from 

the abdominal scan and then follow histogram equalization and normalization to feed into the training procedure. CT slices 

with tumor annotations are chosen for the experiments in order to assess the effectiveness of the proposed liver tumor 

segmentation approach. 130 CT scans (7050 slices) in total have been utilized for the experiments, with one scan being 

discarded due to abnormalities. To assess the models, we have carried out several studies based on volumes and slices. For 

the training set and test set, all the data were randomly divided into a 4:1 ratio. All of the slices in the slice-based experiment 

were randomly divided into 1410 slices for the test set and 5640 slices for the training set. All the scans were randomly 

divided into 104 volumes (5408 slices) for the training set and 26 volumes (1642 slices) for the test set to conduct the volume-

based experiment. The training and test sets for the volume-based experiment include 8 and 7 volumes, respectively, of the 

3DIRCADb dataset. Due to the limited amount of biomedical data, we limited the data split only to the training set and test 

set, excluding the validation set. 

A real-time data augmentation method Albumentations (Buslaev et al., 2020) is employed, which randomly changes 

the batch of data without increasing the number of slices, to minimize the possibility of overfitting. There is no data duplication 

among training processes in different epochs thanks to the random transformations. During the random transformations, 

operations including vertical flip, shift, scale, and rotation are used. The process flow of the proposed liver tumor segmentation 

method is illustrated in Figure  23. 
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4.2. Implementation Details 

We conducted all the experiments on a workstation that operates Windows 11. Furthermore, the workstation 

consists of RTX2070 GPU with 8 GB memory, 32GB of RAM, and Intel(R) Core (TM) i7-9750H CPU @ 2.60GHz 2.59 GHz (6 cores). 

PyTorch 1.9 is the deep learning framework we executed all of the experiments. 

 

 

 

 

 

 

 

 

 

 

 

Figure  23: Flow diagram of the liver tumor segmentation method. 
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4.3. Evaluation Metrics 

The seven most common evaluation metrics are computed to accurately assess the tumor segmentation 

performance of the experimental models. In general, the two categories of selected evaluation metrics are overlap-based 

methods and boundary-distance-based approaches. One of the most popular evaluation metrics is the Dice score (also known 

as the F1 score), while the Jaccard index is also known as the intersection over union (IoU), the volume overlap error (VOE) is 

the corresponding error metric for the Jaccard index (1 - Jaccard index), and accuracy, sensitivity (recall), and specificity are 

methods that use overlap. The average symmetric surface distance (ASSD), which is determined using a boundary-distance-

based technique, is the average distance between points in the predicted binary mask and the ground truth binary mask 

(Yeghiazaryan & Voiculescu, 2018). The formulation of the evaluation metrics is as follows: 

Dice score = 
2|𝐴∩𝐵|

|𝐴|+|𝐵|
=  

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 

Jaccard index = IoU = 
|𝐴∩𝐵|

|𝐴∪𝐵|
=  

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  

VOE = 1 −
|𝐴∩𝐵|

|𝐴∪𝐵|
 = 1 - Jaccard index 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Sensitivity (Recall) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

ASSD = 
∑ d(𝑥,𝜕𝐴)𝑥∈𝜕𝐵 + ∑ d(𝑦,𝜕𝐵)𝑦∈𝜕𝐴

|𝜕𝐵|+|𝜕𝐴|
 

Where A and B, respectively, stand for the predicted binary mask and the ground truth binary mask. True positives, 

true negatives, false positives, and false negatives are represented by the TP, TN, FP, and FN, respectively. 
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5. Experiments, Results and Discussion   
The proposed architecture is evaluated with several experiments described in the Experiments section. The novel 

architecture is contrasted among four other comparison models based on the UNet architecture. In addition, the proposed 

model is compared with state-of-the-art methods with the same experimental setup. All the experiments were conducted 

with CT imaging data of the hepatobiliary phase. Moreover, an experienced radiologist validated the proposed architecture's 

segmentation performance. 

5.1. Experiments 

The proposed architecture is designed based on UNet architecture. To evaluate the effectiveness of the 

architectural design, UNet based comparison architectures are used. Those architectures were created with the techniques 

and methodologies utilized to develop the proposed architecture. Quantitative analysis is conducted to analyze the proposed 

model among comparison methods and state-of-the-art methods. Mainly, two experiments are conducted based on volumes 

and slices of CT scans. In the first experiment, CT volumes are randomly split into a train set and a test set to evaluate the 

performance of the liver tumor segmentation. Secondly, slices of the CT scans are split into a train set and test set to assess 

the liver tumor segmentation performance. These experiments evaluated the segmentation performance under the seven 

most common evaluation metrics explained in the Evaluation Metrics section under the Experimental Setup chapter. The 

result of the quantitative analysis is discussed in the Quantitative Analysis of Segmentation Performance section. 

5.2. Results and Discussion 

Quantitative experiment is conducted with two methods, volume-based segmentation, and slice-based 

segmentation. Seven common evaluation metrics are used to evaluate segmentation performance. The result of the 

qualitative analysis is discussed in the Quantitative Analysis of Segmentation Performance section. The quantitative analysis 

is further continued in two perspectives. Performance analysis is conducted based on the number of tumors and the total 

area of tumors in the CT slice which are discussed in Quantitative Analysis based on the Number of Tumors section and 

Quantitative Analysis based on the Total Area of Tumors section respectively. 

The qualitative analysis provides crucial insights into the segmentation performance of the proposed model. 

Segmentation output of the proposed model is visualized with comparison models used in the study. Liver tumor 

segmentation is classified into four main categories based on the size of the tumor and performance of the segmentation, 

those are large tumors, small tumors, poor segmentations, and over/non-segmentations. The result of the qualitative analysis 

is discussed in the Qualitative Analysis of Segmentation Mask section. 

To validate the segmentation performance of the model, some of the samples with abnormal tumor labels or 

significant deviations compared to other tumor labels were selected to further verify with an experienced radiologist. The 

detailed discussion with an experienced radiologist is included in Liver Tumor Segmentation Validation with a Radiologist 

section. 

Feature maps of the proposed network are visualized to demonstrate the effectiveness of the attention 

mechanisms applied in the network. Feature visualization is further continued for the comparison networks to compare the 

effectiveness of the proposed network. A detailed discussion of the feature visualization is explained in the Model Feature 

Visualization section. The computational cost of the proposed network is highlighted among comparison networks by 

emphasizing segmentation performance and computational cost with computational complexity, total parameters, and 
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Inference time under the Computational Cost Analysis section. Ultimately, the ablation study is conducted in 8 steps to 

demonstrate the effectiveness of the proposed design. A detailed discussion of the ablation study is in the Ablation Analysis 

section. 

5.3. Quantitative Analysis of Segmentation Performance 

The proposed MANet architecture is compared with the comparison models under seven evaluation metrics that 

are commonly used in liver tumor segmentation. The formation of the proposed architecture is strengthened with attention 

mechanisms and residual learning that can be considered as seven convolutional blocks architecture. The design of the 

architecture is optimized by setting the depth of the architecture to three, to minimize the parameter utilization and the 

complexity of the architecture. We have conducted experiments with four comparison networks, including three comparison 

networks with the same depth as the proposed network. Attention UNet, UNet+Resnet18, and UNet+CBAM are comparison 

networks with the same depth (7 blocks). UNet is the only comparison network that is deeper than the proposed network 

design. The original UNet architecture consists of nine convolutional blocks and the depth of the network is five. UNet 

architecture is the baseline for all the networks experimented on in the study. 

Furthermore, the Attention UNet is designed by following the UNet architecture, and the spatial attention 

mechanism is implemented in skip connection to extract low-level shallow features that are enriched with localization 

information by following high-level contextual features in the decoder path. The UNet+Resnet18 is formed using the Resnet18 

backbone with the UNet architecture. The UNet architecture is integrated with CBAM to each stage of the network as the 

proposed architecture is designed with CBAM and the submodules (channel attention: 𝐴𝑡𝑡𝐶𝐴 and spatial attention: 𝐴𝑡𝑡𝑆𝐴) 

of it, to create the UNet+CBAM comparison network. 

We contrasted the effectiveness and robustness of the proposed network to existing state-of-the-art approaches. 

The UNet architecture is the basis of all the comparison networks. In the comparison models, UNet 3+ is the most recent 

advancement based on the UNet architecture. Other comparison networks are created by combining the advantages of 

attention mechanisms with multi-level feature extraction methods. Other comparative architectures used to compare the 

overall performance of the proposed network include ResUNet++, SmaAt-UNet, and TA-Net. For the purpose of carrying out 

the experiments, we referred to original articles and baseline architecture codes. 
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5.3.1. Quantitative Analysis of Comparison Networks 

Two experiments were conducted to assess the performance of the liver tumor segmentation of the proposed 

model and the comparison models including the based model UNet. The LiTS dataset was used to conduct volume-based 

and slice-based segmentation experiments. Furthermore, volume-based segmentation was conducted with the 3DIRCADb 

dataset to prove the generalizability of the network. The segmentation performance was evaluated under the seven most 

common evaluation metrics used in liver tumor segmentation, as explained in the Experimental setup section. Table  2 and 

Table  4 show the quantitative analysis results for the liver tumor segmentation on the LiTS dataset and 3DIRCADb dataset 

respectively. The test performance in terms of the dice score of the proposed MANet model and the baseline models on the 

test set for 80 epochs of the training process is illustrated in Figure  24. To visualize the performance variation of the proposed 

model and the baseline models, the evaluation results of volume-based and slice-based segmentation experiments are 

illustrated in Figure  25 and Figure  26 respectively. 

