การศึกษาและพัฒนาโครงสร้างวิกสำหรับฮีตไปป์

นาย ธนศักดิ์ ชุมวิสูตร

# สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเครื่องกล ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN 974-17-5385-3 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

# A STUDY AND DEVELOPMENT OF WICK

#### STRUCTURE FOR HEAT PIPE

Mr. Thanasak Chumwisoot

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Engineering in Mechanical Engineering Department of Mechanical Engineering Faculty of engineering Chulalongkorn University Academic Year 2003 ISBN 974-17-5385-3

| หัวข้อวิทยานิพนธ์ | การศึกษาและพัฒนาโครงสร้างวิกสำหรับฮีตไปป์ |
|-------------------|-------------------------------------------|
| โดย               | นายธนศักดิ์ ชุมวิสูตร                     |
| สาขาวิชา          | วิศวกรรมเครื่องกล                         |
| อาจารย์ที่ปรึกษา  | รองศาสตราจารย์ คร.พงษ์ธร จรัญญากรณ์       |

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

> ..... คณบดีคณะวิศวกรรมศาสตร์ (ศาสตราจารย์ คร.ดิเรก ลาวัณย์ศิริ)

คณะกรรมการสอบวิทยานิพนธ์

......ประธานกรรมการ (รองศาสตราจารย์ ดร.มานิจ ทองประเสริฐ)

...... อาจารย์ที่ปรึกษา

(รองศาสตราจารย์ คร.พงษ์ธร จรัญญากรณ์)

..... กรรมการ

(รองศาสตราจารย์ คร.วิทยา ยงเจริญ)

..... กรรมการ

(ผู้ช่วยศาสตราจารย์ มิ่งศักดิ์ ตั้งตระกูล)

ธนศักดิ์ ชุมวิสูตร: การศึกษาและพัฒนาโครงสร้างวิกสำหรับฮีตไปป์. (A STUDY AND DEVELOPMENT OF WICK STRUCTURE FOR HEAT PIPE) อ.ที่ ปรึกษา : รองศาสตราจารย์ ดร. พงษ์ธร จรัญญากรณ์, 115 หน้า. ISBN 974-17-5385-3

ฮีตไปป์เป็นอุปกรณ์แลกเปลี่ยนความร้อนชนิดหนึ่ง ซึ่งมีจุดเด่นคือสามารถถ่ายเท ความร้อนด้วย Heat Flux ที่สูงมาก ภายใต้ผลต่างของอุณหภูมิที่มีค่าน้อย ผลงานวิจัยนี้เป็นการ สร้างและทดสอบสมรรถนะการถ่ายเทความร้อนของแท่งฮีตไปป์ที่สามารถสร้างได้โดยง่ายด้วย เทคนิคที่เป็นที่รู้จักทั่วไป ฮีตไปป์นี้ทำมาจากท่อทองแดง และมี วิกเป็นตาข่ายสแตนเลส เบอร์ 100 และ 120 ท่อมีเส้นผ่านศูนย์กลางภายนอกเท่ากับ 18.7 mm. และมีความยาวเท่ากับ 1.25 m บรรจุของไหลใช้งานคือ R-12 มีส่วนของการระเหย 0.5 m มีส่วนของการควบแน่น 0.5 m และ มี ส่วนที่ไม่มีการถ่ายเทความร้อน (Adiabatic section) 0.25 m

การทดลองเพื่อหาสมรรถนะของแท่งฮีตไปป์ ทำโดยการแลกเปลี่ยนความร้อน ระหว่างน้ำเข้าและน้ำออก ทั้งทางด้านส่วนของการระเหยและส่วนของการควบแน่น โดยให้ อุณหภูมิทางด้านส่วนของการระเหยเท่ากับ 60 °C .ส่วนอุณหภูมิของส่วนของการควบแน่นเท่ากับ 30-35 °C ในการทดลองได้กระทำที่มุมฮีตไปป์หลายๆ ค่า

ผลการทดลองพบว่าฮีตไปป์ที่ใช้ในงานวิจัยนี้ทำงานได้ดีเมื่อมีแรงโน้มถ่วงช่วย ( ส่วนของการควบแน่นสูงกว่าส่วนของการทำระเหย ) โดยได้ค่า Heat Flux สูงสุดเท่ากับ 823.345 kW/m<sup>2</sup>และ 1,546.945 kW/m<sup>2</sup> สำหรับ ตาข่ายเบอร์ 100 และ 120 ตามลำดับ ค่าสูงสุดดังกล่าว เกิดขึ้นที่มุมฮีตไปป์ ψ ประมาณ -135 องศา สมรรถนะของฮีตไปป์ตามงานวิจัยนี้ดีกว่าฮีตไปป์ แบบไม่มีวิกเล็กน้อย และ ดีกว่าฮีตไปป์แบบเดียวกันที่ใช้ของไหลใช้งานเป็น R-11 ของงานวิจัย ก่อนหน้านี้ การปรับปรุงฮีตไปป์ให้สามารถทำงานต้านแรงโน้มถ่วงได้ ต้องใช้ mesh ที่ละเอียดขึ้น หรือเปลี่ยนชนิดของวิก หรือ การใช้ของไหลใช้งานอื่นที่มีค่าเมอริท สูงขึ้น

# จุฬาลงกรณ์มหาวิทยาลย

| ภาควิชา            | วิศวกรรมเครื่องกล | _ลายมือชื่อนิสิต                |
|--------------------|-------------------|---------------------------------|
| สาขาวิชา           | วิศวกรรมเครื่องกล | _ลายมือชื่ออาจารย์ที่ปรึกษา     |
| ปีการศึกษา <u></u> | 2546              | _ลายมือชื่ออาจารย์ที่ปรึกษาร่วม |

#### KEY WORD: HEAT PIPE / WICK

THANASAK CHUMWISOOT. THESIS TITLE : A STUDY AND DEVELOPMENT OF WICK STRUCTURE FOR HEAT PIPE. THESIS ADVISOR :PONGTORN CHARUNYAKORN., 115 pp. ISBN 974-17-5385-3

Heat Pipe is a type of heat exchanger which operate to transfer very high heat flux under the condition of small temperature difference. The present thesis concerns an experimental study on the thermal performance of a heat pipe which can be constructed with simple and well know technique. The heat pipe is made from copper tube and the wick is made of stainless steel mesh ( mesh number 100, 120 ). The copper tube has outside diameter of 18.7 mm and 1.25 m. long. The working fluid is R-12. The evaporator and condenser section are 0.50 m long and the adiabatic section is 0.25 m.long.

The experiment of this heat pipe was done by heat exchange between hot and cold water circulating around evaporator and condenser sections . The temperature at evaporator section is maintained at 60 <sup>o</sup>C and the temperature at condenser section is 30-35 <sup>o</sup>C. The test was done at various angles of inclination of heat pipe.

The experimental results show that this heat pipe operates quite well under the assistance of gravitational force ( the condenser section is higher than the evaporator section ). It was found that heat flux reached a maximum value of 823.345 kW/m<sup>2</sup> for heat pipe with mesh 100 and 1,546.945 kW/m<sup>2</sup> for heat pipe with mesh 120. This maximum value occurred at inclination angle  $\psi$  of about - 135 degree. It was also found that the present heat pipe offerred a slightly higher heat flux in comparison with wickless heat pipe and heat pipe with 200 mesh that uses R-11 as working fluid, from previous reseach. The performance of the

heat pipe can be improved by using finer mesh, using wick of other types, or using fluids with higher merit number.

| Department Mecha     | anical Engineering | _Student's signature   |
|----------------------|--------------------|------------------------|
|                      |                    |                        |
| Field of study Mecha | anical Engineering | _Advisor's signature   |
| Academic vear        | 2003               | Co-advisor's signature |
| , loadonno your      | 2000               | oo aanoon o orginataro |

#### กิตติกรรมประกาศ

วิทยานิพนธ์นี้สำเร็จลุล่วงอย่างดีด้วยความช่วยเหลืออย่างดียิ่งของบุคคลหลายท่านดัง นี้ นาง พูนศรี ชุมวิสูตร มารดาและ นายธนู ชุมวิสูตร บิดา โดยท่านทั้งสองได้ให้การสนับสนุนผู้ วิจัยทั้งในด้านค่าใช้จ่ายและกำลังใจอย่างมากในการทำวิจัยมาโดยตลอด รองศาสตราจารย์ ดร.พงษ์ธร จรัญญากรณ์ อาจารย์ที่ปรึกษาวิทยานิพนธ์ ซึ่งได้ให้คำแนะนำและข้อคิดเห็นที่เป็น ประโยชน์ต่องานวิจัยอย่างยิ่ง ผู้ช่วยศาสตราจารย์มิ่งศักดิ์ ตั้งตระกูลและ รองศาสตราจารย์ ดร.วิทยา ยงเจริญ ที่ให้การสนับสนุนด้านเครื่องมือวัด ต่างๆ และ คำปรึกษาทางด้านเทคนิคต่างๆ รองศาสตราจารย์ ดร. มานิจ ทองประเสริฐ ที่กรุณาให้คำแนะนำถ่ายทอดประสบการณ์ความรู้ ต่างๆให้กับผู้วิจัย

ผู้วิจัยขอขอบคุณ ญาติพี่น้องทุกๆท่าน รวมทั้งพี่และน้องๆ ป.โท วิศวกรรมเครื่องกล เจ้าหน้าที่ห้องปฏิบัติของภาควิชา วิศวกรรมเครื่องกล, เจ้าหน้าที่ห้องปฏิบัติการวิจัยพลังงาน, เจ้าหน้าที่ สถาบันวิจัยพลังงาน จุฬาลงกรณ์มหาวิทยาลัย ที่ให้กำลังใจผู้วิจัยในการทำวิจัยมาโดย ตลอด และสุดท้ายผู้วิจัยขอขอบคุณ คุณ เพียรฤดี ธีรพรสกุล, คุณ ศิรินุช ชุมวิสูตร และ คุณ ถนอม วงศ์ วายุเหือด ที่ให้การสนับสนุนด้านอาหาร เครื่องดื่ม และเป็นกำลังใจให้มาโดยตลอด

ธนศักดิ์ ชุมวิสูตร

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

# สารบัญ

| บทคัดย่อภาษาไทย    | গ   |
|--------------------|-----|
| บทคัดย่อภาษาอังกฤษ | I   |
| กิตติกรรมประกาศ    | น   |
| สารบัญ             | ¥   |
| สารบัญตาราง        | ฌ   |
| สารบัญภาพ          | ญ   |
| สารบัญกราฟ         | ฏิ  |
| คำอธิบายสัญลักษณ์  | ງຼົ |
|                    |     |

# บทที่

| 1 | บทนำ                            | 1  |
|---|---------------------------------|----|
|   | หลักการทำงาน                    | 2  |
|   | ลักษณะเด่น                      | 4  |
|   | 1.1 วัตถุประสงค์                | 6  |
|   | 1.2 ขอบเขตวิทยานิพนธ์           | 6  |
|   | 1.3 ขั้นตอนการทำงาน             | 6  |
|   | 1.4 ผลที่คาดว่าจะได้รับ         | 6  |
| 2 | ทฤษฎี                           | 7  |
|   | การเลือกของไหลใช้งาน            | 7  |
|   | การเลือกวัสคุที่ใช้ทำท่อฮีตไปป์ | 13 |
|   | การเลือกวิก                     | 18 |
|   | การสูญเสียความคัน               | 20 |
|   | ขีดจำกัดการถ่ายเทความร้อน       | 23 |
|   | ความต้านทานรวมของท่อความร้อน    |    |
|   | ขั้นตอนในการออกแบบฮีตไปป์       | 31 |
|   | เอกสารและงานวิจัยที่เกี่ยวข้อง  | 32 |

| 3                                   | การออกแบบและการสร้าง                          | 35  |  |
|-------------------------------------|-----------------------------------------------|-----|--|
|                                     | การออกแบบฮีตไปป์                              | 35  |  |
|                                     | การสร้างฮิตไปป์                               | 36  |  |
|                                     | การออกแบบและสร้างอุปกรณ์ที่ทดสอบฮิตไปป์       | 50  |  |
| 4                                   | ผลการทคลองและวิจารณ์ผลการทคลอง                | 59  |  |
|                                     | 4.1การคำเนินการทคลอง                          | 59  |  |
|                                     | 4.2 ผลการทดลอง                                | 61  |  |
|                                     | 4.3 วิจารณ์ผลการท <mark>ดลอง</mark>           | 73  |  |
| 5                                   | สรุปผลการทคลองและข้อเสนอแนะ                   | 76  |  |
|                                     | 5.1 สรุปผลการทคลอง                            | 76  |  |
|                                     | 5.2 ข้อเสนอแนะ                                | 78  |  |
| รายการ                              | เอ้างอิง                                      | 79  |  |
| ภาคผน                               | วก                                            | 81  |  |
| ก. ผลก                              | ารทดลอง                                       | 82  |  |
| ข. รายล                             | ละเอียดของตาข่าย Stainless Steel              | 101 |  |
| ค. คุณล                             | ชมบัติทางกายภาพของน้ำยาทำความเย็นหมายเลข R-12 | 102 |  |
| ง. คุณส                             | ชมบัติทางกายภาพของโครงส <mark>ร้างวิก</mark>  | 103 |  |
| จ. ตัวอย                            | ย่างการคำนวณ                                  | 104 |  |
| ฉ. การเทียบสอบเครื่องมือวัดอุณหภูมิ |                                               |     |  |
| ประวัติเ                            | ประวัติผู้เขียนวิทยานิพนธ์                    |     |  |
|                                     |                                               |     |  |

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

# สารบัญตาราง

| ตารางที่ |                                                                                        | หน้า |
|----------|----------------------------------------------------------------------------------------|------|
| 2-1      | ตารางการเลือกของใหลใช้งาน                                                              | 8    |
| 2-2      | ตารางการเลือกของไหลใช้งาน                                                              | 8    |
| 2-3      | ตารางก่าของจุดเดือดของของไหลใช้งานในช่วงอุณหภูมิ –200                                  |      |
|          | ถึง1500 องศาเซลเซียส                                                                   | 13   |
| 2-4      | ตารางการเข้ากันได้ระหว่างท่อกับของไหลใช้งาน                                            | 14   |
| 2-5      | ตารางก่าของ K( Wick Permeability) ของโกรงสร้างวิกแบบต่างๆ                              | 20   |
| 2-6      | ก่า Effective Thermal Conductivity for Liquid-Saturated Wick                           | 29   |
| 4-1      | ตารางแสดงก่าอัตราการถ่ายเทความร้อนของฮิตไปป์ ( Q ) ที่มุมต่างๆ                         |      |
|          | สำหรับวิกที่ทำด้วย Mesh 100                                                            | 61   |
| 4-2      | ตารางแสดงค่าอัตราการถ่ายเทความร้อนของฮีตไปป์ ( Q ) ที่มุมต่างๆ                         |      |
|          | สำหรับวิกที่ทำด้วย Mesh 120                                                            | 61   |
| 4-3      | ตารางแสดงผลการวิจัยของช.มหิธร เพื่ชญไพศิษฎ์ และ พิสุทธิ์ กลิ่นขจร ( 2537 )             | 67   |
| 4-4      | ตารางที่ แสดงค่า Effective Thermal Conductivity และค่า Heat Flux ของฮีตไปป้            |      |
|          | ที่มุมต่างๆ ที่ผลต่าง <mark>อุณหภูมิ เข้า และ ออก Co</mark> ndenser 4-5 <sup>o</sup> C |      |
|          | สำหรับวิกที่ทำด้วย Mesh 100                                                            | 68   |
| 4-5      | ตารางที่ แสดงค่า Effective Thermal Conductivity และค่า Heat Flux ของฮีตไปป้            |      |
|          | ที่มุมต่างๆ ที่ผลต่างอุณหภูมิ เข้า และ ออก Condenser 3 <sup>o</sup> C                  |      |
|          | สำหรับวิกที่ทำด้วย Mesh 100                                                            | 68   |
| 4-6      | ตารางที่ แสดงค่า Effective Thermal Conductivity และค่า Heat Flux ของฮีตไปป์            |      |
|          | ที่มุมต่างๆ ที่ผลต่างอุณหภูมิ เข้า และ ออก Condenser 4-5 <sup>o</sup> C                |      |
|          | สำหรับวิกที่ทำด้วย Mesh 120                                                            | 69   |
| 4-7      | ตารางที่ แสดงก่า Effective Thermal Conductivity และก่า Heat Flux ของฮีตไปป์            |      |
|          | ที่มุมต่างๆ ที่ผลต่างอุณหภูมิ เข้า และ ออก Condenser 3 <sup>o</sup> C                  |      |
|          | สำหรับวิกที่ทำด้วย Mesh 120                                                            | 69   |

# สารบัญภาพ

| รูปที่ |                                                                          | หน้า |
|--------|--------------------------------------------------------------------------|------|
| 1-1    | แสดงส่วนประกอบของ ฮิตไปป์                                                | 1    |
| 1-2    | แสดงลักษณะการทำงานของ ฮีตไปป์                                            | 2    |
| 2-1    | แสดงก่ากวามดันไอกับอุณหภูมิของของไหลใช้งานในฮีตไปป์                      | 10   |
| 2-2    | แสดงก่าตัวเลขเมอริทในการเลือกของใหลใช้งาน                                | 12   |
| 2-3    | แสดงก่าเมอริทจุดเดือดของของใหลใช้งานต่างๆที่กวามดันบรรยากาศ              | 12   |
| 2-4    | แสดงกวามหนาแน <mark>่นของวัสดุ</mark> ที่ใช้ทำท่อชนิ <mark>ดต่างๆ</mark> | 15   |
| 2-5    | แสดงกวามสัมพันธ์ระหว่าง ( $oldsymbol{ ho}$ / $f_u$ ) กับ อุณหภูมิ        | 16   |
| 2-6    | แสดงก่า (kf <sub>u</sub> ) ที่อุณหภูมิใช้งานต่างๆของวัสดุ                | 17   |
| 2-7    | แสดงภาพวิกที่ทำมาจากวัสดุชนิดเดียวกัน                                    | 18   |
| 2-8    | แสดงภาพวิกที่ทำมาจากวัสดุต่างชนิ <mark>ดมาผสมกัน</mark>                  | 19   |
| 2-9    | แสดงภาพวิกที่มีการออกแบบอย่างซับซ้อน                                     | 19   |
| 2-10   | แสดงขีดจำกัดของการถ่ายเทกวามร้อนของฮีตไปป์                               | 23   |
| 2-11   | แสดงก่าของการสูญเสียกวามคันของวิกแบบต่างๆ                                | 25   |
| 2-12   | แสดงวงจรสมมูลทา <mark>งความร้อนของท่อความ</mark> ร้อน                    | 28   |
| 2-13   | แสดงค่าสมมูลทางความร้อนของท่อความร้อน                                    | 30   |
| 2-14   | แสดงแผนภูมิการไหลของการออกแบบฮีตไปป์                                     | 31   |
| 3-1    | แสดงแบบของฮีตไปป์ที่ได้ทำการออกแบบ                                       | 35   |
| 3-2    | แสดงแบบขอ <mark>งฮ</mark> ีตไปป์ที่ทำการประกอบเสร็จแล้ว                  | 37   |
| 3-3    | แสดงภาพตราชั่งคิจิตอลที่ใช้ชั่งฮีตไปป์                                   | 38   |
| 3-4    | แสดงภาพตาข่าย ที่ใช้สร้างฮีตไปป์                                         | 39   |
| 3-5    | แสดงภาพปั๊มที่ใช้ทำสูญญากาศ                                              | 39   |
| 3-6    | แสดงภาพสายเติมของใหลใช้งาน                                               | 40   |
| 3-7    | แสดงภาพถังที่บรรจุของไหลใช้งาน R-12                                      | 40   |
| 3-8    | แสดงภาพอุปกรณ์ที่ใช้ตัดท่อทองแคงขนาดต่างๆ                                | 41   |
| 3-9    | แสดงภาพอุปกรณ์ที่ใช้วัดขนาดท่อและความหนาต่างๆ                            | 41   |
| 3-10   | แสดงวิธีการผลิตฮีตไปป์แบบให้กวามร้อนโดยตรง                               | 42   |
| 3-11   | แสดงวิธีการผลิตฮีตไปป์แบบใช้ออยบาธ                                       | 42   |

# สารบัญภาพ (ต่อ)

| รูปที่ |                                                               | หน้า |
|--------|---------------------------------------------------------------|------|
| 3-12   | แสดงขั้นตอนการสร้างฮีตไปป์โดยใช้ปั๊มสูญญากาศแบบที่ 1          | 43   |
| 3-13   | แสดงระบบการผลิตฮีตไปป์โดยการใช้ปั๊มสูญญากาศแบบที่ 1ที่        | 44   |
| 3-14   | แสดงระบบการผลิตฮีตไปป์โดยใช้ปั๊มสูญญากาศแบบที่ 2              | 45   |
| 3-15   | แสดงภาพฮีตไปป์ที่มีวิกเบอร์ 10 <mark>0</mark>                 | 48   |
| 3-16   | แสดงภาพฮีตไปป์ที่มีวิกเบอร์ 120                               | .48  |
| 3-17   | แสดงภาพตัดขวางท่อฮีตไปป์ชุดที่ 2 คือมี Mesh 120               | .49  |
| 3-18   | แสดงภาพแท่นทคสอบฮีตไปป์                                       | 51   |
| 3-19   | แสดงภาพอุปกรณ์ที่ทำการจับยึดให้ฮีตไปป์ทดสอบได้ทุกมุมทดสอบ     | 51   |
| 3-20   | แสดงภาพอุปกรณ์ที่ให้ <mark>ความร้อนในส่วนของการทำระเหย</mark> | 52   |
| 3-21   | แสดงภาพวงจรการให้ความร้อนในส่วนของการทำระเหย                  | 53   |
| 3-22   | แสดงภาพปั๊มในส่วนของการทำระเหย                                | 53   |
| 3-23   | แสดงภาพเจ็คเก็ตของส่วนที่ทำระเหยและส่วนที่ควบแน่นที่ทำมาจาก   |      |
|        | แผ่นเหล็กอาบสัง <mark>กะส</mark> ี                            | 54   |
| 3-24   | แสดงภาพแผ่นเหล็ก <mark>อ</mark> าบสังกะสีที่นำมาทำเจ็คเก็ต    | 54   |
| 3-25   | แสดงภาพส่วนที่ควบแน่นและอุปกรณ์ต่างๆ                          | 55   |
| 3-26   | แสดงภาพปั๊มในส่วนที่ควบแน่น                                   | 55   |
| 3-27   | แสดงภาพเครื่องอ่านอุณหภูมิยี่ห้อ DIGICON                      | 56   |
| 3-28   | แสดงภาพเทอร์โมคอปเปิ้ล Type K จำนวน 4 เส้น                    | 56   |
| 3-29   | แสดงภาพเครื่องมือวัดอัตราการไหล                               | 57   |
| 3-30   | แสดงภาพจุดที่ติดตั้งเกรื่องวัดอุณหภูมิ                        | 57   |
|        |                                                               |      |

# 

# สารบัญกราฟ

| กราฟที่ |                                                                                                       | หน้า        |
|---------|-------------------------------------------------------------------------------------------------------|-------------|
| 4-1     | กราฟแสดงความสัมพันธ์ระหว่างมุมของฮิตไปป์กับค่าอัตรา                                                   |             |
|         | การถ่ายเทความร้อน Mesh100                                                                             | .62         |
| 4-2     | กราฟแสดงความสัมพันธ์ระหว่างมุมของฮิตไปป์กับค่าอัตรา                                                   |             |
|         | การถ่ายเทความร้อน Mesh 120                                                                            | .63         |
| 4-3     | กราฟแสดงการเปรียบเทียบระหว่างฮีตไปป์กับค่าอัตราการ                                                    |             |
|         | ถ่ายเทความร้อนที่มุมต่างๆ                                                                             | <b>.</b> 64 |
| 4-4     | กราฟแสดงการเปลี่ย <mark>นแปลงของค่า Qที่มุมทคสอบต่าง</mark> ๆ ของ                                     |             |
|         | ฮิตไปป์ชุดที่ 1 ซึ่งใช้Mesh 100                                                                       | 65          |
| 4-5     | กราฟแสดงการเปรียบเทียบระหว่างฮีตไปป์กับก่า k <sub>en</sub> ที่มุมฮีตไปป์ต่างๆ โดยที่ก่า               |             |
|         | k <sub>En</sub> นี้กิดมาจากผลต่างอุณหภูมิของน้ำที่ไหลผ่านส่วนของ Condenser กับน้ำที่ไหลผ่าน           | เส่วน       |
|         | Evaporator                                                                                            | 70          |
| 4-6     | กราฟแสดงการเปรียบเทียบระหว่างฮีตไปป์กับค่า k <sub>en</sub> ที่มุมฮีตไปป์ต่างๆ โดยที่ค่า               |             |
|         | k <sub>en</sub> นี้กิดมาจากผ <mark>ลต่างอุณหภูมิของผิวส่วนของ Conde</mark> nser กับอุณหภูมิผิวส่วนของ |             |
|         | Evaporator                                                                                            | 71          |
| 4-7     | กราฟแสดงก่า Heat Fluxที่มุมฮีตไปป์ต่างๆของงานวิจัยนี้เปรียบเทียบกับงานวิจัยอื่น                       | .72         |

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

# คำอธิบายสัญลักษณ์

| ត័ល្ងត័                       | กษณ์ ความหมาย                                         | หน่วย              |
|-------------------------------|-------------------------------------------------------|--------------------|
| А                             | พื้นที่                                               | m <sup>2</sup>     |
| $A_{V}$                       | พื้นที่ในส่วนของโพรงของฮีตไปป์                        | m <sup>2</sup>     |
| $A_{W}$                       | พื้นที่ของวิกของฮีตไปป์ ( Wick Cross section area )   | m <sup>2</sup>     |
| c <sub>P</sub>                | ค่ากวามดันจำเพาะที่กวาม <mark>ดันกงที่</mark>         | J/kg.K             |
| d                             | ขนาคเส้นผ่านศูนย์กล <mark>าง</mark> ของลวคตาข่าย      | m                  |
| d <sub>i</sub>                | ขนาคเส้นผ่านศูนย์ก <mark>ลางข้างในของท่อทองแคง</mark> | m                  |
| d <sub>o</sub>                | งนาคเส้นผ่านศูนย์กลางข้างนอกของท่อทองแคง              | m                  |
| $d_{\rm V}$                   | ขนาคเส้นผ่านศูนย์กลางของโพรงข้างในฮีตไปป              | m                  |
| g                             | ค่าความเร่งเนื่ <mark>องจากแรง</mark> โน้มถ่วงของโลก  | $m/s^2$            |
| $\mathbf{h}_{\mathrm{fg}}$    | ค่าความร้อนแฝงขอ <mark>งการกลายเป็นไอ</mark>          | kJ/kg              |
| k                             | ค่าสัมประสิท <mark>ธิ์การนำความ</mark> ร้อน           | W/m.K              |
| K                             | Wick Permeability                                     |                    |
| $\mathbf{k}_{\mathrm{W}}$     | สัมประสิทธิ์การนำความร้อนของวัสดุที่ใช้ทำวิก          | W/m.K              |
| k <sub>e</sub>                | ท่า Thermal conductivity of the saturated wick        | W/m.K              |
| $\boldsymbol{k}_{\text{Eff}}$ | ค่า Effective thermal conductivity                    | W/m.K              |
| L <sub>a</sub>                | ค่าความยาวของส่วน Adiabatic                           | m                  |
| L <sub>C</sub>                | ค่าความยาวของส่วนของการควบแน่น                        | m                  |
| $L_{E}$                       | ค่าความยาวของส่วนของการระเหย                          | m                  |
| $L_{\text{Eff}}$              | ค่าความยาว effective ของฮีตไปป้                       | m                  |
| •<br>m                        | อัตราการไหล                                           | kg/s               |
| М                             | ค่าตัวเลข เมอริท นัมเบอร์                             | kW/cm <sup>2</sup> |
| N                             | ค่าของ Mesh number                                    |                    |
| $\Delta P_{c}$                | การสูญเสียความคันเนื่องจากแรง Capillaryภายในฮีตไปป์   | N/m <sup>2</sup>   |
| $\Delta P_{e}$                | การสูญเสียความคันภายในของวิกภายในฮีตไปป์              | N/m <sup>2</sup>   |
| $\Delta P_{g}$                | การสูญเสียความคันเนื่องจากแรงโน้มถ่วงภายในฮีตไปป์     | N/m <sup>2</sup>   |
| $\Delta P_{v}$                | การสูญเสียความคันเนื่องจากไอของไหลใช้งานภายในฮีตไปป์  | N/m <sup>2</sup>   |

# คำอธิบายสัญลักษณ์ ( ต่อ )

| ត័ល្ងត័ <u>ា</u> រ | <b>งณ์ ความหมาย</b>                                | หน่วย             |
|--------------------|----------------------------------------------------|-------------------|
| P <sub>Pm</sub>    | Maximum effective pumping                          | N/m <sup>2</sup>  |
| Q                  | ค่าอัตราการถ่ายเทความร้อน                          | W                 |
| $Q_{b,\max}$       | ค่ากวามร้อนสูงสุดของขีดจำกัดการเดือด               | W                 |
| $Q_{c,\max}$       | ค่าความร้อนสูงสุดของขีดจำกัดของแรงคาปิลาลี่        | W                 |
| $Q_{e,\max}$       | ค่าความร้อนสูงสุดของขีดจำกัดของ Entrainment        | W                 |
| $Q_{e,\max}$       | ค่ากวามร้อนสูงสุดของขีดจำกัดของเสียง               | W                 |
| r <sub>c</sub>     | ก่าของรัศมีของแรง <mark>กาปิลาลี่</mark>           | m                 |
| Т                  | ค่าของอุณหภูมิ                                     | °С,К              |
| T <sub>w</sub>     | ค่าอุณหภูมิผนังภายในฮีตไปป                         | °С,К              |
| t <sub>w</sub>     | ี<br>ค่าความหนาขอ <mark>งวิก</mark>                | m                 |
| ρ                  | ความหนาแน่นของของให <mark>ล</mark>                 | kg/m <sup>3</sup> |
| μ                  | ก่ากวามหนืดของ <mark>ของไหล</mark>                 | kg/m.s            |
| Ψ                  | ค่าของมุม inclination เที <mark>ยบกับแนวราบ</mark> | degree            |
|                    |                                                    |                   |

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

บทที่1

#### บทนำ

เนื่องด้วยในปัจจุบันของประเทศไทยมีการใช้พลังงานกันมากขึ้นทุกวันๆ และ พลังงานที่ใช้ไปนั้นไม่สามารถใช้ประโยชน์ทั้งหมด ส่วนหนึ่งจะสูญเสียออกมาในรูปของ กวามร้อนเหลือทิ้ง(waste heat)โดยประเทศไทยได้สูญเสียค่าใช้จ่ายไปจำนวนมาก ดังนั้น จึงกวรจะได้มีการนำความร้อนเหลือทิ้งดังกล่าวมาใช้ให้เกิดประโยชน์มากที่สุดอุปกรณ์ ชนิดหนึ่งที่สามารถนำพลังงานจากความร้อนเหลือทิ้ง(waste heat) กลับมาใช้ประโยชน์ซึ่ง สามารถทำงานได้โดยไม่ต้องอาศัยพลังงานไฟฟ้าหรือเชื้อเพลิงใดๆในการทำงานคือฮีต ไปป์ ฮีตไปป์ทำงานโดยอาศัยปรากฏการณ์ธรรมชาติที่เรียกว่า Capillary Effect

ฮิตไปป์เป็นอุปกรณ์แลกเปลี่ยนกวามร้อนชนิดหนึ่งซึ่งสามารถทำงานที่ผลต่าง อุณหภูมิน้อยมากและให้อัตราการถ่ายเทกวามร้อนสูงมาก

ฮิตไปป์ประกอบด้วย 3 ส่วนสำคัญคือ ท่อ( tube ) วิก ( wick ) และ ของไหลใช้งาน ( working fluids ) ซึ่งทั้ง 3 ส่วนนี้จะมาประกอบกันเป็น ฮิตไปป์ ซึ่งสามารถทำงานในช่วง อุณหภูมิที่แตกต่างกันแล้วตามสภาวะ ลักษณะงานที่จะนำไปใช้



รูปที่ 1-1 ส่วนประกอบของ ฮิตไปป์

ฮิตไปป์ คือ อุปกรณ์ที่สามารถนำความร้อนจาก Heat Source ไปสู่ Heat Sink ได้ อย่างมีประสิทธิภาพแบบ Passive ไม่มีชิ้นส่วนเคลื่อนที่และมีลักษณะเป็น Super Conductor ประเภทหนึ่งเนื่องจากคุณสมบัติเค่นดังกล่าวนี้ จึงทำให้ฮิตไปป์เป็นอีกทางเลือก หนึ่งที่จะถูกนำมาพัฒนา และออกแบบเพื่อสามารถนำความร้อนทิ้งกลับมาใช้ประโยชน์

