

Article Feed Recommendations Using Position-Aware Deep Cross Network

Mr. Dhata Muangrux

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Software Engineering

Department of Computer Engineering
Faculty Of Engineering

Chulalongkorn University
Academic Year 2023

การแนะน าบทความในฟีดโดยใชด้ปีครอสเนต็เวิรค์ที่รบัรูต้ าแหน่ง

นายธตา เมืองรกัษ ์

วิทยานิพนธน์ีเ้ป็นส่วนหนึ่งของการศึกษาตามหลกัสตูรปรญิญาวิทยาศาสตรมหาบณัฑิต
สาขาวิชาวิศวกรรมซอฟตแ์วร ์ภาควิชาวิศวกรรมคอมพิวเตอร ์

คณะวิศวกรรมศาสตร ์จุฬาลงกรณม์หาวิทยาลยั
ปีการศึกษา 2566

Thesis Title Article Feed Recommendations Using Position-Aware

Deep Cross Network
By Mr. Dhata Muangrux
Field of Study Software Engineering
Thesis Advisor Assistant Professor Dr. PITTIPOL KANTAVAT

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in
Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF
ENGINEERING

 (Professor Dr. SUPOT TEACHAVORASINSKUN)

THESIS COMMITTEE

Chairman
 (Associate Professor Dr. WIWAT VATANAWOOD)

Thesis Advisor
 (Assistant Professor Dr. PITTIPOL KANTAVAT)

Examiner
 (Dr. EKAPOL CHUANGSUWANICH)

External Examiner
 (Dr. Pipop Thienprapasith)

 iii

ABS TRACT (THAI) ธตา เมืองรกัษ์ : การแนะน าบทความในฟีดโดยใชด้ีปครอสเน็ตเวิรค์ที่รบัรูต้ าแหน่ง. (

Article Feed Recommendations Using Position-Aware Deep Cross Network)
อ.ที่ปรกึษาหลกั : ผศ. ดร.พิตติพล คนัธวฒัน ์

แพลตฟอรม์โซเชียลมีเดียไดเ้ปลี่ยนโฉมภูมิทศันด์ิจิทลัอย่างมากในปัจจุบนั โดยมีฐาน

ผูใ้ชท้ี่เพิ่มขึน้อย่างต่อเนื่อง เนื่องจากแพลตฟอรม์เหล่านีก้ลายเป็นสิ่งหนึ่งชีวิตประจ าวนัของคน
ทุกคน ความจ าเป็นส าหรบัระบบแนะน าเนือ้หาที่ตอบสนองความชอบส่วนบุคคลอย่างแทจ้ริงจึง
มีความส าคญัอย่างยิ่ง ในขณะที่อลักอริทึมการแนะน าปัจจุบนัประสบความส าเร็จในการจดัการ
เนื ้อหาตามความสนใจของผู้ใช้ แต่ก็มักมองข้ามอคติที่เกิดขึน้ โดยเฉพาะอย่างยิ่งอคติเชิง
ต าแหน่งที่ผูใ้ชม้ีส่วนร่วมกบัเนือ้หาเนื่องจากต าแหน่งของเนือ้หามากกว่าความสนใจในเนือ้หา
นัน้ อคตินีเ้ห็นไดช้ดัเจนในระบบแนะน าในโซเชียลมีเดียทุกระบบ เพื่อแก้ไขปัญหานี ้จึงไดเ้สนอ
ระบบแนะน าที่ค านึงถึงต าแหนง่ของเนือ้หากบัอลักอริทึม Deep and Cross ซึ่งเรียกโมเดลอย่าง
เหมาะสมว่า 'Position-Aware DCN' โมเดลที่เสนอนีม้ีจุดมุ่งหมายเพื่อแนะน าเนือ้หาที่แทจ้ริง
และไม่ล าเอียงมากขึน้ โดยผูใ้ชจ้ะไดร้บัเนือ้หาที่สอดคลอ้งกบัความสนใจของพวกเขาและไม่ได้
รบัอิทธิพลจากต าแหน่งในฟีด โดยการประเมินทีไ่ดด้ าเนินการบนชุดขอ้มลูโซเชียลมีเดียของไทย
แสดงใหเ้ห็นว่าโมเดลที่เราเสนอน าเสนอมีประสิทธิภาพการแนะน าอย่างเห็นไดช้ดัเมื่อเทียบกับ
ระบบแนะน าแบบดั้งเดิม ซึ่งท าใหป้ระสบการณด์ิจิทลัเป็นประสบการณท์ี่เขา้ถึงผูใ้ชง้านมากขึน้
โดยผูจ้ัดท าได้น าเสนอโมเดลเป็นการเชื่อมต่อโปรแกรมประยุกตฺห์รีอ API ในการใชง้านแบบ
ออนไลน ์โดยแสดงฟังกช์นัการใชง้านของโมเดลและการท างานร่วมกนักบัเว็บแอปฟรอนตเ์อนด ์

สาขาวิชา วิศวกรรมซอฟตแ์วร ์ ลายมือชื่อนิสิต
..

ปี
การศึกษา

2566 ลายมือชื่อ อ.ที่ปรกึษาหลกั
..............................

 iv

ABS TRACT (E NGLIS H) # # 6372052021 : MAJOR SOFTWARE ENGINEERING
KEYWORD: Recommendation System, Deep and Cross Network, Position-Aware,

Position Debiasing
 Dhata Muangrux : Article Feed Recommendations Using Position-Aware

Deep Cross Network. Advisor: Asst. Prof. Dr. PITTIPOL KANTAVAT

The presence of social media platforms has recently transformed the digital
landscape, with an ever-increasing user base. As these platforms become central to
daily life, the need for recommendation systems that genuinely cater to individual
preferences has never been more paramount. While current recommendation
algorithms excel at curating content based on user interests, they often overlook
inherent biases, notably the positional bias where users engage with content due to its
placement rather than its inherent relevance. This oversight is particularly evident in
every social media recommendation system. Addressing this challenge, we proposed
a position-aware methodology within the Deep and Cross framework, aptly termed
'Position-Aware DCN.' By explicitly accounting for positional preferences, our
proposed model aims to provide more genuine, unbiased recommendations, ensuring
that users are presented with content that aligns with their interests and is not just
influenced by its position in the feed. Evaluations conducted on Thai social media
datasets reveal that our proposed model offers a marked improvement over traditional
recommendation systems, underscoring its potential to foster a more user-centric
digital experience. The author also implements the proposed model as an application
programming interface (API) in an online deployment format by showcasing its
functionality and seamless integration into the front-end web app.

Field of Study: Software Engineering Student's Signature

...............................
Academic
Year:

2023 Advisor's Signature
..............................

 v

ACKNOWLE DGE ME NTS

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my advisor, Asst. Prof. Pittipol
Kantavat, for his support and guidance throughout my thesis journey. Dr. Ekapol
Chuangsuwanich,for his deep understanding of recommender systems. I am also grateful
to Ltman for providing me with the dataset from Blockdit used in my thesis. Finally, I would
like to thank my family and friends for their love and support throughout my studies. Their
encouragement and belief in me were the most important thing in helping me achieve my
goals.

