ผลของสารผนึกหลุมร่องพื้นเรซินชนิดผสมฟลูออไรด์และไม่ผสมฟลูออไรด์ต่อปริมาณแร่ธาตุ ของรอยผุจำลองในระยะเริ่มแรก

เรือโทหญิง ขวัญฤดี วัฒนธรรม

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาทันตกรรมสำหรับเด็ก ภาควิชาทันตกรรมสำหรับเด็ก คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2544 ISBN 974-03-0266-1 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย EFFECT OF FLUORIDE- AND NONFLUORIDE-CONTAINING RESIN SEALANTS ON MINERAL CONTENT OF INCIPIENT ARTIFICIAL CARIOUS LESION

#### LT.JG. KWANRUDEE VATANATHAM

# สถาบนาทยบากกา

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pediatric Dentistry Department of Pediatric Dentistry Faculty of Dentistry Chulalongkorn University Academic Year 2001 ISBN 974-03-0266-1

| หัวข้อวิทยานิพนธ์    | ผลของสารผนึกหลุมร่องพันเรซินชนิดผสมฟลูออไรด์และไม่ผสมฟลูออ- |  |  |
|----------------------|-------------------------------------------------------------|--|--|
|                      | ไรด์ต่อปริมาณแร่ธาตุของรอยผุจำลองในระยะเริ่มแรก             |  |  |
| โดย                  | เรือโทหญิง ขวัญฤดี วัฒนธรรม                                 |  |  |
| สาขาวิชา             | ทันตกรรมสำหรับเด็ก                                          |  |  |
| อาจารย์ที่ปรึกษา     | รองศาสตราจารย์ ทันตแพทย์หญิง ชุติมา ไตรรัตน์วรกุล           |  |  |
| อาจารย์ที่ปรึกษาร่วม | ผู้ช่วยศาสตราจารย์ ทันตแพทย์หญิง ดร. ดารณี ตัณฑ์ไพโรจน์     |  |  |

คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

> ..... คณบดีคณะทันตแพทยศาสตร์ (รองศาสตราจารย์ ทันตแพทย์ สุรสิทธิ์ เกียรติพงษ์สาร)

คณะกรรมการสอบวิทยานิพน<mark>ธ์</mark>

.....ประธานกรรมการ

(ผู้ช่วยศาสตราจารย์ ทันตแพทย์ ธนิส เหมินทร์)

..... อาจารย์ที่ปรึกษา

(รองศาสตราจารย์ ทันตแพทย์หญิง ชุติมา ไตรรัตน์วรกุล)

.....อาจารย์ที่ปรึกษาร่วม (ผู้ช่วยศาสตราจารย์ ทันตแพทย์หญิง ดร. ดารณี ตัณฑ์ไพโรจน์)

.....กรรมการ

(ผู้ช่วยศาสตราจารย์ ทันตแพทย์หญิง ดร. ทิพวรรณ ธราภิวัฒนานนท์)

.....กรรมการ

(อาจารย์ ทันตแพทย์ ดร. สุชิต พูลทอง)

ขวัญฤดี วัฒนธรรม : ผลของสารผนึกหลุมร่องฟันเรซินชนิดผสมฟลูออไรด์และไม่ผสมฟลูออ-ไรด์ต่อปริมาณแร่ธาตุของรอยผุจำลองในระยะเริ่มแรก. (EFFECT OF FLUORIDE- AND NONFLUORIDE-CONTAINING RESIN SEALANTS ON MINERAL CONTENT OF INCIPIENT ARTIFICIAL CARIOUS LESION) อ. ที่ปรึกษา : รศ. ทพญ. ชุติมา ไตรรัตน์วรกุล, อ.ที่ปรึกษาร่วม : ผศ. ทพญ. ดร. ดารณี ตัณฑ์ไพโรจน์, 73 หน้า. ISBN 974-03-0266-1

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อเปรียบเทียบค่าปริมาณแร่ธาตุของผิวเคลือบฟันบริเวณรอยผุที่จำลองขึ้นใน ห้องปฏิบัติการ ภายหลังการผนึกด้วยสารผนึกหลุมร่องฟันเรซินซนิดผสมฟลูออไรด์กับชนิดไม่ผสมฟลูออไรด์ เตรียม รอยผุจำลองขนาด 2x2 มม.ที่ผิวเคลือบฟันทางด้านข้างแก้มของฟันกรามน้อยจำนวน 60 ซี่ โดยแซ่ฟันในสาร ละลายคาร์โบพอลที่ทำให้เกิดการสูญเสียแร่ธาตุ (Carbopol demineralizing solution) ที่มีค่าความเป็นกรดด่าง เท่ากับ 5.0 เป็นเวลา 9 วัน ฟันแต่ละซี่มีรอยผุจำลองจำนวน 2 รอย แบ่งชิ้นตัวอย่างเป็น 2 กลุ่ม ในกลุ่มแรก (30ซี่) ใช้เดลทอน (Delton) และเดลทอนพลัส (Delton Plus) กลุ่มที่สอง (30 ซี่) ใช้เฮลิโอซีล (Helioseal) และเฮลิโอซีลเอฟ (Helioseal-F) ผนึกทับบริเวณรอยผุจำลอง แซ่ฟันในน้ำลายเทียมเป็นเวลา 7 วัน จากนั้นนำชิ้นตัวอย่างมาตัดในแนว ขวางผ่านบริเวณรอยผุจำลอง ขัดผิวหน้าตัดให้เรียบมัน วัดความแข็งผิววิกเคอร์ (Vickers hardness) ที่ผิวหน้าตัด โดยจุดแรกห่างผิวฟัน 20 ไมโครเมตร และจุดต่อ ๆ ไปทุก 10 ไมโครเมตร จนครบ 12 จุด แปลงค่าความแข็งผิววิก เคอร์เป็นค่าความแข็งผิวนูป (Knoop hardness number) แล้วนำไปคำนวณหาค่าเฉลี่ยปริมาณแร่ธาตุที่สูญเสีย เปรียบเทียบในกลุ่มเดียวกัน

ผลการวิจัยพบว่าค่าเฉลี่ยของปริมาณแร่ธาตุที่สูญเสีย ± ส่วนเบี่ยงเบนมาตราฐานของกลุ่มแรก ซึ่งได้แก่ เดลทอนและเดลทอนพลัสมีค่าเท่ากับ 1423±441 และ 1287±421 ตามลำดับ กลุ่มที่สอง ได้แก่ เฮลิโอซีลและเฮลิ-โอซีลเอฟมีค่าเท่ากับ 1223±284 และ 1165±267 ตามลำดับ เมื่อนำมาทดสอบทางสถิติแพร์ทีเทส (Paired t-test) พบว่าค่าเฉลี่ยปริมาณแร่ธาตุที่สูญเสียของเดลทอนพลัสไม่แตกต่างจากเดลทอน และเฮลิโอซีลเอฟไม่แตกต่างจาก เฮลิโอซีลอย่างมีนัยสำคัญทางสถิติ (P=0.05) โดยสรุปการใช้สารผนึกหลุมร่องพันเรซินผสมฟลูออไรด์ชนิดเดลทอน-พลัสและเฮลิโอซีลเอฟผนึกทับรอยผุจำลอง ไม่ทำให้ปริมาณการสูญเสียแร่ธาตุที่ผิวพันแตกต่างจากการผนึกด้วย เดลทอนและเฮลิโอซีลตามลำดับ

| ภาควิชา    | ลายมือชื่อนิสิต                |
|------------|--------------------------------|
| สาขาวิชา   | ลายมือชื่ออาจารย์ที่ปรึกษา     |
| ปีการศึกษา | ลายมือชื่ออาจารย์ที่ปรึกษาร่วม |

#### # # 4276103932 : MAJOR PEDIATRIC DENTISTRY

KEYWORD FLUORIDE SEALANT/ARTIFICIAL CARIES/HARDNESS/MINERAL CONTENT KWANRUDEE VATANATHAM : EFFECT OF FLUORIDE- AND NONFLUORIDE-CONTAINING RESIN SEALANTS ON MINERAL CONTENT OF INCIPIENT ARTIFICIAL CARIOUS LESION. THESIS ADVISER: ASSOC. PROF. CHUTIMA TRAIRATVORAKUL DDS., THESIS CO-ADVISER: ASSIST. PROF. DR. DARANEE TANTBIROJN DDS. Ph.D., 73 pp.

