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Chapter 1

Introduction

Mullins equation is the fourth-order non-linear partial differential equation (PDE)
whose solution models the evolution of a surface under the influence of mass transport
mechanisms. Herein, the Mullins equation describing grain boundary grooving, in which
surface diffusion is treated as the dominant mechanism, over another principal mass trans-
port mechanism, evaporation-condensation, is studied.

Mullins [1] considered the surface groove for a material with isotropic properties in
the theory of thermal grooving. In order to solve the surface-diffusion problem, he assumed
the surface slope to be small, much less than unity, everywhere so that he could linearize his
non-linear PDE. Mullins solved the linearized equation analytically to obtain the so-called
“small-slope approximation”; which is valid for mearly flat surfaces: Mullins also suggested
that for grain boundary grooving the PDE could be transformed to an ordinary differential
equation (ODE).

Robertson [2] performed a transformation as indicated by Mullins. The resulting



differential equation is then numerically integrated. The detailed groove shapes are pre-
sented for the groove root slope m ranging from 0 to 4. The groove width is within five
percent of the small-slope width for all groove root slopes calculated. The groove depth
departs by more than ten percent from the small-slope depth for groove root slopes greater
than about 0.7.

Zhang and Schneibel [3] used a method of lines approach to solve Mullins equation.
It first converted the PDE to a system of ODE’s in time space through spatial discretization
and then integrated in time by a stiff ODE solver. The numerical results showed excellent
agreement with Mullins’ analytical “small slope” solution. However, when the groove root
slopes are greater than 0.5, differences between Zhang and Schneibel’s solution and Mullins’
solution develop.

Although no analytic solutions were known for Mullins equation [4], Tritscher and
Broadbridge [5] gave the first analytically solvable model in which the governing equation
was an alternative modified form of Mullins equation. A solution is achieved by partitioning
the surface into subintervals delimited by lines of constant slope. Their model does not rely
on the linear or small-slope approximation in which nonlinearity is neglected. Tritscher
and Broadbridge’s solution-therefore provides a based line against which to check other
numerical results.

Lee [6] investigated into solving Mullins equation by the finite difference method
(FDM). In this case both temporal and spatial derivatives are replaced by finite difference
approximation. The accuracy for small slope (m < 0.5) is very good. However, error is

obviously increased as the value of m is getting larger.



Recently, Mullins equation was solved by Liu [7] using cubic splines to approximate
the function of the surface profile. This causes the governing equation being transformed
into a system of ODE’s which is then solved by a stiff ODE solver. The numerical solution
for small slope (m < 0.1) is in good agreement with the analytical solution. However, when
the groove slope is equal to 1, the shape of the profile is still correct but the accuracy is not
good enough. Moreover, when the groove slope is more than 1, the program even does not
converge [7].

In this thesis we consider the hybrid application of the Laplace transform technique
and the finite difference method, called the Laplace transform finite difference method
(LTFDM), for solving Mullins equation. This method was used by Chen and co-worker
[9] in transient heat conduction problems. The advantage of this method is that the time
derivative from the governing differential equation is removed by the Laplace transform,
thus reduces the governing equation to an ODE. Furthermore, another advantage of the
Laplace transform technique is that it can quickly give a solution at any specific time.
Later, Chen and Lin [10] used the same method to solve non-linear transient problems.
They concluded that the hybrid application of the Laplace transform technique and the
finite difference method is'reliable: The Laplace transform has also been incorporated with
the dual reciprocity method for solving non-linear diffusion equations with considerable
success. [11].

We will first test the LTFDM with the linear system involving the linearized
Mullins equation before applying it to solve the non-linear system. Our solutions will

be compared with the previous ones.



Chapter 2

Mullins equation

As a background knowledge, Mullins equation will be derived in this chapter. In
the theory of thermal grooving published in 1957, Mullins investigated the development of
surface grooves at the grain boundaries of a heated polycrystal (see Figure 2.1), in which
evaporation-condensation and surface diffusion are the two principal mechanisms for mass
transport at a metal surface. Herein we will be interested in the grain boundary grooving
by surface diffusion only. In other words, we assume surface diffusion is the only process
operating. Let p(K) be the increase in chemical potential per atom which is transferred
from a point of zero curvature toa point of curvature K on the surface. It can be shown

that
1K) = KyQ

where «y is the surface-free energy per unit area and ) the molecular volume.
Therefore, gradients of chemical potential along the surface will be associated with

gradients of curvature. These gradients will produce a drift of surface atoms with an average



width

depth

groove root

Figure 2.1: A symmetric groove profile.

velocity given by the Nernst-Einstein relation

__Dsop
kT 9s

where Dy is the coefficient of surface diffusion, s the arc length along the profile, k£ the
Boltzmann constant, and 7" the absolute temperature. Note that kT is the thermal energy.
The surface flux of atoms, J, is obtained by multiplying V' by the number of atoms

per unit area or €. Thus,

Do oK

T=——=r 55

or in term of cartesian coordinates

Ds~Qe

_1 _3
LT <1+y920) Q[Qxx(l"i_y:%) 2]$'

J=-

The governing equation for the evolution of surface, denoted y(x,t), can be ex-



pressed as

ye = —B{(1+92) 2y (1 +42) "2}, (2.1)

where B = DgyQ%e/(kT). Equation (2.1) can be written in another form as

B

(143
by taking differentiation. The above equation will be refered to as Mullins equation here-
after. In Mullins equation the subscripts x and ¢ of y indicate differentiation with respect
to space and time respectively. Equation (2.1) is driven by gradients in surface curvature
(K.

As in [1] we impose the boundary condition of zero flux at the groove root. We
also impose a fixed dihedral angle A (see Figure 2.1) at the groove root and an initially flat
surface. We consider the symmetric grooving case as shown in Figure 2.1. In our numerical
calculation we select a sufficiently long interval of x, [0, L], so that the effect of its end
x = L on the groove profile is insignificant for the time interval concerned. Here, we set
L =1 [7]. The boundary conditions we impose at * = L are zero slope of the surface and
zero flux. The first condition corresponds to the initially flat surface. The second condition
guarantees the conservation of matter, i.e. a constant area under the groove profile during
the evolution.

The governing equation, initial condition, and boundary conditions are as follows:

B
+ [Yawae (14 12)? = 100alaclara (1 + ¥2) + 3yo, (5y2 — 1)] ; (2.2)

T



subject to

IC.  y(x,0)=0, 0<z<1
BC.  y.(0,t) =m,
Yoo (1 +42) = 3ysyzallza=o = 0, (2.3)
B X 40,
Yo (1 +97) = 8Yayzsllz=1 = 0.
Here, m is the slope of the surface at the groove root and is related to the dihedral

angle A by
m = tan(90° — (4/2)).

It should be noticed that the initial condition, y(x,0) = 0, is not consistent with
the boundary condition, y,(0,¢) = m. That is, a singularity exists at + = 0 and t = 0.
However, Zhang and Schneibel [3] indicated that this does not pose a barrier in solving the
system numerically if we choose a proper numerical method.

Now we will assume that the surface slope is small everywhere (|y,| < 1). Let
yz = 0 everywhere on interval and replace in Equation (2.1) and Equation (2.3).

Therefore, we will obtain the linear Mullins .equation, initial condition, and bound-

ary conditions as follows:

Y= _Bymmmm (24)



subject to

IC. y(z,0)=0

BC. y,(0,t) =m

Yozz(0,8) =0 (2.5)
Yz (1,2) =0
ywwx(l,t) = 0.