Dhata Muangrux

TABLE OF CONTENTS

 Page
 ... iii

ABSTRACT (THAI) ... iii

 .. iv

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS ... vi

LIST OF TABLES... ix

LIST OF FIGURES.. x

Introduction .. 1

1.1 Background .. 1

1.2 Research Objectives .. 4

1.3 Research Scopes ... 4

1.4 Research Methodologies.. 4

1.5 Research Outcomes ... 5

Related Work ... 7

2.1 Research in two-tower recommender systems .. 7

2.2 Research in positional-debiasing recommender system ... 9

Background ... 12

3.1 Recommender System .. 12

3.2 Collaborative Filtering ... 14

3.3 Deep Neural Network .. 16

 vii

3.4 The “Two-Tower” Model .. 17

3.3.1 Embedding Representation .. 18

3.4 Deep and Cross Network.. 20

Proposed Method .. 23

4.1 Input and Embedding Layer ... 24

4.2 Cross Network Layer ... 25

4.3 Deep Network Layer ... 25

4.4 Output Layer ... 25

4.5 Positional Features Preparation .. 26

Experimental Setup ... 28

5.1 Dataset .. 28

5.1.1 The characteristics of the user dataset. .. 28

5.1.2 The characteristics of the article dataset. ... 29

5.1.3 The characteristics of the Interaction dataset... 30

5.1.4 The characteristics of the article’s detail dataset. .. 31

5.2 Data Preparation ... 32

5.3 Exploratory Data Analysis (EDA) .. 35

5.4 Evaluation Metric ... 38

5.5 Experiment Settings .. 38

5.5 Baseline Models .. 39

5.6 Preliminary Experiment ... 40

Experimental Results ... 41

6.1 Performance comparison between proposed model and baseline model 41

 viii

6.2 Sensitivity to position number in prediction .. 42

Application Programming Interface Design and Developing ... 46

7.1 Designing UML Diagram .. 49

7.1.1 Deployment Diagram .. 49

7.2 Designing Test Cases ... 50

Conclusion ... 54

REFERENCES .. 55

VITA ... 58

LIST OF TABLES

 Page
Table 1 User data characteristics ... 28

Table 2 Article data characteristics .. 29

Table 3 Interaction data characteristics.. 30

Table 4 Article’s detail characteristics .. 31

Table 5 Features engineering description .. 33

Table 6 The data characteristic .. 34

Table 7 Comparison of preliminary results of in training data size in term of MAP@K 40

Table 8 MAP@K for different models (position = 1) .. 41

Table 9 Test cases description ... 50

LIST OF FIGURES

 Page
Figure 1 Total clicks for the first 100 positions .. 3

Figure 2 Mean CTR for article by their positions in the feed .. 3

Figure 3 Research Methodology Activity Diagram ... 6

Figure 4 DeepFM architecture (Source: Huifeng Guo, Ruiming Tang. DeepFM: A
Factorization-Machine based Neural Network for CTR Prediction in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) 8

Figure 5 DPIN architecture (Source: Jianqiang Huang, Ke Hu. Deep Position-wise
Interaction Network for CTR Prediction in Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval) 9

Figure 6 PAL architecture (Source: Guo, H.a.Y. PAL: a position-bias aware learning
framework for CTR prediction in live recommender systems in Proceedings of the 13th
ACM Conference on Recommender Systems) ... 11

Figure 7 An example of recommender system concept .. 12

Figure 8 An example of collaborative filtering scenario ... 14

Figure 9 Example of deep neural networks .. 16

Figure 10 The two-tower architecture ... 17

Figure 11 Deep and Cross network architecture .. 20

Figure 12 Cross Network Operation .. 21

Figure 13 The proposed architecture framework ... 24

Figure 14 Diagram of applying positional features in this research 26

Figure 15 Article categories distribution ... 35

Figure 16 User’s age distribution .. 36

 xi

Figure 17 User’s age distribution categorized by generation. ... 36

Figure 18 The distribution between age groups and the gender. 37

Figure 19 the distribution of user action types .. 37

Figure 20 MAP@25 on Position-aware models with various position constant 42

Figure 21 MAP@50 on Position-aware models with various position constant 43

Figure 22 MAP@75 on Position-aware models with various position constant 43

Figure 23 MAP@100 on Position-aware models with various position constant 44

Figure 24 API deployment architecture .. 46

Figure 25 API Calling with query string on web browser .. 47

Figure 26 API calling using Postman API.. 47

Figure 27 User’s main interface .. 48

Figure 28 Heroku Dashboard .. 49

Figure 29 Deployment diagram of the proposed algorithm ... 50

Figure 30 Test result of test case TC001 .. 51

Figure 31 Test result of test case TC002 .. 52

Figure 32 Test result of test case TC003 .. 52

Figure 33 Test result of test case TC004 .. 53

Chapter 1

Introduction

1.1 Background
 In the last decade, social media platforms have experienced rapid growth,
becoming an integral part of our daily lives. According to a report by Demandsage, as
of 2023, there are over 4.9 billion social media users worldwide, projected to increase to
almost 5.42 billion by 2025 [1]. This rise underscores the transformative power of social
media, reshaping communication, information dissemination, and even commerce.

Recommender systems are central to providing a personalized user experience
on these platforms. These systems sift through vast amounts of data, analyzing user
behaviors, preferences, and interactions to curate and suggest content that aligns with
individual interests. Historically, recommender systems were implemented using
methods like collaborative filtering or content-based filtering [2] . While effective, these
traditional methods had limitations, such as the cold start problem and scalability issues.
However, with the advent of advanced computational techniques, newer
implementations have emerged, offering more nuanced and scalable solutions.

The integration of deep learning techniques, particularly neural networks, has
significantly shifted the landscape of recommender systems. Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), with their ability to model
complex non-linear relationships, have found applications in recommendation systems,
enhancing the granularity and adaptability of recommendations [3]. By leveraging
embeddings and deep architectures, these models can capture intricate patterns in
user data, offering a dynamic recommendation experience that evolves with changing
user preferences.

 2

The development of recommender systems took a turn with the introduction of
neural networks, leading to the creation of the "Wide and deep" learning model [4]. This
model smartly combines the strengths of linear models and deep neural networks,
balancing between memorizing and generalizing feature interactions. Following this, the
"Deep & Cross" network [5] came into play, advancing the field by adding a cross-
network that applies feature crossing at each layer, allowing it to effectively learn
bounded-degree feature interactions, improving predictive performance in various
recommendation situations while keeping the benefits of deep networks in automated
feature engineering. This progress highlights a significant step towards finding the right
balance between expressiveness and generalization in recommender systems.

However, a persistent challenge that has emerged is positional bias [6]. Users,
influenced by the layout and presentation, often exhibit a propensity to interact with
content based on its placement, leading to a skewed feedback loop and potentially sub-
optimal content recommendations. For instances, we have observed this scenario with
dataset from one of Thai social media platform "Blockdit". The dataset contains user and
article information, and their interactions. As shown in Fig. 1, where we illustrate the
relationship between the position of articles and their respective total clicks for the first
100 positions.

 3

Figure 1 Total clicks for the first 100 positions

Figure 2 Mean CTR for article by their positions in the feed

It is evident that articles in the top positions receive significantly more clicks, with

the number of clicks decreasing exponentially as the position increases. Similarity, in
Fig. 2, where we sample the data and explore the correlation between each article
position in the feed and its click-through rate (CTR). We observe that the CTR drops
dramatically with its position. These imply that a user clicks on an item not only because
they favor it but also because it is in a good position.

 4

To address this challenge, we present an article feed recommendation using
Position-Aware Deep Cross Network (Position-Aware DCN). By integrating positional
embeddings into the DCN architecture, our method aims to mitigate the effects of
position bias, ensuring that content recommendations are both relevant and unbiased.
Moreover, we broaden the scope by implementing the proposed model as an API in an
online deployment format. Through showcasing the model's functionality and its
seamless integration as an API, our objective is also to enrich the collective
understanding of deploying recommender systems in real-world scenarios.

1.2 Research Objectives

1) To develop a position-debiasing article recommendation system.
2) To develop an application programming interface (API) for position-debiasing

article recommendation system.

1.3 Research Scopes

1) Using python on developing position-debiasing article recommendation

system.
2) Using the dataset has been provided by LTMAN Co., Ltd., the service provider

of the Blockdit application, a Thailand social media platform which allowing
users to read articles or content from other members.

3) Utilizing user-article interaction data for model creation.
4) Developing an API as an implementation demo for position-debiasing article

recommendation system.

1.4 Research Methodologies

1) Study and research related theories for position-debiasing article

recommendation system.

 5

2) Study and research literature review.
3) Study python and required libraries for developing position-debiasing article

recommendation system.
4) Conduct exploratory data analysis.
5) Conduct data preprocessing.
6) Build position-debiasing article recommendation system.
7) Test and evaluate research results.
8) Summarize the results.
9) Build an API for position-debiasing article recommendation system.
10) Prepare and submit an academic paper.
11) Make conclusions and produce thesis.

1.5 Research Outcomes

1) To be able to develop a position-debiasing article recommendation system.
2) To be able to develop an API for position-debiasing article recommendation

system.