 

5.3.1.1. Quantitative Analysis with the LiTS Dataset 

  

 The proposed MANet could improve the average dice score by more than 3% in slice-based segmentation and 1% 

in volume-based segmentation while maintaining a similar performance gap in the Jaccard index. In volume-based 

segmentation, UNet+CBAM performed approximately identically to the proposed model, the MANet is lower by 1% in dice 

score and Jaccard index. However, MANet could boost performance in slice-based segmentation by approximately 3% in the 

dice score and Jaccard index. Furthermore, MANet got the lowest volume overlap error (VOE) in the two experiments by 

obtaining the highest overlapping rate, which can also be considered as the Jaccard index error metric. In terms of ASSD, the 

proposed MANet outperformed baseline models. It was further verified by possessing the greatest overlapping rate with 

superiority in liver tumor segmentation. Attention UNet has failed to demonstrate a significant performance improvement 

over the UNet model. However, it could achieve the same level of segmentation performance as UNet+Resunet18 while 

utilizing substantially fewer amount of parameters. In particular, the Dice score, Jaccard index, VOE, and Sensitivity plots of 

both volume-based segmentation and slice-based segmentation demonstrate a better correlation in all comparison models 

calculated based on foreground pixels (see (a), (b), (c), (e) plots of Figure  25 and Figure  26. Furthermore, the performance 

Figure  24: Test performance of the proposed MANet model and the baseline models on the test set for 80 epochs of the 
training process. (a) The segmentation performance of the volume-based experiment. (b) The segmentation performance of 
the slice-based experiment. 
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comparison of volume-based and slice-based segmentation is plotted in Figure  27 to get a better insight into the proposed 

network in terms of effectiveness and generalizability. 

 

 

 

UNet 0.6612 ± 0.277 1.0843 ± 1.425 0.5469 ± 0.266 0.4530 ± 0.266 0.9950 ± 0.004 0.6394 ± 0.285 0.9987 ± 0.002

Attention UNet 0.6505 ± 0.278 1.2551 ± 1.338 0.5356 ± 0.263 0.4643 ± 0.263 0.9945 ± 0.006 0.6250 ± 0.292 0.9984 ± 0.002

UNet + Resnet18 0.6560 ± 0.281 0.9321 ± 0.960 0.5433 ± 0.268 0.4566 ± 0.268 0.9950 ± 0.005 0.6108 ± 0.294 0.9991 ± 0.001

UNet + CBAM 0.6635 ± 0.271 1.2795 ± 1.638 0.5487 ± 0.261 0.4512 ± 0.261 0.9946 ± 0.005 0.6678 ± 0.283 0.9981 ± 0.002

MANet (Proposed model) 0.6735 ± 0.267 1.2049 ± 1.356 0.5590 ± 0.258 0.4409 ± 0.258 0.9950 ± 0.004 0.7426 ± 0.283 0.9978 ± 0.002

UNet 0.7790 ± 0.208 0.9009 ± 1.020 0.6744 ± 0.217 0.3255 ± 0.217 0.9940 ± 0.006 0.7476 ± 0.237 0.9982 ± 0.001

Attention UNet 0.7676 ± 0.195 0.9188 ± 0.783 0.6550 ± 0.208 0.3449 ± 0.208 0.9935 ± 0.006 0.7423 ± 0.231 0.9978 ± 0.002

UNet + Resnet18 0.7686 ± 0.211 1.0037 ± 1.4291 0.6619 ± 0.223 0.3380 ± 0.223 0.9934 ± 0.007 0.7342 ± 0.245 0.9984 ± 0.001

UNet + CBAM 0.7784 ± 0.202 0.8241 ±  0.810 0.6720 ± 0.214 0.3279 ± 0.214 0.9941 ± 0.005 0.7439 ± 0.234 0.9982 ± 0.002

MANet (Proposed model) 0.8145 ± 0.150 0.7084 ± 0.701 0.7084 ± 0.171 0.2915 ± 0.171 0.9947 ± 0.004 0.8723 ± 0.173 0.9970 ± 0.002

Accuracy
Sensitivity 

(Recall)
Specificity

Volume-based 

Segmentation

Slice-based 

segmentation

Task Method Dice score ASSD 
Jaccard index 

(IoU)
VOE

Table  2: The quantitative liver tumor segmentation performance comparison of the proposed MANet model and the 
baseline models for volume-based and slice-based segmentation experiments (mean ± standard deviation) on the LiTS 
dataset. The best values are in bold. 

Figure  25: The quantitative liver tumor segmentation performance analysis of the proposed MANet model and the baseline 
models for volume-based segmentation on the LiTS dataset for the measures:(a) Dice score, (b) Jaccard index (IoU), (c) 
Sensitivity (Recall), (d) ASSD, (e) VOE, (f) Specificity, (g) Accuracy. 
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The proposed model failed to produce the best specificity performance, which two perspectives could potentially 

explain. According to the verification of an experienced radiologist in our research team, we discovered that several ground 

truth mask regions were smaller than actual tumor regions, and the proposed approach could segment and recognize tumor 

boundaries more effectively with greater accuracy. The liver tumor segmentation results verification with an experienced 

radiologist is comprehensively discussed in the following section. In terms of evaluation metrics, those specific cases are 

classified as false positives (over-segmentation) that cause decreased specificity. Apart from that, the limited parameters of 

the model could lead to over-segmentation (approximately half of the parameters compared to the UNet). It has been shown 

by UNet+Resunet18 by obtaining the best specificity in both slice-based segmentation and volume-based segmentation tests 

with the greatest number of parameters among all experimental models. 

It is worth highlighting that the proposed approach demonstrated the highest sensitivity among comparison models, 

it has outperformed all baseline models in terms of sensitivity by approximately 8% in volume-based segmentation and 13% 

in slice-based segmentation. When comparing the performance of the proposed model to UNet+CBAM, it is clear that using 

channel attention in encoder blocks and spatial attention in decoder blocks is far more efficient than using CBAM in both 

encoder and decoder network paths in each block. Furthermore, the proposed model outperformed Attention UNet by using 

attention mechanisms to extract features in every stage of the network (i.e., encoder, decoder, skip connection), whereas 

Attention UNet solely extracts features in the skip connection through attention gates. 

Figure  26: The quantitative liver tumor segmentation performance analysis of the proposed MANet model and the baseline 
models for slice-based segmentation on the LiTS dataset for the measures:(a) Dice score, (b) Jaccard index (IoU), (c) 
Sensitivity (Recall), (d) ASSD, (e) VOE, (f) Specificity, (g) Accuracy. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

 

 

 

 

 

 

 

 

 

Figure  27: The quantitative liver tumor segmentation performance analysis of the proposed MANet model and the baseline 
models for volume-based and slice-based segmentation on the LiTS dataset for the measures:(a) Dice score, (b) Jaccard 
index (IoU), (c) Sensitivity (Recall), (d) ASSD, (e) VOE, (f) Specificity, (g) Accuracy. 
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5.3.1.2. Quantitative Analysis based on the Performance Rating  

 The quantitative analysis is further continued based on the segmentation performance rating with the liver tumor 

segmentation results of volume-based and slice-based segmentation experiments on the LiTS dataset. The segmentation 

rating is categorized based on the liver tumor segmentation performance as shown in Table  3. Under the performance 

classification, segmentation rating 5 is regarded as excellent performance, and segmentation rating 1 gives poor performance. 

 

Segmentation Rating Performance Range (%) 

1 0 % - 20 % 

2 20 % - 40 % 

3 40 % - 60 % 

4 60 % - 80 % 

5 80 % - 100 % 

Table  3: The quantitative segmentation rating. The segmentation rating is based on the liver tumor segmentation 
performance. 

 

 The analysis is conducted based on the Dice score, Jaccard index (IoU), and Sensitivity (Recall) that are used to 

evaluate the segmentation performance with the foreground pixels. Those are widely used evaluation metrics to analyze the 

performance of liver tumor segmentation. The analysis has taken into account the liver tumor segmentation results from both 

volume-based and slice-based experiments as visualized in Figure  28 and Figure  29 respectively. 

 

 

 

 

 

Figure  28: Histogram of the quantitative segmentation rating for volume-based liver tumor segmentation experiment on 
LiTS dataset. (A) Dice score, (B) Jaccard index (IoU), (C) Sensitivity (Recall) 
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 The visualization clearly demonstrated that the proposed MANet has maximized the slice count under the 

segmentation rating 5 which is regarded as the excellent performance range (80% - 100%). Furthermore, the proposed model 

has minimized the slice count in both segmentation ratings 1 and 2 which presents the performance range between 0% and 

40% in all the evaluation metrics. It is worth highlighting that the sensitivity of the proposed model has maintained a significant 

performance gap compared to other comparison models in both volume-based and slice-based experiments. Furthermore, 

the slice count of segmentation rating from 1 to 4 is minimized in the sensitivity performance histogram in both volume-based 

and slice-based experiments. 