Previously, Mullins derived the equation on a semi-infinite interval such that he
had to solve the governing equation with only two boundary conditions, i.e., y.(0,t) = m
and Y;z2(0,t) = 0, and requires that the solution behaves properly at the infinity. This
requirement is consistent with our boundary conditions at =z = 1, i.e., y,(1,¢) = 0 and
Yzzz(1,t) = 0. He assumed the solution in form of power series and obtained the recurrence
relation for the coefficients through standard technique. However, the first four coefficients
need to be computed separately which involves application of Laplace transform and Taylor’s
theorem. The “small-slope exact solution” is given in Appendix A.

However, Zhang and Schneibel [3] pointed out that Mullins’ solution can easily
become unstable when evaluated numerically using a computer. This is due to the limited
machine precision_and the truncation of the_infinite series in which Mullins’ solution is
presented. To avoid such instability, we solve Equation (2.4) in finite domain, i.e., interval
[0, 1], subject to initial and boundary conditions in Equation (2.5) to get the exact solution.
Detail is given in Appendix A. We will use our linear solution instead of the small-slope

solution for comparison with numerical solutions in the next chapter.



Chapter 3

Numerical solution to linear

Mullins equation

In this chapter, we will survey numerical methods previously used to solve Mullins
equation along with our proposed LTEDM. They will be investigated for linear Mullins

equation and their solutions will be compared with analytic solution.

3.1 Cubic splines method

We will follow Liu’s derivation, but with some slight modifications. We want to
transform the system of Equations (2:4) and (2.5) to-another system involving homogeneous
boundary conditions. To do so, let u(z,t) = y(z,t) + f(x). Pluging y(z,t) = u(z,t) — f(x)
into Equation (2.4) we find that if we want the form of Equation (2.4) to be preserved, f*)
must be equal to zero. For this reason we choose f(x) = ax® + bx? + cx + d where a,b,c,d

are arbitrary constants. All these constants can be determined by forcing u(z,t) to satisfy
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homogeneous boundary conditions as follows:

uz(0,t) = 4,(0,2) + f/(0) =m +c=0,
Uxmm(o, t) = ymm(O, t) + f”/(O) = 6a = 0,
ug(1,t) = y2(1,1) + /(1) = 3a + 20+ ¢ = 0,

ummﬁ(lat) = ymmx(l,t) i f”/(l) = 6a =0,

so that a = 0, b = %, and ¢ = —m. Since d can be any number, we choose d = 0. Therefore,
f(z) = 5a* = ma,

which is slightly different from what Liu obtained. Now we have the new system to be

solved as:
(ol = _Buzzmm

subject to

IC. u(z,0) = Za? —mz

BC. ug(0,t) =0,

uz:r:r(oa t) =0,
u$(17 t) =0,
Ugzz(1,8)=0:

By letting v = ug,, the above system can be split into two systems. That is

U = —Bug, (3.1)
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subject to
IC. w(z,0)=2a? —ma
BC. u(0,t) =0, (32)
ug(1,t) =0,
and
v - (3.3)
subject to

BC. w,(0,1) =0,
(3.4)
vg(1,t) = 0.

Using separation of variable, we approximate u and v by the following expansions

ua,t) =Y egt) gy, (), (3.5)
=1l

and

n
vz, t) =Y di(t)pr(x), (3.6)

k=1
where ¢ and di are undetermined coefficient functions depending only on ¢ while ¢, and
¢ are the basis functions depending only-on z.. From Equations (3.2) and (3.4), u and
v have the same boundary conditions so we can use the same basis functions to expand
them, i.e., ¢, = ;. Here, B_splines are chosen to form basis functions since they are

twice continuously differentiable, the property of which is needed in Equations (3.1) and

(3.3). (See detail of B_splines in Appendix B.) The basis functions must also be chosen to
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satisfy the homogeneous boundary conditions. In this case, we need ¢},(0) = ¢},(1) = 0 for

k=1,2,...,n. Therefore, we consider

¢1(2) = Bi(x)

We now discretize the interval [0, 1] with n nodal points such that 0 = x; < 23 <
. < xp, = 1 with equally spacing h. Substituting v from Equation (3.5) and v from

Equation (3.6) into Equation (3.1), we have in discretized form

> G W)(xi) = —B Y dit)¢h(x:), i=1,2,...,n (3.7)
k=1 k=1

where dot and prime denote derivative with respect to ¢t and z, respectively. Equation (3.7)

can be written in the matrix form as

&bc; = —BP,,d.
Similarly, Equation (3.3) becomes
k=1 k=1

and is written in the matrix form as

&d = & ,c.



Here,
1 1/2 0 0 0 0
1/4 1 1/4 0 0 0
0 1/4 1 1/4 0 0

=10 0 0

0 0 0 1/4 1 1/4
0 0 0 0. 1/4 1
0 0 0 0 0 1/2

and ¢

3/2 -3.3/2 0 0 0
0. 3/2 =3 32 0 0
1

0 0 0 3/2 -3 3/2

0 0 0 0 0 3

-3

0

0 0 0 0 3/2 -3 3/2

13

Notice that ® is tridiagonal and stictly diagonally dominant. By Gershgorin’s theorem, ¢

is invertible. Therefore,

¢ = ~BP1d,,d,

d=3"1d,,c,
and hence

c; = —B(®'®,,)%c,
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which is a system of first order ODE’s.
System (3.8) together with initial condition in Equation (3.2) form an initial value
problem, solution of which at time ¢; , called ¢¥ | is obtained through the fourth-order

Runge-Kutta method. Once we get 9 we can compute u(x;, tj) by
n
u(w, tj) = ch(tj)ff)k(l“z’),
a1
and our approximate solution is then
1
yapprox(xiatj) 3 U(xiatj) ~ mxz(§xz - 1)

Figure 3.1 shows numerical solution compared to the exact solution of linear
Mullins equation from Appendix A, for groove profile when constant B = 0.00001 and
slope at the groove root m = 0.1 at £ = 1 using 2000 time steps and 41 nodal points. It can
be seen that they are in very good agreement. While we simulated the numerical solutions
for several values of m we found that the solution for any value of m is just m multiple of
the solution for m = 1 or m/r multiple of the solution for m = r. This is in accord with the
exact solution in which m is the multiplication factor. For this reason we only show the
comparison between numerical solution and analytic solution when m = 0.1. This means
that for any value of m, numerical solution produces groove profile which agrees well with
that produced by exact solution.

In the previous work ‘on cubic splines, Liu [7] transformed by using

f@) =5 (1—2)
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= =B
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Figure 3.1: Comparison of groove profiles obtained from cubic splines method (dashed line)

and analytic solution (solid line) for m = 0.1.
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and chose ¢, and ¢,,_; differently and they are

¢2(x) = Bo(x) + Bi(x) + Ba(z),

Pp—1(2) = Bn-1(x) + Bn(x) + Bnia(2).