 6

 An activity diagram of research methodologies is displayed in Fig. 3.

 Figure 3 Research Methodology Activity Diagram

 7

Chapter 2

Related Work

In this section, we delve into research that has contributed to the understanding
and implementing of the two-tower architecture and position-debiasing techniques. The
two-tower architecture involves the parallel processing of user and item information
through separate neural network towers, enabling more effective learning of user-item
interactions. Additionally, we explore the research dedicated to addressing the issue of
position bias in recommender systems.

2.1 Research in two-tower recommender systems

In recommender systems, deep neural networks have emerged as a pivotal tool
for building recommender systems due to their ability to capture complex nonlinear
relationships between users and items. DNNs have consistently outperformed traditional
collaborative filtering methods, such as matrix factorization, in various recommendation
tasks. He et al. [7] introduced a general framework for applying DNNs to
recommendation tasks. NCF utilizes a multilayer perceptron (MLP) to model the
interactions between users and items, achieving state-of-the-art performance on several
benchmark datasets. Cheng et al. [4] proposed a hybrid DNN architecture combining a
wide layer and a deep layer to capture low-order and high-order interactions between
users and items. W&D achieved significant performance improvements over traditional
methods and became widely adopted in recommender systems.

Building upon the extensive research on DNNs in recommender systems,

researchers have leveraged this innovative approach to craft state-of-the-art algorithms.
Among these, one prominent architecture that has gained significant attention is
"DeepFM."

 8

Guo et al. [8]. proposed a novel neural network architecture called DeepFM,
which operates by integrating the capabilities of factorization machines (FMs) and Deep
Neural Networks (DNNs) to capture a spectrum of feature interactions in
recommendation tasks adeptly. The model excels at comprehensively addressing low-
order and high-order interactions, contributing to remarkable advancements in
performance compared to its predecessors. Its widespread adoption as a go-to model
for Click-Through Rate (CTR) prediction in recommender systems underscores its
efficacy and impact in practical applications. The DeepFM architecture is displayed in
Fig. 4.

Figure 4 DeepFM architecture (Source: Huifeng Guo, Ruiming Tang. DeepFM: A

Factorization-Machine based Neural Network for CTR Prediction in Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

The author uses this research as a foundational exploration, and the insights

gained from DeepFM's success lay the groundwork for a better understanding of
recommendation system architectures.

 9

2.2 Research in positional-debiasing recommender system

In addressing position debiasing, deep neural networks ensure that the
recommendations generated reflect genuine user preferences rather than artifacts of
positional biases. Xingyuan et al. [10] propose a Deep Presentation Bias Integrated
Framework (DPBIF), as seen in Fig. 5, that considers overall presentation bias, including
context. DPBIF introduces a presentation block into user behavior sequences and
predicted target items to personalize the integration of presentation bias into CTR
prediction. It also avoids the independence assumption and estimates multiple
integrated CTRs for each item under different presentations. These CTRs transform the
ranking problem into an item-to-position assignment problem, optimized using the Kuhn-
Munkres (KM) algorithm. Offline experiments and online A/B tests demonstrate the
effectiveness of DPBIF.

Figure 5 DPIN architecture (Source: Jianqiang Huang, Ke Hu. Deep Position-wise
Interaction Network for CTR Prediction in Proceedings of the 44th International ACM

SIGIR Conference on Research and Development in Information Retrieval)

H, Jianqiang et al. [9] introduce a Deep Position-wise Interaction Network
(DPIN) to address the bias problem in click-through rate (CTR) prediction in online

https://dl.acm.org/doi/proceedings/10.1145/3404835
https://dl.acm.org/doi/proceedings/10.1145/3404835

 10

advertising and recommender systems. It aims to efficiently combine all candidate items
and positions for estimating CTR at each position, achieving consistency between offline
and online models. The DPIN model utilizes a two-layer transformer with self-attention
and is trained using stochastic gradient descent with actual position features and cross-
entropy loss. It has been deployed in a sponsored search advertising system and shows
statistically significant improvement over a highly optimized baseline in a rigorous A/B
test.

Positional debiasing in recommender systems addresses the inherent bias that

emerges due to the positional influence on user interactions. Users often interact more
with items at certain positions (e.g., the top of a list) not because of their relevance but
due to their visibility and accessibility, which can introduce bias into the learned models.
There are several ways to mitigate position bias [12]. One is introducing randomness
while collecting click data. Because multiple items can appear in the same position, we
can log which items performed better and train our models accordingly. Another
approach is to use the measured position bias to derive logged data. The Google paper
[13] used inferred position bias to train models optimized on inverse propensity
weighted precision.

G, Huifeng et al. [11] propose the Position-bias Aware Learning framework

(PAL), which models position bias during offline training and conducts online inference
without position information. PAL utilizes a two-stage training process. In the first stage,
as seen in Fig. 6, a position-aware model is trained using historical data, capturing the
relationship between item position and CTR. In the second stage, a position-
independent model is trained using the same data, excluding position information.
During online inference, the position-independent model predicts CTR, effectively
removing position bias. Experimental results demonstrate that PAL significantly
outperforms existing methods in offline and online settings.

 11

Figure 6 PAL architecture (Source: Guo, H.a.Y. PAL: a position-bias aware learning
framework for CTR prediction in live recommender systems in Proceedings of the 13th

ACM Conference on Recommender Systems)

Based on these research studies, integrating deep neural network models in
mitigating bias, especially positional bias, has shown powerful improving performance in
recommender systems. Therefore, this approach will be applied in this research.

https://dl.acm.org/doi/proceedings/10.1145/3298689
https://dl.acm.org/doi/proceedings/10.1145/3298689

 12

Chapter 3

Background

In this section, we provide knowledge for implementing our proposed approach.
The proposed approach leverages a collaborative filtering recommendation system, a
two-tower recommendation system with deep and cross neural network framework, a
position bias in the recommendation system, and the application of positional debiasing
in the recommendation system.

3.1 Recommender System

Recommender systems, also known as recommendation systems or engines,

are information filtering tools designed to predict and suggest items or content a user
might be interested in based on their preferences and historical interactions. As seen in
Fig. 7, These systems are pivotal in addressing the information overload problem by
delivering personalized recommendations that enhance user experience and
engagement in various domains, such as e-commerce, entertainment, social media, and
more.

Figure 7 An example of recommender system concept

 13

Recommender systems are trained to understand the preferences, previous
decisions, and characteristics of people and products using data gathered about their
interactions. These include impressions, clicks, likes, and purchases. Because of their
capability to predict consumer interests and desires on a highly personalized level,
recommender systems are a favorite with content and product providers. They can drive
consumers to think about any product or service that interests them, from books to
videos to health classes to clothing.

To enable the delivery of personalized recommendations, a recommender

system necessitates access to user information, often referred to as a user profile or
user model. In the context of our example, such as a book recommendation in Fig. 3,
this involves capturing data on a user's preferences, notably the books they have
previously read. The user profile forms the nucleus of every recommender system,
serving as the foundation for predicting which additional books might align with a user's
interests.

The method through which a recommender system acquires user information

varies across recommendation techniques. Regardless of the approach, the collection
and maintenance of user profiles remain integral. User preferences can be obtained
implicitly through observing and analyzing user behavior, such as their interactions with
books. Alternatively, explicit information can be sought by directly asking users about
their preferences. Recognizing that the core concepts underlying recommender
systems hinge on fundamental techniques is crucial. One is collaborative filtering. This
technique embodies distinct strategies for leveraging user profiles to generate
personalized recommendations, contributing to the diversity and effectiveness of
recommender systems.

 14

3.2 Collaborative Filtering

Collaborative filtering (CF) represents a cornerstone in recommender system
design, offering a robust method for predicting user preferences based on historical
interactions. At its core, collaborative filtering operates on the premise that users with
similar preferences will likely share familiar tastes. Compared to other recommendation
techniques, collaborative filtering does not require an intricate understanding of item
characteristics. Picture a scenario, as seen in Fig. 8, where you and your close friends
often watch movies together. If, during a meal, your friend prefers a specific type of
movie, you might choose a similar one based on your shared past movie preferences. In
this manner, collaborative filtering draws upon the collective tastes of users with similar
preferences akin to the dynamics observed in real-life situations.