 In common, the proposed model has demonstrated superiority in sensitivity compared to comparison models in 

each quantitative analysis. It is noticeable that the slice-based segmentation has demonstrated a significant performance gap 

compared to the volume-based segmentation. Because the model is trained with a wide range of scans (without increasing 

slice count) compared to the volume-based experiment, it proves that the performance of liver tumor segmentation can be 

improved by increasing the number of training samples with a wide range of liver tumor cases. 

 

 

 

 

 

 

 

 

 

 

Figure  29: Histogram of the quantitative segmentation rating for slice-based segmentation experiment on the LiTS dataset. 
(A) Dice score, (B) Jaccard index (IoU), (C) Sensitivity (Recall) 
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5.3.1.3. Quantitative Analysis with the 3DIRCADb Dataset 

 The MANet architecture is further assessed using the 3DIRCADb dataset, which is capable of showing the network 

generalization. Table  4 shows the quantitative analysis results for the liver tumor segmentation on the 3DIRCADb dataset. 

 

 

Table  4: The quantitative liver tumor segmentation performance comparison of the proposed MANet model and the 
baseline models for volume-based segmentation experiment (mean ± standard deviation) on the 3DIRCADb dataset. The 
best values are in bold. 

 

 In terms of dice score, the proposed network enhanced performance by almost 5%. It can be proved by achieving 

the highest possible overlapping rate by minimizing volume overlap error (VOE). It is noteworthy that the network's sensitivity 

has maintained a significant performance margin (about 13%) even in the 3DIRCADb dataset. The volume-based experiment 

results with the LiTS and 3DIRCADb datasets showed a strong correlation in all evaluation metrics. Nevertheless, in terms of 

dice score and sensitivity in the 3DIRCADb dataset, the proposed MANet could outperform the comparison networks 

substantially. Moreover, it is easily noticeable that the proposed architecture has maintained a minimum performance gap in 

most of the measures as illustrated in Figure  30. In the performance analysis, the proposed network outperformed in both 

the LiTS and 3DIRCADb datasets, demonstrating the network's higher generalizability. 

 

 

 

 

 

 

 

 

 

 

UNet 0.5767 ± 0.282 1.2578 ± 1.199 0.4534 ± 0.246 0.5466 ± 0.246 0.9942 ± 0.006 0.4813 ± 0.253 0.9996 ± 0.001

Attention UNet 0.5863 ± 0.281 1.4189 ± 1.288 0.4629 ± 0.245 0.5371 ± 0.245 0.9943 ± 0.006 0.4954 ± 0.259 0.9995 ± 0.001

UNet + Resnet18 0.5941 ± 0.270 1.2051 ± 1.038 0.4681 ± 0.241 0.5319 ± 0.241 0.9944 ± 0.006 0.4956 ± 0.256 0.9997 ± 0.001

UNet + CBAM 0.5763 ± 0.278 1.5157 ± 1.458 0.4521 ± 0.246 0.5479 ± 0.246 0.9941 ± 0.006 0.4909 ± 0.257 0.9995 ± 0.001

MANet (Proposed model) 0.6400 ± 0.279 1.3492 ± 1.362 0.5227 ± 0.258 0.4773 ± 0.258 0.9947 ± 0.006 0.6240 ± 0.298 0.9990 ± 0.002

Sensitivity 

(Recall)
SpecificityMethod Dice score ASSD 

Jaccard index 

(IoU)
VOE Accuracy
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Figure  30: The quantitative liver tumor segmentation performance analysis of the proposed MANet model and the baseline 
models for volume-based segmentation on the LiTS and 3DIRCADb datasets for the measures:(a) Dice score, (b) Jaccard 
index (IoU), (c) Sensitivity (Recall), (d) ASSD, (e) VOE, (f) Specificity, (g) Accuracy 
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5.3.2. Quantitative Analysis of state-of-the-art Networks 

 The slice-based segmentation experiment is carried out to compare the proposed network's robustness and 

effectiveness with other state-of-the-art approaches. To evaluate performance with the proposed MANet architecture, the 

most recently presented UNet-based developments of UNet 3+, ResUNet++, SmaAt-UNet, and TA-Net were used. Table  5 

and Figure  31 illustrate the quantitative analysis of the slice-based segmentation experiment of the state-of-the-art 

approaches. It is easily noticeable that the proposed MANet development outperformed other state-of-the-art methods in 

the majority of evaluation metrics. 

 It is worth noting that the architectures with attention mechanisms performed substantially better in the 

experiment. ResUNet++ has come closer to the proposed MANet model in terms of dice score, but it has not demonstrated 

notable performance similarity in sensitivity. While both ResUNet++ and SmaAt-UNet had higher dice scores with lower 

parameter overhead, the proposed MANet development showed its superiority by achieving the highest overlapping rate, 

which can be reflected by the VOE, ASSD, and Jaccard index. 

 

 

 

 

 

 

 

 

 

 

 

 

UNet 3+ 0.5036 ± 0.341 1.3994 ± 1.857 0.4054 ± 0.306 0.5946 ± 0.306 0.9893 ± 0.010 0.4696 ± 0.364 0.9977 ± 0.005 26.98

ResUNet++ 0.8101 ± 0.175 1.0323 ± 0.950 0.6727 ± 0.191 0.3273 ± 0.191 0.9937 ± 0.006 0.8330 ± 0.205 0.9968 ± 0.003 4.06

SmaAt-UNet 0.7880 ± 0.185 0.8300 ± 0.955 0.6802 ± 0.202 0.3198 ± 0.202 0.9938 ± 0.007 0.7433 ± 0.218 0.9986 ± 0.002 4.03

TA-Net 0.7904 ± 0.172 0.9331 ± 0.974 0.6799 ± 0.190 0.3202 ± 0.190 0.9937 ± 0.007 0.7751 ± 0.209 0.9979 ± 0.003 29.57

MANet (Proposed model) 0.8145 ± 0.150 0.7084 ± 0.701 0.7084 ± 0.171 0.2915 ± 0.171 0.9947 ± 0.004 0.8723 ± 0.173 0.9970 ± 0.002 7.83

Sensitivity 

(Recall)
Specificity

Total training 

parameters (M)
Method Dice score ASSD 

Jaccard index 

(IoU)
VOE Accuracy

Table  5: The quantitative liver tumor segmentation performance comparison of the proposed MANet model and other 
state-of-the-art methods for slice-based segmentation experiment (mean ± standard deviation) on the LiTS dataset. The 
proposed model results are in bold. 
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Figure  31: The quantitative liver tumor segmentation performance analysis of the proposed MANet model and other state-
of-the-art methods for slice-based segmentation on the LiTS dataset for the measures:(a) Dice score, (b) Jaccard index (IoU), 
(c) Sensitivity (Recall), (d) ASSD, (e) VOE, (f) Specificity, (g) Accuracy 
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5.4. Quantitative Analysis based on the Number of Tumors 

 The quantitative analysis is further continued based on the number of tumors present in the CT slice. It is crucial 

to assess the performance of the model based on the number of tumors since focusing on multiple tumor cases can be 

challenging compared to single tumor cases even for radiologists. To deliver better insight into the model, segmentation 

performance is compared among comparison models based on the number of tumors present in the CT slice. 

 The total area of the tumor is calculated based on in-plane image resolution ranges given in the liver tumor 

benchmark (LiTS) publication (Bilic et al., 2023). The in-plane image resolution varies in the range from 0.56 mm to 1.0 mm. 

The average in-plane image resolution is 0.78 mm which is used as pixel spacing to calculate the total area of the tumors 

based on the number of foreground pixels. The OpenCV contour method is used to calculate the number of blobs in the 

tumor mask. The number of tumors (blobs) varies between 1 and 24. The analysis is conducted for the number of tumors 

from 1 to 15 and more than 15 (16 categories). According to the slice distribution based on the number of tumors, most of 

the tumor CT slices contained only one tumor while comparatively less amount of CT slices contained multiple tumors. The 

distribution of the liver tumor CT slices is shown in Table  6. The quantitative analysis based on the number of tumors is 

conducted with the proposed MANet and the comparison models as shown in Table  7 to Table  11. The analysis is visualized 

based on each evaluation metric to compare the performance of the proposed network with comparison networks (Dice 

score: Figure  32, Jaccard index (IoU): Figure  33, Sensitivity (Recall): Figure  34, ASSD: Figure  35, VOE: Figure  36, Specificity: 

Figure  37, Accuracy: Figure  38). 

