Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/6664
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKritsana Neammanee-
dc.contributor.authorSoontorn Boonta-
dc.contributor.otherChulalongkorn University. Faculty of Science-
dc.date.accessioned2008-04-23T07:10:50Z-
dc.date.available2008-04-23T07:10:50Z-
dc.date.issued2005-
dc.identifier.isbn9745320277-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/6664-
dc.descriptionThesis (M.Sc.)--Chulalongkorn University, 2005en
dc.description.abstractLet N (n) be a Poisson random variable with parameter n. An infinite urn model is defined as follows: N (n) balls are indenpendently placed in an infinite set of urns and each ball has probability Pk>0 of being assigned to the k-th urn. We assume that Pk is >= Pk+1 for all k and sigma [superscript infinity] [subscript k=1 Pk = 1. Let Zeta [subscript N (n)] be the number of occupied urns after N (n) balls have been thrown. Dutko showed in 1989 that under the condition lim [subscript n vector infinity Var (Zeta [subscript N (n))] = Infinity, We have lim [subscript n vector infinity] F [subscript n (x) = phi (x) Where F[subscript n] is the distribution function of Z [subscript (n) - E (Z [subscript N(n) / squairroot Var (Z [subscript N (n)] and phi is the standard normal distribution. However, Dutko did not give a bound of his approximation. In our work, We use the technique in Chen and Shao (2001) to give uniform and non-uniform bounds of the approximation.en
dc.description.abstractalternativeให้ N (n) เป็นตัวแปรสุ่มปัวซงที่มีพารามิเตอร์ n เรานิยมตัวแบบถ้วยอนันต์เป็นตัวแบบของการโยนลูกบอลอย่างอิสระจำนวน N(n) ลูก ลงไปในถ้วยที่มีจำนวนอนันต์โดยความน่าจะเป็นที่ลูกบอลแต่ละลูกจะถูกโยนลงในถ้ายที่ k มีค่าเท่ากับ Pk โดยที่ Pk>0, Pk>=Pk+1 และ sigma [superscript infinity] [subscript k=1] Pk = 1 กำหนดให้ Zeta [subscript N (n)เป็นตัวแปรสุ่มที่มีค่าเป็นจำนวนถ้วยที่มีลูกบอลภายหลังการโยนลูกบอลจำนวน N (n) ลูก Dutko ได้แสดงในปี 1989 ว่า ภายใต้เงื่อนไข lim [subscript n vector infinity Var (Zeta [subscript N (n))] = Infinity เราจะได้ว่า lim [subscript n vector infinity] F [subscript n (x)] = phi (x) เมื่อ F[subscript n] เป็นฟังก์ชันการแจกแจงของ Z [subscript (n) - E (Z [subscript N(n) / squairroot Var (Z [subscript N (n)] และ phi คือฟังก์ชั่นการแจกแจางปกติมาตรฐาน อย่างไรก็ตาม Dutko ไม่ได้ให้ขอบเขตการประมาณค่า ในวิทยานิพนธ์นี้ เราใช้เทคนิคของ Chen และ Shao ในปี 2001 เพื่อหาขอบเขตการประมาณค่าแบบสม่ำเสมอของการประมาณดังกล่าวen
dc.format.extent1101521 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoenes
dc.publisherChulalongkorn Universityen
dc.relation.urihttp://doi.org/10.14457/CU.the.2005.1797-
dc.rightsChulalongkorn Universityen
dc.subjectApproximation theoryen
dc.subjectProbabilitiesen
dc.titleBounds in a normal approximation of an infinite urn modelen
dc.title.alternativeขอบเขตในการประมาณปกติของตัวแปรถ้วยอนันต์en
dc.typeThesises
dc.degree.nameMaster of Sciencees
dc.degree.levelMaster's Degreees
dc.degree.disciplineMathematicses
dc.degree.grantorChulalongkorn Universityen
dc.email.advisorkritsana.n@chula.ac.th-
dc.identifier.DOI10.14457/CU.the.2005.1797-
Appears in Collections:Sci - Theses

Files in This Item:
File Description SizeFormat 
Soontorn_Bo.pdf1.08 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.