Then, ® and ®,, become

LNSSY Y 1 /) 0 0 0 0

1/4 5/4 1/4 0

S
ja)
@)

0 1/4 1 1/4 0 0 0

0. 0 0 1/4 1 1/4 0
0 0 0 0 1/4 5/4 1/4

O 0 0 0 0 32 1

and

3/2 =3/2 °3/2 0 0 0 0
Oesmgyommmm=T2 ol o o
‘I%chﬁ 0 0 0 0
0, -0 0 3/2 -3 3/2 0

0 0~ 0. .0 -3/2 —3/2 3/2

0 0 0 0 0 0 -3

Notice that now @ is not stictly diagonally dominant, so it is not guaranteed by Gershgorin’s
theorem that @ is nonsingular. However, the result in this case is the same as the one shown

in Figure 3.1.
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3.2 Finite difference method

Following Lee [6], the interval [0,1] is equally discretized into n — 1 subintervals
such that the distance of each subinterval is Az. The nodal points i = 1 and i = n refer
to the boundary point 0 and 1 respectively. Moreover, the time ¢ will be discretized into

m — 1 subintervals, and the distance of each subinterval is At (see Figure 3.2).

j:m ---------------------------------------------------

oo

=2 |

j=1

Figure 3.2: The finite difference discretization.

Then, applying the finite difference formulae from Appendix C to approximate
Equation (2.4) yields

ZJ,QH) - y§j) — _B 1(22 - 4%@1 + 6y§j) - 4%@1 + yz@z

At Azt ’
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or, after rearrangement,

() @) () () ()
; : ~lo — 4yl 4+ 6y — 4y 4y
yZ(JJrl) yi(J) “Byzw Yit1 y;4 Yi—1 3/172' (3.9)

However, doing this leads us into trouble of having points outside [0, 1] involved
in the calculation. We can circumvent this problem by applying finite difference formulae

to the boundary conditions, thus obtains

Yo=Yz —2m A x

Yn+1 = Yn—1
y 1 =y3—4mAx (3.10)
Yn+2 = Yn—2-

Using Equation (3.9) and (3.10) together with initial condition in Equation (2.5),
we can solve the solution at each time step by Jacobi iterative technique. The result for
small slope (m = 0.1) at ¢ = 1 is shown in Figure 3.3 with B = 0.00001, 300 time steps,
and 41 nodal points being used. Also presented in Figure 3.3 is the graph of exact solution.

Obviously, numerical and analytical solutions are in very good agreement.
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Figure 3.3: Comparison of groove profiles obtained from finite difference method (dashed
line) and analytic solution (solid line) for m = 0.1.
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3.3 Laplace transform finite difference method (LTFDM)

In this section, Mullins equation will be solved by the Laplace transform technique
applied in conjuction with the finite difference method. This technique was used, for ex-
ample, by Chen and Lin [10] in solving one-dimensional transient problems with non-linear
material properties.

First, the interval [0, 1] is evenly diseretized into n — 1 subintervals such that the
distance of each subinterval is A. In addition, the nodal points ¢ = 1 and 7 = n refer to the

boundary points 0 and 1 respectively as illustrated in Figure 3.4.

=1 =0 i=1 =n  i=n+l i=n+2
e et > x
0 Y

Figure 3.4: Diagram of discretization along x-axis.

The approximated form of Equation (2.4), using the central finite difference ap-

proximation with the spatial derivative, can be stated as

% _ _p (Z/z’+2 — 4yi + 6y — dyioa + yi_2> (3.11)

ot KA
for i = 1,2,...,n, where y; = y(x;,t). Taking the Laplace transform of Equation (3.11)
with respect to time yields

B /A

A A A A A
sy; — y(r4,0) = A <Z/i+2 — 4y +6y; — 4y, + yi72> ) (3.12)

in which g/)l = @(azz, s) is the Laplace transform of y; and s is the Laplace parameter. Equation
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(3.12) can be rearranged as

B\ A 4B\ A 68 A 4B\ A B\ A
A )Yie T\ Tpr )Y T\ g TS )Y T\ Ty ) Vi T\ g Yire = y(@i,0).

(3.13)

It should be noted that when ¢ = 1,7 =2,i =n—1, and i = n, Equation (3.13) will
involve points external to interval [0, 1| as in Section 3.2. However, after applying the finite
difference formulae to the boundary conditions in Equation (2.5), the values at external

nodes can be computed as follows:

Yo = Y2 — 2mbh,
Yn+1 = Yn—1,
y-1 = yz — dmh, (3.14)
Yn+2 = Yn—2-

Then taking the Laplace transform of Equation (3.14) with respect to time gives

A A 2mh

Yo = Y2 — . 3
A A
yn+1 = Yn—1>
A A 4mh
Yy 1=Ys— ~ (315)
A A
Yn+2 = Yn—-2-

Equations (3.13) and(3.15) can be rearranged into the matrix form
Ay=b (3.16)

where A is an (n x n) band matrix, 3Af an (n x 1) vector representing the unknown ﬁi, and

b an (n x 1) known constant vector.
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Before solving the system (3.16), we need to specify the time ¢t we want solution
to be computed. Then we calculate 6 values of s as indicated in the Stehfest’s algorithm
for numerical inversion of Laplace transform given in Appendix D. Each value of s gives
system (3.16) a solution vector 9 After having solved system (3.16) to get 6 vectors of 9,
the Stehfest’s algorithm is utilized to obtain the value of y; at the specified time.

Depicted in Figure 3.5 are groove profiles obtained from numerical solution by
LTFDM and analytical solution for slope m = 0.1 at ¢ = 1 with B = 0.00001 and 41
nodal points being used. Numerical solution is seen to be in excellent agreement with the

analytical solution.

0.002 AN B EEVS o R ESSE LY TN

s N\

T T T T T I U
% 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

-0.001 /
-0.002

= = LTFDM
-0.003 -

-0.004 +
= exact (linear)

-0.005

Figure 3.5: Comparison of groove profiles obtained from Laplace transform finite difference
method (dashed line) and analytic solution (solid line) for m = 0.1.
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3.4 Comparison

Now we will compare the results among cubic splines method, FDM, and LTFDM.
In Figure 3.6, we see that all methods give similar results which agree very well with the
analytic solution. However, the time used for running program in each method is very
different when we fix the number of nodes. LTFDM uses time much less than the others.
For specific time ¢, unlike the other two methods which need step-by-step calculations,
LTFDM needs only 6 caleulations in Laplace space before the numerical inversion is used to
retrieve the desired solution. Moreover, if we want to increase the number of nodes for more
accuracy, it can be done easily with LTFDM. For cubic splines and finite difference methods,

we have to increase the number of time steps when increasing the number of nodes. For

BAt
Azt

example, the stability requirement for FDM is < 0.125 by the Von Neumann method.
In Figure 3.3, the converged solution can still be obtained using 40 subintervals and 300

time steps since Ax = 1/40 = 0.025, At = 1/300 and iﬁf = 0.085 < 0.125, but when

increasing the number of subintervals to be 50 (Az = 0.02), the solution does not converge
with the same number of time steps because % = (0.208 «£ 0.125. Therefore, we have to

decrease /At in order to obtain the solution. Thus, the time used for solution calculation by

cubic splines and finite difference methods is much - more than that by LTFDM.
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Chapter 4

Numerical solution to non-linear

Mullins equation

In this chapter, we extend the numerical methods surveyed in the previous chapter
to non-linear Mullins equation. All numerical results obtained will be compared with that

obtained from Tritscher and Broadbridge (T&B)’s analytically solvable model.

