Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/81522
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Piyatida Ruangrassamee | - |
dc.contributor.author | Nelson Stephen Lising Ventura | - |
dc.contributor.other | Chulalongkorn University. Faculty of Engineering | - |
dc.date.accessioned | 2023-02-03T04:00:30Z | - |
dc.date.available | 2023-02-03T04:00:30Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | http://cuir.car.chula.ac.th/handle/123456789/81522 | - |
dc.description | Thesis (M.Eng.)--Chulalongkorn University, 2020 | - |
dc.description.abstract | Over the years, meteorological satellite instruments have produced Satellite Precipitation Estimates (SPEs) that can supply rainfall intensity rates globally. However, these datasets do not directly reflect the actual values of ground measurements so it is imperative to correct the systematic biases of SPEs to produce reliable hydrologic models. Thus, the aim of this study is to assess the effectiveness of bias correction of SPE products over Thailand. The Precipitation Estimates from Remotely Sensed Information using Artificial Neural Networks – Cloud Classification System (PERSIANN-CCS), Global Satellite Mapping of Precipitation - Near Real Time (GSMaP_NRT), and Integrated Multi-satellitE Retrievals for GPM (IMERG) Early version were evaluated in comparison to the Thai Meteorological Department (TMD) gauge measurements from 2003 to 2018. Subsequently, the SPEs were corrected by using Scaling, Quantile Mapping (QM), and an Artificial Neural Network (ANN) correction. Both the original PERSIANN-CCS and IMERG Early generally exhibit overestimation over Thailand while the GSMaP_NRT slightly underestimate rainfall. The original IMERG Early also shows the least RMSE overall, followed by GSMaP_NRT, then by PERSIANN-CCS. GSMaP_NRT shows the highest Equitable Threat Score (ETS) while IMERG Early has the lowest ETS because it has large amounts of false alarms. All products exhibit higher errors during the wet season, high underestimation during heavy and extreme rainfall, and higher errors near the coastal areas where high rainfall occurs. IMERG Early also shows the least RMSE in all river basins. After bias correction, the adjusted IMERG Early dataset still provides the least RMSE for all basins regardless of which correction method was applied. The ANN bias correction method performs the best among the three methods in terms of RMSE. However, it increases the underestimation and RMSE of extreme rainfall events and worsens ETS of PERSIANN-CCS and GSMaP_NRT. Only the QM bias correction is able to consistently reduce errors of extreme rainfall and improve ETS. Overall, the ANN adjusted IMERG Early dataset has the least RMSE in all river basins. | - |
