Chapter 11

Fault Tolerance Immunization

Concepts

2.1 General Concepts

Let W; = (wi1, wiza," - +» Win) be the weight vector of meuron i, X3 = (%1, T3 25
.++,z%,) be the o vector in class A and X5 = (251,25, 75,) be the
B vector in class B. Basically, a neuron i separating its input vectors into two
classes, say A and B, acts as a hyperplane locating in between two input vector
groups. The location of the hyperplane is captured by the weight vector W; of
the neuron and the classifying decision is based on the value of the dot product
between W; and X, where X, possibly means X3 or X o. If W; - X, is greater
than a threshold value 7 then X, is in class A otherwise is in class B. Without
loss of generality, let 7 equal zero. When the training is successful or converged
the weight vector representing a hyperplane must belocated in the empty space
between input vectors in class A and class B. There are many possible loca-
tions to place the hyperplane. The interesting problem is how to find the best
location that allows each w;; to deviate as much as possible without violating
"the classification. Lursinsap and Tanprasert [11] mathematically modeled the
fault immunization for vectors in binary space. We generalize their model for
binary and real spaces by considering the binary space as a special case of the
real space. The problem of fault immunization can be mathematically defined

as follows and these following notations will be used throughout this thesis.

1. The trained weight vector of neuron i: W; = (w;,1, Wi2, .., Win)-
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2. The relocated weight vector of neuron i W} = (w];, w},, ..., w},).

3. Input vectors in class A: X§ = (£ ,,2% - +»Z4), Where 1 <a <p.

4. Input vectors in class B: x8 = (zB l,zgz, ,xg,ﬂ), where 1 < 5 <q.

5. Trained upper bound constant for w;; : u; ;.

6. Trained lower bound constant for w;; : l;;

7. Relocated upper bound constant for wj ; : u; .

8. Relocated lower bound constant for w; ; : I} ;.

The value of u;, i j, u} ;, i ; are computed by gradually increasing or decreasing
g Y t,J

w;,; and w] ;, respectively, until a misclassification or output inversion occurs.
The neuron is basically a binary classifier and its cost function is based on the
firing characteristic of a neuron proposed by McCulloch and Pitts [12]. Since
we focus our problem on a binary classification problem, the misclassification
is defined as an event when the value of the output of a neuron is less than 0.5
for class B and greater or equal to 0.5 for class A. Therefore, the objective of
fault immunization is to find W to minimize

a::'.j “m N

I _1
Ty j .J bis

T; = 1<j<nandl1<i<m

to satisfy these conditions:

-

((why +uf)s e (Win +0ig)) - (261, 24n) 20, for 1 <o < pand

o

((wg,l - lé,l))) T (w;,n - l:,n)) ¢ (zi,l) cre »:Ui,n) 2 0 ) for 1 <ac< p and

(why +uly), s (W + 1))+ (25,00, 35,) <O, for 1 < f < gand

w

(why = B)see s (Wi = B)) - (851,01 25,) <0, for 1< B<g.

~
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Since the location of W’ is defined by the shape of the empty space channel
lying between vectors in class A and vectors in class B [11]. The channel is
formed by all boundary vectors in both classes. The problem are how to find

these boundary vectors and how to achieve the minimum of T; ;.

2.2 Algorithms for Finding Boundary Vectors

The error function E(W) depends on the vector pairs in classes A and B. In
this section, we only focus our discussion on the algorithm of finding boundary
vectors based on a single faulty link which may occu?s to one of w;;'s. Later,
we will discuss the reason that this algdrithm is still correct when apply to mul-
tiple fault links. Since the size of W/ is n therefore we need at least n boundary
vectors from either class A or class B to compute the value of each w] ;. The
simplest solution to finding these boundary vectors is by gradually increasing
and decreasing each w; ; until a misclassification occurs. The misclassified vec-
tors will be the boundary vectors. Notice that the process of increasing and
decreasing the value of w;; can generate at least one misclassified vector in
class A and another misclassified vector in class B. For each neuron i, we find
the boundary vectors with respect to each w; ; as follows. Let X2 be the vector

a of class A, X g the vector 3 of class B, and W; the weight vector of neuron <.