#### หลักการทำงาน

ฮิตไปป์ เป็นอุปกรณ์แลกเปลี่ยนความร้อนซึ่งทำงานโดยอาศัย ทฤษฎีเกี่ยวกับ Capillary Effect ดังแสดงในรูปที่ 1-2 ฮิตไปป์ประกอบด้วยส่วนที่สำคัญๆ 3 อย่างคือ ตัว ท่อ โครงสร้างวิก และ ของไหลใช้งาน ฮิตไปป์แบ่งส่วนทำงานออกได้เป็นเป็น3 ส่วนคือ ส่วนคอนเดนเซอร์(Condenser section), ส่วนอีแวพอเรเตอร์(Evaporator section) และ ส่วนที่ไม่มีการถ่ายเทความร้อน (Adiabatic section)

การทำงานของ ฮิตไปป์ เมื่อส่วนอีแวพอเรเตอร์ของ ฮิตไปป์ ได้รับความร้อนทำให้ ของไหลใช้งานเกิดการระเหยตัวกลายเป็นไอแล้วไหลไปสู่ส่วนคอนเดนเซอร์ จากนั้น ของ ไหลใช้งานจะทำการคายความร้อนแล้วเกิดการกลั่นตัวกลายเป็นของเหลวแล้วไหลไปตาม วิก (Wick) กลับไปที่ส่วนอีแวพอเรเตอร์ใหม่ ของไหลใช้งานไหลจากส่วนคอนเดนเซอร์ มาสู่ส่วนอีแวพอเรเตอร์ได้โดยอาศัย แรงทางกาพิลารี่ (Capillary action)



รูปที่ 1-2 แสดงลักษณะการทำงานของ ฮิตไปป์

เกล็ดลับของเทกโนโลยีนี้อยู่ที่การออกแบบให้ภายในท่อสามารถแยกสารที่เป็น ของเหลวออกจากสารที่เป็นไอ เนื่องจากการเกลื่อนตัวของสารทั้งสองสถานะนี้เกลื่อนที่ใน ทิศทางตรงข้ามกัน โดยวิธีการแยกสารที่เป็นของเหลวและไอออกจากกันนี้ โดยทั่วไป อาศัยตะแกรงตาละเอียคม้วนเป็นท่อใส่ซ้อนเข้าไปภายในท่อ เพื่อแยกของเหลวที่เกาะอยู่ที่ ผิวภายในของท่อออกจากไอ โดยแผ่นตะแกรงนี้เป็น วิก ชนิคหนึ่ง

เงื่อนไขที่ ฮิตไปป์ จะทำงานได้อย่างต่อเนื่องในสภาวะคงที่ คือ หัวน้ำ (Water Head) สูงสุด หรือ (ΔP)max หรือ Maximum Capillary Pumping Head ที่สามารถดูด ขึ้นได้โดยแรงกาพิลารี่จะต้องมีขนาดมากกว่าก่าการสูญเสียกวามดันรวมของภายในท่อถ้า เงื่อนไขดังกล่าวนั้นไม่เป็นจริง วิกในช่วงการระเหยจะแห้งตัวหมด (เรียกว่า Dry Out) และ จะไม่ทำงาน โดยการสูญเสียกวามดันที่ลดลงนี้ประกอบด้วยการสูญเสียของ 3 ส่วน

 การสูญเสียของความคันที่เกิดจากการใหลของของใหลใช้งานข้อนกลับจาก ส่วนของคอนเดนเซอร์กลับมาสู่ส่วนของอิแวพอเรเตอร์ (ΔP\_)

 2. การสูญเสียของความคันที่เกิดจากการไหลของไอ จากส่วนของอิแวพอเรเตอร์ ไปสู่ส่วนของคอนเดนเซอร์ (ΔP,)

3. การสูญเสียของความคันเนื่องจากความแตกต่างกันของระคับระหว่างส่วนของ คอนเคนเซอร์ กับ อิแวพอเรเตอร์( $\Delta P_{s}$ )

ดังแสดงในสมการคือ( Frank ,and Mark, 2001)

 $(\Delta P_c)$ max  $\geq \Delta P_e + \Delta P_v + \Delta P_g$ 

นอกจากนี้ การนำฮิตไปป์ไปใช้งานยังด้องให้ท่อมีความยาวเพิ่มขึ้น สามารถขด เป็นรูปคอยล์ได้หรือขดไปมาตามที่ต้องการได้

#### ลักษณะเด่น

ฮิตไปป์ มีสมรรถนะการถ่ายเทความร้อนที่ดีเถิศกว่าสมรรถนะที่เคยพบเห็นในการ นำความร้อนผ่านของแข็ง ลักษณะเด่นของ ฮิตไปป์ มีดังต่อไปนี้

 1." สภาพการนำความร้อนประสิทธิผล (Effective Thermal Conductivity)มีค่าสูง มาก "

2. "มีความสามารถถ่ายเทฟลักซ์ความร้อน (Heat Flux)สูง"

 ร. "มีความสม่ำเสมอ ( เท่ากัน) ของอุณหภูมิผิว"ในระหว่างที่ทำงานอุณหภูมิของ ช่วงของการควบแน่นของฮีตไปป์จะเท่ากัน ถ้าหากว่าที่จุดใดจุดหนึ่งเกิดมีอุณหภูมิต่ำลงที่ บริเวณนั้นจะเกิดการควบแน่นของไอเพิ่มขึ้น ทำให้กงอุณหภูมิให้เท่ากันตลอดได้

4. "มีคุณสมบัติเป็น Variable Conductance or Variable Heat Resistance" โดยการ เติมก๊าซเฉื่อย แล้วอาศัยการเปลี่ยนแปลงปริมาณก๊าซ แม้ว่าความร้อนที่จะป้อนเข้าจะ เปลี่ยนแปลงไปมาก ผิวสัมผัสระหว่างก๊าซเฉื่อยกับไอก็จะเคลื่อนที่ตาม ทำให้พื้นที่ถ่ายเท ความร้อนของช่วงการควบแน่นเปลี่ยนตามไปด้วย ผลก็คือ ความคันภายในจะถูกรักษาให้ มีค่าคงที่ และ สามารถควบคุมอุณหภูมิของไอให้คงที่ได้

5. "การตอบสนองเชิงความร้อน ( Thermal Response ) ดี " เนื่องจากการถ่ายเท ความร้อนเกิดขึ้นในรูปของความร้อนแฝง การตอบสนองเชิงความร้อนจึงดี และสามารถ รับการเปลี่ยนแปลงของแหล่งความร้อนได้อย่างรวดเร็ว

 "สามารถแยกช่วงการรับความร้อน และ ช่วงการคายความร้อนให้ออกห่างได้" เนื่องจาก ฮีตไปป์ สามารถถ่ายเทความร้อนปริมาณสูงไปไกลๆ ได้ ดังนั้นจึงได้เปรียบเทียบ ในการขนส่งความร้อนออกจากตำแหน่งที่ดึงความร้อนได้ยาก เช่น จากที่แคบมากๆ

7. "โครงสร้างง่ายๆ น้ำหนักเบา และ รูปร่างกระทัครัค"

8. "ไม่ต้องทำการบำรุงรักษา ( Maintenance Free)" เนื่องจากไม่ได้ใช้ปั๊มป์ ในการ ส่งถ่ายความร้อน ดังนั้นความถี่ในการบำรุงรักษาจึงน้อย ความเชื่อถือได้ ( Reliabilily ) สูง และ ไม่มีเสียงดัง ( Noise ) 9. "สามารถทำงานได้ในที่ไร้แรงโน้มถ่วง" สามารถใช้งานในยานอวกาศ ดาวเทียม เป็นต้น

ในปัจจุบันประเทศไทยได้มีการนำฮีตไปป์มาใช้งานกันบ้างแล้วแต่ราคาของฮีต ไปป์มีราคาค่อนข้างสูงข้อมูลทางการออกแบบฮีตไปป์ถือเป็นความลับทางการค้าดังนั้นจึง ควรมีการศึกษาหาข้อมูลในการออกแบบและสร้างฮีตไปป์ที่ไม่ซับซ้อนเกินไปนักและมี ความเหมาะสมสำหรับใช้งานในอุตสาหกรรมในประเทศไทยเพื่อช่วยในการประหยัด พลังงาน และ การใช้พลังงานอย่างมีประสิทธิผล

อุปกรณ์แลกเปลี่ยนความร้อนที่ใช้งานโดยอาศัยปรากฎการณ์ capillary effect มีอยู่ สองอย่างด้วยกันคือ Heat pipe และ Thermosiphon โดยทั้งสองอย่างนี้ต่างกันตรงที่ฮีตไปป์ มีส่วนของวิกอยู่แต่เทอร์โมไซฟอนไม่มี ซึ่งอาจจะพอกล่าวได้ว่าฮีตไปป์น่าจะมี ประสิทธิภาพที่สูงกว่าเทอร์โมไซฟอน ในส่วนของวิกนี้มีด้วยกันหลายแบบแต่เนื่องด้วยวิก ที่มีอยู่ปัจจุบันสามารถทำการสร้างได้ยากและมีความสลับสับซ้อน ดังนั้นจึงควรออกแบบ และสร้างวิกที่สามารถสร้างได้ง่ายและสามารถทำงานได้ดีและมีประสิทธิภาพที่มากกว่า เทอร์โมไซฟอน

วิทยานิพนธ์ฉบับนี้จึงทำการศึกษาและพัฒนาโครงสร้างของวิกให้สามารถสร้าง ฮิตไปป์มาใช้งานได้เองในระดับของอุตสาหกรรมโดยการสร้างวิกแบบง่ายๆและมี ประสิทธิภาพการใช้งานที่ดีเพื่อช่วยในการใช้งานในอุตสาหกรรมโดยการนำความร้อน เหลือทิ้งกลับมาใช้งานหรือนำไปใช้งานประกอบกับอุปกรณ์อื่น เช่น คอย์เย็น เพื่อช่วยให้ คอย์เย็นสามารถกำจัดน้ำออกจากระบบได้เพิ่มขึ้นทำให้ความชื้นที่มีอยู่ในระบบลดลง การ ที่ในงานวิจัยนี่มุ่งเน้นที่จะให้อุตสาหกรรมสามารถนำไปสร้างและใช้งานก็เนื่องด้วย การที่ เราสามารถลกการใช้พลังงานได้น้อยลงนำไปสู่การลดต้นทุน เพื่อสินค้าสามารถแข่งขันกับ ต่างประเทศและเพื่อพัฒนาประเทศในต่อไป

# จุฬาลงกรณมหาวทยาลย

#### 1.1 วัตถุประสงค์ของวิทยานิพนธ์

เพื่อศึกษารูปแบบวิกและข้อมูลสมรรถนะของฮีตไปป์แบบมีวิกสำหรับใช้ในการ ออกแบบและสร้างฮีตไปป์

#### 1.2 ขอบเขตของวิทยานิพนธ์

ทำการออกแบบและสร้างฮิตไปป์ที่ใช้วิกที่มีโครงสร้างซึ่งสร้างได้สะดวก

 ทำการออกแบบและสร้างชุดทดลองเพื่อหาค่าประสิทธิภาพในการถ่ายเท กวามร้อนของฮีตไปป์และหาค่า k<sub>eff</sub>

3. ประมวลผลและทคลองเพื่อนำเสนอในรูปแบบที่สามารถใช้ในการออกแบบ

#### 1.3 ขั้นตอนในการ<mark>ดำเนินงา</mark>น

- 1. ศึกษาและรวบรวมข้อมูลและอุปกรณ์ฮีตไปป์โดยมุ่งเน้นด้านการออกแบบ
- คำนวณและออกแบบส่วนประกอบต่างๆของฮิตไปป์ให้เหมาะสมกับสภาวะ

#### ใช้งาน

- ทำการสร้างฮีตไปป์และติดตั้งอุปกรณ์การวัดเพื่อทดสอบและเก็บข้อมูล
- 4. นำข้อมูลจากการทดลองไปวิเคราะห์และนำเสนอในรูปแบบที่เหมาะสม
- 5. สรุปผลการทคลองและจัดทำรายงานฉบับสมบูรณ์

#### 1.4 ผลที่คาดว่าจะได้รับ

 ได้ข้อมูลที่สามารถใช้ในการออกแบบและสร้างฮีตไปป์ซึ่งมีประสิทธิภาพและ เหมาะสมกับช่วงอุณหภูมิใช้งาน

# บทที่ 2

#### ทฤษฎีและการคำนวณฮิตไปป์

#### ทฤษฎี

ฮิตไปป์ เป็นอุปกรณ์แลกเปลี่ยนความร้อนซึ่งทำงานโดยอาศัย ทฤษฎีเกี่ยวกับ Capillary effect ฮิตไปป์ประกอบด้วยส่วนที่สำคัญๆ 3 อย่างคือ ตัวท่อ โครงสร้างวิก และ ของไหลใช้งาน ฮิต ไปป์แบ่งออกได้เป็นเป็น3 ส่วนคือ ส่วนคอนเดนเซอร์(Condenser section), ส่วนอีแวพอเรเตอร์ (Evaporator section) และ ส่วนที่ไม่มีการถ่ายเทความร้อน (Adiabatic section)

การทำงานของ ฮิตไปป์ เมื่อส่วนอีแวพอเรเตอร์ของ ฮิตไปป์ ได้รับความร้อนทำให้ของ ใหลใช้งานเกิดการระเหยตัวกลายเป็นไอแล้วไหลไปสู่ส่วนคอนเดนเซอร์ จากนั้น ของไหลใช้งาน จะทำการคายความร้อนแล้วเกิดการกลั่นตัวกลายเป็นของเหลวแล้วไหลไปตามวิก (Wick) กลับไปที่ ส่วนอีแวพอเรเตอร์ใหม่ ที่ของไหลใช้งานไหลจากส่วนคอนเดนเซอร์มาสู่ส่วนอีแวพอเรเตอร์ได้ โดยอาศัย แรงทางกาพิลารี่ (Capillary action)

ต่อไปนี้จะกล่าวถึงห<mark>ลั</mark>กการในการเลือกองก์ประกอบทั้งสามส่วนและหลักการในการ วิเคราะห์การทำงานของเครื่องแลกเปลี่ยนความร้อนแบบฮีตไปป์

## 2.1 การเลือกของใหล่ใช้งาน

ขั้นตอนแรกในการเลือกของไหลใช้งานที่เหมาะสม ต้องคำนึงถึงช่วงของอุณหภูมิที่ใช้งาน ว่าเหมาะสมกับของไหลใช้งานชนิดใด จากตารางที่ 2-1 และ 2-2 จะเห็นว่าที่ช่วงของอุณหภูมิหนึ่ง สามารถเลือกของไหลใช้งานได้มากกว่า 1 ชนิด ดังนั้นต้องดูกุณสมบัติอื่นๆ มาพิจารณา เพื่อเลือก ของไหลใช้งานที่เหมาะสมที่สุด

| Medium      | Melting point<br>(°C) | Boiling point at atmos. Press.<br>(°C) | Useful range<br>(°C)             |
|-------------|-----------------------|----------------------------------------|----------------------------------|
| Hellium     | -272                  | -269                                   | จาก <b>-271</b> ถึง <b>- 269</b> |
| Nitrogen    | -210                  | -196                                   | จาก <b>-203</b> ถึง <b>- 160</b> |
| Ammonia     | -78                   | -33                                    | จาก <b>-60</b> ถึง <b>100</b>    |
| Freon 11    | -111                  | 24                                     | จาก <b>-40</b> ถึง <b>120</b>    |
| Pentane     | -130                  | 28                                     | จาก <b>-20</b> ถึง <b>120</b>    |
| Freon 113   | -35                   | 48                                     | จาก <b>-10</b> ถึง <b>100</b>    |
| Acetone     | -95                   | 5                                      | จาก <b>0</b> ถึง <b>120</b>      |
| Methanol    | -98                   | 64                                     | จาก <b>10</b> ถึง <b>130</b>     |
| Flutec PP2* | -50                   | 76                                     | จาก <b>10</b> ถึง <b>160</b>     |
| Ethanol     | -112                  | 78                                     | จาก <b>0</b> ถึง <b>130</b>      |
| Heptane     | -90                   | 98                                     | จาก <b>0</b> ถึง <b>15</b> 0     |
| Water       | 0                     | 100                                    | จาก <b>30</b> ถึง <b>200</b>     |
| Flutec PPg* | -70                   | 160                                    | ຈາກ <b>0</b>                     |
| Thermex     | 12                    | 257                                    | จาก <b>150</b> ถึง <b>395</b>    |
| Mercury     | -39                   | 361                                    | จาก <b>250</b> ถึง 650           |
| Caesium     | 29                    | 670                                    | จาก <b>450</b> ถึง <b>900</b>    |
| Potassium   | 62                    | 774                                    | จาก <b>500</b> ถึง <b>1000</b>   |
| Sodium      | 98                    | 892                                    | จาก <mark>600 ถึง 1,2</mark> 00  |
| Lithium     | 179                   | 1,340                                  | ຈາก <b>1,000</b>                 |
| Silver      | 960                   | 2,212                                  | ຈາກ <b>1,800</b>                 |

# ตารางที่ 2-1 ตารางการเลือกของไหลใช้งาน ( Dunn and Reay, 1978)

\* ในกรณีที่ต้องใช้ฉนวนทางไฟฟ้า

# ตารางที่ 2-2 ตารางการเลือกของใหลใช้งาน (Frank and Mark, 2001)

| Temperature<br>Range<br>( K ) | Working<br>Fluid      | Vessel Material                 | Measured<br>Axial Heat<br>Flux <sup>a</sup><br>(W/cm <sup>2</sup> ) | Measured<br>Surface<br>Heat Flux <sup>a</sup><br>(W/cm <sup>2</sup> ) |  |
|-------------------------------|-----------------------|---------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| 230 - 400                     | Methanol <sup>b</sup> | Copper, nickel, Stainless steel | 0.45 at 373 K                                                       | 75.5 at 373 K                                                         |  |
| 280 - 500                     | Water                 | Copper, nickel                  | 0.67 at 473 K                                                       | 146 at 443 K                                                          |  |
| 360 - 850                     | Mercury <sup>c</sup>  | Stainless steel                 | 25.1 at 533 K                                                       | 181 at 533 K                                                          |  |
| 673 – 1,073                   | Potassium             | Nickel, Stainless steel         | 5.6 at 1,023 K                                                      | 181 at 1,023 K                                                        |  |
| 773 – 1,173                   | Sodium                | Nickel, Stainless steel         | 9.3 at 1,123 K                                                      | 224 at 1,033 K                                                        |  |

<sup>a</sup> Varies with temperatyre

<sup>b</sup>Using threaded artery wick

<sup>c</sup>Based on sonic limit in heat pipe

# ้ ปัจจัยพื้นฐานที่จะต้องนำมาประกอบการพิจารณาเลือกของไหลใช้งานมีดังต่อไปนี้

- 1. ความเหมาะสมกับวัสคุที่ใช้ทำท่อ
- 2. เสถียรภาพเชิงความร้อน
- 3. ความสามารถในการเกาะเปียกกับวัสดุที่ใช้ทำท่อและแรงตึงผิว
- 4. ความคันไอในช่วงอุณหภูมิใช้งาน
- ก่าความร้อนแฝงในการกลายเป็นไอ
- 6. ค่าการนำความร้อน
- 7. ก่ากวามหนืดของของเหลวและไอ
- 8. จุดแข็งตัวและจุดไหลต่างจากอุณหภูมิใช้งานในช่วงที่ยอมรับได้

# 2.1.1 ความเหมาะสมกับวัสดุที่ใช้ทำท่อ

จะต้องพิจารณาถึงความเหมาะสมของของไหลใช้งานกับวัสดุที่ใช้ทำท่อ ว่าทำปฏิกริยากัน หรือไม่ส่วนรายละเอียดในการพิจารณาความเหมาะสมกับการเลือกวัสดุที่ใช้ทำท่อ จะกล่าวใน หัวข้อต่อไป

#### 2.1.2 เสถียรภาพเชิงควา<mark>มร้อน</mark>

สิ่งหนึ่งที่ควรคำนึงถึง คือการสลายตัวของสารพวกอินทรีย์ ซึ่งอาจจะเกิดขึ้นเนื่องจากความ ร้อน ดังนั้นจึงควรเลือกของไหลใช้งานที่มีเสถียรภาพเชิงความร้อนสูงในช่วงอุณหภูมิใช้งานที่ ต้องการ

### 2.1.3 ความสามารถในการเกาะเปียกของวัสดุที่ใช้ทำท่อ

ความสามารถในการเปียกของวัสคุที่ใช้ทำท่อ หมายถึง การที่ของไหลใช้งานจะต้องเกาะ เปียกผิวของวัสคุที่ใช้ทำท่อได้ดี นั่นคือ มุมสัมผัสระหว่างผิวของหยดของไหล กับวัสคุที่ใช้ทำท่อมี ค่าสูง

#### 2.1.4 ความดันไอในช่วงอุณหภูมิใช้งาน

ความดันไอของของไหลใช้งานตลอดช่วงอุณหภูมิที่ใช้งาน จะต้องมีค่าสูงเพียงพอ ต้อง พยายามหลีกเลี่ยงไม่ให้ไอของของไหลใช้งานมีความเร็วน้อยเกินไป ซึ่งจะทำให้ความแตกต่างของ อุณหภูมิตามแนวท่อฮีตไปป์สูง อย่างไรก็ตามความดันไอในท่อฮีตไปป์ก็ไม่ควรสูงมากนักเพราะจะ ทำให้ต้องใช้ผนังของฮีตไปป์หนาดังรูปที่ 2.-1



รูปที่ 2-1 ค่าความดันไอกับอุณหภูมิของของไหลใช้งานในฮีตไปป์ ( Chi, 1976) ( 1 psi=6.895x10<sup>3</sup> N/m<sup>2</sup>, 1R = 0.5556K )

#### 2.1.5 ค่าความร้อนแฝงในการกลายเป็นไอ

ของไหลที่มีค่าความร้อนแฝงของการกลายเป็นไอสูง จะสามารถถ่ายเทความร้อนได้ใน อัตราสูง และมีอัตราการไหลของของไหลใช้งานต่ำ นำไปสู่ การลดลงของการสูญเสียความดัน (pressure drop) ด้วย

#### 2.1.6 การนำความร้อนสูง

ของไหลใช้งานควรมีค่าการนำความร้อนสูง ซึ่งจะนำไปสู่ค่าความแตกต่างของอุณหภูมิใน แนวรัศมีของท่อมีค่าต่ำ

#### 2.1.7 ค่าความหนืดของของเหลวและไอ

ของไหลใช้งานทั้งในสถานะของเหลวและไอ ควรมีก่าความหนืดต่ำ เพื่อจะทำให้การไหล ของของไหลใช้งาน เกิดการไหลเวียนได้เร็ว เนื่องจากความต้านทานของการไหลมีก่าน้อย

#### 2.1.8 จุดแข็งตัว และจุดใหล

ของไหลใช้งานจะต้องมีสภาวะเป็นของเหลว และมีจุดไหล (pour point) ห่างจากช่วงของ อุณหภูมิใช้งานมากพอ เพื่อให้ของเหลวที่ควบแน่นในช่วงการควบแน่นสามารถไหลกลับสู่ช่วงการ ระเหยได้ทัน

ในกรณีที่มีของไหลใช้งานให้เลือกใช้งานได้มากกว่าหนึ่งชนิด เราอาจใช้ตัวเลขเมอริท (Merit Number,M) หรือ Liquid Transport Factor เป็นเกณฑ์ในการเลือกสารที่ให้การถ่ายเทความ ร้อนสูงดังนี้( Dunn, and Reay, 1978 )

|       | M =             | $\frac{\rho_{i}\sigma}{\mu}$ | $\frac{h_{fg}}{(1)}$                                          |
|-------|-----------------|------------------------------|---------------------------------------------------------------|
| เมื่อ | $\rho_{1}$      | =                            | ้<br>ค <mark>วามหนาแน่นของของให</mark> ลใช้งานในรูปของของเหลว |
|       | σ               | =                            | <mark>ค่าแรงดึงผิวของของ</mark> ไหลใช้งาน                     |
|       | h <sub>fg</sub> | =                            | ค่าความร้อนแฝงของการกลายเป็นไอของของไหลใช้งาน                 |
|       | $\mu_{i}$       | =                            | ค่าความหนืดของของไหลใช้งานในช่วงของของเหลว                    |

นอกจากประเด็นต่างๆข้างค้น สิ่งต้องคำนึงประการต่อมาคือ ราคา และความยากง่ายในการ จัดหาเชิงพาณิชย์ในรูปที่ 2.2 จะแสดงถึงค่า เมอริท ของของไหลใช้งานต่างๆ ซึ่งค่าเหล่านี้สามารถ คำนวณมาจากสมการที่ 1 และจากรูปที่ 2.3 จะแสดงค่าเมอริท ที่จุดเดือดของของไหลใช้งานต่างๆ ที่ความคันบรรยากาศ ส่วนในตารางที่ 2.3 แสดงถึงค่าการเปรียบเทียบกันระหว่าง จุดเดือด ช่วง อุณหภูมิการใช้งาน การเลือกวิกและตัวท่อของฮิตไปป์ กับค่าเมอริท เพื่อสะดวกในการพิจารณา



\* R-12 ได้เพิ่มเข้าไปในรูป

รูปที่ 2-2 ค่าตัวเลขเมอริทในการเลือกของใหลใช้งาน ( Dunn and Reay, 1978)



\* R-12 ได้เพิ่มเข้าไปในรูป

รูปที่ 2-3 ค่าเมอริทจุดเดือดของของไหลใช้งานต่างๆ ที่ความดันบรรยากาศ ( Dunn and Reay. , 1978)

| Normal<br>Operating        |                  | Properties at<br>atmosphericpressure |                                                 |                                      |
|----------------------------|------------------|--------------------------------------|-------------------------------------------------|--------------------------------------|
| Temperature<br>range<br>°C | Working<br>Fluid | Boiling<br>point<br>°C               | Liquid transport<br>factor<br>kW/m <sup>2</sup> | Suitable material for shell and wick |
| -200 to -170               | Nitrogen         | -196                                 | 9x10 <sup>6</sup>                               | Stainless steel                      |
| -70 to +50                 | Ammonia          | -33                                  | 1x10 <sup>8</sup>                               | Stainless steel, nickel, aluminum    |
| -60 to +40                 | Freon 12         | -30                                  | 1x10 <sup>7</sup>                               | Stainless steel, copper              |
| -30 to +100                | Methanol         | 65                                   | 5x10 <sup>7</sup>                               | Copper                               |
| +10 to +200                | Water            | 100                                  | 5x10 <sup>8</sup>                               | Copper, nickel                       |
| 190 to 500                 | Mercury          | 356                                  | 2x10 <sup>9</sup>                               | Stainless steel                      |
| 400 to 800                 | Potassium        | 760                                  | 5x10 <sup>8</sup>                               | Stainless steel                      |
| 500 to 900                 | Sodium           | 883                                  | 2x10 <sup>9</sup>                               | Stainless steel                      |
| 900 to 1500                | Lithium          | 1330                                 | 8x10 <sup>9</sup>                               | Tantalum, TZM                        |

#### ตารางที่ 2-3 ค่าของจุดเดือดของของไหลใช้งานในช่วงอุณหภูมิ –200 ถึง 1500 $^{\mathrm{o}}\mathrm{C}$

ในการทดสอบนี้ได้ทำการเลือกของไหลใช้งานคือ R-12 ซึ่งเหตุผลที่ตัดสินใจเลือกเพราะ

- 1. สารR-12 มีค่าเมอริทพอใช้ได้และอยู่ในช่วงการใช้งาน
- 2. สารR-12 สามารถเติมได้ง่ายและหาซื้อง่ายราคาไม่สูงและไม่ทำปฏิกริยากับท่อทองแดง
- สารR-12 มีความปลอดภัยสูงในการใช้งานคือมีความดันในท่อฮิตไปป์ไม่สูงเมื่อเที่ยบกับ สารทำความเย็นชนิดอื่นๆ

# 2.2 การเลือกวัสดุที่ใช้ทำท่อฮีตไปป์

หน้าที่ของท่อฮีตไปป์คือ แยกของไหลใช้งานจากของไหลภายนอก ดังนั้นตัวท่อฮีตไปป์ ต้องสามารถทนต่อความดันภายในท่อ และภายนอกท่อได้ และสามารถทำการถ่ายเทความร้อนจาก ภายนอกเข้าสู่ภายในได้ดี นั่นคือมีค่าสภาพนำความร้อนสูง

# ในการเลือกวัสดุที่จะนำมาทำท่อ จะต้องพิจารณาปัจจัยต่อไปนี้

 ความเหมาะสมกันระหว่างวัสดุที่ใช้ทำท่อกับของไหลใช้งานที่อยู่ภายใน และกับของ ไหลภายนอก

2. อัตราส่วนของความแข็งแกร่งต่อน้ำหนักของวัสดุที่จะใช้ทำตัวท่อ

3. การนำความร้อนของวัสดุที่ใช้ทำท่อ

4. ความยากง่ายในการขึ้นรูป การเชื่อม

5. ความสามารถในการเกาะเปียกของของไหลใช้งานที่อยู่ภายในและของไหลภายนอกกับ วัสดุที่ใช้ทำท่อ

# 2.2.1 ความเหมาะสมกันระหว่างวัสดุที่ใช้ทำท่อกับของไหลใช้งานที่อยู่ภายในและกับของ ไหลภายนอก

การพิจารณาเลือกวัสดุที่ใช้ทำท่อนั้น จะต้องพิจารณาถึงความเหมาะสมของวัสดุและของ ใหลทั้ง 2 ด้าน โดยจะพิจารณาถึงการกัดกร่อนเป็นประเด็นสำคัญดังตารางที่ 2-4

| FLUIDS    |    | Solids |           |         |                        |    |
|-----------|----|--------|-----------|---------|------------------------|----|
|           | AI | Cu     | Fe        | Ni      | Ss <sup>a</sup><br>304 | Ti |
| Nitrogen  | Cp | С      | С         | С       | С                      |    |
| Methane   | С  | С      |           |         | С                      |    |
| Ammonia   | С  |        | С         |         | С                      |    |
| Methanol  | I  | C      | С         | С       | С                      |    |
| Water     | Ι  | С      | 1 5 76    | С       | C <sub>C</sub>         | С  |
| Potassium |    |        |           | С       |                        | Ι  |
| Sodium    |    |        |           | С       | С                      | Ι  |
| Freon 12  |    | C      | N. Creeks | 1113 19 | С                      |    |

#### ตารางที่ 2-4 การเข้ากันได้ระหว่างท่อกับของไหลใช้งาน ( Chi, 1976)

<sup>a</sup>SS = Stainless Steel

<sup>b</sup>C = Compatible; I = Incompatible; Blank = Data not available

<sup>c</sup>Possible hydrogen generation

### ปัญหาเกี่ยวกับการเกิดการสร้างก๊าซซึ่งไม่ควบแน่น (non-condensable gas)

การผุกร่อนของวัสดุท่อเพียงเล็กน้อย ก็จะทำให้คุณสมบัติของผิวท่อภายในเปลี่ยนไป ผลก็ คือมุมของการเปียกผิวระหว่างของไหลใช้งานกับผิวท่อจะเปลี่ยนไป อีกทั้งยังอาจะเกิดเศษอนุภาค ของของแข็งที่เกิดขึ้นจะกีดขวางการไหลกลับของของไหลใช้งาน หรืออาจเกิดก๊าซที่ไม่ควบแน่น ขึ้น ผลก็กือทำให้สมรรถนะของฮีตไปป์ต่ำลง

#### 2.2.2 อัตราส่วนของความแข็งแกร่งต่อน้ำหนักของวัสดุที่ใช้ทำต่อฮีตไปป์

น้ำหนักของวัสดุที่ใช้ ก็เป็นปัจจัยหนึ่งที่ต้องนำมาคิดเพราะอุปกรณ์แลกเปลี่ยนความร้อน จำเป็นต้องใช้ฮีทไปป์จำนวนหลายอัน จะมีกราฟแสดงความสัมพันธ์ระหว่างความหนาแน่นกับ อุณหภูมิของวัสดุต่างๆ ถูกแสดงในรูปที่ 2-4 โดยน้ำหนักรวมของท่อนั้นจะแปรผันตามผลคูณ ของความหนาของผนังท่อกับความหนาแน่นของวัสดุ แต่ความหนาของท่อที่สามารถทนต่อความ คันไอของของไหลใช้งานได้นั้น จะแปรผกผันกับค่าความเค้นแรงดึงสูงสุดของวัสดุ (Ultimate tensile strength, f<sub>u</sub>) นั้นคือ น้ำหนักของท่อที่ใช้จะแปรผันตามพารามิเตอร์น้ำหนัก (Weight Parameter, C/f<sub>u</sub>) รูปที่ 2-5 แสดงค่าความหนาแน่นและค่าพารามิเตอร์น้ำหนักของวัสดุชนิดต่างๆ