Figure 8 An example of collaborative filtering scenario

Collaborative filtering, relying on user behavior, boasts several advantages over
content-based filtering. One significant strength lies in its effectiveness without requiring
additional development work, especially in scenarios with large user databases. The

 15

recommendation list remains potent as it leverages the behavioral patterns of users,
fostering diversity in recommendations. For example, collaborative filtering might
connect seemingly unrelated items if you and your friend are interested in hiking. If your
friend has data on camping gear, the system could recommend camping equipment
based on your shared interest in hiking.

However, collaborative filtering has its challenges. One notable drawback is the

cold start problem, particularly affecting new users, items, or systems. In such
instances, where information about the user is limited or ratings for new items are
limited, collaborative filtering needs to provide accurate recommendations. Scalability is
another concern, especially when matching target users with others who exhibit similar
behavior. The technique's efficiency relies heavily on the number of users; each user
must interact with enough items to maintain effectiveness. Lastly, the sparsity of data
poses a critical challenge, as users often need to rate the majority of items, leading to
sparse ratings.

To illustrate, consider a scenario where a user explores a new hobby, such as

photography. The recommendations may be less accurate if the collaborative filtering
system lacks sufficient data on this new interest. Additionally, as more users join the
platform, the challenge of matching behaviors and maintaining efficiency becomes
increasingly complex. The sparsity issue arises when users explore niche interests,
resulting in limited ratings for various items related to that specific interest.

The Two-Tower model emerges as a solution to enhance recommendation

system performance from the limitation mentioned above. This model addresses the
cold start problem by leveraging auxiliary information to understand better and
recommend items for new users or items with limited interaction history. Scalability
concerns are mitigated through the model's ability to efficiently handle many users and
items by optimizing the recommendation process. Moreover, the Two-Tower model

 16

tackles the sparsity of data challenge by incorporating auxiliary features and
embeddings, providing a more comprehensive understanding of user preferences, and
ensuring more accurate and diverse recommendations. As a result, the Two-Tower
model represents a promising advancement in recommender systems, offering a
solution to the inherent limitations of collaborative filtering.

3.3 Deep Neural Network

 Deep Neural Networks (DNNs) [14] represent a powerful class of machine
learning models that have evolved from the broader field of neural networks. The term
"deep" in DNNs refers to their characteristic depth, indicating the presence of multiple
hidden layers between the input and output layers. As seen in Fig. 9, These hidden
layers enable DNNs to learn intricate hierarchical representations of features from the
input data. Each layer contains nodes, or neurons, connected by weights adjusted
during training, allowing the network to capture complex patterns and relationships
within the data.

Figure 9 Example of deep neural networks

 17

In DNN, each layer contains a given number of units (neurons) that apply a
certain functional transformation to the input. These types of models can approximate
the behavior of any function. the deep neural network can be represented as:

 𝑦𝑖
𝑙 = 𝑓 ∑ 𝑤𝑖,𝑘

𝐽
𝑗+1 𝑥𝑘 + 𝑏𝑖 (1)

Where, the output 𝑦 of a unit 𝑖 in layer 𝑙 is related to the output 𝑥 of the earlier

layer 𝑘 with 𝑗 outputs through a set of weights 𝑤𝑖,𝑘, a bias 𝑏𝑖 and a non-linear
activation function 𝑓.

3.4 The “Two-Tower” Model

The "Two-Tower" model is an innovative approach in recommender systems designed to
address the limitations of collaborative filtering. This model is characterized by its
architectural framework, consisting of two distinct "towers" or neural networks: one
focuses on encoding user information, and the other on encoding item information. By
employing this dual-tower architecture, the model aims to capture intricate patterns in
user-item interactions, providing a more nuanced understanding of user preferences.

Figure 10 The two-tower architecture

 18

The Two-Tower model leverages a dual-structure architecture to facilitate
efficient [15] and nuanced learning of user-item interactions to learn more expressive
and meaningful representations of users and items by handling their features separately
before fusing them for prediction, thereby enhancing the system's ability to make
accurate and personalized recommendations. The model is visualized as two towers, as
seen in Fig. 10, where each tower is a neural network that processes and learns
representations for users and items independently. The "user tower" ingests user-related
features (such as user ID, historical interactions, and demographic information) and
processes them to generate a fixed-size embedding vector that represents the user.
Simultaneously, the "item tower" processes item-related features (such as item ID,
category, and other properties) to produce an embedding vector for the item.
Subsequently, the embeddings from both towers are combined, often through dot
product or concatenation, and passed through additional layers (if present) to predict
the interaction (such as click, purchase, or rating) between the user and the item.

3.3.1 Embedding Representation

Embeddings serve as numerical representations that capture the latent features of

users and items in a shared space. These embeddings are learned during the training
process and enable the model to uncover complex patterns in user-item interactions. In
the context of the Two-Tower model, embeddings are utilized to map users and items
into a common latent space where their preferences and characteristics are represented
as vectors.

The equation for the embedding process in the Two-Tower model involves
projecting users and items into a shared embedding space R. Let U represent the set of
users, I denote the set of items, and E denote the embedding space dimension. The
user embedding 𝑢𝑖 for a user i and the item embedding 𝑣𝑗 for an item j are calculated
as follows:

 19

𝑢𝑖 = 𝑈𝑠𝑒𝑟𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖) ∈ 𝑅𝐸 (2)

𝑣𝑗 = 𝐼𝑡𝑒𝑚𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑗) ∈ 𝑅𝐸 (3)

Where 𝑈𝑠𝑒𝑟𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑖) and 𝐼𝑡𝑒𝑚𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑗) are
functions that map users and items to their respective embeddings in the shared latent
space. The resulting embeddings, 𝑢𝑖 and 𝑣𝑗 , from Equation 1 and 2 represent the
users and items in a continuous vector space, where the proximity of vectors indicates
similarity in preferences.

The Two-Tower model further combines these embeddings to calculate a user-
item interaction score, often used for making recommendations. The interaction score
𝑠𝑖𝑗 , between user i and item j is computed to Equation 3 using the dot product of their
embeddings:

 𝑠𝑖𝑗 = 𝑢𝑖 ∙ 𝑣𝑗 (4)

The dot product captures the similarity between the user and item embeddings.
A higher dot product implies a stronger user-item interaction score, indicating a higher
likelihood that the user would be interested in the item.

In terms of similarity, Cosine similarity is a metric that measures the cosine of the

angle between two non-zero vectors. It is frequently employed to assess the similarity
between vectors. The formula for cosine similarity between user embedding 𝑢𝑖 and

item embedding 𝑣𝑗 are calculated as follows:

 𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝜃) =
𝑢𝑖 ∙ 𝑣𝑗

‖𝑢𝑖‖ ∙ ‖𝑣𝑗‖
 (5)

 20

Where 𝑢𝑖 ∙ 𝑣𝑗 represents the dot product of vectors and ‖𝑢𝑖‖ ∙ ‖𝑣𝑗‖
denote the Euclidean norms (magnitude) of vectors respectively. The resulting cosine
similarity ranges from -1 (completely dissimilar) to 1 (completely similar), with 0
indicating orthogonality.

Embeddings in the Two-Tower model provide a compact and expressive
representation of users and items in a shared latent space. The model learns these
embeddings through training, capturing complex relationships and patterns in user-item
interactions, ultimately enabling more effective and personalized recommendations.

3.4 Deep and Cross Network

Figure 11 Deep and Cross network architecture

 21

The Deep and Cross Network (DCN) [5] is a two-tower neural network
architecture designed to model low- and high-order feature interactions in tabular data,
commonly used in tasks like click-through rate prediction. The DCN, as seen in Fig, 11,
combines the strengths of deep neural networks and explicit cross-feature generation to
capture intricate patterns in the data.

