Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/47799
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHall, Mark E.-
dc.contributor.authorWijarn Sodsiri-
dc.contributor.otherChulalongkorn University. Graduate School-
dc.date.accessioned2016-06-03T03:15:52Z-
dc.date.available2016-06-03T03:15:52Z-
dc.date.issued1994-
dc.identifier.isbn9745843938-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/47799-
dc.descriptionThesis (M.Sc.)--Chulalongkorn University, 1994en_US
dc.description.abstractThe generalized Riemann integral is similar to the ordinary Riemann integral, yet it integrates a much wider class of functions and has much nicer properties. One very nice property is the fundamental theorem of calculus, which does not require the assumption that the derivative F' be integrable in order to obtain the basic formula (GR) aʃb F'(x) dx = F(b) - F(a) ; instead, the integrability of F' is one of the conclusions of the theorem. In this research, we give a simple, concrete definition of an integral of a function over a k-simplex in Rk such that (i) we are able to prove a version of Stokes' theorem for arbitrary differential forms which are differentiable, and (ii) if k = 1, then the integral is the same as the generalized Riemann integral over a closed interval in R. The main result of this thesis is the following version of Stokes' theorem : Let k, n {u1D716} Z+ be such that k ≤ n. Let Ω be a nonempty open subset of Rn , and let Ω be a nonempty open subset of Rn, and let {u1D6D4} = [P0,P1, ….,Pk] be an oriented affine k-simplex in Ω. If is a differentiable (k-1)-form on Ω, then ʃσ d{u1D714} exists and ʃσ d{u1D714} = ʃᴂ{u1D714}en_US
dc.description.abstractalternativeอินทิกรัลรีมันน์นัยทั่วไปคล้ายกับอินทิกรัลรีมันน์สามัญ แต่อินทิกรัลรีนันน์นัยทั่วไปอินทิเกรตกลุ่มของฟังก์ชันที่ใหญ่กว่ามากและมีสมบัติที่สวยกว่า สมบัติที่ดีมากอันหนึ่งคือทฤษฎีบทหลักมูลของแคลคูลัส ซึ่งไม่ต้องการข้อสมมุติที่ว่า อนุพันธ์ F' อินทิเกรตได้เพื่อที่จะได้สูตรมูลฐาน (GR) aʃb F'(x) dx = F(b) - F(a) กลับได้ว่า การอินทิเกรตได้ของ F' เป็นส่วหนึ่งของผลสรุปของทฤษฎีบทแทน ในงานวิจัยนี้เราให้บทนิยามที่ง่ายและเป็นรูปธรรมของอินทิกรัลของฟังก์ชันบน k –ซิมเพลกซ์ใน Rk โดยที่ (i) เราสามารถพิสูจน์แบบหนึ่งของทฤษฎีบทของสโตกส์สำหรับรูปแบบเชิงอนุพันธ์ที่หาอนุพันธ์ได้และ (ii) ถ้า k = 1 แล้วอินทิกรัลที่นิยามขึ้นมาใหม่นี้จะเหมือนกับอินทิกรัลรีมันน์นัยทั่วไปบนช่วงปิดใน R ทฤษฎีบทที่สำคัญของวิทยานิพนธ์นี้คือ ทฤษฎีบทของสโตกส์ในแบบต่อไปนี้ ทฤษฎีบทของสโตกส์ ให้ k, n {u1D716} Z+ โดยที่ k ≤ n ให้ Ω เป็นเซตย่อยเปิดของ Rn ที่ไม่เป็นเซตว่างและให้ {u1D6D4} = [P0,P1, ….,Pk] เป็น k-ซิมเพลกซ์สัมพรรคที่วางทิศทางแล้วใน Ω ถ้า ꙍ เป็นรูปแบบ k-1 ที่หาอนุพันธ์ได้บน Ω แล้ว ʃσ d{u1D714} หาค่าได้ และ ʃσ d{u1D714} = ʃᴂ{u1D714}en_US
dc.language.isoenen_US
dc.publisherChulalongkorn Universityen_US
dc.rightsChulalongkorn Universityen_US
dc.subjectRiemann integralen_US
dc.subjectDifferential formsen_US
dc.subjectStokes' theoremen_US
dc.titleStokes' theorem over simplexes via the generalized Riemann integralen_US
dc.title.alternativeทฤษฎีบทของสโตกส์บนซิมเพลกซ์โดยใช้อินทิกรัลรีมันน์นัยทั่วไปen_US
dc.typeThesisen_US
dc.degree.nameMaster of Scienceen_US
dc.degree.levelMaster's Degreeen_US
dc.degree.disciplineMathematicsen_US
dc.degree.grantorChulalongkorn Universityen_US
dc.email.advisorNo information provided-
Appears in Collections:Grad - Theses

Files in This Item:
File Description SizeFormat 
Wijarn_so_front.pdf570.03 kBAdobe PDFView/Open
Wijarn_so_ch1.pdf604.25 kBAdobe PDFView/Open
Wijarn_so_ch2.pdf620.4 kBAdobe PDFView/Open
Wijarn_so_ch3.pdf989.37 kBAdobe PDFView/Open
Wijarn_so_ch4.pdf963.03 kBAdobe PDFView/Open
Wijarn_so_back.pdf224.83 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.