Algorithm 1

1. Let af; = | 54|,
o
| N
2. Let bf, = |22,
1B,j

3. Find min,(af;) and ming(b? )
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Theorem 1 With respect to w; ;, an input vector corresponding to rrnixna(agfj) 8
the boundary vector in class A and an input vector corresponding to min,g(bg ;)

is the boundary vector in class B.

Proof Each w;; can be rewritten in this form (w;; + &;), where §; is af}; or
bf ; and equal to zero in normal situation. Without loss of generality, we only
consider the boundary vectors in class A and prove only when w; ; is increased.
The proof for the boundary vectors in class B and decreasing w;; have the

similar argument. Therefore the dot product W; - X} becomes

Wi - X§ = wizd, +wipzha+- -+ (Wis +8)zh, + - +winZd,
= D+ ;% ;

Where D = w; 2§ | + ;2245 + *** + WinThp 1f we map the value of the
dot product as a point to a real line we can see that the value of D represents
the distance of this point from the threshold, which is equal to zero. From the
above equation, it can be seen that increasing or decreasing d; is equivalent to
constantly adding or subtracting §;z5 ; from w; ;2% ;. Therefore the number of
times to increase or decrease d; until a misclassification occurs can be easily
computed by dividing W; : X§ with z4 ;. Hence, those vectors having min, (ag;)
will be boundary vectors. ‘Theorem tells us how to find the boundary vectors
in class A and B. These boundary vectors may not be unique with respect to
their w;;. This means that different w;; and w;x may generate the same set of
boundary vectors. The following collorary states the condition of the uniqueness

of the boundary vectors with reSpect to any w;; and wix. O
Collorary 1 Vector X§ is boundary vector with respect to w; ; and wx if 235 ; =
zi'k.

Proof If X§ is boundary vector with respect to w; ; and w; then we must have

Wi x4 | | wixg ST o —
= | = —Az:d . This implies that z% ; = % ;. O
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To find a boundary vector pair Xi and Xf;, we use minimum Euclidean
distance d(X?%,X3) to select each pair from classes A and B. The selecting

algorithm is simply defined as follows.

Algorithm 2

1. For each vector X7, find a vector X} such that d(X%, X%) is minimum.

Vectors X% and X% are boundary vector pair.

2. For each vector X}, find a vector X7 such that d(X}, X7) is minimum.

~ Vectors X4 and X7 are boundary vector pair.

These boundary vector pairs are used to relocate the weight vectors of the
whole network to satisfy E(W). The new position of each W; must minimize
T; ;. The following theorems address the conditions when T; ; is minimum. We
prove the theorems for the vectors in real space case first and then show that

the condition for the binary space is a special case of the real space case.

. Xa . X8
Definition 1 Let 5_5.'4) = —v%& and JJ(B) = %gﬁ
J BJ

For the simplicity of writing, we will drop the superscripts o and § from

Xq, X8, x4 and z’;j. This will not change the meaning of each notation.

Theorem 2 IfW; X, > 0and W;-Xp <0 and 3_ 1 boundary vector pairs(W*'
X4 +W;-Xg)? =0, then the decision hyperplane is lying in the middle of space

between the classes.

Proof Let (X4, Xp) be any boundary vector pairs with respect to the hyper-
plane that formed by W;, which X4 is in class A and Xp is in class B. The
minimum distance between X4 and the hyperplane is J—?ll-‘wL“‘l and minimum dis-

tance between Xp and the hyperplane is ]vﬁ‘Tﬁf’l, where ||W;|| is the Euclidean
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Figure 2.1: The companion figure of proof.

norm of vector. Since 3,1 boundary vector pairs (& - X4 + Wi+ Xp)* = 0,
it follows that %—,‘—‘ = “I’;V’f Bl Tet H be the point on the hyperplane such

that line X4 Xp intersects the hyperplane and X/ and X} be two points on

the hyperplane such that vectors X4 X/ and XpX}p are perpendicular to the
hyperplane. By the theorem of geometry we know that length of X/, H = length
of X H. Hence, there are two equivalence triangles and we can conclude that

length of X4H = length of XgH (see Figure 2.1). O

Definition 2 Let f4 be the dot product of the new weight vector and the bound-
ary vector pair k in class A, fpx be the dot product of the new weight vector

and the boundary vector k in class B.

