Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/27483
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Prasert Pavasant | - |
dc.contributor.advisor | Sorawit Powtongsook | - |
dc.contributor.author | Kerati Issarapayup | - |
dc.contributor.other | Chulalongkorn University. Faculty of Engineering | - |
dc.date.accessioned | 2012-12-11T04:20:42Z | - |
dc.date.available | 2012-12-11T04:20:42Z | - |
dc.date.issued | 2011 | - |
dc.identifier.uri | http://cuir.car.chula.ac.th/handle/123456789/27483 | - |
dc.description | Thesis (D.Eng.)--Chulalongkorn University, 2011 | en |
dc.description.abstract | The cultivation of green vegetative cells of Haematococcus pluvialis NIES-144 was carried out in flat panel airlift photobioreactors (FP-ALPBRs) of different sizes, i.e. 17, 50, 90 and 200L, operated in the evaporative room where the temperature was controlled at 27±3℃. Normal cultivation was carried out with a superficial gas velocity (U[subscript sg]) of 0.4 cm s-1 mixed with 1%vol CO₂, and a ratio of downcomer and riser cross sectional area (A[subscript d] / A[subscript r]) of 0.4. The hydrodynamic characteristics for FP-ALPBR system, i.e. liquid velocity and overall volumetric gas-liquid mass transfer, were also investigated. The hydrodynamic study reveals that the system with (A[subscript d] / A[subscript r]) of 0.4 provided the lowest liquid velocity for 17L ALPBR system (U[subscript l] ranged from 1.2-6.3 cms⁻¹), and the greatest amount of overall volumetric mass transfer coefficient (K[subscript L]a ranged from 0.000358 to 0.0066 s⁻¹). This condition provides the lowest shear stress which makes it suitable for the green vegetative stage of H. pluvialis. Several alternative growth options were proposed in order to enhance mass production of green vegetative cell of H. pluvialis and also to cut down the total operating cost for such algal cultivation. The use of natural lighting was inevitable to avoid the high electricity cost, and replacing artificial lighting with natural light was found to decrease the total production cost by as much as 307 US$ per 0.5 kg dry cell in the 50L FP-ALPBR. Nevertheless, the lack of control of diurnal light intensity resulted in a drop in the growth performance with cell density decreasing from 387 x 104 to 140 x 104 cell mL⁻¹, and specific growth rate from 0.63 to 0.53 day⁻¹. Reactor sizes (under natural light operation) appeared to be significant for the profitability of the system, and enlarging the FP-ALPBR from 17 to 200L required significantly lower total costs of production per year (121 US$ per 0.5 kg dry cell for 200L culture when compared to 197 US$ per 0.5 kg dry cell for the 17L system). Unfortunately this had to be compensated by a drop in the growth performance with cell density decreasing from 290 x 104 to 147 x 104 cell mL⁻¹ and specific growth rate from 0.49 to 0.47 day⁻¹. Finally, the reuse of spent medium (under natural light operation) with proper replenishment of nutrients caused an unexpected around 30 % drop in the growth rate and did not seem to provide an attractive response as the total cost per 0.5 kg dry cell was only saved by 8 US$ a year. | en |