The purpose of this study was to compare the mineral content of incipient artificial carious lesion in enamel after being sealed with fluoride- and nonfluoride-containing resin sealants. Two  $2x2 \text{ mm}^2$  artificial lesions were created on buccal surface of 60 premolars by using Carbopol demineralizing solution. The first group (30 teeth) was sealed with Delton<sup>®</sup> and Delton<sup>®</sup>Plus, the second group (30 teeth) was sealed with Helioseal<sup>®</sup> and Helioseal<sup>®</sup>F. All teeth were immersed in artificial saliva for 7 days and sectioned through the lesions. The cross-sectioned surfaces were polished, then subjected to Vickers hardness measurements at 20 µm from the outer enamel and every 10 µm inwards across the lesion to the underlying sound enamel. Vickers hardness number was converted to Knoop hardness number (KHN). Mean mineral loss ( $\Delta Z$  Value) was calculated from KHN and was compared within each group.

Mean±SD of the mineral content for Delton, Delton Plus, Helioseal and Helioseal-F were 1423±441, 1287±421, 1223±284 and 1165±267, respectively. Paired t-test showed that the mineral content in Delton Plus and Helioseal-F groups were not significantly different from the control groups, Delton and Helioseal (P=0.05) when these fluoride-containing resin sealants were applied on incipient enamel carious lesion.

| Department     | Student's signature    |
|----------------|------------------------|
| Field of study | Advisor's signature    |
| Academic year  | Co-advisor's signature |

#### กิตติกรรมประกาศ

ขอกราบขอบพระคุณรองศาสตราจารย์ ทันตแพทย์หญิง ชุติมา ไตรรัตน์วรกุล และผู้ช่วย ศาสตราจารย์ ทันตแพทย์หญิง ดร. ดารณี ตัณฑ์ไพโรจน์ ที่ได้ให้ความช่วยเหลือทางวิชาการ และ กรุณาให้คำแนะนำที่ดีแก่ผู้วิจัย จนวิทยานิพนธ์นี้สำเร็จลงด้วยดี

ขอกราบขอบพระคุณรองศาสตราจารย์ ดร. เอมอร เบญจวงศ์กุลชัย และอาจารย์ทันตแพทย์ สุพจน์ ตามสายลม ที่กรุณาให้คำแนะน<mark>ำ และได้ให้ค</mark>วามอนุเคราะห์ในเรื่องสารเคมีที่ใช้ในการวิจัย

ขอกราบขอบพระคุณอาจารย์ ไพพรรณ พิทยานนท์ ในการให้คำปรึกษาและคำแนะนำการ ใช้สถิติ

ขอกราบขอบพระคุณ<mark>คณะกรรมการทุกท่านที่กรุณาให้คำแนะนำ</mark> และแก้ไขวิทยานิพนธ์จน สำเร็จลุล่วงด้วยดี

ขอขอบคุณหน่วยงานต่าง ๆ ดังนี้ ศูนย์วิจัยชีววิทยาช่องปาก และภาควิชาชีวเคมี คณะทันต-แพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ที่ได้ให้ความอนุเคราะห์ในด้านสารเคมี วัสดุและอุปกรณ์ ต่าง ๆ ที่ใช้ในการวิจัย รวมทั้งการใช้กล้องจุลทรรศน์อิเลกตรอนชนิดส่องกราด ฝ่ายวิจัยคณะทันต-

แพทยศาสตร์ มหาวิทยาลัยมหิดล ที่อำนวยในการใช้เครื่องตัดพื้นและเครื่องวัดความแข็งผิวพื้น ขอขอบคุณบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ที่อนุเคราะห์ทุนสำหรับวิจัย คุณอำพา ชมพูนุช และบริษัทยูนิตี เด็นตัล จำกั<mark>ด ที่อนุเคราะห์สาร</mark>ผนึกหลุมร่องพื้นที่ใช้ในการวิจัย

สุดท้ายนี้ผู้วิจัยใคร่ขอกราบขอบพระคุณ คุณพ่อ คุณแม่ ครอบครัวของผู้วิจัย เรือเอกสยมภู ศีริรังษีและครอบครัว ตลอดจนเพื่อนนิสิตปริญญาโทที่ให้กำลังใจในการทำวิจัยตลอดมา และขอ กราบขอบพระคุณผู้มีพระคุณที่ไม่สามารถกล่าวนามได้ทั้งหมด ที่ช่วยเหลือในการทำงานและ สนับสนุนผู้วิจัย จนการวิจัยในครั้งนี้สำเร็จลุล่วงด้วยดี

ประโยชน์และความดีใด ๆ ที่พึ่งได้รับจากวิทยานิพนธ์นี้ ผู้วิจัยขอมอบแด่ผู้มีพระคุณทุกท่าน

เรือโทหญิง ขวัญฤดี วัฒนธรรม

# สารบัญ

| บทคัดย่อภาษาไทย    | ۹  |
|--------------------|----|
| บทคัดย่อภาษาอังกฤษ | จ  |
| กิตติกรรมประกาศ    | ዪ  |
| สารบัญ             | ป  |
| สารบัญตาราง        | ม  |
| สารบัญภาพ          | ស្ |

# บทที่

| บทที่ 1 | บทน <mark>ำ</mark>                                          | 1  |
|---------|-------------------------------------------------------------|----|
|         | ความเป็นมาแล <mark>ะความสำคัญของปั</mark> ญหา               | 1  |
|         | วัตถุประสงค์ของการวิจัย                                     | 3  |
|         | สมมติฐาน <mark>ของการวิจัย</mark>                           | 4  |
|         | ขอบเขตของการวิจัย                                           | 4  |
|         | ข้อจำกัดของการวิจัย                                         | 5  |
|         | คำจำกัดความที่ใช้ในการวิจัย                                 | 5  |
|         | ประโยชน์ที่คาดว่าจะได้รับ                                   | 6  |
|         | วิธีดำเนินการวิจัย                                          | 6  |
| บทที่ 2 | เอกสารและงานวิจัยที่เกี่ยวข้อง                              | 7  |
|         | บทบาทของฟลูออไรด์ต่อกระบวนการการสะสมกลับของแร่ธาตุที่ผิวฟัน | 8  |
|         | บทบาทของสารผนึกหลุมร่องพันต่อการป้องกันพันผุ                | 9  |
|         | การวัดความแข็งผิวแบบจุลภาค                                  | 12 |
| บทที่ 3 | 3 วิธีดำเนินการวิจัย                                        | 18 |
|         | ประชากรเป้าหมาย                                             | 18 |
|         | กลุ่มตัวอย่าง                                               | 18 |
|         | เครื่องมือที่ใช้ในการวิจัย                                  | 18 |
|         | วิธีการวิจัยและการเก็บรวบรวมข้อมูล                          | 21 |
|         | การวิเคราะห์ข้อมูล                                          | 28 |

| บทที่ 4         | ผลการศึกษา                              | .29 |
|-----------------|-----------------------------------------|-----|
| บทที่ 5         | 5 อภิปรายผล สรุปผลการวิจัยและข้อเสนอแนะ | .34 |
|                 | อภิปรายผลการวิจัย                       | .34 |
|                 | สรุปผลการวิจัย                          | .40 |
|                 | ข้อเสนอแนะ                              | .40 |
| รายการอ้างอิง   |                                         | .42 |
| ภาคผนวก         |                                         | .49 |
| ประวัติผู้เขียน |                                         | 73  |



# สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

## สารบัญตาราง

|          |   | หน้                                                                                  | 'n |
|----------|---|--------------------------------------------------------------------------------------|----|
| ตารางที่ | 1 | แสดงปริมาณแรงที่ใช้กดผิวพัน2                                                         | 5  |
| ตารางที่ | 2 | แสดงค่าเฉลี่ย และส่วนเบี่ยงเบนมาตรฐาน ของปริมาณการสูญเสียแร่ธาตุของรอยเ              | ļ  |
|          |   | ้จำลองหลังผนึกด้วยสารผนึกหลุมร่องฟันเรซินชนิดต่าง ๆ29                                | 9  |
| ตารางที่ | 3 | แสดงการวิเคราะห์ข้อมูลของ <mark>ปริมา</mark> ณการสูญเสียแร่ธาตุ โดยใช้สถิติแพร์ทีเทส |    |
|          |   | (Paired t-test)                                                                      | 0  |



สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

# สารบัญภาพ

|        |    | 1A                                                                 | น้า |
|--------|----|--------------------------------------------------------------------|-----|
| ภาพที่ | 1  | แผนภาพเวนน์แสดงปัจจัยที่ทำให้เกิดฟันผุ                             | 1   |
| ภาพที่ | 2  | แผนภาพแสดงกลไกการทำงานของสารคล้ายแคลเซียมฟลูออไรด์                 | .9  |
| ภาพที่ | 3  | กลไกในการป้องกันพื้นผุของสารคล้ายแคลเซียมฟลูออไรด์                 | .10 |
| ภาพที่ | 4  | แสดงหัวกดชนิดวิกเคอร์                                              | 14  |
| ภาพที่ | 5  | แสดงรอยกดและหัวก <mark>ดชนิดนูป</mark>                             | 15  |
| ภาพที่ | 6  | แสดงแผนภาพทิศทางการกดของหัวกด                                      | 16  |
| ภาพที่ | 7  | ภาพเครื่องตัดฟันใบเลื่อยเพชรชนิดความเร็วต่ำ                        | 18  |
| ภาพที่ | 8  | เครื่องขัดฟัน                                                      | 19  |
| ภาพที่ | 9  | ภาพเครื่องวัดความแข็งผิวพัน                                        | 19  |
| ภาพที่ | 10 | แสดงรูปสารผนึกหลุมร่องพันที่ใช้ในการวิจัย                          | 20  |
| ภาพที่ | 11 | แสดงภาพหน้าต่างบนชิ้นตัวอย่างที่ใช้ในการทดลอง                      | 21  |
| ภาพที่ | 12 | แสดงภาพชิ้นตัวอย่างที่ได้รับการผนึกด้วยสารผนึกหลุมร่องพัน          | 23  |
| ภาพที่ | 13 | : 13.1 แสดงด้านข้างแก้มของชิ้นตัวอย่าง                             | 24  |
|        |    | 13.2 แสดงหน้าตัดของชิ้นตัวอย่าง                                    | 24  |
| ภาพที่ | 14 | แสดงการฝังชิ้นตัวอย่างเพื่อนำไปวัดความแข็ง                         | 24  |
| ภาพที่ | 15 | แสดงรอยกดที่จะทำการกด                                              | 26  |
| ภาพที่ | 16 | กราฟแสดงร้อยละของการสูญเสียแร่ธาตุ                                 | 27  |
| ภาพที่ | 17 | กราฟแสดงค่าร้อยละของปริมาตรแร่ธาตุที่ระยะความลึกต่าง ๆ             | 31  |
| ภาพที่ | 18 | กราฟแสดงค่าเฉลี่ยของการสูญเสียแร่ธาตุในวัสดุผนึกร่องฟันกลุ่มต่าง ๆ | 31  |
| ภาพที่ | 19 | แสดงรอยกดบนภาคตัดขวางของผิวเคลือบฟันผุจำลองที่ผนึกด้วยเดลทอน       |     |
|        |    | (Delton)                                                           | 32  |
| ภาพที่ | 20 | แสดงรอยกดบนภาคตัดขวางของผิวเคลือบฟันผุจำลองที่ผนึกด้วยเดลทอนพลัส   |     |
|        |    | (Delton-Plus)                                                      | 32  |
| ภาพที่ | 21 | แสดงรอยกดบนภาคตัดขวางของผิวเคลือบฟันผุจำลองที่ผนึกด้วยเฮลิโอซีล    |     |
|        |    | (Helioseal)                                                        | 33  |
| ภาพที่ | 22 | แสดงรอยกดบนภาคตัดขวางของผิวเคลือบฟันผุจำลองที่ผนึกด้วยเฮลิโอซีลเอฟ |     |
|        |    | (Helioseal-F)                                                      | 33  |

# บทที่ 1 แทนำ

#### ความเป็นมาและความสำคัญของปัญหา

ฟันผุเป็นโรคของอวัยวะในช่องปากที่ซับซ้อนและยังคงเป็นปัญหาทางทันตสาธารณสุขที่ สำคัญของประเทศไทย (กองทันตสาธารณสุข กรมอนามัย กระทรวงสาธารณสุข 2537) โรคฟันผู มีสาเหตุมาจากปัจจัยหลายประการ (Multifactorial disease) ลักษณะเริ่มแรกของโรคพันผุจะ เป็นการสูญเสียแร่ธาตุของส่วนอนินทรีย์ (Inorganic matrix) ของฟัน แล้วจึงมีการสูญเสียของ ้ส่วนอินทรีย์ (Organic matrix) ตามมา การเกิดขบวนการทำลายเช่นนี้เป็นผลจากการเผาผลาญ สารคาร์โบไฮเดรทของเชื้อจุลินทรีย์บนตัวฟันในช่วงเวลาที่นานพอ ปัจจัยที่ทำให้เกิดฟันผุอธิบาย ได้ดังแผนภาพเวนน์ (Venn diagram) ซึ่งเสนอขึ้นครั้งแรกโดย Miller ตั้งแต่ ค.ศ. 1890 (Adair, 1994) และมีการปรับปรุงดังภาพที่ 1



ภาพที่ 1 แผนภาพเวนน์แสดงปัจจัยที่ทำให้เกิดฟันผุ

การป้องกันฟันผูสามารถทำได้หลายประการโดยผ่านปัจจัยที่เป็นสาเหตุของโรค เช่น การ แปรงฟัน การรับประทานอาหารที่ถูกวิธี การใช้สารฟลูออไรด์ การผนึกหลุมร่องฟันและการมารับ การตรวจฟันอย่างสม่ำเสมอ การใช้สารฟลูออไรด์เป็นที่ยอมรับกันว่าสามารถป้องกันพันผุของ ด้านผิวเรียบได้อย่างดี โดยเฉพาะผลป้องกันฟันผุภายหลังฟันขึ้น (Post-eruptive effect) (Groeneveld และคณะ, 1990) สารฟลูออไรด์จะช่วยยั้บยั้งการเกิดกระบวนการสูญเสียแร่ธาตุ (Demineralization) และสนับสนุนกระบวนการสะสมกลับของแร่ธาตุ (Remineralization) ที่ผิว ฟัน แต่การใช้ฟลูออไรด์กลับให้ผลน้อยในการป้องกันฟันผุในด้านบดเคี้ยว (Waggoner, 1991; Hicks และ Flaitz, 1992; American Dental Association, 1997; Hicks และ Flaitz, 1999) เนื่องจากด้านบดเคี้ยวของพื้นกรามมีหลุมร่องลึกและมีความหนาของผิวเคลือบพื้นน้อย หลุมร่อง เหล่านี้มีขนาดเล็กมาก มีความคดเคี้ยวขรุขระและอาจแตกแขนง ทำให้เป็นที่กักเก็บของเศษ โดยที่แปรงสีฟันหรือน้ำลายไม่สามารถผ่านเข้าไปทำความสะอาดได้ อาหารและเชื้อจลินทรีย์ ทำให้ด้านบดเคี้ยวเกิดการผุได้ง่าย

