CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

- There are no significant differences between Cu/Na-ZSM-5 and Cu/H-ZSM-5 in structure, surface area, coke formation and acid properties. However, in the same total Cu content of both Cu/Na-ZSM-5 and Cu/H-ZSM-5, Cu/H-ZSM-5 has more Cu¹⁺ than Cu/Na-ZSM-5.
- 2. From the steady state and transient experiments, the activities of Na, H-ZSM-5, Cu/Na-ZSM-5 and Cu/H-ZSM-5 on NO conversion and possible reactions taking part in the mechanism are summarized in Table 6.1.

Table 6.1 Activity of catalysts on various reactions

Sample	Na-ZSM-5	H-ZSM-5	Cu/Na-ZSM-5	Cu/H-ZSM-5
Reaction	าข้าเกิ	ากยา เริ	การ	
NO	Not active	Not active	Fairly active	Fairly active
NO +O ₂	Little active	Quite active	Very active	Very active
$C_3H_8+O_2$	Little active	Very active	Very active	Very active
$NO + C_3H_8 + O_2$	Little active	Very active	Very active	Very active
NO + C ₃ H ₈	<u>-</u>	-	Fairly active	Quite active

^{*} Not active < Little active < Fairly active < Quite active < Very active

- 3. From the result that H-ZSM-5 is not active in NO decomposition but active in NO oxidation, it is likely that oxygen preferably adsorbs on H-ZSM-5 and then reacts with NO in the gas phase to form NO₂. This route differs from the oxidation on the copper site.
- 4. Cu/Na-ZSM-5 is slightly more active than Cu/H-ZSM-5 in NO conversion in the presence of oxygen whereas Cu/H-ZSM-5 is more active in NO conversion in the absence of oxygen. The different acitivities between Cu/Na-ZSM-5 and Cu/H-ZSM-5 might be due to the different residual cations and/or to Cu¹⁺/Cu²⁺ ratio on catalysts surface.

6.2 Recommendations

- 1. Further study in detail of the state of copper species on the surface of ZSM-5. Also identification of difference on Cu/H-ZSM-5 and Cu/Na-ZSM-5.
- 2. Studies of activities and characteristics of catalysts with different Cu loading
- 3. Adsorption characteristic on acid sites and copper sites by using such as TPD technique.
- 4. Application of other methods such as modulation or different step changes including step down.