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CHAPTER I

INTRODUCTION

In this chapter, we introduce the basic concepts and terminology used in our work.

Definition 1.1. For a nonempty set X, a collection T of subsets of X is called a

topology on X if it satisfies the following conditions.

(i) X ∈ T and φ ∈ T .

(ii) Any union of members of T is also a member of T .

(iii) Any finite intersection of members of T is also a member of T .

The elements of T are called open sets in X and (X, T ) is called a topological space.

A subset A of a topological space X is said to be closed if the set X − A is open.

Given a subset A of a topological space X, the interior of A is defined as the union

of all open sets contained in A, and the closure of A is defined as the intersection of all

closed sets containing A.

The interior of A is denoted by Int A, and the closure of A is denoted by A. Obviously

Int A is an open set and A is a closed set; furthermore,

Int A ⊆ A ⊆ A.

If A is an open set, A = Int A; while if A is closed, A = A.

Definition 1.2. Let (X, T ) be a topological space and Y be a subset of X. The collection

TY = {Y ∩ U : U ∈ T } is a topology on Y , called the subspace topology. (Y, TY ) is

called a subspace of X.

Remark 1.3. If Y is an open subspace of X and G ∈ TY , then G ∈ T . If O ∈ T and

O ⊆ Y , then O ∈ TY .
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Definition 1.4. A metric on a set X is a function

d : X × X → R

having the following properties:

(i) d(x, y) ≥ 0 for each x, y ∈ X; the equality holds if and only if x = y,

(ii) d(x, y) = d(y, x) for each x, y ∈ X,

(iii) d(x, y) + d(y, z) ≥ d(x, z), for all x, y, z ∈ X.

Given a metric d on X, the number d(x, y) is often called the distance between x

and y with respect to the metric d. Given ε > 0, the set

Bd(x, ε) = {y ∈ X : d(x, y) < ε}

is called the ε-ball centered at x. Sometimes we omit the letter d from the notation

and denote this ball simply by B(x, ε), if no confusion will arise. A subset G of a metric

space (X, d) is said to be open in X if for every point x in G, there is ε > 0 such that

B(x, ε) ⊆ G. It is easy to show that B(x, ε) is an open set. And by a neighborhood of

a point x, we mean an open set containing x. A subset F of (X, d) is closed if X − F

is open. Let Td be the collection of all open sets in (X, d). Then Td has the following

properties

(1) X ∈ Td and φ ∈ Td,

(2) Any union of members of Td is also a member of Td,

(3) Any finite intersection of members of Td is also a member of Td.

Thus Td is a topology on X. The topology Td is called the topology induced from

the metric d on X.

Definition 1.5. A topological space (X, T ) is called a metric space if T is a topology

that induced by a metric on X, and in this case we denote (X, T ) by (X, d), or simply

X if no confusion arises.
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Example 1.6. The standard metric or the usual metric on Rn is the metric d

defined by

d(x, y) =

√
√
√
√

n∑

i=1

(xi − yi)2,

for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn. It is easy to see that d is a metric

on Rn.

Definition 1.7. Let (X, dX) and (Y, dY ) be metric spaces. We say that a function

f : X→Y is continuous at a point x in X if for each ε > 0 there is δ > 0 such that

for every y ∈ X if dX(x, y) < δ, then dY (f(x), f(y)) < ε. If f is continuous at every

point x in a subset A of X, then f is said to be continuous on A. If f is continuous

on X, then we simply say that f is continuous.

Definition 1.8. Let X and Y be metric spaces. A bijective function f : X→Y is called

homeomorphism if f and f−1 are continuous.

Definition 1.9. By a linear topological space we mean a vector space X over R

equipped with a Hausdorff topology such that the two functions + : X × X → X and

· : R × X → X are continuous.

Definition 1.10. Let V and W be vector spaces over R. A function T : V → W is said

to be a linear transformation (linear function) if

T (ru + sv) = rT (u) + sT (v)

for each r, s ∈ R and u, v ∈ V .

Definition 1.11. Let X be a vector space over R and x, y ∈ X, the set

L(x, y) := {ty + (1 − t)x : 0 ≤ t ≤ 1}

is called the line segment from x to y. A subset C ⊆ X is convex if L(x, y) ⊆ C for

every pair x, y ∈ C. A subset C of X is star-convex if L(0, y) ⊆ C for each y ∈ C .
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Definition 1.12. Let X be a vector space over R. A function ‖ · ‖ : X → R is said to

be a norm on X if

(i) ‖x‖ ≥ 0 for all x ∈ X; the equality holds if and only if x = 0,

(ii) ‖cx‖ = |c|‖x‖ for all x ∈ X and c ∈ R,

(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X.

A vector space equipped with a norm is called a normed linear space

Theorem 1.13. Let X be a normed linear space. Then the function d : X×X → [0,∞)

defined by

d(x, y) = ‖x − y‖, for x, y ∈ X,

is a metric on X.

Definition 1.14. A subset A of a space X is said to be dense in X if A = X.

Example 1.15. The set Q of all rational numbers is dense in the space R.

Definition 1.16. A subset of a space X is called a Gδ-set in X if it is an intersection

of a countable collection of open subsets of X.

Remark 1.17. (1) Every open subset of X is a Gδ-set.

(2) For a subset A of X, let U(A, ε) =
⋃

x∈A

B(x, ε). Since B(x, ε) is

open for every x ∈ A, U(A, ε) is an open set. If A is closed then A =
⋂

n∈Z+

U(A,
1

n
).

Therefore, every closed set is a Gδ-set.

Definition 1.18. Given a set X, we define a sequence in X to be a function x : N → X.

We usually denote x itself by the symbol (x1, x2, . . .) or (xn).

Definition 1.19. Let X be a metric space. A sequence (xn) in X is said to converge

to a point y in X if for each ε > 0, there is N ∈ N such that

d(xn, y) < ε whenever n ≥ N.
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A sequence (xn) in X is said to be a Cauchy sequence if for each ε > 0, there is N ∈ N

such that

d(xn, xm) < ε whenever n, m ≥ N.

A metric space (X, d) is said to be complete if every Cauchy sequence in X converges

(to a point) in X.

Example 1.20. The space R with the standard metric is a complete metric space, but

its subspace Q is not.

Definition 1.21. A topology T on X is called Hausdorff if for each pair x, y of distinct

points in X, there exist open sets Ux and Uy such that x ∈ Ux, y ∈ Uy, and Ux ∩Uy = φ.

A topological space (X, T ) is called a Hausdorff space if T is a Hausdorff topology.

Definition 1.22 ([1], P. 295). A space X is said to be a Baire space if the following

condition holds: Given any countable collection {An} of closed sets in X each of which

has empty interior, their union
⋃

An also has empty interior.

Theorem 1.23 ([1], P. 296). A space X is a Baire space if and only if given any count-

able collection {Un} of open sets in X, each of which is dense in X, their intersection

⋂
Un is also dense in X.