รูปที่ 2-4 ความหนาแน่นของวัสดุที่ใช้ทำท่อชนิดต่างๆ

# จุฬาลงกรณ์มหาวิทยาลัย



รูปที่ 2-5 ความสัมพันธ์ระหว่าง (ho /  $f_{u}$  ) กับ อุณหภูมิ ( Chi, 1976)

# 2.2.3 การนำความร้อนของวัสดุที่ใช้ทำท่อ

เกรเดียนต์ของอุณหภูมิในแนวรัสมีผ่านวัสดุที่ใช้ทำท่อฮีตไปป์จะแปรผกผันกับก่าสภาพนำ ความร้อนของวัสดุ (Thermal Conductivity) และก่ากวามเก้นแรงดึงสูงสุดของวัสดุ (f<sub>u</sub>) นั้นคือ แปรผกผันกับพารามิเตอร์การนำความร้อน (conductance parameter, kf<sub>u</sub>) ดังแสดงในรูปที่ 2-6

# จุฬาลงกรณ่มหาวิทยาลัย



# รูปที่ 2-6 ค่า (kf.) ที่อุณหภูมิใช้งานต่างๆของวัสดุ ( Chi, 1976)

จากรูปดังกล่าวจะเห็นได้ว่าทองแดงมีค่าพารามิเตอร์การนำความร้อน (kf<sub>e</sub>) สูงกว่าวัสดุ ชนิดอื่นๆ ในช่วงอุณหภูมิต่ำกว่า 1,000 R ( 555.6K) ซึ่งหมายความว่าในช่วงอุณหภูมินี้ทองแดงมี เกรเดียนต์ของอุณหภูมิน้อยที่สุด

อนึ่งปัจจัยที่สำคัญที่ต้องไม่ลืมคือ ราคาของวัสดุ ปัญหาของความยากง่ายในการขึ้นรูป การ เชื่อม และอุปสรรคต่างๆที่จะเกิดขึ้นในการสร้างและการนำไปใช้งาน

ในการทคสอบนี้ได้ทำการเลือกท่อทองแคงเนื่องมากจาก

- 1. ทองแดงนำความร้อน, มีความหนาแน่นสูงและมีความแข็งแรงสูง
- 2. ทองแดงมีคุณลักษณะการเกาะเปียกที่ดี
- 3. ทองแดงไม่ทำปฏิกิริยากับของไหลใช้งานคือ R-12
- 4. ท่อทองแคงมีราคาไม่สูงและสามารถนำมาขึ้นรูปคัด งอ ได้ง่าย

#### 2.3 การเลือกวิก (Wick)

วิกที่ดีควรมีคุณสมบัติการไหลข้อนกลับที่ดีกล่าวกือ ของไหลใช้งานสามารถไหลงากส่วน ของคอนเดนเซอร์กลับไปสู่ส่วนของอีแวพอเรเตอร์ได้เร็ว

## วิกกล่าวโดยกว้างๆ ประกอบด้วย 3 ประเภทใหญ่ๆ คือ

SIMPLE HOMO GENEOUS WICK เป็นวิกที่ประกอบด้วยโลหะชนิดเดียว
 CURRENT COMPOSITE WICK เป็นวิกที่ประกอบด้วยโลหะ2ชนิดขึ้นไป
 ADVANCED DESIGNS WICK เป็นวิกที่องก์ประกอบที่ซับซ้อน
 โดยที่วิกแต่ละแบบจะมีก่า K (Wick Permeability) ที่แตกต่างกันดังตารางที่ 2-5



รูปที่ 2-7 ภาพแสดงวิกที่ทำมาจากวัสดุชนิดเดียวกัน





# รูปที่ 2-8 ภาพแสดงวิกที่ทำมาจากวัสดุต่างชนิดมาผสมกัน



# รูปที่ 2-9 ภาพแสดงวิกที่มีการออกแบบอย่างชับช้อน( Perterson, 1994 )

ดังนั้นในการจะเลือกวิกแบบไหนมาใช้มักจะขึ้นอยู่กับความสามารถในการประดิษฐ์และ ลักษณะของการใช้งาน เช่นความสามารถในการตัดโค้งเป็นรูปตัวยูของท่อ

| Wick structures          | K Expressions                                                                                                                                                                                                     |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Circular artery          | $K = \frac{r^2}{8}$                                                                                                                                                                                               |
| Open rectangular grooves | $e = \text{porosity} = \frac{w}{s}$ $s = \text{groove pitch}$ $K = \frac{2er_{h,l}^{2}}{(f_{l} \text{ Re}_{l})}  r_{h,l} = \frac{2w\delta}{w + 2\delta}$ $w = \text{groove width}$ $\delta = \text{groove depth}$ |
| Circular annular wick    | $K = \frac{2r_{h,l}^2}{(f_l \operatorname{Re}_l)}  r_{h,l} = r_1 - r_3$ $K = \frac{2r_{h,l}^2}{(f_l \operatorname{Re}_l)}  (f_l \operatorname{Re}_l) \text{ from Fig. 2-9}$                                       |
| Wrapped screen wick      | $K = \frac{d^2 e^3}{122(1-e)^2}  e = 1 - \frac{1.05\pi Nd}{4}$                                                                                                                                                    |
| Packed sphere            | $K = \frac{r_s^2 \epsilon^3}{37.5(1-\epsilon)^2}$ $r_s = \text{sphere radius}$ $\epsilon = \text{porosity (value depends}$ on packing mode)                                                                       |

ตารางที่ 2-5 ค่าของ K( Wick Permeability) ของโครงสร้างวิกแบบต่างๆ. ( Chi, 1976)

ในการทดสอบนี้ทำการเลือกวิกคือแบบ Wrapped screen wick หรือ แบบ ตาข่ายโดยตาข่าย ที่เลือกทาจาก สแตนเลส ซึ่ง ตาข่ายเบอร์ 100 และ 120 :ซึ่งตาข่ายที่เลือกนี้ สามารถหาซื้อได้ง่าย ไม่ ทำปฏิกิริยากับของไหลใช้งานและท่อ และมีคุณลักษณะของแรง Capillary ได้ดี

#### 2.4 การสูญเสียความดัน (Pressure Drop)

การที่ฮีตไปป์จะสามารถทำงานได้นั้นค่าของ Maximum capillary pumping head ( $\Delta P_{o}$ ) max จะต้องมีค่ามากกว่าค่าการสูญเสียความคันรวม โดยการสูญเสียความคันที่ลดลงนี้ประกอบด้วย การสูญเสียของ 3. ส่วน

 2. การสูญเสียของความดันที่เกิดจากการไหลของไอ จากส่วนของอิแวพอเรเตอร์ไปสู่ ส่วนของคอนเดนเซอร์ (ΔP,)  การสูญเสียของความคันเนื่องจากความแตกต่างกันของระคับระหว่างส่วนของ คอนเดนเซอร์ กับ อิแวพอเรเตอร์(\Delta P\_g)

ซึ่งสามารถเขียนแสดงในรูปสมการดังต่อไปนี้ ( Frank and Mark, 2001)

$$(\Delta P_{c})\max \geq \Delta P_{e} + \Delta P_{v} + \Delta P_{g} + \Delta P_{\perp}$$
 (2)

ΔP<sub>⊥</sub> เป็นความคันลคเนื่องจากแร<sup>้</sup>งโน้มถ่วงในทิศทางตั้งฉากกับแนวแกนฮิตไปป์ โดยทั่วไปมีค่าน้อยมาก

$$\Delta P_{e} = \frac{\mu_{l} L_{eff} m}{\rho_{l} K_{w} A_{w}}$$
(3)

| $\mu_{1}$        | = | ความหนืดของของเหลว                                      |
|------------------|---|---------------------------------------------------------|
| m                | = | อัตราการไหลของมวล                                       |
| $\rho_{1}$       | = | ความหนาแน่นของของเหลว                                   |
| A <sub>w</sub>   | = | Wick Cross-sectional area                               |
| K <sub>w</sub>   | = | Wick permeability                                       |
| L <sub>eff</sub> | = | ความยาว effective ระหว่างส่วนของอิแวพอเรเตอร์และส่วนของ |

กอนเคนเซอร์

$$L_{eff} = L + \frac{L_{e} + L_{c}}{2}$$
(4)

| เมื่อ | L <sub>e</sub> | =                      | ความยาวของส่วนของอิแวพอเรเตอร์                                                                                         |           |
|-------|----------------|------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|
|       | L <sub>c</sub> | =                      | ความยาวของส่วนของกอนเ <mark>คนเ</mark> ซอร์                                                                            |           |
|       | L              | = 2                    | ความยาวของส่วนที่ไม่มีการถ่ายเทความร้                                                                                  | ้อน       |
|       | $\Delta P_v$   | าบ<br>ง <sub>้</sub> ก | $f \frac{L_{eff}}{d_{v}} \frac{\rho \overline{u^{2}}}{2} = \frac{128 \mu_{v} \dot{m} L_{eff}}{\rho_{v} \pi d_{v}^{4}}$ | (5)       |
|       | $d_v$          | =                      | ความยาวของเส้นผ่านศูนย์กลางของผนังง                                                                                    | จ้านในวิก |
|       | $\Delta P_{g}$ | =                      | $\rho_1 gL sin \psi$                                                                                                   | (6)       |
|       | Ψ              | =                      | มุมระหว่างฮีตไปป์กับแนวระนาบ                                                                                           |           |

$$\Delta P_{c} = \rho_{i}gh = \frac{2\sigma}{r_{c}}\cos\theta \qquad (7)$$

มุมสัมผัส (ผิวเปียกอยู่ระหว่าง 0 ถึง  $\pi$ /2 สำหรับของไหลที่มี θ ความสามารถในการเปียก )

นำสมการที่ (3), (5), (6) และ (7) แทนลงในสมการที่ (2)

$$\frac{2\sigma \text{COS}\theta}{r_c} = \frac{\mu_l L_{eff} \text{ m}}{\rho_l K_w A_w} + \frac{128\mu_v \dot{\text{m}} L_{eff}}{\rho_v \pi d_v^4} + \rho_1 g L_{eff} Sin \psi$$

เงื่อนไข 1. (128
$$\mu_v / \rho_v \pi d_v^4) << (\mu_1 / \rho_1 K_w A_w)$$
  
2. ไม่คิดความดันที่ลดลงจากไอ

3.  $\cos\theta = 1$ 

$$q_{max} = m_{MAX} \times h_{fg}$$

$$q_{max} = \left(\frac{\rho_{1}\sigma h_{fg}}{\mu_{1}}\right) \left(\frac{A_{w}K_{w}}{L_{eff}}\right) \left(\frac{2}{\gamma_{c}} - \frac{\rho_{1}gL_{eff}Sin\psi}{\sigma}\right)$$
(8)

และจากสมการที่ (1) M = 
$$\frac{\rho_l \sigma \mathbf{h}_{fg}}{\mu_l}$$
  
 $q_{max} = \frac{\mathbf{A}_{W} \mathbf{h}_{fg} g \rho_l^2}{\mu_l} \left(\frac{\mathbf{l}_{W} \mathbf{K}_{W}}{\mathbf{L}_{eff}}\right)$  (9)

ความเร่งโน้มถ่วง g ความร้อนแฝงของการกลายเป็นไอ  $\mathbf{h}_{\mathrm{fg}}$ = ความหนาแน่นของของเหลว  $\rho_1$ = ความหนืดของของเหลว  $\mu_1$ = 1,

ความสูงของของเหลวภายในวิก =
โดย 
$$l_w = \frac{2\sigma}{r_c \rho_{lg}}$$
 (10)
 $r_c = \text{effective pore radius}$ 
 $\boldsymbol{\sigma} = \text{uss} \beta \beta \beta \beta 2$ 

#### 2.5 ขีดจำกัดการถ่ายเทความร้อน (Limits to heat transport)

ปัจจัยที่กำหนดขีดจำกัดด้านบนของสมรรถนะ การส่งถ่ายความร้อนของฮิตไปป์ มี ดังต่อไปนี้



รูปที่ 2-10 ขีดจำกัดของการถ่ายเทความร้อนของฮีตไปป์ ( Frank ,and Mark, 2001 )

(1). ขีดจำกัดของความเร็วเสียง (Sonic Limitation)

ในท่อฮีตไปป์ ความเร็วไอที่ปลายสุดของส่วนของอิแวพอเรเตอร์อาจมีค่าใกล้กับ ความเร็วเสียง ซึ่งจะทำให้เกิด Compressibility Effect ก่อให้เกิดขีดจำกัดของสมรรถนะการส่งถ่าย ความร้อน( ค่าขีดจำกัดของความเร็วเสียง คำนวณได้จากสมการที่ 11 )

$$Q_{s,\max} = \frac{A_{v}\rho_{V}h_{fg}(r_{v}R_{v}T_{v})^{\frac{1}{2}}}{2(r_{v}+1)}$$
(11)

โดยที่ Vapor Specific heat ratio,  $r_v = 4/3 = 1.33$  (Poly atomic )

Universal gas const,  $R = 8.314 \times 10^{3}$  (J/kg.mol.K)

Gas Molecular weigth, M R<sub>v</sub> = R/M (2). ขีดจำกัดของการชักพา (Entrainment Limitation)

เมื่อไอมีความเร็วสูงขึ้น แรงเฉือนที่ไอกระทำต่อของเหลวใช้งานภายในวิกที่ผิวสัมผัส ระหว่างไอกับผิววิกอาจมีขนาคโตกว่า แรงด้านที่เกิดจากแรงตึงผิวของของไหลใช้งาน ทำให้หยด ของเหลวหลุดลอยไปกับไอไปยังช่วงการควบแน่น ปรากฎการณ์ดังกล่าวนี้จะขัดขวางการทำงาน ของฮีตไปป์และเป็นขีดจำกัดอันหนึ่งของสมรรถนะของฮีตไปป์ซึ่งคำนวณได้จากสมการ ( Chi, 1967)

$$Q_{e,\max} = A_{\nu} h_{fg} \left(\frac{\sigma \rho_{\nu}}{2r_{n,s}}\right)$$
(12)  
โดยที่  $r_{n,s} = \frac{1}{2N} - \frac{d}{2}$ 

#### (3). ขีดจำกัดของวิก (Wicking Limitation)

ถ้าการสูญเสียความคันสูงสุดที่วิกดูดขึ้นได้โดยแรงคาพิลารี่ มีขนาดเล็กกว่าการสูญเสีย ความคันรวมที่เกิดจากการไหลเวียนของของไหลใช้งานเมื่อไร ของไหลใช้งานจะไม่สามารถไหล กลับถึงช่วงการระเหยได้ ผลก็คือ เกิดการแห้งตัว (Dry out) ของวิก และฮีตไปป์จะหยุดทำงาน โดย ที่คาดการสูญเสียความคันสามารถหาได้จากความสัมพันธ์ที่แสดงในรูปที่ 2-11 ซึ่งหามาจากสมการ ของ Poiseuille's

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย



## รูปที่ 2-11 ค่าของการสูญเสียความดันของวิกแบบต่างๆ ( Frank ,and Mark, 2001 )

จาก Capillary limit on heat transfer rate,  $Q_{c,\max}$ 

$$Q_{c,\max} = \frac{(QL)_{c,\max}}{\frac{1}{2}L_c + L_a + \frac{1}{2}L_a}$$
(13)  
$$(QL)_{c,\max} = \frac{P_{pm}}{F_l + F_v}$$
(14)

โดยที่

unit Maximum effective pumping,  $(\Delta P_e) \max = P_{em} - \Delta P_e - \rho_l g L_l \sin \psi$  (15)

Wick croos-section area, 
$$A_w = \frac{\pi (d_i^2 - d_v^2)}{4}$$
 (16)

Wick crimping factor, 
$$S = 1.05$$
  
Wick porosity  $\varepsilon = 1 - \frac{\pi SNd}{4}$  (17)

Wick permeability, 
$$K = \frac{d^2 \varepsilon^3}{122(1-\varepsilon)^2}$$
 (18)

Liquid Friction coefficient,  $F_l = \frac{\mu_l}{KA_w \rho_l h_{fg}}$  (19)

**H1** Friction coefficient for vapor flow,  $F_v$ 

Hydroulic radius for vapor flow,  $r_{h,v} = d_v/2$ 

Vapor core cross section area, 
$$A_{\nu} = \frac{\pi}{4} d_{\nu}^2$$
 (20)

$$\begin{aligned} \text{in} \qquad & f_v R_{ev} = 16 \\ F_v = \frac{(f_v R_{ev})\mu_v}{2A_v r_{h,v}^2 \times \rho_v \times h_{fg}} \end{aligned} \tag{21}$$

จากสมการที่ 14 – 21 สามารถนำมาหาค่าขีดจำกัดของความร้อนในขีดจำกัดของวิกได้โดย นำค่าต่างๆ ไปแทนในสมการที่ 13

#### (4). ขีดจำกัดของการเดือด (Boiling Limitation)

เป็นการถ่ายเทความร้อนครั้งแรกในช่วงของการระเหยเมื่อของไหลได้รับความร้อนจนเกิด การอิ่มตัวและเดือดจนกลายเป็นไอไปในช่วงของการกลั่นตัวโดยการเดือดของของไหลใช้งานนี้จะ ทำให้เกิดขีดจำกัดของการเดือดขีดจกัดการเดือดอาจจะกำนวนได้จากสมการ ( Chi, 1967 )

$$u = \frac{2\pi L_e k_e T_v}{h_{fg} \rho_v \ln(\frac{r_i}{r_v})} \times (\frac{2\sigma}{r_n})$$

$$k \left[ (k + k_e) - (1 - s)(k - k_e) \right]$$
(22)

$$k_{e} = \frac{k_{l}[(k_{l} + k_{w}) - (1 - \varepsilon)(k_{l} - k_{w})]}{(k_{l} + k_{w}) + (1 - \varepsilon)(k_{l} - k_{w})}$$
(23)

Boiling nucleation radius,  $r_n = 2.54 \text{ x} 10^{-7} \text{ m}$ 

Critical pressure =  $\frac{2\sigma}{r_n}$ 

โดยที่ในสมการที่ 22 เป็นสมการที่หาขีดจำกัดทางความร้อนของขีดจำกัดของการเดือด ข้อพิจารณาเกี่ยวกับ Boiling limitation

อย่างไรก็ตามการทำนายข้อจำกัดเนื่องจากการเดือดอย่างถูกต้องเชื่อถือได้เป็นสิ่งที่กระทำ ได้ยาก เนื่องจากโดยทั่วไปเราไม่รู้ขนาดของ Nucleation site สมการที่อาจจะใช้เป็นแนวทางคือ( Kreith, 2001)

$$\mathbf{p}_{i} \cdot \mathbf{p}_{1} = \frac{2\sigma}{r_{p}} \tag{10.53}$$

$$\frac{q}{A} = \frac{k(T_w - T_{hp})}{t}$$
(10.54)

A คือ Heat input area

T<sub>hp</sub> คือ อุณหภูมิภายในฮิตไปป์

 $T_{_{\rm w}}\,\vec{\tilde{n}}$ อ Temperature of the inside wall

t คือ Thickness of first layer of wick

อีกสาเหตุหนึ่งที่ทำให้การคำนวณหาขีดจำกัดการเดือดได้ยากเนื่องจากระดับของ superheat ของ ของเหลวด้าน Evaporator ในติดกับผนังท่อเป็นสิ่งที่ทำนายยาก(Tien ,1985) การทำนายการเกิดการ เดือดจึงทำได้ยาก อย่างไรก็ตาม มีความเป็นไปได้ว่า ที่ระดับ superheat ต่ำ การเดือดจะช่วยเสริม การถ่ายเทความร้อนด้าน Evaporator

จากรูปที่ 2-10 เราจะต้องเลือกจุดใช้งาน ตามเงื่อนไขของการใช้งาน ให้อยู่ด้านล่างกลุ่ม ของเส้นขีดจำกัดเหล่านี้ 1-2-3-4-5 รูปร่างที่แท้จริงของเส้นขีดจำกัดจะเปลี่ยนแปลงได้ตามชนิดของ ไหลใช้งาน วัสดุของวิก และรูปร่างของฮีตไปป์และ อุณหภูมิที่ใช้ในการออกแบบ ในการเลือกจุดที่ ใช้งานนั้นทำการคำนวณก่าขีดจำกัดต่างๆ โดยในการออกแบบจะต้องให้ก่าอัตราการถ่ายเทความ ร้อนที่ออกแบบ ไม่ให้เกินก่าขีดจำกัดต่างๆ ในรูปที่ 2-10 เมื่อออกแบบแล้วก่าที่ได้ไม่อยู่ในขีดจำกัด จะต้องพยายามปรับเปลี่ยนก่าในการออกแบบเพื่อให้อยู่ในขีดจำกัดต่างๆ ไม่ว่าจะเป็น การเปลี่ยน ของไหลใช้งาน การเปลี่ยนชนิดของวิก หรือ การเปลี่ยนขนาดและความยาวของฮีตไปป์ ในการ ปรับก่าที่ทำการออกแบบให้อยู่ในขีดจำกัดนั้น จำเป็นต้องกำนึงถึงยาก ง่าย ในการปรับเปลี่ยนด้วย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

#### 2.6 ความต้านทานรวมของท่อความร้อน ( Overall Thermal Resistance )

เมื่อท่อความร้อนทำงานอยู่ภายใต้ขีดจำกัดการถ่ายเทความร้อนต่างๆ ที่ได้กล่าวมาแล้วนั้น ค่าความร้อนที่ถ่ายเทได้จะมีความสัมพันธ์กับความต้านทานรวมของวงจรสมมูลทางความร้อน(Z) และผลต่างระหว่างอุณหภูมิเฉลี่ยภายนอกของส่วนทำระเหย และส่วนควบแน่น ซึ่งมีความสัมพันธ์ ดังนี้คือ

 $Q = \Delta T / Z$  (24)

วงจรสมมูลทางความร้อนสามารถเขียนได้ดังรูปที่ 2-12



#### รูปที่ 2-12 แสดงวงจรสมมูลทางความร้อนของท่อความร้อน

- Z<sub>1</sub> และ Z<sub>9</sub> คือ ความต้านทานความร้อนระหว่างแหล่งความร้อนและผิวนอกของส่วนระเหย
   และส่วนควบแน่น ตามลำดับ
- Z<sub>2</sub> และ Z<sub>8</sub> คือ ความด้านทานความร้อนที่เกิดขึ้นเนื่องจากความหนาของท่อบรรจุในส่วนทำ
   ระเหย และ ส่วนควบแน่น ตามลำดับ
- Z<sub>3</sub> และ Z<sub>7</sub> คือ ความต้านทานทางความร้อนที่เกิดจากความหนาของวัสดุพรุนในส่วนทำ ระเหย และ ส่วนควบแน่น โดยพิจารณาการนำความร้อนเพียงอย่างเดียวดังนั้น ความต้านทานความร้อนในส่วนนี้จึงเป็นค่าการนำความร้อนเทียบเท่า ซึ่งเกิดขึ้น ระหว่างผิววัสดุพรุนกับค่าการนำความร้อนของสารทำงานที่อุณหภูมิทำงาน ค่า การนำความร้อนเทียบเท่านี้จะขึ้นอยู่กับลักษณะ โครงสร้างของวัสดุพรุน ซึ่ง ลักษณะของวัสดุพรุนนั้นสามารถดูได้จากตารางที่ 2-6..
- Z4และ Z6 คือ ความด้านทานทางความร้อนที่เกิดจากผิวสัมผัสของสารทำงานในสถานะที่ เป็นไอ และของเหลวในส่วนทำระเหย และ ส่วนควบแน่น ตามลำคับ ในการที่จะ รักษาอัตราการระเหยและการควบแน่นให้เกิดขึ้น จำเป็นจะต้องมีผลต่างของ

อุณหภูมิระหว่างของเหลว และไอในบริเวณที่ผิวสัมผัส โดยทั่วไปแล้วค่าทั้งสองนี้ มีค่าน้อยมาก

- Z₅ คือ ความต้านทานความร้อนของไอของสารทำงานที่ไหลจากส่วนทำระเหยไปยัง ส่วนควบแน่น โคยทั่วไปแล้วค่านี้มีค่าน้อยมาก
- Z<sub>10</sub>
   คือ ความต้านทานความร้อนของท่อบรรจุและวัสดุพรุนในแนวแกน ซึ่งเป็นความ ด้านทานระหว่างผนังท่อ และ วัสดุพรุนในทิศทางตามแนวแกนของท่อความร้อน ในทางปฏิบัติโดยทั่วไปแล้ว ค่าการนำความร้อนในแนวแกน (Z<sub>10</sub>) ของท่อบรรจุ และวัสดุพรุน จะไม่นำมาคิดเพราะถือว่าน้อยมากเมื่อเปรียบเทียบกับค่าการนำ ความร้อนในส่วนอื่นๆ และค่าความต้านทานความร้อน Z<sub>4</sub>, Z<sub>5</sub>, Z<sub>6</sub> ก็มีค่าน้อยมาก เช่นกันจนสามารถตัดทิ้งไม่นำมาคิดได้

สำหรับท่อความร้อนโดยทั่วไป ค่าความด้านทานความร้อนต่างๆ ควรมีความสัมพันธ์สอด คล้องกับสมการ 2.

 $Z_{10}/(Z_2 + Z_3 + Z_7 + Z_8) > 20$  (25).

ถ้าความต้านทานความร้อน ของท่อความร้อนเป็นไปตามสมการ 24. แล้วการคำนวณหาค่า ความต้านทานรวมของวงจรสมมูลทางความร้อน สามารถทำได้ดังนี้

 $Z = \Sigma(Z_n)$ 

โดย Z<sub>10</sub>สามารถตัดทิ้งได้ และกำหนดให้ Z<sub>4</sub>, Z<sub>5</sub> และ Z<sub>6</sub>มีค่าเป็นสูนย์ แต่ถ้าความด้านทาน รวมของท่อความร้อนไม่เป็นไปตามสมการ 25. แล้วท่อความร้อนนั้นจะถือว่าทำงานอยู่ภายใด้เงื่อน ไขที่ไม่เหมาะสมและจะมีสมรรถนะต่ำ

### ตารางที่ 2-6 ค่า Effective Thermal Conductivity for Liquid-Saturated Wick

| Wick Structures                                             | k <sub>eff</sub>                                                                                                                                               |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Wick and liquid in series<br>Wick and liquid in<br>parallel | $\frac{k_l k_w}{\epsilon k_w + k_l (1 - \epsilon)}$ $\epsilon k_l + k_w (1 - \epsilon)$                                                                        |  |  |
| Wrapped screen                                              | $\frac{k_l[(k_l + k_{\omega}) - (1 - \epsilon)(k_l - k_{\omega})]}{(k_l + k_{\omega})(1 - \epsilon)(k_l - k_{\omega})}$                                        |  |  |
| Packed spheres                                              | $\frac{k_{l}[(2k_{l}+k_{\omega})-2(1-\epsilon)(k_{l}-k_{\omega})]}{(2k_{l}+k_{\omega})(1-\epsilon)(k_{l}-k_{\omega})}$                                         |  |  |
| Rectangular grooves                                         | $\frac{\omega_{j}k_{i}k_{\omega}\delta) + \omega k_{i}(0.185\omega_{j}k_{\omega} + \delta k_{i})}{(\omega + \omega_{j})(0.185\omega_{j}k_{i} + \delta k_{j})}$ |  |  |
|                                                             |                                                                                                                                                                |  |  |



| Location                                   | Equation for<br>Circular Cylinder                                                        | Equation for<br>Plane Section                                             |  |
|--------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Source – Evaporator<br>External Surface    | $\mathbf{z}_{1} = \frac{1}{n_{e} S_{e}}$                                                 |                                                                           |  |
| Evaporator Wall<br>(transverse resistance) | $\mathbf{P_1} = \frac{\log_e (r_o/r_i)}{2\pi i_e \lambda_x}$                             | $\mathbf{z_1} = \frac{t_x}{S_x \lambda_x}$                                |  |
| Evaporator Wick<br>(transverse resistance) | $\mathbf{z_3} = \frac{\log_e (r_i/r_v)}{2\pi l_e \lambda_w}$                             | $\mathbf{z}_{3} = \frac{T_{W}}{S_{e}\lambda_{W}}$                         |  |
| Evaporator<br>Liquid – Vapour interface    | $\mathbf{z}_{\mathbf{A}} = \frac{\sqrt{RT_{eff}^{3}(2\pi)}}{L^{2} l_{e} r_{i} \rho_{v}}$ | $\mathbf{z}_{a} = \frac{\sqrt{2\pi R T_{eff}^{3}}}{L^{2} S_{e} \rho_{v}}$ |  |
| Vapour Duct                                | $\mathbf{z}_{\mathbf{s}} = \frac{T_{eff} \Delta p_{v}}{L Q \rho_{v}}$                    |                                                                           |  |
| Condenser<br>Vapour – Liquid Interface     | $\mathbf{a_6} = \frac{\sqrt{RT_{eff}^3}/(2\pi)}{L^2 l_c r_i \rho_v}$                     | $\mathbf{z}_{g} = \frac{\sqrt{2\pi R T_{eff}^{3}}}{L^{2} S_{c} \rho_{v}}$ |  |
| Condenser Wick<br>(transverse resistance)  | $\mathbf{z}_{\mathbf{q}} = \frac{\log_{e} (r_{i}/r_{v})}{2\pi l_{c} \lambda_{w}}$        | $\mathbf{z}_{\gamma} = \frac{t_{w}}{S_{c}\lambda_{w}}$                    |  |
| Condenser Wall<br>(transverse resistance)  | $\boldsymbol{z_{g}} = \frac{\log_{e} (r_{c}/r_{i})}{2\pi l_{c} \lambda_{x}}$             | $z_{x} = \frac{l_{x}}{S_{c}\lambda_{x}}$                                  |  |
| Condenser External<br>Surface – Sink       | z, =                                                                                     | $z_{o} = \frac{1}{h_{c}S_{c}}$                                            |  |
| Wall and Wick<br>(axial resistance)        | - in =                                                                                   | $z_{10} = \frac{l_e + l_a + l_c}{A_X \lambda_X + A_W \lambda_W}$          |  |

## ฬาลงกรณมหาวทยาลย

รูปที่ 2-13 ค่าสมมูลทางความร้อนของท่อความร้อน

## 2.7..ขั้นตอนในการออกแบบฮิตไปป์ ( Heat Pipe Design )

้ขั้นตอนในการออกแบบฮีตไปป์ถูกแสดงเป็นแผนภูมิการไหลดังรูปที่ 2-14



รูปที่2-14 แผนภูมิการใหลของการออกแบบฮีตไปป์

#### 2.8 เอกสารและงานวิจัยที่เกี่ยวข้อง

ฮิตไปป์ได้รับความสนใจและมีการศึกษาวิจัยเป็นจำนวนมาก ในที่นี่จึงขอสรุปมาผนวกกันดัง ได้สรุปใจความสำคัญดังนี้

T.Ogushi, and Y. Sakurai (1982) ได้ทำการศึกษาเกี่ยวกับประสิทธิภาพของวิกแบบ composite ซึ่งประกอบด้วย circumferential grooves และ Stainless Metal felt โดยที่อัตราการถ่ายเทความร้อน สูงสุดจะขึ้นอยู่กับลักษณะของ grooves ความพรุนของแผ่นกรอง ความยาวของส่วนของช่วงของการ ระเหย และความเอียงของฮีตไปปี ในการทดลองหารอัตราการการถ่ายเทความร้อนสูงสุดของวิกแบบ composite นี้จะใช้ Leverett effect โดยที่สามารถทำนายค่าอัตราการถ่ายเทความร้อนสูงสุดได้ดีเทียบได้ จากข้อมูลของการทดลอง

G.F. Smirnov, and B.A. afonasier (1982) ได้ทำการศึกษาการกลายเป็นไอของน้ำ เอ๊ททานอล สารทำความเย็น 113 ที่วิกแบบ screen ของฮีตไปป์ซึ่งนำไปสู่การหาค่า Correlation on heat transfer และ Critical heat fluxes โดยทำการทดสอบที่ ความดันอิ่มตัว อัตราการนำความร้อน ขนาดของเส้นผ่าน ศูนย์กลาง และ โครงสร้างที่ดี

K.A.R. Ismail, and N. Murcia (1982) ได้ทำการศึกษา2ส่วน ส่วนแรกเป็นการหาผลเฉลยของ การรวมกันของการไหลของของไหลกับไอของของไหลในฮีตไปป์ที่มีวิกที่มีความพรุนโดยอยู่ในรูป Reynolds numbers โดยใช้วิธี Seperation of variable กับ finite difference ส่วนที่ 2 เป็นการ optimization วิกของฮีตไปป์ สำหรับค่า maximum heat flux และผลลัพธ์ที่ได้นี้จะแสดงระหว่างค่าทาง ทฤษฎีและการทดลอง เพื่อนำไปปรับปรุงประสิทธิภาพฮีตไปป์ต่อไป

A.Acton (1982) ได้ทำการศึกษาสมการพื้นฐานที่ได้มาจากข้อมูลการทดลองเกี่ยวกับ effective thermal conductivity ค่าของ minimum capillary radius และค่า fluid permeabilityของวิกแบบ metalfelt ที่ทำมาจาก ทองแดง นิเกิล และ สแตนเลส โดยค่า effective thermal conductivity ขึ้นอยู่กับค่าความ พรุนของวัสดุ ε จาก 0.2 ถึง 0.95 สมการสำหรับค่า minimum capillary radius ขึ้นอยู่กับช่วงของเส้น ผ่านศูนย์กลางของไฟเบอร์จาก 8 μm และ 46 μm และช่วงความพรุน 0.6 ถึง 0.9 โดยที่ก่า K หามาจาก Blake-Kozery Equation หาในช่วงเส้นผ่านศูนย์กลางของไฟเบอร์ 8 μm และ 55 μm และในช่วงความ พรุน 0.6 ถึง 0.95 และขึ้นอยู่กับ ค่าความเร็วของการไหลในรูปของ low Reynolds numbers.

