Chaptver IV

Experiments and Results

4.1 Database and Neural Network Setup

To illustrate how the novel technique works, we will apply it to three examples.
The first and the second example concern with the data set in 2-dimensions
where the data of the first example are in real space and of the second example
are in binary space. The network has only one layer and has only one neuron to
classify a given data set. These two examples were appeared in Lursinsap and
Tanprasert [11] but with a new method of new weight vector finding gives better
results. The third example concerns with the input data set of the neurons of
hidden layer are in 2-dimensional binary space and input data set of the neuron
of output layer are in real spaces. The network has 2 layers, which are 2 neurons
in the hidden layer and 1 neuron in the output layer, classify the given input

data. The initial weights are randomized in the range of [-1,1].

4.1.1 Zigzag Problem and AND Problem

The data and boundary vector pairs were presented in [11], when we solved the
problem by the method in [11] the new target errors were disturbed. Table 4.1
and 4.2 show the Zigzag problem, the target error before optimizing the weights
location is 0.005588 and the target error after optimizing is 0.006875. Table 4.3
and 4.4 show the AND problem, the target error before optimizing the weights
location is 0.000998 and the target error after optimizing is 0.01014. This shows
that the method in [11] does not ensure the target error after optimizing the
weight vector, and our new method will solve this problem.

The selected total sum square error for the target error is 0.006 for Zigzag

24

problem, and 0.001 for AND problem. For each value of the total sum square
error, we continue to relocate weight vector with the standard deviation 0.001.
The first objective is to achieve the specified total sum square error for the
target error. The second objective is to make the total sum square error for
the location error less than the location errbr as the consequence of the first
objective while attempting to maintain the target error. The New Method in
the tables refers to our technique while the Old Method refers to the Lursinsap
and Tanprasert's technique [11].

The results in Table 4.1-4.4 show that new the tschnique can enhance the
immunity of neuron, 7; ; decreases to zero, and it does not disturb the data-

fitting errors.

4.1.2 XOR Problem

The XOR problem is one of the benchmark for training algorithm performance
comparison and this architecture is 2 masterpiece for multilayer the perceptron
type. The data set consists of four input vectors with their targets which are
(0,0,0), (1,0,1), (1,1,0), (0,1,1). The first two elements of a 3-tuples are the
input elements while the last element is the target. We assign class A to the
data vector having target 1 and class B to the vectors having target 0.

For the hidden layer, there are two decision lines that are [, and lp. Consider
line Iy, the boundary vectors in class A are (0,1) and (1,0), and the boundary
vector in class B is (1,1). These vectors are, then, used to find the boundary
vector pairs for relocating the weight w,, w;, and ws. In class A, vector (0,1)
and (1,0) form boundary vector pairs with boundary vector in class B which is
(1,1). In class B, vector (1,1) forms boundary vector pairs with vectors (1,0)
and (0,1) in class A. Therefore, we only consider these boundary vector pairs,
which are (1,1), (1,0) and (1,1), (0,1), to find wj, w, ws.

Consider line I3, the boundary vectors in class A are (0,1) and (1,0), and

25

the boundary vector in class B is (0,0). These vectors are then used to find
the boundary vector pairs for relocating the weight ws, wy, and ws. In class A,
vectors (0,1) and (1,0) form boundary vector pairs with boundary vector (0,0)
in class B. In class B, vector (0,0) forms boundary vector pairs with vectors
(0,1) and (1,0) in class A. Therefore, we only consider these boundary vector
pairs, which are (0,1), (0,0) and (1,0), (0,0) to find wj, wj, wg.

For the output layer, there is only one decision line, l3. The inputs are not 0
or 1 but are 0+ (approaches to 0 in positive direction) or 1~ (approaches to 1 in
negative direction). Consider line [3, the boundary vectors in class A are (17,17)
and (0+,07), and the boundary vectors in class B is (1~,07). These vectors are
then used to find the boundary vector pairs for relocating the weight w7, ws, wy.
In class A, the vectors (17,17) and (07,0%) form boundary vector pairs with
boundary vector (1=,07%) in class B. In class B, vector (1~,0%) forms boundary
vector pairs with vectors (17,17) and (0%,0%) in class A. Therefore, we only
consider these boundary vectors pairs (0~,0%), (17,0%) and (17,17),(17,0%) to
find w}, w), and w). The total location error of the network is defined as the

summation of the location error of each line which is
Ey= En + Eip + Eu.