Theorem 1.24 ([1], P. 296, Baire category theorem). If X is a compact Hausdorff

space or a complete metric space, then X is a Baire space.

Corollary 1.25. A countable dense subset of a complete metric space is not a Gδ-set.

Proof. Let X be a complete metric space and A a countable dense subset of X. Sup-

pose that A =
∞⋂

i=1

Gi, and Gi’s are open in X. Then each Gi is also dense in X,

since A is dense in X and A ⊆ Gi. Let B = {Gi}i∈N

⋃{X − {a} : a ∈ A}. Then
⋂

Gα∈B
Gα = φ. By Baire category theorem, X is a Baire space. By Theorem 1.23,

⋂

Gα∈B
Gα is dense in X, which is a contradiction. Therefore, A is not a Gδ-set.
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Remark 1.26. The set Q of all rational numbers is a countable dense subset of R and

R is a complete metric space. By Corollary 1.25, Q is not a Gδ-set.

Lemma 1.27. Let X and Y be metric spaces and f : X → Y be a function. The set

A = {x ∈ X : f is continuous at x} is a Gδ-set.

Proof. Suppose A is nonempty. Let n ∈ N and a ∈ A be arbitrary. Since f is continuous

at a, there is a neighborhood Gn,a of a such that f(a) ∈ f(Gn,a) ⊆ B(f(a), 1
n
).

Let An =
⋃

a∈A

Gn,a and B =
⋂

n∈N

An.

It is clear that A ⊆ B. Next, we will show that B ⊆ A. Let b ∈ B and ε > 0 be

arbitrary. There is m ∈ N such that 2
m

< ε. Since b ∈ Am, there exists a ∈ A such that

b ∈ Gm,a. Let g ∈ Gm,a. So f(b) and f(g) are in f(Gm,a) ⊆ B(f(a), 1
m

). Thus

dY (f(b), f(g)) ≤ dY (f(b), f(a)) + dY (f(a), f(g)) <
1

m
+

1

m
=

2

m
< ε.

Therefore, f is continuous at b, which implies b ∈ A.

We will denote the set of all continuous functions from X to Y by C(X, Y ). We

usually refer to an element in C(X, Y ) as a map from X to Y , and use 1X to denote the

identity map in C(X, X).

Definition 1.28. Let (X, dX) and (Y, dY ) be metric spaces. A subset F of C(X, Y ) is

said to be equicontinuous at x ∈ X if for each ε > 0, there is δ > 0 such that for every

y ∈ X, dY (f(x), f(y)) < ε whenever dX(x, y) < δ and f ∈ F . The set of all points x in

X at which F is equicontinuous, is denoted by E(F).

Remark 1.29. Let F ⊆ C(X, Y ). If F is finite, then E(F) = X.

Proof. Suppose F = {f1, f2, . . . , fn} for some n ∈ N, and fi ∈ C(X, Y ) for every

i ∈ {1, . . . , n}. Assume that x ∈ X and ε > 0 be arbitrary. For every i ∈ {1, . . . , n},

since fi ∈ C(X, Y ), there is δi > 0 such that dY (fi(x), fi(x
′)) < ε whenever dX(x, x′) <

δi. Choose δ = min{δ1, δ2, . . . , δn}, so δ > 0. For every i ∈ {1, . . . , n}, we have
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dY (fi(x), fi(x
′)) < ε whenever dX(x, x′) < δ. Therefore, x ∈ E(F), which implies

E(F) = X.

Let f ∈ C(X, X). We define fn(x) to be fn(x) =

n-copies
︷ ︸︸ ︷

f ◦ f ◦ f · · · ◦ f(x). If F = {fn :

n ∈ N}, then we denote E(F ) by E(f).

Example 1.30. For each m ∈ N − {1} and f : R → R given by f(x) = mx, for x ∈ R.

Then E(f) = φ.

Proof. Suppose f(x) = mx for some m ∈ N − {1}. Let x ∈ R, ε = 1 and n ∈ N. Then

fn((x − 1

n
, x +

1

n
)) = (mn(x − 1

n
), mn(x +

1

n
))

= (mnx − mn

n
, mnx +

mn

n
)

6⊆ (mnx − 1, mnx + 1), by mn > n for all n ∈ N and m 6= 1

= (fn(x) − ε, fn(x) + ε).

Therefore, x /∈ E(f) for all x ∈ R.

Proposition 1.31. Let H,F ⊆ C(X, Y ). Then the following conditions hold.

(1) If H ⊆ F , then E(F) ⊆ E(H).

(2) E(H ∪ F) ⊆ E(H) ∩ E(F).

(2) E(H) ∪ E(F) ⊆ E(H ∩ F).

Proof. For (1). Suppose that H ⊆ F . Let x ∈ E(F) and ε > 0 be arbitrary. Then there

is a neighborhood U of x such that f(U) ⊆ B(f(x), ε) for all f ∈ F . Since H ⊆ F ,

f(U) ⊆ B(f(x), ε) for all f ∈ H, so x ∈ E(H).

For (2). Since H,F ⊆ H∪F and by (1), we have E(H∪F) ⊆ E(H) and E(H∪F) ⊆

E(F). Therefore, E(H ∪ F) ⊆ E(H) ∩ E(F).

For (3) H ∩ F ⊆ H and H ∩ F ⊆ F and by (1), we have E(H), E(F) ⊆ E(H ∩ F).

Thus E(H) ∪ E(F) ⊆ E(H ∩ F).
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Remark 1.32. By Example 1.30 and Proposition 1.31 (1), we have E(C(R, R)) ⊆ E(f)

where f : R → R is defined by f(x) = 2x and E(C(R, R)) = φ.

Theorem 1.33. Let {Uα : α ∈ Λ} be a collection of open subsets of X. If F is equicon-

tinuous on Uα for all α ∈ Λ, then
⋃

α∈Λ

Uα ⊆ E(F).

Proof. Let u ∈
⋃

α∈Λ

Uα and ε > 0 be arbitrary. So u ∈ Uβ for some β ∈ Λ. There is a

neighborhood Vβ of u such that f(Vβ) ⊆ B(f(u), ε) for every f ∈ F . Since Vβ is open in

Uβ, Vβ is open in X. Hence u ∈ E(F).

Example 1.34. Let F = {fn : n ∈ N}, where for each n ∈ N, fn ∈ C(R, R) is defined

by

fn(x) =







0 , if x < 0

nx , if 0 ≤ x ≤ 1
n

1 , if 1
n

< x.

(1.1)

Then E(F) = R − {0}.

