Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/3698
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorYupaporn Kemprasit-
dc.contributor.authorRonnason Chinram, 1975--
dc.contributor.otherChulalongkorn University. Faculty of Science-
dc.date.accessioned2007-07-18T06:43:21Z-
dc.date.available2007-07-18T06:43:21Z-
dc.date.issued2004-
dc.identifier.isbn9741761058-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/3698-
dc.descriptionThesis (Ph.D.)--Chulalongkorn University, 2004en
dc.description.abstractsubsemigroup Q of a semigroup S is called a quasi-ideal of S if SQ [intersection] QS C Q. A quasi-ideal of a ring R is a subring Q of R such that RQ [intersection] QR C Q where RQ [QR] is the set of all finite sums of the form [sigma] r[subscript i] q[subscript i] [[sigma] q[subscript i] r[subscript i]], r[subscript i] Epsilon R and q[subscript i] Epsilon Q. The notion of quasi-ideal was introduced by O. Stienfeld in 1953 and 1956 for rings and semigroups, respectively. By a minimal quasi-ideal of a semigroup S we mean a nonzero quasi-ideal of S which does not properly contain any nonzero quasi-ideal of S. A minimal quasi-ideal of a ring is defined similarly. In 1956, O. Stienfeld characterized minimal quasi-ideals of a semigroup without zero as follows : A quasi-ideal Q of a semigroup S without zero is minimal if and only if Q is a subgroup of S. Also in 1957, he showed that a quasi-ideal of a ring [semigroup with zero] A is either a division subring [subgroup with zero] or a zero subring [zero subsemigroup] of A, and for the first case, the converse holds. Various important semigroups and rings are generalized by using sandwich multiplication. These semigroups and rings are as follows : transformation semigroups, linear transformation semigroups, matrix semigroups, rings of linear transformations and matrix rings. Minimal quasi-ideals of our target generalized semigroups and generalized rings are completely characterized in this researchen
dc.description.abstractalternativeเราเรียกกึ่งกรุปย่อย Q ของกึ่งกรุป S ว่า ควอซี-ไอดีล ของ S ถ้า SQ [intersection] QS C Q ควอซี-ไอดีล ของริง R คือ ริงย่อย Q ของ R ซึ่ง RQ [intersection] QR C Q โดย RQ [QR] เป็นเซตของผลบวกจำกัดทั้งหมดในรูปแบบ [sigma] r[subscript i] q[subscript i] [[sigma] q[subscript i] r[subscript i]], r[subscript i] เอปไซลอน R และ q[subscript i] เอปไซลอน Q โอ สไตน์เฟลด์ ได้แนะนำความคิดเกี่ยวกับควอซี-ไอดีล ในปี 1953 และ 1956 สำหรับริงและกึ่งกรุป ตามลำดับ ควอซี-ไอดีลเล็กสุดเฉพาะกลุ่ม ของกึ่งสรุป S คือ ควอซี-ไอดีลที่ไม่ใช่ศูนย์ของ S และไม่บรรจุควอซี-ไอดีลที่ไม่ใช่ศูนย์อื่นๆ ของ S ควอซี-ไอดีลเล็กสุดเฉพาะกลุ่ม ของริงมีบทนิยามในทำนองเดียวกัน ในปี 1956 โอ สไตน์เฟลด์ให้ลักษณะของควอซี-ไอดีลเล็กสุดเฉพาะกลุ่มของกึ่งกรุปที่ไม่มีศูนย์ดังนี้ ควอซี-ไอดีล Q ของกึ่งกรุป S ที่ไม่มีศูนย์เป็นควอซี-ไอดีลเล็กสุดเฉพาะกลุ่ม ก็ต่อเมื่อ Q เป็นกรุปย่อยของ S ในปี 1957 เขาได้แสดงว่าควอซี-ไอดีลเล็กสุดเฉพาะกลุ่มของริง [กึ่งกรุปที่มีศูนย์] A ไม่เป็นริงย่อยการหาร [กรุปย่อยที่มีศูนย์] ก็เป็นริงศูนย์ [กึ่งกรุปศูนย์] ของ A และในกรณีแรก บทกลับเป็นจริง เราให้นัยทั่วไปของกึ่งกรุปและริงที่สำคัญหลากหลายโดยใช้การคูณแบบแซนด์วิช กึ่งกรุปและริงเหล่านี้คือ กึ่งกรุปการแปลง กึ่งกรุปการแปลงเชิงเส้น กึ่งกรุปเมทริกซ์ ริงของการแปลงเชิงเส้นและเมทริกซ์ริง ในการวิจัยนี้เราให้ลักษณะควอซี-ไอดีลเล็กสุดเฉพาะของกึ่งกรุปและริงนัยทั่วไปที่ตั้งเป้าหมายไว้อย่างสมบูรณ์en
dc.format.extent2649037 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherChulalongkorn Universityen
dc.rightsChulalongkorn Universityen
dc.subjectSemigroup ringsen
dc.subjectQuasi-idealsen
dc.titleMinimal quasi-ideals of generalized transformation semigroups and generalized rings of linear transformationsen
dc.title.alternativeควอซี-ไอดีลเล็กสุดเฉพาะกลุ่มของกึ่งกรุปการแปลงนัยทั่วไปและริงของการแปลงเชิงเส้นนัยทั่วไปen
dc.typeThesisen
dc.degree.nameDoctor of Philosophyen
dc.degree.levelDoctoral Degreeen
dc.degree.disciplineMathematicsen
dc.degree.grantorChulalongkorn Universityen
dc.email.advisoryupaporn.k@chula.ac.th-
Appears in Collections:Sci - Theses

Files in This Item:
File Description SizeFormat 
Ronnason.pdf3.66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.