Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/31292
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Sajee Pianskool | - |
dc.contributor.author | Samkhan Hobuntud | - |
dc.contributor.other | Chulalongkorn University. Faculty of Science | - |
dc.date.accessioned | 2013-05-25T01:35:35Z | - |
dc.date.available | 2013-05-25T01:35:35Z | - |
dc.date.issued | 2008 | - |
dc.identifier.uri | http://cuir.car.chula.ac.th/handle/123456789/31292 | - |
dc.description | Thesis (M.Sc.)--Chulalongkorn University, 2008 | en |
dc.description.abstract | A semihyperring with zero is a triple (A,+,#) such that (A,+) is a semihypergroup, (A,#) is a semigroup, # is distributive over + and there exists 0(called a zero) in A such that x+0=0+x is singleton x and x#0=0#x=0 for all x in A. We say that a semigroup S admits the structure of a semihyperring with zero if there exists a hyperoperation + on S with zero such that (S with zero,+,#) is a semihyperring with zero where # is the operation on S. Let V be a vector space over a division ring R , W a subspace of V and LR(V,W) the semigroup of all linear transformations from V into W under composition. For each q in LR(V,W) , let F(q) consist of all elements in V fixed by q. Let OMR(V,W) be set of all linear transformations from V into W such that dimension of kernel is infinite, OER(V,W) be set of q in LR(V,W) such that dimension of (W/Im q) is infinite, GR(V,W) be set of q in LR(V,W) such that q restrict on W is isomorphism, AIR(V,W*) be set of q in LR(V,W) such that dimension of (W/F(q)) is finite and AIR(V*,W) be set of q in LR(V,W) such that dimension of(V/F(q)) is finite. Moreover, let H, S and T be subsemigroups of GR(V,W), AIR(V,W*) and AIR(V*,W), respectively. We show that OMR(V,W) and OER(V,W) union H, S and T are semigroups. Furthermore, we determine whether they admit the structure of a semihyperring with zero. | en |
dc.description.abstractalternative | กึ่งไฮเพอร์ริงที่มีศูนย์ คือ ระบบ (A,+,#) โดยที่ (A,+)เป็นกึ่งไฮเพอร์กรุป (A,#) เป็นกึ่งกรุป # แจกแจงบน + และมี 0(เรียกว่า ศูนย์)ใน A ที่ทำให้ x+0=0+x คือเซตของ x และ x#0=0#x=0 สำหรับทุก x ใน A เรากล่าวว่ากึ่งกรุป S ให้โครงสร้างของกึ่งไฮเพอร์ริงที่มีศูนย์ ถ้ามีการดำเนินการไฮเพอร์ + บน S มีศูนย์ ที่ทำให้ (S มีศูนย์,+,#) เป็นกึ่งไฮเพอร์ริงที่มีศูนย์ โดยที่ # เป็นการดำเนินการบน S กำหนดให้ V เป็นปริภูมิเวกเตอร์บนริงการหาร R, W เป็นปริภูมิย่อยของ V และ LR(V,W) เป็นกึ่งกรุปของการแปลงเชิงเส้นจาก V ไปยัง W ภายใต้การประกอบ สำหรับแต่ละ q กำหนดให้ F(q) ประกอบด้วยสมาชิกใน V ที่ q ตรึงสมาชิกนั้น กำหนดให้ OMR(V,W) คือเซตของการแปลงเชิงเส้นจาก V ไปยัง W โดยที่มิติของ Ker q เป็นอนันต์ OER(V,W) คือเซตของ q ใน LR(V,W) โดยที่มิติของ (W/Im q) เป็นอนันต์ GR(V,W) คือเซตของ q ใน LR(V,W) โดยที่ q ที่พิจรณาบน W เป็นสมสัณฐาน AIR(V,W*) คือเซตของ q ใน LR(V,W) โดยที่มิติของ (W/F(q)) จำกัด และ AIR(V*,W) คือเซตของ q ใน LR(V,W) โดยที่มิติของ (V/F(q)) จำกัด นอกจากนี้ กำหนดให้ H ,S และ T เป็นกึ่งกรุปของ GR(V,W) , AIR(V,W*) และ AIR(V*,W) ตามลำดับ เราแสดงว่า OMR(V,W) และ OER(V,W) รวม H,S และ T เป็นกึ่งกรุป ยิ่งไปกว่านั้นเรากำหนดว่ากึ่งกรุปเหล่านั้นให้โครงสร้างของกึ่งไฮเพอร์ริงที่มีศูนย์หรือไม่ | en |
dc.format.extent | 1114016 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en | es |
dc.publisher | Chulalongkorn University | en |
dc.relation.uri | http://doi.org/10.14457/CU.the.2008.1527 | - |
dc.rights | Chulalongkorn University | en |
dc.subject | Transformations (Mathematics) | en |
dc.subject | Semigroups | en |
dc.title | Linear transformation subsemigroups of LR(V,W) admitting the structure of a semihyperring with zero | en |
dc.title.alternative | กึ่งกรุปย่อยการแปลงเชิงเส้นของ LR(V,W) ซึ่งให้โครงสร้างของกึ่งไฮเพอร์ริงที่มีศูนย์ | en |
dc.type | Thesis | es |
dc.degree.name | Master of Science | es |
dc.degree.level | Master's Degree | es |
dc.degree.discipline | Mathematics | es |
dc.degree.grantor | Chulalongkorn University | en |
dc.email.advisor | Sajee.P@Chula.ac.th | - |
dc.identifier.DOI | 10.14457/CU.the.2008.1527 | - |
Appears in Collections: | Sci - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Samkhan_Ho.pdf | 1.09 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.