สารผนึกหลุมร่องพืน (Sealant) สามารถป้องกันพืนผุบนด้านบดเคี้ยวได้อย่างมีประสิทธิ-ภาพและปลอดภัย (Ripa, 1983; American Dental Association, 1987; Weintraub, 1989; Rohr และคณะ, 1991) โดยวัสดุผนึกหลุมร่องพืนจะทำหน้าที่ปิดกั้นหลุมร่องพันจาก เชื้อจุลินทรีย์ และอาหารซึ่งเป็นปัจจัยที่ทำให้เกิดพืนผุ ข้อบ่งชี้ในการคัดเลือกพืนที่จะได้รับการเคลือบหลุมร่อง-พัน คือ พันที่มีหลุมและร่องลึก พันที่สามารถควบคุมความชื้นได้ พันที่ไม่มีการผุในด้านประชิด และได้รับการควบคุมการผุด้านประชิดอย่างดี เช่นการได้รับฟลูออไรด์เฉพาะที่และสุดท้ายถ้ามี รอยผุ รอยผุนั้นต้องอยู่ในระยะเริ่มต้นจำกัดอยู่ในผิวเคลือบพันเท่านั้น (ADA, 1997) ในช่วง หลายปีที่ผ่านมา มีการศึกษารายงานว่าการใช้สารผนึกหลุมร่องพันผนึกทับหลุมร่องพันที่เพิ่งเริ่มผุ มีผลยั้บยั้งการผุลงได้ (Elderton, 1985; Mertz-Fairhurst และคณะ, 1986; Geopferd และ Olberding, 1989; Donly และ Ruiz, 1992) จากการตรวจเชื้อจุลินทรีย์ในรอยผุที่ผนึกด้วยสาร ผนึกหลุมร่องพันพบจำนวนเชื้อจุลินทรีย์ในรอยผุลดลง (Theilade และคณะ, 1977) รวมทั้งจาก ภาพถ่ายทางรังสีและลักษณะทางคลินิกก็ไม่มีการลุกลามของพันที่ผู่ต่อ (Handelman, 1985)

การพัฒนาสารผนึกหลุมร่องฟันยังคงดำเนินต่อไป โดยเฉพาะการเติมสารฟลูออไรด์ลงไป เพื่อหวังผลให้นอกจากการป้องกันฟันผุบนด้านบดเคี้ยวแล้ว ยังป้องกันการเกิดฟันผุที่ขอบวัสดุ (Secondary caries) และอาจทำให้เกิดการสะสมกลับแร่ธาตุของฟันที่เริ่มผุได้อีกด้วย รูปแบบ ของฟลูออไรด์ที่เติมลงไปมีหลายรูปแบบ เช่น สารประกอบฟลูออไรด์ (Fluoride compound) และเกลือฟลูออไรด์ (Fluoride salt) เป็นต้น โดยหวังผลให้มีการแตกตัวแล้วปลดปล่อยฟลูออไรด์ ออกมาทั้งในช่องปาก และเข้าไปในผิวพืน ตัวอย่างสารผนึกหลุมร่องพืนชนิดผสมฟลูออไรด์ที่มี จำหน่ายทั่วไป ได้แก่ เดลทอนพลัส (Delton-plus: Dentsply, USA), เฮลิโอซีลเอฟ (Helioseal-F: Vivadent, USA) และฟลูโอชีลด์ (Fluroshield: Dentsply, USA) เป็นต้น

มีรายงานการปลดปล่อยฟลูออไรด์ของสารผนึกหลุมร่องพันชนิดผสมฟลูออไรด์ว่า สามารถปลดปล่อยฟลูออไรด์ได้ถึง 30 วัน โดยมีปริมาณที่ถูกปล่อยออกมาค่อนข้างสูงในช่วง 1-2 วันแรก และลดลงอย่างช้า ๆ เมื่อเวลาผ่านไป (Rock และคณะ, 1996; Cooley และคณะ, 1990; Loyola-Rodriguez และ Garcia-Godoy, 1996; Garcia-Godoy และคณะ, 1997) ถึง แม้ว่าจะมีผู้กังวลต่อคุณภาพในการยึดติดของสารผนึกหลุมร่องพันที่มีฟลูออไรด์เป็นองค์ประกอบ Jensen และคณะ (1990) พบว่าสารผนึกหลุมร่องพันผสมฟลูออไรด์ชนิดฟลูโรซีลด์ (Fluroshield) มีอัตราการยึดติดไม่แตกต่างจากสารผนึกหลุมร่องพันไม่ผสมฟลูออไรด์ชนิดพริสมาชีลด์ (Prismashield) แต่อย่างใด นอกจากนี้ Koch และคณะ (1997) ก็พบว่าอัตราการยึดติดของสารผนึก หลุมร่องพันผสมฟลูออไรด์ชนิดเฮลิโอซีลเอฟ (Helioseal-F) กับสารผนึกหลุมร่องพันไม่ผสมฟลูออ-ไรด์ชนิดเดลทอน (Delton) ไม่แตกต่างกัน

สารผนึกหลุมร่องฟันชนิดผสมฟลูออไรด์ สามารถลดการเกิดการผุบริเวณรอบ ๆ สาร ผนึกหลุมร่องฟัน (Hicks และ Flaitz, 1992) และสามารถลดจำนวนเชื้อจุลินทรีย์ในจานเพาะเชื้อ ได้ (Loyola-Rodriguez และ Garcia-Godoy, 1996) ปัจจุบันมีสารผนึกหลุมร่องฟันที่ผสมฟลู-ออไรด์มาขายในประเทศไทยอย่างมากมายหลายชนิด แต่จากข้อมูลข้างต้นยังไม่มีการศึกษาว่า การผนึกสารผนึกหลุมร่องฟันชนิดผสมฟลูออไรด์ทับรอยผุเริ่มแรกจะทำให้รอยผุมีปริมาณแร่ธาตุ แตกต่างกับการใช้สารผนึกหลุมร่องฟันชนิดไม่ผสมฟลูออไรด์หรือไม่ จึงเป็นที่มาของการศึกษา ครั้งนี้

# วัตถุประสงค์ของการวิจัย

เพื่อเปรียบเทียบปริมาณแร่ธาตุของผิวเคลือบพื้นที่ได้รับการจำลองทางห้องปฏิบัติการให้ เกิดการผุ ภายหลังการผนึกด้วยสารผนึกหลุมร่องพันเรซินชนิดผสมฟลูออไรด์กับชนิดไม่ผสม ฟลูออไรด์

#### สมมติฐานของการวิจัย

ปริมาณแร่ธาตุของผิวเคลือบพันที่ได้รับการจำลองทางห้องปฏิบัติการให้เกิดการผุ ภาย หลังการผนึกด้วยสารผนึกหลุมร่องพันเรซินชนิดผสมฟลูออไรด์กับชนิดไม่ผสมฟลูออไรด์ไม่แตก ต่างกัน