4.1 Cubic splines method

Similar to Section 3.1, we transform the system of Equations (2.2) and (2.3) to

another one by letting u(z,t) = y(z, t)+ f(x) where f(z) = Bz — ma. Hence, we can find
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initial condition and boundary conditions in terms of u as

IC.  u(z,0) = Fa® —ma
BC. us(0,) =0
ug(1,t) =0
U530, 8) F W
Uzzz(1,1) = 0.
However, this time we cannot make all the boundary conditions to be homoge-

neous. Nevertheless, by letting v = wu,, the above initial condition and boundary conditions

can be separated into two parts, i.e.,

IC.  u(z,0) = Za® — ma
BC. uy(0,¢) =0 (4.1)
uzy(1,8) =0
and

BC. v,(0,1) = 22e0om) o)

OMEEAT— (.
We now discretize the interval [0, 1] with n nodal points such that 0 = x; < z2 <
... < xn = 1 with-equally spacing-h.-Now, u and v-can-be-approximated by the following

expansion

and
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As before, ¢, and ¢, are the basis functions chosen so as to satisfy homogeneous boundary
conditions. It should be noted that boundary conditions in Equations (4.1) and (4.2) are
not the same, so we can not immediately use ¢, = ;.

From boundary conditions in Equation (4.1), we require that ¢} (0) = ¢.(1) =0

for k =1,2,... ,n. Therefore, we select

¢1(2) = Bi(z)

which satisfy the requirement.

On the other hand, ¢, must be chosen to satisfy boundary conditions for v in
Equation (4.2). Thus, we need ¢, (1) = 0 but ¢} (0) is not necessary to be zero, for k =
1,2,...,n. Let us consider the set of {¢}}_; to be the same as {¢, };._, except for p, that

we choose

po(2) = Ba(x).

It is‘obvious that, by taking differentiation, we have ¢ (0) = 0 for k = 1,3,4,... ,n and

v(1)=0for k=1,2,3,... ,n, and
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Since v4(0,t) = ?m(vl(i’+m)2 and

= di(t)¢},(0)
k=1
= di(t)¢1(0) + d2(t)95(0) + d3(t)5(0) + - - - + dn(t) 97, (0)

= EdQ( )

and

0(0,1) = g (0, 1) ch ()7 (0)
c1(t)e7 (0 )+C2( )95(0) + €e3(t)¢5(0) + =+ + cn(t) 91 (0)
= c1(t) B (0) +c2(t) [By(0) 4 B3(0)] + c3(t) B3 (0) + - - + ca(t) B, (0)
—cl(t)< 5’2) Hes(t) <2i2 + i )+03(> 04+ ealt) -0

= ) )],

we finally have

3 3m 3 2
EdQ(t) = m {ﬁ [Cg(t) — C1(t)] - m} 7

and hence

4mh {i

2
doft) = 1754 72 [cz(t)—cl(t)]—m} .

Now we write v in terms of ¢, ’s'as follows:

_ dy(£) By () + da(t) Ba(x) + d(£) B(x) + - - - + du(t) By ()

— (OB (2) + dalt) [Bola) + Ba(w)] + ds()By(x) + - + dn(t)Ba(x)} — () Bo(a)
2

= > d)one) = T { 2 ea) = a0 = | Bl

14 m?2
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From v = ugy,, we will have

n 2
> d(064(0) ~ Tz { 7 20— (0] = m | Boo) = Y- en(06f o).
k=1

Applying this equation to all nodal points yields
d=9 '®,,c+d g (4.3)

where ¢, d, 1, and ®,, are the same as in Section 3.1, and

iy 5 [es(t) — ea(£)] = m}” Bo(0)

0

0

Remembering that y(z,t) = u(z,t) — f(z), we have

Yyt = ug(w,t) = ch ) g

ym—um(x t ch ¢k mZL‘— )a
Yzz = uxx<x t ch m,
k=1
e 4mh [ 3 L.
bz = a(0:0) 1015 DO~ Tz | i 50— a0~ B,
n 2
Yzzxz = Um;({L',t) - f(4)(l‘) = de<t) I]é(x) - 14—|—L:l2 {% [C2<t) - Cl(t)] - m} Bg(l')
k=1

We now substitute the above 5 derivatives into the original non-linear Mullins
equation (2.2) and use Equation (4.3) to compute the coefficient function di, ’s in terms of

cr ’s. We finally arrive at a system of n ODFE’s in matrix form as

dc; = f(t,c) (4.4)
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We can solve system (4.4) using Runge-Kutta-Fehlberg method with

Ccp = (I)flllo

= !

Then we will get u(z,t) and, finally, y(x,t).

In the previous work, Liu [7] transformed the system of Equation (2.3) by letting

f(@) =%2(1—2)? + 2 cos ma, and chose ¢, and ¢,, ; differently which are

¢9(x) = Bo(x) + Bi(x) 4+ Ba(z),

Pn1(2) = Bn-1(z) + Bn(z) + Bny1(z).
Additionally, @5 and ¢,,_; were chosen to be

po(@) = ABo(x) + Bi(x) + Ba(z),

@n71($) — anl(w) i Bn(w) + Bn+1($).

where

36m  A(t)

A=1-— .
(L+m2)h3di(t)

The solution could be obtained through IMSL ODE package DIVPAG [7], however,
we will use Runge-Kutta-Fehlberg method instead. In this case, we find that the result

obtained from our derivation is very close to that from Liu’s.
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Figures 4.1 - 4.5 shows the results using our derivation for m = 0.1, 0.5,0.7,0.8, 1
at t = 1. They are compared with T&B’s solution. Our solutions are close to T&B’s
solutions for the value of m up to 0.5 and they start to depart from T&B’s solution when

m > 0.5. Here, we use 41 nodal points with 2000 time steps for the calculation.
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-0.004
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-0.005 — —

Figure 4.1: Comparison of groove profiles produced from cubic splines method (dotted line)
and T&B’s solution (solid line) for m = 0.1.
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4.2 Finite difference method

We use the forward finite difference formula for the first order derivative with y;
in Equation (2.2) yields
1 ,
YUt — 4(9) _ B )

_ () 2>2
= et
—10yy @y ) (1 + (yéj))2) +3 (%E”)g <5 (%@)2 — lﬂ ,

then, after rearrangement,

: , BAt , N2\
yUuth) = @ >2>4 [yg%)m (1 + (u&”) ) (4.5)

(1 fr (yi’ )
& r 4 2 N\ 3 N 2
1002 (14 (1)) +3 (1) (5 (2)" - 1)
We can approximate Y., Yoz, Yozz, ANd Ypprr Dy using the symmetry finite difference formu-
lae from Appendix C. However, we still have problem with the unknown external points.

Hence, we have to apply the finite difference formulae with the boundary conditions in

Equation (2.3), and we will obtain

Yo =y2 —2m Az,

Yn+1 = Yn—1, (46)
6 A :1:33/;,;3;%,r
= 727 —4dm A
Y—1 1+ 42 + Y3 mAaw,
6 A azgyxygx
Ynto == 5 Y + Yn—2.

We solve Equations (4.5) and (4.6) together with the initial condition in Equation

(2.3) using Jacobi iterative technique. Figures 4.6 and 4.7 display groove profiles produced
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by FDM and T&B’s solution for m = 0.1 and 0.5. We can see that both graphs in each
figure are in very good agreement with each other. However, when we increase the slope
at groove root or the values of m to more than 0.5, the profile produced by FDM starts
to depart from that produced by T&B’s solution (see Figure 4.8 - 4.10). For m = 0.1, the
number of nodal points used is 31 with 500 time steps. When increasing the value of m, we
have to increase the number of nodal points for more accuracy so that we have to increase
the number of time steps also. For m = 1, we use 81 nodal points with 4000 time steps in

the production of groove profile.