 

 

 

 

 

 

 

 

 

 

 

Number of Tumors Number of Slices Average Total Area of Tumors (mm2)

1 432 1689

2 285 2842

3 150 3707

4 132 3131

5 96 3983

6 60 3635

7 46 2637

8 33 3495

9 25 3495

10 17 4179

11 14 2808

12 16 3219

13 13 4397

14 12 4537

15 26 5517

>  15 53 6262

Table  6: Liver tumor CT slice data distribution for categories based on the number of liver tumors in the CT slice. 
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Number of Tumors Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

1 0.8011 0.5949 0.6997 0.3003 0.9970 0.8897 0.9985

2 0.8085 0.7777 0.7088 0.2912 0.9956 0.8516 0.9975

3 0.8308 0.7233 0.7341 0.2659 0.9954 0.8947 0.9969

4 0.8199 0.7394 0.7072 0.2928 0.9944 0.8931 0.9961

5 0.8378 0.8642 0.7293 0.2707 0.9933 0.9134 0.9954

6 0.8392 0.8850 0.7288 0.2712 0.9936 0.8914 0.9959

7 0.8404 0.7412 0.7285 0.2715 0.9950 0.8736 0.9973

8 0.8125 0.9539 0.6904 0.3096 0.9920 0.8372 0.9957

9 0.8153 1.0955 0.6969 0.3031 0.9922 0.8281 0.9965

10 0.8105 1.1173 0.6846 0.3154 0.9896 0.8441 0.9940

11 0.7765 0.8708 0.6410 0.3591 0.9924 0.8436 0.9957

12 0.7865 0.9254 0.6528 0.3472 0.9914 0.8700 0.9948

13 0.8042 1.0523 0.6753 0.3247 0.9889 0.8153 0.9943

14 0.8267 1.0841 0.7079 0.2921 0.9898 0.8418 0.9946

15 0.8206 1.0343 0.6982 0.3019 0.9883 0.7937 0.9955

>  15 0.8231 1.1431 0.7018 0.2982 0.9869 0.7909 0.9951

Table  7: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the MANet. 
The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 

Number of Tumors Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

1 0.7722 0.6853 0.6861 0.3139 0.9962 0.7499 0.9994

2 0.7776 0.7979 0.6746 0.3254 0.9951 0.7302 0.9988

3 0.7741 1.0236 0.6768 0.3232 0.9950 0.7493 0.9980

4 0.7604 0.9761 0.6410 0.3590 0.9930 0.7385 0.9976

5 0.7768 1.1425 0.6622 0.3378 0.9915 0.7555 0.9970

6 0.8204 0.9193 0.7075 0.2925 0.9934 0.7982 0.9973

7 0.8128 0.8973 0.6937 0.3063 0.9947 0.7758 0.9983

8 0.8052 1.0232 0.6819 0.3181 0.9926 0.7825 0.9972

9 0.8107 0.9678 0.6933 0.3067 0.9928 0.7609 0.9983

10 0.7745 1.3685 0.6411 0.3589 0.9889 0.7145 0.9979

11 0.7705 1.1647 0.6335 0.3665 0.9925 0.7411 0.9976

12 0.7634 1.2743 0.6209 0.3791 0.9904 0.7782 0.9958

13 0.7781 1.4391 0.6397 0.3603 0.9885 0.7324 0.9963

14 0.7986 1.1357 0.6745 0.3255 0.9895 0.7431 0.9970

15 0.7889 1.3525 0.6573 0.3427 0.9869 0.7209 0.9966

>  15 0.7984 1.3773 0.6659 0.3341 0.9854 0.7367 0.9956

Table  8: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the UNet. The 
analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 
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Number of Tumors Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

1 0.7450 0.6932 0.6473 0.3527 0.9957 0.7204 0.9994

2 0.7695 0.7760 0.6622 0.3378 0.9949 0.7340 0.9985

3 0.7913 0.9715 0.6886 0.3114 0.9947 0.7817 0.9974

4 0.7828 0.9964 0.6621 0.3379 0.9933 0.7850 0.9968

5 0.7930 1.1575 0.6702 0.3298 0.9916 0.7856 0.9959

6 0.8003 1.0385 0.6773 0.3227 0.9919 0.7921 0.9960

7 0.7808 1.0736 0.6496 0.3504 0.9935 0.7571 0.9975

8 0.7504 1.3164 0.6116 0.3884 0.9904 0.7202 0.9960

9 0.7490 1.3784 0.6135 0.3865 0.9904 0.6997 0.9968

10 0.7626 1.3453 0.6201 0.3799 0.9895 0.6989 0.9976

11 0.7516 0.9951 0.6063 0.3937 0.9915 0.7306 0.9972

12 0.7529 1.1617 0.6063 0.3937 0.9908 0.7404 0.9965

13 0.7519 1.4564 0.6065 0.3935 0.9879 0.6829 0.9965

14 0.7747 1.2310 0.6352 0.3648 0.9889 0.6892 0.9976

15 0.7754 1.2046 0.6356 0.3644 0.9861 0.7000 0.9964

>  15 0.7709 1.4435 0.6296 0.3704 0.9836 0.6996 0.9954

Table  9: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the Attention 
UNet. The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 

Number of Tumors Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

1 0.7517 0.9523 0.6683 0.3317 0.9958 0.7289 0.9995

2 0.7890 0.6995 0.6869 0.3131 0.9953 0.7484 0.9989

3 0.8038 0.8909 0.7041 0.2959 0.9949 0.7762 0.9983

4 0.7403 1.0909 0.6168 0.3833 0.9916 0.7242 0.9975

5 0.7634 1.3811 0.6421 0.3579 0.9902 0.7375 0.9974

6 0.8025 0.9987 0.6812 0.3188 0.9924 0.7743 0.9974

7 0.7951 0.9999 0.6688 0.3312 0.9941 0.7645 0.9979

8 0.7939 1.0078 0.6681 0.3319 0.9923 0.7684 0.9972

9 0.7942 1.1530 0.6681 0.3319 0.9918 0.7461 0.9978

10 0.7561 1.4690 0.6182 0.3818 0.9880 0.6960 0.9971

11 0.7415 1.0301 0.5982 0.4018 0.9914 0.6819 0.9977

12 0.7114 1.4865 0.5561 0.4439 0.9887 0.6852 0.9962

13 0.7232 1.5897 0.5726 0.4274 0.9861 0.6580 0.9960

14 0.7654 1.2658 0.6271 0.3729 0.9884 0.6741 0.9978

15 0.7382 1.5766 0.5919 0.4082 0.9851 0.6214 0.9983

>  15 0.7452 1.6290 0.5967 0.4033 0.9830 0.6335 0.9975

Table  10: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the 
UNet+Resnet18. The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 
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Number of Tumors Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

1 0.7582 0.6306 0.6675 0.3325 0.9963 0.7329 0.9994

2 0.7758 0.7486 0.6726 0.3274 0.9951 0.7262 0.9988

3 0.8009 0.8116 0.7035 0.2965 0.9954 0.7731 0.9979

4 0.7953 0.7611 0.6838 0.3162 0.9945 0.7784 0.9975

5 0.8275 0.8952 0.7207 0.2793 0.9935 0.8242 0.9967

6 0.8116 0.9196 0.6971 0.3029 0.9930 0.7926 0.9966

7 0.7838 1.0562 0.6569 0.3431 0.9938 0.7442 0.9979

8 0.7423 1.3264 0.6042 0.3958 0.9898 0.7020 0.9957

9 0.7528 1.4092 0.6157 0.3843 0.9905 0.6958 0.9970

10 0.7570 1.2785 0.6156 0.3844 0.9885 0.7056 0.9961

11 0.7687 0.8803 0.6272 0.3728 0.9925 0.7224 0.9982

12 0.7693 1.0789 0.6286 0.3714 0.9912 0.7469 0.9969

13 0.7768 1.1617 0.6387 0.3613 0.9888 0.7180 0.9967

14 0.7840 1.0761 0.6476 0.3524 0.9890 0.7056 0.9975

15 0.7847 1.1990 0.6494 0.3506 0.9872 0.6959 0.9977

>  15 0.7638 1.4124 0.6217 0.3783 0.9844 0.6650 0.9974

Table  11: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the 
UNet+CBAM. The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 

Figure  32: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the proposed 
MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance comparison is 
based on the Dice score. 
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Figure  33: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the proposed 
MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance comparison is 
based on the Jaccard index, Intersection over Union (IoU). 

Figure  34: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the proposed 
MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance comparison is 
based on the Sensitivity (Recall). 

Figure  35: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the proposed 
MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance comparison is 
based on the Average Symmetric Surface Distance (ASSD). 
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Figure  36: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the proposed 
MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance comparison is 
based on the Volume Overlap Error (VOE). 

Figure  37: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the proposed 
MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance comparison is 
based on the Specificity. 

Figure  38: Quantitative analysis based on the number of tumors for liver tumor segmentation performance of the proposed 
MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance comparison is 
based on the Accuracy. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 44 

 The proposed network has demonstrated a significant performance boost in each category for most of the 

evaluation metrics. For instance, the proposed model could maintain a 3% average performance gap in the Dice score. In 

terms of the Jaccard index, the proposed model has maintained a 5% performance gap while achieving an 11% maximum 

performance gap compared to the UNet + Resnet18 model. The identical performance gap has been demonstrated by volume 

overlap error (VOE) in all the tumor categories which is the error metric of the Jaccard index. Average Symmetric Surface 

Distance (ASSD) has shown over 10% of average error minimization in the proposed network compared to comparison 

networks. The error rate has significantly risen when the number of tumors is more than eight. It is further discussed in the 

qualitative analysis section. In multiple tumor cases, tumors appear with fuzzy tumor boundaries, it is challenging to segment 

the tumor region with accurate edge precision. However, the proposed architecture could minimize the error rate in multiple 

tumor segmentations (see Figure  35). 

 It is worth highlighting that the proposed network depicts a significant performance gap in all the tumor categories 

(see Figure  34). Furthermore, the proposed model has maintained a 12% average performance gap in sensitivity. It has 

achieved an 18% maximum performance boost with UNet + Resnet18 while obtaining a 5% minimum performance boost 

with UNet in sensitivity. In general, all the models demonstrated almost similar performance in terms of accuracy and 

specificity. In summary, quantitative analysis based on the number of tumors further emphasizes the effectiveness and 

robustness of the proposed architecture. 
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5.5. Quantitative Analysis based on the Total Area of Tumors 

 The performance and the robustness of the model are further evaluated based on the total area of the tumors. 

