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The presence of social media platforms has recently transformed the digital 
landscape, with an ever-increasing user base. As these platforms become central to 
daily life, the need for recommendation systems that genuinely cater to individual 
preferences has never been more paramount. While current recommendation 
algorithms excel at curating content based on user interests, they often overlook 
inherent biases, notably the positional bias where users engage with content due to its 
placement rather than its inherent relevance. This oversight is particularly evident in 
every social media recommendation system. Addressing this challenge, we proposed 
a position-aware methodology within the Deep and Cross framework, aptly termed 
'Position-Aware DCN.' By explicitly accounting for positional preferences, our 
proposed model aims to provide more genuine, unbiased recommendations, ensuring 
that users are presented with content that aligns with their interests and is not just 
influenced by its position in the feed. Evaluations conducted on Thai social media 
datasets reveal that our proposed model offers a marked improvement over traditional 
recommendation systems, underscoring its potential to foster a more user-centric 
digital experience. The author also implements the proposed model as an application 
programming interface (API) in an online deployment format by showcasing its 
functionality and seamless integration into the front-end web app. 
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Chapter 1 
 

Introduction 
 

1.1 Background 
 In the last decade, social media platforms have experienced rapid growth, 
becoming an integral part of our daily lives. According to a report by Demandsage, as 
of 2023, there are over 4.9 billion social media users worldwide, projected to increase to 
almost 5.42 billion by 2025 [1]. This rise underscores the transformative power of social 
media, reshaping communication, information dissemination, and even commerce. 
 

Recommender systems are central to providing a personalized user experience 
on these platforms. These systems sift through vast amounts of data, analyzing user 
behaviors, preferences, and interactions to curate and suggest content that aligns with 
individual interests. Historically, recommender systems were implemented using 
methods like collaborative filtering or content-based filtering [2] . While effective, these 
traditional methods had limitations, such as the cold start problem and scalability issues. 
However, with the advent of advanced computational techniques, newer 
implementations have emerged, offering more nuanced and scalable solutions.  
 

The integration of deep learning techniques, particularly neural networks, has 
significantly shifted the landscape of recommender systems. Convolutional Neural 
Networks (CNNs) and Recurrent Neural Networks (RNNs), with their ability to model 
complex non-linear relationships, have found applications in recommendation systems, 
enhancing the granularity and adaptability of recommendations [3]. By leveraging 
embeddings and deep architectures, these models can capture intricate patterns in 
user data, offering a dynamic recommendation experience that evolves with changing 
user preferences. 
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The development of recommender systems took a turn with the introduction of 
neural networks, leading to the creation of the "Wide and deep" learning model [4]. This 
model smartly combines the strengths of linear models and deep neural networks, 
balancing between memorizing and generalizing feature interactions. Following this, the 
"Deep & Cross" network [5] came into play, advancing the field by adding a cross-
network that applies feature crossing at each layer, allowing it to effectively learn 
bounded-degree feature interactions, improving predictive performance in various 
recommendation situations while keeping the benefits of deep networks in automated 
feature engineering. This progress highlights a significant step towards finding the right 
balance between expressiveness and generalization in recommender systems. 
 

However, a persistent challenge that has emerged is positional bias [6]. Users, 
influenced by the layout and presentation, often exhibit a propensity to interact with 
content based on its placement, leading to a skewed feedback loop and potentially sub-
optimal content recommendations. For instances, we have observed this scenario with 
dataset from one of Thai social media platform "Blockdit". The dataset contains user and 
article information, and their interactions. As shown in Fig. 1, where we illustrate the 
relationship between the position of articles and their respective total clicks for the first 
100 positions. 
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Figure 1 Total clicks for the first 100 positions 

 
 

 
Figure 2 Mean CTR for article by their positions in the feed 

 
It is evident that articles in the top positions receive significantly more clicks, with 

the number of clicks decreasing exponentially as the position increases. Similarity, in 
Fig. 2, where we sample the data and explore the correlation between each article 
position in the feed and its click-through rate (CTR). We observe that the CTR drops 
dramatically with its position. These imply that a user clicks on an item not only because 
they favor it but also because it is in a good position. 
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To address this challenge, we present an article feed recommendation using 
Position-Aware Deep Cross Network (Position-Aware DCN). By integrating positional 
embeddings into the DCN architecture, our method aims to mitigate the effects of 
position bias, ensuring that content recommendations are both relevant and unbiased. 
Moreover, we broaden the scope by implementing the proposed model as an API in an 
online deployment format. Through showcasing the model's functionality and its 
seamless integration as an API, our objective is also to enrich the collective 
understanding of deploying recommender systems in real-world scenarios. 

 
1.2 Research Objectives 

 
1) To develop a position-debiasing article recommendation system. 
2) To develop an application programming interface (API) for position-debiasing 

article recommendation system. 
 

1.3 Research Scopes 
 
1) Using python on developing position-debiasing article recommendation     

system. 
2) Using the dataset has been provided by LTMAN Co., Ltd., the service provider 

of the Blockdit application, a Thailand social media platform which allowing 
users to read articles or content from other members. 

3) Utilizing user-article interaction data for model creation. 
4) Developing an API as an implementation demo for position-debiasing article 

recommendation system. 
 
1.4 Research Methodologies 

 
1) Study and research related theories for position-debiasing article 

recommendation system. 
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2) Study and research literature review. 
3) Study python and required libraries for developing position-debiasing article 

recommendation system. 
4) Conduct exploratory data analysis. 
5) Conduct data preprocessing. 
6) Build position-debiasing article recommendation system. 
7) Test and evaluate research results. 
8) Summarize the results. 
9) Build an API for position-debiasing article recommendation system. 
10)  Prepare and submit an academic paper. 
11)  Make conclusions and produce thesis. 

 
1.5 Research Outcomes 

 
1) To be able to develop a position-debiasing article recommendation system. 
2) To be able to develop an API for position-debiasing article recommendation 

system. 
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 An activity diagram of research methodologies is displayed in Fig. 3. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Figure 3 Research Methodology Activity Diagram 
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Chapter 2 
 

Related Work 
 

In this section, we delve into research that has contributed to the understanding 
and implementing of the two-tower architecture and position-debiasing techniques. The 
two-tower architecture involves the parallel processing of user and item information 
through separate neural network towers, enabling more effective learning of user-item 
interactions. Additionally, we explore the research dedicated to addressing the issue of 
position bias in recommender systems. 

 
2.1 Research in two-tower recommender systems 
 

In recommender systems, deep neural networks have emerged as a pivotal tool 
for building recommender systems due to their ability to capture complex nonlinear 
relationships between users and items. DNNs have consistently outperformed traditional 
collaborative filtering methods, such as matrix factorization, in various recommendation 
tasks. He et al. [7] introduced a general framework for applying DNNs to 
recommendation tasks. NCF utilizes a multilayer perceptron (MLP) to model the 
interactions between users and items, achieving state-of-the-art performance on several 
benchmark datasets. Cheng et al. [4] proposed a hybrid DNN architecture combining a 
wide layer and a deep layer to capture low-order and high-order interactions between 
users and items. W&D achieved significant performance improvements over traditional 
methods and became widely adopted in recommender systems. 

