Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/77617
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRajalida Lipikorn-
dc.contributor.authorChadaphim Photphanloet-
dc.contributor.otherChulalongkorn University. Faculty of Science-
dc.date.accessioned2021-10-14T07:31:03Z-
dc.date.available2021-10-14T07:31:03Z-
dc.date.issued2019-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/77617-
dc.descriptionThesis (Ph.D.)--Chulalongkorn University, 2019en_US
dc.description.abstractParticulate matter concentration prediction models have been researched, developed, and applied to data from various topography around the world. The characteristics of different topography make a model suitable for each specific topography. This dissertation proposes a novel method to predict particulate matter concentration with a diameter smaller than 10 microns in Nan Province of Thailand that integrates feature selection method, supervised learning model, and modified depth-first search algorithm. Unlike the traditional supervised learning models, the proposed method is able to accept multi-dimensional data as input which consist of particulate matter concentration, air pollutants, and air qualities. These features are the factors that influence particulate matter concentration prediction. The experimental results show that the proposed method performs better than other methods when predicting the concentration one hour ahead with no need of wind direction and wind speed data. The proposed method was developed with a general framework and could be applied to predict particulate matter concentration in Nan Province.en_US
dc.description.abstractalternativeแบบจำลองการทำนายความเข้มข้นของละอองธุลีได้รับการวิจัย พัฒนาและนำไปประยุกต์ใช้กับข้อมูลภูมิประเทศต่างๆทั่วโลก ลักษณะของภูมิประเทศที่แตกต่างกันทำให้แบบจำลองมีความเหมาะสมสำหรับภูมิประเทศแต่ละแห่งแบบเฉพาะเจาะจง วิทยานิพนธ์ฉบับนี้นำเสนอวิธีการทำนายละอองธุลีที่มีเส้นผ่านศูนย์กลางเล็กกว่า 10 ไมครอนในจังหวัดน่านของประเทศไทย ซึ่งได้รวมวิธีการเลือกคุณสมบัติ แบบจำลองการเรียนรู้แบบมีผู้สอนและอัลกอริทึมการค้นหาเชิงลึก ซึ่งแตกต่างจากแบบจำลองการเรียนรู้แบบมีผู้สอนแบบดั้งเดิม ทั้งนี้วิธีการที่นำเสนอนั้นสามารถรับข้อมูลหลายมิติที่ประกอบด้วยข้อมูลความเข้มข้นของละอองธุลี สารมลพิษในอากาศ คุณภาพของอากาศ ซึ่งสารมลพิษในอากาศและคุณภาพของอากาศเป็นปัจจัยที่มีอิทธิพลต่อการทำนายความเข้มข้นของละอองธุลี ผลการทดลองแสดงให้เห็นว่าวิธีการที่นำเสนอนั้นมีประสิทธิภาพดีกว่าวิธีการอื่น ๆ เมื่อคาดการณ์ล่วงหน้าหนึ่งชั่วโมงโดยไม่จำเป็นต้องใช้ข้อมูลทิศทางกระแสลม และความเร็วกระแสลม วิธีการที่นำเสนอได้รับการพัฒนาโดยมีกรอบงานทั่วไปและสามารถนำไปประยุกต์ใช้กับการทำนายความเข้มข้นของละอองธุลีในจังหวัดน่านen_US
dc.language.isoenen_US
dc.publisherChulalongkorn Universityen_US
dc.relation.urihttp://doi.org/10.58837/CHULA.THE.2019.333-
dc.rightsChulalongkorn Universityen_US
dc.titleAugmented sensors for particulate matter concentration prediction using supervised learning modelsen_US
dc.title.alternativeตัวรับรู้เสริมสำหรับการทำนายความเข้มข้นละอองธุลีโดยใช้ตัวแบบการเรียนรู้แบบมีผู้สอนen_US
dc.typeThesisen_US
dc.degree.nameDoctor of Philosophyen_US
dc.degree.levelDoctoral Degreeen_US
dc.degree.disciplineMathematicsen_US
dc.degree.grantorChulalongkorn Universityen_US
dc.email.advisorrajalida.l@chula.ac.th-
dc.identifier.DOI10.58837/CHULA.THE.2019.333-
Appears in Collections:Sci - Theses

Files in This Item:
File Description SizeFormat 
5972809523.pdf3.62 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.