The total area of the tumors is categorized into ten categories. To deliver better insight into the model, segmentation 

performance is compared among comparison models based on the total area of tumors visible in the CT slice. 

 The total area of the tumor is calculated based on in-plane image resolution ranges given in the liver tumor 

benchmark (LiTS) publication (Bilic et al., 2023). The in-plane image resolution varies in the range from 0.56 𝑚𝑚 to 1.0 𝑚𝑚. 

The average in-plane image resolution is 0.78 𝑚𝑚 which is used as pixel spacing to calculate the total area of the tumors 

based on the number of foreground pixels. The analysis is conducted for the total area of tumors from 0 to 10000 𝑚𝑚2 (10 

categories). According to the slice distribution based on the total area of tumors, most of the tumor CT slices are in the first 

category which has a total tumor area below 10000 𝑚𝑚2. The distribution of the liver tumor CT slices is shown in Table  12. 

The quantitative analysis based on the total area of tumors is conducted with the proposed MANet and the comparison 

models as shown in Table  13 to Table  17. The analysis is visualized based on each evaluation metric to compare the 

performance of the proposed network with comparison networks (Dice score: Figure  39, Jaccard index (IoU): Figure  40, 

Sensitivity (Recall): Figure  41, ASSD: Figure  42, VOE: Figure  43, Specificity: Figure  44, Accuracy: Figure  45). 

    

  

 

 

 

 

 

 

 

 

 

 

 

 

Total Tumor Area (mm2) Number of Slices

0 - 1000 410

1000 - 2000 212

2000 - 3000 154

3000 - 4000 174

4000 - 5000 182

5000 - 6000 100

6000 - 7000 58

7000 - 8000 74

8000 - 9000 42

9000 - 10000 4

Table  12: Liver tumor CT slice data distribution for categories based on the total area of liver tumors in the CT slice. 
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Table  14: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the UNet. 
The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 

 

 

Table  15: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the Attention 

UNet. The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 

Total Tumor Area (mm2) Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

0 - 1000 0.7147 0.5658 0.6113 0.3887 0.9985 0.6993 0.9995

1000 - 2000 0.7780 0.6266 0.6604 0.3396 0.9968 0.7463 0.9989

2000 - 3000 0.8082 0.8469 0.6955 0.3045 0.9947 0.7660 0.9983

3000 - 4000 0.8313 0.8483 0.7240 0.2760 0.9935 0.7898 0.9980

4000 - 5000 0.7734 1.4326 0.6902 0.3098 0.9907 0.7480 0.9978

5000 - 6000 0.8250 1.2719 0.7215 0.2785 0.9898 0.7754 0.9974

6000 - 7000 0.8316 1.1898 0.7264 0.2736 0.9880 0.7847 0.9966

7000 - 8000 0.8508 1.2396 0.7557 0.2443 0.9876 0.8181 0.9959

8000 - 9000 0.8183 1.6167 0.7041 0.2959 0.9830 0.7643 0.9953

9000 - 10000 0.6247 2.7438 0.4786 0.5214 0.9689 0.4997 0.9976

Total Tumor Area (mm2) Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

0 - 1000 0.7115 0.5988 0.6039 0.3961 0.9985 0.7154 0.9994

1000 - 2000 0.7670 0.7159 0.6471 0.3529 0.9966 0.7447 0.9987

2000 - 3000 0.7728 0.9334 0.6473 0.3527 0.9938 0.7219 0.9982

3000 - 4000 0.7838 1.0785 0.6615 0.3385 0.9919 0.7309 0.9977

4000 - 5000 0.7755 1.1785 0.6766 0.3234 0.9900 0.7379 0.9974

5000 - 6000 0.8289 1.1762 0.7183 0.2817 0.9895 0.7873 0.9966

6000 - 7000 0.8355 1.2585 0.7239 0.2761 0.9874 0.8144 0.9948

7000 - 8000 0.8464 1.2450 0.7425 0.2575 0.9866 0.8227 0.9946

8000 - 9000 0.8320 1.4503 0.7187 0.2813 0.9833 0.8086 0.9931

9000 - 10000 0.6386 2.1729 0.4820 0.5181 0.9692 0.5046 0.9976

Total Tumor Area (mm2) Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

0 - 1000 0.7302 0.5793 0.6074 0.3926 0.9983 0.8768 0.9986

1000 - 2000 0.8006 0.5885 0.6822 0.3178 0.9966 0.8819 0.9975

2000 - 3000 0.8562 0.6520 0.7547 0.2453 0.9954 0.8717 0.9974

3000 - 4000 0.8558 0.9316 0.7569 0.2431 0.9937 0.8748 0.9963

4000 - 5000 0.8511 0.9129 0.7612 0.2388 0.9925 0.8523 0.9966

5000 - 6000 0.8607 1.0253 0.7642 0.2358 0.9906 0.8646 0.9951

6000 - 7000 0.8832 0.9163 0.7954 0.2046 0.9905 0.8980 0.9945

7000 - 8000 0.8892 0.9904 0.8055 0.1945 0.9900 0.8822 0.9953

8000 - 9000 0.8848 1.1859 0.7963 0.2037 0.9882 0.8775 0.9943

9000 - 10000 0.8827 1.0510 0.7906 0.2094 0.9869 0.8643 0.9943

Table  13: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the MANet. 
The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 
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Total Tumor Area (mm2) Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

0 - 1000 0.7430 0.4745 0.6354 0.3646 0.9986 0.7313 0.9995

1000 - 2000 0.7875 0.6127 0.6739 0.3261 0.9969 0.7637 0.9989

2000 - 3000 0.8154 0.7762 0.6994 0.3006 0.9947 0.7770 0.9981

3000 - 4000 0.7543 1.0594 0.6370 0.3630 0.9915 0.6913 0.9982

4000 - 5000 0.7373 1.9772 0.6613 0.3387 0.9899 0.7156 0.9979

5000 - 6000 0.8218 1.2078 0.7148 0.2852 0.9895 0.7672 0.9975

6000 - 7000 0.8009 1.3892 0.6945 0.3055 0.9867 0.7470 0.9970

7000 - 8000 0.8059 1.6395 0.7030 0.2970 0.9854 0.7414 0.9974

8000 - 9000 0.7271 2.2329 0.6048 0.3952 0.9781 0.6341 0.9974

9000 - 10000 0.6144 2.6847 0.4581 0.5419 0.9684 0.4646 0.9992

Table  16: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
UNet+Resnet18. The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 

Total Tumor Area (mm2) Dice score ASSD Jaccard index (IoU) VOE Accuracy Sensitivity (Recall) Specificity

0 - 1000 0.7068 0.5528 0.6008 0.3992 0.9986 0.6872 0.9996

1000 - 2000 0.7760 0.6601 0.6602 0.3398 0.9969 0.7366 0.9991

2000 - 3000 0.8089 0.7595 0.6920 0.3080 0.9947 0.7567 0.9985

3000 - 4000 0.7997 0.9567 0.6883 0.3117 0.9926 0.7507 0.9980

4000 - 5000 0.7957 1.0882 0.7046 0.2954 0.9910 0.7572 0.9979

5000 - 6000 0.8163 1.1502 0.7044 0.2956 0.9885 0.7781 0.9960

6000 - 7000 0.8536 1.0339 0.7542 0.2458 0.9890 0.8281 0.9958

7000 - 8000 0.8699 1.0755 0.7804 0.2196 0.9891 0.8353 0.9967

8000 - 9000 0.8721 1.1833 0.7808 0.2192 0.9874 0.8624 0.9943

9000 - 10000 0.6649 2.4213 0.5232 0.4768 0.9718 0.5486 0.9977

Table  17: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
UNet+CBAM. The analysis is conducted for the slice-based segmentation experiment on the LiTS dataset. 
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Figure  39: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
proposed MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance 
comparison is based on the Dice score. 

Figure  40: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
proposed MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance 
comparison is based on the Jaccard index, Intersection over Union (IoU). 
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Figure  41: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
proposed MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance 
comparison is based on the Sensitivity (Recall). 

Figure  42: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
proposed MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance 
comparison is based on the Average Symmetric Surface Distance (ASSD). 
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Figure  43: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
proposed MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance 
comparison is based on the Volume Overlap Error (VOE). 

Figure  44: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
proposed MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance 
comparison is based on the Specificity. 
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 The proposed model has proven its superiority in most of the evaluation metrics. It is noticeable that the proposed 

model maintained an over 6% average performance gap in the Dice score. The performance gap is maximized in the last total 

tumor area category (almost 25% gap in the Dice score). The CT slices in this category can be multiple tumor cases since 

comparison models demonstrated poor segmentation performance with poor edge precision in multiple tumor cases 

according to the ASSD plot based on the number of tumors in the previous section (see Figure  35). We can see the same 

pattern in the last category in terms of Average Symmetric Surface Distance (ASSD). In terms of the Jaccard index, the proposed 

model has maintained an 8% average performance gap among comparison models. A 33% maximum performance gap was 

achieved with the UNet + Resnet18 model in the total tumor area between 9000 𝑚𝑚2 and 10000 𝑚𝑚2. The identical 

performance gap has been demonstrated by volume overlap error (VOE) in all the categories which is the error metric of the 

Jaccard index.  Moreover, UNet + Resnet18 has significantly raised the error rate in most of the categories while the proposed 

model maintains a minimum error rate in most of the categories (see Figure  42). 