K.T. Feldman, Jr. and D. D. Kenney (1981) ได้ทำการศึกษาการเข้ากันได้ของโลหะคาร์บอนที่ เบาและน้ำในการประยุกต์การใช้ฮิตไปป์และได้ศึกษาเป้าหมายในการทดลองเพื่อหาความเข้ากันได้ของ mild carbon steel และ น้ำ โดยการใช้ฮิตไปป์ 1015 CD steel และ 304 stainless steel มาทดลองในช่วง ของอุณหภูมิ 150 °C ถึง 300 °C เป็นเวลา 6 เดือนพบว่าผลจากการทดลองที่ได้ค่า thermal resistance ของ mild steel มีค่าน้อยกว่า stainless steel แต่มีค่าของ recovery ที่มากกว่าดังพอสรุปได้ว่า mild steel และ น้ำที่มารวมกันในฮิตไปป์ในช่วงอุณหภูมิ150 °C ถึง 300 °Cเป็นที่น่าพอใจ

D.A. Littwin, and J. McCurley (1982) ได้ทำการศึกษาการใช้ฮิตไปป์เป็นอุปกรณ์ heat recovery ที่ได้รับการยอมรับโดยที่ฮิตไปป์เป็นอุปกรณ์ในการถ่ายเทความร้อนที่มีประสิทธิภาพสูง โดย ที่กุณลักษณะนี้คือหลักการของ heat recovery ในอุดมคติ เทคโนโลยีฮิตไปป์นี้มีใช้กันมากในปัจจุบัน ได้นำฮิตไปป์มาใช้เป็นอุปกรณ์ heat recovery ในหม้อไอน้ำในส่วนของ ท่อน้ำ ถัง และ ท่อไฟ ใน หม้อ ไอน้ำ ในการประยุกต์ฮิตไปป์มาใช้ในหม้อไอน้ำนี้จะมีกลีบระบายความร้อนในส่วนของช่วงของการ ระเหยโดยต้องหมั่นทำกวามสะอาดในส่วนนี้บ่อยๆ

John K. McFarland ได้ทำการศึกษาประสิทธิภาพในการลดความชื้นโดยการใช้ฮิตไปป์และ เพื่อศึกษาผลกระทบของการใช้ฮิตไปป์ในการลดความชื้นของระบบ HVAC และวิเคราะห์ทาง เศรษฐศาสตร์ในการใช้งานการลดความชื้นของ 3 ระบบคือ 1. ระบบฮิตไปป์ 2.ระบบ conventional 3. ระบบ damped ที่อุณหภูมิ 72°F(22°C) ความชื้น 50% ทำการทดลองเป็นเวลา1,000 ชั่วโมง พบว่าจาก การวิเคราะห์ทางเศรษฐศาสตร์พบว่าระบบฮิตไปป์มีระยะการคุ้มทุน 4 ปี ระบบ conventional มีระยะ การคุ้มทุน 5 ปีส่วนระบบ damped มีระยะการคุ้มทุนมากกว่า 5 ปีดังนั้นควรใช้ระบบฮิตไปป์มาใช้ใน ระบบ HVAC

Charles C., and Robert JR. (1981) ได้ทำการศึกษาการใหล่ข้อนกลับของของไหลใช้งานจาก ช่วงของการกลั่นตัวมายังช่วงของการระเหยที่มีขีดจำกัดขึ้นอยู่กับประสิทธิภาพของฮีตไปป์จาก บทความนี้มีวิธีการไหล่ข้อนกลับอยู่มากมายหลายแบบ

K.C Toh, and S.K. Chan ได้ทำการศึกษาการนำความร้อนที่สูญเสียไปจากระบบปรับอากาศมา ใช้ใหม่โดยใช้เทอร์โทไซฟอนโดยนำมาผลิตน้ำร้อนมาเก็บไว้ในถังโดยทำการเปรียบเทียบการทดลอง จริงกลับแบบจำลองทางคณิตศาสตร์

S. Maezawa, Y. Suzuki, and A. Tsuchida (1982) ได้ทำการศึกษาฮีตไปป์ลักษณะเป็นแผ่นโดย ที่ส่วนของการระเหยอยู่ตรงปลายของแผ่น ส่วนช่วงของการควบแน่นอยู่ตรงกึ่งกลางของแผ่นโดยให้ แผ่นฮีทไปป์นี้หมุนด้วยความเร็วรอบต่างๆและใช้ของไหลใช้งานคือ น้ำ และ เอ็ททิล แอลกอฮอล์

W.D Munzel, and H. Krahling (1982) ได้ทำการศึกษาฮีตไปป์ที่มีน้ำเป็นของไหลใช้งาน โดยมี ท่อเป็นโลหะ สแตนเลส ที่อุณหภูมิ 4 ระดับคือ 120, 160, 220 และ 320 <sup>o</sup>C โดยการทดลองในเวลา 20,000 ชั่วโมง เพื่อทดลองหาก่า maximum temperature different ที่โลหะสแตนเลสเบอร์ต่างๆ กอบชัย แสงสว่าง( 2002) ได้ทำการศึกษาฮิตไปป์เพื่อการประหยัดพลังงานในเครื่องปรับอากาศ โดยใช้ฮิทไปป์นี้ในการควบคุมความชื้นและอุณหภูมิในห้องปรับอากาศ แทนการใช้ฮิตเตอร์ไฟฟ้าหรือ สารดูดความชื้น โดยทำการออกแบบฮิตไปป์ที่ใช้กับเครื่องปรับอากาศชนิดแยกส่วนขนาด 14 kW และฮิตไปป์ที่ได้ทำการออกแบบนั้นมีลักษณะคล้ายคอยล์เย็นของเครื่องปรับอากาศมีครีบเป็น อะลูมิเนียม ใช้ของไหลใช้งานเป็น R-22 โดยฮิตไปป์มี 4 แบบด้วยกันคือ 1 แถว, 2 แถว, 3 แถวและ 4 แถว พบว่าชนิด 4 แถวให้ผลกาทดลองที่ดีที่สุดคือ สามารถถ่ายเทความร้อนได้ 5.6 kW คิดเป็นค่า Heat flux เท่ากับ 721,459 W/m<sup>2</sup>

ปรีชา กอบเกื้อชัยพงศ์(1990) ได้ทำการศึกษาฮีตไปป์แบบไร้วิกที่เป็นแบบ close loop โดยได้ นำหม้อไอน้ำรถยนต์มาคัดแปลง แล้วนำไปประยุกต์ใช้งานกับเตาเผาอุตสาหกรรมโดยเอากวามร้อน เหลือทิ้งกลับมาใช้ใหม่ได้โดยที่ของไหลใช้งานคือน้ำแล้วใช้ท่อทองแดง

วันชัย โกมถภมร(1987) ได้ทำการศึกษาและออกแบบฮีตไปป์แบบไร้วิกที่มีทิศการไหลของ ของไหลใช้งานไปในทางเดียวกันกล่าวคือการไหลของไอและของเหลวควบแน่นเป็นวงจรในทิศทาง เดียวในการอกแบบฮีตไปป์แบบไร้วิกด้วยวิธีนี้ก็เพื่อเพิ่มประสิทธิภาพในการทำงานของฮีทไปป์แบบไร้ วิก

ชุติมา จารุศิริพงศ์(1990) ได้ทำการศึกษาฮีตไปป์ที่สร้างขึ้นโดยบริษัทยูนิแฟปอีควิปเมนต์ จำกัดโดยใช้ท่อทองแดงและของไหลใช้งานคือ ฟรีออน และนำค่าที่ได้มาเขียนโปรแกรมคอมพิวเตอร์ เพื่อออกแบบเครื่องแลกเปลี่ยนความร้อน

ช มหิธร เพีชญไพศิษฎ์ และ พิสุทธิ์ กลิ่นขจร (1994) ได้ทำการศึกษาเกี่ยวกับการ ออกแบบสร้างแท่นทดสอบฮีตไปป์ โดยได้ทำการสร้างแม่นทดสอบและติดตั้งอุปกรณ์การวัดต่างๆ โดย ได้ทำการทดสอบฮีตไปป์ ที่ทำมาจากท่อทองแดง มีความยาว 1.5 m ใช้ของไหลใช้งานคือ R-11 และฮีต ไปป์ใช้วิกเป็นตาข่ายความละเอียดขนาด 200 โดยได้ทดสอบที่มุมทดสอบ 0, 90 และ –90 องศาโดยมี ค่า Heat Flux เฉลี่ยเท่ากับ 319.25 kW/m<sup>2</sup> ที่มุมทดสอบ 0 องศา

# จุฬาลงกรณมหาวทยาลย

## บทที่ 3

#### การออกแบบและการสร้าง

#### 3.1 การออกแบบฮิตไปป์

ในการออกแบบฮิตไปป์สำหรับการวิจัยนี้เป็นการออกแบบโดยกำหนดให้เหมาะสมในการใช้ งานกับคอยด์เย็นของเครื่องปรับอากาศแบบแยกส่วนโดยมีความยาวของฮิตไปป์เท่ากับ 1.25 เมตร และ กำหนดให้ ในส่วนของฮิตไปป์เอง ประกอบด้วย ส่วนของส่วนอีแวพอเรเตอร์(Evaporator section) ที่มี ความยาว 0.5 เมตร,ส่วนคอนเคนเซอร์(Condenser section) ที่มีความยาว 0.5 เมตร และ ส่วนที่ไม่มีการ ถ่ายเทความร้อน (Adiabatic section)ที่มีความยาว 0.25 เมตร รวมความยาวทั้งหมด 1.25 เมตร

ในการจะออกแบบฮิตไปป์นี้ต้องคำนึงถึงปัจจัยหลักๆดังได้กล่าวไว้ในบทที่ 2 ในการศึกษาและวิจัย นี้จะทำการสร้างฮิตไปป์ที่สามารถสร้างได้ง่ายและมีประสิทธิภาพที่พอใช้ได้สามารถนำไปประยุกต์ใช้ ในโอกาสต่อไปได้ โดยได้ทำการเลือกท่อทองแดงโดยมีเหตุผลที่ว่าท่อทองแดงมีการนำความร้อนที่ดี หาซื้อได้ง่าย ทำการดัดและตัดต่อได้ง่าย ที่สำคัญ ไม่ทำปฏิกริยากับของไหลใช้งาน ของไหลใช้งานเป็น R-12 โดยมีเหตุผลที่ว่าเมื่อนำของไหลใช้งานบรรจุในท่อทองแดงแล้วทำให้ภายในท่อทองแดงมีกวาม ดันที่ไม่สูงมากประมาณ 70 psi และ วิกเป็นแบบ Mesh ที่ทำมาจาก Stainless Steel โดยมีเหตุผลที่ว่า สามารถซื้อได้ง่ายมีประสิทธิภาพดี และไม่ทำปฏิกริยากับของไหลใช้งาน แต่มีข้อเสียตรงราคาแพงและ เวลาสร้างต้องให้ตัวตาข่าย สัมผัสกับผิวท่อทองแดงมากที่สุด ซึ่งรายละเอียดต่างๆจะแสดงในรูป



#### 3.2 การสร้างฮิตไปป์

#### ฮิตไปป์ที่ออกแบบประกอบด้วย

- 1. ท่อทองแดง ขนาด 3/4 นิ้ว ความยาว 1.25 เมตร
- คาข่าย เบอร์ 100 หรือ ในเบอร์ที่จำหน่ายเบอร์ 42
- ( มี WIRE dia 0.101 mm และ มี OPENING 0.153 mm )
   ตาข่าย เบอร์ 120 หรือ ในเบอร์ที่จำหน่ายเบอร์ 44
- ( มี WIRE dia 0.081 mm และ มี OPENING 0.131 mm )
- 3. สารทำความเย็น R-12
- 4. ฝาปิคท่อทองแคง, วาลล์ลูกศร, ข้อลคท่อทองแคง
- 5. ฉนวนกันความเย็น ของ AEROFLEX ของท่อขนาค 3/4 นิ้ว

จากนั้นได้ทำการประกอบฮีตไปป์โดยทำการม้วนMesh ประมาณ 3 รอบให้มีเส้นผ่าน สูนย์กลางเท่ากับเส้นผ่านสูนย์กลางภายในของท่อฮีตไปป์โดยให้ Mesh ที่ทำการม้วนเรียบร้อยแล้วมี กวามยาวเท่ากับท่อฮีตไปป์ จากนั้นได้ทำการนำ ฝาปิดท่อทองแดง ข้อลดทองแดง และวาลล์ลูกสร มา ประกอบ จากนั้นทำการเชื่อมท่อทองแดงฮีตไปป์กับอุปกรณ์เหล่านั้นโดยให้ทำส่วนในของวาลล์ลูกสร ก่อนทำการเชื่อม เมื่อเชื่อมทั้งหมดแล้วทิ้งให้เย็นลงและทำการประกอบส่วนในของวาลล์ลูกสร จากนั้น

จึงทำการประกอบที่ปีควาลล์ลูกศรและทำการชั่งน้ำหนักโดยใช้ตราชั่งคิจิตอลแล้วบันทึกค่าน้ำหนัก เอาไว้ จากนั้นนำท่อฮิตไปป์ที่ได้มาเข้าสู่กระบวนการทำสูญญากาศเป็นเวลาประมาณ 30 นาที ทิ้งท่อฮิต ไปป์ไว้ประมาณ 3 ชั่วโมงหรือมากกว่านั้นและสังเกตระดับของความคันภายในท่อว่ามีความคันเพิ่มขึ้น หรือไม่ เมื่อพบว่าความคันไม่เปลี่ยนจึงทำการเติมของไหลใช้งานโดยนำน้ำแข็งมาหุ้มท่อฮิตไปป์ไว้ให้ มีความเย็นโดยทั่วและเปิดวาลล์ที่ถังน้ำยา R-12 ให้ของไหลใช้งานผ่านเข้าไปยังสู่ท่อฮิตไปป์ไว้ให้ สายเติมน้ำยาออกแล้วทำการปิดฝาวาลล์ลูกศรแล้วนำไปชั่งที่ตราชั่ง โดยให้มีน้ำหนักเท่ากับน้ำหนักของ ท่อก่อนทำการทำสูญญากาศรวมกับน้ำหนักของน้ำยาที่ได้กำนวณไว้ ถ้าได้น้ำหนักที่ต้องการแล้วก็ได้ ท่อฮิตไปป์ที่พร้อมจะทำการทดสอบ



รูปที่ 3-2 แสดงแบบของฮีตไปป์ที่ทำการประกอบเสร็จแล้ว

เมื่อทำการประกอบและทำการเติมน้ำยาเสร็จเรียบร้อยแล้วจะได้ฮีตไปป์แสคงในรูป 3-2

<u>การคำนวณเกี่ยวกับปริมาณของใหลใช้งานคือ R-12 ที่เติมลงไปคังต่อไปนี้</u>

ของใหลใช้งาน R-12 (  $CCl_2F_2$  ) หรือ Dichlorodifluoromethane ที่อุณหภูมิ 25  $^{\circ}C$ ใน สภาวะอิ่มตัว มีคุณสมบัติดังนี้ ค่า  $\rho_1$  มีค่าเท่ากับ 1320 kg/m<sup>3</sup>

ในทางปฏิบัติของงานด้านปรับอากาศการเติมของไหลใช้งานต้องเติมให้มีปริมาตรเท่ากับ 80 % ของส่วนอีแวพอเรเตอร์ โดยที่ฮีตไปป์ที่จะใช้ทำการทดสอบนี้มีส่วนของ อีแวพอเรเตอร์ เท่ากับ 50 เซนติเมตร ท่อฮีตไปป์ขนาด 3/4นิ้ว มีเส้นผ่านศูนย์กลางภายในท่อ d<sub>v</sub> เท่ากับ 1.675 x 10<sup>-2</sup> ตารางเมตร ดังนั้นที่ปริมาตร 80% กิดเป็นความยาว 40 เซนติเมตร

 $\hat{v} = \pi r^{2} x h$   $= \pi d^{2} x h/4$   $= \pi x (1.675 \ 10^{-2}) 2 \ 4 x \ 10^{-2}/4$   $= 8.814 \ x \ 10^{-5} \ m^{3}$   $\hat{v} \hat{n} \qquad \rho \qquad = M/V$   $M \qquad = \rho \ x \ V$   $= 1320 \ x \ 8.814 \ x \ 10^{-5}$ 

น้ำหนักของฮีตไปป์ก่<mark>อนเติมของไหลใช้งานเท่ากับ627.5 g</mark> ดังนั้นหลังเติมของไหลใช้งานจะมี น้ำหนัก เท่ากับ 627.5+ 116.3 = 744 g



รูปที่ 3-3 แสดงภาพตราชั่งดิจิตอลที่ใช้ชั่งฮีตไปป์ ยี่ห้อ Sartorius Model BP2100 ( Max. 2100 g, d=0.1 g)



## รูปที่ 3-4 แสดงภาพตาข่าย ที่ใช้สร้างฮีตไปป์

<u>การเติมของไหลใช้งานและการทำสูญญากาศ</u>

เมื่อประกอบชิ้นส่วนต่างๆเรียบร้อยแล้ว ลักษณะภายนอกจะเหมือนฮีตไปป์ทุกอย่าง ขั้นตอน ต่อไปเป็นการทำสูญญากาศภายในท่อและการเติมของไหลใช้งาน



รูปที่ 3-5 แสดงภาพปั้มที่ใช้ทำสูญญากาศ



รูปที่ 3-6 แสดงภาพสายเติมของไหลใช้งาน ยี่ห้อ IMPERIAL Model 496-Cd (Refigerant R-12, R-22, R-502)



## รูปที่ 3-7 แสดงภาพถังที่บรรจุของไหลใช้งาน R-12

# ลถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย



รูปที่ 3-8 แสดงภาพอุปกรณ์ที่ใช้ตัดท่อทองแดงขนาดต่างๆ



รูปที่ 3-9 แสดงภาพอุปกรณ์ที่ใช้วัดขนาดท่อและความหนาต่างๆ ยี่ห้อ KEIBA Resolution 0.01 mm

วิธีที่จะกล่าวในที่นี้เป็นวิธีสำหรับการสร้างฮีตไปป้ชนิดอุณหภูมิใช้งานต่ำ ( Low Temperature Heat Pipe ) ซึ่งมีอยู่ 4 วิธี จากง่ายไปหายากดังนี้

#### ก แบบให้ความร้อนโดยตรงต่อฮิตไปป่

กรรมวิธีนับว่าเป็นวิธีที่ง่ายที่สุด หลังจากประกอบชิ้นส่วนต่างๆ เป็นท่อฮีตไปป์เรียบร้อย แล้ว จะเติมของไหลใช้งานเข้าไปในท่อฮีตไปป์โดยตรงในปริมาณมากเกินพอ จากนั้นไล่อากาศและ กาซไม่ควบแน่นที่ค้างอยู่ในท่อและที่ละลายอยู่ในของเหลว โดยการเอาเปลวไฟไปลนบริเวณค้านหลัง ของฮีตไปป์ ดังรูปที่ 3-10 เมื่อของไหลใช้งานเริ่มเดือดพล่าน ไอของไหลใช้งานที่พุงออกมาก็จะช่วยไล่ อากาศที่อยู่ภายในท่อฮีตไปป์ หลังจากปล่อยให้เดือดเป็นเวลาพอเหมาะและของไหลใช้งานในท่อมี ปริมาณเหลือตามต้องการแล้ว ก็ทำการปิดผนึกปลายท่อด้านบนในขณะที่ของไหลใช้งานยังคงเดือด พล่านอยู่

#### ข แบบให้ความร้อนต่อฮีตไปป์โดยใช้ออยบาธ ( Oil Bath )

กรรมวิธีนี้ต้องลงทุนมากกว่าวิธีที่ 1 เล็กน้อยแต่หลักการดำเนินงานยังคงเหมือนเดิม จะต่างกัน ตรงที่วิธีที่สอง นี้ใช้รักษาอุณหภูมิของน้ำมันร้อนให้คงที่ ( รูปที่ 3-11 ) เพื่อให้เกิดการเดือดอย่าง สม่ำเสมอและสามารถควบคุมปริมาณของใหลใช้งานที่เหลือในท่อโดยการควบคุมระยะเวลาเดือด ดัง นั้นจึงสามารถสร้างฮีตไปป์ที่มีสมรรถนะใกล้เคียงกับที่ออกแบบไว้และในเวลาอันสั้นด้วย ( mass production )



รูปที่ 3-10 วิธีการผลิตฮีตไปป์แบบให้ความร้อนโดยตรง



รูปที่ 3-11 วิธีการผลิตฮีตไปป์แบบใช้ออยบาธ

เนื่องจากกรรมวิธีทั้งสองแบบข้างต้นใช้ไอของของไหลไปไล่อากาศที่อยู่ภายในท่อ จึงมีชื่อ เรียกว่า การสร้างแบบการระเหย

วิธีอีก 2 วิธีที่จะแนะนำต่อไปนี้เป็นวิธีที่สร้างระบบสูญญากาศภายในท่อโดยใช้ปั๊มสูญญากาศ ( Vacuum pump ) ปั๊มสูญญากาศที่ใช้ต้องสามารถสร้างสูญญากาศได้ถึง 10<sup>-4</sup> torr เช่น diffusion pump หรือ sorption pump ที่มี molecular sieve

## ค การใช้ปั้มสูญญากา<mark>ศแบบที่ 1</mark>

นี้

เป็นวิธีที่ใช้ปั๊มสูญญากาศแต่ไม่ยุ่งยากมาก ขั้นตอนการสร้างฮิตไปป์มีไว้คังรูปที่ 3-12 คังต่อไป



รูปที่ 3-12 ขั้นตอนการสร้างฮีตไปป์โดยใช้ปั้มสูญญากาศแบบที่ 1

ค. 1 การไล่กาซออกจากของไหลใช้งานโดยวิธี freezing degassing

บรรจุของไหลใช้งานไว้ในขวดป้อน ( charge bottle ) แล้วปีควาลล์ A, B และ C แช่ขวดป้อน ไว้ในถังกาซในโตรเจนเหลว ถ้าของไหลใช้งานเป็นแอมโมเนีย ( ถ้าเป็นโซเดียมเหลว ให้ปล่อยทิ้งไว้ที่ อุณหภูมิห้อง ) เมื่อของไหลใช้งานแข็งตัวแล้ว นำเอาขวดป้อนออกและปล่อยให้ของไหลใช้งานหลอม ตัวเพื่อไล่ฟองของกาซที่ติดค้างอยู่ในของไหลใช้งานที่แข็งตัว จากนั้นเปิดวาลล์ A และ B เพื่อดูดเอา กาซออก ( ของไหลใช้งานบางส่วนที่ระเหยเป็นไอจะถูกดูดออกมาด้วย ) แล้วปีควาลล์ และทำซ้ำ ประมาณ 2-4 ครั้ง จนแน่ใจว่าของไหลใช้งานไม่มีกาซละลายเหลืออยู่

ค. 2 การทำสูญญากาศภายในท่อและการเติมของไหลใช้งาน

เมื่อได้ของไหลใช้งานจากขั้นตอนก่อนแล้ว ต่อไปเป็นการทำสูญญากาศภายในท่อและการเติม ของไหลใช้งานระบบการผลิตโดยสรุปแสดงไว้ในรูปที่ 3-13



รูปที่ 3-13 ระบบการผลิตฮีตไปป์โดยการใช้ปั๊มสูญญากาศแบบที่ 1

รายละเอียดขั้นตอนการสร้าง

 ดูดอากาศออกโดยปีดวาลล์ B และปีดวาลล์ A และ C ให้ความร้อนกับฮิตไปป์เพื่อให้กาซที่ เกาะอยู่บนเนื้อวัสดุและวิกหลุดออกมา ระยะเวลาที่ใช้ในการดูดอากาศและกาซออกนี้ จะขึ้นตรงกับ อุณหภูมิของฮิตไปป์

 2. กลั้วท่อด้วยของใหลใช้งาน โดยเปิดวาลล์ B และอุ่นขวดป้อนให้ร้อนกว่าจุดเดือดของของ ใหลใช้งานที่ความดันในระบบนั้น ปล่อยให้ไอของของใหลใช้งานใหลเข้าไปในท่อเล็กน้อยเพื่อกลั้ว ภายในท่อ แล้วปีดวาลล์ B เพื่อดูดเอาของใหลใช้งานออก และปิดวาลล์ B ใหม่ ทำซ้ำกันประมาณ 2 ครั้ง

 บรรจุของไหลใช้งาน ปริมาณที่บรรจุสามารถวัดและควบคุมได้โดยวิธีต่างๆ ขึ้นกับสถานะ ของของไหลใช้งานที่อุณหภูมิห้อง ดังต่อไปนี้

3.1 สถานะกาซ (กรณีของ Cryogenic heat pipe fluid) ปริมาณที่บรรจุสามารถวัดได้จากความ ดันภายในท่อที่อุณหภูมิห้องโดยการปิดวาลล์ A เปิดวาลล์ B และ C จนได้ปริมาณที่ต้องการ เมื่อเปิด วาลล์ B และ C ท่อฮิตไปป์กีอยู่นาภาพพร้อมที่จะปิดผนึก

3.2 สถานะของของเหลวหรือของแข็ง ปริมาณที่บรรจุสามารถวัดได้จากผลต่างของปริมาณ ของของไหลใช้งานก่อนและหลังการบรรจุโดยการปิดวาลล์ A เปิดวาลล์ B และ C เมื่อให้ความร้อนกับ ขวดป้อน ในขณะที่ให้ความเย็นท่อฮีตไปป์ เมื่อได้ปริมาณตามที่ต้องการแล้วก็ปิดวาลล์ B และ C ฮีต ไปป์จะอยู่ในสภาพพร้อมที่จะปิดผนึก

ง. การใช้ปั๊มสูญญากาศแบบที่ 2

เป็นวิธีการสร้างฮีตไปป์ที่ซับซ้อนมากกว่าแบบที่ 3 ระบบการผลิตนี้แสดงไว้ในรูปที่ 3-14 ดัง ต่อไปนี้



รูปที่ 3-14 ระบบการผลิตฮีตไปป์โดยใช้ปั้มสูญญากาศแบบที่ 2

- 1. ปีควาลล์ทั้งหมุดที่เปิดสู่ภายนอก ( V5, V9, V14, V15 )
- เดินปั๊มสูญญากาศโดยที่วาลล์ V1, V2 ยังคงปิดอยู่
- หล่อเย็นด้วยปั้มสูญญากาศและกับดักความเย็น (Cold Trap, CT) ด้วยกาซ ในโตรเจนเหลว
- ทิ้งไว้ประมาณ 30 นาทีเปิดวาลล์ V1, V2 ดูดอากาศในระบบออกจนได้ความดัน ประมาณ 0.01 มม.ปรอท เวลาที่ใช้ในการนี้จะขึ้นอยู่ความจุของปั๊ม ความสะอาดของ ระบบและปริมาตรภายในรวมของระบบ
- 5. ปีควาลล์ V4, V5 และ V6 เติมของใหลใช้งานลงไปใน R1
- 6. ค่อยๆ เปิดวาลล์ V5 ให้ของใหลใช้งานลงสู่ภาชนะ DG<sub>1</sub> เมื่อได้ปริมาณมากพอก็ปิด แล้วทำให้แข็งตัว โดยแช่ในกาชในโตรเจน
- ร. เมื่อของไหลใช้งานแข็งตัว เปิดวาลล์ V4 เพื่อดูดเอากาซที่หลุดออกแล้วปิด จากนั้นทำ ให้ของไหลใช้งานหลอมตัวและปล่อยให้ฟองกาซปุดออก แล้วทำให้ของไหลใช้งาน แข็งตัวใหม่
- 8. เปิดวาลล์ V4 เพื่อดูดเอากาซที่หลุดออกจากของใหลใช้งานออก
- 9. ปีควาลล์ V4, V3, V8 และเปิควาลล์ V6, V7 แช่ DG<sub>2</sub> ในถังในโตรเจนเหลว

## 10. หลอมเหลวของไหลใช้งานใน DG, ด้วยลมร้อน แล้วส่งของไหลใช้งานไปยัง DG,

10. หลอมเหล่าของ เหล่าขึ้ง ใน เน DG<sub>1</sub> คายสมรอน แล้วลังของ เหล่าขึ้ง ใน เบอง DG<sub>2</sub> จากนั้นกี้ทำการ ไล่กาซที่ละลายอยู่ในของไหลใช้งานออกในลักษณะเดียวกับ DG<sub>1</sub>

- หลังจากของไหลใช้งานผ่านการไล่อากาศออกแล้ว ปีควาลล์ V4, V6 เพื่อกันการไหล ย้อนกลับของของไหลใช้งาน
- ปีควาลล์ V7, V11 และเปิดวาลล์ V8, V10 จากนั้นก็ใช้ความร้อนไล่ของไหลใช้งานให้ เข้าไปอยู่ในบูเร็ท (Burette, B) แล้วเปิดวาลล์ V10, V8 แล้วเปิดวาลล์ V11 จากนั้นดึง สูญญากาศให้มากขึ้นถึงประมาณ 0.005 มม.ปรอท
- ติดท่อฮีตไปป์เข้ากับระบบ เปิดวาลล์ ∨14 เพื่อดูดเอาอากาศออกพร้อมกับให้ความ
   ร้อนต่อท่อฮีตไปป์ รอจนระดับสูญญากาศกลับคืนที่เดิม
- จุ่มปลายด้านล่างของฮีตไปป์ลงในถังในโตรเจนเหลว ก่อยๆเปิดวาลล์ V10 เพื่อส่งของ ใหลใช้งานไปควบแน่นในท่อฮีตไปป์ เมื่อได้ปริมาณมากพอก็เปิดวาลล์ V10 ใช้ความ ร้อนไล่ของไหลใช้งานที่ยังคงตกก้างอยู่ให้เข้าไปในท่อฮีตไปป์จนหมดแล้วปีดวาลล์
- ทำการ ไล่กาซออกจากของไหลใช้งานในท่อฮีตไปป์โดยวิธี freezing degassing อีกครั้ง
   โดยเปิด-ปิด วาลล์ V14 จากนั้นท่อฮีตไปป์ก็อยู่ในสภาพพร้อมที่จะปิดผนึก

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย ในการศึกษานี้ทำการทดลองฮีตไปป์ด้วยกัน 2 ชุดทดลองโดยที่ฮีตไปป์สองท่อนี้ มีความยาว เท่ากันคือ 1.25 เมตร ใช้ท่อชนิดเดียวกันคือท่อทองแดง ใช้ของไหลใช้งานชนิดเดียวกันคือ R-12 แต่สิ่งที่แตกต่างกันคือ ท่ออันที่ 1 ประกอบด้วยวิกที่ทำจากตาข่ายเบอร์ 100 และ ท่ออันที่ 2 ประกอบด้วยวิกที่ทำจากตาข่ายเบอร์ 120