Figure 12 Cross Network Operation

The Cross Network is designed to learn bounded-degree feature interactions
explicitly. It takes the original input features and applies a series of cross-
transformations, where each transformation captures specific feature interactions. The
idea is to allow the model to learn which features must be combined (crossed) to
improve the prediction. Mathematically, the cross operation, as seen in Fig. 12, can be
represented as:
 𝑥𝑙+1 = 𝑥0 ∗ (𝑥 𝑙 ∗ 𝑤 𝑙 + 𝑏𝑙) + 𝑥𝑙 (6)

Where, 𝑥𝑙+1 is the output from 𝑙𝑡ℎ layer, 𝑤𝑙 is the weight vector, and 𝑏𝑙 is
the bias vector.

 The Deep Network is a stack of fully connected layers, like traditional feed-
forward neural networks. It's designed to capture low-order feature interactions and can
generalize well from the input features. The deep component allows the model to learn
intricate patterns and representations from the data.

 22

The outputs of the Cross Network and the Deep Network are concatenated and
passed through a final stack of fully connected layers to produce the prediction. This
combination ensures that the model benefits from both explicit high-order feature
interactions and deep representations.

 23

Chapter 4

Proposed Method

The proposed methodology of this study is mitigating position bias by combining
positional features as one of the input feature vectors on the Deep and cross-network.
The positional feature is embedding on a) cross-network specifically and b) deep
network specifically. These positional feature embeddings help the model learn how
position affects the user's preference, thus ensuring that content recommendations are
both relevant and unbiased. As the positional feature embedding is modeled in the
offline training, a feature should also be included in prediction or online inference.
However, position information is unavailable when prediction is performed. To resolve
this problem, the decision is to select a position for all items as the value of the position
feature.

The architecture of the proposed model is explained in Fig. 13. The model

leverages both deep and cross networks in parallel to understand deeper relationships
of the features while also learning from the embedding positional features of the item for
each user. In user context, user embedding features include gender, age, the number of
articles read in the last 14 days, the ratio of article categories read by the user, and the
age of the articles on the day they were read. Regarding items, the embedding article
features its category, type, length, and the number of user engagements the previous
day. Subsequently, all the feature input undergoes deep and cross network embedding,
transforming sparse features into embeddings and concatenating them with dense
features. These are then separately channeled into the deep and cross networks before
being merged in the final combination output layer to obtain the final result. To observe
the impact of positional features in the Deep & Cross model, the feature will be
introduced as a sparse feature separately, a dense feature separately, and both feature
types. Then, an evaluation will be conducted.

 24

Figure 13 The proposed architecture framework

4.1 Input and Embedding Layer

 We classified all the features of the raw dataset into two types: categorical
features and numerical features. The categorical features were transformed into a low-
dimensional space using embedding for dimensional reduction. To avoid being affected
by the dimension, numerical features in the model were scaled into a fixed range
between zero and one using normalization or min-max normalization. Finally, we stacked
all the above into one vector and fed it to the proposed model simultaneously.

 25

4.2 Cross Network Layer

 The cross-network layer consists of 𝑥 layers, where each cross layer could be
calculated as follows:

 𝑥𝑗+1 = 𝑥0𝑥𝑗
𝑇𝑤𝑗 + 𝑏𝑗 + 𝑥𝑗 = 𝑓(𝑥𝑗 , 𝑤𝑗 , 𝑏𝑗) + 𝑥𝑗 (7)

 Where, 𝑗 ∈ [0, 1, 2, … . , 𝑚 − 1], 𝑚 ∈ [1, 2, 3, … .]; 𝑥𝑗+1 and 𝑥𝑗
represent the output of the 𝑗 − 𝑡ℎ cross layer and (𝑗 + 1) − 𝑡ℎ cross layer,
respectively, the other represent the same as in Equation. 6. All the variables were
column vectors. Furthermore, the features of each layer were crossed and combined
with the previous layer and original features and then added back to the previous layer.
This is similar to the structure of a residual network in which the function 𝑓 of each layer
fits the residual of 𝑥𝑗+1 − 𝑥𝑗. Thus, the gradient dispersion problem caused by the
DNN could be solved using this residual network.

4.3 Deep Network Layer

The rectified linear unit (ReLU) [16] was used as the activation function in the
proposed model due to its calculation simplicity. Moreover, the convergence speed of
ReLU significantly outperformed that of other activation functions, such as sigmoid [17].

4.4 Output Layer

 We calculated the output through a perceptron using a sigmoid activation

function S, which is expressed as follows:

 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑆(𝑤𝑥𝑓𝑖𝑛𝑎𝑙 + 𝑏) (8)

 26

Where 𝑤 and 𝑏 represent the weight vector and bias parameter for the

combination layer and 𝑥𝑓𝑖𝑛𝑎𝑙 represent the final combination result of the output from
both deep and cross network layer.

The cost function 𝐶 is the log loss along with a regularization term:

𝐶 =
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 log(𝑦𝑝𝑟𝑒𝑑) + (1 − 𝑦𝑖) log(1 − 𝑦𝑝𝑟𝑒𝑑) + 𝛾 ∑ ‖𝑦𝑖 − 𝑦𝑝𝑟𝑒𝑑‖

2
 𝑙 (9)

 Where 𝑦𝑝𝑟𝑒𝑑 represents the predicted value, 𝑦𝑖 represents the true labels, 𝑁
represents the total number of inputs, and 𝛾 represents the L2 regularization parameter.

4.5 Positional Features Preparation

 To incorporate positional features into the model training process, an essential
step involves feature engineering derived from the order of user interactions in log data.
This method aims to capture the temporal aspects of user-item interactions, allowing the
recommender system to discern the influence of position within the recommendation list.
However, a key challenge arises during prediction. Users typically only engage with
some items listed in a single day, necessitating a strategy to replace unavailable
positional features with a constant value (1 to 10), as seen in Fig. 14.

Figure 14 Diagram of applying positional features in this research

 27

This application is crucial for nullifying the undue influence of absent position-
related information during prediction, ensuring the model's robustness and
generalizability in real-world scenarios where user engagement patterns may vary
widely.

 28

Chapter 5

Experimental Setup

This section describes our dataset, data preparation methods, experimental
design, and evaluation criteria. We compare the performance of our approach to various
mechanisms and baselines.

5.1 Dataset

 The experiments were conducted using the Blockdit dataset. This dataset is
provided by the Blockdit company. Blockdit is a well-known social media application in
Thailand that presents content in a unique ``book-style'' format, where users can create
stories or articles page by page, resembling a digital book or a magazine. Allowing
them to express their ideas, share knowledge, or tell stories in a structured manner. The
dataset contains user and article interactions and other attributes from the Blockdit
application. The original dataset consists of 4 parts.

 5.1.1 The characteristics of the user dataset.

 The characteristics of the user dataset are detailed in Table 1.

Table 1 User data characteristics

No. Column Name Description

1
User.ts The timestamp when the user data point

is logged

2 User.id User unique identifier number

3 User.status The status of user

 29

4 User.createdTime The time the user creates their accounts

5 User.profile.gender The gender of user

6 User.profile.birthTime The user birthdate in unix time

7 User.profile.about The description of user on their profiles

8
User.profile.interest The interest user assigned when

creating their accounts

9 User.profile.work The occupation of user

10 User.profile.education The education degree of user

 5.1.2 The characteristics of the article dataset.

 The characteristics of the article dataset are detailed in Table 2

Table 2 Article data characteristics
No. Column Name Description

1 Article.ts The timestamp when the article data
point is logged

2 Article.id Article unique identifier number

3 Article.creator Article’s Creator unique identifier number

4 Article.page Article’s Page unique identifier number

5 Article.status The status of article
Ex. PUBLISHED, DELETED

6 Article.type The type of article
 Ex. Read, Audio

7 Article.createdTime The article created time to database

8 Article.publishedTime The article published time to database

9 Article.attachment.video Video unique identifier number in each

 30

article

10 Article.attachment.audio Audio unique identifier number in each
article

11 Article.ad The status of the presence of ad in
article

12 Article.categories The categories of article

13 Article.original.article The article's unique identifier (in case the
article is a shared article from another
source)

14 Article.original.page The page's unique identifier (in case the
article is a shared article from another
source)

15 Article.origin.user The Author unique identifier (in case the
article is a shared article from another
source)

5.1.3 The characteristics of the Interaction dataset.

 The characteristics of the Interaction dataset are detailed in Table 3.