We select maximum target error square three values, that are 0.01, 0.001, and
0.0001. The first objective is the target error square that is at least less than
or equal to the setting targetverror, E,. The second object is the location er-
ror square of new weight vector that must be less than the previous generation
and it must be less than some positive threshold, Ejm,z, value in the final. Ta-
ble 4.5 and Table 4.6 show the results when the maximum target error is set
to 0.001. The average convergence rates, from 5 runs, in case of target error
0.01 ,0.001, and 0.0001 with various standard deviation intervals of the random

optimization are concluded in Figure 4.1, Figure 4.2, and Figure 4.3 respectively.

26

Table 4.1: Comparison of E, and E, of Zigzag problem obtained from new and old methods.

Error Before Relocating Weights New Method Old Method
E, 0.005588 0.005580 0.006875
Ei 0.452997 <10* 0.000006

Table 4.2: Comparison of weight tolerances of Zigzag problem obtained from new

and old methods.

Before Relocating
Weight value Ty

Weight value i

New Method

Old Method

Weight value Tij

205.086792 0.185082 194.966812 0.000003 187.874207 0.000878
270.159271 0.246776 292.450745 0.000004 281.664001 0.001229
-30.606279 0.164517 -31.194712 0.000002 -30.052000 0.000878

Table 4.3: Comparison of E, and £, of AND problem obtained from new and old methods.

Error Before Relocating Weights New Method Old Method
E, 0.001 0.000998 0.01014
E 0.00956 <107 107
Table 4.4: Comparison of weight tolerances of AND problem obtained from new and
old methods.
Before Relocating New Method Old Method

Weight value T:;

Weight value 7,

Weight value T,

7.215832 0.049716
7.216759 0.494530

7.263439 0.000001
7.263455 0.000006

7.247273
7.246964 0.000019

0.000066

-10.911733 0.049716 -10.895164 0.000006 -10.870636 0.000066
Table 4.5: Comparison of £, and £, of XOR problem obtained from new and old inethods.
Error Before Relocating Std. = 0.01 Std. = 0.001 Std. = 0.0001
E, 0.000991 0.00097031 0.00098278 0.00099000
E, 0.617436 0.00001276 0.00000632 0.00000010
Table 4.6: Comparison of weight tolerances of XOR problem obtained from new
method.
” Before Relocating Std. = 0.01 Std. = 0.001 Std. = 0.0001
Weight T Weight Ti; Weight T Weight T

wy
w2
w2
[2]
ws
ws
wr
wy
w

-6.190063 0.035470
5.954652 0.000000
-5.440071 0.00000
5.178964 0.248308
3.266494 0.104983
-2.759335 0.248308
-8.867808 0.036262
9.174526 0.818557
4.190588 0.024938

-6.168860 0.000912
6.179140 0.000000
-5.343737 0.000000
5.344206 0.000632
3.084311 0.000912
-2.671492 0.000632
-8.9995087 0.000090
9.123857 0.004178
4.239779 0.000149

-6.107551 0.000169
6.107980 0.000000
-5.354218 0.000000
5.354396 0.000017
3.053819 0.000169
-2.677264 0.000049
-8.964645 0.000039
9.157241 0.00268]
4.183619 0.000036

-6.121018 0.000037
6.120777 0.000000
-5.334311 0.000000
5.334133 0.000015
3.060573 0.000042
-2.666998 0.000051
-8.937285 0.000020
9.181020 0.002150

4.146282 0.000019

3500
3000

-

g 2500

fiig Eleio=3

® 2000

° Mcio-25

@ 1500

8 ClEeio=1.5

] 1000 :

<C

500

¢.000¢1 0.001 001

I Standard Deviation Interval of Gaussian Function

Figure 4. : Convergent rate ;I;El=00i with varying-c and location error

2500
2000 :
g f=)
e

i w 1500 Lt

' @©

i 2 ‘MlEi0-2.5
£ 1000
o
8 Cleo=1.5
S
<

0.0001 2.001 0.01

Standard Deviation Interval of Gaussian Function

Figure 4.2: Converéeint rate at E.,=0.070>1 with varying o and location error

4000
3500
3000
2500 (Bew0=3
'MREW0-25

"Ceio=1.5

2000
1500

Average Total Epoch

1000
500

Standard Deviation Interval of Gaussian Funclion

Figu;e; 43 Con{/rérrgentﬂrate at E¢=0.000i with varyiﬁg o and location error

27

28

The results from Table 4.5 and Table 4.6 show that the new technique can
enhance the immunity level of each weight. When we vary the magnitude of
standard deviation interval, smaller intervals can achieve the finer immunity

than the larger intervals.