รูปที่3- 15 แสดงภาพฮีตไปป์ที่มีวิกเบอร์ 100



รูปที่3- 16 แสดงภาพฮิตไปป์ที่มีวิกเบอร์ 120



รูปที่ 3-17 ภาพภายในท่ออีตไปปัชุดที่ 2 ซึ่งใช้ Mesh 120



## 3.3 การออกแบบและสร้างอุปกรณ์ที่ทดสอบฮีตไปป้

ในการทดสอบฮิตไปป์ที่ได้สร้างขึ้นมานั้นต้องคำนึงถึงขนาดและสภาวะการที่จะ นำฮิตไปป์ไปใช้งานซึ่งจุดมุ่งหมายที่จะนำเอาฮิตไปป์ไปใช้งาน ในการทดลองนี้ให้อุณหภูมิที่ ส่วนของการระเหยมีอุณหภูมิประมาณ 60 องศาเซลเซียส ท่อฮิตไปป์ที่จะนำมาทดลองนี้มี กวามยาว 1.25 เมตร และ ในการทดสอบฮิตไปป์นี้ต้องสามารถหมุนได้เป็นวงกลมและสามารถ ทดลองได้ทุกๆ มุมทดสอบ

จากความกิดเหล่านี้นำมาออกแบบและจัดสร้างอุปกรณ์ทดสอบเป็นส่วนๆ ได้ดังนี้ 1.ส่วนของแท่นทดสอบ โดยที่ตัวแท่นทดสอบนี้สามารถรับน้ำหนักฮีตไปป์กับเจ็คเก็ต และ สามารถหมุน ได้เป็นวงกลม และ สามารถทดลองได้ทุกๆมุมทดสอบดังรูปที่ 3-18 และ 3-19 ในส่วนของแท่นทดสอบประกอบไปด้วย

- 1. เหล็กฉากขนาด 40 x 40 4mm x 6mm ความยาว 1 เมตร จำนวน 4 เส้น
- 2. เหล็กฉากขนาด 40 x 40 4mm x 6mm ความยาว 0.42 เมตร จำนวน 2เส้น
- 3. แบลิ่งตุ๊กตาขนาด 20 mm 2 ตัว
- 4. เพลาขนาด 20 mm มีความยาว 0.72 เมตรจำนวน 1 เส้น
- เหล็กฉากแบบมีรู ความยาว 1.6 เมตร จำนวน 2 เส้น และ ความยาว 0.2 เมตร จำนวน 2 เส้น
- 6. C -camp ขนาดเล็ก จำนวน 2 ชิ้น

จากนั้นทำการประกอบโคย

 1.ใช้เหล็กฉากในข้อที่1 มาเชื่อมติดกันให้เป็นดังรูปที่ 3-18 และ ทำการเจาะรูตรงกลาง เพื่อติด แบบริ่งตุ๊กตา

 เชื่อม C-camp กับเพลาที่มีความขาว 0.1 เมตรแล้วนำชิ้นส่วนนี้ไปเชื่อมติดกับแท่น ทดสอบดังรูปที่ 3-19 โดยให้ปากของ C-camp อยู่ตรงกันกับเพลา

 นำเหล็กฉากที่มีรูปมาประกอบแล้วเชื่อมติดกับเพลาดังรูปที่ 3-17แล้วนำชิ้นส่วนนี้ ไปประกอบเข้ากับแบริ่งตุ๊กตาแล้วขันนีอตหกเหลี่ยมเพื่อทำการล็อกชุดเพลากับแบริ่ง



รูปที่ 3-18 แสดงภาพแท่นทดสอบฮีตไปป์



รูปที่ 3-19\_ แสดงภาพอุปกรณ์ที่ทำการจับยึดให้ฮีตไปป่ทดสอบได้ทุกมุมทดสอบ

2.ส่วนที่ทำความร้อนและป้อนให้ในส่วนของการทำระเทยโดยที่ในส่วนนี้จะประกอบ ถังส แตนเลส, ฮิตเตอร์ที่ใช้ทำให้น้ำร้อนมีอุณหภูมิ60 องศาเซลเซียส, ปั้มน้ำ ในส่วนของการทำ ระเทยพร้อมติดตั้งฉนวนความร้อนทั้ง ถังสแตนเลส ท่อน้ำ และ เจ็คเก็ต



รูปที่ 3-20 แสดงภาพอุปกรณ์ที่ให้ความร้อนในส่วนของการทำระเหย

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย



รูปที่ 3-21 แสดงภาพวงจรการให้ความร้อนในส่วนของการทำระเหย



รูปที่ 3-22 แสดงภาพปั๊มในส่วนของการทำระเหย



รูปที่ 3- 23 แสดงภาพเจ็คเก็ตของส่วนที่ทำระเหยและส่วนที่ควบแน่นที่ทำมาจากแผ่นเหล็กอาบสังกะสี



รูปที่ 3-24 แสดงภาพแผ่นเหล็กอาบสังกะสีที่นำมาทำเจ็คเก็ต 3.ส่วนที่ควบแน่นและอุปกรณ์ที่ปรับอัตราการไหลของน้ำที่ผ่านส่วนควบแน่นโดยที่ในส่วนนี้ จะประกอบ ถังสแตนเลส, ระบบของท่อพีวีซี วาลล์ ปั๊ม ซึ่งส่วนนี้เป็นส่วนที่จะทำการวัดอัตรา การถ่ายเทความร้อนของฮีตไปป์ ในมุมทคสอบต่างๆโดยในส่วนนี้อัตราการไหลของน้ำ สามารถปรับได้ตามการควบคุมของ ท่อ และ วาลล์ที่ได้ออกแบบ ในการวัดค่าอัตราการถ่ายเท ความร้อนของฮีตไปป์นี้ต้องอาศัยอัตราการไหลของน้ำที่ น้อยๆ เพราะฮีตไปป์ที่ได้นำมา ทดสอบนี้เป็นเพียงท่อฮีตไปป์ท่อเดียว



รูปที่ 3- 25 แสดงภาพส่วนที่ควบแน่นและอุปกรณ์ต่างๆ



รูปที่ 3- 26 แสดงภาพปั๊มในส่วนที่ควบแน่น

ส่วนที่วัดอุณหภูมิและอัดอัตราการใหล โดยที่ในส่วนนี้จะประกอบด้วย

- 1. เครื่องอ่านอุณหภูมิซึ่งสามารถอ่านค่าได้ทั้งหมด 4 จุด ยี่ห้อ DIGICON
- 2. เทอร์โมคอปเปิ้ล Type K จำนวน 4 เส้น มีความเที่ยงตรง 0.1 องศา
- 3. บิกเกอร์ขนาด 500 ml
- 4. นาฬิกาจับเวลา



รูปที่ 3- 27 แสดงภาพเครื่องอ่านอุณหภูมิยี่ห้อ DIGICON



รูปที่ 3- 28 แสดงภาพเทอร์โมคอปเปิ้ล Type K จำนวน 4 เส้น



ร<mark>ูปที่ 3- 29 แสดงภาพเครื่องมือวัดอัตราการไหล</mark> โดยจุดที่มีการตรวจวัคอุณหภูมิ ทั้ง 4 จุดมีดังต่อไปนี้คือ

จุดที่ 1 บริเวณผิวท่อในส่วนอะเดียบาติกที่ใกล้กับส่วนที่ทำการระเหย จุดที่ 2 ภายในท่อน้ำที่ออกจากเจ็คเก็ตน้ำในส่วนที่ควบแน่น จุดที่ 3. บริเวณผิวท่อในส่วนอะเดียบาติกที่ใกล้กับส่วนที่ควบแน่น จุดที่ 4. ภายในท่อน้ำที่เข้าเจ็คเก็ตน้ำในส่วนที่ควบแน่น



รูปที่ 3- 30 แสดงภาพจุดที่ติดตั้งเครื่องวัดอุณหภูมิ

เมื่อได้ทำการสร้างและประกอบทั้ง 4 ส่วนที่ได้กล่าวมาในข้างต้นนี้แล้วก็จะได้ชุดที่ใช้ทดสอบ ฮิตไปป์ที่ได้ทำการสร้างขึ้นและพร้อมทำการทดสอบเพื่อหาก่าอุณหภูมิ เพื่อนำไปกำนวณหาก่า อัตรา การถ่ายเทกวามร้อน

#### 2. วิชีการอ่านค่าและวัดค่าต่างๆ

#### <u>ส่วนแรกในส่วนของการอ่านอุณหภูมิ</u>

จากที่ได้กล่าวมาจุดที่มีการตรวจวัดอุณหภูมิ ทั้ง 4 จุดมีดังต่อไปนี้กือ

จุคที่ 1 บริเวณผิวท่อในส่วนที่ไม่มีการถ่ายเทความร้อนที่ใกล้กับส่วนที่ทำการระเหย จุคที่ 2 ภายในท่อน้ำที่ออกจากเจ็กเก็ตน้ำในส่วนที่ควบแน่น จุคที่ 3. บริเวณผิวท่อในส่วนที่ไม่มีการถ่ายเทความร้อนที่ใกล้กับส่วนที่ควบแน่น จุคที่ 4. ภายในท่อน้ำที่เข้าเจ็กเก็ตน้ำในส่วนที่ควบแน่น โดยที่ก่าอุณหภูมิที่อ่านได้มีหน่วยเป็นองศาเซลเซียส ตัวอย่างเช่น

ก่าสายวัคอุณหภูมิสายวัคที่ 1 อ่านก่าได้ 512

ค่าที่อ่านได้คือ 51.2 องศาเซลเซียส จากนั้นนำค่านี้ไปแทนในสมการของการเทียบสอบคือ y = 0.9966x + 0.1163 ดังจะกล่าวในบทต่อไปโดยที่ก่าจริงที่อ่านได้คือ 51.142 องศาเซลเซียส

#### <u>ส่วนที่สองส่วนของการหาอัตราการใหล</u>

ค่าที่อ่านได้ในบิ๊กเกอร์หน่วยเป็น ml และ ค่าที่อ่านได้จากนาฬิกาจับเวลาหน่วยเป็น วินาที เช่นก่าที่วัดได้ 400 ml ในเวลา 20 วินาที แปลงมาเป็นอัตราการไหลในหน่วยของ m³/s

คือ ( 400 / 10<sup>3</sup> ) / (20 x 10<sup>3</sup> ) = 0.00002 m<sup>3</sup>/s เป็นต้น
# บทที่ 4

### ผลการทดลองและวิจารณ์ผลการทดลอง

## 4.1 การดำเนินการทดลอง

## 1. ขั้นตอนการทดลอง

## การทดลองที่มุมฮีตไปป์ –90 องศา (Evaporator อยู่ข้างล่างสุด )

- ต่อท่อสายยางน้ำเข้าและออกส่วนที่ควบแน่น และ ส่วนของทำการระเหย ปรับแท่น ทดสอบให้อยู่ในแนวตั้งฉาก โดยให้ส่วนที่ทำการระเหยอยู่ด้านล่างของแท่นทดสอบ จากนั้นทำการเปิดฮิตเตอร์ที่ถังน้ำในส่วนของการระเหยโดยตั้งอุณหภูมิไว้ที่ 60 องศา เซลเซียส
- จากนั้นเมื่อน้ำในถังในส่วนของการทำระเหยถึงอุณหภูมิที่ต้องการแล้วให้เปิดปั๊มน้ำใน ส่วนที่ทำระเหยและปั๊มน้ำในส่วนที่ควบแน่น หลังจากเปิดปั๊มน้ำในส่วนที่ควบแน่นแล้ว ทำการปรับวาลล์น้ำให้มีอัตราการไหลล่าหนึ่งที่มีล้าน้อยๆ
- จากนั้นปล่อยไว้สัก 5 นาทีแล้วมาดูผลต่างของอุณหภูมิที่อ่านได้จากสายวัดอุณหภูมิสายที่4 และ สายที่ 2 โดยสายที่ 4 จะเป็นสายที่วัดอุณหภูมิน้ำที่เข้ามาในส่วนที่ควบแน่น และ สาย ที่ 2 เป็นสายที่วัดอุณหภูมิของน้ำที่ออกจากส่วนที่ควบแน่น โดยในการทดสอบครั้งแรกนี้ ให้ผลต่างของอุณหภูมิของ สายที่ 2 และ สายที่ 4 อยู่ที่ประมาณ 4-5 องศาเซลเซียส ถ้ายัง ไม่ได้ผลต่างอุณหภูมินี้ก็ทำการปรับวาลล์ต่างๆให้ได้ผลต่างของอุณหภูมิที่กำหนด
- เมื่อได้ผลต่างของอุณหภูมิแล้ว รอเวลาอีก ประมาณ 2 นาที รอให้ค่าค่อนข่างคงที่แล้วเริ่ม จดบันทึกค่าอุณหภูมิทั้ง 4 ค่า จากนั้นก็ใช้ บิ๊กเกอร์และนาฬิกาจับเวลา ทำการหาค่าอัตรา การไหลของน้ำในส่วนนี้ พองคค่าต่างๆเสร็จแล้วรอเวลาอีก 1 นาทีทำการบันทึกค่าต่างๆ เหล่านี้อีกต่อไป 4 ค่า รวมค่าทั้งหมดที่ทำการบันทึกจำนวน 5 ค่า
- เมื่อได้ค่าทั้งหมดแล้วกี ทำการปรับแท่นทดลองจาก -90 องสามาเป็น -105 องสา -135
  องสา และ -165 องสาตามลำดับ โดยที่แต่หละค่าของมุมฮีตไปป์ทำการทดลองและจด
  บันทึกก่าตามการทดลองข้อที่ 3-4
- จากนั้นเริ่มทำการทดลองใหม่โดยครั้งที่สองนี้ให้ผลต่างของอุณหภูมิของ สายที่ 2 และ สายที่ 4 อยู่ที่ประมาณ 3 องศาจากนั้นก็ทำการทดลองตามขั้นตอนการทดลองข้อที่4-5

- 7. ในการทดสอบแต่ละครั้งน้ำที่ผ่านการทดสอบแล้วจะทิ้งแล้วนำน้ำใหม่ที่ได้จาก ก็อกของ ท่อประปามาเติมแล้วทิ้งไว้สักครู่ให้อุณภูมิน้ำที่มีอยู่ในถังของส่วนที่ควบแน่นเก่ากับ น้ำประปาที่เติมเข้าไปใหม่เท่ากัน จึงทำการทดลองได้
- ในการทดลองแต่หละครั้งต้องกอยจับตาการทำงานของฮีตเตอร์ไฟฟ้าถ้ามันหยุดการ ทำงาน (การหยุดทำงานเนื่องมากจากที่ตัวฮีตเตอร์นี้มีปั๊มน้ำและมีเซ็นเซอร์ระดับของน้ำ จับอยู่ถ้าน้ำมีระดับต่ากว่าที่เครื่องตั้งไว้ฮีตเตอร์และระบบปั๊มน้ำของฮีตเตอร์จะหยุดทำงาน ) ซึ่งถ้าฮีตเตอร์ไม่ทำงานจะทำให้อุณหภูมิผิวท่อ สายวัดอุณหภูมิที่ 1 และ 3 ผิดไป แต่ก่า ผลต่างของอุณหภูมิยังกง เท่าเดิม
- เมื่อทำการทคลองในแต่ละองศาเสร็จเรียบร้อยแล้วให้ทำการปิดปั๊มน้ำและฮิตเตอร์เพื่อ กวามสะดวกในการเติมน้ำใหม่เข้าระบบและตรวจสอบรอยรั้วและซ่อมแซมรอยรั่วของน้ำ ที่อยู่ในระบบโดยในการซ่อมแซมรอยรั่วจะใช้ไขกวงและซิลิโกลนในการซ่อมแซม

#### 4.2 ผลการทดลอง

จากการทดลองหาค่าอัตราการถ่ายเทความร้อน Q โดยที่พยายามควบคุมผลต่างของอุณหภูมิ ของน้ำหล่อเย็นของด้านส่วนที่ควบแน่นให้อยู่ในสองระดับด้วยกันคือ ระดับที่หนึ่งมีผลต่างของ อุณหภูมิน้ำหล่อเย็นเท่ากับ 4-5 °C และ ระดับที่สองมีผลต่างของอุณหภูมิน้ำหล่อเย็นเท่ากับ 3 °C ดัง แสดงผลการทดลองทั้งหมดแสดงอยู่ในภากผนวก. ก ส่วนผลการกำนวณแสดงอยู่ในตารางที่ 4-1 และ ตาราง 4-2

รูปที่ 4-1 และ 4-2 เป็นกราฟแสดงความสัมพันธ์ระหว่างค่าอัตราการถ่ายเทความร้อน กับ ค่ามุม ของฮีตไปป์ ของฮีตไปป์แต่ละชุดทคลอง ที่ผลต่างของอุณหภูมิของน้ำหล่อเย็น ของฮีตไปป์ทั้งสอง ส่วนรูปที่ 4-3 และ 4-4 เป็นกราฟแสดงการเปรียบเทียบค่าอัตราการถ่ายเทความร้อนของฮีตไปป์ทั้งสอง ชุดที่ ค่าที่ผลต่างของอุณหภูมิของน้ำที่เข้าและออกส่วนของ Condenser เดียวกัน

ตารางที่ 4-1 อัตราการถ่ายเทความร้อนของฮีตไปป์ ( Q ) ที่มุมต่างๆสำหรับวิกที่ทำด้วย Mesh 100

| มมาคงสีตไปป์ พ-    | ผลต่างอุณหภูมิ เข้า และ ออก Condenser |        |  |  |  |  |
|--------------------|---------------------------------------|--------|--|--|--|--|
| ที่ทฏถงอุญเกิก Λ่- | 4-5 °C                                | 3 °C   |  |  |  |  |
| -90                | 200.58                                | 181.7  |  |  |  |  |
| -105               | 221                                   | 226.42 |  |  |  |  |
| -135               | 220.36                                | 220.03 |  |  |  |  |
| -165               | 195.61                                | 181.7  |  |  |  |  |

ตารางที่ 4-2 อัตราการถ่ายเทความร้อนของฮีตไปป์ ( Q ) ที่มุมต่างๆสำหรับวิกที่ทำด้วย Mesh 120

|                 | ผลต่างอุณหภูมิ เข้า และ ออก Condenser |        |  |  |  |
|-----------------|---------------------------------------|--------|--|--|--|
| มุมของฮีตไปป์ ψ | 4-5 °C                                | 3°C    |  |  |  |
| -90             | 371.93                                | 418.69 |  |  |  |
| -105            | 357.17                                | 411.83 |  |  |  |
| -135            | 410.81                                | 425.41 |  |  |  |
| -165            | 341.36                                | 355.49 |  |  |  |

หมายเหตุ มุมของฮีตไปป์ ψ นั้นเป็นมุมที่ส่วนของ Evaporator ทำกับแนวราบโดยให้ทิศทางทวน เข็มนาฬิกาเป็นบวก





รูปที่ 4-2 กราฟแสดงความสัมพันธ์ระหว่างมุมของฮีตไปป์กับค่าอัตราการถ่ายเทความร้อนสำหรับฮีตไปป์ที่ใช้ Mesh 120

63



รูปที่ 4-3 กราฟแสดงการเปรียบเทียบระหว่างฮีตไปป์กับค่าอัตราการถ่ายเทความร้อนที่มุมต่างๆ



ถ้าดับต่อไปเป็นการนำข้อมูลของการทดลองของฮีตไปป์ที่แสดงในภาคผนวก. ก ไปคำนวณหา ค่าสภาพนำความร้อนประสิทธิผล k<sub>en</sub> (EffectiveThermal Conductivity) ซึ่งจะเป็นตัวที่บอกถึง ประสิทธิภาพการนำความร้อนของฮีตไปป์ และคำนวณหาค่าHeat Flux ของฮีตไปป์ที่นำมาทดลอง รายละเอียดวิธีการคำนวณแสดงอยู่ในภาคผนวก จ. ส่วนผลการคำนวณแสดงอยู่ในตารางที่ 4-3 ถึง ตารางที่ 4-6

โดยก่า k<sub>en</sub>ที่ได้ทำการกำนวณโดยใช้หลักการสองอย่างคือ สมมุติให้ฮีตไปป์เป็นเหมือนวัสดุใด วัสดุหนึ่งที่มีรูปทรงเหมือนฮีตไปป์และใช้ในการถ่ายเทความร้อนโดย ความคิดวิธีที่ 1 คิดก่า k<sub>en</sub>จาก อุณหภูมิผิวของฮีตไปป์ในส่วนของการทำระเหยและอุณหภูมิผิวของส่วนควบแน่นโดยความแตกต่าง ของอุณหภูมิทั้ง 2 ส่วนนี้ ความคิดวิธีที่ 2 คิดก่า k<sub>en</sub>จากอุณหภูมิของน้ำที่ไหลผ่านส่วนทำระเหยและ อุณหภูมิน้ำที่ไหลผ่านส่วนควบแน่น

นอกจากนี้ในตาราง 4-3 ถึง 4-6 ยังแสดงก่า Heat Flux ของฮิตไปป์ทั้ง 2 ชุดทดลองด้วยHeat Flux ดังกล่าวเป็นก่าอัตราการถ่ายเทความร้อนต่อพื้นที่หน้าตัดของท่อฮิตไปป์ในแต่ละท่อ ตัวอย่างการ กำนวณถูกแสดงอยู่ในภาคผนวก จ.

รูปที่ 4-5 และ 4-6 เป็นกราฟแสดงความสัมพันธ์ระหว่างค่า k<sub>ert</sub>กับมุมของฮิตไปป์ทั้งในกรณีที่ คำนวณโดยใช้ผลต่างของอุณหภูมิของน้ำที่ไหลผ่านส่วนทำระเหยและอุณหภูมิน้ำที่ไหลผ่านส่วน ควบแน่นและกำหนดโดยใช้ผลต่างอุณหภูมิผิวของฮิตไปป์ในส่วนของการทำระเหยและอุณหภูมิผิว ของส่วนควบแน่นตามลำดับ

รูปที่ 4-7 แสดงก่า Heat Flux ที่มุมฮีตไปป์ต่างๆเปรียบเทียบกับผลงานวิจัยก่อนหน้านี้

# ตารางที่ 4-3 ผลการวิจัยของ ช.มหิธร เพ็ชญูไพศิษฎ์ และ พิสุทธิ์ กลิ่นขจร ( 2537 )

เป็นฮิตไปป์ที่ทำมาจากท่อทองแคง และ มีตาง่ายสแตนเลส เบอร์ 200 มี ของไหลใช้งานคือ **R-**11 และมีความยาว 150 เซนติเมตร

| Α                      | Q ( W)  | Heat Flux ( kW/m <sup>2</sup> ) |
|------------------------|---------|---------------------------------|
| 0.000507               | 114.3   | 225.443                         |
| 0.000507               | 171.5   | 338.264                         |
| 0.000507               | 175.9   | 346.942                         |
| 0.00 <mark>0507</mark> | 185.75  | 366.370                         |
| ค่าเฉลี่ย              | 161.862 | 319.255                         |

## ผลงานการวิจัยของ กอบชัย แสงสว่าง( 2545 )

เป็นฮิตไปป์ที่ทำมาจากกอยล์ท่อทองแดงซึ่งเป็นแบบฮิตไปป์แบบกรบวงจร ใช้ของไหลใช้งาน เป็น R-22 มีค่า Heat Flux เท่ากับ 721.459 kW/m<sup>2</sup>



ค่ามุมของheat  $k_{eff}(1)$ k<sub>eff</sub> (2) ค่า A ของฮีตไปป์ Heat Flux (kW/m<sup>2</sup>) **Q(W)** pipe DT vin T<sub>E</sub>-T<sub>C</sub>  $T_{\tilde{u}_{1}E} - T_{\tilde{u}_{1}C}$ Dx (kW/m.K) (kW/m.K) -90 0.000275 200.58 3.74 27.528 4.01 0.25 6.624. 45.472 729.381 0.000275 -105 221 4.62 26.358 3.72 0.25 7.622 54.007 803.636 -135 0.000275 220.36 3.6 27.982 4.67 0.25 7.159 42.896 801.309 0.000275 195.61 0.25 5.890 44.016 711.309 -165 5.04 30.187 4.04 ค่าแฉลี่ย 6.824 46.598 761.409

ตารางที่4-4 แสดงก่า Effective Thermal Conductivity และก่า Heat Flux ของฮิตไปป์ ที่มุมต่างๆ ที่ผลต่างอุณหภูมิ เข้า และ ออก Condenser 4-5 °C สำหรับวิกที่ทำด้วย Mesh 100

ตารางที่4-5 แสดงก่า Effective Thermal Conductivity และก่า Heat Flux ของฮิตไปป์ ที่มุมต่างๆ ที่ผลต่างอุณหภูมิ เข้า และ ออก

Condenser 3 <sup>o</sup>C สำหรับวิกที่ทำด้วย Mesh 100

| ค่ามุมของheat |                  |        |                        | is years                                 | 11-1                           |      | k <sub>eff</sub> (1) | k <sub>eff</sub> (2) |                                 |
|---------------|------------------|--------|------------------------|------------------------------------------|--------------------------------|------|----------------------|----------------------|---------------------------------|
| pipe          | ค่า A ของฮีตไปป์ | Q(W)   | DT .<br><sub>น้ำ</sub> | Τ <sub>, μ1 E</sub> -Τ <sub>, μ1 C</sub> | T <sub>E</sub> -T <sub>C</sub> | Dx   | (kW/m.K)             | (kW/m.K)             | Heat Flux ( kW/m <sup>2</sup> ) |
| -90           | 0.000275         | 181.7  | 2.44                   | 28.444                                   | 6.07                           | 0.25 | 5.807                | 27.212               | 660.727                         |
| -105          | 0.000275         | 226.42 | 3.38                   | 27.527                                   | 4.57                           | 0.25 | 7.477                | 45.040               | 823.345                         |
| -135          | 0.000275         | 220.03 | 2.47                   | 27.111                                   | 3.31                           | 0.25 | 7.378                | 60.431               | 800.109                         |
| -165          | 0.000275         | 181.7  | 2.43                   | 28.444                                   | 6.07                           | 0.25 | 5.807                | 27.212               | 660.727                         |
|               |                  | ค่าแฉ  | ลี่ย                   | ۰.<br>۲                                  | 6                              |      | 6.617                | 39.974               | 736.227                         |

(1) กิดจากผลต่างอุณหภูมิของน้ำด้านEvaporator กับ Condenser

(2) คิดจากผลต่างอุณหภูมิของผิวท่อของEvaporator กับ Condenser

| ค่ามุมของheat |                  |        | <u> </u>            |                                                          |                                |      | k <sub>eff</sub> (1) | k <sub>eff</sub> (2) |                                 |
|---------------|------------------|--------|---------------------|----------------------------------------------------------|--------------------------------|------|----------------------|----------------------|---------------------------------|
| pipe          | ค่า A ของฮีตไปป์ | Q(W)   | DT <sub>້ໍາ</sub> າ | <b>Τ <sub>i</sub></b> - <b>Τ</b> <sub>i</sub> - <b>Τ</b> | T <sub>E</sub> -T <sub>C</sub> | Dx   | (kW/m.K)             | (kW/m.K)             | Heat Flux ( kW/m <sup>2</sup> ) |
| -90           | 0.000275         | 371.93 | 4.51                | 27.025                                                   | 3.23                           | 0.25 | 12.511               | 104.680              | 1,352.472                       |
| -105          | 0.000275         | 357.17 | 5.06                | 28.248                                                   | 3.71                           | 0.25 | 11.494               | 87.520               | 1,298.800                       |
| -135          | 0.000275         | 410.81 | 4.35                | 27.711                                                   | 3.97                           | 0.25 | 13.477               | 94.071               | 1,493.854                       |
| -165          | 0.000275         | 341.36 | 5.14                | 25.975                                                   | 3.41                           | 0.25 | 11.947               | 91.005               | 1,241.309                       |
| ค่าแฉลี่ย     |                  |        |                     |                                                          |                                |      | 12.357               | 94.319               | 1,346.609                       |

ตารางที่4-6 แสดงก่า Effective Thermal Conductivity และก่า Heat Flux ของฮิตไปป์ ที่มุมต่างๆ ที่ผลต่างอุณหภูมิ เข้า และ ออก Condenser 4-5 <sup>o</sup>C สำหรับวิกที่ทำด้วย Mesh 120

ตารางที่4-7 แสดงค่า Effective Thermal Conductivity และค่า Heat Flux ของฮีตไปป์ ที่มุมต่างๆ ที่ผลต่างอุณหภูมิเข้า และ ออก

| ค่ามุมของheat |                  |        |                 |                                          | -                              |      | k <sub>eff</sub> (1) | k <sub>eff</sub> (2) |                                 |
|---------------|------------------|--------|-----------------|------------------------------------------|--------------------------------|------|----------------------|----------------------|---------------------------------|
| pipe          | ค่า A ของฮีตไปป์ | Q(W)   | DT <sub>.</sub> | Τ <sub>, μ1 E</sub> -Τ <sub>, μ1 C</sub> | T <sub>E</sub> -T <sub>C</sub> | Dx   | (kW/m.K)             | (kW/m.K)             | Heat Flux ( kW/m <sup>2</sup> ) |
| -90           | 0.000275         | 418.69 | 2.89            | 26.920                                   | 3.98                           | 0.25 | 14.139               | 95.634               | 1,522.509                       |
| -105          | 0.000275         | 411.83 | 3.06            | 28.436                                   | 4.13                           | 0.25 | 13.166               | 90.651               | 1,497.563                       |
| -135          | 0.000275         | 425.41 | 2.43            | 28.323                                   | 4.14                           | 0.25 | 13.654               | 93.414               | 1,546.945                       |
| -165          | 0.000275         | 355.49 | 3.14            | 27.426                                   | 3.99                           | 0.25 | 11.783               | 80.995               | 1,292.690                       |
| ค่าแฉลี่ย     |                  |        |                 |                                          |                                |      | 13.185               | 90.174               | 1,464.927                       |

Condenser 3 <sup>o</sup>C สำหรับวิกที่ทำด้วย Mesh 120

(1) กิดจากผลต่างอุณหภูมิของน้ำด้านEvaporator กับ Condenser

(2) กิดจากผลต่างอุณหภูมิของผิวท่อของEvaporator กับ Condenser



รูปที่ 4-5 กราฟแสดงการเปรียบเทียบระหว่างฮีตไปป์กับค่า k <sub>en</sub> ที่มุมฮีตไปป์ต่างๆโดยที่ค่า k <sub>en</sub>นี้คิดมาจากผลต่างอุณหภูมิของน้ำที่ใหลผ่านส่วน ของ Condenser กับน้ำที่ใหลผ่านส่วน Evaporator



รูปที่ 4-6 กราฟแสดงการเปรียบเทียบระหว่างฮีตไปป์กับค่า k <sub>en</sub> ที่มุมฮีตไปป์ต่างๆโดยที่ค่า k <sub>en</sub>นี้คิดมาจากผลต่างของอุณหภูมิผิวส่วนของ Condenser กับอุณหภูมิผิวส่วนของ Evaporator



รูปที่ 4-7 กราฟแสดงค่า Heat Fluxที่มุมฮีตไปป์ต่างๆของงานวิจัยนี้เปรียบเทียบกับงานวิจัยอื่น ( hp 1 คือ งานวิจัยของ ช.มหิธร เพ็ชญไพศิษฎ์ และ พิสุทธิ์ กลิ่นขจร, 2537 และ hp 2 คือ งานวิจัยของ กอบชัย แสงสว่าง, 2545)

## 4.3 วิจารณ์ผลการทดลอง

## 4.3.1 ผลของมุมของฮีตไปป์ต่ออัตราการถ่ายเทความร้อนของฮีตไปป์

เมื่อพิจารณาผลการทคลองที่แสดงในตารางที่ 4.1 และ 4.2 และรูปที่ 4.1 และ 4.2 จะเห็นได้ว่า อัตราการถ่ายเทความร้อนของฮีตไปป์ทั้งชุดที่มีวิกเป็นตาข่าย mesh 100 และ mesh 120 มีแนวโน้ม ลดลงเมื่อมุมของฮีตไปป์ ψ กว้างขึ้น ( เป็นค่าลบเพิ่มขึ้น ) และมีลักษณะการเปลี่ยนแปลงเป็นรูป sine ตามอิทธิพลของแรงโน้มถ่วง อย่างไรก็ตาม อัตราการถ่ายเทความร้อนมีค่าสูงสุดที่ ψ = -135 องศา แทนที่จะเป็นที่ ψ = -90 ซึ่งอาจจะเนื่องจาก

1.ผลมาจากความคลาดเคลื่อนในการวัดค่าอัตราการถ่ายเทความร้อน เนื่องด้วยค่าอัตราการ ถ่ายเทความร้อนของท่อฮีตไปป์นั้นมีค่าน้อยมากในการวัดค่าจำเป็นต้องใช้ความละเอียดของเครื่องมือ ทดลอง และความละเอียดของผู้วัดมาก ดังนั้นในการวัดในแต่ละครั้งควรจะให้มีอัตราการไหลที่ เท่าๆกันเพื่อดูความแตกต่างของอุณหภูมิของน้ำที่เข้าและออกจากส่วนที่ควบแน่นได้โดยง่าย ในการวัด อัตราการไหลที่ดีนั้นควรนำน้ำนั้นมาทำการชั่งเพื่อให้ได้อัตราการไหลที่เที่ยงตรง หรือ ใช้อุปกรณ์ที่ใช้ ในการตวงปริมาตรของน้ำที่มีสเกลละเอียดมากๆ