#### ขอบเขตของการวิจัย

1. งานวิจัยครั้งนี้เป็นการศึกษาในห้องปฏิบัติการ

 ยัวอย่างที่น้ำมาศึกษาคือฟันกรามน้อยที่ปราศจากรอยแตก รอยผุและรอยอุด ถูกถอน จากผู้ป่วยที่จะทำการจัดฟัน

 3. บริเวณที่จะทำการศึกษาคือด้านข้างแก้ม (Buccal surface) บริเวณใกล้ด้านบดเคี้ยว หนึ่งในสามของตัวฟัน (Occlusal third) โดยแบ่งซีกซ้ายและซีกขวา ทาน้ำยาทาเล็บให้ได้หน้า ต่าง 2 บานเป็นกลุ่มควบคุมและกลุ่มทดลองตามแต่การจับฉลาก ซึ่งจะได้ส่วนของผิวเคลือบฟันที่ อยู่ในแนวระนาบเดียวกัน

4. ทำผิวเคลือบพันบริเวณหน้าต่างที่เตรียมไว้ให้ผุด้วยสารละลายที่ทำให้เกิดกระบวนการ สูญเสียแร่ธาตุ (Demineralizing solution) เพื่อเป็นการจำลองการผุในระยะเริ่มต้นที่ยังไม่มีการ สูญเสียโครงสร้างของผิวพัน แล้วผนึกสารผนึกหลุมร่องพันเรซินที่มีเครื่องหมายการค้าเดียวกัน ชนิดผสมฟลูออไรด์กับชนิดไม่ผสมฟลูออไรด์ ซึ่งมีองค์ประกอบหลักเหมือนกันทุกประการและมี การเติมสารฟลูออไรด์ลงไป จากนั้นนำไปวัดความแข็งผิวของการผุจำลองใต้สารผนึกหลุมร่องพัน ที่ความลึกจากผิวพันตามกำหนด แปลงเป็นค่าปริมาณแร่ธาตุแล้วนำมาเปรียบเทียบในสารที่มี เครื่องหมายการค้าเดียวกัน ทั้งนี้ค่าความแข็งผิวของเคลือบพันที่ความลึกเท่า ๆ กันจากผิวพันไม่ มีความแตกต่างกัน (Purdell-Lewis และคณะ, 1976) และความแข็งผิวสัมพันธ์กับปริมาณแร่ธาตุ โดยรวม (Featherstone และคณะ, 1983)

 การเตรียมชิ้นตัวอย่าง การขัดชิ้นตัวอย่าง การวัดความแข็งผิวฟันและการทดสอบ ความแข็งผิวฟัน ทำโดยผู้วิจัยซึ่งเป็นทันตแพทย์คนเดียว และใช้เครื่องมือชิ้นเดียวกันตลอดการ ศึกษา โดยการทำให้เกิดการผุจำลองและการผนึกด้วยสารผนึกหลุมร่องฟันทำที่คณะทันตแพทย- ศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย การขัดชิ้นตัวอย่างและการวัดความแข็งผิวฟันทำที่คณะทันต-แพทยศาสตร์ มหาวิทยาลัยมหิดล ส่วนการตัดฟันทำโดยเจ้าหน้าที่ของหน่วยวิจัยคณะทันต-แพทยศาสตร์ มหาวิทยาลัยมหิดล

#### ข้อจำกัดของการวิจัย

การวิจัยครั้งนี้เป็นการทดลองในห้องปฏิบัติการ ผลการทดลองที่ได้ยังไม่สามารถนำไป สรุปถึงผลของสารผนึกหลุมร่องฟันชนิดผสมฟลูออไรด์ กับชนิดไม่ผสมฟลูออไรด์ในทางคลินิกได้

#### คำจำกัดความที่ใช้ในการวิจัย

รอยผูจำลอง (Artificial carious lesion) หมายถึง รอยผุที่เกิดจากการแซ่ชิ้นฟันใน สารละลายที่ทำให้เกิดกระบวนการสูญเสียแร่ธาตุ (Demineralizing solution) ซึ่งเตรียมโดยมี ส่วนผสมของกรดแลคติกความเข้มข้น 0.1 โมลาร์ กรดโพลีอะคริลิกความเข้มข้นร้อยละ 2 (Carbopol C907 B.F., Goodrich company, USA) และไฮดรอกซีอะพาไทท์ (BioRAD, USA) สารละลายมีค่าความเป็นกรดเท่ากับ 5.0 เมื่อแซ่ชิ้นตัวอย่างในสารละลายนี้เป็นเวลา 9 วัน จะทำให้มีลักษณะของการสูญเสียแร่ธาตุคล้ายกับรอยผุเริ่มแรก (Incipient carious lesion) ของผิวเคลือบฟัน โดยมีความลึกของรอยผุประมาณ 70 – 80 ไมโครเมตร (White, 1987)

**ค่าความแข็งผิวพันวิกเคอร์ (Vickers hardness number)** หมายถึง ระบบหนึ่งของ ค่าความแข็งที่ได้จากการวัดด้วยเครื่องวัดความแข็งแบบจุลภาค (Microhardness tester) โดย ใช้หัวกดวิกเคอร์ (Vickers indenter) กดด้วยแรงขนาดที่กำหนด ซึ่งจะได้รอยกดบนผิววัตถุ ที่ต้องการทดสอบเป็นรูปปีระมิดซึ่งมีขอบคมชัด ผู้วิจัยทำการวัดเส้นทะแยงมุมของรอยกด จากนั้นเครื่องจะคำนวณค่าความแข็งวิกเคอร์ (Vickers hardness number) จากขนาดแรงที่ กดและขนาดเส้นทะแยงมุมของรอยกด

ค่าร้อยละโดยปริมาตรของแร่ธาตุ (Volume percent mineral) หมายถึง ค่าร้อยละ โดยปริมาตรของแร่ธาตุของผิวเคลือบฟันซึ่งคำนวนได้จากสูตร Volume percent mineral = 4.3 √ KHN + 11.3 (Featherstone และคณะ, 1983) KHN = ความแข็งนูป (Knoop hardness number) เป็นอัตราส่วนโดยตรงกับค่าความแข็ง-วิกเคอร์ (Vickers hardness number) (Zwick 3212 Instruction manual)

**ปริมาณแร่ธาตุที่สูญหาย (Mineral loss)** หมายถึงปริมาณแร่ธาตุที่สูญเสียไป ซึ่ง คำนวณจากการอินทีเกรท (Integration) ค่าร้อยละของแร่ธาตุของผิวเคลือบฟัน ณ ความลึกต่าง ๆ ของรอยผุ โดยใช้ค่าร้อยละของแร่<mark>ธาตุในตำแหน่งผิว</mark>ฟันที่ไม่มีการผุเป็นเกณฑ์ปกติ

#### ประโยชน์ที่คาดว่าจ<mark>ะได้รับ</mark>

ในพื้นที่มีการผุระยะเริ่มต้น (Incipient caries หรือ White spot lesion) บางครั้งทันต-แพทย์ไม่แน่ใจว่าควรจะให้การรักษาด้วยวิธีใด มีรายงานว่าการใช้สารผนึกหลุมร่องพื้นผนึกทับจะ ทำ ให้การผุนั้นไม่ลุกลามต่อไป (Jensen และคณะ, 1990; Handleman และคณะ, 1985) ประกอบกับในระยะหลังมีการผลิตสารผนึกหลุมร่องพื้นที่ผสมฟลูออไรด์ขึ้น ซึ่งอาจทำให้มีการ สะสมกลับของแร่ธาตุได้อีกด้วย จึงเป็นการเพิ่มทางเลือกของการรักษา ผลการวิจัยครั้งนี้ถ้าหาก พบว่าสารผนึกหลุมร่องพันชนิดผสมฟลูออไรด์สามารถทำให้รอยผุจำลองที่ผิวเคลือบพันมีปริมาณ แร่ธาตุมากกว่าชนิดไม่ผสมฟลูออไรด์ได้ จะเป็นจุดเริ่มต้นในการศึกษาทางคลินิกของวิธีการนี้ ซึ่งไม่เพียงแต่เป็นการป้องกันไม่ให้พันผุลุกลามต่อไป แต่ยังเป็นการให้การรักษาพันที่ผุในระยะเริ่ม แรกได้