 
Building upon the extensive research on DNNs in recommender systems, 

researchers have leveraged this innovative approach to craft state-of-the-art algorithms. 
Among these, one prominent architecture that has gained significant attention is 
"DeepFM." 
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Guo et al. [8]. proposed a novel neural network architecture called DeepFM, 
which operates by integrating the capabilities of factorization machines (FMs) and Deep 
Neural Networks (DNNs) to capture a spectrum of feature interactions in 
recommendation tasks adeptly. The model excels at comprehensively addressing low-
order and high-order interactions, contributing to remarkable advancements in 
performance compared to its predecessors. Its widespread adoption as a go-to model 
for Click-Through Rate (CTR) prediction in recommender systems underscores its 
efficacy and impact in practical applications. The DeepFM architecture is displayed in 
Fig. 4. 
 

 
Figure 4 DeepFM architecture (Source: Huifeng Guo, Ruiming Tang. DeepFM: A 

Factorization-Machine based Neural Network for CTR Prediction in Proceedings of the 
Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) 

 
The author uses this research as a foundational exploration, and the insights 

gained from DeepFM's success lay the groundwork for a better understanding of 
recommendation system architectures. 
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2.2 Research in positional-debiasing recommender system 
 

In addressing position debiasing, deep neural networks ensure that the 
recommendations generated reflect genuine user preferences rather than artifacts of 
positional biases. Xingyuan et al. [10] propose a Deep Presentation Bias Integrated 
Framework (DPBIF), as seen in Fig. 5, that considers overall presentation bias, including 
context. DPBIF introduces a presentation block into user behavior sequences and 
predicted target items to personalize the integration of presentation bias into CTR 
prediction. It also avoids the independence assumption and estimates multiple 
integrated CTRs for each item under different presentations. These CTRs transform the 
ranking problem into an item-to-position assignment problem, optimized using the Kuhn-
Munkres (KM) algorithm. Offline experiments and online A/B tests demonstrate the 
effectiveness of DPBIF. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 DPIN architecture (Source: Jianqiang Huang, Ke Hu. Deep Position-wise 
Interaction Network for CTR Prediction in Proceedings of the 44th International ACM 

SIGIR Conference on Research and Development in Information Retrieval) 
 

H, Jianqiang et al. [9]  introduce a Deep Position-wise Interaction Network 
(DPIN) to address the bias problem in click-through rate (CTR) prediction in online 

https://dl.acm.org/doi/proceedings/10.1145/3404835
https://dl.acm.org/doi/proceedings/10.1145/3404835
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advertising and recommender systems. It aims to efficiently combine all candidate items 
and positions for estimating CTR at each position, achieving consistency between offline 
and online models. The DPIN model utilizes a two-layer transformer with self-attention 
and is trained using stochastic gradient descent with actual position features and cross-
entropy loss. It has been deployed in a sponsored search advertising system and shows 
statistically significant improvement over a highly optimized baseline in a rigorous A/B 
test. 

  
Positional debiasing in recommender systems addresses the inherent bias that 

emerges due to the positional influence on user interactions. Users often interact more 
with items at certain positions (e.g., the top of a list) not because of their relevance but 
due to their visibility and accessibility, which can introduce bias into the learned models. 
There are several ways to mitigate position bias [12]. One is introducing randomness 
while collecting click data. Because multiple items can appear in the same position, we 
can log which items performed better and train our models accordingly. Another 
approach is to use the measured position bias to derive logged data. The Google paper 
[13] used inferred position bias to train models optimized on inverse propensity 
weighted precision. 

 
G, Huifeng et al. [11] propose the Position-bias Aware Learning framework 

(PAL), which models position bias during offline training and conducts online inference 
without position information. PAL utilizes a two-stage training process. In the first stage, 
as seen in Fig. 6, a position-aware model is trained using historical data, capturing the 
relationship between item position and CTR. In the second stage, a position-
independent model is trained using the same data, excluding position information. 
During online inference, the position-independent model predicts CTR, effectively 
removing position bias. Experimental results demonstrate that PAL significantly 
outperforms existing methods in offline and online settings. 
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Figure 6 PAL architecture (Source: Guo, H.a.Y. PAL: a position-bias aware learning 
framework for CTR prediction in live recommender systems in Proceedings of the 13th 

ACM Conference on Recommender Systems) 
 

Based on these research studies, integrating deep neural network models in 
mitigating bias, especially positional bias, has shown powerful improving performance in 
recommender systems. Therefore, this approach will be applied in this research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

https://dl.acm.org/doi/proceedings/10.1145/3298689
https://dl.acm.org/doi/proceedings/10.1145/3298689
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Chapter 3 
 

Background 
 

In this section, we provide knowledge for implementing our proposed approach. 
The proposed approach leverages a collaborative filtering recommendation system, a 
two-tower recommendation system with deep and cross neural network framework, a 
position bias in the recommendation system, and the application of positional debiasing 
in the recommendation system. 

 
3.1 Recommender System 

 
Recommender systems, also known as recommendation systems or engines, 

are information filtering tools designed to predict and suggest items or content a user 
might be interested in based on their preferences and historical interactions. As seen in 
Fig. 7, These systems are pivotal in addressing the information overload problem by 
delivering personalized recommendations that enhance user experience and 
engagement in various domains, such as e-commerce, entertainment, social media, and 
more.  

 

 
Figure 7 An example of recommender system concept 
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Recommender systems are trained to understand the preferences, previous 
decisions, and characteristics of people and products using data gathered about their 
interactions. These include impressions, clicks, likes, and purchases. Because of their 
capability to predict consumer interests and desires on a highly personalized level, 
recommender systems are a favorite with content and product providers. They can drive 
consumers to think about any product or service that interests them, from books to 
videos to health classes to clothing. 

 
To enable the delivery of personalized recommendations, a recommender 

system necessitates access to user information, often referred to as a user profile or 
user model. In the context of our example, such as a book recommendation in Fig. 3, 
this involves capturing data on a user's preferences, notably the books they have 
previously read. The user profile forms the nucleus of every recommender system, 
serving as the foundation for predicting which additional books might align with a user's 
interests. 

 
The method through which a recommender system acquires user information 

varies across recommendation techniques. Regardless of the approach, the collection 
and maintenance of user profiles remain integral. User preferences can be obtained 
implicitly through observing and analyzing user behavior, such as their interactions with 
books. Alternatively, explicit information can be sought by directly asking users about 
their preferences. Recognizing that the core concepts underlying recommender 
systems hinge on fundamental techniques is crucial. One is collaborative filtering. This 
technique embodies distinct strategies for leveraging user profiles to generate 
personalized recommendations, contributing to the diversity and effectiveness of 
recommender systems. 
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3.2 Collaborative Filtering 
 

Collaborative filtering (CF) represents a cornerstone in recommender system 
design, offering a robust method for predicting user preferences based on historical 
interactions. At its core, collaborative filtering operates on the premise that users with 
similar preferences will likely share familiar tastes. Compared to other recommendation 
techniques, collaborative filtering does not require an intricate understanding of item 
characteristics. Picture a scenario, as seen in Fig. 8, where you and your close friends 
often watch movies together. If, during a meal, your friend prefers a specific type of 
movie, you might choose a similar one based on your shared past movie preferences. In 
this manner, collaborative filtering draws upon the collective tastes of users with similar 
preferences akin to the dynamics observed in real-life situations. 