2. ผลมาจาก Entrainment Limit เมื่อของใหลใช้งานได้รับความร้อนจากส่วนของการทำระเหย ของไหลใช้งานนั้นจะทำการระเหยกลายเป็นไอแล้วนำเอาความร้อนไปคลายที่ส่วนของการควบแน่น หลังจากคลายความร้อนเสร็จแล้วของใหลใช้งานจะกลั่นตัวใหลกลับมายังส่วนของการระเหยมาทางวิก ้ที่ทำด้วยตาข่ายในระหว่างไหลกลับของของไหลใช้งานนั้นของไหลใช้งานบางส่วนอาจหลุดรอด ้ออกมาจากวิกเป็นหยุดของของไหลจากนั้นจะถูกไอที่ได้รับการระเหยุพาหยุดของไหลขึ้นไปในส่วน ของการควบแน่นอีกทำให้ของไหลใช้งานที่จะกลับลงมาส่วนของการทำระเหยของฮีตไปป์น้อยลง โดย ที่มุมทคสอบ -90 องศาฮีตไปป์ที่มีตาง่ายงนาค 100 จะถ่ายเทความร้อนได้ประมาณ 200 W ผลกระทบ ที่มาจาก Entrainment นี้เมื่อของไหลใช้งานกลายเป็นไอแล้วไปคายความร้อนและกลั่นตัวมาทางวิกแต่ แทนที่จะใหลลงสู่ส่วนของการทำระเหยได้ดีด้วยความดัน Capillary แต่เนื่องด้วยในเวลาม้วนตาข่ายที่ ทำเป็นวิกนั้นที่ขอบของตาข่ายจะมีเส้นลวดเล็กๆ ยื่นออกมาเวลาม้วนไปแล้วลวดเล็กๆเหล่านี้จะไป ขวางการใหลของของใหลใช้งานในวิกทำให้ของใหลใช้งานล้นออกมาทางช่องของตาข่ายของวิกเมื่อ ้งองไหลใช้งานออกมานอกวิกแล้วจะรวมตัวกันเป็นหยุดและถกไององไหลใช้งานที่พึ่งระเหยงึ้นมาพา ้ขึ้นไปสู่ส่วนของการควบแน่นทำให้เกิดขีดจำกัดในส่วนนี้ แต่เมื่อเทียบกับเมื่อปรับมุมของฮีตไปป์ไปที่ –135 องศา หรือ 225 องศา นั้นที่มีอัตราการถ่ายเทความร้อนที่มากที่สุดนั้นอาจเนื่องมาจากของไหลใช้ งานสามารถไหลในวิกได้ดีด้วยมมเอียงทำให้ของไหลใช้งานไหลลงกลับมายังส่วนการระเหยเพื่อมารับ ้ความร้อนได้คีกว่าจึงมีค่าอัตราการถ่ายเทความร้อนที่มากกว่า ถ้าจะปรับปรุงไม่ให้เกิดความผิดพลาดใน ้ส่วนนี้จำเป็นต้องใช้เครื่องม้วนตาข่ายให้ดีๆ ไม่ให้งอหรือมีเศษถวดเล็กๆ เพราะเศษถวดเล็กๆหรือตา ข่ายที่งอไม่เป็นวงกลมจะขัดขวางการไหลของของไหลใช้งาน

ตารางที่ 4.4 และ 4.5 แสดงค่า Effective thermal conductivity และ ค่า heat flux ของฮิตไปป์ซึ่ง ใช้ mesh 100 และ ตารางที่ 4.6 และ 4.7 แสดงค่า Effective thermal conductivity และ ค่า heat flux ของ ฮิตไปป์ซึ่งใช้ mesh 120 ตามการวิจัยนี้ ซึ่งค่าทั้งสองมีการเปลี่ยนแปลงด้วยแนวโน้มทำนองเดียวกันกับ การเปลี่ยนแปลงของอัตราการถ่ายเทความร้อน

ฮิตไปป์ที่ใช้ mesh 120 มีอัตราการถ่ายเทความร้อนสูงกว่าฮิตไปป์ที่ใช้ mesh 100 ที่ทุกตำแหน่ง การวางตัวของฮิตไปป์ ดังแสดงในรูปที่ 4.3 ทั้งนี้เนื่องจาก mesh 120 .ให้ผลทางกาพิลารี่มากกว่า mesh 100

ฮิตไปป์ที่สร้างขึ้นทั้งสองชุดไม่สามารถทำงานสวนทางกับแรงโน้มถ่วงได้ กล่าวคือ ไม่ สามารถทำงานที่มุมของฮิตไปป์กว้างกว่า –180 องศาได้ ดังแสดงในรูปที่ 4.4 ทั้งนี้เนื่องจากปัจจัยหลาย อย่างคือ แรงตึงผิวของของไหลใช้งานซึ่งค่อนข้างต่ำ และแรงคาพิลารี่มีค่าน้อยเกินไป ซึ่งอาจจะแก้ไข ได้โดยการใช้ตาข่ายที่ถี่กว่านี้หรือใช้วิกที่เป็นโครงสร้างแบบอื่น

## 4.3.2 ผลการเปรียบเทียบกับงานวิจัยอื่น

เมื่อพิจารณาค่า Heat Flux ของฮีตไปป์ต่างซึ่งมีค่าดังตารางที่ 4-3 ถึง 4-6 และรูปที่ 4-7 พบว่าค่า Heat Flux ของฮีตไปป์ที่ทำมาจากวิกที่ทำมาจากตาข่าย 120 มีค่ามากที่สุด และเมื่อมาพิจารณาHeat Flux ที่ได้จาก ฮีตไปป์ที่ใช้ตาข่าย 100, และตาข่าย 120 เปรียบเทียบกับฮีตไปป์ที่ทำมาจากตาข่าย 200 ของ ช. มหิธร เพีชญไพศิษฎ์ และ พิสุทธิ์ กลิ่นขจร( 2537 ) และ ผลการวิจัยของ กอบชัย แสงสว่าง ( 2545 )ได้ นำเอาค่า Heat Flux ของฮีตไปป์ทั้ง 4 ดังแสดงในรูปที่ 4-7 พบว่าฮีตไปป์ที่ใช้ตาข่าย 120 ของงานวิจัยนี้ มีก่ามากที่สุด รองลงมาคือ ฮีตไปป์ที่ใช้ตาข่าย 100 ของงานวิจัยนี้ และ งานวิจัยของ กอบชัย แสงสว่าง ( 2545 )ซึ่งมีค่าใกล้เคียงกัน ส่วนฮีตไปป์ของงานวิจัยของ ช.มหิธร เพีชญไพศิษฎ์ และ พิสุทธิ์ กลิ่นขจร( 2537 )ให้ค่า Heat Flux ต่ำที่สุด นอกจานั้นค่า Heat Flux ของงานวิจัยนี้มีค่าสูงสุดที่มุมของฮีตไปป์–135 องศา ซึ่งแสดงจากรูปที่ 4-7 จากผลการทดลองนี้ยังไม่มีกำอธิบายที่ชัดเจน ส่วนค่า Heat Flux นี้นำเอา ไปใช้เป็นแนวทางในการออกแบบอุปกรณ์แลกเปลี่ยนความร้อน

#### 4.3.3 ขีดจำกัดของการถ่ายเทความร้อนของฮิตไปป์

จาการคำนวณในภาคผนวก จ ได้คำนวณหาค่าขีดจำกัดของฮีตไปป์ซึ่งใช้ mesh 100 ท่อฮีตไปป์ ทำมาจากท่อทองแดง ใช้ของไหลใช้งานเป็น R-12 ได้ค่ามาดังต่อไปนี้

โดยสรุปค่า Q ของ Limit ทั้งหมด

Capilary Limit = 106.91 W Sonic Limit = 37,332.46 W Entrainment Limit = 259.85 W Boiling Limit = 5.134 W

จากก่าขีดจำกัดทั้งสี่ที่ได้จะสามารถจำแนกได้เป็นสองส่วนใหญ่ๆในการพิจารณาคือ ส่วนแรก กือขีดจำกัดที่สอดกล้องกับก่าอัตราการถ่ายเทกวามร้อนที่ได้ และส่วนที่สองคือ ขีดจำกัดที่ไม่สอดกล้อง กับอัตราการการถ่ายเทกวามร้อนที่ได้ โดยที่ฮีตไปป์ที่นำมากำนวณในงานวิจัยนี้ สามารถวัดอัตราการ ถ่ายเทกวามร้อนได้ประมาณ 200 w

ขีดจำกัดที่สอดกล้องกับงานวิจัยนี้คือ Sonic Limit และ Entrainment Limit ซึ่งมีค่ามากกว่า 200 W โดยอาจจะกล่าวได้ดังต่อไปนี้ Sonic Limit เป็นขีดจำกัดอันเนื่องมาจากของไหลใช้งานระเหย กลายเป็นไอและพาความร้อนไปรวมถึงความดันภายในท่อทำให้ตัวของไหลใช้งานนั้นมีความเร็วเกือบ หรือเทียบเท่าความเร็วเสียง Entrainment Limit เกิดขึ้นโดยของไหลใช้งานที่กลั่นตัวมาที่วิกไหลจาก ส่วนของการควบแน่นไปยังส่วนที่ทำระเหยไหลกลับมาไม่หมดโดยส่วนหนึ่งกลับไปยังส่วนควบแน่น อีก การที่ค่าอัตราการถ่ายเทความร้อนของฮีตไปป์ในงานวิจัยนี้ไม่เกินขีดจำกัดทั้งสองอาจเนื่องมาจาก ปริมาณของไหลใช้งานที่มีอยู่ในวิก และอยู่ในฮีตไปป์นั้นมีค่ามากพอที่จะให้ฮีตไปป์สามารถทำงานได้ โดยไม่มีการแห้ง สามารถทำงานได้ตลอดเวลา

ขีดจำกัดที่ไม่สอดกล้องกับงานวิจัยนี้ ขีดจำกัดที่มีผลอันที่หนึ่งคือ Capilary Limit เนื่องด้วยค่า อัตราการถ่ายเทความร้อนที่กำนวนได้มีก่าน้อยกว่าก่าอัตราการถ่ายเทความร้อนที่วัดได้จริง เพราะก่า แรงตึงผิวของของไหลใช้งานคือ R-12 นั้นมีก่าน้อยมากจึงส่งผลโดยตรงกับแรงกาพิลารี่ที่จะมีก่าน้อย ทำให้เมื่อฮีตไปป์มีมุมทดลองที่มีส่วนของการทำระเหยอยู่ด้านบนและส่วนของการควบแน่นอยู่ด้าน ล่างนั้น ฮีตไปป์ของงานวิจัยนี้จะไม่สามารถทำงานได้ ขีดจำกัดอันที่สองที่ไม่สอดกล้องกับงานวิจัยนี้ คือ Boiling Limit ที่กำนฉตามสมการของ Chi(1967) อย่างไรก็ตามการกำนวฉตามสมการดังกล่าวมี ความคลาดเกลื่อนในบางประการ ในการจะประมาณก่าขีดจำกัดของการเดือดนั้นเราจะประมาณขนาด ของอนุภาคของของไหลใช้งานได้ยาก กลาดเกลื่อนที่ได้นี้ส่วนหนึ่งอาจมาจากการทดลองการประมาณ ก่าตามหนังสือซึ่งเหตุผลดังกล่าวได้มีกล่าวไว้ใน Kreith(2001) ว่าเราไม่รู้ขนาดของ Nucleation site และ Tien (1985) กล่าวไว้ว่าระดับของ superheat ของของเหลวด้าน Evaporator ในติดกับผนังท่อเป็น สิ่งที่ทำนายยาก

# บทที่ 5 สรุปผลการทดลองและข้อเสนอแนะ

## 5.1 สรุปผลการทดลอง

งากการศึกษาและออกแบบสร้างแท่นทคลองท่อฮีตไปป์ ทั้ง 2 ชุดทคลองพบว่า ฮีตไปป์ชุดที่
 ประกอบด้วย ท่อความร้อนที่มีเส้นผ่านศูนย์กลาง 18.7 มม. ยาว 1.25 เมตร มีระยะช่วงทำระเหย 50 ซ.
 ม. ระยะช่วงแอเดียบาติก 25 ซ.ม. และ ช่วงการควบแน่น 50 ซ.ม. ใช้ท่อทองแดงเป็นท่อบรรจุ ใช้ตาง่าย
 เบอร์ลวดสแตนเลส 100 เป็นวิก และใช้น้ำยาทำความเย็นหมายเลข R-12 เป็นของไหลใช้งาน พบว่าก่า
 อัตราการถ่ายเทความร้อนจะแสดงไว้ในตารางที่ 4-1 และ ตารางที่ 4-2 โดยทั้งสองตารางนี้จะแสดงก่า
 อัตราการถ่ายเทความร้อนจะแสดงไว้ในตารางที่ 4-1 และ ตารางที่ 4-2 โดยทั้งสองตารางนี้จะแสดงก่า
 อัตราการถ่ายเทความร้อนที่องศาของการทดลองต่างๆ เช่นเดียวกับ ฮิตไปป์ชุดที่ 2 ประกอบด้วย ท่อ
 ความร้อนที่มีเส้นผ่านศูนย์กลาง 18.7 มม. ยาว 1.25 เมตร มีระยะช่วงทำระเหย 50 ซ.ม. ระยะช่วงแอเดีย
 บาติก 25 ซ.ม. และ มีระยะช่วงการกวบแน่น 50 ซ.ม. ใช้ท่อทองแดงเป็นท่อบรรจุ ใช้ตาข่ายเบอร์
 ลวดสแตนเลส 120 เป็นวิก และใช้น้ำยาทำความเย็นหมายเลข R-12 เป็นของไหลใช้งาน พบว่าล่า
 อัตราการถ่ายเทความร้อนพื่องศาของการทอดองต่างๆ เช่นเดียวกับ ฮิตไปป์ชุดที่ 2 ประกอบด้วย ท่อ
 ความร้อนที่มีเส้นผ่านศูนย์กลาง 18.7 มม. ยาว 1.25 เมตร มีระยะช่วงทำระเหย 50 ซ.ม. ระยะช่วงแอเดีย
 บาติก 25 ซ.ม. และ มีระยะช่วงการกวบแน่น 50 ซ.ม. ใช้ท่อทองแดงเป็นท่อบรรจุ ใช้ตาข่ายเบอร์
 ลวดสแตนเลส 120 เป็นวิก และใช้น้ำยาทำความเย็นหมายเลข R-12 เป็นของไหลใช้งาน พบว่าล่าอัตรา
 การถ่ายเทความร้อนจะแสดงไว้ในตารางที่ 4-3 และ ตารางที่ 4-4 โดยทั้งสองตารางนี้จะแสดงก่าอัตรา
 การถ่ายเทความร้อนที่องสาของการทดลองต่างๆซึ่งล่าอัตราการถ่ายเทความร้อนมากที่สุดอยู่ที่มุมของ
 อิตไปป์ –135 องศา

 อีตไปป์ทั้งสองแบบนี้จะพบว่า อีตไปป์ชุดที่ 2 ที่มีวิกตาข่ายที่มีความละเอียดกว่าสามารถ ถ่ายเทความร้อนได้มากกว่าฮิตไปป์ชุดที่ 1

3. เมื่อมาพิจารณาถึงค่า k<sub>en</sub> หรือ EffectiveThermal Conductivity โดย ฮิตไปป์ที่ทำการทดลอง ชุดที่ 1 มีค่า k<sub>en</sub> เฉลี่ยท่ากับ 43.286 kW/m.K และ ฮิตไปป์ที่ทำการทดลองชุดที่ 2 มีค่า k<sub>en</sub> เฉลี่ย เท่ากับ 92.247 kW/m.K โดยคิดจากอุณหภูมิของผิวท่อในส่วนของการควบแน่นกับอุณหภูมิในส่วน ของการทำระเหย ซึ่งเมื่อนำมาเปรียบเทียบกับท่อทองแดงเปล่าๆ ที่มีค่า k เท่ากับ 400.5 W/m.K ค่าสัม ประสิทธิการนำความร้อนของฮิตไปป์มีค่ามากกว่าค่าสัมประสิทธิการนำความร้อนของท่อทองแดงมาก

 ทั้งฮีตไปป์ที่ใช้ตาข่าย 100 และ ฮีตไปป์ที่ใช้ตาข่าย 120 ของงานวิจัยนี้พบว่าสามารถทำงาน ได้ในช่วงมุมของฮีตไปป์ (ψ)จาก –90 ถึงประมาณ –180 และ ไม่สามารใช้งานในช่วงมุมของฮีตไปป์ (ψ)ที่มีค่านอกเหนือจากนี้ในแนวทางแก้ไขให้ฮีตไปป์ของงานวิจัยนี้สามารถทำงานได้คือ ประการแรก กวรลดขนาดของตาข่ายซึ่งไม่ practical มากนัก ประการที่สอง ควรเปลี่ยนชนิดของของไหลใช้งานจาก R-12 เป็นแอมโมเนียม เนื่องจากค่าเมอริทของของไหลใช้งานแอมโมเนียมีค่ามากกว่าR-12 มากทำให้มี แรงคาพิลารี่มากขึ้น ทำให้สามารถทำงานในมุมของฮีตไปป์ได้มากขึ้น ประการที่สาม เปลี่ยนชนิดของ ้วิกจากเดิมเป็นแบบตาข่ายมาเป็นแบบที่มีอยู่แล้วหรือแบบอื่นที่สร้างขึ้นใหม่เพื่อประโยชน์ในแรงคาพิ ลารี่

5. เมื่อนำผลการทดสอบมาทำการเปรียบเทียบกับงานวิจัยของผู้วิจัยท่านอื่นๆ ดังตารางที่ 5-1 เป็นงานวิจัยของช.มหิธร เพีชญไพศิษฏ์ และ พิสุทธิ์ กลิ่นขจร( 2537 ) เมื่อดูที่ค่า Heat flux พบว่า ฮีต ไปปที่ผู้วิจัยกลุ่มนั้นได้ทำการทดลองพบว่ามีค่ามีค่าเฉลี่ยเท่ากับ 319.255 kW/m<sup>2</sup> และ ค่า Heat flux ที่ ผู้วิจัยได้ศึกษามาพบว่า มีค่าดังตารางที่ 4-3 ถึง 4-6 สรุปได้กือ ที่ ฮีตไปป์ชุดที่ 1 มีค่าเฉลี่ยเท่ากับ 748.818 kW/m<sup>2</sup> และ ฮีตไปป์ชุดที่ 2 มีค่าเฉลี่ยเท่ากับ 1,405.768 kW/m<sup>2</sup> และ เทอร์โมไซฟอลของกอบ ชัย แสงสว่าง ( 2545 ) มีค่าเฉลี่ยเท่ากับ 721.459 kW/m<sup>2</sup> ดังค่าที่แสดงในตารางที่ 4.3

6. ค่า heat flux มีค่าสูงสุดที่มุมของฮีตไปปี –135 องศา จากกราฟของผลการทดลอง ซึ่งยังไม่มี คำอธิบายที่ชัดเจน โดยค่า Heat Flux ของงานวิจัยนี้มีค่ามากกว่าฮีตไปป์แบบไม่มีวิกเล็กน้อย แต่มีค่า ดีกว่าฮีตไปป์ที่ใช้ของไหลใช้งานเป็น R-11 โดยค่า Heat Flux ที่ได้มานี้จะนำไปใช้ในงานออกแบบ อุปกรณ์แลกเปลี่ยนความร้อนต่อไป

 ก่าอัตราการถ่ายเทความร้อนที่ได้มีก่าสูงกว่าก่า Boiling limit ที่กำนวณตาม Chi ซึ่งสูตร กำนวณนี้ยังมีความไม่แน่นอนพอสมกวร โดยเฉพาะอย่างยิ่งการประเมินระดับ Super heat ที่ผิวท่อหรือ Nucleation ดังนั้นจึงนำมาสู่การกำนวณที่ไม่แม่นยำ

### 5.2 ข้อเสนอแนะ

 ในการสร้างฮิตไปป์บางครั้งลือกของใหลใช้งานที่มีค่าแรงตึงผิวที่สูงและสามารถใช้งาน ในช่วงอุณหภูมินั้นได้ดี เช่น Methanol หรือ ammonia แต่ต้องเปลี่ยนวัสดุที่ใช้ทำท่อให้สามารถเข้ากัน ได้กับของไหลใช้งานนั้นๆ

2. ในการเลือกวิกที่เป็นตาข่ายสำหรับฮิตไปป์ควรเลือกตาข่ายที่มีความละเอียดสูง จะทำให้ ค่า r<sub>c</sub>ต่ำ นำไปสู่ค่า P<sub>pm</sub> หรือ Maximum effective pumping จะมีค่าสูงขึ้นทำให้สามารถทำงานได้ในมุม ที่มากขึ้นด้วยหรือ เปลี่ยนโครงสร้างวิกที่สามารถให้แรงคาพิลารี่ที่มากขึ้น

 ในการสร้างท่อความร้อนควรให้มีขนาดไม่โตมากนักเพื่อลดค่า d<sub>v</sub> เพื่อไปลดค่า Normal Hydrostatic pressure นำไปสู่การเพิ่มขึ้นของค่า Maximum effective pumping

4. ควรมีการทดลองเพื่อหาผลของความยาวท่อที่มีผลต่อค่าอัตราการถ่านเทความร้อน ท่อความ ร้อนมีความยาวมากๆจะไปลดค่า Capillary limit on heat transfer rate, Q<sub>c,max</sub>

## รายการอ้างอิง

<u>ภาษาไทย</u>

- กอบชัย แสงสว่าง, <u>การศึกษาอีทไปป์เพื่อการประหยัดพลังงานในเครื่องปรับอากาศ,</u> วิทยา นิพนธ์ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมเครื่องกล, บัณฑิตวิทยาลัย จุฬาลงกรณ์ มหาวิทยาลัย, 2545
- ช มหิธร เพีชญไพศิษฎ์ และ พิสุทธิ์ กลิ่นขจร, <u>การศึกษาและออกแบบสร้างแท่นทคสอบท่อความ</u> <u>ร้อน</u>, วิทยานิพนธ์ปริญญาบัณฑิต ภาควิชาวิศวกรรมเครื่องกล, วิศวกรรมศาตร์ มหาวิทยาลัยเชียงใหม่, 2537.
- ชุติมา จารุศิริพจน์, <u>การทคสอบสมรรถนะของฮีทไปป์แบบไร้วิกค์แบบทองแคงฟรีออนเพื่อการ</u> <u>ออกแบบเครื่องแลกเปลี่ยนความร้อน,</u> วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมเคมี, บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย, 2533.

ประดิษฐ์ เทอดทูล. <u>ท่อความร้อน</u>. เชียงใหม่: สำนักพิมพ์ มหาวิทยาลัยเชียงใหม่, 2536.

- ปรีชา กอบเกื้อพงษ์, <u>การสร้างและทคสอบสมรรถนะของเครื่องแลกเปลี่ยนความร้อนแบบฮีทไปป์</u> <u>ที่อุณหภูมิต่ำ</u>,วิทยานิพนธ์ปริญญามหาบัณฑิต ภากวิชาวิศวกรรมเกมี, บัณฑิตวิทยาลัย จุฬาลง กรณ์มหาวิทยาลัย, 2533.
- วันชัย โกมลภมร, <u>สมรรถนะของฮีทไปป์แบบไหลครบวงจร</u>, วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมเคม<mark>ี, บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย, 2530.</mark>

<u>ภาษาอังกฤษ</u>

- Acton, A., <u>Correlating Equation for the Properties of Metal-Feat Wicks</u>, London: Pergamon, 1982.
- Budaiwai, I.M., and Abdou, A.A., <u>Energy and thermal performance of heat pipe/cooling coil</u> systems in hot-humid climates, London: Pergamon Press, 1982.
- Charles, C., and Roberts, JR., <u>A review of heat pipe liquid delivery concepts</u>, Great Britain: Pergamon Press, 1981.
- Chi, S.W., Heat Pipe Theory and Prectice A Source book, London:McGraw-Hill, 1976.
- Chisholm, D., The Heat Pipe, London: Mill&Boon, 1971.

Dunn, P., and Reay, D.A., <u>Heat Pipes</u>, 2<sup>nd</sup> ed., Great Britian: Pergamon Press, 1978.

Feldman, K.T., and Kenney, D.D., The Compatibility of Mild Carbon Steel and Water in A Heat

Pipe Application, Great Britian: Pergamon Press, 1981.

- Ismail, K.A.R., and Murcai, N., <u>Combined Liquid Vapor Flow in Cylindrical Heat Pipes with</u> <u>Modified Internal Geometry</u>, London: Pergamon, 1982.
- Ivanovski, M.N., and others., <u>The Physical Principales of Heat Pipes</u>, OXFORD:Claredon Press,1982.
- Jebrail, F.F., and Andrews, M.J., <u>Heat Transfer Characteristics of Disk-Shaped Rotating</u>, <u>Wicksless Heat Pipe</u>, London: Pergamon, 1982.

Kreith, F. and Bohn, M. S., Principle of Heat Transfer, sixth edition, 2001

- Littwin, D.A., Heat Pipe Waste Heat Recovery Boilers, London: Pergamon, 1982.
- MaeZawa, S., and others., <u>Heat Transfer Characteristics of Disk-Shaped Rotating, Wickless</u> <u>Heat Pipe</u>, London: Pergamon, 1982.
- Mazet, N., and others., Energy and thermal performance of heat pipe/cooling coil systems in hothumid climates, : Great Britian, Pergamon, 2001.
- 14.Farland, J.K., and others., <u>Effect of a Heat Pipe on Dehumidification of a Controlled Air</u> <u>Space</u>, ASHRAE Transaction
- unzel, W.D., and Krahling, H., <u>Lifetest Investigations with Stainless Steel/Water Heat Pipes</u>, London: Pergamon, 1982.
- Ogushi, T., and Sukurai, Y., Composite Wick Heat Pipes, London: Pergamon, 1982.
- Peterson, G.P., An Introduction to Heat Pipes, U.S.A.: John Wiley & Sons, 1994.
- Smirnov, G.F., and Afanasier, B.A., <u>Investigation of Vaporization in Screen Wick-Capillary</u> <u>Structure</u>, London: Pergamon, 1982.
- Tien, C. L., Heat Pipes in Handbook of Heat Transfer Applications, W. M. Rohsenow
- Toh, K.C., and Chan, S.K., <u>Thermosiphon Heat Recovery From An Air-Conditioner For A</u> <u>Domestiv Hot Water System</u>, London: Pergamon, 1982.

# สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

#### ภาคผนวก ก

#### ผลการทดลอง

# การทดลองฮีตไปปัชุดที่ 1 Mesh 100

การทคลองทั้งหมดควบคุมอุณหภูมิน้ำร้อนด้าน Evaporator ให้อุณหภูมิน้ำเข้า = 60 °C และอุณหภูมิน้ำออกวัดได้ = 59.8 °C อัตราการไหลของน้ำเท่ากับ 0.42 kg/s <u>กำหนด ค่าความแตกต่างระหว่างอุณหภูมิน้ำเข้าและน้ำที่ออกทางด้านคอนเดนเซอร์ประมาณ 4-5 องศา</u>

T 1 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนด้านบนส่วนของ Condenser

T 2 คือ อุณหภูมิของน้ำที่ออกจากท่อ ฮีตไปป์

T 3 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนค้านล่างส่วนของ Evaporator

T 4 คือ อุณหภูมิของน้ำที่เข้าไปยังท่อ ฮิตไปป์

## มุมของฮีตไปป์ -90 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3               | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|-------------------|-----------|----------------------|-----------|
| 53.1 | 53.036    | 34                       | 34.183    | <mark>48.5</mark> | 48.928    | 30.3                 | 30.539    |
| 53   | 52.936    | 34.1                     | 34.283    | 48.6              | 49.029    | 30.3                 | 30.539    |
| 53.1 | 53.036    | 34.2                     | 34.384    | 48.6              | 49.029    | 30.4                 | 30.641    |
| 53.1 | 53.036    | 34.2                     | 34.384    | 48.6              | 49.029    | 30.4                 | 30.641    |
| 53.1 | 53.036    | 34.3                     | 34.485    | 48.6              | 49.029    | 30.4                 | 30.641    |

| Т 2                      | Т4     | T 2 - T4 | ปริมาตร ( ml ) | เวลา ( s) | Flow (m <sup>3</sup> /s) | Heat (w) |  |
|--------------------------|--------|----------|----------------|-----------|--------------------------|----------|--|
| 34.183                   | 30.539 | 3.643    | 260            | 20        | 0.000013                 | 198.314  |  |
| 34.283                   | 30.539 | 3.744    | 260            | 20        | 0.000013                 | 203.790  |  |
| 34.384                   | 30.641 | 3.743    | 250            | 20        | 0.0000125                | 195.908  |  |
| 34.384                   | 30.641 | 3.743    | 260            | 20        | 0.000013                 | 203.744  |  |
| 34.485                   | 30.641 | 3.844    | 250            | 20        | 0.0000125                | 201.172  |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |          |                |           |                          |          |  |

# มุมของฮีตไปป์ -105 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>out</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T 4 ( T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|-------------------------|-----------|
| 53.4 | 53.335    | 35.3                     | 35.491    | 49.3 | 49.737    | 31                      | 31.250    |
| 53.4 | 53.335    | 35.8                     | 35.994    | 49.3 | 49.737    | 31.1                    | 31.351    |
| 53.6 | 53.534    | 35.9                     | 36.094    | 49.3 | 49.737    | 31.1                    | 31.351    |
| 53.6 | 53.534    | 35.9                     | 36.094    | 49.3 | 49.737    | 31.1                    | 31.351    |
| 53.6 | 53.534    | 35.9                     | 36.094    | 49.3 | 49.737    | 31.1                    | 31.351    |

| Т 2                      | T4     | T 2 - T4             | ปริมาตร ( ml ) | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |  |
|--------------------------|--------|----------------------|----------------|-----------|--------------------------|------------|--|
| 35.491                   | 31.250 | 4.2 <mark>4</mark> 1 | 340            | 30        | 1.13333E-05              | 201.250    |  |
| 35.994                   | 31.351 | 4. <mark>643</mark>  | 230            | 20        | 0.0000115                | 223.543    |  |
| 36.094                   | 31.351 | 4.743                | 235            | 20        | 0.00001175               | 233.351    |  |
| 36.094                   | 31.351 | 4.743                | 220            | 20        | 0.000011                 | 218.457    |  |
| 36.094                   | 31.351 | 4.743                | 230            | 20        | 0.0000115                | 228.386    |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                      |                |           |                          |            |  |

# มุมของฮีตไปป์ -135 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 53.1 | 53.036    | 33.4                     | 33.579    | 48   | 48.422    | 29.9                 | 30.134    |
| 53.2 | 53.135    | 33.7                     | 33.881    | 48   | 48.422    | 30                   | 30.235    |
| 53.2 | 53.135    | 33.7                     | 33.881    | 48.1 | 48.523    | 30                   | 30.235    |
| 53.3 | 53.235    | 33.7                     | 33.881    | 48.1 | 48.523    | 30                   | 30.235    |
| 53.3 | 53.235    | 33.7                     | 33.881    | 48.1 | 48.523    | 30                   | 30.235    |

|                          |        |                     | and the state of the state of the state |                          |                          |          |  |
|--------------------------|--------|---------------------|-----------------------------------------|--------------------------|--------------------------|----------|--|
| Т 2                      | T4     | T 2 - T4            | ปริมาตร ( ml )                          | ເວ <mark>ລ</mark> າ ( s) | Flow (m <sup>3</sup> /s) | Heat (w) |  |
| 33.579                   | 30.134 | 3.44 <mark>6</mark> | 300                                     | 20                       | 0.000015                 | 216.400  |  |
| 33.881                   | 30.235 | 3.646               | 300                                     | 20                       | 0.000015                 | 228.983  |  |
| 33.881                   | 30.235 | 3.646               | 280                                     | 20                       | 0.000014                 | 213.717  |  |
| 33.881                   | 30.235 | 3.646               | 280                                     | 20                       | 0.000014                 | 213.717  |  |
| 33.881                   | 30.235 | 3.646               | 300                                     | 20                       | 0.000015                 | 228.983  |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                     |                                         |                          |                          |          |  |

