Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/80132
Title: แบบจำลองตรวจจับความฟุ้งซ่านจากไฟฟ้าคลื่นสมอง
Other Titles: Mind-wandering detection model with electroencephalogram
Authors: ชุติมณฑน์ รุ่งศิลป์
Advisors: เกริก ภิรมย์โสภา
Other author: จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์
Issue Date: 2564
Publisher: จุฬาลงกรณ์มหาวิทยาลัย
Abstract: การศึกษาเรื่องความฟุ้งซ่านได้รับความนิยมแพร่หลายเนื่องจากความฟุ้งซ่านเกี่ยวเนื่องกับปัญหาทางอารมณ์และสภาพจิตใจที่ไม่มีสุข การศึกษานี้จึงมีความสนใจที่จะพัฒนาแบบจำลองการเรียนรู้ของเครื่องสำหรับฝังในอุปกรณ์พกพาที่สามารถจัดหมวดหมู่ความฟุ้งซ่าน เพื่อช่วยให้ผู้คนสามารถติดตามความคิดของตนเองได้ ในการศึกษานี้ใช้เครื่องวัดสัญญาณไฟฟ้าคลื่นสมองชนิดจำนวนอิเล็กโทรดน้อย เพื่อบันทึกข้อมูลสภาวะสมองที่จะใช้ในการสร้างแบบจำลองทำนาย เพราะความสะดวกและเป็นความมิตรต่อผู้ใช้งาน โดยการศึกษาส่วนใหญ่ของการเรียนรู้ของเครื่องโดยใช้สัญญาณไฟฟ้าคลื่นสมองนั้นให้ผลลัพธ์ดีในระดับบุคคล แต่ในระดับกลุ่มมีเพียงบางการศึกษาที่ทำการพัฒนาแบบจำลอง ด้วยเหตุนี้จุดประสงค์ของการวิจัยนี้คือแบบจำลองระดับกลุ่มที่มีความแม่นยำสูง ดังนั้นจึงเลือกใช้การทวนสอบชนิด Leave One Participant Out Cross Validation (LOPOCV) เพื่อประเมินความถูกต้องของแบบจำลอง ผลการศึกษาพบว่าการใช้เทคนิค baseline  normalization ในขั้นตอนคัดเลือกคุณลักษณะช่วยเพิ่มประสิทธิภาพ และแบบจำลองที่ใช้คือ ซพพอร์ตเวกเตอร์ แมชชีน ที่มีความแม่นยำของโมเดลที่ดีสุดเป็น 75.6 เปอร์เซนต์
Other Abstract: The study of mind-wandering is gaining popularity since it's linked to emotional problems and a dissatisfied mind. This project sought to develop a machine learning model for an embedded portable device that can categorize mind-wandering to assist people in keeping track of their minds. We utilize a low-channel EEG to record the brain state and build the prediction model because of its practical and user-friendly. The majority of machine learning experiments in mind-wandering using EEG exhibit good individual-level performance. In the group-level technique, only a few research develop a model. As a result, the goal of this research is to achieve a high-accuracy group-level model. So, Leave One Participant Out Cross Validation (LOPOCV) was used to assess the models' correctness. The findings of this study show that using a baseline normalization technique assists in feature extraction and improves performance. The model was built using a support vector machine (SVM), and the top model had an accuracy of 75.6 percent.
Description: วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2564
Degree Name: วิทยาศาสตรมหาบัณฑิต
Degree Level: ปริญญาโท
Degree Discipline: วิทยาศาสตร์คอมพิวเตอร์
URI: http://cuir.car.chula.ac.th/handle/123456789/80132
URI: http://doi.org/10.58837/CHULA.THE.2021.849
metadata.dc.identifier.DOI: 10.58837/CHULA.THE.2021.849
Type: Thesis
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
6270067021.pdf1.6 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.