 

 
Figure 8 An example of collaborative filtering scenario 

 
 

Collaborative filtering, relying on user behavior, boasts several advantages over 
content-based filtering. One significant strength lies in its effectiveness without requiring 
additional development work, especially in scenarios with large user databases. The 
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recommendation list remains potent as it leverages the behavioral patterns of users, 
fostering diversity in recommendations. For example, collaborative filtering might 
connect seemingly unrelated items if you and your friend are interested in hiking. If your 
friend has data on camping gear, the system could recommend camping equipment 
based on your shared interest in hiking. 

  
However, collaborative filtering has its challenges. One notable drawback is the 

cold start problem, particularly affecting new users, items, or systems. In such 
instances, where information about the user is limited or ratings for new items are 
limited, collaborative filtering needs to provide accurate recommendations. Scalability is 
another concern, especially when matching target users with others who exhibit similar 
behavior. The technique's efficiency relies heavily on the number of users; each user 
must interact with enough items to maintain effectiveness. Lastly, the sparsity of data 
poses a critical challenge, as users often need to rate the majority of items, leading to 
sparse ratings. 

  
To illustrate, consider a scenario where a user explores a new hobby, such as 

photography. The recommendations may be less accurate if the collaborative filtering 
system lacks sufficient data on this new interest. Additionally, as more users join the 
platform, the challenge of matching behaviors and maintaining efficiency becomes 
increasingly complex. The sparsity issue arises when users explore niche interests, 
resulting in limited ratings for various items related to that specific interest. 

  
The Two-Tower model emerges as a solution to enhance recommendation 

system performance from the limitation mentioned above. This model addresses the 
cold start problem by leveraging auxiliary information to understand better and 
recommend items for new users or items with limited interaction history. Scalability 
concerns are mitigated through the model's ability to efficiently handle many users and 
items by optimizing the recommendation process. Moreover, the Two-Tower model 
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tackles the sparsity of data challenge by incorporating auxiliary features and 
embeddings, providing a more comprehensive understanding of user preferences, and 
ensuring more accurate and diverse recommendations. As a result, the Two-Tower 
model represents a promising advancement in recommender systems, offering a 
solution to the inherent limitations of collaborative filtering. 
 
3.3 Deep Neural Network 
 
 Deep Neural Networks (DNNs) [14] represent a powerful class of machine 
learning models that have evolved from the broader field of neural networks. The term 
"deep" in DNNs refers to their characteristic depth, indicating the presence of multiple 
hidden layers between the input and output layers. As seen in Fig. 9, These hidden 
layers enable DNNs to learn intricate hierarchical representations of features from the 
input data. Each layer contains nodes, or neurons, connected by weights adjusted 
during training, allowing the network to capture complex patterns and relationships 
within the data. 
 
 

 
Figure 9 Example of deep neural networks 
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In DNN, each layer contains a given number of units (neurons) that apply a 
certain functional transformation to the input. These types of models can approximate 
the behavior of any function. the deep neural network can be represented as: 
 

                                      𝑦𝑖
𝑙 = 𝑓 ∑ 𝑤𝑖,𝑘

𝐽
𝑗+1 𝑥𝑘 + 𝑏𝑖      (1) 

 
 

Where, the output 𝑦 of a unit 𝑖 in layer 𝑙 is related to the output 𝑥 of the earlier 

layer 𝑘 with 𝑗 outputs through a set of weights 𝑤𝑖,𝑘, a bias 𝑏𝑖  and a non-linear 
activation function 𝑓. 
 
3.4 The “Two-Tower” Model 
 
The "Two-Tower" model is an innovative approach in recommender systems designed to 
address the limitations of collaborative filtering. This model is characterized by its 
architectural framework, consisting of two distinct "towers" or neural networks: one 
focuses on encoding user information, and the other on encoding item information. By 
employing this dual-tower architecture, the model aims to capture intricate patterns in 
user-item interactions, providing a more nuanced understanding of user preferences.  

 
 
 
 
 
 
 

 
Figure 10 The two-tower architecture 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18 

The Two-Tower model leverages a dual-structure architecture to facilitate 
efficient [15]  and nuanced learning of user-item interactions to learn more expressive 
and meaningful representations of users and items by handling their features separately 
before fusing them for prediction, thereby enhancing the system's ability to make 
accurate and personalized recommendations. The model is visualized as two towers, as 
seen in Fig. 10, where each tower is a neural network that processes and learns 
representations for users and items independently. The "user tower" ingests user-related 
features (such as user ID, historical interactions, and demographic information) and 
processes them to generate a fixed-size embedding vector that represents the user. 
Simultaneously, the "item tower" processes item-related features (such as item ID, 
category, and other properties) to produce an embedding vector for the item. 
Subsequently, the embeddings from both towers are combined, often through dot 
product or concatenation, and passed through additional layers (if present) to predict 
the interaction (such as click, purchase, or rating) between the user and the item. 

 
3.3.1 Embedding Representation 

 
Embeddings serve as numerical representations that capture the latent features of 

users and items in a shared space. These embeddings are learned during the training 
process and enable the model to uncover complex patterns in user-item interactions. In 
the context of the Two-Tower model, embeddings are utilized to map users and items 
into a common latent space where their preferences and characteristics are represented 
as vectors. 
 

The equation for the embedding process in the Two-Tower model involves 
projecting users and items into a shared embedding space R. Let U represent the set of 
users, I denote the set of items, and E denote the embedding space dimension. The 
user embedding 𝑢𝑖 for a user i and the item embedding 𝑣𝑗  for an item j are calculated 
as follows: 
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𝑢𝑖 = 𝑈𝑠𝑒𝑟𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖) ∈ 𝑅𝐸      (2) 
 

𝑣𝑗 = 𝐼𝑡𝑒𝑚𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑗) ∈ 𝑅𝐸      (3) 
 

Where 𝑈𝑠𝑒𝑟𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖) and 𝐼𝑡𝑒𝑚𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑗) are 
functions that map users and items to their respective embeddings in the shared latent 
space. The resulting embeddings, 𝑢𝑖  and 𝑣𝑗 , from Equation 1 and 2 represent the 
users and items in a continuous vector space, where the proximity of vectors indicates 
similarity in preferences. 
 

The Two-Tower model further combines these embeddings to calculate a user-
item interaction score, often used for making recommendations. The interaction score 
𝑠𝑖𝑗 , between user i and item j is computed to Equation 3 using the dot product of their 
embeddings: 
 

               𝑠𝑖𝑗 = 𝑢𝑖  ∙  𝑣𝑗                             (4) 
 

The dot product captures the similarity between the user and item embeddings. 
A higher dot product implies a stronger user-item interaction score, indicating a higher 
likelihood that the user would be interested in the item. 

 
In terms of similarity, Cosine similarity is a metric that measures the cosine of the 

angle between two non-zero vectors. It is frequently employed to assess the similarity 
between vectors. The formula for cosine similarity between user embedding 𝑢𝑖 and 

item embedding 𝑣𝑗  are calculated as follows: 
 

        𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝜃) =
𝑢𝑖 ∙ 𝑣𝑗

‖𝑢𝑖‖ ∙ ‖𝑣𝑗‖
            (5) 
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Where  𝑢𝑖  ∙  𝑣𝑗  represents the dot product of vectors and ‖𝑢𝑖‖ ∙  ‖𝑣𝑗‖ 
denote the Euclidean norms (magnitude) of vectors respectively. The resulting cosine 
similarity ranges from -1 (completely dissimilar) to 1 (completely similar), with 0 
indicating orthogonality. 
 