จุฬาลงกรณ์มหาวิทยาลย

# มุมของฮีตไปป์ -165 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 52.7 | 52.637    | 31.7                     | 31.869    | 48.2 | 48.624    | 27.1                 | 27.294    |
| 53.2 | 53.135    | 31.7                     | 31.869    | 48.7 | 49.130    | 27.1                 | 27.294    |
| 53.4 | 53.335    | 32.1                     | 32.272    | 48.8 | 49.231    | 27.1                 | 27.294    |
| 53.5 | 53.434    | 32.3                     | 32.473    | 48.9 | 49.332    | 27.1                 | 27.294    |
| 53.5 | 53.434    | 33                       | 33.177    | 49   | 49.434    | 27.1                 | 27.294    |

| Т 2                      | T4     | T 2 - T4             | ปริมาตร ( ml ) | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |  |
|--------------------------|--------|----------------------|----------------|-----------|--------------------------|------------|--|
| 31.869                   | 27.294 | 4. <mark>5</mark> 76 | 270            | 30        | 0.000009                 | 172.422    |  |
| 31.869                   | 27.294 | 4.57 <mark>6</mark>  | 280            | 30        | 9.33333E-06              | 178.808    |  |
| 32.272                   | 27.294 | 4.978                | 280            | 30        | 9.33333E-06              | 194.532    |  |
| 32.473                   | 27.294 | 5.179                | 280            | 30        | 9.33333E-06              | 202.394    |  |
| 33.177                   | 27.294 | 5.883                | 280            | 30        | 9.33333E-06              | 229.910    |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                      |                |           |                          |            |  |

การทดลองทั้งหมดควบคุมอุณหภูมิน้ำร้อนด้าน Evaporator

ให้อุณหภูมิน้ำเข้า = 60 °C และอุณหภูมิน้ำออกวัดได้ = 59.8 °C อัตราการไหลของน้ำเท่ากับ 0.42 kg/s กำหนด ก่ากวามแตกต่างระหว่างอุณหภูมิน้ำเข้าและน้ำที่ออกทางด้านกอนเดนเซอร์ประมาณ 3 องศา

- T 1 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนด้านบนส่วนของ Condenser
- T 2 คือ อุณหภูมิของน้ำที่ออกจากท่อ ฮิตไปป์
- T 3 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนค้านล่างส่วนของ Evaporator
- T 4 คือ อุณหภูมิของน้ำที่เข้าไปยังท่อ ฮีตไปป์

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 53   | 52.936    | 32.6                     | 32.775    | 46.4 | 46.803    | 30.1                 | 30.337    |
| 52.9 | 52.836    | 32.6                     | 32.775    | 46.3 | 46.702    | 30.1                 | 30.337    |
| 52.8 | 52.737    | 32.6                     | 32.775    | 46.3 | 46.702    | 30.1                 | 30.337    |
| 52.8 | 52.737    | 32.6                     | 32.775    | 46.3 | 46.702    | 30.1                 | 30.337    |
| 52.8 | 52.737    | 32.6                     | 32.775    | 46.3 | 46.702    | 30.1                 | 30.337    |

# มุมของฮีตไปป์ -90 องศ<mark>า</mark>

| Т 2                      | Т4     | T 2 - T4 | ปริมาตร ( ml ) | เวลา ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |  |  |  |  |
|--------------------------|--------|----------|----------------|-----------|--------------------------|------------|--|--|--|--|
| 32.775                   | 30.337 | 2.438    | 360            | 20        | 0.000018                 | 183.743    |  |  |  |  |
| 32.775                   | 30.337 | 2.438    | 350            | 20        | 0.0000175                | 178.639    |  |  |  |  |
| 32.775                   | 30.337 | 2.438    | 360            | 20        | 0.000018                 | 183.743    |  |  |  |  |
| 32.775                   | 30.337 | 2.438    | 360            | 20        | 0.000018                 | 183.743    |  |  |  |  |
| 32.775                   | 30.337 | 2.438    | 350            | 20        | 0.0000175                | 178.639    |  |  |  |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |          |                |           |                          |            |  |  |  |  |

86

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 52.9 | 52.836    | 33.9                     | 34.082    | 48.1 | 48.523    | 30.5                 | 30.742    |
| 53.4 | 53.335    | 33.9                     | 34.082    | 48.5 | 48.928    | 30.5                 | 30.742    |
| 53.6 | 53.534    | 34                       | 34.183    | 48.5 | 48.928    | 30.5                 | 30.742    |
| 53.7 | 53.634    | 34                       | 34.183    | 48.5 | 48.928    | 30.5                 | 30.742    |
| 53.8 | 53.733    | 34.1                     | 34.283    | 48.5 | 48.928    | 30.7                 | 30.945    |
|      | -         |                          |           |      |           |                      |           |
|      |           |                          |           |      |           |                      |           |

| Т 2                      | Т4     | T 2 - T4             | ปริมาตร ( ml ) | เวลา ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |  |
|--------------------------|--------|----------------------|----------------|-----------|--------------------------|------------|--|
| 34.082                   | 30.742 | <mark>3.340</mark>   | 320            | 20        | 0.000016                 | 223.751    |  |
| 34.082                   | 30.742 | 3. <mark>34</mark> 0 | 320            | 20        | 0.000016                 | 223.751    |  |
| 34.183                   | 30.742 | 3.441                | 320            | 20        | 0.000016                 | 230.489    |  |
| 34.183                   | 30.742 | 3.441                | 320            | 20        | 0.000016                 | 230.489    |  |
| 34.283                   | 30.945 | 3.338                | 320            | 20        | 0.000016                 | 223.638    |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                      |                |           |                          |            |  |

# มุมของฮีตไปป์ -135 องศา

| T 1    | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3           | EXACT_T 3 | T 4 ( T <sub>IN</sub> ) | EXACT_T 4 |
|--------|-----------|--------------------------|-----------|---------------|-----------|-------------------------|-----------|
| 50.100 | 50.046    | 34.000                   | 34.183    | 46.100        | 46.500    | 31.400                  | 31.655    |
| 49.800 | 49.747    | 34.000                   | 34.183    | <b>46.100</b> | 46.500    | 31.400                  | 31.655    |
| 49.800 | 49.747    | 33.900                   | 34.082    | 46.100        | 46.500    | 31.400                  | 31.655    |
| 49.800 | 49.747    | 33.900                   | 34.082    | 46.100        | 46.500    | 31.400                  | 31.655    |
| 49.800 | 49.747 🥌  | 33.900                   | 34.082    | 46.100        | 46.500    | 31.400                  | 31.655    |

| Т 2                      | Т4     | T 2 - T4             | ปริมาตร ( ml ) | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |  |
|--------------------------|--------|----------------------|----------------|-----------|--------------------------|------------|--|
| 34.183                   | 31.655 | 2. <mark>52</mark> 8 | 430            | 20        | 0.0000215                | 227.543    |  |
| 34.183                   | 31.655 | 2.528                | 420            | 20        | 0.000021                 | 222.251    |  |
| 34.082                   | 31.655 | 2.427                | 430            | 20        | 0.0000215                | 218.488    |  |
| 34.082                   | 31.655 | 2.427                | 430            | 20        | 0.0000215                | 218.488    |  |
| 34.082                   | 31.655 | 2.427                | 420            | 20        | 0.000021                 | 213.407    |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                      |                |           |                          |            |  |

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 53   | 52.936    | 32.6                     | 32.775    | 46.4 | 46.803    | 30.1                 | 30.337    |
| 52.9 | 52.836    | 32.6                     | 32.775    | 46.3 | 46.702    | 30.1                 | 30.337    |
| 52.8 | 52.737    | 32.6                     | 32.775    | 46.3 | 46.702    | 30.1                 | 30.337    |
| 52.8 | 52.737    | 32.6                     | 32.775    | 46.3 | 46.702    | 30.1                 | 30.337    |
| 52.8 | 52.737    | 32.6                     | 32.775    | 46.3 | 46.702    | 30.1                 | 30.337    |

| Т 2                      | Т4     | T 2 - T4             | ปริมาตร ( ml ) | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat (w) |  |
|--------------------------|--------|----------------------|----------------|-----------|--------------------------|----------|--|
| 32.775                   | 30.337 | 2.4 <mark>38</mark>  | 360            | 20        | 0.000018                 | 183.743  |  |
| 32.775                   | 30.337 | 2. <mark>4</mark> 38 | 350            | 20        | 0.0000175                | 178.639  |  |
| 32.775                   | 30.337 | 2.438                | 360            | 20        | 0.000018                 | 183.743  |  |
| 32.775                   | 30.337 | 2.438                | 360            | 20        | 0.000018                 | 183.743  |  |
| 32.775                   | 30.337 | 2.438                | 350            | 20        | 0.0000175                | 178.639  |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                      |                |           |                          |          |  |

#### ผลการทดลอง

# การทดลองฮีตไปปัชุดที่ 2 Mesh 120

การทดลองทั้งหมดควบคุมอุณหภูมิน้ำร้อนด้าน Evaporator

ให้อุณหภูมิน้ำเข้า = 60 °C และอุณหภูมิน้ำออกวัดได้ = 59.7 °C อัตราการไหลของน้ำเท่ากับ 0.42 kg/s

<u>กำหนด ค่าความแตกต่างระหว่างอุณหภูมิน้ำเข้าและน้ำที่ออกทางด้านคอนเดนเซอร์ประมาณ 4-5 องศา</u>

T 1 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนค้านบนส่วนของ Condenser

T 2 คือ อุณหภูมิของน้ำที่ออกจาก<mark>ท่อ ฮิตไปป์</mark>

T 3 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนด้านล่างส่วนของ Evaporator

T 4 คือ อุณหภูมิของน้ำที่เข้าไปยังท่อ ฮีตไปป์

## มุมของฮีตไปป์ -90 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3                | EXACT_T 3 | T 4 ( T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|--------------------|-----------|-------------------------|-----------|
| 50.6 | 50.544    | 34.8                     | 34.988    | 46.8               | 47.208    | 30.5                    | 30.742    |
| 50.4 | 50.345    | 35                       | 35.189    | <mark>46</mark> .7 | 47.107    | 30.7                    | 30.945    |
| 50.6 | 50.544    | 35                       | 35.189    | 47                 | 47.410    | 30.6                    | 30.844    |
| 51.2 | 51.142    | 35.2                     | 35.390    | 47.5               | 47.916    | 30.8                    | 31.047    |
| 51.4 | 51.342    | 35.2                     | 35.390    | 47.7               | 48.119    | 31                      | 31.250    |

| Т 2                      | Т4     | T 2 - T4 | ปริมาตร ( ml ) | เวลา ( s) | Flow (m <sup>3</sup> /s) | Heat (w) |  |
|--------------------------|--------|----------|----------------|-----------|--------------------------|----------|--|
| 34.988                   | 30.500 | 4.488    | 390            | 20        | 0.0000195                | 366.398  |  |
| 35.189                   | 30.700 | 4.489    | 395            | 20        | 0.00001975               | 371.193  |  |
| 35.189                   | 30.600 | 4.589    | 395            | 20        | 0.00001975               | 379.463  |  |
| 35.390                   | 30.800 | 4.590    | 395            | 20        | 0.00001975               | 379.560  |  |
| 35.390                   | 31.000 | 4.390    | 395            | 20        | 0.00001975               | 363.022  |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |          |                |           |                          |          |  |

# มุมของฮีตไปป์ -105 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 52.5 | 52.438    | 34.1                     | 34.283    | 48.3 | 48.725    | 29                   | 29.221    |
| 52.5 | 52.438    | 34.1                     | 34.283    | 48.3 | 48.725    | 29                   | 29.221    |
| 52.6 | 52.537    | 34.1                     | 34.283    | 48.3 | 48.725    | 29                   | 29.221    |
| 52.6 | 52.537    | 34.1                     | 34.283    | 48.4 | 48.827    | 29                   | 29.221    |
| 52.5 | 52.438    | 34.1                     | 34.283    | 48.4 | 48.827    | 29                   | 29.221    |

| Т 2                      | Т4     | T 2 - T4            | ปริมาตร ( ml ) | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |  |
|--------------------------|--------|---------------------|----------------|-----------|--------------------------|------------|--|
| 34.283                   | 29.221 | 5.0 <mark>63</mark> | 330            | 20        | 0.0000165                | 349.752    |  |
| 34.283                   | 29.221 | 5.063               | 330            | 20        | 0.0000165                | 349.752    |  |
| 34.283                   | 29.221 | 5.063               | 340            | 20        | 0.000017                 | 360.350    |  |
| 34.283                   | 29.221 | 5.063               | 345            | 20        | 0.00001725               | 365.649    |  |
| 34.283                   | 29.221 | 5.063               | 340            | 20        | 0.000017                 | 360.350    |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                     |                |           |                          |            |  |

# มุมของฮีตไปป์ -135 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3 | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|-----|-----------|----------------------|-----------|
| 52.4 | 52.338    | 34.3                     | 34.485    | 48  | 48.422    | 29.8                 | 30.032    |
| 52.4 | 52.338    | 34.3                     | 34.485    | 48  | 48.422    | 29.9                 | 30.134    |
| 52.5 | 52.438    | 34.2                     | 34.384    | 48  | 48.422    | 29.9                 | 30.134    |
| 52.5 | 52.438    | 34.3                     | 34.485    | 48  | 48.422    | 29.9                 | 30.134    |
| 52.5 | 52.438    | 34.3                     | 34.485    | 48  | 48.422    | 29.9                 | 30.134    |

| Т 2                      | Т4     | T 2 - T4             | ปริมาตร ( ml ) | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |  |
|--------------------------|--------|----------------------|----------------|-----------|--------------------------|------------|--|
| 34.485                   | 30.032 | 4. <mark>45</mark> 2 | 450            | 20        | 0.0000225                | 419.443    |  |
| 34.485                   | 30.134 | 4.351                | 455            | 20        | 0.00002275               | 414.442    |  |
| 34.384                   | 30.134 | 4.250                | 450            | 20        | 0.0000225                | 400.411    |  |
| 34.485                   | 30.134 | 4.351                | 450            | 20        | 0.0000225                | 409.887    |  |
| 34.485                   | 30.134 | 4.351                | 450            | 20        | 0.0000225                | 409.887    |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                      |                |           |                          |            |  |

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 51.9 | 51.840    | 36.3                     | 36.496    | 48   | 48.422    | 31.2                 | 31.452    |
| 52   | 51.940    | 36.2                     | 36.396    | 48.1 | 48.523    | 31.2                 | 31.452    |
| 52.1 | 52.039    | 36.5                     | 36.698    | 48.2 | 48.624    | 31.2                 | 31.452    |
| 52.2 | 52.139    | 36.5                     | 36.698    | 48.3 | 48.725    | 31.2                 | 31.452    |
| 52.2 | 52.139    | 36.5                     | 36.698    | 48.3 | 48.725    | 31.2                 | 31.452    |

| Т 2                      | T4     | T 2 - T4             | ปริมาตร ( ml ) | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |  |
|--------------------------|--------|----------------------|----------------|-----------|--------------------------|------------|--|
| 36.496                   | 31.452 | 5. <mark>04</mark> 4 | 320            | 20        | 0.000016                 | 337.915    |  |
| 36.396                   | 31.452 | 4.94 <mark>4</mark>  | 320            | 20        | 0.000016                 | 331.176    |  |
| 36.698                   | 31.452 | 5.245                | 310            | 20        | 0.0000155                | 340.411    |  |
| 36.698                   | 31.452 | 5.245                | 320            | 20        | 0.000016                 | 351.392    |  |
| 36.698                   | 31.452 | 5.245                | 315            | 20        | 0.00001575               | 345.902    |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |                      |                |           |                          |            |  |

การทดลองทั้งหมดควบคุมอุณหภูมิน้ำร้อนด้าน Evaporator

ให้อุณหภูมิน้ำเข้า = 60 °C และอุณหภูมิน้ำออกวัดได้ = 59.7 °C อัตราการไหลของน้ำเท่ากับ 0.42 kg/s กำหนด ค่าความแตกต่างระหว่างอุณหภูมิน้ำเข้าและน้ำที่ออกทางด้านคอนเดนเซอร์ประมาณ 3 องศา

- T 1 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนด้านบนส่วนของ Condenser
- T 2 คือ อุณหภูมิของน้ำที่ออกจากท่อ ฮิตไปป์
- T 3 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนด้านถ่างส่วนของ Evaporator
- T 4 คือ อุณหภูมิของน้ำที่เข้าไปยังท่อ ฮิตไปป์

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 51.9 | 51.840    | 34.1                     | 34.283    | 47.5 | 47.916    | 31.2                 | 31.452    |
| 51.9 | 51.840    | 34.1                     | 34.283    | 47.5 | 47.916    | 31.2                 | 31.452    |
| 52.2 | 52.139    | 34.5                     | 34.686    | 47.7 | 48.119    | 31.5                 | 31.757    |
| 52.2 | 52.139    | 3 <mark>4</mark> .5      | 34.686    | 47.7 | 48.119    | 31.5                 | 31.757    |
| 52.2 | 52.139    | 34.5                     | 34.686    | 47.7 | 48.119    | 31.5                 | 31.757    |

# มุมของฮีตไปป์ -90 องศา

| Т 2                      | Т4     | T 2 - T4 | ปริมาตร ( ml ) | เวลา ( s) | Flow (m <sup>3</sup> /s) | Heat (w) |  |
|--------------------------|--------|----------|----------------|-----------|--------------------------|----------|--|
| 34.283                   | 31.452 | 2.831    | 340            | 10        | 0.000034                 | 403.034  |  |
| 34.283                   | 31.452 | 2.831    | 350            | 10        | 0.000035                 | 414.888  |  |
| 34.686                   | 31.757 | 2.929    | 350            | 10        | 0.000035                 | 429.260  |  |
| 34.686                   | 31.757 | 2.929    | 340            | 10        | 0.000034                 | 416.995  |  |
| 34.686                   | 31.757 | 2.929    | 350            | 10        | 0.000035                 | 429.260  |  |
| ค่าพลังงานความร้อนเฉลี่ย |        |          |                |           |                          |          |  |
## มุมของฮีตไปป์ -105 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 51.7 | 51.641    | 32.9                     | 33.076    | 47.1 | 47.512    | 29.8                 | 30.032    |
| 51.7 | 51.641    | 32.9                     | 33.076    | 47.1 | 47.512    | 29.8                 | 30.032    |
| 51.7 | 51.641    | 33                       | 33.177    | 47.1 | 47.512    | 29.8                 | 30.032    |
| 51.7 | 51.641    | 32.9                     | 33.076    | 47.1 | 47.512    | 29.8                 | 30.032    |
| 51.8 | 51.740    | 32.9                     | 33.076    | 47.2 | 47.613    | 29.8                 | 30.032    |

| Т 2    | Т4     | T 2 - T4              | ปริมาตร ( ml )   | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |
|--------|--------|-----------------------|------------------|-----------|--------------------------|------------|
| 33.076 | 30.032 | 3.044                 | 320              | 10        | 0.000032                 | 407.857    |
| 33.076 | 30.032 | 3.044                 | 325              | 10        | 0.0000325                | 414.229    |
| 33.177 | 30.032 | 3.145                 | 320              | 10        | 0.000032                 | 421.334    |
| 33.076 | 30.032 | 3.044                 | 320              | 10        | 0.000032                 | 407.857    |
| 33.076 | 30.032 | 3.044                 | 320              | 10        | 0.000032                 | 407.857    |
|        |        | ค่าพลังง <sup>า</sup> | านความร้อนเฉลี่ย |           | - Fil                    | 411.827    |

## มุมของฮีตไปป์ -135 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 52   | 51.940    | 32.7                     | 32.875    | 47.5 | 47.916    | 30.3                 | 30.539    |
| 52.1 | 52.039    | 32.7                     | 32.875    | 47.4 | 47.815    | 30.2                 | 30.438    |
| 52   | 51.940    | 32.7                     | 32.875    | 47.4 | 47.815    | 30.2                 | 30.438    |
| 52.1 | 52.039    | 32.7                     | 32.875    | 47.4 | 47.815    | 30.2                 | 30.438    |
| 52.1 | 52.039    | 32.8                     | 32.976    | 47.5 | 47.916    | 30.2                 | 30.438    |

| Т 2    | Т4     | T 2 - T4  | ปริมาตร ( ml )   | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |
|--------|--------|-----------|------------------|-----------|--------------------------|------------|
| 32.875 | 30.539 | 2.336     | 420              | 10        | 0.000042                 | 410.749    |
| 32.875 | 30.438 | 2.437     | 420              | 10        | 0.000042                 | 428.586    |
| 32.875 | 30.438 | 2.437     | 420              | 10        | 0.000042                 | 428.586    |
| 32.875 | 30.438 | 2.437     | 415              | 10        | 0.0000415                | 423.484    |
| 32.976 | 30.438 | 2.538     | 410              | 10        | 0.000041                 | 435.650    |
|        |        | ค่าพลังงา | านความร้อนเฉลี่ย | •         |                          | 425.411    |

## มุมของฮีตไปป์ -165 องศา

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 51.7 | 51.641    | 33.9                     | 34.082    | 47.2 | 47.613    | 30.7                 | 30.945    |
| 51.7 | 51.641    | 33.9                     | 34.082    | 47.3 | 47.714    | 30.7                 | 30.945    |
| 51.7 | 51.641    | 34                       | 34.183    | 47.3 | 47.714    | 30.7                 | 30.945    |
| 51.8 | 51.740    | 34                       | 34.183    | 47.3 | 47.714    | 30.8                 | 31.047    |
| 51.8 | 51.740    | 34                       | 34.183    | 47.3 | 47.714    | 30.9                 | 31.148    |

| Т 2    | T4     | T 2 - T4             | ปริมาตร ( ml )   | ເວລາ ( s) | Flow (m <sup>3</sup> /s) | Heat ( w ) |
|--------|--------|----------------------|------------------|-----------|--------------------------|------------|
| 34.082 | 30.945 | 3. <mark>1</mark> 37 | 400              | 15        | 2.6667E-05               | 350.268    |
| 34.082 | 30.945 | 3.137                | 410              | 15        | 2.7333E-05               | 359.024    |
| 34.183 | 30.945 | 3.238                | 410              | 15        | 2.7333E-05               | 370.536    |
| 34.183 | 31.047 | 3.136                | 405              | 15        | 0.000027                 | 354.551    |
| 34.183 | 31.148 | 3.035                | 405              | 15        | 0.000027                 | 343.084    |
|        |        | ค่าพลังงา            | านความร้อนเฉลี่ย |           |                          | 355.493    |

#### มุมของฮีตไปป์ -180 องศา .

ที่ฮิตไปป์ ซึ่งใช้Mesh 100

T 1 คือ อุณหภูมิของผิวท่อทองแดงที่ส่วนด้านบนส่วนของ Condenser

T 2 คือ อุณหภูมิของน้ำที่ออกจากท่อ ฮิตไปป์

T 3 คือ อุณหภูมิของผิวท่อทองแดงที่ส่วนด้านถ่างส่วนของ Evaporator

T 4 คือ อุณหภูมิของน้ำที่เข้าไปยังท่อ ฮีตไปป์

| T 1  | EXACT_T 1 | T 2 ( T <sub>out</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 54.7 | 54.630    | 32.5                     | 32.674    | 51.1 | 51.558    | 31.6                 | 31.858    |
| 54.9 | 54.830    | 32.4                     | 32.573    | 51.4 | 51.861    | 31.6                 | 31.858    |
| 55.1 | 55.029    | 32.5                     | 32.674    | 51.6 | 52.064    | 31.6                 | 31.858    |
| 55.1 | 55.029    | 32.5                     | 32.674    | 51.6 | 52.064    | 31.6                 | 31.858    |
| 55.2 | 55.129    | 32.5                     | 32.674    | 51.7 | 52.165    | 31.6                 | 31.858    |

| Т 2    | Т4     | T 2 - T4 | ปริมาตร ( ml )   | เวลา ( s) | Flow (m <sup>3</sup> /s) | Heat (w) |
|--------|--------|----------|------------------|-----------|--------------------------|----------|
| 32.674 | 31.858 | 0.816    | 370              | 20        | 0.0000185                | 63.205   |
| 32.573 | 31.858 | 0.715    | 300              | 16        | 0.00001875               | 56.162   |
| 32.674 | 31.858 | 0.816    | 350              | 20        | 0.0000175                | 59.788   |
| 32.674 | 31.858 | 0.816    | 350              | 21        | 1.66667E-05              | 56.941   |
| 32.674 | 31.858 | 0.816    | 350              | 22        | 1.59091E-05              | 54.353   |
| Ő      | 2020   | ค่าพถังจ | านความร้อนเฉลี่ย | 0000      |                          | 58.090   |
| ٩      |        | ЛЛЦ      | 16199            |           | BNP                      | 195      |

## มุมของฮีตไปป์ -180 องศา

ที่ฮีตไปป์ซึ่งใช้Mesh 120

T 1 คือ อุณหภูมิของผิวท่อทองแดงที่ส่วนด้านบนส่วนของ Condenser

T 2 คือ อุณหภูมิของน้ำที่ออกจากท่อ ฮิตไปป์

T 3 คือ อุณหภูมิของผิวท่อทองแคงที่ส่วนด้านล่างส่วนของ Evaporator

T 4 คือ อุณหภูมิของน้ำที่เข้าไปยังท่อ ฮิตไปป์

| T 1  | EXACT_T 1 | T 2 ( T <sub>OUT</sub> ) | EXACT_T 2 | Т 3  | EXACT_T 3 | T4(T <sub>IN</sub> ) | EXACT_T 4 |
|------|-----------|--------------------------|-----------|------|-----------|----------------------|-----------|
| 55.5 | 55.428    | 33.4                     | 33.579    | 51.9 | 52.367    | 31.1                 | 31.351    |
| 55.5 | 55.428    | 33.3                     | 33.479    | 52   | 52.468    | 31.1                 | 31.351    |
| 55.6 | 55.527    | 33.2                     | 33.378    | 51.9 | 52.367    | 31.1                 | 31.351    |
| 55.6 | 55.527    | 33.2                     | 33.378    | 51.9 | 52.367    | 31.1                 | 31.351    |
| 55.6 | 55.527    | 33.2                     | 33.378    | 51.9 | 52.367    | 31.2                 | 31.452    |

|        |                                                | ()                                                                                                                                                | 1901 (S)                                                                                                                                                                                                                                                | Flow (m <sup>°</sup> /s)                                                                                                                                                                                                                                                                                                  | Heat (w)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31.351 | 2.228                                          | 450                                                                                                                                               | 30                                                                                                                                                                                                                                                      | 0.000015                                                                                                                                                                                                                                                                                                                  | 139.957                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31.351 | 2.128                                          | 430                                                                                                                                               | 30                                                                                                                                                                                                                                                      | 1.4333E-05                                                                                                                                                                                                                                                                                                                | 127.699                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31.351 | 2.027                                          | 450                                                                                                                                               | 30                                                                                                                                                                                                                                                      | 0.000015                                                                                                                                                                                                                                                                                                                  | 127.321                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31.351 | 2.027                                          | 450                                                                                                                                               | 30                                                                                                                                                                                                                                                      | 0.000015                                                                                                                                                                                                                                                                                                                  | 127.321                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 31.452 | 1.926                                          | 450                                                                                                                                               | 30                                                                                                                                                                                                                                                      | 0.000015                                                                                                                                                                                                                                                                                                                  | 120.951                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 000    | ค่าพลังงาา                                     | นความร้อนเฉลี่ย                                                                                                                                   |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                           | 128.650                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 111                                            | <b>36</b> 47                                                                                                                                      | n                                                                                                                                                                                                                                                       | JVE                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | 31.351<br>31.351<br>31.351<br>31.351<br>31.452 | 31.351       2.228         31.351       2.128         31.351       2.027         31.351       2.027         31.452       1.926         ค่าพลังงาท | 31.351         2.228         450           31.351         2.128         430           31.351         2.027         450           31.351         2.027         450           31.351         2.027         450           31.452         1.926         450 | 31.351         2.228         450         30           31.351         2.128         430         30           31.351         2.027         450         30           31.351         2.027         450         30           31.351         2.027         450         30           31.452         1.926         450         30 | 31.351         2.228         450         30         0.000015           31.351         2.128         430         30         1.4333E-05           31.351         2.027         450         30         0.000015           31.351         2.027         450         30         0.000015           31.351         2.027         450         30         0.000015           31.452         1.926         450         30         0.000015           ค่าพลังงานความร้อนเคลี่ย |

| มุมของฮิตไปป์ | ค่า Q (W) |
|---------------|-----------|
| -90           | 158.480   |
| -105          | 195.813   |
| -135          | 206.929   |
| -165          | 220.711   |
| -180          | 58.090    |
| -195          | 56.603    |
| -210          | 31.007    |
| -225          | 11.340    |
| -240          | 16.004    |
| -255          | 6.737     |
| -270          | 25.855    |