# วิธีดำเนินการวิจัย

การวิจัยเชิงทดลองในห้องปฏิบัติการ

# บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง

#### เอกสารและงานวิจัยที่เกี่ยวข้อง

โรคฟันผเป็นโรคที่เป็นปัญหาทางทันตสาธารณสุขที่สำคัญของประเทศไทย การผของฟัน เกิดจากความสมดุลระหว่างการสูญเสียและการสะสมกลับของแร่ธาตุเสียไป โดยที่มีการสูญเสีย แร่ธาตุมากกว่าการสะสมกลับของแร่ธาตุ ในระยะแรกจะมีการสูญเสียแร่ธาตุที่เป็นส่วนสร้างของ อนินทรียสาร (Inorganic matrix) ระยะต่อมาจึงจะมีการทำลายในส่วนสร้างของอินทรียสาร (Organic matrix) ซึ่งการสูญเสียแร่ธาตุนี้เกิดจากกรดอินทรีย์ที่เป็นผลพลอยได้ของการเผาผลาญ อาหารของเชื้อจุลินทรีย์บนตัวฟัน Holman และคณะ (1985) สังเกตุผิวเคลือบฟันที่ถูกละลาย ด้วยกรดโดยใช้กล้องจุลทรรศน์อิเลกตรอนชนิดส่องกราด (Scanning electron microscope) พบว่าระยะห่างระหว่างผลึกของผิวเคลือบฟันจะกว้างขึ้นเมื่อถูกกรด เป็นช่องทางที่ทำให้กรด สามารถผ่านเข้าไปในโครงสร้างของผิวเคลือบฟันได้ง่ายขึ้น ลักษณะการผุในระยะเริ่มแรกมี ลักษณะเป็นจุดสีขาวขุ่น (White spot lesion) เกิดเนื่องจากการสูญเสียแร่ธาตุที่ผิวนอกสุดน้อย กว่าในชั้นถัดลงไป คือที่ผิวนอกสุดสูญเสียแร่ธาตุทำให้มีรูพรุนในปริมาณที่น้อยกว่าร้อยละ 5 (<5% pore volume) และในชั้นถัดลงไปมีการสูญเสียแร่ธาตุเกิดรูพรุนในปริมาณสูงกว่าร้อยละ 25 (> 25% pore volume) ทำให้บริเวณรอยผุระยะแรกสูญเสียความโปร่งแสงและเห็นเป็นสี ขาวขุ่น (Silverstone, 1968) รอยผุระยะแรกที่ผิวฟันยังคงต่อเนื่องอยู่อาจเป็นผลมาจากการได้ รับฟลูออไรด์ขณะที่มีการสูญเสียแร่ธาตุ ก่อให้เกิดกระบวนการสะสมแร่ธาตุ (Remineralization) ทำให้ชั้นนอกสุดของผิวเคลือบฟันมีความแข็งแรงป้องกันการละลายจากกรด (Gray 1966: Arends และ Christofferson, 1986) ประกอบกับมีการซ่อมแซมอย่างต่อเนื่องจากบริเวณใต้รอยผุ และส่งเสริมให้มีการสะสมกลับแร่ธาตุที่ผิวนอกสุดด้วย (Silverstone, 1968; Moreno และ Zahdradnik, 1974; Margolis และ Moreno, 1985, Featherstone และคณะ, 1978)

การป้องกันฟันผุต้องอาศัยปัจจัยหลายประการ ไม่ว่าจะเป็นการแปรงพัน การรับประทาน อาหารที่ถูกวิธี การใช้สารฟลูออไรด์ การผนึกหลุมร่องพันและการมารับการตรวจอย่างสม่ำเสมอ โดยจะกล่าวถึงปัจจัยที่สำคัญ 2 ประการคือ บทบาทของฟลูออไรด์ต่อกระบวนการสะสมกลับ ของแร่ธาตุ และผลของสารผนึกหลุมร่องพันต่อการเกิดโรคพันผุ

#### บทบาทของฟลูออไรด์ต่อกระบวนการการสะสมกลับของแร่ธาตุที่ผิวฟัน

ฟลูออไรด์ช่วยป้องกันฟันผุโดยเข้าไปจับกับผลึกอะพาไทท์ทำให้ผลึกละลายในกรดยากขึ้น นอกจากฟลูออไรด์จะยับยั้งกระบวนการสูญเสียแร่ธาตุแล้ว ยังส่งเสริมให้เกิดกระบวนการการ สะสมกลับแร่ธาตุได้อีกด้วย (Koulourides, 1990) โดยทั่วไปแล้วฟลูออไรด์เข้าสะสมในตัวพีน ได้ตั้งแต่ระยะต้นของขบวนการสร้างพัน หรือระยะก่อนพันขึ้น (Pre-eruptive phase) จนถึง ระยะการสะสมแร่ธาตุหลังพันขึ้น (Post-eruptive phase) ในระยะก่อนพันขึ้นนั้น Aasenden และ Peebles (1974) ศึกษาพบว่าการที่มีฟลูออไรด์ในผิวเคลือบพันมากขึ้นจะทำให้เกิดพันผุลดลง แต่ยังไม่มีรายงานกลไกที่ทำให้ลดการเกิดพันผุได้ชัดเจน (Nasir และคณะ, 1985; Retief และ คณะ, 1987) ส่วนระยะหลังพันขึ้น ฟลูออไรด์รวมตัวกับแคลเซียม (Calcium) และฟอสเฟต (Phosphate) เปลี่ยนผิวอะพาไทท์ให้เป็นฟลูออริเดทไฮดรอกชีอะพาไทท์ (Fluoridated hydroxyapatite) ซึ่งมีความต้านทานต่อกรดได้ดี (Koulourides, 1990; Featherstone และคณะ, 1983) แต่ขบวนการเกิดฟลูออริเดทไฮดรอกชีอะพาไทท์เป็นขบวนการที่ใช้เวลานาน และต้องเป็น สภาวะที่มีฟลูออไรด์ในส่วนของเหลวที่ล้อมรอบพันในขั้นตอนของขบวนการการ สูญเสียและ สะสมกลับของแร่ธาตุ (Demineralization-Remineralization Process)

ฟลูออริเดทไฮดรอกซีอะพาไทท์ (Fluoridated hydroxyapatite) เกิดจากไฮดรอกซีอะพา-ไทท์ (Hydroxyapatite) ซึ่งเป็นโครงสร้างหลักของพันที่มีสูตรเคมี คือ Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub> ได้รับ ฟลู ออไรด์ไอออน (Fluoride ion) จากการใช้ฟลูออไรด์รูปแบบต่าง ๆ ฟลูออไรด์ไอออนเกิดการแลก เปลี่ยนกับไฮดรอกซิลไอออน (Hydroxyl ion) ในผลึกไฮดรอกซีอะพาไทท์ ได้เป็นฟลูออริเดท-ไฮด รอกซีอะพาไทท์ ซึ่งมีสูตรเคมีคือ Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>(2-x</sub>F<sub>x</sub> ฟลูออไรด์ไอออนที่เกาะกับผลึก อะ พาไทท์จะมีระยะห่างจากฟอสเฟตในผลึกเป็นระยะทาง 1.36 อังสตรอม (Angstrom,A<sup>o</sup>) สั้นกว่า ระยะห่างของไฮดรอกซิลไอออนกับฟอสเฟตซึ่งมีระยะทาง 1.40 อังสตรอม (Angstrom, A<sup>o</sup>) ทำให้ ผลึกมีขนาดเล็กลงและเกาะกันแน่นจึงมีความทนต่อกรดได้เพิ่มขึ้น ผิวเคลือบพันจึงมีการละลาย ลดลง