0002 — ST 4 S8 Yoz __

0.001 =

0.9 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0]

-0.001 4

0.002 /
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Figure 4.6: Comparison of groove profiles produced from FDM (dashed line) and T&B’s
solution (solid line) for m = 0.1.
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4.3 Laplace transform finite difference method (LTFDM)

In order to use LTFDM, unlike the linear Mullins equation which can be solved
without any trouble, the non-linear Mullins equation needs linearization to relieve the non-
linear structure. That is the non-linear terms must be linearized before applying FDM.
The linearized variable will be written with ~ which denotes the previous iteration. In
this thesis, we propose two linearization schemes including direct scheme and Taylor series
expansion scheme.

Direct linearization scheme
For this scheme, we will keep the highest order spatial derivative terms as many

as possible with the rest being written with ~. Thus, Equation (2.2) can be rewritten as

~2

dy B o ~2 ~2 ~2
a =TT 2, [(1 3 yz)2 *Yrzze — 10ymymm(1 7 yz) *Yzaz + 3(5ya: - 1)yxx ’ ywx]
(1+y,)*

Using the symmetry finite difference formulae from Appendix C to approximate Yz, Yezz,

ylElEIEIE yle]'ds

oy; B ~2 o — 4yl + 6y; — 4yi—1 + yi—
8_:[12 _ - [(1+yx)2. <yz+2 Yi+1 hy4z Yi—1 T Ys 2)
(I+y,)*
~ o~ ~20 (Yit2 = 2Yi1 T2y — Yiz2
= 10Y (L H ¥) 1 ( B-R=7amme (47)
~2 ~2 [ Yit1 =2y + Yy
+3(5y:c B 1)ywx ’ ( L h2Z : >:| 5

fori = 1,2,...,n. It should be remarked that ax and Zm are also approximated by the

finite difference formulae. However, for conciseness, they will be left as they are in Equation
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(4.7). Taking Laplace transform of Equation (4.7) with respect to ¢, it follows that

Sﬁ/y\i —y(7;,0) = — ( BN2 ) {
(14 y,)*

r ~2 ~ o~ ~2 ~2 ~2
A4 D) | 100, Y0 (14 0,) 350, 1>ym] »
.

~2 ~ ~2
(1+y,)>2 L Walaa(L+Yy)
A 13

A
Yi—2

h4 h3 h2

6(1+ 7% 667, — )7
Y Yg — A
+ A - th m] Y; (4.8)
- N2 e ~2 ~2 ~2
A 4(1 = yw)2 o loyryww(l =+ y:l:) _ 3(5yw — 1)y:1::1: N
- ~2 o =5
e (T +9.)°  5Ye¥aal +yz) | A
hA 13 Yit2

where ¢t = 1,2,... ,n.
Now we approximate the boundary conditions in Equation (2.3) by finite difference

formulae so that two of the boundary conditions are as follows:

Yo(0,) =m = yo =y2 — 2mh,
yw(lvt) =0 = YUnt1=Yn-1-
The rest of the boundary conditions must be linearized. We can linearize yyqq(1 + 32) —

oy 20
3y$yg2m to be (14 ¥, )Yzazr — 3YpYuyYazz- Lhus, from [y,..(1+ yg) — 3yxy£x”x:0 = 0 we have

~2. [y3—2y2 + 2yo — y— ~ o~ — 2y1 +
(1457 [P 22 £ 20 y1]_3 [yz Y1 yo}:o

2h3 TJd T h2
or

L 20 las [ 120U
— 5 W

Y—1 = — Y2 T Y3+
14y, L+,

~2
1+vy,

12mh2y.y
mh“y, Y. _4mh]_

For [ygzz(1+ yg) — 3ymygw]]m:1 =0, we have

~2 [ Ynt2 = 2Unt1 + 2Yn—1 — Yn2 ~ o~ (Yt = 2Yn + Ynot
(1+yz) < - 2h3 - - :|_3 T z:r|:n hgn - =0
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or
12hy.1y 12hy.y
Ynt+2 = Yn—2 + y—aygm “Yn—1 — y—CENy;ﬂ? “dn-
1+y, 1+vy,

Taking Laplace transform of g, Yn+1, y—1, and y,42o with respect to time yields

A A 2mh

Yo = Y2 — P
N N
Ynt+1 = Yn—1»
12hy.y 12hy 4y 1\ | 12mh?y_ y
@—1_%‘@1—%‘@24‘@34‘(—) #—Mnh], (4.9)
1+y, 1t+y, 1+y,
A A 1209w A 1209 oY A
yn+2:yn72+#'yn—17$' n:
1+, 1+y,

Taylor series expansion linearization scheme
Now we will use Taylor series expansion scheme to linearize the non-linear terms.

The truncated first order Taylor series expansion states that

~ ~

flut, ... uy) = f(al,... ,ﬂn) —i—ful(ﬂl,... ,ﬂn)(ul —&1) +-~-+fun(51,... s ) (U, — Up).

If we let w1 = Yp, U2 = Yoz, U3 = Yzwz, Us = Yzrze and use the above expansion,

we have
~ ~ ~2 A~
Yzzzx 1 4yzymmmz 4ya:y:rmmc
(1 + 2)2 - 2 *Yxxzx — 2 “Yzx + D)
Yl (14y,)? (1+y,)3 (1+y,)?
~ I~ ~2 ~ |~
(1+y2)3*_ N24 'ym+ N23'y:c:c
@ (L +y,) (1+y,)
R ~ R ()7 ~2
(1+y,)? (1+y,)*
3 9 2 ~2 ~ ~3 ~2
(1 + y2)4 - 2 A " Yxx + 2 5 T
z (1+ys,) (1+y,)
~3 ~2 ~2~3 ~2
+ _nyz(5yx — 1) _ 6y:z:yxx(3 — 5yz)
~2 ~2
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Thus, Equation (2.2) becomes

Ay 1 10y,y
83;1/: = _B{ —=5 | Yzaza T _% rrT
(1+y,)? (1+y,)?
~ ~ ~2 ~2
+ |- ~2 + ~2 Tx (410)
I+y.)*  (T+ye)!
~ ~ ~ o~ ~2 ~ ~3 ~2
~2 ~2., ~2 Yo
(1+¥z) (1 +yz) (1+¥z)
~2~ ~ o~ o~ ~2 ~3 ~2 ~2~3 ~2
o | Wl 20Y0YaaYzaa(2Ye = 1) O¥sa(5Ye —1)  18Y2Y00(3 —5¥,) | |
(1+75,)° (1475,)" (1-+5,)" (1+72)°
Yz + Yz + Yy Yz