Proof. First, we will show that 0 /∈ E(F). Choose ε = 1
2 and let U be an open set

containing 0, and n ∈ N be such that (0 − 1
n
, 0 + 1

n
) ⊆ U . Then

fn((0 − 1

n
, 0 +

1

n
)) = [0, 1) 6⊆ (−1

2
,
1

2
) = (f(0) − 1

2
, f(0) +

1

2
) = (f(0) − ε, f(0) + ε)

for every n ∈ N. Thus 0 6∈ E(f), which implies E(F ) ⊆ R − {0}. Next, we will show

that F is equicontinuous on R − {0}. For every n, if we restrict the domain of fn to
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(−∞, 0) ∪ ( 1
n
,∞) then the class F defined as in (1.1) is finite. Therefore, (−∞, 0) and

( 1
n
,∞) are subset of E(F) for every n ∈ N. By Theorem 1.33,

R − {0} = (−∞, 0) ∪
⋃

n∈N

(
1

n
,∞) ⊆ E(F),

so E(F) = R − {0}.

Example 1.35. Let y ∈ R and n ∈ N, define fy,n ∈ C(R, R) by

fy,n(x) = y(fn(x − y)), for x ∈ R,

where fn’s are defined as in Example 1.34. Then E(F) = (−∞, 0] where

F = {fy,n : y ∈ R+, n ∈ N}.

Proof. As in the previous example, (−∞, 0) ⊆ E(F). Next, we show that 0 ∈ E(F).

Let ε > 0 be arbitrary. We choose δ = ε and let fy,n ∈ F . If y ≥ ε, then

|fy,n(x) − 0| = y(fn(x − y)) = y · 0 = 0

for every x ∈ (−ε, ε). If 0 < y < ε, then

|fy,n(x) − 0| = y(fn(x − y)) = yfn(x − y) ≤ y < ε

for every x ∈ R. Thus 0 ∈ E(F). Finally, we show that F is not equicontinuous on R+.

Let y ∈ R+. We will show that y /∈ E(F). Choose ε = y
2 and let U be a neighborhood

of y. There is n ∈ N such that (y − 1
n
, y + 1

n
) ⊆ U . Choose fy,n ∈ F . Then

fy,n((y − 1

n
, y +

1

n
)) = [0, y) 6⊆ (

y

2
,
y

2
) = (fy,n(y)− y

2
, fy,n(y) +

y

2
) = (f(y)− ε, f(y) + ε).

Then F is not equicontinuous at y. Therefore, E(F) = (−∞, 0].
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Theorem 1.36. For each F ⊆ C(X, Y ), the set E(F) is a Gδ-set.

Proof. For each n ∈ N and x ∈ E(F), there is a neighborhood Gn,x of x such that

f(x) ∈ f(Gn,x) ⊆ B(f(x), 1
n
) for every f ∈ F , since F is equicontinuous at x.

Let An =
⋃

x∈E(F)

Gn,x and B =
⋂

n∈N

An.

It is clear that E(F) ⊆ B. Next, we will show that B ⊆ E(F). Let b ∈ B and ε > 0 be

arbitrary, there is m ∈ N such that 2
m

< ε. Since b ∈ An for every n ∈ N, b ∈ Am. There

is a point a ∈ E(F) such that b ∈ Gm,a. Let c ∈ Gm,a and f ∈ F . Hence f(b) and f(c)

are in f(Gm,a) ⊆ B(f(x), 1
m

), so

d(f(b), f(c)) ≤ d(f(b), f(a)) + d(f(a), f(c)) <
1

m
+

1

m
=

2

m
< ε.

Therefore, there is a neighborhood Gm,a of b such that f(Gm,a) ⊆ B(f(b), ε) for all

f ∈ F , so F is equicontinuous at b. Thus b ∈ E(F).

Corollary 1.37. The set E(f) is a Gδ-set, for every f ∈ C(X, X).

Definition 1.38. Let X and Y be two spaces, I the unit interval [0, 1] and f, g ∈

C(X, Y ). We say that f and g are homotopic if there exists a map H : X × I → Y

such that H(x, 0) = f(x) and H(x, 1) = g(x) for each x ∈ X.

Definition 1.39. Let X be a space and A ⊆ X. A retraction of X onto A is a map

r : X → A such that r|A is the identity map of A. If such a map r exists, we say that A

is a retract of X.

Definition 1.40. A map f ∈ C(X, Y ) is called nullhomotopic if f is homotopic to a

constant map. A space X is called contractible if 1X is nullhomotopic.

Theorem 1.41. Let A be a retract of X. If X is contractible, then so is A.

Remark 1.42. Any star-convex subset of a linear topological space is contractible.

Proof. Let X be a star-convex subset of a linear topological space. Define a homotopy

H : X × [0, 1] → X by H(x, t) = tx for each x ∈ X and t ∈ [0, 1]. Thus 1X is

nullhomotopic, so X is contractible.



CHAPTER II

SOME PROPERTIES OF CONVERGENCE SETS

For an nonempty Hausdorff space X and f ∈ C(X, X), the convergence set of f is

defined to be the set

C(f) := {x ∈ X : the sequence (fn(x)) converges in X},

and the fixed point set of f is the set F (f) of all fixed points of f . That is F (f) :=

{x ∈ X : f(x) = x}. Note that F (f) is closed for every f ∈ C(X, X).

Remark 2.1. Let X be a metric space and f ∈ C(X, X). We clearly have:

(1) F (f) ⊆ C(f),

(2) lim
n→∞

fn(x) is unique and belongs to F (f) for each x ∈ C(f),

(3) C(f) = φ if and only if F (f) = φ.

From now on, we will assume that F (f) 6= φ.

Definition 2.2. Let X be a metric space and f ∈ C(X, X).

(i) The map f is called nonexpansive if for each x, y ∈ X,

d(f(x), f(y)) ≤ d(x, y).

(ii) The map f is called quasi-nonexpansive if for each x ∈ X and y ∈ F (f),

d(f(x), y) ≤ d(x, y).

(iii) The map f is called virtually nonexpansive if C(f) ⊆ E(f).

It is obvious that every nonexpansive map is quasi-nonexpansive. It is known that

every quasi-nonexpansive maps is virtually nonexpansive and F (f) is a retract of C(f)[2].
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Proposition 2.3. Let f ∈ C(X, X). If {fn : n ∈ N} is a finite set, then f is virtually

nonexpansive.

Proof. Assume that {fn : n ∈ N} is a finite set. Then E(f) = X, by Remark 1.29, and

so f is virtually nonexpansive.

Here is an example to show that a map may be nonexpansive relative to a metric but

not nonexpansive relative to another metric even though the two metrics are equivalent.

Example 2.4. Consider R2 with the metric induced by the norm

‖(x, y)‖∞ = max{|x|, |y|},

and define f : R2 → R2 by

f(x, y) = (x, |x|).

Then f is nonexpansive relative to ‖·‖∞, not nonexpansive relative to the standard met-

ric. However it is virtually nonexpansive relative to any metric on R2 even though the

two metrics are equivalent.

Proof. To show that f is nonexpansive relative to ‖·‖∞, let (x1, y1), (x2, y2) ∈ R2. We

have

‖f(x1, y1) − f(x2, y2)‖∞ = ‖(x1, |x1|) − (x2, |x2|)‖∞

= ‖(x1 − x2, |x1| − |x2|)‖∞

= max{|x1 − x2|, ||x1| − |x2||}

= |x1 − x2|

≤ max{|x1 − x2|, |y1 − y2|}

= ‖(x1, y1) − (x2, y2)‖∞ .