ฟลูออไรด์ไอออนในสารละลายจะเข้าทำปฏิกิริยากับผลึกอะพาไทท์ได้มากหรือน้อยขึ้นอยู่ กับความเข้มข้นของฟลูออไรด์ และความอิ่มตัวสารละลายแคลเซียมฟอสเฟตรอบตัวฟัน การได้ รับฟลูออไรด์ความเข้มข้นต่ำ เช่นการเติมฟลูออไรด์หนึ่งส่วนในล้านส่วนลงในสารละลาย แคลเซียมและฟอสเฟต ทำให้การสะสมของแร่ธาตุที่ผิวเคลือบพันเพิ่มขึ้น และเมื่อทดสอบความ แข็งผิวพบว่ามีความแข็งเพิ่มขึ้น (ten Cate และ Arends, 1977) ในช่วงระหว่างวันถ้าได้รับฟลูออ- ไรด์ขณะที่สารละลายรอบตัวพืนมีระดับแคลเซียมและฟอสเฟตที่อิ่มตัว จะเกิดการรวมตัวกันสร้าง เป็นฟลูออริเดทไฮดรอกซีอะพาไทท์ (Aoba, 1997) โดยปริมาณจะมากน้อยเพียงใดขึ้นกับ ปริมาณฟลูออไรด์ที่ได้รับ (Varughese และ Moreno, 1981) แต่ถ้าเป็นการได้รับฟลูออไรด์ ความเข้มข้นสูง เช่น การใช้ฟลูออไรด์เฉพาะที่ ผิวเคลือบพันจะสร้างสารคล้ายแคลเซียมฟลูออ-ไรด์ (Calciumfluoride-like material) ซึ่งมีคุณสมบัติแตกต่างจากแคลเซียมฟลูออไรด์บริสุทธิ์ Rolla และ Saxgaard (1990) พบว่าสารคล้ายแคลเซียมฟลูออไรด์นี้มีอัตราการละลายตัวช้าใน น้ำลาย เนื่องจากมีฟอสเฟตไอออนและโปรตีนถูกดูดซับอยู่ที่รูพรุนของผิวเคลือบพัน เมื่อสภาวะ ในช่องปากเป็นกรดมากขึ้นสารคล้ายแคลเซียมฟลูออไรด์จะมีการละลายตัวมากขึ้น จึงเป็นแหล่ง สะสมฟลูออไรด์ระยะยาว (Arends และคณะ, 1988; Ogaard และคณะ, 1992) ที่ถูกควบคุม ด้วยสภาพความเป็นกรดด่างดังภาพ 2 การละลายตัวของสารคล้ายแคลเซียมฟลูออไรด์จะปลด ปล่อยฟลูออไรด์โอออนให้เข้าไปทำปฏิกิริยากับผลึกอะพาไทท์เกิดเป็นฟลูออริเดทไฮดรอกซีอะพา-ไทท์ ดังภาพ 3



ภาพที่ 2 แผนภาพแสดงกลไกการทำงานของสารคล้ายแคลเซียมฟลูออไรด์



ภาพที่ 3 กลไกในการป้องกันฟันผุของสารคล้ายแคลเซียมฟลูออไรด์ (Ogaard และคณะ, 1992)

- ก. การสะสมของสารคล้ายแคลเซียมฟลูออไรด์บนผิวเคลือบพันภายหลังการได้รับฟลูออไรด์เฉพาะที่ โดยมี
  ฟอสเฟตไอออนและโปรตีนดูดซับอยู่บนผิว ซึ่งมีผลทำให้ลดอัตราการละลายของสารคล้ายแคลเซียมฟลู ออไรด์
- ในขณะที่สภาวะในช่องปากมีสภาพเป็นกรดที่ค่าความเป็นกรด 4.5-5.5 สารคล้ายแคลเซียมฟลูออไรด์จะ มีการละลายตัวมากขึ้น ฟลูออไรด์ไอออนถูกปล่อยออกสู่สารละลายรอบตัวฟัน
- ค. หลังจากที่สภาวะช่องปากกลับสู่ค่าความเป็นกรดด่างปกติ อัตราการละลายของสารคล้ายแคลเซียมฟลู-ออไรด์จะลดลง และมีการสะสมกลับของแร่ธาตุเกิดเป็นฟลูออริเดทไฮดรอกซีอะพาไทท์

ผิวเคลือบพันได้รับฟลูออไรด์จากหลายวิธี เช่น การดื่มน้ำที่มีฟลูออไรด์ การใช้น้ำยาบ้วน ปากผสมฟลูออไรด์ ยาสีพันผสมฟลูออไรด์ การเคลือบฟลูออไรด์โดยทันตแพทย์ และปัจจุบันมี การเติมฟลูออไรด์ลงในวัสดุที่ใช้บูรณะพันและวัสดุเพื่องานทันตกรรมป้องกันด้วย ซึ่ง Fross และ Seppa (1990), Hicks และ Flaitz (1992) และ Tantbirojn และคณะ (1997) รายงาน ผลการใช้วัสดุบูรณะพันที่ผสมฟลูออไรด์ ว่าสามารถป้องกันพันผุในบริเวณพื้นผิวพันข้างเคียงวัสดุ ที่ใช้บูรณะได้ ปัจจุบันได้มีการนำฟลูออไรด์มาเติมลงในสารผนึกหลุมร่องพันด้วยเช่นกัน เพื่อหวัง ผลเสริมในการป้องกันพันผุด้านบดเคี้ยวจากฟลูออไรด์ที่ใส่ลงไป

#### บทบาทของสารผนึกหลุมร่องฟันต่อการป้องกันฟันผุ

การผนึกหลุมร่องฟันด้วยสารผนึกหลุมร่องฟันในงานทันตกรรมสำหรับเด็กเพื่อประโยชน์ ในการป้องกันฟันผูมีมานานกว่า 25 ปีแล้ว ในปีค.ศ. 1955 Buonocore เป็นบุคคลแรกที่ เสนอวิธีการใช้กรดกัดผิวเคลือบพันเพื่อช่วยยึดอะคริลิกเรซิน (Acrvlic resin) ให้ยึดติดกับผิว และได้เสนอให้น้ำวิธีการนี้มาใช้ในงานทันตกรรมป้องกัน โดยใช้ผนึกหลุมร่องฟัน เคลื่อาเฟ้น ด้านบดเคี้ยวเพื่อป้องกันฟันผู ปัจจุบันชนิดของวัสดุผนึกหลุมร่องฟันที่ได้รับการยอมรับและใช้ Bis – GMA วัสดุประเภทเรซินชนิด (Bisphenol A และ Glycidy) กันมาก ได้แก่ methacrylate) (Waggoner และ Seigal, 1996) ทั้งชนิดที่มีปฏิกิริยาแข็งตัวเอง (Self curing) และชนิดที่มีปฏิกิริยาแข็งตัวจากการถูกกระตุ้นด้วยแสงที่มองเห็นได้ (Visible light curing) โดยประสิทธิภาพในการป้องกันฟันผุขึ้นอยู่กับความสามารถในการยึดติดของวัสดุกับผิวเคลือบฟัน จากการรวบรวมผลการศึกษาเกี่ยวกับอัตราการยึดติดของสารผนึกหลุมร่องพันเรซิน และการลด อัตราการเกิดฟันผุของ Hicks และ Flaitz (1999) พบว่า การผนึกหลุมร่องฟันจะป้องกันฟันผุได้ ร้อยละ 100 ถ้าวัสดุผนึกหลุมร่องพันนั้นยังคงยึดติดสนิทกับผิวเคลือบพันทุกด้าน จากการติดตาม ผลเป็นเวลา 10 ปี และ 20 ปี พบว่าวัสดุผนึกหลุมร่องฟันลดอัตราการเกิดฟันผุได้ร้อยละ 68 และ 53 ตามลำดับ การนำสารผนึกหลุมร่องฟันมาผนึกทับฟันที่ผุ ไม่ทำให้อัตราการยึดติดแตกต่าง กันจากการผนึกทับฟันที่ผู (Handelman และคณะ, 1987)

