Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/1698
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Somchai Jitapunkul | - |
dc.contributor.author | Senglathsamy Chanthamenavong | - |
dc.contributor.other | Chulalongkorn University. Faculty of Engineering | - |
dc.date.accessioned | 2006-08-11T11:43:18Z | - |
dc.date.available | 2006-08-11T11:43:18Z | - |
dc.date.issued | 2004 | - |
dc.identifier.isbn | 9745318035 | - |
dc.identifier.uri | http://cuir.car.chula.ac.th/handle/123456789/1698 | - |
dc.description | Thesis (M.Eng.)--Chulalongkorn University, 2004 | en |
dc.description.abstract | This thesis proposed a robust method on tonal syllable recognition for continuous Lao speech recognition, by applying the specific characteristic of Lao language system as the conditional classification. The Lao language was studied in both acoustical and grammatical of Lao spoken. From the acoustical point of view, a syllable consists of initial consonant, vowel, final consonant and a tone. The final consonant is strongly influenced by the vowel duration. In addition, the part of vowel and final consonant is considered as voiced portion. Usually, only the voiced portion can carry tone information. Since, the initial consonant is not affected by the duration of the vowel. From the grammatical point of view, the tone of a syllable will be known, when the initial consonant, vowel and final consonant are know. Furthermore, the meaning of some syllables can change when different tones are applied. Therefore, this research investigated to increase the accuracy and recognition speed of the Lao speech recognition by applying the condition of Lao tonal grammar. To implement a tonal syllable recognition system for Lao language based on continuous speech, various conventional speech units used in speech recognition systems have been investigated, in order to find out the optimal speech model for Lao speech recognition. In experiments, the existing techniques of tonal syllable recognition have also been experimented to evaluate the effectiveness and compare with the proposed method. As a result, experiment results shown that, the proposed system can achieve higher recognition rate at 66.85% and 8.92%, for speaker-independent and speaker-dependent, respectively. Moreover, the proposed system can recognizes with faster speed than that of baseline system, around 25%. | en |
dc.description.abstractalternative | วิทยานิพนธ์ ฉบับนี้ นำเสนอระเบียบวิธีการรู้จำพยางค์ เสียงวรรณยุกต์ สำหรับการรู้จำเสียงพูดต่อเนื่องภาษาลาว ที่มีความคงทน โดยการประยุกต์ลักษณะสมบัติของระบบภาษาลาว ในการจำแนกแบบมีเงื่อนไข มีการศึกษาภาษาพูดลาวทั้งแบบ อะคูสติกและไวยากรณ์ ในมุมมองทางด้านอคูสติก แต่ละพยางค์ ประกอบด้วย พยัญชนะ ต้น สระ พยัญชนะตัวสะกด หรือ พยัญชนะท้าย และวรรณยุกต์ พยัญชนะท้ายได้รับอิทธิพล อย่างมากจาก ช่วงการออกเสียงสระ นอกจากนั้น บางส่วนของเสียงสระ พยัญชนะท้าย จัดเป็นส่วนเสียงก้อง (voiced portion) ตามปกติ มีเสียงส่วนนี้เท่านั้น ที่จะมีข้อสนเทศของ วรรณยุกต์ เพราะว่า พยัญชนะต้น ไม่ได้รับผลกระทบจาก ช่วงการออกเสียงสระจากมุมมองทางไวยากรณ์ เมื่อรู้จัก พยัญชนะต้น สระ และ พยัญชนะท้าย จะทำให้รู้วรรณยุกต์ของพยางค์ได้อย่างแท้จริง ยิ่งไปกว่านั้น บางพยางค์มีความหมายเปลี่ยนไป ตามเสียงวรรณยุกต์ ดังนั้นงานวิจัยนี้ ต้องการเพิ่มความเร็ว และอัตราของการรู้จำเสียงพูดภาษาลาว โดยการประยุกต์เงื่อนไขของไวยากรณ์ทางวรรณยุกต์ ของภาษาลาว เพื่อทำให้ ระบบรู้จำเสียงพยางค์ที่วรรณยุกต์ สำหรับภาษาลาว บนพื้นฐานเสียงพูดต่อเนื่องเป็นผล จะทำการศึกษาและทดสอบหน่วยเสียงแบบต่างๆ ที่มีใช้ในปัจจุบัน เพื่อนำมาสร้างแบบจำลองเสียงที่เหมาะที่สุด สำหรับระบบการรู้จำเสียงภาษาลาว เทคนิคการรู้จำเสียงพยางค์ที่มีวรรณยุกต์แบบต่างๆ ได้ถูกนำมาทดสอบเพื่อเปรียบเทียบกับวิธีการนำเสนอ จากผลการทดสอบแสดงให้เห็นว่าระบบที่นำเสนอสามารถเพิ่มอัตราของการู้จำได้เป็น 66.85% และ 81.92% สำหรับการรู้จำแบบไม่ขึ้นต่อผู้พูดและขึ้นต่อผู้พูด ตามลำดับ นอกจากนี้ ระบบที่นำเสนอสามารถรู้จำได้เร็วกว่าระบบเดิมประมาณ 25% | - |
dc.format.extent | 1851202 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | en |
dc.publisher | Chulalongkorn University | en |
dc.rights | Chulalongkorn University | en |
dc.subject | Automatic speech recognition | en |
dc.subject | Lao language | en |
dc.title | Recognition tone and syllable in combination for Lao continuous speech | en |
dc.title.alternative | การรู้จำเสียงวรรณยุกต์และพยางค์ร่วมกันสำหรับเสียงพูดต่อเนื่องภาษาลาว | en |
dc.type | Thesis | en |
dc.degree.name | Master of Engineering | en |
dc.degree.level | Master's Degree | en |
dc.degree.discipline | Electrical Engineering | en |
dc.degree.grantor | Chulalongkorn University | en |
dc.email.advisor | Somchai.J@chula.ac.th | - |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Senglathasamy.pdf | 1.91 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.