 It is worth highlighting that the proposed network depicts a significant performance gap in all the tumor categories 

(see Figure  41). Furthermore, the proposed model has maintained over 14% average performance gap in sensitivity. It has 

achieved a 40% maximum performance boost with UNet + Resnet18 (i.e., 9000 – 10000 𝑚𝑚2 total tumor area range) while 

obtaining a 2% minimum performance boost with UNet + CBAM (i.e., 8000 – 9000 𝑚𝑚2 total tumor area range) in sensitivity. 

In general, all the models demonstrated almost similar performance in terms of accuracy and specificity. In summary, 

quantitative analysis based on the total area of tumors further demonstrates the effectiveness and robustness of the proposed 

architecture. 

 

Figure  45: Quantitative analysis based on the total area of tumors for liver tumor segmentation performance of the 
proposed MANet model and the baseline models for slice-based segmentation on the LiTS dataset. The performance 
comparison is based on the Accuracy. 
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5.6. Liver Tumor Segmentation Validation with a Radiologist 

 The segmentation accuracy of the proposed architecture is further validated by an experienced radiologist to 

ensure the effectiveness of the model in real clinical environments. During the visualization of the segmentation mask, we 

noticed that the ground truth mask of some samples did not correctly annotate the complete area of the tumor. And some 

tumor regions were not annotated in the ground truth. Furthermore, there were some tumor boundary inaccuracies in the 

tumor samples with fuzzy tumor boundaries. In those cases, evaluation metrics cannot provide correct evaluation referring to 

the ground truth due to erroneous ground truth masks. 

 An experienced radiologist in our research team participated in the liver tumor segmentation mask validation based 

on real clinical methods to recognize liver tumor regions. We have selected only 18 samples that represent all the confusion 

and issues encountered during the qualitative analysis to evaluate the segmentation performance. We have presented the 

liver tumor sample including the original CT image, ground truth region on the CT image, predicted liver tumor region by UNet 

on the CT image, and predicted liver tumor region by proposed model on the CT image. The comment of the radiologist is 

comprehensively explained under each sample and the comparison between UNet and the proposed model is shown in 

Table  18. 

 

 

The comment of the radiologist for sample 1 (Figure  46): One tumor is not correctly annotated in the ground truth. But 

the UNet and proposed model have recognized the tumor which was partially annotated in the ground truth. the comparison 

between the UNet and the proposed model, the segmentation of the UNet is slightly smaller than the actual tumor region 

and the segmentation of the proposed model is slightly bigger than the actual tumor region. However, this variability can 

appear with the tumor segmentation by two radiologists (Interobserver variability). The tumor segmentation of the proposed 

model is better than UNet in recognizing tumor regions and recognizing all the tumors present in the CT image. 

 

 

 

 

Figure  46: Liver tumor segmentation sample 1. 
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The comment of the radiologist for sample 2 (Figure  47): The segmentations from the UNet and the proposed model are 

acceptable. Those two segmentations are similar to interobserver variability between two radiologists. The proposed model 

has segmented the tumor region without error segmentations. The segmentation of the proposed model is comparatively 

better than UNet. 

 

The comment of the radiologist for sample 3 (Figure  48): The ground truth does not completely cover the tumor region. 

However, the proposed model completely segmented all the regions of the tumor. The UNet partially segmented the liver 

tumor while the proposed model completely segmented all the tumor regions. 

 

Figure  47: Liver tumor segmentation sample 2. 

Figure  48: Liver tumor segmentation sample 3. 

Figure  49: Liver tumor segmentation sample 4. 
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The comment of the radiologist for sample 4 (Figure  49): The ground truth does not include the fuzzy boundary of the 

tumor. And the UNet has followed the ground truth. However, the proposed model has segmented the whole area of the 

tumor including the fuzzy boundary of the tumor. 

 

The comment of the radiologist for sample 5 (Figure  50): The segmentations from the UNet and the proposed model are 

acceptable. There is no significant difference in segmentation mask between the UNet and the proposed model. However, 

the proposed model has included the fuzzy boundary to the segmentation mask. 

 

 

The comment of the radiologist for sample 6 (Figure  51): The ground truth does not include all the areas of the tumor. 

And the UNet has followed the ground truth. The proposed model has recognized all the tumor regions even better than the 

ground truth. 

Figure  50: Liver tumor segmentation sample 5. 

Figure  51: Liver tumor segmentation sample 6. 
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The comment of the radiologist for sample 7 (Figure  52): The ground truth does not cover the whole tumor region. The 

proposed model has partially segmented the tumor region. However, the UNet has segmented the whole area of the tumor. 

 

 

The comment of the radiologist for sample 8 (Figure  53): The ground truth does not include all the areas of the tumor. 

The UNet and the proposed model followed the ground truth without recognizing all the areas of the tumor. 

 

 

Figure  52: Liver tumor segmentation sample 7. 

Figure  53: Liver tumor segmentation sample 8. 

Figure  54: Liver tumor segmentation sample 9. 
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The comment of the radiologist for sample 9 (Figure  54): The proposed model has segmented the complete tumor 

region comparatively better than UNet. 

 

 

The comment of the radiologist for sample 10 (Figure  55): The proposed model has correctly segmented with the 

inclusion of all the tumors while UNet failed to capture all the tumors in the CT image. 

 

 

The comment of the radiologist for sample 11 (Figure  56): The UNet and the proposed model have recognized the tumor 

region. However, both models have recognized bile duct dilatation as a tumor region. The bile duct dilatation region cannot 

be recognized accurately by one CT image. A few consecutive slices should be observed to recognize the exact region of bile 

duct dilatation to exclude from the tumor region. Most probably the actual tumor area is similar to the tumor region in the 

ground truth. 

Figure  55: Liver tumor segmentation sample 10. 

Figure  56: Liver tumor segmentation sample 11. 
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The comment of the radiologist for sample 12 (Figure  57): This tumor is quite contiguous. Two tumors can be connected. 

The proposed model has segmented the whole area of the tumor compared to UNet. 

 

 

The comment of the radiologist for sample 13 (Figure  58): The tumor has spread to an area that is bigger than the ground 

truth. The proposed model has recognized the whole tumor area correctly while UNet follows the ground truth. 

 

 

Figure  57: Liver tumor segmentation sample 12. 

Figure  58: Liver tumor segmentation sample 13. 

Figure  59: Liver tumor segmentation sample 14. 
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The comment of the radiologist for sample 14 (Figure  59): The UNet and the proposed model have recognized the tumor 

region annotated in the ground truth. There should be one more tumor region that has been recognized by the proposed 

model. The proposed model has accurately recognized all the tumor regions in the CT image. 

 

 

The comment of the radiologist for sample 15 (Figure  60): The proposed model has segmented the complete tumor 

region comparatively better than UNet. 

 

 

The comment of the radiologist for sample 16 (Figure  61): The segmentations from the UNet and the proposed model 

are acceptable. There is no significant difference in segmentation mask between the UNet and the proposed model. 

Figure  60: Liver tumor segmentation sample 15. 

Figure  61: Liver tumor segmentation sample 16. 
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The comment of the radiologist for sample 17 (Figure  62): The segmentations from the UNet and the proposed model 

are acceptable. There is no significant difference in segmentation mask between the UNet and the proposed model. 

 

 

The comment of the radiologist for sample 18 (Figure  63): The segmentations from the UNet and the proposed model 

are acceptable. However, the proposed model has included the fuzzy boundary to the segmentation mask and is 

comparatively better than UNet. 

Figure  62: Liver tumor segmentation sample 17. 

Figure  63: Liver tumor segmentation sample 18. 
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 The liver segmentation results validation proves that the proposed model has demonstrated better performance 

according to real clinical evaluation by an experienced radiologist. In particular, the proposed model can segment the tumor 

region with accurate edge precision. The recognition of tumors with fuzzy tumor boundaries can be challenging even for a 

radiologist. However, the proposed model has proven superior in recognizing tumors with fuzzy boundaries. 

 In some cases, the radiologist mentioned that the proposed model can recognize tumor regions even better than 

the ground truth. It further indicates that some ground truths have errors in tumor boundary annotation. Due to the issues in 

ground truth, accurate segmentation can be misevaluated by the evaluation metrics used in quantitative analysis. 

Furthermore, the validation of the results proves the superiority of the proposed model in liver tumor segmentation. The 

performance of the model can be maximized by training and evaluating the model with high-quality data and tumor region 

annotations. 