Next, we note that for (0, 1), (1, 1) in R2, we have

‖f(0, 1) − f(1, 1)‖ =
√

2 > 1 = ‖(0, 1) − (1, 1)‖ .
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That is f is not nonexpansive relative to the standard metric. Since fn = f for any n ∈ N,

{fn : n ∈ N} is finite and by Proposition 2.3 implies that f is virtually nonexpansive.

Example 2.5. Consider C([0, 2π], [0, 2π]) with the norm

‖x‖ =

∫ 2π

0
|x(t)|dt

for x ∈ C([0, 2π], [0, 2π]). The map f : C([0, 2π], [0, 2π]) → C([0, 2π], [0, 2π]) defined by

(f(x))(t) = sin(t)|x(t)| (x ∈ C([0, 2π], [0, 2π]))

is nonexpansive.

Proof. To show that f is nonexpansive, let x, y ∈ C([0, 2π], [0, 2π]). We have

‖f(x) − f(y)‖ =

∫ 2π

0
|(f(x))(t) − (f(y))(t)|dt

=

∫ 2π

0
|sin(t)x(t) − sin(t)y(t)|dt

=

∫ 2π

0
|sin(t)||(x(t) − y(t))|dt

≤
∫ 2π

0
|x(t) − y(t)|dt

= ‖x − y‖ .

This implies that f is a nonexpansive map.

The followings are examples of virtually nonexpansive maps on C.

Example 2.6. Let f : C → C be defined by f(z) = z for each z ∈ C.

Let z = x + yi ∈ C. Then f(x + yi) = x − yi and

F (f) = {x + yi : y = 0}.

Also, for n ∈ N, fn(x + yi) = x + (−1)ny and

C(f) = {x + yi : y = 0} = F (f).

Since {fn : n ∈ N} = {f, 1C} and by Proposition 2.3, f is virtually nonexpansive.
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Example 2.7. Let f : C → C be defined by f(x+iy) = x+i1
2 (y + |x|) for each z = x+iy

in C.

It is easy to see that F (f) = {x + iy : y = |x|} and C(f) = C. Note that

fn(x + iy) = x + i
1

2n
(y +

n−1∑

i=0

2i|x|) and
1

2n

n−1∑

i=0

2i < 1 for all n ∈ N. We will show that

E(f) = C. Let x + iy ∈ C and ε > 0 be arbitrary. Choose δ = ε
3 . Hence for each

x1 + iy1 ∈ C and n ∈ N such that ‖x + iy − (x1 + iy1)‖ < δ, we have

‖fn(x + iy) − fn(x1 + iy1)‖ =

∥
∥
∥
∥
∥
(x − x1) + i

y − y1

2n
+ i

1

2n
(|x| − |x1|)

n−1∑

i=0

2i

∥
∥
∥
∥
∥

≤ ‖(x − x1)‖ +

∥
∥
∥
∥
i
y − y1

2n

∥
∥
∥
∥

+

∥
∥
∥
∥
∥
i(|x| − |x1|)

1

2n

n−1∑

i=0

2i

∥
∥
∥
∥
∥

≤ δ + δ + ‖(|x| − |x1|)‖

≤ δ + δ + δ = ε.

Thus x + iy ∈ E(f). Therefore, E(f) = C.

Example 2.8. Let f : R3 → R3 be defined by f(x, y, z) =
(
x, y, 1

2(z + |y|)
)

for each

(x, y, z) ∈ R3.

It is easy to see that F (f) = {(x, y, z) : z = |y|} and C(f) = R3. Similar to Example

2.7, we can show that f is virtually nonexpansive.

The followings are examples of maps that are not virtually nonexpansive.

Example 2.9. Let f : C → C be defined by f(z) = z|z| for each z ∈ C.

It is easy to see that for each n ∈ N, fn(z) = z|z|2n−1. Then

F (f) = {z ∈ C : |z| = 1} ∪ {0} and

C(f) = {z ∈ C : |z| ≤ 1}.

Next, we will show that f is not virtually nonexpansive. Suppose that f is virtually

nonexpansive. Since 1 ∈ F (f), there exists δ > 0 such that for every y ∈ C and n ∈ N,

‖1 − fn(y)‖ < 1
2 whenever ‖1 − y‖ < δ. Let k ∈ N be such that 1 −

(
1
2

) 1

2k < δ. Then
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∥
∥
∥1 − fk(

(
1
2

) 1

2k )
∥
∥
∥ =

∥
∥1 − 1

2

∥
∥ = 1

2 which leads to a contradiction. So f is not virtually

nonexpansive.

Next, we let `∞(R) be the set of all bounded sequences of real numbers. That is

`∞(R) = {(x1, x2, . . .) : sup
i

|xi| < ∞}.

Then `∞(R) is a vector space under the usual addition and scalar multiplication. That

is for each (xn), (yn) ∈ `∞(R) and c ∈ R,

(xn) + (yn) = (xn + yn),

c(xn) = (cxn).

Define

‖x‖∞ = sup
i

|xi|,

for x = (xn) ∈ `∞(R). It is easy to verify that ‖·‖∞ is a norm on `∞(R).

Example 2.10. Let f : `∞(R) → `∞(R) be defined by f(x1, x2, x3, . . .) = (x2
2, x

2
3, x

2
4, . . .)

for each (x1, x2, x3, . . .) ∈ `∞(R).

Proof. We will show that f in not virtually nonexpansive. Suppose that f is a virtually

nonexpansive map. Since (1, 1, 1, . . .) ∈ F (f), there exists δ > 0 such that if

‖(1, 1, 1, . . .) − (y1, y2, y3, . . .)‖∞ < δ,

then

‖(1, 1, 1, . . .) − fn(y1, y2, y3, . . .)‖∞ = ‖fn(1, 1, 1, . . .) − fn(y1, y2, y3, . . .)‖∞ <
1

2

for every n ∈ N. Let k ∈ N be such that 1 −
(

1
2

) 1

2k < δ. Hence

∥
∥
∥
∥
∥
∥
∥
∥

(1, 1, 1, . . .) − (1, 1, . . . ,

kth−term
(

1

2

) 1

2k

, 1, . . .)

∥
∥
∥
∥
∥
∥
∥
∥
∞

< δ



16

but
∥
∥
∥
∥
∥
∥
∥
∥

(1, 1, 1, . . .) − fk(1, 1, . . . ,

kth−term
(

1

2

) 1

2k

, 1, . . .)

∥
∥
∥
∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
(1, 1, 1, . . .) − (

1

2
, 1, 1, . . .)

∥
∥
∥
∥
∞

=
1

2
,

which is a contradiction. It is easy to see that F (f) = {(x, x
1

2 , x
1

4 , . . .) : x ∈ R+
⋃{0}}.