Figure 4.1-4.3 show the dependence of convergent speed and standard de-
viation interval (o) when we start with different location errors, E. Results
of 5 runs show that the higher level of location errors spends more time for
convergence than the lower location errors by considc_a}-ing the same magnitude

of standard deviation of the random algorithm.

4.2 Discussion

Several related issues will be discussed in this section. These issues include (a)
the characteristics of the solution of the objective that results from random op-
timization algorithm, (b) the technique of how to further increase the tolerance
interval based on the hardware implementation, and (c) set of the boundary

vectors from the algorithm.

4.2.1 The Characteristics of the Solution

There are several remarkable characteristics of the solution. We will discuss

each one as follows:

1. A System that has lower E; converges faster than the system that has
higher E;.
It is noticed that the speed of convergence does not depend on E; but
‘depends on E;. If (f4 + fs)? is not equal to zero, it means fs > |f3]
or f4 < |fa|, to ensure that E; does not decrease the new weights must

SatiSfy f,'A 2 max(fA)'fBl) and fb < —max(folfB’)‘ In addition, to

29

ensure E, decreases, the new weights must satisty (f% + f5)? < (fa+fp)*.
E/(W') < E(W) means |fi — |fall < |fa— |fsl|. Hence, if d(W',W*) is
less than d(W, W*), where W* is the optimal weight vector, the speed of
convergence is a proportional of the location error. Consider the step size
of the jumping or the interval of the standard deviation of the random
algorithm, the algorithm with a larger step will converge faster than the

algorithm with a smaller step.

. Eventually, E, slightly decreases whereas E; decreases to zero.

-,

. Headroom as defined in 1] is another tolerance ‘measure for each w; ;. If
~ the weight vector relocation minimizes the error E((W) + Ei(W), then
the value of the headroom of each w; ; should be maximized. The value of
headroom is defined in terms of the percentage change of each perturbed
weight and threshold so as to retain the correct classification of the net-
work.

Let HR be a headroom defined as follows:

wij = b Wi = w,-,,-)
lwigl " |wigl

HR=min(

There are two models of fault that we consider. The first model is the link
perturbation fault model. Each W) is perturbed by adding or subtracting
the perturbation vector Jy, i.e. Wy £ dx.- The second model is the input
vector perturbation. Each input vector X* regardless of class is perturbed
by adding or subtracting the perturbation vector d,, i.e. X¥ +4,. We
will consider the effect of fault in a two-layer network. We start with
the convergent network. The link perturbation fault on output layer can
cause only the misclassification. However, if this link perturbation fault
occurs on the hidden layer, it will cause both input perturbation fault to
the output layer and the misclassification. Table 4.7 shows the headroom

of the AND prdblem. The headrooms of the other example will be shown

30

Table:4.7:Headroom of AND problem.

Weight | Original Headroom | New Headroom
w, 0.48790 0.50000
Wa 0.48787 0.50000
w3 0.32267 0.33322

in [28). The following theorem addresses the relation among HR, f4 and
fB. -

Theorem 5 For a neuron with binary input vector, if fa 2 0, fg <0 and

fa+ fp =0, then HR is mazimized.

Proof Suppose HR is not maximized, i.e., there exists 1 < j < n such
that —nLi IWuI # - |w”| By lemma 1 we can conclude that fs + fp # 0. By

contrapositive, if f4 + fp = 0 then HR is maximized. O

4. The distortion of the input vector is maximized. In this case we will
consider when each input vector is slightly different from the training set.
If fa+ fs = 0, then it is obvious that the distance of every reference
boundary vector pair must be maximized. This implies that the deviation
distance of hyperplane is symmetry and the input perturbation constants
0z of za; and 8z p; of zp; are also maximized. The similar concept
regarding the equivalent distortion of input vector and weight perturbation

was proposed in [26].

4.2.2 Tolerance Interval

The tolerance capability obtained from the previously discussed technique can

be further enhanced by carefully considering the tolerance measure of each w; ;.