 

 

 

 

 

 

Poor than UNet Same as UNet Better than UNet

Sample 1 ✓

Sample 2 ✓

Sample 3 ✓

Sample 4 ✓

Sample 5 ✓

Sample 6 ✓

Sample 7 ✓

Sample 8 ✓

Sample 9 ✓

Sample 10 ✓

Sample 11 ✓

Sample 12 ✓

Sample 13 ✓

Sample 14 ✓

Sample 15 ✓

Sample 16 ✓

Sample 17 ✓

Sample 18 ✓

Remark of the Radiologist
Validation sample

Table  18: The remark of the radiologist for the liver tumor segmentation results validation. 
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5.7. Qualitative Analysis of Segmentation Mask 

 The qualitative analysis additionally proves essential for evaluating the performance and effectiveness of the 

proposed model for the tumor segmentation task. We performed qualitative analysis by classifying segmentations into four 

categories: large tumors, minor tumors, poor segmentations, and over/non-segmentations. The liver tumor segmentation 

samples of the proposed MANet and other comparison networks from the volume-based and slice-based liver tumor 

segmentation experiments are illustrated in Figure  64, Figure  65, and Figure  66. The liver tumor segmentation samples of 

the proposed MANet and state-of-the-art networks from slice-based liver tumor segmentation experiments are illustrated in 

Figure  67. 

 

5.7.1. Qualitative Analysis of Comparison Networks 

 Qualitative Analysis is conducted to evaluate the correctness of the tumor boundary identification and the accurate 

localization of the tumor segmentation. It is easily noticeable that all the models demonstrated acceptable segmentation 

performance for large tumor segmentation. However, in the first large tumor sample in both slice-based and volume-based 

cases, a partial tumor segmentation has been shown by the comparison models while the proposed MANet performed 

accurate segmentation that is almost identical to its ground truth (see Figure  64(1-1) and Figure  65(1-1)). All the networked 

has predicted two large tumors as one tumor in the second large tumor sample in Figure  64(1-2) and Figure  65(1-2), this 

segmentation is performed with slight false positive in accordance with the ground truth. The fuzzy boundary of the tumor 

can result in comparatively minor over-segmentation or false positives in the segmentation. Minor over-segmentation blobs 

appeared in comparison models except the UNet+Resunet18 model in the experiment based on slices. A slight over-

segmentation has commonly presented in all the models in volume-based experiment results (see Figure  64(1-2) and Figure  

65(1-2)). In general, the proposed network has predicted almost similar segmentation masks to the ground truth in large tumor 

cases in both slice-based and volume-based segmentation experiments. 

 Computer-aided diagnosis (CAD) systems for liver tumor segmentation commonly endure poor performance in 

small tumor segmentation. Achieving greater performance in small tumor segmentation is still challenging not only for CAD 

systems but also for experienced radiologists. In particular, small tumor recognition or segmentation is paramount to treat the 

disease in an earlier stage in order to achieve better survival. It is easily noticeable that the proposed MANet model has 

proven its small tumor segmentation capability with better accuracy compared to the baseline methods (see Figure  64(2-1, 

2-2) and Figure  65(2-1, 2-2)). In the segmentation performance visualization in Figure  64 and Figure  65, we have selected 

two tumor segmentation samples under large tumor and small tumor categories in both slice-based and volume-based 

experiment test sets  (i.e., Figure  64(1-2, 2-2) and Figure  65(1-2, 2-2)). Those two common samples in both experiments have 

demonstrated the robustness of the proposed MANet model’s liver tumor segmentation in both experiments. Furthermore, 

UNet+CBAM, which used attention at each level of the network in the same way as the proposed MANet, presented nearly 

identical segmentation performance in most of the cases in Figure  64 and Figure  65. A poor segmentation prediction showed 

the failure to accurately imitate ground truth and partial segmentations (see Figure  64(3-1) and Figure  65(3-1). In this instance, 

the proposed model could segment all tumor regions with comparatively lower edge precision, whereas baseline methods 

failed to predict all the tumor regions. 

 For making accurate clinical management decisions, recognizing all the tumors present in the CT image is necessary. 

Complete survival or recovery may not be achieved in case of missing small tumors in the radiological scan due to poor 
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clinical management decision-making. To assess the capability of the proposed design to segment tumors in multiple tumor 

cases, randomly selected multiple tumor samples were visualized in Figure  66. In this illustration, we recognize that all of 

the models are capable of segmenting large tumors with enough accuracy and edge precision. Nonetheless, in the sample CT 

slices, the majority of the baseline models were struggling to segment small tumors. Among the comparison models, UNet 

and UNet+Resnet18 models commonly illustrated partial or missing segmentation for small tumors in multiple cases. 

However, the baseline models that were designed with attention mechanisms (i.e., Attention UNet and UNet+CBAM) 

demonstrated their capabilities in capturing all the tumors with or without better edge precision, as almost similar to the 

segmentation of the proposed MANet model (see Figure  66(2, 3)). Furthermore, Figure  66(2) has shown a poor segmentation 

sample from the proposed model compared to other randomly selected samples illustrated in Figure  66. However, the 

proposed model depicts comparatively better segmentation than other comparison models. In short, we can see that the 

formation of the proposed MANet architecture with attention mechanisms is significantly more effective than the baseline 

models in performing accurate and stable liver tumor segmentation. 

 

5.7.2. Qualitative Analysis of state-of-the-art Networks 

 We visualized the same samples that were shown in slice-based segmentation in Figure  64 to make a fair 

comparison with state-of-the-art approaches. Figure  67 depicts the segmentation performance of state-of-the-art models. In 

general, all the state-of-the-art approaches show almost identical segmentation performance in small tumor samples. 

However, TA-Net and UNet 3+ models performed the segmentation with slight over-segmentation in large tumor samples 

which can be seen in Figure  67(1,2). ResUNet++ and SmaAt-Net were not able to capture the tumor boundaries with greater 

edge precision in large tumor segmentation. Minor under-segmentation appeared in Figure  67(1), which is classified as false 

negatives. It is noticeable that the models could not perform accurate segmentation in multiple tumor cases in common. 

However, the proposed MANet model could recognize and segment all the tumor regions compared to the state-of-the-art 

approaches with acceptable accuracy. 
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Figure  64: The qualitative analysis of liver tumor segmentation performance of the proposed MANet model 
and comparison models from the slice-based segmentation experiment. The contour image of the liver tumor 
segmentation is generated and illustrated right below the liver tumor segmentation mask to visualize the liver 
tumor boundary. From left to right: the original CT image, results obtained by UNet (pink), Attention UNet 
(orange), UNet+Resnet18 (green), UNet+CBAM (cyan), MANet (blue), and the corresponding ground truth mask 
(red). Large tumors, Small tumors, and Poor Segmentation are the three different perspectives that are 
illustrated. 
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Figure  65: The qualitative analysis of liver tumor segmentation performance of the proposed MANet model 
and comparison models from the volume-based segmentation experiment. The contour image of the liver 
tumor segmentation is generated and illustrated right below the liver tumor segmentation mask to visualize 
the liver tumor boundary. From left to right: the original CT image, results obtained by UNet (pink), Attention 
UNet (orange), UNet+Resnet18 (green), UNet+CBAM (cyan), MANet (blue), and the corresponding ground truth 
mask (red). Large tumors, Small tumors, and Poor Segmentation are the three different perspectives that are 
illustrated. 
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Figure  66: The qualitative analysis of liver tumor segmentation performance in over/non-segmentations in 
multiple tumor cases of the proposed MANet model and comparison models from the slice-based 
segmentation experiment. The contour image of the liver tumor segmentation is generated and illustrated 
right below the liver tumor segmentation mask to visualize the liver tumor boundary. From left to right: the 
original CT image, results obtained by UNet (pink), Attention UNet (orange), UNet+Resnet18 (green), 
UNet+CBAM (cyan), MANet (blue), and the corresponding ground truth mask (red). Multiple tumor cases of five 
different samples are illustrated. 
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Figure  67: The qualitative analysis of liver tumor segmentation performance of the proposed MANet model 
and state-of-the-art models from the slice-based segmentation experiment. The contour image of the liver 
tumor segmentation is generated and illustrated right below the liver tumor segmentation mask to visualize 
the liver tumor boundary. From left to right: the original CT image, results obtained by UNet 3+ (H. Huang et 
al., 2020) (pink), ResUNet++ (Jha et al., 2019) (orange), SmaAt-UNet (Kevin et al., 2021) (green), TA-Net (Shuchao 
et al., 2021) (cyan), MANet (blue), and the corresponding ground truth mask (red). Large tumors, Small tumors, 
and Poor Segmentation are the three different perspectives that are illustrated. 
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5.8. Model Feature Visualization  

 The proposed MANet architecture is designed by utilizing the strengths of the attention mechanisms. To assess the 

effectiveness of the proposed architecture that formed implementing attention mechanisms in all the levels of the network, 

features of the network are visualized in Figure  68. To compare the feature propagation with comparative networks, the 

corresponding initial encoder block feature maps and final decoder block feature maps were visualized in Figure  69. All 

feature maps are constructed by mapping features between their maximum and minimum values. 

 

 

 

Figure  68: Feature visualization before and after the MANet architecture's Skip Connection Attention Gate (SCAG), Channel 
Attention (CA), Spatial Attention (SA), and Convolutional Block Attention Module (CBAM). 
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 The proposed architecture is comprised mainly of two attention mechanisms, those are channel-wise attention 

mechanisms and spatial-wise attention mechanisms. The channel attention mechanism highlights important features while 

suppressing irrelevant features to liver tumor segmentation in the channel dimension. The convolutional block attention 

module (CBAM) initiates focusing on the region of interest (ROI) for tumor segmentation at the deepest stage of the network. 