Example 2.11. Let f : `∞(R+) → `∞(R+) be defined by f(x1, x2, x3, . . .) = (x
1

2

2 , x
1

2

3 , x
1

2

4 , . . .)

for each (x1, x2, x3, . . .) ∈ `∞(R+).

Proof. Suppose that f is virtually nonexpansive. Since (0, 0, 0, . . .) ∈ F (f), there exists

δ > 0 such that if

‖(0, 0, 0, . . .) − (y1, y2, y3, . . .)‖∞ < δ,

then

‖(0, 0, 0, . . .) − fn(y1, y2, y3, . . .)‖∞ = ‖fn(0, 0, 0, . . .) − fn(y1, y2, y3, . . .)‖∞ <
1

2

for every n ∈ N. Let k ∈ N be such that 1
22k < δ. Hence

∥
∥
∥
∥
∥
∥
∥

(0, 0, 0, . . .) − (0, 0, . . . ,

kth−term

1

22k
, 0, . . .)

∥
∥
∥
∥
∥
∥
∥
∞

< δ

but
∥
∥
∥
∥
∥
∥
∥

(0, 0, 0, . . .) − fk(0, 0, . . . ,

kth−term

1

22k
, 0, . . .)

∥
∥
∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
(0, 0, 0, . . .) − (

1

2
, 0, 0, . . .)

∥
∥
∥
∥
∞

=
1

2
.

which a contradiction. It is easy to see that F (f) = {(x, x2, x4, . . .) : x ∈ R+
⋃{0}}.

The next example shows that if f ∈ C(X, X) is a virtually nonexpansive map and

p ∈ C(X, X) is a homeomorphism, then p ◦ f and f ◦ p need not to be a virtually

nonexpansive map.

Example 2.12. Let p : R → R defined by p(x) = 2x for each x ∈ R. It is easy to see

that p is a homeomorphism. By Example 1.30, E(p) = φ and F (f) = {0}, so p is not
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virtually nonexpansive. Since 1R is virtually nonexpansive, p ◦ 1R = 1R ◦ p = p is not

virtually nonexpansive.

Theorem 2.13. Let f, p ∈ C(X, X). Then f is virtually nonexpansive if and only if for

every homeomorphism p on X, p ◦ f ◦ p−1 is virtually nonexpansive.

Proof. For only if part. Let x ∈ F (p ◦ f ◦ p−1) and ε > 0 be arbitrary. Note that

fn =

n−time
︷ ︸︸ ︷

(p ◦ f ◦ p−1) ◦ (p ◦ f ◦ p−1) ◦ . . . ◦ (p ◦ f ◦ p−1) = p ◦ fn ◦ p−1

and f(p−1(x)) = p−1(x), since p ◦ f ◦ p−1(x) = x. Therefore, p−1(x) ∈ F (f).

Since p is continuous, for each z ∈ X, there is δ1 > 0 such that for every y ∈ X, if

‖z − y‖ < δ1, then ‖p(z) − p(y)‖ < ε. Since f is virtually nonexpansive and by [2], for

each z ∈ F (f), there is δ2 > 0 such that for every y ∈ X, ‖fn(z) − fn(y)‖ < δ1 where

‖z − y‖ < δ2 and for every n ∈ N. Since p−1 is continuous, for each z ∈ X, there is

δ3 > 0 such that for every y ∈ X, if ‖z − y‖ < δ3, then
∥
∥p−1(z) − p−1(y)

∥
∥ < δ2. Since

p−1(x) ∈ F (f), for every y ∈ X, such that ‖x − y‖ < δ3 implies

∥
∥p ◦ fn ◦ p−1(x) − p ◦ fn ◦ p−1(y)

∥
∥ < ε

for any n ∈ N. Thus F (f) ∈ E(f) and by [2], which implies p ◦ f ◦ p−1 is virtually

nonexpansive. For if part, the conclusion is obvious.

Lemma 2.14 ([4]). If f ∈ C(R, R) is quasi-nonexpansive, then F (f) is a convex subset

of R.

Theorem 2.15. Let X be a convex subspace of R and f ∈ C(R, R) quasi-nonexpansive.

If |F (f)| > 1, then C(f) = X.

Proof. Let c ∈ X. Since f is quasi-nonexpansive, by Theorem 2.14, F (f) is a closed

convex subset of X.

Case 1. F (f) = X. Then F (f) ⊆ C(f) ⊆ X.
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Case 2. F (f) = (−∞, x] ∩ X for some x ∈ X. Since (−∞, x] ∩ X = F (f) ⊆ C(f),

it suffices to show that (x,∞) ∩ X ⊆ C(f) and let z = x − |x − c| ∈ F (f). Since f

is quasi-nonexpansive, we have c ≥ f1(c) ≥ f2(c) ≥ . . . ≥ z, it follows that (fn(c)) is

decreasing and bounded below by z. Hence it is a convergent sequence.

Case 3. F (f) = [x,∞) ∩ X for some x ∈ R. The proof is similar to case2.

Case 4. F (f) = [x, y] for some x, y ∈ R. Suppose c 6∈ [x, y]. Then there are 3

possibilities:

(4.1) There exists z ∈ F (f) and m ∈ N such that for each n ≥ m, fn(c) ≥ z. Thus

fn(c) ≥ z for each n ≥ m. Since f is quasi-nonexpansive,

c ≥ f1(c) ≥ f2(c) ≥ . . . ≥ z.

Therefore, (fn(c)) is a convergent sequence.

(4.2) There exists z ∈ F (f) and m ∈ N such that for each n ≥ m, fn(c) ≤ z. The

proof is similar to the case (4.1.).

(4.3) For each z ∈ F (f) and each m ∈ N, there exist n, k ≥ m such that

fn(c) < z and fk(c) > z.

We will show that this case is impossible. To do this, let define a subsequence (fnk(c))

as follows:

fn1(c) = f(c),

fn2(c) < x for some n2 ≥ n1,

fn3(c) > x for some n3 ≥ n2,

...

for k is even, fnk(c) < x,

for k is odd, fnk(c) > x.

Note: 0 < x − fnk(c) for every even number k. Let r = |x − fn2(c)| > 0 and r′ =

|fn3(c) − x|.



19

Since r = |fn2(c) − x| ≥ |fn3(c) − x| = r′ and fn3(c) ≥ y, we have

|fn3(c) − y| = r′ − (y − x) ≤ r − (y − x).

Next, let r′′ = |fn4(c) − y|. Since r − (y − x) ≥ |fn3(c) − y| ≥ |fn4(c) − y| = r′′ and

fn4(c) ≤ x, we have x − fn4(c) = r′′ − (y − x) ≤ r − 2(y − x).

Follow this process, we have

fn5(c) − y ≤ r − 3(y − x),

x − fn6(c) ≤ r − 4(y − x), . . . ,

x − fni(c) ≤ r − (i − 2)(y − x), if i is even,

fni(c) − y ≤ r − (i − 2)(y − x), if i is odd.