Ui, —Wi § 5('5)
Lemma 1 T —-6-;;-;.
Proof From the algorithm 1, it follows that u,; — w;; = 6§A ) and Uij — Wi =
(4) wigewiy 8
—4;"". Hence, i = “3;?_7)'-[:'

Lemma 2 If f4 > 0 and fp < 0 and fa+ fa =0, then §Vz4; = 8P zp;.

Proof Given f4 > 0 and fg < 0 imply that W; - X4 > 0, W; - Xp < 0. If
fa+ fp = 0, then we have W; - X4 + W; - Xp = 0. Hence, there are JJ(A) and
63(-3) such that W; - X4 + 6§A)EAJ =0and W; - Xp + 6}3):1:,'.,- = (. It follows that

0 = M'XA'}-J;A)IAJ-}-I)V."XB-I-&J(-B).'I:BJ-A
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= W, - X4+W;- Xg+ J§A)ZAJ + 6§B).’83'j
= fa+fs+ 6§A)$A,j + 6§B)$B’j

= 5§A)IA,5 + J;-B):L'BJ

Hence, J}A)x” = -JJ(B):w.J'. O

Theorem 3 If f4 > 0 and fp < 0 and fa+ fg =0, then

L — LA _ Bij—Wi; o
1-;».7 Zp,; wy ;i —li,; O
w &%
Proof From Lemma 1, we have —'1__—,"1- -y ang from Lemma 2, we have
)

i
6 T
S = —-Ai Hence, T;; =

; 8.

ZAj u.- l--w; i = 0. D
B, w.-.j—l;.j

Collorary 2 If input vecior is in a binary space then if f4 + fp = 0 implies

—-w
Ty = |1 - S| =0,
Proof In binary space z4; = zp; = 1. Hence, J(A) 53(3) . It follows that
54
w‘lj-u;:»] = -%FY arld
T, Taj _ Yig = Wij
Tp;  Wig—lij
(4)
= A 6‘?*)
B
4, .
= |L-1]=0. !

Hence, the immunization problem can be transformed to be the problem of
optimizing a cost function. The minimization of T; ; can be equivalently written
in terms of the target error and the location error functions. This equivalence

makes it is easy to find W}.

Let E, be the target error of the network, E; be the total sum of location

error of hyperplanes in the network, W be the set of w;;, Vi, j, after training,
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and W' be the set of w;, Vi, j, after relocation. We define an error function

E(W) by combining E, and E; as follows:

EW) = E(W)+EW), 2.1)
P N

E(W) = %}:}: (2.2)
LuarJ '

E(W) = ZZ (fag + fox)?s (2.3)

where N is the number of output neurons, f4, is the dot product of the new
weight vector and the boundary vector pair k in class*4, fp, is the dot product
of the new weight vector and the boundary vector & in class B, P is the number
of patterns, K| is the number of boundary vector pairs of neuron I, t;-‘ is the
target of pattern . of neuron j, o} is the output for pattern y of neuron j, and
L is the number of neurons in the network. We add the following two more

conditions having these two error functions:
5. Eg(W’) S Et(W) and

6. Ei(W') = 0.

2.3 Tolerance Measure

We define the following measure to evaluate the tolerance of w;; and wj; com-
puted from the algorithm. The measure defined below is similar to T; ; dlscussed

in Section 2.1 except that we tighten the ratio of :—:i— to

(522)
ZB.j / min, d(X5,X5)

The reason that we must tighten this ratio is because the deviation of w; ;; Vi, j

depends upon empty space in between classes A and B whose width is measured
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