<u>ค่าอัตราการถ่ายเทความร้อนจากการทดลองฮีตไปปัชุดที่ 1 ที่ใช้ Mesh 100</u>



### ภาคผนวก ข

## รายละเอียดของ STAINLESS STEEL WIRE NETTING

|                                                    |                                  | 01/ 1                        |                              |                          |                          |                                  |                                  |
|----------------------------------------------------|----------------------------------|------------------------------|------------------------------|--------------------------|--------------------------|----------------------------------|----------------------------------|
| MEQU                                               | WIDE NO                          | WIRE DIA.                    | OPENING                      | MEGU                     |                          | WIRE DIA                         | OPENING                          |
| MESH                                               | WIRE NO.                         | (MM)                         | (MMA)                        | MESH                     | WIRE NO.                 | (8484)                           | (1444)                           |
| 1"                                                 |                                  | 3                            | 25                           | 20                       |                          | 0.61                             |                                  |
| 3//                                                |                                  |                              | 10.0                         | 20                       | 23                       | 0.01                             | 0.00                             |
| 5/4                                                |                                  | <u> </u>                     | 18.8                         | 20                       | 25                       | 0.51                             | 0.76                             |
| 5/8"                                               |                                  | 2                            | 15.8                         | 20                       | 26                       | 0.46                             | 0.81                             |
| 1/2"                                               |                                  | 2                            | 12.7                         | 20                       | 27                       | 0.42                             | 0.85                             |
|                                                    |                                  |                              |                              | 20                       | 28                       | 0.38                             | 0.00                             |
| 2                                                  | 44                               | 2.02                         | 40.07                        | 20                       | 20                       | 0.30                             | 0.09                             |
| <u> </u>                                           | 14                               | 2.03                         | 10.67                        | 20                       | 29                       | 0.34                             | 0.93                             |
| 2                                                  | 16                               | 1.63                         | 11.07                        | 20                       | 30                       | 0.31                             | 0.96                             |
|                                                    |                                  |                              |                              |                          |                          |                                  |                                  |
| 3                                                  | 16                               | 1.62                         | 6.04                         | 25                       | 20                       | 0.00                             |                                  |
|                                                    | 10                               | 1.03                         | 0.04                         | 20                       | 28                       | 0.38                             | 0.04                             |
| 3                                                  | 18                               | 1.22                         | 7.25                         | 25                       | 29                       | 0.34                             | 0.68                             |
| 4                                                  | 16                               | 1.63                         | 4.72                         | 25                       | 30                       | 0.31                             | 0.71                             |
| 4                                                  | 18                               | 1 22                         | 5.13                         | 25                       | 21                       | 0.20                             | 0.72                             |
|                                                    |                                  | 1.22                         | 0.15                         | 20                       | 31                       | 0.29                             | 0.73                             |
| 4                                                  | 20                               | 0.91                         | 5.44                         | 25                       | 32                       | 0.274                            | 0.742                            |
|                                                    |                                  |                              |                              | 25                       | 33                       | 0.253                            | 0.763                            |
| 5                                                  | 18                               | 1 22                         | 3.86                         |                          |                          | 0.200                            | 0.700                            |
| 5                                                  | 20                               | 0.01                         | 4.47                         | 20                       | 00                       |                                  | A 47                             |
|                                                    | 20                               | 0.51                         | 4.17                         | 30                       | 28                       | 0.38                             | 0.47                             |
| 5                                                  | 21                               | 0.81                         | 4.27                         | 30                       | 29                       | 0.34                             | 0.51                             |
| 5                                                  | 22                               | 0.71                         | 4.37                         | 30                       | 30                       | 0.31                             | 0.54                             |
|                                                    |                                  | 0.71                         | 4.01                         | 20                       | 00                       | 0.51                             | 0.54                             |
| 0                                                  | 40                               | 1.00                         |                              | 30                       | 31                       | 0.29                             | 0.56                             |
| 0                                                  | 18                               | 1.22                         | 3.01                         | 30                       | 32                       | 0.274                            | 0.573                            |
| 6                                                  | 20                               | 0.91                         | 3.32                         | 30                       | 33                       | 0.253                            | 0.594                            |
| 6                                                  | 21                               | 0.81                         | 3.42                         | 20                       | 24                       | 0.000                            | 0.004                            |
| 6                                                  |                                  | 0.01                         | 0.42                         | 30                       | 34                       | 0.233                            | 0.614                            |
| 0                                                  | - 22                             | 0./1                         | 3.52                         | 30                       | 35                       | 0.213                            | 0.634                            |
| 6                                                  | 23                               | 0.61                         | 3.62                         |                          |                          |                                  |                                  |
|                                                    |                                  |                              |                              | 32                       | 30                       | 0.31                             | 0.48                             |
| 7                                                  | 22                               | 0.71                         | 2.02                         | 20                       | 07                       | 0.01                             | 0.40                             |
|                                                    | 22                               | 0.71                         | 2.92                         | 32                       | 31                       | 0.1/2                            | 0.622                            |
|                                                    | 23                               | 0.61                         | 3.02                         | 35                       | 35                       | 0.213                            | 0.51                             |
|                                                    |                                  |                              |                              | 35                       | 36                       | 0.193                            | 0.53                             |
| 8                                                  | 20                               | 0.91                         | 2 27                         | 35                       | 27                       | 0.170                            | 0.554                            |
| 8                                                  | 21                               | 0.91                         | 2.27                         |                          | 31                       | 0.1/2                            | 0.551                            |
| 0                                                  | 21                               | 0.81                         | 2.37                         | TT Comments              | 1                        |                                  |                                  |
| 8                                                  | 22                               | 0.71                         | 2.47                         | 40                       | 33                       | 0.253                            | 0.382                            |
| 8                                                  | 22 1/2                           | 0.66                         | 2.52                         | 40                       | 34                       | 0.222                            | 0.402                            |
| 8                                                  | 22                               | 0.61                         | 2.52                         | 40                       | 04                       | 0.235                            | 0.402                            |
|                                                    | 23                               | 0.01                         | 2.57                         | 40                       | 35                       | 0.213                            | 0.422                            |
| 8                                                  | 24                               | 0.56                         | 2.62                         | 40                       | 36                       | 0.193                            | 0.442                            |
|                                                    |                                  |                              |                              | 40                       | 37                       | 0.172                            | 0.463                            |
| 10                                                 | 20                               | 0.01                         | 163                          |                          |                          |                                  | 0.400                            |
| 10                                                 | 24                               | 0.04                         | 1 70                         |                          |                          | 0.000                            |                                  |
| 10                                                 |                                  | 0.01                         | 1.73                         | 50                       | 34                       | 0.233                            | 0.275                            |
| 10                                                 | 22                               | 0.71                         | 1.83                         | 50                       | 35                       | 0.213                            | 0.295                            |
| 10                                                 | 22 1/2                           | 0.66                         | 1.88                         | 50                       | 26                       | 0 102                            | 0.215                            |
| 10                                                 | 22                               | 0.61                         | 1.00                         |                          |                          | 0.195                            | 0.315                            |
| 10                                                 | 23                               | 0.01                         | 1.93                         | 50                       | 31                       | 0.1/2                            | 0.336                            |
| 10                                                 | 24                               | 0.56                         | 1.98                         | 50                       | 38                       | 0.152                            | 0.356                            |
| 10                                                 | 25                               | 0.51                         | 2.03                         |                          |                          |                                  |                                  |
| 10                                                 | 26                               | 0.46                         | 2.00                         | 80                       | 25                       | 0.040                            | 0.04                             |
| - <u>·</u> ·                                       | 20                               | 0.40                         | 2.00                         | 00                       |                          | 0.213                            | 0.21                             |
|                                                    |                                  |                              |                              | 60                       | 36                       | 0.193                            | 0.23                             |
| 11                                                 | 25                               | 0.51                         | 1.80                         | 60                       | 37                       | 0.172                            | 0.251                            |
|                                                    |                                  |                              |                              | 60                       | 20                       | 0.150                            | 0.201                            |
| 12                                                 | 21                               | 0.04                         | 1.04                         |                          | 30                       | 0.152                            | 0.271                            |
| 14                                                 | 41                               | 0.81                         | 1.31                         | 70                       | 38                       | 0.152                            | 0.211                            |
| 12                                                 | 22                               | 0.71                         | 1.41                         | 70                       | 40                       | 0.121                            | 0.242                            |
| 12                                                 | 23                               | 0.61                         | 1.51                         |                          |                          |                                  |                                  |
| 12                                                 | 24                               | 0.56                         | 1.56                         | 00                       | 27                       | 0 4 70                           | 0.110                            |
| 12                                                 |                                  | 0.00                         | 1.00                         | 80                       | 31                       | 0.1/2                            | 0.146                            |
| 12                                                 | 25                               | 0.51                         | 1.61                         | 80                       | 38                       | 0.152                            | 0.166                            |
| 12                                                 | 26                               | 0.46                         | 1.66                         | 80                       | 38 1/2                   | 0.142                            | 0.176                            |
| 12                                                 | 27                               | 0.42                         | 1 70                         | 80                       | 20                       | 0 122                            | 0.405                            |
|                                                    |                                  | VITE                         | 1.10                         | 00                       | 39                       | 0.132                            | 0.185                            |
|                                                    |                                  |                              |                              | 80                       | 40                       | 0.121                            | 0.197                            |
| 14                                                 | 22                               | 0.71                         | 1.10                         | 100                      | 38                       | 0.152                            | 0.102                            |
| 14                                                 | 23                               | 0.61                         | 1 20                         | 100                      | 41                       | 0 111                            | 0 442                            |
| 14                                                 | 24                               | 0.50                         | 1.05                         | 100                      |                          | 0.111                            | 0.145                            |
| 17                                                 | 24                               | 0.56                         | 1.25                         | 100                      | 42                       | 0.101                            | 0.153                            |
| 14                                                 | 25                               | 0.51                         | 1.30                         | 120                      | 43                       | 0.091                            | 0.121                            |
| 14                                                 | 26                               | 0.46                         | 1.35                         | 120                      | 44                       | 0.091                            | 0 121                            |
| 14                                                 | 26 1/2                           | 0.44                         | 1 27                         | 120                      | -74                      | 0.001                            | 0.131                            |
| 14                                                 | 20 1/2                           | 0.44                         | 1.37                         |                          |                          |                                  |                                  |
| 14                                                 | 27                               | 0.42                         | 1.39                         | 150                      | 46                       | 0.061                            | 0.108                            |
|                                                    |                                  |                              |                              | 160                      | 44                       | 0.081                            | 0.078                            |
| 16                                                 | 22                               | 0.71                         | 0.89                         | 160                      | 40                       | 0.001                            | 0.070                            |
| 16                                                 | 00                               | 0.01                         | 0.00                         | 100                      | 46                       | 0.061                            | 0.097                            |
| 10                                                 | 23                               | 0.61                         | 0.98                         | 165                      | 46                       | 0.061                            | 0.093                            |
| 16                                                 | 24                               | 0.56                         | 1.03                         | 180                      | 47                       | 0.051                            | 0.000                            |
| 16                                                 | 25                               | 0.51                         | 1.09                         | 100                      | 40                       | 0.001                            | 0.050                            |
|                                                    | 20                               |                              | 1.00                         | 180                      | 48                       | 0.041                            | 0.100                            |
| 16                                                 | 20                               | 0.46                         | 1.13                         | 200                      | 46                       | 0.061                            | 0.066                            |
| 16                                                 | 27                               | 0.42                         | 1.17                         | 200                      | 47                       | 0.051                            | 0.076                            |
| 16<br>16                                           |                                  | 0.38                         | 1 21                         |                          |                          | 0.001                            | 0.070                            |
| 16<br>16<br>16                                     | 28                               | 0.30                         | 1.21                         |                          |                          |                                  |                                  |
| 16<br>16<br>16                                     | 28                               |                              |                              | 250                      | 47                       | 0.051                            | 0.051                            |
| 16<br>16<br>16                                     | 28                               |                              |                              |                          |                          | 0.001                            | 0.0.1                            |
| 16<br>16<br>16<br>18                               | 28                               | 0.56                         | 0.85                         | 1 250                    | 49                       | 0.041                            | 0.001                            |
| 16<br>16<br>16<br>16<br>18                         | 28<br>24<br>25                   | 0.56                         | 0.85                         | 250                      | 48                       | 0.041                            | 0.061                            |
| 16<br>16<br>16<br>16<br>18<br>18                   | 28<br>24<br>25                   | 0.56<br>0.51                 | 0.85<br>0.90                 | 250<br>270               | <u>48</u><br><u>48</u>   | 0.041                            | 0.061                            |
| 16<br>16<br>16<br>16<br>18<br>18<br>18             | 28<br>24<br>25<br>26             | 0.56<br>0.51<br>0.46         | 0.85<br>0.90<br>0.95         | 250<br>270<br>300        | 48<br>48<br>48           | 0.041<br>0.041<br>0.041          | 0.061<br>0.053<br>0.044          |
| 16<br>16<br>16<br>16<br>18<br>18<br>18<br>18<br>18 | 28<br>24<br>25<br>26<br>27       | 0.56<br>0.51<br>0.46<br>0.42 | 0.85<br>0.90<br>0.95<br>0.99 | 250<br>270<br>300<br>325 | 48<br>48<br>48<br>48     | 0.041<br>0.041<br>0.041<br>0.041 | 0.051<br>0.061<br>0.053<br>0.044 |
| 16<br>16<br>16<br>16<br>18<br>18<br>18<br>18<br>18 | 28<br>24<br>25<br>26<br>27<br>28 | 0.56<br>0.51<br>0.46<br>0.42 | 0.85<br>0.90<br>0.95<br>0.99 | 250<br>270<br>300<br>325 | 48<br>48<br>48<br>48 1/2 | 0.041<br>0.041<br>0.041<br>0.035 | 0.061<br>0.053<br>0.044<br>0.043 |

### STAINLESS STEEL WIRE NETTING

### ภาคผนวก ค

## ตารางที่ ค.1 คุณสมบัติที่สภาวะอิ่มตัวของน้ำยาทำความเย็นหมายเลข R-12

| Trees and the set |
|-------------------|
|-------------------|

| Chemical formul<br>Molecular weigh                                                                                                                                                                         | a: CCl <sub>2</sub> F <sub>2</sub><br>t: 120.92                                       |                                                                                       |                                                                                       | -*                                                                                    |                                                                                        |                                                                                       | Critical temperature: 384.8 K<br>Critical pressure: 4132 kPa<br>Critical density: 561.8 kg/m <sup>3</sup> |                                                                                      |                                                                                       |                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|
| T <sub>set</sub> (K)<br>P <sub>set</sub> (kPa)                                                                                                                                                             | 243.2<br>101.3                                                                        | 260<br>200                                                                            | 275<br>333                                                                            | 290<br>528                                                                            | 305<br>793                                                                             | 320<br>1145                                                                           | 335<br>1602                                                                                               | 350<br>2183                                                                          | 365<br>2907                                                                           | 384.8                          |
| $p_i (kg/m^3)$<br>$p_c (kg/m^3)$<br>$h_{in} (kJ/kg)$<br>$c_{in} (kJ/kg K)$<br>$c_{in} (kJ/kg K)$<br>$\mu_i (\mu N s/m^3)$<br>$\mu_i (\mu N s/m^3)$<br>$k_i (mW/m K)$<br>$k_i (mW/m K)$<br>$Pr_i$<br>$Pr_i$ | 1486<br>6.33<br>168.3<br>0.896<br>0.569<br>373<br>10.3<br>95.1<br>6.9<br>3.51<br>0.85 | 1436<br>11.8<br>161.5<br>0.911<br>0.614<br>303<br>11.0<br>87.4<br>7.7<br>3.16<br>0.88 | 1388<br>19.2<br>154.7<br>0.932<br>0.646<br>262<br>11.7<br>80.5<br>8.4<br>3.03<br>0.90 | 1338<br>29.9<br>146.6<br>0.957<br>0.689<br>231<br>12.5<br>73.3<br>9.2<br>3.02<br>0.94 | 1284<br>44.8<br>137.7<br>0.990<br>0.746<br>208<br>13.3<br>66.8<br>10.0<br>3.14<br>0.99 | 1225<br>65.4<br>127.2<br>1.03<br>0.825<br>187<br>14.2<br>59.8<br>10.8<br>3.22<br>1.08 | 1157<br>94.6<br>114.0<br>1.08<br>0.920<br>167<br>15.2<br>53.0<br>11.6<br>3.40<br>1.21                     | 1075<br>136.4<br>97.6<br>1.13<br>1.22<br>144<br>16.5<br>46.2<br>12.3<br>3.52<br>1.64 | 969.7<br>203.2<br>75.8<br>1.22<br>1.68<br>119<br>18.1<br>39.2<br>13.4<br>3.70<br>2.27 | 561.8<br>561.8<br>15.4<br>15.4 |
| σ (mN/m)                                                                                                                                                                                                   | 15.5                                                                                  | 13.5                                                                                  | 11.4                                                                                  | 9.4                                                                                   | 7.7                                                                                    | 5.9                                                                                   | 4.2                                                                                                       | 2.8                                                                                  | 1.3                                                                                   |                                |



### ภาคผนวก ง

## ตารางที่ ง.1 คุณสมบัติทางกายภาพของโครงสร้างวิก

| Physi  | ical Properties of Wick                                                                         | Structure         | 5                                                                                                                                                                                                                 |                                                           |                                                |                                                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Wick Type                                                                                       |                   | Thermal Conductivity                                                                                                                                                                                              | Porosity                                                  | Minimum<br>Capillary<br>Radius                 | Permeability                                                                                                                                                                            |
| + L+   | Unconsolid-<br>ated packed<br>spherical<br>particles (d<br>= average<br>particle<br>diameter) 5 | Plain<br>Sintered | $k_{eff} = \frac{k_e [2k_e + k_s - 2(1 - \varepsilon)(k_e - k_s)]}{2k_e + k_s + (1 - \varepsilon)(k_e - k_s)}$ $k_{eff} = \frac{k_e [2k_e + k_e - 2\varepsilon(k_s - k_e)]}{2k_e + k_e + \varepsilon(k_s - k_e)}$ | Estimated from<br>(assuming cubic<br>packing) ε =<br>0.48 | r <sub>c</sub> = 0.21d                         | $k = \frac{d^2 \varepsilon^2}{150(1-\varepsilon)^2}$                                                                                                                                    |
| · + ++ | Sintered<br>metal fibers<br>(d = fiber<br>diameter)                                             |                   | $k_{eff} = e^2 k_e (1-\epsilon)^2 k_f$ $+ \frac{4\epsilon (1-\epsilon)k_e k_e}{k_e + k_f}$                                                                                                                        | Use<br>manufacturers<br>data                              | $r_{\varepsilon} = \frac{d}{2(1-\varepsilon)}$ | $k = C_1 \frac{y^2 - 1}{y^2 - 1}$<br>where<br>$y = 1 + \frac{C_2 d^2 \varepsilon^3}{(1 - \varepsilon)^2}$ $C_1 = 6.0 \times 10^{-10} \text{ m}^2$ $C_2 = 3.3 \times 10^7 \text{ l/m}^2$ |

\* The axis of the pipe and direction of fluid flow are normal to the paper.

These wicks are positioned so that the layers follow the contours of the iner surface of the pipe wall.

### ภาคผนวก จ

## ตัวอย่างการกำนวณ ก่ากวามร้อนที่ถ่ายเทได้, Q และขีดจำกัดต่างๆ ของท่อกวามร้อน

| Evaporation section                       | Adiabatic section<br>↓ ↓       | Condenser section |
|-------------------------------------------|--------------------------------|-------------------|
| 50 c.m.                                   | ↑ ↑<br>25 c.m.                 | 50 c.m.           |
| สารทำความเย็น ( Working F                 | luid) คือ R-12                 |                   |
| ชนิดของวิก คือ Wrapped scre               | een ( N = 100 ) เบอร           | ร์ 42             |
| ความยาวของฮีตไปปี 1.25 เม                 | ពេទ                            |                   |
| $d_0 = 1.87 \times 10^{-2} m$             |                                |                   |
| Screen wire diameter, $d = 0.1$           | $01 \ge 10^{-3} = m$           |                   |
| Screen wick thickness, $t_w = 1$          | $.00 \ge 10^{-3} $ m           |                   |
| Copper tube, $d_i = 1.675 \times 10^{10}$ | $\tilde{b}^2$ m                |                   |
| Vapor core diameter , $d_v = 1.4$         | $475 \ge 10^{-2} = m$          |                   |
| Heat pipe inclination, $\psi = -9$        | 90 rad                         |                   |
| End Condenser Length, $L_c = 0$           | ).5 m                          |                   |
| Adiabatic Length, L <sub>a</sub> = 0.25 m |                                |                   |
| End Evaporator Length, $L_e = 0$          | ).5 m                          |                   |
| Liquid density, $\rho_l$ = 1,165.39       | kg/m <sup>3</sup>              |                   |
| Liquid viscosity, $\mu_l = 169.47$        | x 10 <sup>-6</sup> kg/m.s      |                   |
| Liquid thermal conductivity, $k$          | $_{l} = 0.05384 \text{ W/m.K}$ |                   |
| Surface tension coefficient, $\sigma$     | $r = 4.41^{*}10^{-3}$ N/m      |                   |
| Heat of vaporization, $h_{fg}$ = 11       | 15.63 KJ/kg                    |                   |
| Vapor density, $ ho_{_{\!V}}$ = 91.00 kg  | /m <sup>3</sup>                |                   |
| Vapor viscosity, $\mu_v$ = 15.08 x        | 10 <sup>-6</sup> kg/m.s        |                   |
| Evaporator Temperature $= 60$             | ) <sup>o</sup> C               |                   |
|                                           |                                |                   |



## 1. การคำนวณหาค่า Maximum effective pumping, P<sub>pm</sub>ใน Capillary Limit

เลือกใช้ wick ที่เป็นตาข่าย เบอร์ 42 จากตารางในภาคผนวก. ข 1ได้ก่าของ w = 0.153 mm และ ก่า d = 0.101 mm มุมทดสอบ –90 องศา

nnni 
$$r_c = \frac{w+d}{2} = 0.127 \times 10^{-3} \text{ m}$$
  
Capillary radius ,  $r_c = \frac{1}{2N} = 0.127 \times 10^{-3} \text{ m}$   
 $N = 3.937 \times 10^{-3} \text{ m}^{-1}$   
Maximum Capillary pressure,  $\mathbf{P_{cm}} = \frac{2\sigma}{r} = \frac{2 \times 4.41 \times 10^{-3}}{0.127 \times 10^{-3}} = 69.45 \text{ N/m}^2$ 

Normal Hydrostatic pressure,  $\Delta P_{\perp} = \rho_l g d_v \cos \psi = 1,165.39 \times 9.81 \times 1.475 \times 10^{-2} \times 0^{-2}$ 

$$= 0 \text{ N/m}^2$$

Axial Hydrostatic pressure, =  $\rho_l g L_t \sin \psi = 1,165.39 \times 9.81 \times 0.75 \times -1 = -8,574.357 \text{ N/m}^2$ 

Maximum effective pumping, 
$$\mathbf{P}_{pm} = \mathbf{P}_{cm} - \Delta \mathbf{P}_{\perp} - \rho_l g L_t \sin \psi$$
 (16)  
= 69.45 -0 + 8.574.357

 $= 8,643.807 \text{ N/m}^{2}$ Wick cross-section area,  $A_{w} = \frac{\pi (d_{i}^{2} - d_{v}^{2})}{4} = \frac{\pi ((1.675 \times 10^{-2})^{2} - (1.475 \times 10^{-2})^{2})}{4}$  $= 4.948 \times 10^{-5} \text{ m}$ 

Wick crimping factor, S = 1.05

า

Wick porosity 
$$\varepsilon = 1 - \frac{\pi SNd}{4} = 1 - \frac{(\pi \times 1.05 \times 3.937 \times 10^3 \times 0.101 \times 10^{-3})}{4} = 0.672$$

Wick permeability,  $K = \frac{d^2 \varepsilon^3}{122(1-\varepsilon)^2} = \frac{(0.101 \times 10^{-3})^2 (0.672)^3}{122(1-0.672)^2} = 2.358 \times 10^{-10} \text{ m}^2$ Liquid Friction coefficient,  $F_l = \frac{\mu_l}{KA_w \rho_l h_{fg}}$  (20)  $= \frac{169.47 \times 10^{-6}}{2.358 \times 10^{-10} \times 4.948 \times 10^{-5} \times 1,165.39 \times 115.63 \times 10^3}$ 

 $= 107.790 (N/m^2)/(W.m)$ 

 $\mathfrak{M}$ Friction coefficient for vapor flow,  $F_v$ Hydroulic radius for vapor flow,  $r_{h,v} = d\sqrt{2}$ 

= 
$$(1.475 \times 10^{-2})/2 = 7.375 \times 10^{-3} m$$

Vapor core cross section area,  $A_{\nu} = \frac{\pi}{4} d_{\nu}^2 = 4.388 \times 10^{-5} \text{ m}^2$ 

 $\begin{aligned}
\theta \Pi & f_{\nu}R_{e\nu} = 16 \\
F_{\nu} &= \frac{(f_{\nu}R_{e\nu})\mu_{\nu}}{2A_{\nu}r_{h,\nu}^{2} \times \rho_{\nu} \times h_{fg}} \\
&= \frac{16 \times 15.08 \times 10^{-6}}{2 \times 4.338 \times 10^{-5} \times (7.375 \times 10^{-3})^{2} \times 91 \times 115.63 \times 10^{3}} \\
&= 4.860 \times 10^{-3} (N/m^{2})/(W.m)
\end{aligned}$ (22)

จาก Capillary limit on heat transfer rate,  $Q_{c,\max}$ 

$$Q_{c,\max} = \frac{(QL)_{c,\max}}{\frac{1}{2}L_c + L_a + \frac{1}{2}L_a}$$
(14)  

$$(QL)_{c,\max} = \frac{P_{pm}}{F_l + F_v}$$
(15)  

$$= \frac{8,643.807}{107.790 + 0.0048} = 80.188 \text{ W.m}$$
(16)  

$$Q_{c,\max} = \frac{80.188}{(\frac{1}{2} \times 0.5) + 0.25 + (\frac{1}{2} \times 0.5)}$$
(15)  

$$= 106.91 \text{ W}$$

$$\begin{array}{l} \text{OTA} \ \mathbf{M} \ = \frac{\rho_{I} \sigma_{h_{fg}}}{\mu_{I}} \tag{1} \\ M \ = \ \frac{1,165.39 \times 4.41 \times 10^{-3} \times 115.63 \times 10^{3}}{169.47 \times 10^{-6}} \ = \ 3.51 \times 10^{9} W \ / \ m^{2} \ = \ 3.51 \times 10^{2} \ kW \ / \ cm^{2} \end{array}$$

### 2, การคำนวณหาค่า ใน Sonic Limit

Vapor Specific heat ratio,  $r_v = 4/3 = 1.33$  (Poly atomic ) Universal gas const,  $R = 8.314 \times 10^3$  (J/kg.mol.K) Gas Molecular weigth, M = 120.92 [CCl<sub>2</sub>F<sub>2</sub>]  $R_v = R/M = 8.314 \times 10^{3/}/120.92 = 68.756$  J/kg.K  $T_v = 333.15$  K  $Q_{s,max} = \frac{A_v \rho_v h_{fg} (r_v R_v T_v)^2}{2(r_v + 1)}$ (12) (12)

$$= 4.388 \times 10^{-5} \times 91 \times 115.63 \times 10^{3} \times \left[\frac{(1.33 \times 68.756 \times 333.15)}{2(1.33+1)}\right]^{\frac{1}{2}}$$
  
= 37,332.46 W

### 3, การคำนวณหาค่า ใน Entrainment Limit

$$r_{n,s} = \frac{1}{2N} - \frac{d}{2} = (0.127 \times 10^{-3}) - (\frac{0.101 \times 10^{-3}}{2}) = 7.65 \times 10^{-5} m$$

$$Q_{e,\max} = A_{\nu} h_{fg} (\frac{\sigma \rho_{\nu}}{2r_{n,s}})^{\frac{1}{2}}$$
(13)
$$= 4.388 \times 10^{-5} \times 115.63 \times 10^{3} (\frac{4.41 \times 10^{-3} \times 91}{2 \times 7.65 \times 10^{-5}})^{\frac{1}{2}} = 259.85W$$

### 4, การคำนวณหาค่า ใน Boiling Limit

$$k_{e} = \frac{k_{l}[(k_{l} + k_{w}) - (1 - \varepsilon)(k_{l} - k_{w})]}{(k_{l} + k_{w}) + (1 - \varepsilon)(k_{l} - k_{w})}$$
(23)

$$k_{1} = 0.053 \text{ W/m.K}$$

$$k_{w} = 15.25 \text{ W/m.K}$$

$$\varepsilon = 0.672$$

$$k_{e} = \frac{0.053[(0.053 + 15.25) - (1 - 0.672)(0.053 - 15.25)]}{(0.053 + 15.25) + (1 - 0.672)(0.053 - 15.25)}$$

$$= 0.169$$
Boiling nucleation radius,  $r_{n} = 2.54 \times 10^{-7} \text{ m}$ 

Critical pressure = 
$$\frac{2\sigma}{r_n} = \frac{2 \times 4.41 \times 10^{-3}}{2.54 \times 10^{-7}} = 34,724.41N / m^2$$

$$Q_{b,\max} = \frac{2\pi L_e K_e T_v}{\lambda \rho_v \ln(\frac{r_i}{r_v})} \times (\frac{2\sigma}{r_n})$$
(24)  
$$= \frac{2 \times \pi \times 50 \times 10^{-2} \times 0.169 \times 333.15 \times 34,724.41}{115.63 \times 10^3 \times 91 \times \ln(\frac{8.375 \times 10^{-3}}{7.475 \times 10^{-3}})}$$
= 5.134 W

ในการทดลองได้ค่าอัตราการถ่ายเทความร้อนในกรณีนี้มาเท่ากับ 200.58 W ซึ่งมีค่าเกิน ขีดจำกัดของการเดือดเพราะว่าในการจะประมาณก่าขีดจำกัดของการเดือดนั้นเราจะประมาณขนาดของ อนุภาคของของไหลใช้งานได้ยาก โดยที่ในการกำนวณก่อนหน้านี้ใช้ก่าการประมาณมาจากหนังสือ ของ S.H.CHI ซึ่งเป็นหนังสือที่เกี่ยวกับฮีตไปป์ ความคลาดเกลื่อนที่ได้นี้ส่วนหนึ่งอาจมาจากการ ทดลองการประมาณก่าตามหนังสือซึ่งเหตุผลดังกล่าวได้มีกล่าวไว้ในหนังสือของ Kreith

ดังนั้น ในความเป็นจริงการที่จะคำนวณค่า ขีดจำกัดของการเดือดนั้นจึงสามารถทำได้ยาก ในการคำนวณข้างต้นนี้สามารถสรุปขีดจำกัดต่างๆของฮีตไปป้ำมาจากท่อทองแดง มีวิกเป็นตา ข่าย สแตนเถส เบอร์ 100 และ มีของไหลใช้งานเป็น R-12 โดยทำการทดลองที่มุมทดลอง –90 องศา หรือ 270 องศาตามทิศของมุมของฮีตไปป์ (ψ)ในทฤษฎีในบทที่ 2

| ļ | โดยสรุป | lค่า Q | ของ | Limit | ทั้งหมด |  |
|---|---------|--------|-----|-------|---------|--|
|   |         |        |     |       |         |  |

. .

۶,

| Capilary    | Limit | =    | 106.91               | W |
|-------------|-------|------|----------------------|---|
| Sonic       | Limit | =    | 37,332.46            | W |
| Entrainment | Limit | =    | 259.8 <mark>5</mark> | W |
| Boiling     | Limit | ายิเ | 5.134                | W |
|             |       |      |                      |   |

108

### ตัวอย่างการคำนวณ หาค่า k<sub>en</sub> ( EffectiveThermal Conductivity )

ในการคำนวณตัวอย่างนี้เป็นการทคลองที่มุมฮิตไปป์ -90 องศา และ Mesh 100 มีผลต่างของ อุณหภูมิเท่ากับ 4-5 องศาเซลเซียส

จาก 
$$Q = kA \frac{\Delta T}{\Delta x}$$
  
ค่า  $k = \frac{Q\Delta x}{A\Delta T}$   
ท่อทองแดงขนาด <sup>3</sup>/<sub>4</sub> นิ้ว มีเส้นผ่านศูนย์กลางเท่ากับ 1.87\*10<sup>-2</sup> เมตร  
ค่าของ  $A = \frac{\pi d^2}{4} = \frac{\pi \times (1.87 \times 10^{-2})^2}{4} = 2.75 \times 10^{-4} m^2$   
 $\Delta x = 0.25$  เมตร (ความยาวในส่วน Adiabatic )

ในการคำนวณตัวอย่างนี้กิดที่การทดสอบ -90 องศา และ Mesh 100 มีกวามห่างของอุณหภูมิ เท่ากับ 4-5 องศาเซลเซียส

ค่า  $\Delta T_{water} = 27.528$  องศาเซลเซียส  $\Delta T_{Heat..pipe} = T_E - T_C = 53.01 - 49.00 = 4.01$  องศาเซลเซียส เมื่อกิดที่อุณหภูมิของน้ำ  $\mathbf{k}_{\text{Eff}} = \frac{200.58 \times 0.25}{2.75 \times 10^{-4} \times 27.528} = 6,624.022W / m.K$ เมื่อกิดที่อุณหภูมิของผลต่างส่วนการระเทยและส่วนควบแน่น  $\mathbf{k}_{\text{Eff}} = \frac{200.58 \times 0.25}{2.75 \times 10^{-4} \times 4.01} = 45,472.68W / m.K$ ด้วอย่างการคำนวณหาก่า Heat Flux (W/m<sup>2</sup>)

Heat 
$$Flux = Q / A$$

Heat Flux =  $(200.58 / 0.000275) = 729,381.8182 \text{ W/m}^2$ 

### ภาคผนวก ฉ

ตารางที่ ฉ-1 แสดงการเทียบสอบ อุปกรณ์วัดอุณหภูมิที่ใช้ในการทดลอง กับ เทอร์ โมมิเตอร์ อ้างอิงที่มีความละเอียดสูง จากผลการวัดที่ได้ในตาราง ฉ-1 นำไปหาความสัมพันธ์ เพื่อใช้ในผลการ ทดลองดัง รูปที่ ฉ-1 ถึง ฉ-4

ตารางที่ ฉ-1 แสดงผลการสอบเทียบอุณหภูมิของหัววัดทั้ง 4 กับเทอร์โมมิเตอร์อ้างอิงที่มีความ ละเอียดสูง

| Thermometer        | T1   | T2   | Т3   | <b>T4</b> |
|--------------------|------|------|------|-----------|
| 28.6               | 28.3 | 28.3 | 28.3 | 28.3      |
| 29.4               | 29.3 | 29.1 | 29   | 29        |
| 29.9               | 29.9 | 29.8 | 29.8 | 29.8      |
| 30.5               | 30.3 | 30.1 | 30.1 | 30.1      |
| 31.1               | 31.1 | 30.9 | 30.9 | 30.8      |
| 32                 | 32.1 | 32   | 31.9 | 31.9      |
| 33.2               | 33.3 | 33.2 | 33.1 | 33        |
| 34.2               | 34.3 | 34.1 | 34   | 34        |
| 35. <mark>2</mark> | 35.3 | 35.1 | 35   | 35        |
| 36.4               | 36.4 | 36.2 | 36.1 | 36        |
| 37.1               | 37.3 | 37.1 | 37   | 37        |
| 38.3               | 38.3 | 38.1 | 38   | 37.9      |
| 39.4               | 39.5 | 39.3 | 39.1 | 39.1      |
| 40.2               | 40.5 | 40.2 | 40.1 | 40        |
| 41.2               | 41.2 | 40.8 | 40.7 | 40.7      |
| 42.1               | 42.1 | 41.8 | 41.7 | 41.7      |
| 43.2               | 43.2 | 43   | 42.8 | 42.7      |
| 44.2               | 44   | 43.7 | 43.6 | 43.5      |
| 45.3               | 45.4 | 45   | 44.9 | 44.9      |
| 46.2               | 46.2 | 45.9 | 45.8 | 45.7      |
| 47.1               | 47.3 | 46.9 | 46.7 | 46.6      |
| 48.1               | 48.1 | 47.9 | 47.6 | 47.6      |
| 49.2               | 49.1 | 48.7 | 48.6 | 48.5      |
| 50.3               | 50.3 | 50.1 | 49.9 | 49.8      |
| 51.2               | 51.3 | 51 0 | 50.8 | 50.7      |
| 52.2               | 52.2 | 52   | 51.8 | 51.8      |
| 53.2               | 53.2 | 52.8 | 52.8 | 52.7      |
| 54.5               | 54.6 | 54.2 | 54   | 53.9      |









## ประวัติผู้เขียนวิทยานิพนธ์

นาย ธนศักดิ์ ชุมวิสูตร

วัน/เดือน/ปีเกิด 30 มกราคม 2519

สื่อ

การศึกษา 2540 วศ.บ.(เครื่องกล)

มหาวิทยาลัยเทคโนโลยีสุรนารี

