Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/80026
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | ประภาส จงสถิตย์วัฒนา | - |
dc.contributor.author | สิงหดิศร์ จันทรักษ์ | - |
dc.contributor.other | จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์ | - |
dc.date.accessioned | 2022-07-23T05:12:46Z | - |
dc.date.available | 2022-07-23T05:12:46Z | - |
dc.date.issued | 2564 | - |
dc.identifier.uri | http://cuir.car.chula.ac.th/handle/123456789/80026 | - |
dc.description | วิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2564 | - |
dc.description.abstract | กระบวนการพักใสเป็นกระบวนการที่สำคัญในกระบวนการผลิตน้ำตาล ซึ่งกระบวนการมีการทำงานเพื่อแยกระหว่างตะกอนกับน้ำอ้อยออกจากกันโดยใช้สารฟลอกคูแลนต์ โดยในการใส่ปริมาณและความเข้มข้นสารฟลอกคูแลนต์ลงไปในน้ำอ้อยทำให้ส่งผลกระทบโดยตรงต่อความเร็วการตกตะกอนและค่าความขุ่นของน้ำอ้อย วิทยานิพนธ์เล่มนี้เสนอวิธีการพยากรณ์ปริมาณและความเข้มข้นสารฟลอกคูแลต์ในกระบวนการพักใสสำหรับอุตสาหกรรมการผลิตน้ำตาลจากอ้อย โดยใช้โครงข่ายประสาทเทียมแบบวนซ้ำชนิดพิเศษ Long Short-Term Memory โดยข้อมูลที่นำมาใช้เป็นข้อมูลขาเข้าสำหรับการสร้างโมเดลได้แก่ ปริมาณอ้อยสด, ปริมาณอ้อยเผา, ความขุ่นของน้ำอ้อย และปริมาณน้ำฝน และข้อมูลขาออกได้แก่ ปริมาณและความเข้มข้นของสารฟลอกคูแลนต์ ทั้งนี้ข้อมูลที่ได้นำมาจากโรงงานผลิตน้ำตาลแห่งหนึ่งในประเทศไทย ผลการทดลองแสดงให้เห็นถึงประสิทธิภาพของโมเดลที่ได้นำเสนอ LSTM โดยการเปรียบเทียบกับโมเดลอื่นๆ ได้แก่ Autoregressive Integrated Moving Average (ARIMA), Recurrent Neural Network (RNN) และ Gated Recurrent Unit (GRU) โดยใช้ตัวแปร RMSE และ MAPE เป็นตัววัดประสิทธิภาพของโมเดล พบว่าโมเดลที่นำเสนอมีประสิทธิภาพที่สุดในการพยากรณ์ปริมาณและความเข้มข้นของสารฟลอกคูแลนต์ | - |
dc.description.abstractalternative | The clarification process is an important part of sugarcane production. This process is used for separating sediment and sugarcane juice by adding flocculant. The addition of quantity and concentration of flocculant directly affects the settling rate and turbidity of sugarcane juice. This paper proposes a model for forecasting quantity and concentration of flocculant by using Long Short-Term Memory (LSTM) Neural Network. Input data consists of green cane, burn cane, turbidity, and rainfall. Output data includes quantity and concentration of flocculant. Raw data was collected from top sugarcane factory and meteorological department in Thailand. The results are the forecast of the quantity and concentration of flocculant for one day in advance. The performance of LSTM is compared to the autoregressive integrated moving average (ARIMA), recurrent neural network (RNN), and gated recurrent unit (GRU) using root mean square error and mean absolute percent error. The result indicates that LSTM has the best performance. The forecast helps the operator in clarification process to prepare the flocculant. | - |
dc.language.iso | th | - |
dc.publisher | จุฬาลงกรณ์มหาวิทยาลัย | - |
dc.relation.uri | http://doi.org/10.58837/CHULA.THE.2021.956 | - |
dc.rights | จุฬาลงกรณ์มหาวิทยาลัย | - |
dc.subject.classification | Engineering | - |
dc.title | การพยากรณ์ปริมาณและความเข้มข้นสารฟลอกคูแลต์ในกระบวนการพักใสสำหรับอุตสาหกรรมการผลิตน้ำตาลจากอ้อย | - |
dc.title.alternative | Forecasting the quantity and concentration of flocculant in clarification process for sugarcane industry | - |
dc.type | Thesis | - |
dc.degree.name | วิศวกรรมศาสตรมหาบัณฑิต | - |
dc.degree.level | ปริญญาโท | - |
dc.degree.discipline | วิศวกรรมคอมพิวเตอร์ | - |
dc.degree.grantor | จุฬาลงกรณ์มหาวิทยาลัย | - |
dc.identifier.DOI | 10.58837/CHULA.THE.2021.956 | - |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
6170296721.pdf | 2.82 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.