Embeddings in the Two-Tower model provide a compact and expressive 
representation of users and items in a shared latent space. The model learns these 
embeddings through training, capturing complex relationships and patterns in user-item 
interactions, ultimately enabling more effective and personalized recommendations. 
 
3.4 Deep and Cross Network 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 Deep and Cross network architecture 
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The Deep and Cross Network (DCN) [5] is a two-tower neural network 
architecture designed to model low- and high-order feature interactions in tabular data, 
commonly used in tasks like click-through rate prediction. The DCN, as seen in Fig, 11, 
combines the strengths of deep neural networks and explicit cross-feature generation to 
capture intricate patterns in the data. 
 

 
 

Figure 12 Cross Network Operation 
 

The Cross Network is designed to learn bounded-degree feature interactions 
explicitly. It takes the original input features and applies a series of cross-
transformations, where each transformation captures specific feature interactions. The 
idea is to allow the model to learn which features must be combined (crossed) to 
improve the prediction. Mathematically, the cross operation, as seen in Fig. 12, can be 
represented as: 
                              𝑥𝑙+1  =  𝑥0  ∗  (𝑥 𝑙 ∗ 𝑤 𝑙 +  𝑏𝑙) + 𝑥𝑙   (6) 
 

Where,  𝑥𝑙+1 is the output from 𝑙𝑡ℎ  layer, 𝑤𝑙  is the weight vector, and 𝑏𝑙  is 
the bias vector. 
 
 The Deep Network is a stack of fully connected layers, like traditional feed-
forward neural networks. It's designed to capture low-order feature interactions and can 
generalize well from the input features. The deep component allows the model to learn 
intricate patterns and representations from the data. 
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The outputs of the Cross Network and the Deep Network are concatenated and 
passed through a final stack of fully connected layers to produce the prediction. This 
combination ensures that the model benefits from both explicit high-order feature 
interactions and deep representations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23 

Chapter 4 
 

Proposed Method 
 

The proposed methodology of this study is mitigating position bias by combining 
positional features as one of the input feature vectors on the Deep and cross-network. 
The positional feature is embedding on a) cross-network specifically and b) deep 
network specifically. These positional feature embeddings help the model learn how 
position affects the user's preference, thus ensuring that content recommendations are 
both relevant and unbiased. As the positional feature embedding is modeled in the 
offline training, a feature should also be included in prediction or online inference. 
However, position information is unavailable when prediction is performed. To resolve 
this problem, the decision is to select a position for all items as the value of the position 
feature. 

  
The architecture of the proposed model is explained in Fig. 13. The model 

leverages both deep and cross networks in parallel to understand deeper relationships 
of the features while also learning from the embedding positional features of the item for 
each user. In user context, user embedding features include gender, age, the number of 
articles read in the last 14 days, the ratio of article categories read by the user, and the 
age of the articles on the day they were read. Regarding items, the embedding article 
features its category, type, length, and the number of user engagements the previous 
day. Subsequently, all the feature input undergoes deep and cross network embedding, 
transforming sparse features into embeddings and concatenating them with dense 
features. These are then separately channeled into the deep and cross networks before 
being merged in the final combination output layer to obtain the final result. To observe 
the impact of positional features in the Deep & Cross model, the feature will be 
introduced as a sparse feature separately, a dense feature separately, and both feature 
types. Then, an evaluation will be conducted. 
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Figure 13 The proposed architecture framework 
 
4.1 Input and Embedding Layer 
 
 We classified all the features of the raw dataset into two types: categorical 
features and numerical features. The categorical features were transformed into a low-
dimensional space using embedding for dimensional reduction. To avoid being affected 
by the dimension, numerical features in the model were scaled into a fixed range 
between zero and one using normalization or min-max normalization. Finally, we stacked 
all the above into one vector and fed it to the proposed model simultaneously. 
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4.2 Cross Network Layer 
 
 The cross-network layer consists of 𝑥 layers, where each cross layer could be 
calculated as follows: 
 

                 𝑥𝑗+1 =  𝑥0𝑥𝑗
𝑇𝑤𝑗 + 𝑏𝑗 + 𝑥𝑗 = 𝑓(𝑥𝑗 , 𝑤𝑗 , 𝑏𝑗) + 𝑥𝑗  (7) 

 
 Where, 𝑗 ∈ [0, 1, 2, … . , 𝑚 − 1], 𝑚 ∈ [1, 2, 3, … . ]; 𝑥𝑗+1 and 𝑥𝑗  
represent the output of the 𝑗 − 𝑡ℎ cross layer and (𝑗 + 1) − 𝑡ℎ cross layer, 
respectively, the other represent the same as in Equation. 6. All the variables were 
column vectors. Furthermore, the features of each layer were crossed and combined 
with the previous layer and original features and then added back to the previous layer. 
This is similar to the structure of a residual network in which the function 𝑓 of each layer 
fits the residual of 𝑥𝑗+1 − 𝑥𝑗. Thus, the gradient dispersion problem caused by the 
DNN could be solved using this residual network. 
 
4.3 Deep Network Layer 
 

The rectified linear unit (ReLU) [16] was used as the activation function in the 
proposed model due to its calculation simplicity. Moreover, the convergence speed of 
ReLU significantly outperformed that of other activation functions, such as sigmoid [17]. 
 
4.4 Output Layer 
 
 We calculated the output through a perceptron using a sigmoid activation 

function S, which is expressed as follows: 
 
                              𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑆(𝑤𝑥𝑓𝑖𝑛𝑎𝑙 + 𝑏)                 (8) 
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Where 𝑤 and 𝑏 represent the weight vector and bias parameter for the 

combination layer and 𝑥𝑓𝑖𝑛𝑎𝑙  represent the final combination result of the output from 
both deep and cross network layer. 

 
The cost function  𝐶 is the log loss along with a regularization term: 
 

𝐶 =  
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 log(𝑦𝑝𝑟𝑒𝑑) + (1 −  𝑦𝑖) log(1 − 𝑦𝑝𝑟𝑒𝑑) +  𝛾 ∑ ‖𝑦𝑖 −  𝑦𝑝𝑟𝑒𝑑‖

2
 𝑙               (9) 

  

 Where 𝑦𝑝𝑟𝑒𝑑  represents the predicted value, 𝑦𝑖  represents the true labels, 𝑁 
represents the total number of inputs, and 𝛾 represents the L2 regularization parameter. 
 
 
4.5 Positional Features Preparation 
 
 To incorporate positional features into the model training process, an essential 
step involves feature engineering derived from the order of user interactions in log data. 
This method aims to capture the temporal aspects of user-item interactions, allowing the 
recommender system to discern the influence of position within the recommendation list. 
However, a key challenge arises during prediction. Users typically only engage with 
some items listed in a single day, necessitating a strategy to replace unavailable 
positional features with a constant value (1 to 10), as seen in Fig. 14. 
 