Table 3 Interaction data characteristics

No. Column Name Description

1 Interaction.ts The timestamp when the interaction
logged in unix time

2 Interaction.tsOrigin The original timestamp when the
interaction happened (from user device)
in unix time

3 Interaction.user User unique identifier number

4 Interaction.firUser User temporary unique identifier number

 31

(when user is not registered)

5 Interaction.action The type of interaction the user made Ex.
Read25p = user read 25% of that article,
IMPRESSION = User see the article BUT

NOT INTERACT (Read, Like, Comment,
etc.) to that article

6 Interaction.target.user Author or user’s target unique identifier
number that user interacted with

7 Interaction.target.page Page’s unique identifier number that
user interacted with

8 Interaction.target.article Article’s unique identifier number that
user interacted with

9 Interaction.platform The type of user device Ex. Web, IOS,
Android

10 Interaction.language The language the user
selected/configured

5.1.4 The characteristics of the article’s detail dataset.

 The characteristics of the article’s detail dataset are detailed in Table 4.

Table 4 Article’s detail characteristics
No. Column Name Description

1 Article_detail.ts The timestamp when the article’s detail
logged in unix time

2 Article_detail.id Article’s detail unique identifier number

3 Article_detail.blockContent The content in the article

4 Article_detail.blockCount The amount of block (paragraph-like) in
the article

 32

5.2 Data Preparation

First step, we conducted data cleansing by removing duplicate entries. We
selectively filtered the data to retain only active and non-banned articles and users,
adhering to the 'user status = registered' and 'article status = published' criteria.
Furthermore, we excluded interaction data that lacked corresponding user IDs and
article IDs, rendering it impossible to identify the associated interaction pairs.
Additionally, we eliminated rows from the interaction data that lacked values in the
'article_blockContent' column, as article content is an indispensable feature for our
study. For gender and date of birth fields with missing values, we assigned them with
'unknown'. To prepare the date dimension data for subsequent analysis, we converted it
from Unix time format to datetime format.

Secondly, in the feature engineering phase for article data, we introduced a new

feature called 'freshness', which represents the number of days that have passed since
the article's publication at the time of the interaction. This feature captures the varying
preferences of users, as some may favor recent news and only view articles updated
within a certain timeframe, while others may be more interested in viral content,
regardless of its publication date. Another newly created feature, 'user_1d', tracks the
number of users who read the article on the previous day, reflecting its popularity and
viral status.

To enrich the user data, we introduced a new feature called 'age range', which is

derived from the 'date of birth' column and categorizes users into demographic groups
such as 'kid', 'high school', and 'adult'. Additionally, we developed a feature named
'blockcount_category_ratio', which is based on users' past behavior and determines the
proportion of articles a user reads from each category relative to their overall reading
activity. Another feature, 'blockcount_category_mean', indicates the average length of
articles the user tends to read in each category. The 'nunique_article' feature quantifies

 33

the number of distinct articles a user has read in the last 15 days, serving as a measure
of user engagement. 'mean_blockcount' represents the average length of articles read
by the user, while 'mean_freshness' calculates the average 'newness' of the articles they
interact with.

 Following the completion of data cleansing and feature engineering, the features
listed in Tables 5 were employed in this experiment.

Table 5 Features engineering description

No. Feature Name Description Type

1 Gender The gender of user Categorical

2 Age_ordinal The age range of user Categorical

3 Blockcount_category_ratio Proportion of articles a user
reads from each category
relative to their reading
activity

Numerical

4 Blockcount_category_mean Average articles length the
user read in each category

Numerical

5 Nunique_article Unique articles a user has
read in the last 15 days

Numerical

6 Mean_blockcount Average article’s length read
by the user

Numerical

7 Mean_freshness Average 'newness' of the
articles they engage with
based on article’s published
time

Numerical

8 Categories The category of article Categorical

9 Blockcount The length of article Numerical

10 Type The type of article Categorical

 34

11 Freshness Article’s published time – the
time the user interacts to the
article

Numerical

12 User_1d Number of unique articles a
user has read in the last 15
days

Numerical

The labels employed in this study reflect the nature of user interaction with

articles. A negative label is assigned when a user merely views the article content
without engaging with its entirety (Interaction.action = “IMPRESSION”). Conversely, a

positive label is assigned when a user actively interacts with the article by reading,
sharing, or reacting to it in some way (Ex. Interaction.action = “READ25P”).

The collected data were split into three groups: training data (user-article
interaction logs from February 12, 2023), validation data (user-article interaction logs
from February 13, 2023), and testing data (user-article interaction logs from February 14,
2023). The traits of the training data are summarized in Table. 6.

Table 6 The data characteristic

Dataset #Interaction #User #Article #Positive #Negative
Training 456,311 22,277 19,887 60,346 395,985
Validation 578,396 28,661 23,511 83,582 494,814
Testing 600,006 29,077 24,424 83,625 516,380

 35

5.3 Exploratory Data Analysis (EDA)

 Following data collection, an initial examination, exploration, and analysis of the
dataset, called Exploratory Data Analysis (EDA), was conducted. This critical phase
provided researchers with foundational insights into the dataset, which was crucial in
validating its precision. To exemplify their exploratory analysis, researchers presented a
graph in Fig. 15 to 19 below.

Figure 15 Article categories distribution

From Fig. 15, it can be observed that the top three most published article
categories are Lifestyle, Business, and Opinions.

 36

Figure 16 User’s age distribution

From Fig. 16, it can be observed that the average age of users falls within the

range of 25 to 45 years.

Figure 17 User’s age distribution categorized by generation.

From Fig. 17, It can be observed that the majority of users belong to Generation

Y and Generation X.

 37

Figure 18 The distribution between age groups and the gender.

From Fig. 18, it can be observed that in each age group, the number of male

and female users is relatively close, except for the elderly group where there is a higher
proportion of male users.

Figure 19 the distribution of user action types

From Fig. 19, it is evident that the majority of users exhibit a high frequency of
viewing the articles (IMPRESSION). However, the number decreases significantly when

 38

it comes to reading more than 25% of the articles (READ_25P) and further decreases in
subsequent actions levels.

5.4 Evaluation Metric

To evaluate performance, we used the testing data from February 14, 2023, and
processed all articles for each user to obtain the score for all articles. We then ranked
the top 100 articles and compared them to the actual data using the Mean Average
Precision at K (MAP@k) as metrics to evaluate the offline performance of each different
assigned position values. The MAP@K can be expressed as follows.

(10)

 (11)

Where, 𝐴𝑃@𝐾 represents mean precision of k-rank object recommendation,
𝑀𝐴𝑃@𝐾 represents mean average precision of k-rank object
recommendation, 𝑀 represents the number of times the object

recommendation system matches the target user's preferences and 𝑈
represents the total user numbers.

5.5 Experiment Settings

In training, for sparse feature, the positional feature will be treated as categorical
features and will be added into DCN model using an embedding layer to convert the
categorical positional data into vectors representation. For dense feature, the positional
feature will be treated as numerical feature, normalized using min-max scaling to ensure

 39

it's on a similar scale to other dense features and then feed directly into deep side of
DCN model. The implementation of positional features on both layers (Deep side and
Cross side) is also conducted. The default parameters for this approach include three
deep layers with 256, 128, and 64 neurons, as well as two cross layers.

As stated, we need to select a proper position value for prediction. But due to

resource limitation, it's impossible to evaluate the model with all possible positions.
Therefore, we conduct an offline experiment to select proper position value. Similar to
previous work [18] [19], we apply different position values, ranging from position 1 to
position 10.

5.5 Baseline Models

To assess the effectiveness of our proposed model, we compare its results with
a baseline model, noted for its strong performance.

• LightGBM - a gradient boosting framework that uses tree-based learning
algorithms and is designed for distributed and efficient training by
employing a histogram-based algorithm. Making it capable of achieving
higher precision with lower computational costs.

• XGBoost - an optimized distributed gradient boosting library designed to
be highly efficient, flexible, and portable. It employs an ensemble of
decision trees to produce accurate and robust predictive models.

• DeepFM [8] - combines the factorization machines (FM) and deep neural
networks to capture both low-level feature interactions and high-level
feature representations.

• DCN - an initial model with default parameters and without position
debiasing capability.