Using symmetry finite difference formulae with spatial derivative terms in Equation (4.10),

we have
Wi _ g { 1 (yi+2 — Ayig1 6y — dyi1 + yz’—2>
- ~2 4
4 (4 0)? "
109, Yze | (Vit2 = 21 + 201 — Yio
T ~2 4 2h3
(1+y,)
r ~ ~ ~2 ~2
10 9 5y, — 1 i1 — 2u; i
+ = y:cg;:c:; + ymx( ?ia:z ; ) (yH—l hy; + Y; 1) (411)
(1+yg) (I +vy,)
r ~ ~ ~ o~ ~2 ~ ~3 ~2
+ _4yxy:c9:1:.1: + ]'Oy'E"EyTT'E(5yI = 1) + 18y7;ymv(3 7 5yz)] <yi+1 — yi—1>
~2 ~2 <2
L (1+y,)3 (1+y,)* (1+y,)5 2h
~2 A~ ~ o~ A~ ~2 ~3 ~2 ~2~3 ~2
+ 4ywyz:rrrx J QOymyzzymmx<2ym — 1) _ Gywx(5ya: _ 1) _ 18ya:yww(3 — 5yw)
~2 3 ~2 4 ~2 4 ~2 5
(1+ys,) (1+y,) (1+y,) (1+ya,)

where i = 1,2;. .. ,n. Taking the Laplace transform of Equation (4.11) with respect to time
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and rearranging terms yields

A 1 5%; 5 A
sy; —y(z,0) = _B{ ) . MQ Yito
h%1+ya2 h3(1+7,)?
4 10V, 00 10U0Vpus 9ym<5ym 1)

- ~2 + ~2 ~2
P (14y,)2  h3(1+ ym)3 h2(1 + yx) h2(1 + ym)

- 5ymym(5yx —1) 9yxym(3 5yx)] .
1

_l’_

~2 ~2
h(1 + )3 B(L4 )4 h(1+y,)°
~2 ~2
2 1 -1
N — nyyiaéx - 8ym(5y32 )] 0 (4.12)
M (1+y,)? R(1+y,)? h2(14y,)4
~2 ~2 ~2
h(L+y,)?  hP(1+y,)? h%1+y) B2(1+ )t
~ AR ~2 ~ ~3
+ 2Yangbel | SYraYuwe®OYs =D WoYae(3 — 5ym)]
2 ~2 i—1
h(1 +y,)3 h(1 + y,)* B(1+7,)°
1 55 ;7] A
+ Fo— it =Y, o
A +y,)% - B3+ y,)3
~2 A~ g O~ ~2 ~3 ~2
4ya:yz:rmm 0 2Oymyzxy:mcz(2yx - 1) _ 6yxa:(5yx — 1)
+ ~2 3 ~2 4 ~2 4
(1+y,) (1+y,) (1+y,)

~2~3
)

Doing the same way with the boundary conditions, finally we will obtain

A A 2mh

Yo = Y2 — P
A A
Yn+1 = Yn—1s
A 24hy. Y. A 24RY Y. A A 1 283
Y=~ Y-~ Yst s+ N —4mh + ) (4.13)
1+y, 1+, 1+ y,
12my,y ~ ~ ~2 o 2 2
<% + 2myﬂcy:m:x - 3mymz + 6y:ryzz - 2yxym:mc>] ’
A A 24hY Yoo A 24hY Yoo A 1 203 /2 2
Yn+2 = Yn—2 + % “Yp—1— % : I (nyy:rx Qymywwx> .
1+y, 1+y, 1+ ym

We can now solve system (4.8) or (4.12) together with Equation (4.9) or (4.13) as
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described in Section 3.3. However, instead of solving linear system (4.8) or (4.12) together
with (4.9) or (4.13) by standard Gaussian elemination, we will solve it by Thomas’ algorithm
for pentadiagonal matrix which will save time greatly.

From Figures 4.11 and 4.12, one can see that LTFDM based on both direct lin-
earization scheme and Taylor series expansion linearization scheme, called LTFDM-D and
LTFDM-T respectively, give groove profiles which are in very good agreement with T&B'’s.
When the slope at the groove root m = 0.7, LIFDM-T produces better result than LTFDM-
D does (see Figure 4.13). When increasing the slope at the groove root above 0.7, the shape
of the groove is still correct but it is lower than T&B’s (see Figures 4.15 - 4.19). For
LTFDM-D, we can increase the number of nodes if we want to increase the accuracy. Here,
we choose approximately 30-60 nodal points for m < 1 and 400-1000 nodal points for m > 1.
On the other hand, we can choose only 20-35 nodal points for LTFDM-T for all the value
of m presented. It is rather strange that the larger the groove slope is the less nodal points
can be used in LTEDM-T. For example, at the groove root m = 0.1, the maximum of nodal

points is N = 35 and for m = 3, N = 20.
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Figure 4.11:  Comparison of groove profiles produced from LTFDM-D (dotted line),

LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 0.1.
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Figure 4.12: ~Comparison of groove profiles produced from LTFDM-D (dotted line),

LTFDM-T (dashed line), and T&B’s solution (solid line) for m = 0.5.
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Figure 4.13: “Comparison of groove profiles produced from LTFDM-D (dotted line),
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4.4 Comparison

Figures 4.20 and 4.21 show that all numerical methods presented herein give similar
results that are in excellent agreement with T&B’s solution when m = 0.1 and m = 0.5.
For better comparison, we calculate relative error of solution produced by each method
at 10 points which are equally spreaded over [0,0.45]. Then we take an average of these
relative errors, which is denoted ARE. The relative error is computed based on Ly,-norm.
From Table 4.1, when m = 0.5, every method gives the solution with ARE less than 10%.
But, when m = 0.7, LTFDM-T produces the best accurate solution compared with T&B’s
solution with ARE = 8.51% while the others have ARE more than 10%. Additionally,
LTFDM-D and LTFDM-T give better results than the others for m = 0.8. Moreover, for
m = 1, LTFDM-D gives the solution which is closest to T&B’s solution (see Figure 4.24).
Furthermore, when the value of m is increased, the number of nodal points has to be
increased accordingly for more accuracy, which can be done quickly and easily by LTFDM.
On the other hand, for cubic splines and finite difference methods, we have to increase a

great deal of time steps also.

m CBS Liu FDM LTEDM-D LTFDM-T

0.5 597 7.06 = 532 8.05 9.98
0.7 17.99 = 16.62. 18.61 11.36 8.51
0.8 33.51 3215 28.09 17.52 17.71

Table 4.1 : The average relative errors.
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Chapter 5

Conclusion

In this thesis, three numerical approaches including cubic splines method, finite
difference method (FDM), and Laplace transform finite difference method (LTFDM) are
presented and applied to solve Mullins equation which is the fourth-order non-linear partial
differential equation describing grain boundary grooving by surface diffusion. All meth-
ods are first tested with linearized Mullins equation before extended to non-linear case.
Numerical results produced by these three methods exhibit very good accuracy compared
with exact solution of linear Mullins equation. However, our main aim is to extend all the
methods to solving non-linear Mullins equation.

Cubie splines method was previously used to solve Mullins equation by Liu [7].
Herein, we solve Mullins equation by cubic splines method through slightly changing Liu’s
derivation and compare our results with the solution obtained via Liu’s derivation. We find
that the result from our derivation is similar to that from Liu’s derivation, and the accuracy

is very good when the groove slope is not more than 0.5 compared to T&B’s solution.
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Also, FDM was previously used to solve Mullins equation by Lee [6]. Our work is
to study this numerical technique for Mullins equation. We find that the result is in very
good agreement with T&B’s solution for the groove slope m < 0.5.