 
Figure 14 Diagram of applying positional features in this research 
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This application is crucial for nullifying the undue influence of absent position-
related information during prediction, ensuring the model's robustness and 
generalizability in real-world scenarios where user engagement patterns may vary 
widely. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 28 

Chapter 5 
 

Experimental Setup 
 

This section describes our dataset, data preparation methods, experimental 
design, and evaluation criteria. We compare the performance of our approach to various 
mechanisms and baselines. 

 
5.1 Dataset 
 
 The experiments were conducted using the Blockdit dataset. This dataset is 
provided by the Blockdit company. Blockdit is a well-known social media application in 
Thailand that presents content in a unique ``book-style'' format, where users can create 
stories or articles page by page, resembling a digital book or a magazine. Allowing 
them to express their ideas, share knowledge, or tell stories in a structured manner. The 
dataset contains user and article interactions and other attributes from the Blockdit 
application. The original dataset consists of 4 parts. 
 

 5.1.1 The characteristics of the user dataset. 
 

  The characteristics of the user dataset are detailed in Table 1. 
 

Table 1 User data characteristics 

No. Column Name Description 

1 
User.ts The timestamp when the user data point 

is logged 

2 User.id User unique identifier number 

3 User.status The status of user 
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4 User.createdTime The time the user creates their accounts 

5 User.profile.gender The gender of user 

6 User.profile.birthTime The user birthdate in unix time 

7 User.profile.about The description of user on their profiles 

8 
User.profile.interest The interest user assigned when 

creating their accounts 

9 User.profile.work The occupation of user 

10 User.profile.education The education degree of user 

 
 

 5.1.2 The characteristics of the article dataset. 
 

  The characteristics of the article dataset are detailed in Table 2 
 

Table 2 Article data characteristics 
No. Column Name Description 

1 Article.ts The timestamp when the article data 
point is logged 

2 Article.id Article unique identifier number 

3 Article.creator Article’s Creator unique identifier number 

4 Article.page Article’s Page unique identifier number 

5 Article.status The status of article  
Ex. PUBLISHED, DELETED  

6 Article.type The type of article 
 Ex. Read, Audio  

7 Article.createdTime The article created time to database 

8 Article.publishedTime The article published time to database 

9 Article.attachment.video Video unique identifier number in each 
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article  

10 Article.attachment.audio Audio unique identifier number in each 
article 

11 Article.ad The status of the presence of ad in 
article 

12 Article.categories The categories of article 

13 Article.original.article The article's unique identifier (in case the 
article is a shared article from another 
source) 

14 Article.original.page The page's unique identifier (in case the 
article is a shared article from another 
source) 

15 Article.origin.user The Author unique identifier (in case the 
article is a shared article from another 
source) 

 
5.1.3 The characteristics of the Interaction dataset. 
 

  The characteristics of the Interaction dataset are detailed in Table 3.  

 
Table 3 Interaction data characteristics 

No. Column Name Description 

1 Interaction.ts The timestamp when the interaction 
logged in unix time 

2 Interaction.tsOrigin The original timestamp when the 
interaction happened (from user device) 
in unix time 

3 Interaction.user User unique identifier number 

4 Interaction.firUser User temporary unique identifier number 
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(when user is not registered) 

5 Interaction.action The type of interaction the user made Ex. 
Read25p = user read 25% of that article, 
IMPRESSION = User see the article BUT 

NOT INTERACT (Read, Like, Comment, 
etc.) to that article 

6 Interaction.target.user Author or user’s target unique identifier 
number that user interacted with 

7 Interaction.target.page Page’s unique identifier number that 
user interacted with 

8 Interaction.target.article Article’s unique identifier number that 
user interacted with 

9 Interaction.platform The type of user device Ex. Web, IOS, 
Android 

10 Interaction.language The language the user 
selected/configured 

 
5.1.4 The characteristics of the article’s detail dataset. 
 

  The characteristics of the article’s detail dataset are detailed in Table 4. 
 

Table 4 Article’s detail characteristics 
No. Column Name Description 

1 Article_detail.ts The timestamp when the article’s detail 
logged in unix time 

2 Article_detail.id Article’s detail unique identifier number 

3 Article_detail.blockContent The content in the article 

4 Article_detail.blockCount The amount of block (paragraph-like) in 
the article 
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5.2 Data Preparation 
 

First step, we conducted data cleansing by removing duplicate entries. We 
selectively filtered the data to retain only active and non-banned articles and users, 
adhering to the 'user status = registered' and 'article status = published' criteria. 
Furthermore, we excluded interaction data that lacked corresponding user IDs and 
article IDs, rendering it impossible to identify the associated interaction pairs. 
Additionally, we eliminated rows from the interaction data that lacked values in the 
'article_blockContent' column, as article content is an indispensable feature for our 
study. For gender and date of birth fields with missing values, we assigned them with 
'unknown'. To prepare the date dimension data for subsequent analysis, we converted it 
from Unix time format to datetime format. 

 
Secondly, in the feature engineering phase for article data, we introduced a new 

feature called 'freshness', which represents the number of days that have passed since 
the article's publication at the time of the interaction. This feature captures the varying 
preferences of users, as some may favor recent news and only view articles updated 
within a certain timeframe, while others may be more interested in viral content, 
regardless of its publication date. Another newly created feature, 'user_1d', tracks the 
number of users who read the article on the previous day, reflecting its popularity and 
viral status.  

 
To enrich the user data, we introduced a new feature called 'age range', which is 

derived from the 'date of birth' column and categorizes users into demographic groups 
such as 'kid', 'high school', and 'adult'. Additionally, we developed a feature named 
'blockcount_category_ratio', which is based on users' past behavior and determines the 
proportion of articles a user reads from each category relative to their overall reading 
activity. Another feature, 'blockcount_category_mean', indicates the average length of 
articles the user tends to read in each category. The 'nunique_article' feature quantifies 
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the number of distinct articles a user has read in the last 15 days, serving as a measure 
of user engagement. 'mean_blockcount' represents the average length of articles read 
by the user, while 'mean_freshness' calculates the average 'newness' of the articles they 
interact with.  
 
 Following the completion of data cleansing and feature engineering, the features 
listed in Tables 5 were employed in this experiment. 
 

Table 5 Features engineering description 

No. Feature Name Description Type 

1 Gender The gender of user Categorical 

2 Age_ordinal The age range of user Categorical 

3 Blockcount_category_ratio Proportion of articles a user 
reads from each category 
relative to their reading 
activity 

Numerical 

4 Blockcount_category_mean Average articles length the 
user read in each category 

Numerical 

5 Nunique_article Unique articles a user has 
read in the last 15 days 

Numerical 
 

6 Mean_blockcount Average article’s length read 
by the user 

Numerical 

7 Mean_freshness Average 'newness' of the 
articles they engage with 
based on article’s published 
time 

Numerical 

8 Categories The category of article Categorical 

9 Blockcount The length of article Numerical 

10 Type The type of article Categorical 
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11 Freshness Article’s published time – the 
time the user interacts to the 
article 

Numerical 

12 User_1d Number of unique articles a 
user has read in the last 15 
days 

Numerical 

 
The labels employed in this study reflect the nature of user interaction with 

articles. A negative label is assigned when a user merely views the article content 
without engaging with its entirety (Interaction.action = “IMPRESSION”). Conversely, a 

positive label is assigned when a user actively interacts with the article by reading, 
sharing, or reacting to it in some way (Ex. Interaction.action = “READ25P”). 
 