 40

5.6 Preliminary Experiment

In this preliminary experiment, we conducted our experiments within the Google
Colab Pro environment, utilizing a T4 GPU with a system RAM limit of approximately 50
GB. Given the substantial size of our dataset, each day's data encompasses around
500k interactions; the constrained system RAM posed limitations on the number of days
available for training. Consequently, we opted to employ the baseline XGBoost model to
explore the influence of varying training data durations on model performance. The
dataset was partitioned into two sets: "Training using 5 Feb," where the training data
consisted of interactions from February 5, 2023, with validation on February 6, 2023, and
testing on February 7, 2023; and "Training using 4-5 Feb," encompassing data from
February 4-5, 2023, with the same validation and testing dates. The results are
presented in Table 7.

Table 7 Comparison of preliminary results of in training data size in term of MAP@K

Model MAP@25 MAP@50

Training using 5 Feb 2.97% 2.39%

Training using 4-5 Feb 3.31% 2.65%

The results presented in Table 7 reveal a marginal improvement in performance

with an increase in the volume of data during the training period, though not reaching
statistical significance. Given the constraints imposed by hardware limitations in this
experiment, we opted to proceed with training using data from February 12, 2023, while
validating the model on February 13, 2023, and testing its performance on February 14,
2023.

 41

Chapter 6

Experimental Results

In this section, we present a two-part evaluation of our proposed approach. The
first part compares our model to a baseline model, while the second part conducts a
sensitivity analysis of position numbers.

6.1 Performance comparison between proposed model and baseline model

The comparison results are shown in Table. 2, with the best core highlighted in

bold. This table compares the performance results of all baseline models and the
proposed method using MAP@K. It is found that the proposed model, Position-aware
DCN (Cross side), achieves the best performance among all values of k (25, 50, 75,
100) at 25.98 %, 23.11 %, 21.53 %, and 20.70 %, respectively with the default
parameters of DCN.

Table 8 MAP@K for different models (position = 1)
Model MAP@25 MAP@50 MAP@75 MAP@100

XGBoost 8.93% 7.85% 6.70% 5.46%
LightGBM 10.77% 9.47% 7.98% 7.16%
DeepFM 17.75% 16.98% 16.42% 15.36%
DCN 18.00% 17.05% 16.51% 15.79%
Position-aware XGBoost 9.51% 9.20% 8.83% 8.77%
Position-aware LightGBM 14.97% 13.02% 11.84% 11.01%
Position-aware DeepFM 18.5% 18.12% 17.83% 17.65%
Position-aware DCN (Deep side) 20.43% 20.18% 19.86% 19.52%
Position-aware DCN (Cross side) 25.98% 23.11% 21.53% 20.70%
Position-aware DCN (Both side) 19.49% 19.08% 17.65% 16.06%

 42

6.2 Sensitivity to position number in prediction

We conducted the test to examine the effect of assigned position number during
prediction. As shown in Fig. 20 to Fig. 23, we can see that MAP@K values vary as we
assign different position values. In addition, the Cross-side model achieves the highest
on MAP@K among all values of k (25, 50, 75, 100) at position constant of 8 at 26.30 %,
23.45 %, 21.78 %, and 21.02 %.

Figure 20 MAP@25 on Position-aware models with various position constant

 43

Figure 21 MAP@50 on Position-aware models with various position constant

Figure 22 MAP@75 on Position-aware models with various position constant

 44

Figure 23 MAP@100 on Position-aware models with various position constant

The proposed model has outperformed the baseline model in predictive

performance and click-through rate, particularly when applied as a dense feature. By
treating positional features numerically (Cross-side), the model captures the inherent
ordinality and potential non-linear relationships between position and user engagement,
refining its predictive capabilities and understanding the implicit hierarchical
significance within the data. This numerical approach enables the model to effectively
comprehend and leverage the subtle nuances and gradients embedded within
positional data, facilitating a more subtle prediction of user interactions and preferences.
Also, the performance from different assigned position values on prediction in Fig. 20 to
23 indicates that the assigned position does not significantly impact the performance. Its
primary purpose is to negate the position's impact on the prediction only.

On the other hand, positional features implemented as both a sparse and dense
feature (Both sides) yield worse performance than those applied individually because

 45

Deep & Cross Networks are designed to capture both low-level feature interactions
(cross network) and high-level feature interactions (deep network) separately. Using the
same feature in both representations increases the model's complexity unnecessarily.
Thus, leads to a loss of information and performance degradation.

 46

Chapter 7

Application Programming Interface Design and Developing

Deploying a recommender system into production involves various strategies,
and considerations such as user, concurrent user, and load are crucial factors in this
process. Firstly, the system must efficiently handle individual user interactions, ensuring
a seamless experience for each user. Concurrent user handling is vital as the system
must scale gracefully when multiple users simultaneously access recommendations.
Additionally, addressing the overall load on the system, especially during peak usage
periods, is essential for maintaining optimal performance.

In addressing these concerns, deploying the recommender system through an
Application Programming Interface (API) provides a standardized and efficient solution.
APIs enable seamless communication between different software components, ensuring
scalability, ease of integration, and streamlined maintenance in a production
environment. Furthermore, the author has utilized the API to create a front-end web
interface, allowing users to interact with the recommender system easily. This additional
step demonstrates the versatility of API deployment, culminating in a comprehensive
demo that showcases the practicality and user-friendliness of deploying recommender
systems through APIs. The deployment architecture is displayed in Fig. 24.

Figure 24 API deployment architecture

 47

The recommender system deployment begins with the initiation of prediction
algorithms accessed through a REST API implemented using Flask. Developers can
interact with this API by providing parameters such as “user_id” and “top_n” to receive a
list of recommended articles as output. This API serves as a versatile interface, allowing
seamless integration into other projects demonstrating the flexibility and interoperability
of the recommender system. The API Get request results are displayed in Fig. 25 and
Fig. 26.

Figure 25 API Calling with query string on web browser

Figure 26 API calling using Postman API

 48

Users can conveniently access and visualize their recommended articles
through a front-end web application implemented with Streamlit. This user-friendly
interface enhances the user experience by providing an intuitive platform for exploring
and interacting with the recommendations. The user's main interface is displayed in Fig.
27.

Figure 27 User’s main interface

All these components are deployed on Heroku, a Platform as a Service (PaaS)

provider. Heroku streamlines the deployment process, offering a scalable and efficient
environment for hosting applications. By utilizing Heroku, the recommender system
becomes easily accessible to both developers and end-users, ensuring a smooth and
robust deployment experience. The dashboard of Heroku is displayed on Fig. 28.

 49

Figure 28 Heroku Dashboard

7.1 Designing UML Diagram

In this step, the author designed UML diagrams to be used in the planning and

readiness preparation for developing the API and web app of the recommender system.
This involves simulating an analysis that details the structure of the system to be
developed. Such modeling allows stakeholders to communicate and comprehend the
system's components, ensuring a shared understanding in a standardized visual
language known as the Standard Modeling Language. This research will focus on
designing a standard deployment diagram to illustrate the system's deployment
structure.

7.1.1 Deployment Diagram

Deployment diagram is designed to illustrate the physical architecture of a system

in terms of its installation and operation. It depicts the layout of the system or
components built on each node, showcasing the physical arrangement. This includes
representing the relationships between various programs in the system. The diagram is
crucial for planning the development process.

 50

Figure 29 Deployment diagram of the proposed algorithm

7.2 Designing Test Cases

Designing test cases is essential for deploying a recommender system, ensuring
its functionality and reliability in real-world scenarios. The framework of test cases allows
systematic evaluation of critical functionalities. In these test cases, the primary focus is
on user interaction to assess the system's ability to cater to user needs accurately. The
test cases are provided in Table 9.

 Table 9 Test cases description

Test Case ID Test Scenario Test Steps Expected Result Actual Result Status
TC001 User input with valid

user_id credentials (with
default top_n)

1. Enter valid user_id, User sees a list of
recommended articles.

User presented with a
list of recommended
articles.