The highlight of this thesis is to solve Mullins equation by LTFDM through direct
linearization and Taylor series expansion schemes. By the way of LTFDM, we have to use
the numerical inversion of Laplace transform. Herein, the numerical inversion of Laplace
transform called “Stehfest’s algorithm” is utilized. The results obtained from LTFDM based
on direct linearization scheme, called LTFDM-D, are presented for the groove slope ranging
between 0 and 4.5. Additionally, LTFDM-D’s solution agrees very well with T&B’s solution
when the groove slope is not more than 0.5. For LTFDM based on Taylor series expansion
linearization scheme, denoted LTFDM-T, the numerical results obtained compare very well
with T&B’s solution when the groove slope is not more than 0.7 which is better than the
other methods. Moreover, for the groove slope m = 0.8, LTFDM-D and LTFDM-T produce
better accurate results than the other methods do. Unfortunately, LTFDM-T somehow fails
when the value of m is beyond 3.

For the time used in calculation, LTFDM uses the time much less than cubic
splines method and FDM because LTFDM does not have to calculate at each time step.
Therefore, we can quickly obtain an accurate solution at any specific time by LTFDM. On
the other hand; cubic:splines: method ;and: FDM spend time for calculating at each time
step. Moreover, if we want to increase the number of nodes for more accuracy, it can be
done easily with LTFDM. For cubic splines and FDM, we have to increase the number of

time step also so that the time for calculation is increased at the same time.



65

From all of the points mentioned above, LTFDM is a powerful numerical method
for solving Mullins equation and LTFDM-T is better than LTFDM-D for small slope, m < 1,
and LTFDM-D is better than LTFDM-T for larger slope, 1 < m < 4.5. However, there are
many methods for numerical inversion of Laplace transform. For the future works, LTFDM
may be improved by using other numerical inversion of Laplace transform and extended to

solving other non-linear partial differential equations.



66

References

[1]

2]

Mullins, W. W. Theory of hermal grooving, J. Appl. Phys., 1957, 28, 333-339.

Robertson, W. M. Grain-boundary grooving by surface diffusion for finite surface

slopes, J. Appl. Phys., 1971, 42, 463-467.

Zhang, W. and Schneibel, J. H. Numerical simulation of grain-boundary grooving by

surface diffusion, Computational Materials Science, 1995, 3, 347-358.

Cahn, J. W. and Taylor, J. E. Surface motion by surface diffusion, Acta Metall. Mater.,

1994, 42, 1045-1063.

Tritscher, P. and Broadbridge, P. Grain boundary grooving by surface diffusion: an
analytic nonlinear model for a symmetric groove, Proc. R. Soc. Lond. A, 1995, 450,

569-587.

Lee, M. Z. C. A numerical model for dominant surface diffusion applied to periodic
sputtering of surfaces, Honours Thesis, Dept. of Mathematics, University of Wollongong

Australia, 1995.



[11]

[12]

67

Liu, S. Solving PDE with Cubic Splines, Dept. of Mathematics, University of Wollon-

gong, Australia, 2000.

Stehfest, H. Algorithm 368: numerical inversion of Laplace transform, Comm. ACM,

1970, 13, 47-49 and 624.

Chen, H. T. and Chen, C. K. Hybrid Laplace transform/finite difference method for

transient heat conduction problems, Int. J. Numer. Methods Eng., 1988, 26, 1433-1447.

Chen, H. T. and Lin, J. Y. Application of the Laplace transform to nonlinear transient

problems, Appl. Math. Modelling, 1991, 15, 144-151.

Satravaha, P. Solving linear and nonliear transient diffusion problems with Laplace
transform dual reciprocity method, Ph.D. thesis, Dept. of Mathematics, University of

Wollongong, Australia, 1996.

Zhu, S., Satravaha, P., and Lu, X. Solving linear diffusion equations with the dual
reciprocity method in Laplace space, Engineering Analysis with Boundary Elements,

1994, 13, 1-10.

Prenter, P. M. Splines and variational methods; Newyork, Wiley, 1975.

IMSL, User’s Manual, MATH /Library, IMSL, Houston, 1991.



68

Appendix A

Exact solution for linear Mullins

equation

2 — ma. The advantage of this change

For convenience, let u(xz,t) = y(x,t) + Jrx
is to have homogeneous boundary conditions. Hence, the new system to be solved in terms

of u is as follows:
W = — B}t (A.1)

subject to

IC. wu(x,0)= %;LQ —mz

BC. ug(0,t) =0,
Uz (0,1) = 0, (A.2)
uz(L,t) =0,

Ugza (L, t) = 0.
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Using separation of variables, let w(z,t) = X (2)T'(t) and substitute it in Equation (A.1).
So, we have

17T'(t)  XW()
TBTH . X@) (A.3)

Case 1. k>0 (let k=X \>0)

From Equation (A.3), we have two ODE’s, i.e.,
T'(t) + kBT(t) = 0,
and
XW(z) — XX (z) =0,
which have corresponding general solutions as
T(t) = dye *Pt,
and
X(z) = c1e™ + coe ™ + 3008 A\ + ¢4 Sin AT

From boundary conditions in Equation (A.2), we have

X'(0y=0  : Aei—Ae2 4+ Mg =0

X’(L) =0  Myer—\ege M — Aegsin AL+ Aeq cosAL= 0

"

X (0)=0 : Meci—Meg— Ay =0

"

X (L)=0 : Nerer — Nege M 4 Negsin \L — Meq cos AL = 0.
Solving for ¢1, ca, c3, and ¢4, we have ¢; = co = ¢4 = 0 and c3sin AL = 0. Since c3 # 0,

otherwise it gives trivial solution; sin AL = 0. Thus, A\, = %, n = 1,2,3,... so that
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Xn(x) = cpcos L and T, (t) = dne*”4’r43t/L4 . Hence,

44 4 nmwx
= Cpe ' BYL cos—,n=1,2,3,...
L

where C,, = c,d,,.
Case 2. k=0

From Equation (A.3), we have two ODE’s, solutions of which are T'(t) = d;, and
X(x) = c1 + cox + gz + gz

From boundary conditions in Equation (A.2), we have in this case

X(0)=0 : c=0
X' (L)=0 : e3+2e3L+3c4l?=0

"

X (0)=0 : 6e=0
X(Ly=0 : 6eg= 0.
Solving this linear system of equations, we have co = c3 = ¢4 = 0 and ¢; is an arbitrary

constant. As a result, X(z) = ¢; and T'(t) = d;. Accordingly, u(z,t) = c1d;. However, let

us write it in another form as

Case 3.0, k< 0 (let k= =)\ > 0)
From Equation (A.3), we have two ODE'’s, solutions of which are T'(t) = dye *B¢,

V2 . V2 .
and X (z) = 672/\96(61 cos @)\x + co sin @)\w) + e_TZA”(c;e, cos @)\w + ¢4 sin @)\x)
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From boundary conditions in Equation (A.2), we have

X’(O):O tc1t+cecg—c3+cy =0
/ eg)‘L [c1(cos @)\L — sin @)\L) + ca(cos QAL + sin @)\L)]
X'(L)=0
+67§)‘L[03(— cos g)\L — sin @AL) + c4(cos @AL — sin g)\L)] =0
X"0)=0 : —c1+c2+c3+ca=0
eg)‘L[cl(— CoS Ag)\L — sin @)\L) + ca(cos 3§/\L —sin Ag)\L)]
X"(L) =0

+€_§/\L[C3(COS @AL — sin @AL) + ca(cos @AL + sin Ag)\L)] =0

Solving this linear system of equations, we have ¢; = ¢o = ¢3 = ¢4 = 0. Hence,
u(z,t) = 0.