The collected data were split into three groups: training data (user-article 
interaction logs from February 12, 2023), validation data (user-article interaction logs 
from February 13, 2023), and testing data (user-article interaction logs from February 14, 
2023). The traits of the training data are summarized in Table. 6. 

 
Table 6 The data characteristic 

Dataset #Interaction #User #Article #Positive #Negative 
Training 456,311 22,277 19,887 60,346 395,985 
Validation 578,396 28,661 23,511 83,582 494,814 
Testing 600,006 29,077 24,424 83,625 516,380 
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5.3 Exploratory Data Analysis (EDA) 
 
 Following data collection, an initial examination, exploration, and analysis of the 
dataset, called Exploratory Data Analysis (EDA), was conducted. This critical phase 
provided researchers with foundational insights into the dataset, which was crucial in 
validating its precision. To exemplify their exploratory analysis, researchers presented a 
graph in Fig. 15 to 19 below.  
   
 
 
 
 
 
 
 
 
 
 
 

Figure 15 Article categories distribution 
 

From Fig. 15, it can be observed that the top three most published article 
categories are Lifestyle, Business, and Opinions. 
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Figure 16 User’s age distribution 

 
From Fig. 16, it can be observed that the average age of users falls within the 

range of 25 to 45 years. 
 

 
Figure 17 User’s age distribution categorized by generation. 

 
From Fig. 17, It can be observed that the majority of users belong to Generation 

Y and Generation X. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 37 

 
Figure 18 The distribution between age groups and the gender. 

 
From Fig. 18, it can be observed that in each age group, the number of male 

and female users is relatively close, except for the elderly group where there is a higher 
proportion of male users. 

 
 

 
 
 
 
 
 
 
 

Figure 19 the distribution of user action types 
 

From Fig. 19, it is evident that the majority of users exhibit a high frequency of 
viewing the articles (IMPRESSION). However, the number decreases significantly when 
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it comes to reading more than 25% of the articles (READ_25P) and further decreases in 
subsequent actions levels. 
 
5.4 Evaluation Metric 
 

To evaluate performance, we used the testing data from February 14, 2023, and 
processed all articles for each user to obtain the score for all articles. We then ranked 
the top 100 articles and compared them to the actual data using the Mean Average 
Precision at K (MAP@k) as metrics to evaluate the offline performance of each different 
assigned position values. The MAP@K can be expressed as follows. 

 
 

(10) 
  

           (11) 
 
 

Where, 𝐴𝑃@𝐾 represents mean precision of k-rank object recommendation, 
𝑀𝐴𝑃@𝐾 represents mean average precision of k-rank object 
recommendation, 𝑀 represents the number of times the object 

recommendation system matches the target user's preferences and 𝑈 
represents the total user numbers. 

 
5.5 Experiment Settings 
 

In training, for sparse feature, the positional feature will be treated as categorical 
features and will be added into DCN model using an embedding layer to convert the 
categorical positional data into vectors representation. For dense feature, the positional 
feature will be treated as numerical feature, normalized using min-max scaling to ensure 
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it's on a similar scale to other dense features and then feed directly into deep side of 
DCN model. The implementation of positional features on both layers (Deep side and 
Cross side) is also conducted. The default parameters for this approach include three 
deep layers with 256, 128, and 64 neurons, as well as two cross layers. 

 
As stated, we need to select a proper position value for prediction. But due to 

resource limitation, it's impossible to evaluate the model with all possible positions. 
Therefore, we conduct an offline experiment to select proper position value. Similar to 
previous work [18] [19], we apply different position values, ranging from position 1 to 
position 10. 
 
5.5 Baseline Models 
 

To assess the effectiveness of our proposed model, we compare its results with 
a baseline model, noted for its strong performance. 

 

• LightGBM - a gradient boosting framework that uses tree-based learning 
algorithms and is designed for distributed and efficient training by 
employing a histogram-based algorithm. Making it capable of achieving 
higher precision with lower computational costs. 

• XGBoost - an optimized distributed gradient boosting library designed to 
be highly efficient, flexible, and portable. It employs an ensemble of 
decision trees to produce accurate and robust predictive models. 

• DeepFM [8] - combines the factorization machines (FM) and deep neural 
networks to capture both low-level feature interactions and high-level 
feature representations. 

• DCN - an initial model with default parameters and without position 
debiasing capability. 
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5.6 Preliminary Experiment 
 

In this preliminary experiment, we conducted our experiments within the Google 
Colab Pro environment, utilizing a T4 GPU with a system RAM limit of approximately 50 
GB. Given the substantial size of our dataset, each day's data encompasses around 
500k interactions; the constrained system RAM posed limitations on the number of days 
available for training. Consequently, we opted to employ the baseline XGBoost model to 
explore the influence of varying training data durations on model performance. The 
dataset was partitioned into two sets: "Training using 5 Feb," where the training data 
consisted of interactions from February 5, 2023, with validation on February 6, 2023, and 
testing on February 7, 2023; and "Training using 4-5 Feb," encompassing data from 
February 4-5, 2023, with the same validation and testing dates. The results are 
presented in Table 7. 

 
Table 7 Comparison of preliminary results of in training data size in term of MAP@K 

Model MAP@25 MAP@50 

Training using 5 Feb 2.97% 2.39% 

Training using 4-5 Feb 3.31% 2.65% 

 
The results presented in Table 7 reveal a marginal improvement in performance 

with an increase in the volume of data during the training period, though not reaching 
statistical significance. Given the constraints imposed by hardware limitations in this 
experiment, we opted to proceed with training using data from February 12, 2023, while 
validating the model on February 13, 2023, and testing its performance on February 14, 
2023. 
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Chapter 6 
 

Experimental Results 
 

In this section, we present a two-part evaluation of our proposed approach. The 
first part compares our model to a baseline model, while the second part conducts a 
sensitivity analysis of position numbers. 
 
6.1 Performance comparison between proposed model and baseline model 

 
The comparison results are shown in Table. 2, with the best core highlighted in 

bold. This table compares the performance results of all baseline models and the 
proposed method using MAP@K. It is found that the proposed model, Position-aware 
DCN (Cross side), achieves the best performance among all values of k (25, 50, 75, 
100) at 25.98 %, 23.11 %, 21.53 %, and 20.70 %, respectively with the default 
parameters of DCN. 

Table 8 MAP@K for different models (position = 1) 
Model MAP@25 MAP@50 MAP@75 MAP@100 

XGBoost 8.93% 7.85% 6.70% 5.46% 
LightGBM 10.77% 9.47% 7.98% 7.16% 
DeepFM 17.75% 16.98% 16.42% 15.36% 
DCN 18.00% 17.05% 16.51% 15.79% 
Position-aware XGBoost  9.51% 9.20% 8.83% 8.77% 
Position-aware LightGBM 14.97% 13.02% 11.84% 11.01% 
Position-aware DeepFM 18.5% 18.12% 17.83% 17.65% 
Position-aware DCN (Deep side) 20.43% 20.18% 19.86% 19.52% 
Position-aware DCN (Cross side) 25.98% 23.11% 21.53% 20.70% 
Position-aware DCN (Both side) 19.49% 19.08% 17.65% 16.06% 
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6.2 Sensitivity to position number in prediction 
 

We conducted the test to examine the effect of assigned position number during 
prediction. As shown in Fig. 20 to Fig. 23, we can see that MAP@K values vary as we 
assign different position values. In addition, the Cross-side model achieves the highest 
on MAP@K among all values of k (25, 50, 75, 100) at position constant of 8 at 26.30 %, 
23.45 %, 21.78 %, and 21.02 %. 