Complete

2. Click “Get Recommendation”

TC002 User input with invalid
user_id credentials (with
default top_n)

1. Enter invalid user_id, User receives an error
message.

User presented with
an error message

Complete

2. Click “Get Recommendation”

TC003 User input with valid top_n
credentials

1. Enter valid user_id and valid
top_n.

User sees a list of
recommended articles.

User presented with a
list of recommended
articles.

Complete

2. Click “Get Recommendation”

TC004 User input with invalid
top_n credentials

1. Enter valid user_id but invalid
top_n (top_N > 100).

User receives an error
message.

User presented with
an error message

Complete

2. Click “Get Recommendation”

 51

 The results of each test case are displayed in Fig. 30 to Fig. 33.

Figure 30 Test result of test case TC001

From Fig. 30, it can be observed that the recommended results are displayed
correctly after user input with valid user ID and default top_N.

 52

Figure 31 Test result of test case TC002

From Fig. 31, it can be observed that the system shown error messages when
the user ID is invalid.

Figure 32 Test result of test case TC003

 53

From Fig. 32, it can be observed that the recommended results are displayed
correctly after user input with valid user ID and user desired top_N.

Figure 33 Test result of test case TC004

From Fig. 33, it can be observed that the system shows error messages when

the user ID is valid but out of range top_N number.

 54

Chapter 8

Conclusion

In this research, we propose the positional debias application by using position
value as a numerical feature toward the Cross side and a categorical feature toward the
Deep side within the Deep & Cross Network, which we call "Position-aware DCN." Each
reveals unique insights into user behavior and interaction patterns. This approach
enhanced the model's predictive precision and showed a robust, straightforward
framework to comprehend and mitigate positional bias. This research underscores the
critical role of positional features in refining recommendation algorithms and establishes
a foundation for future investigations into bias mitigation in algorithmic predictions.

Additionally, we extend our contributions by conducting an online deployment of
the proposed model as an API. This deployment validates the practical applicability of
our "Position-aware DCN" and demonstrates its simplicity and advantages through an
overview and deployment diagram. By showcasing the system's functionality and ease
of integration as an API, we aim to contribute to the broader understanding of deploying
advanced recommender systems in real-world settings. This deployment methodology
exemplifies the potential for widespread adoption, emphasizing the model's practicality
and ease of implementation in diverse applications.

RE FE RE NCES

REFERENCES

1. Sage, D. Social Media Users. 2023 [cited 2023 5]; Available from:
https://www.demandsage.com/social-media-users/.

2. Bobadilla, J.a.S., Francisco and Hernando, Antonio and others, Collaborative
filtering adapted to recommender systems of e-learning. Knowledge-Based
Systems, 2009. 22: p. 261--265.

3. Leskovec, J.Y.a.Y.W.a.A.P.a.P.E.a.C.R.a.J., Hierarchical Temporal Convolutional
Networks for Dynamic Recommender Systems. 2019. p. 2236-2246.

4. Koc, L., Wide & Deep Learning for Recommender Systems. CoRR, 2016.
abs/1606.07792.

5. Wang, R.a.F., B. and Fu, G. and Wang, M., Deep & Cross Network for Ad Click
Predictions. Proceedings of the ADKDD'17, 2017.

6. Richardson, M.a.D., Ewa and Ragno, Robert, Predicting Clicks: Estimating the
Click-through Rate for New Ads. 2007: p. 521--530.

7. Chua, X.H.a.L.L.a.H.Z.a.L.N.a.X.H.a.T.-S., Neural Collaborative Filtering. 2017.
8. Guo, H., Tang, R., Ye, Y., Li, Z., He, X., & Mamitsuka, H., DeepFM: A factorization-

machine based neural network for CTR prediction. 2017.
9. Huang, J.a.H., Ke and Tang, Qingtao and Chen, Mingjian and Qi, Yi and Cheng,

Jia and Lei, Jun, Deep Position-wise Interaction Network for CTR Prediction.
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information, 2021.

10. Huang, J.a.T., Xingyuan and Wang, Zhe and Jia, Shaolin and Bai, Yin and Liu,
Zhiwei and Cheng, Jia and Lei, Jun and Zhang, Yan, Deep Presentation Bias
Integrated Framework for CTR Prediction. 2022.

11. Guo, H.a.Y., Jinkai and Liu, Qing and Tang, Ruiming and Zhang, Yuzhou, PAL: A
Position-Bias Aware Learning Framework for CTR Prediction in Live
Recommender Systems. Association for Computing Machinery, 2019: p. 452–456.

12. Yan, Z. How to Measure and Mitigate Position Bias. [cited 2022; Available from:

https://www.demandsage.com/social-media-users/

 56

https://eugeneyan.com/writing/position-bias/.
13. Wang, X.a.G., Nadav and Bendersky, Michael and Metzler, Donald and Najork,

Marc, Position Bias Estimation for Unbiased Learning to Rank in Personal Search.
Association for Computing Machinery, 2018.

14. Aouichaoui, A.R.N., et al., Comparison of Group-Contribution and Machine
Learning-based Property Prediction Models with Uncertainty Quantification, in
Computer Aided Chemical Engineering, M. Türkay and R. Gani, Editors. 2021,
Elsevier. p. 755-760.

15. Xin, S.a.L., Zhao and Zou, Pengcheng and Long, Cheng and Zhang, Jie and Bu,
Jiajun and Zhou, Jingren, ATNN: Adversarial Two-Tower Neural Network for New
Item’s Popularity Prediction in E-commerce. 2021 IEEE 37th International
Conference on Data Engineering (ICDE), 2021: p. 2499-2510.

16. A. Krizhevsky, I.S., and G. E. Hinton, Imagenet classification with deep
convolutional neural networks,. Advancesin Neural Information Processing
Systems. 25.

17. H. Pratiwi, A.P.W., S. Susliansyah et al.,, Sigmoid acti-vation function in selecting
the best model of artificial neuralnetworks. Journal of Physics: Conference Series.
1471 no. 1.

18. Zhang, B.L.a.R.T.a.Y.C.a.J.Y.a.H.G.a.Y., Feature Generation by Convolutional
Neural Network for Click-Through Rate Prediction. The World Wide Web
Conference, 2019.

19. Gai, G.Z.a.C.S.a.X.Z.a.Y.F.a.H.Z.a.X.M.a.Y.Y.a.J.J.a.H.L.a.K., Deep Interest
Network for Click-Through Rate Prediction. 2018.

https://eugeneyan.com/writing/position-bias/

V ITA

VITA

NAME Dhata Muangrux

DATE OF BIRTH 26 March 1998

PLACE OF BIRTH Bangkok, Thailand

INSTITUTIONS ATTENDED Chulalongkorn University

HOME ADDRESS 134/239 soi 1/15 Burasiri Sanambinnam village,
Sanambinnam road, Tha Sai, Nonthaburi 11000

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	1.1 Background
	1.2 Research Objectives
	1.3 Research Scopes
	1.4 Research Methodologies
	1.5 Research Outcomes

	Related Work
	2.1 Research in two-tower recommender systems
	2.2 Research in positional-debiasing recommender system

	Background
	3.1 Recommender System
	3.2 Collaborative Filtering
	3.3 Deep Neural Network
	3.4 The “Two-Tower” Model
	3.3.1 Embedding Representation

	3.4 Deep and Cross Network

	Proposed Method
	4.1 Input and Embedding Layer
	4.2 Cross Network Layer
	4.3 Deep Network Layer
	4.4 Output Layer
	4.5 Positional Features Preparation

	Experimental Setup
	5.1 Dataset
	5.1.1 The characteristics of the user dataset.
	5.1.2 The characteristics of the article dataset.
	5.1.3 The characteristics of the Interaction dataset.
	5.1.4 The characteristics of the article’s detail dataset.

	5.2 Data Preparation
	5.3 Exploratory Data Analysis (EDA)
	5.4 Evaluation Metric
	5.5 Experiment Settings
	5.5 Baseline Models
	5.6 Preliminary Experiment

	Experimental Results
	6.1 Performance comparison between proposed model and baseline model
	6.2 Sensitivity to position number in prediction

	Application Programming Interface Design and Developing
	7.1 Designing UML Diagram
	7.1.1 Deployment Diagram

	7.2 Designing Test Cases

	Conclusion
	REFERENCES
	VITA