31

Before having a further discussion, some terms are defined as follows:
Definition 3 An upper tolerance interval, U, j, of w;; 18 |ui; — wi;l.
Definition 4 An lower tolerance interval, Li; of wi; s [wij — Ll

The tolerance measure discussed in the previous section indicates how each
w; ; can symmetrically deviate either increasingly or decreasingly from this cur-
rent location. Although this measure does not provide us any information re-
garding the deviating distance from the current location, it gives us freedom to
scale up the tolerance intervals U; ; and L; ; to a certa.i‘n limit as long as the tol-
erance ratio is constant. This means that the value of each w; ; is also increased
by the same scaling factor without affecting the classification capability of the
neuron i. We will prove it in the following theorem. Let f; be the dot product
of weight vector W; with input vector X and f; equal to of;, where 0 > 0 is a

scaling factor.

Theorem 6 Bath f; and fi correctly classify the input data into classes A and
B.

Proof The classification is defined by the following rules. The data are in class
A if f; > 0 and in class B if f;'< 0. Multiply both sides of the inequality by o,
we still obtain f; > 0 for data in class A and f; < 0 for data in class B. O
Generally, a neuron is always implemented by a digital circuit. In this case,
the limit of tolerance interval is constrained by the size of register used to store
the value of w; ;. We assume that, for any neuron, every w;; uses register of
the same size. Let © be the size of a register. Hence, the maximum value to be
stored in this register is 2" — 1. There are two possible cases. The first case is

when 27 — 1 is less than max;(u;;) and the second is when max;(u; ;) is larger

than 2" — 1. u;; is the upper bound of w; ;.

32

Table 4 .8:Lower bound tolerance intervals in each case.

Cases Scaling Factor | Original L;; New L; ;
2"~ 1 < max;(uy;) | DG wig =l | 25wy - 1)
max;(uiy) < 2" -1 e Wi = lij | marsegy (Wid — big)

Table 4.9 Upper bound tolerance intervals in each case.

Cases Scaling Factor | Original Uy; New U;
2" — 1 < max;(ui;) m—?(_—u{“‘) Ujj = Wij E;ﬁ%'ﬁ(ui.j - wi;)
max;(uiy) <2 -1 e Ui = Wii | macuryy (Wi ~ Wi)

In the first case, we scale the value of max;(u;;) down until it is equal to
2" — 1. Thus, the scaling factor in this case is equal to &;‘5(_—“1"-?-)- Similarly, we

scale max;(u;;) up until it is equal to 2" — 1 for the second case. Hence, the

scaling factor in this case is mi:zul' nt The scaling factor is then used to scale
the value of w; ;. Tables 4.8 and 4.9 summarize the tolerance intervals in both

cases after scaling.

4.2.3 Correctness of Algorithm 1

Algorithm 1 determines the boundary vectors by separately considering each in-
dividual w; ;. The problem that we were interested in is whether these boundary
vectors are different from the boundary vectors obtained by either simultane-

ously increasing or decreasing all w; ;’s. The answer is no. The difference be-

33

tween considering each individual w; ; and simultaneously considering all w; ;s
is the first one is based on the assumption of a single fault while the second one

is based on multiple faults. The following theorem verifies the answer.

Theorem 7 The boundary vector sets in cases of single and multiple faults are

the same.

Proof We prove only the case of increasing w; ;. The case of decreasing w;;
has the same argument. Without loss of generality, suppose that w;; is the
element that we consider and the input vector is (1,2, Zn). Let § be a
small deviation constant, for w; ; in a single fault case and dx a small deviation
constant for w; in a multiple fault case. If the boundary vectors in the case of
single fault are different from those in the case of multiple fault, the dot product
of the single faulty weight vector with the input vector is larger than the dot
product of the multiple faulty weight vector with the input vector. Therefore,

we have .

winZy + o+ (Wi + 6T+ F WinTn 2 {(wig +61)z 4+ -+ +
(Win + 6n)Zn, (4.1)

511]' > 6z + 09z + 00+ 5"_1“(4.2)

Under the same environment, § and §; must be monotonically either increased
or decreased. Since the smallest values of 6 and §; are the same, for every k,

we divide both sides by . Thus the inequality becomes
z; 2T+ Tg+ e+ Ty

It can be seen that this inequality is not correct because each z; is positive.
This means that when gradually increasing or decreasing d; of each w; ; in case
of multiple fault, the weight vector will eventually touch the same boundary

vectors. O

	Chapter lV Experiments and Results