 

 
Figure 20 MAP@25 on Position-aware models with various position constant 
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Figure 21 MAP@50 on Position-aware models with various position constant 

 

 
Figure 22 MAP@75 on Position-aware models with various position constant 
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Figure 23 MAP@100 on Position-aware models with various position constant 

 
The proposed model has outperformed the baseline model in predictive 

performance and click-through rate, particularly when applied as a dense feature. By 
treating positional features numerically (Cross-side), the model captures the inherent 
ordinality and potential non-linear relationships between position and user engagement, 
refining its predictive capabilities and understanding the implicit hierarchical 
significance within the data. This numerical approach enables the model to effectively 
comprehend and leverage the subtle nuances and gradients embedded within 
positional data, facilitating a more subtle prediction of user interactions and preferences. 
Also, the performance from different assigned position values on prediction in Fig. 20 to 
23 indicates that the assigned position does not significantly impact the performance. Its 
primary purpose is to negate the position's impact on the prediction only. 
  

On the other hand, positional features implemented as both a sparse and dense 
feature (Both sides) yield worse performance than those applied individually because 
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Deep & Cross Networks are designed to capture both low-level feature interactions 
(cross network) and high-level feature interactions (deep network) separately. Using the 
same feature in both representations increases the model's complexity unnecessarily. 
Thus, leads to a loss of information and performance degradation. 
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Chapter 7 
 

Application Programming Interface Design and Developing  
 

Deploying a recommender system into production involves various strategies, 
and considerations such as user, concurrent user, and load are crucial factors in this 
process. Firstly, the system must efficiently handle individual user interactions, ensuring 
a seamless experience for each user. Concurrent user handling is vital as the system 
must scale gracefully when multiple users simultaneously access recommendations. 
Additionally, addressing the overall load on the system, especially during peak usage 
periods, is essential for maintaining optimal performance. 
 

In addressing these concerns, deploying the recommender system through an 
Application Programming Interface (API) provides a standardized and efficient solution. 
APIs enable seamless communication between different software components, ensuring 
scalability, ease of integration, and streamlined maintenance in a production 
environment. Furthermore, the author has utilized the API to create a front-end web 
interface, allowing users to interact with the recommender system easily. This additional 
step demonstrates the versatility of API deployment, culminating in a comprehensive 
demo that showcases the practicality and user-friendliness of deploying recommender 
systems through APIs. The deployment architecture is displayed in Fig. 24. 

 
 
 
Figure 24 API deployment architecture 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 47 

The recommender system deployment begins with the initiation of prediction 
algorithms accessed through a REST API implemented using Flask. Developers can 
interact with this API by providing parameters such as “user_id” and “top_n” to receive a 
list of recommended articles as output. This API serves as a versatile interface, allowing 
seamless integration into other projects demonstrating the flexibility and interoperability 
of the recommender system. The API Get request results are displayed in Fig. 25 and 
Fig. 26. 

 

 
Figure 25 API Calling with query string on web browser 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26 API calling using Postman API 
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Users can conveniently access and visualize their recommended articles 
through a front-end web application implemented with Streamlit. This user-friendly 
interface enhances the user experience by providing an intuitive platform for exploring 
and interacting with the recommendations. The user's main interface is displayed in Fig. 
27. 

 

 
Figure 27 User’s main interface 

 
All these components are deployed on Heroku, a Platform as a Service (PaaS) 

provider. Heroku streamlines the deployment process, offering a scalable and efficient 
environment for hosting applications. By utilizing Heroku, the recommender system 
becomes easily accessible to both developers and end-users, ensuring a smooth and 
robust deployment experience. The dashboard of Heroku is displayed on Fig. 28. 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 49 

 
 
 
 
 
 
 
 
 
 

Figure 28 Heroku Dashboard 
 
7.1 Designing UML Diagram 

 
In this step, the author designed UML diagrams to be used in the planning and 

readiness preparation for developing the API and web app of the recommender system. 
This involves simulating an analysis that details the structure of the system to be 
developed. Such modeling allows stakeholders to communicate and comprehend the 
system's components, ensuring a shared understanding in a standardized visual 
language known as the Standard Modeling Language. This research will focus on 
designing a standard deployment diagram to illustrate the system's deployment 
structure. 

 
7.1.1 Deployment Diagram 
 
Deployment diagram is designed to illustrate the physical architecture of a system 

in terms of its installation and operation. It depicts the layout of the system or 
components built on each node, showcasing the physical arrangement. This includes 
representing the relationships between various programs in the system. The diagram is 
crucial for planning the development process. 
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Figure 29 Deployment diagram of the proposed algorithm 

 
 
7.2 Designing Test Cases 
 

Designing test cases is essential for deploying a recommender system, ensuring 
its functionality and reliability in real-world scenarios. The framework of test cases allows 
systematic evaluation of critical functionalities. In these test cases, the primary focus is 
on user interaction to assess the system's ability to cater to user needs accurately. The 
test cases are provided in Table 9. 

 
    Table 9 Test cases description 

Test Case ID Test Scenario Test Steps Expected Result Actual Result Status 
TC001 User input with valid 

user_id credentials (with 
default top_n) 

1.  Enter valid user_id, User sees a list of 
recommended articles. 

User presented with a 
list of recommended 
articles. 

Complete 

2. Click “Get Recommendation” 

TC002 User input with invalid 
user_id credentials (with 
default top_n) 

1.  Enter invalid user_id, User receives an error 
message. 

User presented with 
an error message 

Complete 

2. Click “Get Recommendation” 

TC003 User input with valid top_n 
credentials 

1.  Enter valid user_id and valid 
top_n. 

User sees a list of 
recommended articles. 

User presented with a 
list of recommended 
articles. 

Complete 

2. Click “Get Recommendation” 

TC004 User input with invalid 
top_n credentials 

1.  Enter valid user_id but invalid 
top_n (top_N > 100). 

User receives an error 
message. 

User presented with 
an error message 

Complete 

2. Click “Get Recommendation” 
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  The results of each test case are displayed in Fig. 30 to Fig. 33. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30 Test result of test case TC001 
 

From Fig. 30, it can be observed that the recommended results are displayed 
correctly after user input with valid user ID and default top_N. 
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Figure 31 Test result of test case TC002 
 

From Fig. 31, it can be observed that the system shown error messages when 
the user ID is invalid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32 Test result of test case TC003 
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From Fig. 32, it can be observed that the recommended results are displayed 
correctly after user input with valid user ID and user desired top_N. 
 