dc.description.abstractalternative | งานวิจัยนี้ทำการศึกษาการเพาะเลี้ยงเซลล์จุลสาหร่ายฮีมาโทคอคคัส พลูเวียลิส (NEIS-144) ในถังปฏิกรณ์ชีวภาพเชิงแสงแบบอากาศยกชนิดแผ่นเรียบ (Flat panel airlift photobioreactor) ปริมาตร 17 50 90 และ 200 ลิตร โดยดำเนินการทดลองในห้องควบคุมอุณภูมิไอน้ำ (27±3 องศาเซลเซียส) และสภาวะการเพาะเลี้ยง โดยการป้อนอากาศที่ผสมก๊าซคาร์บอนไดอกไซด์ 1 เปอร์เซนต์โดยปริมาตรเข้าสู่ระบบ ที่ความเร็ว 0.4 เซนติเมตรต่อวินาที และ สัดส่วนของพื้นที่ไม่ให้อากาศต่อพื้นที่ให้อากาศเท่ากับ 0.4 นอกจากนั้นยังได้ทำการศึกษาอุทกพลศาสตร์ของระบบถังปฏิกรณ์ชีวภาพเชิงแสงแบบอากาศยกชนิดแผ่นเรียบ อาทิเช่น ค่าความเร็วของของเหลว และค่าการถ่ายเทมวลสารระหว่างก๊าซและของเหลว เป็นต้น ซึ่งผลของการศึกษาอุทกพลศาสตร์ในถังปฏิกรณ์ขนาด 17 ลิตร พบว่าค่าสัดส่วนของพื้นที่ไม่ให้อากาศต่อพื้นที่ให้อากาศเท่ากับ 0.4 ส่งผลให้ค่าความเร็วของของเหลวในระบบน้อยที่สุด (1.2 - 6.3 เซนติเมตรต่อวินาที) ในทางตรงกันข้ามส่งผลต่อค่าการถ่ายเทมวลสารระหว่างก๊าซและของเหลวในระบบสูงที่สุด (0.000358 – 0.0066 ต่อวินาที) ซึ่งเป็นสภาวะที่เหมาะสมต่อการเพาะเลี้ยงเซลล์จุลสาหร่าย ฮีมาโทคอคคัส พลูเวียลิส ในระยะเซลล์เวเจทเททีฟ การศึกษาการเพาะเลี้ยงเซลล์จุลสาหร่ายชนิดนี้ นอกจากการทดลองเพื่อหาสภาวะที่เหมาะสมเพื่อเพิ่มมวลการผลิตของจุลสาหร่ายแล้ว ยังได้รวมการวิเคราะห์ค่าความคุ้มทุนทางเศรษฐศาสตร์ของการเพาะเลี้ยงเซลล์จุลสาหร่ายอีกด้วย การทดลองที่ผ่านมาพบว่ากระบวนการเพาะเลี้ยงเซลล์จุลสาหร่ายนี้ต้องใช้พลังงานสูงในการดำเนินการผลิต ซึ่งส่งผลให้ต้นทุนการผลิตสูง งานวิจัยนี้จึงได้เสนอวิธีช่วยลดต้นทุนดังกล่าวคือ ดำเนินการเพาะเลี้ยงในถังปฏิกรณ์ขนาด 50 ลิตร โดยใช้แสงธรรมชาติแทนการใช้หลอดไฟฟลูออเรสเซนต์ ซึ่งพบว่าสามารถลดรายจ่ายของกระบวนการผลิตต่อปีได้ถึง 307 ดอลล่าร์ต่อสาหร่ายแห้ง 0.5 กิโลกรัม อย่างไรก็ตาม การใช้แสงธรรมชาติส่งผลให้ความหนาแน่นสูงสุดของเซลล์ลดลง (387 x 10⁴ เป็น 140 x 10⁴ เซลล์ต่อมิลลิลิตร) และอัตราการเจริญเติบโตจำเพาะลดลง (จาก 0.63 เป็น 0.53 ต่อวัน) นอกจากนั้น การขยายขนาดถังปฏิกรณ์เพื่อเพิ่มปริมาณเซลล์ผลผลิต พบว่าการขยายขนาดจาก 17 เป็น 200 ลิตร สามารถลดรายจ่ายของกระบวนการผลิต โดยการดำเนินการในถังปฏิกรณ์ขนาด 17 ลิตร เพื่อให้ได้ผลผลิตเซลล์แห้งที่ต้องการ 0.5 กิโลกรัมนั้น มีค่ารายจ่ายต่อปี เท่ากับ 197 ดอลล่าร์ ในขณะที่ดำเนินการในถังปฏิกรณ์ขนาด 200 ลิตร มีค่ารายจ่ายต่อปี ลดลงเท่ากับ 121 ดอลล่าร์ อย่างไรก็ตาม การดำเนินการผลิตในถังปฏิกรณ์ขนาด 200 ลิตร ส่งผลให้ความหนาแน่นสูงสุดของเซลล์ลดลง (290 x 10⁴ เป็น 147 x 10⁴ เซลล์ต่อมิลลิลิตร) และอัตราการเจริญเติบโตจำเพาะลดลง (จาก 0.49 เป็น 0.47 ต่อวัน) เมื่อเทียบกับการดำเนินการผลิตในถังปฏิกรณ์ขนาด 17 ลิตร แนวทางสุดท้ายคือการนำสารอาหารกลับมาใช้เพาะเลี้ยงเซลล์สาหร่ายใหม่ ผลการประเมินพบว่าวิธีการนี้มีประสิทธิภาพไม่เพียงพอที่จะช่วยลดค่าใช้จ่ายของกระบวนการผลิตอย่างมีนัยสำคัญ โดยสามารถลดรายจ่ายของกระบวนการผลิตต่อปีได้เพียง 8 ดอลล่าร์ต่อสาหร่ายแห้ง 0.5 กิโลกรัม ในขณะที่อัตราการเจริญเติบโตของเซลล์ลดลงถึง 30 เปอร์เซ็นต์ | en |
dc.format.extent | 3476279 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | es |
dc.publisher | Chulalongkorn University | en |
dc.relation.uri | http://doi.org/10.14457/CU.the.2011.1769 | - |
dc.rights | Chulalongkorn University | en |
dc.subject | Bioreactors | en |
dc.subject | Haematoloechus | en |
dc.subject | Cell culture | en |
dc.title | Large scale flat panel airlift photobioreactor for high density cultivation of vegetative cell, Haematococcus pluvialis | en |
dc.title.alternative | ถังปฏิกรณ์ชีวภาพอากาศยกเชิงแสงแบบแผ่นเรียบขนาดใหญ่เพื่อการเพาะเลี้ยงเซลล์เวเจทเททีฟความหนาแน่นสูงของฮีมาโทคอคคัส พลูเวียลิส | en |
dc.type | Thesis | es |
dc.degree.name | Doctor of Engineering | es |
dc.degree.level | Doctoral Degree | es |
dc.degree.discipline | Chemical Engineering | es |
dc.degree.grantor | Chulalongkorn University | en |
dc.email.advisor | prasert.p@chula.ac.th | - |
dc.email.advisor | Sorawit.P@chula.ac.th | - |
dc.identifier.DOI | 10.14457/CU.the.2011.1769 | - |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
kerati_is.pdf | 3.39 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.