There is an even number m ∈ N such that x − fnm(c) ≤ r − (m − 2)(y − x) ≤ 0 which

leads to a contradiction.
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Definition 2.16. Let X be a metric space and f ∈ C(X, X).

(i) The map f is called periodic if there is n ∈ N such that fn = 1X .

(ii) The map f is called recurrent if for each ε > 0 there is N ∈ N such that for

each x ∈ X, d(fN (x), x) < ε.

(iii) The map f is called pointwise recurrent if for each x ∈ X and ε > 0 there

is N ∈ N such that d(fN (x), x) < ε.

Remark 2.17. Every periodic map is recurrent, and every recurrent map is pointwise

recurrent.

Lemma 2.18. Let f : X → X be pointwise recurrent. Then for each x ∈ X and ε > 0,

the set Ax,ε := {n ∈ N : d(fn(x), x) < ε} is infinite.

Proof. Let x ∈ X and ε > 0 be arbitrary. We suppose that Ax,ε is a finite set. It is easy

to see that f is not periodic. Since f is not periodic, d(fn(x), x) > 0 for all n ∈ N. Thus

0 < min{d(fn(x), x) : n ∈ Ax,ε} < ε.

Since f is pointwise recurrent, there is m ∈ N such that

d(fm(x), x) < min{d(fn(x), x) : n ∈ Ax,ε} < ε.

It follows that m ∈ Ax,ε. Hence

d(fm(x), x) < min{d(fn(x), x) : n ∈ Ax,ε} ≤ d(fm(x), x),

which leads to a contradiction. Therefore, Ax,ε is infinite.

Theorem 2.19. If f ∈ C(X, X) is pointwise recurrent, then C(f) = F (f).

Proof. It suffices to show that C(f) ⊆ F (f). Let x ∈ C(f), and lim
n→∞

fn(x) = y for some

y ∈ F (f). Let ε > 0 be arbitrary. There is N ∈ N such that d(fn(x), y) < ε
2 for each

n ≥ N . By Lemma 2.18, we know that {n ∈ N : d(fn(x), x) < ε
2} is infinite, so there is

k ≥ N such that d(fk(x), x) < ε
2 . Hence

d(x, y) < d(x, fk(x)) + d(fk(x), y) <
ε

2
+

ε

2
= ε.
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Since ε is arbitrary, d(x, y) = 0. That is x = y = lim
n→∞

fn(x) and

f(x) = f( lim
n→∞

fn(x)) = lim
n→∞

fn+1(x) = x.

Therefore, x ∈ F (f).

The next theorem describes C(f) when f ∈ C(X, X) is a virtually nonexpansive map

on a complete metric space. The proof generalizes the result in [2].

Theorem 2.20. Let X be a complete metric space. If f ∈ C(X, X) is virtually nonex-

pansive, then C(f) is a Gδ−set.

Proof. Let f ∈ C(X, X) is virtually nonexpansive. Since C(f) ⊆ E(f), f is equicontin-

uous for every α ∈ C(f). That is for every α ∈ C(f) and m ∈ N there exists δα,m > 0

such that if d(y, α) < δα,m, then

d(fn(y), fn(α)) <
1

m
for every n ∈ N.

Let Am =
⋃

α∈C(f)

B(α, δα,m), for each m ∈ N and B =
⋂

m∈N

Am.

We will claim that B = C(f). It is clear that C(f) ⊆ B. To show that B ⊆ C(f). Let

b ∈ B and ε > 0 be arbitrary. There exists k ∈ N such that 1
k
≤ ε

4 . Since b ∈ Am for

every m ∈ N, there is α ∈ C(f) and δα,k > 0 such that d(b, α) < δα,k, so

d(fn(b), fn(α)) <
1

k
≤ ε

4
for all n ∈ N.

Since α ∈ C(f), there exist x ∈ X and N ∈ N such that d(fn(α), x) < ε
4 for every

n ≥ N . Hence

d(fn(b), x) ≤ d(fn(b), fn(α)) + d(fn(α), x) <
ε

4
+

ε

4
=

ε

2

for every n ≥ N . And

d(f i(b), f j(b)) ≤ d(f i(b), x) + d(x, f j(b)) <
ε

2
+

ε

2
= ε

for every i, j ≥ N . Therefore, (fn(b)) is a Cauchy sequence. Since X is complete, (fn(b))

converges to a point in X. That is b ∈ C(f).
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The next example shows that there is a map such that C(f) is not a Gδ-set.

Example 2.21. Define T : [0, 1] → [0, 1] by

T (x) =







2x if 0 ≤ x ≤ 1
2 ,

2 − 2x if 1
2 < x ≤ 1.

This map is called the tent map.

Note F (T ) = {0, 2
3}. We consider the composition of T as follows:

T ◦ T (x) = T 2(x) =







4x if 0 ≤ x ≤ 1
4 ,

2 − 4x if 1
4 < x ≤ 2

4 ,

4x − 2 if 2
4 < x ≤ 3

4 ,

4 − 4x if 3
4 < x ≤ 1.
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Tn(x) =







2nx if 0 ≤ x ≤ 1
2n ,

2 − 2nx if 1
2n < x ≤ 2

2n ,

2nx − 2 if 2
2n ≤ x ≤ 3

2n ,

4 − 2nx if 3
2n < x ≤ 4

2n ,

2nx − 4 if 4
2n ≤ x ≤ 5

2n ,

6 − 2nx if 5
2n < x ≤ 6

2n ,

2nx − 6 if 6
2n ≤ x ≤ 7

2n ,

...

k + 1 − 2nx if k
2n < x ≤ k+1

2n where k is odd,

2nx − k + 1 if k+1
2n ≤ x ≤ k+2

2n ,

...

2n − 2nx if 2n−1
2n < x ≤ 1.

Remark 2.22. The tent map T has the following properties

(1) for x ∈ (0, 1
2 ], there is k ∈ N such that 1

2 ≤ T k(x) ≤ 1,

(2) for x ∈
[

1
2 , 1

]
, there is k ∈ N such that 0 ≤ T k(x) ≤ 1

2 .

Proof. (1) Let x ∈ (0, 1
2 ]. There is k ∈ N such that

1

2k+1
≤ x ≤ 1

2k

and

1

2k
≤ 2x = T (x) ≤ 1

2k−1
.

Thus

1

2
≤ 2kx = T k(x) ≤ 1.

(2) Define g : [0, 1] → [0, 1] by g(y) =
2 − y

2
for each y ∈ [0, 1]. We consider the set

A = {g0(1) = 1, g(1), g2(1), g3(1), . . .}.
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We claim that gk(1) < gk+2(1) if k is odd and gk+2(1) < gk(1) if k is even.

Since gn(y) =
1

2n

n∑

i=1

(−1)n−i2i + (−1)n(y), we obtain

gn(1) =
1

2n

n∑

i=0

(−1)n−i2i and gn+2(1) =
1

2n+2

n+2∑

i=0

(−1)n+2−i2i.