 
 
 
 
 
 
 
 
 

Figure 33 Test result of test case TC004 
 
From Fig. 33, it can be observed that the system shows error messages when 

the user ID is valid but out of range top_N number. 
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Chapter 8 
 

Conclusion 
 

In this research, we propose the positional debias application by using position 
value as a numerical feature toward the Cross side and a categorical feature toward the 
Deep side within the Deep & Cross Network, which we call "Position-aware DCN." Each 
reveals unique insights into user behavior and interaction patterns. This approach 
enhanced the model's predictive precision and showed a robust, straightforward 
framework to comprehend and mitigate positional bias. This research underscores the 
critical role of positional features in refining recommendation algorithms and establishes 
a foundation for future investigations into bias mitigation in algorithmic predictions. 
  

Additionally, we extend our contributions by conducting an online deployment of 
the proposed model as an API. This deployment validates the practical applicability of 
our "Position-aware DCN" and demonstrates its simplicity and advantages through an 
overview and deployment diagram. By showcasing the system's functionality and ease 
of integration as an API, we aim to contribute to the broader understanding of deploying 
advanced recommender systems in real-world settings. This deployment methodology 
exemplifies the potential for widespread adoption, emphasizing the model's practicality 
and ease of implementation in diverse applications. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RE FE RE NCES 
 

REFERENCES 
 

 

1. Sage, D. Social Media Users. 2023  [cited 2023 5]; Available from: 
https://www.demandsage.com/social-media-users/. 

2. Bobadilla, J.a.S., Francisco and Hernando, Antonio and others, Collaborative 
filtering adapted to recommender systems of e-learning. Knowledge-Based 
Systems, 2009. 22: p. 261--265. 

3. Leskovec, J.Y.a.Y.W.a.A.P.a.P.E.a.C.R.a.J., Hierarchical Temporal Convolutional 
Networks for Dynamic Recommender Systems. 2019. p. 2236-2246. 

4. Koc, L., Wide & Deep Learning for Recommender Systems. CoRR, 2016. 
abs/1606.07792. 

5. Wang, R.a.F., B. and Fu, G. and Wang, M., Deep & Cross Network for Ad Click 
Predictions. Proceedings of the ADKDD'17, 2017. 

6. Richardson, M.a.D., Ewa and Ragno, Robert, Predicting Clicks: Estimating the 
Click-through Rate for New Ads. 2007: p. 521--530. 

7. Chua, X.H.a.L.L.a.H.Z.a.L.N.a.X.H.a.T.-S., Neural Collaborative Filtering. 2017. 
8. Guo, H., Tang, R., Ye, Y., Li, Z., He, X., & Mamitsuka, H., DeepFM: A factorization-

machine based neural network for CTR prediction. 2017. 
9. Huang, J.a.H., Ke and Tang, Qingtao and Chen, Mingjian and Qi, Yi and Cheng, 

Jia and Lei, Jun, Deep Position-wise Interaction Network for CTR Prediction. 
Proceedings of the 44th International ACM SIGIR Conference on Research and 
Development in Information, 2021. 

10. Huang, J.a.T., Xingyuan and Wang, Zhe and Jia, Shaolin and Bai, Yin and Liu, 
Zhiwei and Cheng, Jia and Lei, Jun and Zhang, Yan, Deep Presentation Bias 
Integrated Framework for CTR Prediction. 2022. 

11. Guo, H.a.Y., Jinkai and Liu, Qing and Tang, Ruiming and Zhang, Yuzhou, PAL: A 
Position-Bias Aware Learning Framework for CTR Prediction in Live 
Recommender Systems. Association for Computing Machinery, 2019: p. 452–456. 

12. Yan, Z. How to Measure and Mitigate Position Bias.  [cited 2022; Available from: 

 

https://www.demandsage.com/social-media-users/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 56 

 

https://eugeneyan.com/writing/position-bias/. 
13. Wang, X.a.G., Nadav and Bendersky, Michael and Metzler, Donald and Najork, 

Marc, Position Bias Estimation for Unbiased Learning to Rank in Personal Search. 
Association for Computing Machinery, 2018. 

14. Aouichaoui, A.R.N., et al., Comparison of Group-Contribution and Machine 
Learning-based Property Prediction Models with Uncertainty Quantification, in 
Computer Aided Chemical Engineering, M. Türkay and R. Gani, Editors. 2021, 
Elsevier. p. 755-760. 

15. Xin, S.a.L., Zhao and Zou, Pengcheng and Long, Cheng and Zhang, Jie and Bu, 
Jiajun and Zhou, Jingren, ATNN: Adversarial Two-Tower Neural Network for New 
Item’s Popularity Prediction in E-commerce. 2021 IEEE 37th International 
Conference on Data Engineering (ICDE), 2021: p. 2499-2510. 

16. A. Krizhevsky, I.S., and G. E. Hinton, Imagenet classification with deep 
convolutional neural networks,. Advancesin Neural Information Processing 
Systems. 25. 

17. H. Pratiwi, A.P.W., S. Susliansyah et al.,, Sigmoid acti-vation function in selecting 
the best model of artificial neuralnetworks. Journal of Physics: Conference Series. 
1471 no. 1. 

18. Zhang, B.L.a.R.T.a.Y.C.a.J.Y.a.H.G.a.Y., Feature Generation by Convolutional 
Neural Network for Click-Through Rate Prediction. The World Wide Web 
Conference, 2019. 

19. Gai, G.Z.a.C.S.a.X.Z.a.Y.F.a.H.Z.a.X.M.a.Y.Y.a.J.J.a.H.L.a.K., Deep Interest 
Network for Click-Through Rate Prediction. 2018. 

 
 

 

https://eugeneyan.com/writing/position-bias/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V ITA 
 

VITA 
 

NAME Dhata Muangrux 

DATE OF BIRTH 26 March 1998 

PLACE OF BIRTH Bangkok, Thailand 

INSTITUTIONS ATTENDED Chulalongkorn University 

HOME ADDRESS 134/239 soi 1/15 Burasiri Sanambinnam village, 
Sanambinnam road, Tha Sai, Nonthaburi 11000 

  

 

 


	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	1.1 Background
	1.2 Research Objectives
	1.3 Research Scopes
	1.4 Research Methodologies
	1.5 Research Outcomes

	Related Work
	2.1 Research in two-tower recommender systems
	2.2 Research in positional-debiasing recommender system

	Background
	3.1 Recommender System
	3.2 Collaborative Filtering
	3.3 Deep Neural Network
	3.4 The “Two-Tower” Model
	3.3.1 Embedding Representation

	3.4 Deep and Cross Network

	Proposed Method
	4.1 Input and Embedding Layer
	4.2 Cross Network Layer
	4.3 Deep Network Layer
	4.4 Output Layer
	4.5 Positional Features Preparation

	Experimental Setup
	5.1 Dataset
	5.1.1 The characteristics of the user dataset.
	5.1.2 The characteristics of the article dataset.
	5.1.3 The characteristics of the Interaction dataset.
	5.1.4 The characteristics of the article’s detail dataset.

	5.2 Data Preparation
	5.3 Exploratory Data Analysis (EDA)
	5.4 Evaluation Metric
	5.5 Experiment Settings
	5.5 Baseline Models
	5.6 Preliminary Experiment

	Experimental Results
	6.1 Performance comparison between proposed model and baseline model
	6.2 Sensitivity to position number in prediction

	Application Programming Interface Design and Developing
	7.1 Designing UML Diagram
	7.1.1 Deployment Diagram

	7.2 Designing Test Cases

	Conclusion
	REFERENCES
	VITA