From 3 cases, the solution of Equation (A.1) satisfying boundary conditions in

Equation (A.2) is

C o
u(z, t) = 70 + 3 Cper ™ B cog ?
n=1

Applying initial condition yields

00
%xQ —mx = 70 + ZC’ncosn—zx,
n=1
which is the half-range expansion of %1‘2 — mz in the interval [0, L]. Thus, from Fourier
cosine series, we obtain Cy = —% and C,, = (27:%32 ,n=1,23,... & Therefore,
o mL = 2mL 4B A nwT
u(x,t) = 3 2::1 (n7r)26 Cos ——

so that the actual analytical solution is

(e o]
2mL  _apapy s nwT

y(z,t) = —T—i-ma:— T+Z (n7r)26
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Mullins [1], on the other hand, solved the exact solution from

T (A4)
subject to
IC. y(z,0)=0
BC. yz(0,t) =m, (A.5)
Yaza(0,1) = 0.

Using the Laplace transform technique together with initial condition from Equation (A.5),

we operate on Equation (A.4) in the usual way to obtain
A A
BYyzar + 5y =0, (AG)

where s is the Laplace parameter. Boundary conditions from Equation (A.5) are trans-

formed into

A

Y5(0,8) =m/s, (A7)
and

A

Yy (0,8) =0. (A.8)

The solution of Equation (A.6) that behaves properly at infinity and obeys condi-
tions (A.7) and (A.8), is found by standard methods to be

mBY/A 51/4 gl/4 T

A )
Y = S exp(——21/231/4x) sm(—21/231/4m — Z) (A.9)

The Laplace inversion may in principle be applied to Equation (A.9) for any value of z. In
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this case, it is feasible only if x = 0. By use of a table of Laplace transforms we find

y(0,1) = —#th)“,
yz(0,t) = m, (A.10)
beal0,1) = =5 s (B,
o N ST

Then, substituting y(a,t) = m(Bt)Y/*Z[z/(Bt)"/*] into Equation (A.4), and de-
noting x/(Bt)Y/* by w and dZ/du = Z' etc., one find the following ODE for the shape

function Z(u)
ZW —(1/DuZ' + (1/4)Z = 0. (A.11)

We replace the power series Z(u) = >~ apu” into Equation (A.11) and obtain

the following recursion relation between the coefficients a,, in the usual way

n—1
n+1)(n+2)(n+3)(n+4

An+4 = 4( )an. (A12)

The first four coefficients is calculated from relation (A.10) by using Taylor’s theorem and

remembering that 9/0z = (Bt)~Y*(d/du). That is

1 1

= —— —— e U 1 1 1V
W= Toieray T T BRI 3/A)

, a3 =

Recursion relation (A.12) then determines all coefficients a,, and the solution of the original

problem follows

y(z,t) = m(Bt)1/4n2:%an [#] .
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Appendix B

B splines

First we will explain the meaning of spline. A spline function consists of polynomial
pieces on subintervals joined together with certain continuity conditions. Formally, suppose
that n+ 1 points zq, x1, ... , » have been specified and satisfy xg < r1 < ... < x,. These
points are called knots.

A spline function of degree k having knots xg, z1; ... , T, is a function S such
that:

1. On each interval [z;_1,x;] , S is a polynomial of degree < k
2. S has a continuous (k —1) derivative on [xq, Tn]-

The cubie spline is the spline when k'= 3. Thus

;

So(x) , T € [zp,x1]

Si(x) , T € [T1, 7]

Snfl(x) , T € [xnflamn]
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where S; be the cubic polynomial that represents S on [x;, zi11].

In particular, B_splines or bell-shaped splines have several forms. One is

;

(x — xi_9)? , T € [ri2,m 1]

h3 +3h%(x — zi—1) + 3h(x — 2i-1)% = 3(x —wi—1)® |, ¥ € [vio1, 4]

1
Bz(x) = W h3 + 3h2(xi+1 = ac) 1 3h($7;+1 3 (L’)2 — 3(xi+1 — (L’)3 , T E [15, $i+1]
(Tiye — ) T € [Tig1, Tigo]
0 , otherwise.

which is graphed in Figure B.1.

(D)

Figure B.1: Graph of B;(x).

Hence,
.
1 , j=i
Bi(xj) =4 1/4 | j=i+1
0 , otherwise.

Now we can find Bj(x) and B/ (z) :
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3(x — m;_9)? , T E [xi—9,xi1]
3h? +6h(x — xi—1) — 9z —xi21)? T € w1, 7]
Bi(z) = 4—23 —3h% — 6h(xit1 — )+ 9xi1 —2)® , x € v, 11
—3(wi2 —x)? ;T E [Tig1, Tio)]
\ 0 , otherwise
and
6(x — xi_9) , T E [Ti—9,mi 1]

6h — 18(.% i a:i_l) b RC [xi_l,xi]

1
Bz”(x) F7 m 6h — 18(wi+1 S SU) , L C [xi,xiﬂ]
6(r; 12 —) s T € [Tit1, Tiyo)
0 , otherwise.

\

Thus, we can summarize them in Table B.1.

Ti—2 Ti—1 X5 Tit1 Ti42
B; (x) 0 1 / 4 1 1 / 4 0
Bi(z) . -0, . 3/(4h) 0 =3/(4h). 0

B/(z) 0 3/(2h%) —3/n? 3/(2h?) 0

Table B.1
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FDM formula

Algebraic formulae for derivative of y with respect to x:

Derivative Type Finite Difference Approximation
Ya 3 pt SYM (Yit1 —yi<1)/(2 A 2),
Yaa 3 pt SYM (Wir1 — 2yi +9i—1)/ (Da?),
Yzaa 5 pt SYM (Y2 = 2yi1 + 20i1 — yi2)/ (2 A 2P),

5 pt ASYM (—1ir3 + 6yino — 12y;01 + 10y; — 3yi—1)/(2 A 23),

5 pt ASYM (3yir1 —10y; + 12y;-1 — 6yi—2 + yi—3)/(2 A 23),
Yzazz 5 pt SYM (Yiv2 = AYiv1 + 6y — Qi1 + yise)/(Azt),

6 pt ASYM  (—yita + 6yiys — 1yivo + 16yi1 — i + 2yi-1) /(Da?),

6 pt ASYM  (2y;41 — y; + 16y;_1 — 14y; o + 6y, 3 — y;_a)/(Ax?).

Note that all the above finite difference approximations are of second order.

77
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Appendix D

Numerical inversion of Laplace

transforms

The numerical inversion of Laplace transform by Stehfest [8] evaluates

In2 o
A = S > ViF(si)
i=1

where
In2
S; = —1
t
and
. min{%,N/2} N/2 |
ECnEs 0y a4 1y
=[] (N/2 — k)N (E —1)!(0 — k)!(2k —0)!
==

Note that f(¢) is the approximately inversed value of function F'(s) at time ¢.
For the value of N, an even positive integer, Stehfest reported after the inversion

was done with 50 tested functions that the value of N should be about 18 for double
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precision calculation. However, it has been shown that accurate numerical inversion of
Laplace transform can be obtained using the value of N as small as 6 from [12] and [11].

Therefore, we choose N = 6 in this thesis.

AONUUINLUSNNS )
ANRINIUIVENAY
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