The network continued to retain contextual features in the decoder path by the spatial attention mechanism that was 

implemented in all the levels of the decoder path. The effectiveness of all the attention mechanisms in the network is 

illustrated by calculating the feature maps of the network before and after the attention mechanisms (see Figure  68). As 

illustrated in Figure  68, spatial attention (SA) significantly suppressed irrelevant features in the spatial dimension. The skip 

connection attention gate (SCAG) that is implemented in skip connection is designed with a spatial attention mechanism. It 

creates the focus on ROI by extracting important features from the encoder path to concatenate with corresponding deep 

features in the decoder. 

 The feature map visualization is further continued with comparison models to compare the effectiveness of the 

proposed architecture among comparison models (see Figure  69). The initial encoder block feature and the final decoder 

block features are visualized to compare the networks. The proposed MANet model shows a greater focus on the ROI through 

Figure  69: Feature visualization of corresponding initial encoder block and final decoder block feature maps of comparison 
networks. 
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the feature propagation process while suppressing irrelevant regions for the segmentation task. Initial encoder block features 

depict the effectiveness of the channel attention mechanism to enhance the segmentation performance compared to the 

comparison models. The retention of important features in spatial dimension is visualized in final decoder block features and 

it proves the superiority of the proposed architectural design with spatial attention. In summary, the proposed MANet 

architecture depicts a substantially better interpretation of liver tumor segmentation. 

 

5.9. Computational Cost Analysis  

 To contrast the proposed model among other comparison models in terms of computational cost, computational 

complexity, total parameter counts, and the inference time per slice are calculated in Table  19. The UNet model 

demonstrated minimum computational complexity. However, it utilizes a significantly higher amount of memory due to a 

comparatively large number of parameters which is slightly similar to double of parameters in the proposed MANet 

architecture. The Attention UNet is lighter in terms of parameter count (i.e., 6.34 M) with minor inference time. However, the 

computational complexity is slightly higher than the base model UNet. The UNet+Resnet18 model has the highest total 

parameter count (i.e., 17.85 M) while archiving the best inference time of 36.2 ms. 

 The highest computational complexity is 166.8 GMac, which is the model comprised of CBAM (i.e., UNet+CBAM 

model). Furthermore, the proposed MANet model computational complexity is almost closer to the UNet+CBAM model. It is 

clear that the proposed model has comparatively higher computational complexity due to the implementation of channel 

attention, spatial attention, and CBAM in the network in all stages. However, we could reduce the computational complexity 

of the proposed model compared to UNet+CBAM, using channel attention and spatial attention separately in the encoder 

and decoder path respectively, rather than applying CBAM to all the stages of the network. In summary, the proposed MANet 

architecture manifested significantly better segmentation performance by utilizing approximately half of the parameter count 

of the base model of UNet. 

 

 

 

 

 

 

 

 

 

Network
Computational 

complexity (MACs(G))

Total training 

parameters (M)

Inference time 

(ms)

UNet 94.45 13.37 41.60

Attention UNet 97.07 6.34 38.80

UNet + Resnet18 119.14 17.85 36.20

UNet + CBAM 166.80 8.39 82.60

MANet (Proposed model) 132.37 7.83 81.80

Table  19: Analysis of computational costs based on computational complexity, total training parameters, and inference 
time. The best values are in bold. 
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5.10. Ablation Analysis  

 The effectiveness of the proposed MANet architecture design is evaluated with an ablation analysis under 8 steps 

(Table  20). UNet, the base model for the proposed design evaluated in the first step of the ablation analysis. The 

convolutional blocks in UNet were redesigned by integrating the residual learning function to create the UNet+RB model for 

the second experiment. After that, each attention mechanism implemented in the proposed architecture was separately 

implemented to the UNet+RB model to conduct three experiments (i.e., No.3, 4,5, and 6) by selecting UNet+RB as the 

backbone of the proposed network. Moreover, the UNet model was the base model that used to evaluate the effectiveness 

of all the attention mechanisms and techniques in the experiments. The effectiveness of all the attention mechanisms shown 

in experiment No. 7, further indicates that the residual learning has demonstrated a significant impact on the performance of 

the proposed MANet architecture. 

 

 

The results of the ablation analysis show that the developments of the proposed MANet architecture are 

substantially beneficial to the liver tumor segmentation performance of the network. In experiment No.2, the residual structure 

showed slight improvements. It has further proved the crucial importance of residual blocks in experiment No.7. Because the 

integration of all the attention mechanisms in UNet failed to outperform the proposed MANet that comprised of residual 

structure. Among the attention mechanisms, channel attention (CA) delivered a significant performance boost to the proposed 

MANet architecture. It has further validated in experiment No. 6, the model designed with convolutional block attention 

module (CBAM) using the backbone of UNet+RB. It can be demonstrated that the combination of UNet, Residual block, and 

attention mechanism outperforms the integration of a single mechanism to the base model UNet. Since the fusion of all the 

mechanisms achieves better feature extraction compared to the integration of a single mechanism to the base model UNet. 

We can conclude that combining deep learning techniques in MANet could significantly improve the performance of liver 

tumor segmentation. 

 

 

 

 

 

1 UNet 0.7522 ± 0.178 1.4342 ± 1.320 0.6310 ± 0.190 0.3606 ± 0.190 0.9928 ± 0.006 0.8425 ± 0.204 0.9956 ± 0.003

2 UNet + RB 0.7533 ± 0.182 1.5172 ± 1.395 0.6359 ± 0.192 0.3640 ± 0.192 0.9925 ± 0.006 0.8512 ± 0.202 0.9951 ± 0.004

3 UNet + RB + SCAG 0.7532 ± 0.195 1.4247 ± 1.298 0.6353 ± 0.202 0.3646 ± 0.202 0.9927 ± 0.006 0.8329 ± 0.224 0.9956 ± 0.003

4 UNet + RB + CA 0.8010 ± 0.155 1.0137 ± 1.000 0.6901 ± 0.177 0.3027 ± 0.177 0.9940 ± 0.004 0.8708 ± 0.173 0.9965 ± 0.002

5 UNet + RB + SA 0.7550 ± 0.201 1.1610 ± 1.069 0.6389 ± 0.205 0.3610 ± 0.205 0.9929 ± 0.006 0.8292 ± 0.233 0.9958 ± 0.003

6 UNet + RB + CBAM 0.8006 ± 0.157 0.8842 ± 0.814 0.6897 ± 0.178 0.3038 ± 0.178 0.9938 ± 0.004 0.8712 ± 0.180 0.9962 ± 0.003

7 UNet + SCAG + CA + SA + CBAM 0.8056 ± 0.153 0.8376 ± 0.733 0.6992 ± 0.174 0.3007 ± 0.174 0.9941 ± 0.004 0.8715 ± 0.177 0.9967 ± 0.003

8 MANet: UNet + RB + SCAG + CA + SA + CBAM 0.8145 ± 0.150 0.7084 ± 0.701 0.7084 ± 0.171 0.2915 ± 0.171 0.9947 ± 0.004 0.8723 ± 0.173 0.9970 ± 0.002

Accuracy
Sensitivity 

(Recall)
SpecificityNo Method Dice score ASSD 

Jaccard index 

(IoU)
VOE

Table  20: Ablation analysis for the proposed MANet architecture. The result from MANet and the best values are in bold. 
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6. Conclusion and Future Direction   
 We have presented a novel architectural design called a multi-attention network (MANet) comprised of channel 

and spatial attention mechanisms and residual learning. The purpose of the development is to automatically segment liver 

tumors by Computed tomography (CT) image of the hepatobiliary phase. This system is highly beneficial for radiologists to 

diagnose liver tumors with better accuracy in order to perform tumor burden analysis and treatment planning. The proposed 

architecture is formed with the basis of UNet and strengthened with channel and spatial attention mechanisms and residual 

learning. Moreover, channel attention is employed to recalibrate features in the channel dimension while spatial attention to 

extract important features in the spatial dimension to achieve better focus on the location of the tumors. The spatial attention 

mechanism is implemented in skip connection to extract important features from low-level encoder features to concatenate 

with high-level semantic features in the decoder path. To address the degradation and learning errors while improving the 

gradient flow, residual learning is employed in the encoder of the network. 

 We have evaluated the effectiveness of the proposed design on the LiTS17 and 3DIRCADb datasets using slice-

based and volume-based segmentation examinations, which indicated the superiority of our network over baseline 

approaches. Furthermore, we conducted an empirical study to compare the quantitative and qualitative studies in order to 

evaluate performance, which could be used to prove the efficiency and robustness of the attention techniques applied in 

the proposed network design. The effectiveness of the proposed architecture is assessed further in the ablation study under 

8 steps. However, there was a considerable performance difference between slice-based segmentation and volume-based 

segmentation. Because of the substantial heterogeneity in data sources in terms of the shape and appearance of liver tumors 

and intensity variations, this should be one of the difficulties. Consequently, significant challenges must be addressed before 

the model can be generalized to perform volume-based segmentation in a real-world clinical environment. 

 We intend to analyze the model with other datasets in the future to validate its generalizability. Furthermore, 

we do experiments to assess the model's ability to segment the liver and other organs with tumors (i.e., kidney, renal tumors) 

using various medical imaging modalities such as MRI, PET, and US. Our goal is to create this architecture using state-of-the-

art deep learning approaches to reduce computational complexity while boosting segmentation performance with a greater 

level of stability.
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