Consider gn(1) − gn+2(1). We note that

gn(1) − gn+2(1) =
1

2n

n∑

i=0

(−1)n−i2i − 1

2n+2

n+2∑

i=0

(−1)n+2−i2i

=
1

2n+2

(

22
n∑

i=0

(−1)n−i2i

)

− 1

2n+2

(

(−1)n−12 + (−1)n +
n+2∑

i=2

(−1)n+2−i2i

)

=
1

2n+2

(

(
n∑

i=0

(−1)n−i2i+2) − (
n+2∑

i=2

(−1)n+2−i2i) − ((−1)n+2−12 + (−1)n+2)

)

=
1

2n+2

(

(
n∑

i=0

(−1)n−i2i+2) − (
n∑

i=0

(−1)n−i2i+2) − ((−1)n−12 + (−1)n)

)

=
1

2n+2

(
−(−1)n−12 + (−1)n

)
= (−1)n+1−2 + 1

2n+2

=
(−1)n

2n+2
.

So if n is odd, then gn(1) − gn+2(1) < 0, otherwise gn(1) − gn+2(1) > 0.

Let x ∈
[

1
2 , 1

]
− {2

3}. We have gk(1) ≤ x ≤ gk+2(1) for some odd number k or

gk+2(1) ≤ x ≤ gk(1) for some even number k.

Since gn(x) ∈ [12 , 1] for every n ∈ N and x ∈ [0, 1],

T ◦ gn = f

(
2 − gn−1

2

)

= 2 − 2

(
2 − gn−1

2

)

= gn−1 for every n ∈ N.

By composition, we have

T k ◦ gk(1) = gk−k(1) = g0(1) = 1 ≥ T k(x) ≥ T k ◦ gk+2(1) = gk+2−k(1) = g2(1) =
3

4

and then 0 ≤ T k+1(x) ≤ 1
2 .

Next we will determine the convergence set, C(T ), of the tent map T . Define the set

T−∞(x) =
∞⋃

n=1

T−n(x)
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where T−1(x) is the inverse image of {x} and the set T−n(x) is the inverse image of the

set T−n+1(x).

By the definition of T , we have T−1(x) = {x
2 , 2−x

2 }.

Then T−1(0) = {0, 1}, T−2(0) = {0, 1
2 , 1}, T−3(0) = {0, 1

4 , 2
4 , 3

4 , 1}, . . . , T−n(0) =

{
m

2n−1 : m = 0, 1, 2 . . . , 2n−1
}
, and

T−∞(0) =
∞⋃

n=1

{ m

2n−1
: m = 0, 1, 2 . . . , 2n−1

}

,

which is dense in [0, 1]. We claim that C(T ) = T−∞(0)
⋃

T−∞(2
3). It is easy to see

that T−∞(0)
⋃

T−∞(2
3) ⊆ C(T ). Now suppose that there is x ∈ C(T ) such that x 6∈

T−∞(0)
⋃

T−∞(2
3).

Case 1. lim
n→∞

Tn(x) = 0 but Tn(x) 6= 0 for every n ∈ N. Choose ε = 1
2 , so there is

N ∈ N such that |Tn(x) − 0| < 1
2 for every n ≥ N . Hence

0 < TN (x) <
1

2
.

By the property (1) of the tent map in Remark 2.22, there is k ∈ N such that

1

2
< TN+k(x) < 1.

Case 2. lim
n→∞

Tn(x) =
2

3
but Tn(x) 6= 2

3
for every n ∈ N. Choose ε =

1

6
, so there is

N ∈ N such that |TN (x) − 2

3
| <

1

6
for every n ≥ N . Hence

1

2
< TN (x) <

5

6
< 1.

By the property (2) of the tent map in Remark 2.22, there is k ∈ N such that

0 < TN+k(x) <
1

2
.

Hence it is a contradiction. Therefore,

C(f) = T−∞(0)
⋃

T−∞(
2

3
).

Since C(T ) = f−∞(0)∪T−∞(2
3) is a countable dense subset of [0, 1] and by Lemma 1.25,

C(T ) is not a Gδ-set.
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Now we show that the map T is not virtually nonexpansive. By Theorem 1.8 in [2],

it suffices to show that F (T ) 6⊆ E(T ). Note that 0 ∈ F (T ). We will show that 0 6∈ E(T ).

Suppose that 0 ∈ E(T ). That is every ε > 0, there exists δ > 0 such that if |x| < δ, then

|Tn(x)| < ε for every n ∈ N. For ε = 1
2 , there exists δ > 0 such that if |x| < δ, then

|Tn(x)| <
1

2
for every n ∈ N

which contradicts to the property (1) of the tent map in Remark 2.22. For when n ∈ N

is fixed, there is k ∈ N such that

Tn+k(x) >
1

2
, whenever |x| < δ.

Therefore, the tent map is not virtually nonexpansive and the convergence set of the

tent map is not a Gδ-set.



CHAPTER III

STAR-CONVEXITY OF CONVERGENCE SETS

In this chapter, we investigate a geometric property of the convergence set of virtually

nonexpansive maps. More precisely, we show that the convergence set of special virtually

nonexpansive maps is star-convex and its fixed point set is contractible.

Theorem 3.1. Let X be a linear topological space. If f : X → X is a linear map, then

C(f) is a convex subset of X.

Proof. Let f ∈ C(X, X) be a linear map and x, y ∈ C(f), say lim
n→∞

fn(x) = a and

lim
n→∞

fn(y) = b for some a, b ∈ F (f). Since X is convex, L(x, y) ⊆ X. Then

fn(tx + (1 − t)y) = fn(tx) + fn((1 − t)y) = tfn(x) + (1 − t)fn(y)

for every point tx + (1 − t)y ∈ L(x, y) and n ∈ N. Hence

lim
n→∞

fn(tx + (1 − t)y) = t lim
n→∞

fn(x) + (1 − t) lim
n→∞

fn(y) = ta + (1 − t)b,

so tx + (1 − t)y ∈ C(f). Then C(f) is a convex subset of X.

Proposition 3.2. Let X be a linear topological space and f ∈ C(X, X) such that

f(x + y) = f(x) + f(y) for every x, y ∈ X. Then f(tx) = tf(x) for every t ∈ R and

x ∈ X, and hence f is a linear map.

Proof. Let x ∈ X. Since f(0) = 0, we have 0 = f(0) = f(x + (−x)) = f(x) + f(−x),

i.e., f(−x) = −f(x). For every n ∈ Z, f(nx) =

n−time
︷ ︸︸ ︷

f(x) + . . . + f(x) = nf(x) and then

f(x) = f(n
n
x) = nf( 1

n
x). That is 1

n
f(x) = f( 1

n
x) for every n ∈ N. Let q = m

n
∈ Q, so

f(qx) = f(m
n

x) = mf( 1
n
x) = m

n
f(x) = qf(x). Now let t ∈ R. There exists a sequence
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(qn) in Q such that lim
n→∞

qn = t. Hence

f(tx) = f( lim
n→∞

qnx) = lim
n→∞

f(qnx) = lim
n→∞

qnf(x) = tf(x).

