Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/1636
Title: | On-line fundamental arithmetic algorithms for three-dimensional vector system |
Other Titles: | อัลกอรึทึมเลขคณิตพื้นฐานเชื่อมตรงสำหรับระบบเวกเตอร์สามมิติ |
Authors: | Saravut Rangsunvigit |
Advisors: | Athasit Surarerks |
Other author: | Chulalobgkorn University. Faculty of Engineering |
Advisor's Email: | athasit@cp.eng.chula.ac.th |
Subjects: | Algorithms Three-dimensional vector |
Issue Date: | 2004 |
Publisher: | Chulalongkorn University |
Abstract: | This research is to introduce a novel three-dimensional vector representation system. The proposed system composes of an integer base and a finite set of signed-vector-digit. The research is also focused on an on-line computation mode combining with a pipelining concept. An important characteristic for an on-line system is also studied, that is the on-line delay, the smallest integer which is the number of digits of the inputs used for producing the first digit of the output. In order to do this, the vector representation system should be a redundant system which means any vector can have more than one finite representation. The concept of signed digit number system is applied to this work. Using the new representation, some fundamental arithmetic operations for three-dimensional vector such as addition, subtraction, and multiplication (cross product) are shown to be realized, similar to the classical number system. |
Other Abstract: | งานวิจัยนี้เป็นการเสนอระบบแทนเวกเตอร์สามมิติแบบใหม่ ระบบที่เสนอนี้ประกอบด้วย เลขฐานที่เป็นจำนวนเต็ม และ เซตจำกัดของดิจิตที่เป็นเวกเตอร์ที่มีเครื่องหมาย งานวิจัยนี้ยังได้เน้นไปที่การคำนวณเชื่อมตรงผสานเข้ากับแนวคิดของการทำงานท่อตรง คุณสมบัติที่สำคัญสำหรับระบบการทำงานเชื่อมตรงได้ถูกศึกษาในงานนี้เช่นเดียวกัน นั่นคือความหน่วงเชื่อมตรง ซึ่งเป็นจำนวนของดิจิตที่น้อยที่สุดของตัวถูกดำเนินการที่ ต้องใช้ในการผลิตดิจิตแรกของผลลัพธ์ เพื่อให้การทำงานเชื่อมตรงทำได้ ระบบแทนเวกเตอร์จะต้องมีคุณสมบัติซ้ำซ้อน หมายความว่า เวกเตอร์ใดๆ สามารถหารูปแบบแทนได้มากกว่าหนึ่ง รูปแบบ แนวคิดของระบบจำนวนมีเครื่องหมายจึงถูกนำมาประยุกต์ใช้ในงานนี้ด้วย ในระบบแทนเวกเตอร์แบบใหม่นี้ การคำนวณพื้นฐานที่ใช้สำหรับเวกเตอร์สามมิติ อันได้แก่ การบวก การลบ และการคูณ (ครอสโปรดัก) ได้ถูกแสดงให้เห็นว่าสามารถทำงานได้ด้วยการทำงานที่คล้ายกับระบบจำนวนตัวเลขแบบคลาสสิค |
Description: | Thesis (M.Sc.)--Chulalongkorn University, 2004 |
Degree Name: | Master of Science |
Degree Level: | Master's Degree |
Degree Discipline: | Computer Science |
URI: | http://cuir.car.chula.ac.th/handle/123456789/1636 |
ISBN: | 9741758065 |
Type: | Thesis |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Saravut.pdf | 571.55 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.