Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/60156
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Chidchanok Lursinsap | - |
dc.contributor.author | Hussein Ali Azeez | - |
dc.contributor.other | Chulalongkorn University. Faculty of Science | - |
dc.date.accessioned | 2018-09-14T06:08:58Z | - |
dc.date.available | 2018-09-14T06:08:58Z | - |
dc.date.issued | 2017 | - |
dc.identifier.uri | http://cuir.car.chula.ac.th/handle/123456789/60156 | - |
dc.description | Thesis (M.Sc.)--Chulalongkorn University, 2017 | - |
dc.description.abstract | Machine learning field has many different algorithms; selecting an algorithm for non-expert user and aiming for maximizing empirical performance could be a tough task. This thesis considers the problem of selecting an algorithm based on the user specifications, for instance, training speed, memory, and interpretation. Specifically, considers the classification problem in the range of 20 models (2 meta-methods, 18 based classifiers) arising from 10 different families (Bayesian, Decision trees, Rule-based methods, Nearest neighbor methods, Logistic, multinomial regression, Neural networks, Support vector machines, Boosting, Bagging, and other ensembles), all implemented in WEKA. Different characteristics have been gathered for each model such as training speed and the available memory, then a set of rules have been defined based on these characteristics by using a tree architecture in order to choose one or for given user requirements. Finally, the model evaluated on 10 datasets from the UCI repository, the classification results show a better than or close to a previous work that addressed the similar problem. | - |
dc.description.abstractalternative | ในวิทยาการการเรียนรู้ของเครื่องหรือแมทชีน เลินนิ่ง มีชุดคำสั่งที่หลากหลายแตกต่างกันไป ดังนั้นจึงเป็นเรื่องยากสำหรับผู้ใช้ที่ไม่มีความเชี่ยวชาญในการเลือกชุดคำสั่งและมุ่งเน้นไปที่การเพิ่มประสิทธิภาพเชิงประจักษ์ วิทยานิพนธ์เล่มนี้ได้พิจารณาปัญหาในการเลือกชุดคำสั่งบนข้อกำหนดของผู้ใช้ ตัวอย่างเช่น ความเร็วในการฝึกฝน หน่วยความจำ และการตีความชุดคำสั่ง โดยเฉพาะอย่างยิ่ง จะพิจารณาการจำแนกข้อมูลของตัวแบบ 20 ตัวแบบ ประกอบด้วยวิธีการเมตา 2 วิธี และเทคนิคการจำแนกข้อมูล 18 แบบ ซึ่งมาจากกลุ่มเทคนิคการจำแนกข้อมูลที่แตกต่างกัน 10 กลุ่ม ได้แก่ การจำแนกข้อมูลด้วยเบย์เซียน การสร้างต้นไม้ตัดสินใจ การจำแนกข้อมูลด้วยกฎ การค้นหาเพื่อนบ้านใกล้สุด การถดถอยโลจิสติกส์ การถดถอยพหุกลุ่ม การใช้โครงข่ายประสาทเทียม ซัพพอร์ตเวกเตอร์แมชชีน เทคนิคบูสติ้ง เทคนิคแบ็กกิ้ง และกลุ่มเทคนิคอื่นๆ ซึ่งทั้งหมดนี้จะปฏิบัติการบนโปรแกรมวีก้า ลักษณะเฉพาะที่แตกต่างกันจะถูกรวบรวมสำหรับแต่ละตัวแบบ เช่น ความเร็วในการฝึกฝน และหน่วยความจำที่มี จากนั้นชุดของกฎต่างๆ จะถูกกำหนดตามลักษณะเฉพาะดังกล่าวโดยใช้สถาปัตยกรรมข้อมูลแบบต้นไม้เพื่อที่จะได้เลือกตัวแบบหรือเพื่อตอบสนองความต้องการของผู้ใช้ ท้ายที่สุด ตัวแบบนั้นจะถูกประเมินผลบนชุดข้อมูลจำนวน 10 ชุดจากคลังเก็บการเรียนรู้ของเครื่องยูซีไอ ซึ่งผลการจำแนกประเภทพบว่าดีกว่าหรือใกล้เคียงกับการทำงานก่อนหน้าที่มีปัญหาเดียวกัน | - |
dc.language.iso | en | - |
dc.publisher | Chulalongkorn University | - |
dc.relation.uri | http://doi.org/10.58837/CHULA.THE.2017.174 | - |
dc.rights | Chulalongkorn University | - |
dc.title | RULE-BASED RECOMMENDATION MODEL FOR SELECTING CLASSIFIERS IN WEKA BASED ON USER SPECIFICATIONS | - |
dc.title.alternative | ตัวแบบการแนะนำด้วยกฎสำหรับการเลือกตัวจำแนกประเภทในโปรแกรมวีก้าบนข้อกำหนดของผู้ใช้ | - |
dc.type | Thesis | - |
dc.degree.name | Master of Science | - |
dc.degree.level | Master's Degree | - |
dc.degree.discipline | Computer Science and Information Technology | - |
dc.degree.grantor | Chulalongkorn University | - |
dc.email.advisor | Chidchanok.L@Chula.ac.th,lchidcha@chula.ac.th | - |
dc.identifier.DOI | 10.58837/CHULA.THE.2017.174 | - |
Appears in Collections: | Sci - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
5972621823.pdf | 1.49 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.