Therefore, f(tx) = tf(x) for every t ∈ R and x ∈ X.

Theorem 3.3. Let X be a star-convex subset of a linear topological space and f ∈

C(X, X). If there is a map Φ ∈ C([0, 1], [0, 1]) such that for every t ∈ [0, 1], f(tx) =

Φ(t)f(x) for each x ∈ X and lim
n→∞

Φn(t) exists, then C(f) is a star-convex subset of X.

Proof. Let x ∈ C(f) and t ∈ [0, 1]. From f(tx) = Φ(t)f(x), we have fn(tx) = Φn(t)fn(x)

for every n ∈ N. Therefore,

lim
n→∞

fn(tx) = lim
n→∞

Φn(t)fn(x) = lim
n→∞

Φn(t) lim
n→∞

fn(x).

Since lim
n→∞

Φn(t) exists, tx ∈ C(f). Thus C(f) is a star-convex subset of X.

Example 3.4. Let X be a star-convex subset of a linear topological space Y and f ∈

C(X, X) with f(tx) = tqx for some q ∈ R+ for every x ∈ X, t ∈ R. Then C(f) is a

star-convex subset of X.

Theorem 3.5. Let X be a linear topological space and f ∈ C(X, X). Suppose f is

not constant and Φ ∈ C([0, 1], [0, 1]) is such that f(tx) = Φ(t)f(x) for each x ∈ X and

t ∈ [0, 1]. Then the following properties hold.

(1) Φ(1) = 1.

(2) Φ(st) = Φ(s)Φ(t) for every s, t ∈ [0, 1].

(3) Φ(0) = 0.

(4) f(0) = 0.

(5) |F (Φ)| ≥ 2.

Proof. Let x ∈ X be such that f(x) 6= 0. Then f(x) = f(1x) = Φ(1)f(x). Thus

(1 − Φ(1))f(x) = 0, so Φ(1) = 1. That is (1) holds. Let s, t ∈ R. Since

Φ(st)f(x) = f((st)x) = f(s(tx)) = Φ(s)f(tx) = Φ(s)Φ(t)f(x),
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we have (Φ(st) − Φ(s)Φ(t))f(x) = 0. This implies Φ(st) = Φ(s)Φ(t).

Let y, z ∈ X be such that f(y) − f(z) 6= 0. Then

Φ(0)f(y) = f(0y) = f(0) = f(0z) = Φ(0)f(z).

Thus Φ(0)(f(y) − f(z)) = 0, so Φ(0) = 0. This implies (3). And (4) follows from

f(0) = Φ(0)f(0) = 0. (5) is obtained from (1) and (3).

Theorem 3.6. Let X be a linear topological space and f ∈ C(X, X), if f is a quasi-nonexpansive map

with |F (f)| > 1 and a map Φ ∈ C([0, 1], [0, 1]) is such that f(tx) = Φ(t)f(x) for each

x ∈ X and t ∈ [0, 1], then Φ is the identity map on [0, 1].

Proof. Let t ∈ R, s ∈ F (Φ) and y ∈ F (f) − {0}. It follows that sy ∈ F (f) and

|t − s| ‖y‖ = ‖ty − sy‖

≥ ‖f(ty) − f(sy)‖

= ‖Φ(t)f(y) − Φ(s)f(y)‖

= |Φ(t) − Φ(s)| ‖f(y)‖

= |Φ(t) − s| ‖y‖ .

Thus Φ is quasi-nonexpansive. Since 0 and 1 are in F (Φ), by Lemma 2.14 F (Φ) is convex.

Therefore, F (Φ) = [0, 1] implies that Φ(t) = t for every t ∈ [0, 1].

Theorem 3.7. Let X be a star-convex subset of a linear topological space Y and f ∈

C(X, X) virtually nonexpansive. If a map Φ ∈ C([0, 1], [0, 1]) is such that for every t ∈

[0, 1], f(tx) = Φ(t)f(x) for each x ∈ X and lim
n→∞

Φn(t) exists, then F (f) is contractible.

Proof. By Theorem 3.3, C(f) is a star-convex subset of X. By Remark 1.42, C(f) is

contractible. But from [2] we know that F (f) is a retract of C(f), so F (f) is contractible.

In the following example, Theorem 3.7 is used to determine that the fixed point set

of f is contractible.
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Example 3.8. Let f : R3 → R3 be defined by

f(x) =

(

x,
5

6
y +

1

3
√

2
z −

∣
∣
∣
∣
∣

√
3

6
√

2
x +

1

6
y +

1

6
√

2
z

∣
∣
∣
∣
∣
,

1

2
√

3
x −

√
2

6
y +

1

3
z +

∣
∣
∣
∣
∣

√
3

6
x +

√
2

6
y +

1

6
z

∣
∣
∣
∣
∣

)

where x = (x, y, z) ∈ R3.

This map satisfies the property that f(t(x, y, z)) = tf(x, y, z) for every (x, y, z) ∈ R3

and t ∈ [0, 1]. Note that f = PTP−1 where P : R3 → R3 is the linear transformation

represented by the matrix 








1√
2

− 1√
3

− 1√
6

1√
2

1√
3

1√
6

0 − 1√
3

2√
6










and T : R3 → R3 given by T (x, y, z) = (x, y, 1
2(z + |y|)) for each (x, y, z) ∈ R3. By

Example 2.8, T is virtually nonexpansive. The map f is virtually nonexpansive, since

P is homeomorphism and by Theorm 2.13. Therefore, F (f) is contractible, by Theorem

3.7. We will determine F (f) and C(f). We claim that F (f) = P (F (T )). We first show

that F (f) ⊆ P (F (T )). Let x ∈ F (f). Then PTP−1(x) = x, so T (P−1(x)) = P−1(x).

Thus P−1(x) ∈ F (T ). This means x ∈ P (F (T )) or F (f) ⊆ P (F (T )). To show that

F (f) ⊇ P (F (T )), let x ∈ P (F (T )). Then x = P (y) for some y ∈ F (T ). Hence

f(x) = PTP−1(x) = PTP−1(Py) = PT (y) = P (y) = x. This implies F (f) ⊇ P (F (T )).

Therefore,

F (f) = P (F (T ))

= P ({(x, y, |y|) : (x, y, z) ∈ R3})

=

{(
1√
2
(x + y),

1√
3
(−x + y − |y|)), 1√

6
(−x − y + 2|y|)

)

: x, y ∈ R

}

.

Since fn =

n−time
︷ ︸︸ ︷

(PTP−1)(PTP−1) . . . (PTP−1) = PTnP−1 and C(T ) = R3,

lim
n→∞

fn(x) = lim
n→∞

(PTP−1)n(x) = lim
n→∞

PTnP−1(x)

= lim
n→∞

PTnP−1(x) = P ( lim
n→∞

Tn(P−1(x)))

exists for every x ∈ R3. Therefore, C(f) = R3.
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