dc.description.abstractalternative | ในช่วงหลายปีที่ผ่านมา ดาวเทียมอุตุนิยมวิทยาได้ทำให้เกิดการพัฒนาการประมาณปริมาณฝนจากข้อมูลดาวเทียมที่ให้อัตราความเข้มฝนที่ครอบคลุมพื้นที่ทั่วโลก อย่างไรก็ตาม ข้อมูลจากดาวเทียมมิได้เป็นการวัดปริมาณฝนตกในพื้นที่โดยตรง ดังนั้น จึงจำเป็นจะต้องมีการปรับแก้ความเอนเอียงเชิงสถิติของการประมาณปริมาณฝนจากข้อมูลดาวเทียมสำหรับการนำไปประยุกต์ใช้กับแบบจำลองทางอุทกวิทยาเพื่อให้ได้ผลลัพธ์ที่สามารถนำไปใช้ประโยชน์ได้ วัตถุประสงค์ของการศึกษานี้เพื่อประเมินประสิทธิผลของการปรับแก้ความเอนเอียงเชิงสถิติของการประมาณปริมาณฝนจากข้อมูลดาวเทียมในพื้นที่ประเทศไทย โดยประเมินข้อมูล 3 ข้อมูล ได้แก่ Precipitation Estimates from Remotely Sensed Information using Artificial Neural Networks – Cloud Classification System (PERSIANN-CCS), Global Satellite Mapping of Precipitation - Near Real Time (GSMaP_NRT) และ Integrated Multi-satellitE Retrievals for GPM (IMERG) Early version เปรียบเทียบกับข้อมูลฝนจากสถานีตรวจวัดของกรมอุตุนิยมวิทยาในช่วงปีพ.ศ. 2546 – 2561 และปรับแก้การประมาณปริมาณฝนจากข้อมูลดาวเทียมด้วย 3 วิธี ได้แก่ Scaling, Quantile Mapping (QM) และ Artificial Neural Network (ANN) จากผลการศึกษาพบว่าโดยภาพรวมทั้งประเทศ PERSIANN-CCS และ IMERG Early มีปริมาณฝนที่สูงกว่าข้อมูลฝนจากสถานีตรวจวัด สำหรับ GSMaP_NRT มีปริมาณฝนที่น้อยกว่าข้อมูลฝนจากสถานีตรวจวัด โดย IMERG Early มีค่า RMSE น้อยที่สุด รองลงมาคือ GSMaP_NRT และ PERSIANN-CCS ตามลำดับ GSMaP_NRT มีค่า Equitable Threat Score (ETS) สูงที่สุด ในขณะที่ IMERG Early มีค่า ETS น้อยที่สุด เนื่องจากมีค่า false alarm ที่สูง ข้อมูลฝนจากดาวเทียมทั้ง 3 ข้อมูลมีความคลาดเคลื่อนสูงในช่วงฤดูฝน ในช่วงเหตุการณ์ฝนตกหนักและฝนตกหนักมากมีปริมาณฝนที่น้อยกว่าข้อมูลฝนจากสถานีตรวจวัด และมีความคลาดเคลื่อนสูงในบริเวณชายฝั่งซึ่งเป็นบริเวณที่มีปริมาณฝนตกหนัก IMERG Early มีค่า RMSE น้อยที่สุดในทุกลุ่มน้ำ หลังการปรับแก้ความเอนเอียงเชิงสถิติทั้ง 3 วิธี พบว่า IMERG Early ที่ปรับแก้แล้วมีค่า RMSE น้อยที่สุดในทุกลุ่มน้ำ เมื่อประเมินจาก RMSE วิธี ANN ให้ผลที่ดีที่สุดเมื่อเปรียบเทียบทั้ง 3 วิธี อย่างไรก็ตามในช่วงปริมาณฝนตกหนักมาก ปริมาณฝนที่ปรับแก้ความเอนเอียงเชิงสถิติด้วยวิธี ANN มีค่าน้อยกว่าข้อมูลฝนจากสถานีตรวจวัดมากขึ้น มีค่า RMSE สูงขึ้น และทำให้ข้อมูลฝนจากข้อมูลดาวเทียม PERSIANN-CCS และ GSMaP_NRT ที่ปรับแก้ความเอนเอียงเชิงสถิติด้วยวิธี ANN มี ETS ที่น้อยลง มีเพียงการปรับแก้ความเอนเอียงเชิงสถิติด้วยวิธี QM ที่สามารถทำให้ความคลาดเคลื่อนของปริมาณฝนตกหนักมากลดลง และเพิ่ม ETS โดยภาพรวม การปรับแก้ความเอนเอียงเชิงสถิติของข้อมูลฝนจากดาวเทียม IMERG Early ด้วยวิธี ANN มีค่า RMSE ที่น้อยที่สุดในทุกลุ่มน้ำ | - |
dc.language.iso | en | - |
dc.publisher | Chulalongkorn University | - |
dc.relation.uri | https://doi.org/10.58837/CHULA.THE.2020.480 | - |
dc.rights | Chulalongkorn University | - |
dc.subject.classification | Engineering | - |
dc.subject.classification | Environmental Science | - |
dc.subject.classification | Earth and Planetary Sciences | - |
dc.title | Bias correction of satellite precipitation estimates over Thailand | - |
dc.title.alternative | การปรับแก้ความเอนเอียงเชิงสถิติของการประมาณปริมาณฝนจากข้อมูลดาวเทียมในพื้นที่ประเทศไทย | - |
dc.type | Thesis | - |
dc.degree.name | Master of Engineering | - |
dc.degree.level | Master's Degree | - |
dc.degree.discipline | Water Resources Engineering | - |
dc.degree.grantor | Chulalongkorn University | - |
dc.identifier.DOI | 10.58837/CHULA.THE.2020.480 | - |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
6170381321.pdf | 15.34 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.