สารผนึกหลุมร่องฟันยังคงมีการพัฒนาอย่างต่อเนื่อง ปัจจุบันมีการดัดแปลงโดยนำสาร ฟลูออไรด์มาเติมลงในสารผนึกหลุมร่องฟันชนิดเรซินในรูปแบบต่าง ๆ เช่น สารประกอบฟลูออไรด์ (fluoride compound) เกลือฟลูออไรด์ (fluoride salt) เป็นต้น ซึ่งไม่เพียงเกิดประโยชน์ ในแง่การป้องกันพื้นผุในด้านบดเคี้ยวบริเวณหลุมร่องพื้นเท่านั้น แต่ยังได้ประโยชน์จากฟลูออไรด์ ที่ถูกปลดปล่อยออกมาอีกด้วย หากทว่าการเติมฟลูออไรด์อาจมีผลกระทบต่อคุณสมบัติบาง ประการของสารผนึกหลุมร่องพื้นซึ่งอาจมีผลต่อความสามารถในการป้องกันพื้นผุ จึงมีการศึกษา คุณสมบัติต่าง ๆ ของสารผนึกหลุมร่องพื้นชนิดผสมฟลูออไรด์ในด้านต่าง ๆ ดังนี้

## 1. การรั่วซึมตามขอบ (Marginal leakage)

การศึกษาที่เกี่ยวกับการรั่วซึมของวัสดุผนึกหลุมร่องฟันเรซินชนิดผสมฟลูออไรด์มีหลาย การศึกษาได้ผลต่างกันไป ดังเช่นการศึกษาของ Cooley และคณะ (1990) พบว่าการรั่วซึมตาม ขอบของสารผนึกหลุมร่องฟันเรซินผสมฟลูออไรด์กับไม่ผสมฟลูออไรด์แตกต่างกัน แต่ Park และ คณะ (1993) พบว่าไม่มีความแตกต่างกัน โดย Cooley และคณะใช้ฟลูโรซีลด์ (Fluroshield) เทียบกับเฮลิโอซีล (Helioseal) ขณะที่ Park และคณะใช้ฟลูโรซีลด์ (Fluroshield) เทียบกับพริส-มาซีลด์ (Prismashield) และเดลทอน (Delton)

#### 2. ความแข็งแรงเฉือน (Shear strength)

ในแง่ความแข็งแรงเฉือนผลที่ได้ไม่สอดคล้องกัน ขึ้นอยู่กับแต่ละการศึกษาและชนิดของ วัสดุที่ใช้ Park และคณะ (1993) พบว่าค่าความแข็งแรงเฉือนของวัสดุผนึกหลุมร่องฟันเรซิน ผสมฟลูออไรด์ชนิดฟลูโรซีลด์ (Fluroshield) ไม่มีความแตกต่างจากสารผนึกหลุมร่องพันไม่ ผสมฟลูออไรด์ชนิดพริสมาชีลด์ (Prismashield) แต่มีความแตกต่างกับชนิดไม่ผสมฟลูออไรด์ เดลทอน (Delton) โดยฟลูโรซีลด์และพริสมาชีลด์มีค่าความแข็งแรงเฉือนมากกว่าเดลทอน ส่วน Marcushamer และคณะ (1997) พบว่าความแข็งแรงเฉือนของของวัสดุผนึกหลุมร่องพันเรซิน ผสมฟลูออไรด์(Teethmate-F) ไม่มีความแตกต่างกับชนิดไม่ผสมฟลูออไรด์ (Helioseal)

3. อัตราการยึดติด (Retention rate)

เนื่องจากความสามารถในการยึดติดของสารผนึกหลุมร่องพืนมีผลโดยตรงต่อการป้องกัน พืนผุ จึงมีการศึกษาทางคลินิกเกี่ยวกับอัตราการยึดติดหลายการศึกษา ทั้งหมดพบว่าอัตราการ ยึดติดของสารผนึกหลุมร่องพืนเรซินผสมฟลูออไรด์ไม่มีความแตกต่างกับชนิดไม่ผสมฟลูออไรด์ (Jensen และคณะ, 1990; Koch และคณะ, 1997; Vrbic, 1998) ยิ่งกว่านั้น Augusto do Rego และคณะ (1996) ยังรายงานว่าการผนึกพืนที่ผุด้วยสารผนึกหลุมร่องพันชนิดผสม ฟลูออไรด์ ถ้ากรอเอาส่วนพืนที่ผุออกจะทำให้อัตราการยึดติดและความแนบตามขอบของวัสดุดี ขึ้น ไม่เกิดการผุซ้ำ นอกจากการศึกษาคุณสมบัติในด้านต่าง ๆ ของสารผนึกหลุมร่องพันชนิดผสมฟลูออไรด์ เพื่อประกอบการเลือกใช้ดังกล่าวแล้ว ยังมีการศึกษาถึงฟลูออไรด์ในสารผนึกหลุมร่องพันเหล่านั้น ที่มีผลต่อขบวนการป้องกันพันผุ ความสามารถในการปลดปล่อยฟลูออไรด์จากสารผนึกหลุมร่อง พันชนิดผสมฟลูออไรด์เป็นคุณสมบัติอีกประการที่ช่วยเพิ่มประสิทธิภาพในการป้องกันพันผุของ สารผนึกหลุมร่องพัน สารผนึกหลุมร่องพันที่ผสมฟลูออไรด์ส่วนใหญ่ มีการปลดปล่อยฟลูออไรด์ สูงสุดในช่วงแรก จากนั้นจะลดลงอย่างรวดเร็ว (Garcia–Godoy และคณะ, 1997; Cooley และ คณะ, 1990; Loyola – Rodriguez และ Garcia–Godoy, 1996) มีรายงานว่าฟลูโรซีลด์ (FluroShield) สามารถปลดปล่อยฟลูออไรด์ต่อเนื่องได้ถึง 6 เดือน (Rock และคณะ, 1990) การศึกษาปริมาณฟลูออไรด์ที่ผิวเคลือบพันหลังจากใช้สารผนึกหลุมร่องพันที่ผสมฟลูออไรด์เทียบ กับชนิดไม่ผสมฟลูออไรด์ Tanaka และคณะ (1987) พบว่าสารผนึกหลุมร่องพันชนิดผสม ฟลูออไรด์ทำให้มีปริมาณฟลูออไรด์ที่ผิวพันลึก 10 ไมโครเมตรมากกว่าชนิดไม่ผสมฟลูออไรด์ถึง กว่า 3 เท่า และค่อย ๆ ลดลงที่ความลึกมากขึ้น

สารผนึกหลุมร่องฟันเรซินผสมฟลูออไรด์มีความสามารถในการต้านเชื้อจุลินทรีย์ เนื่อง จากการที่สารผนึกหลุมร่องฟันปิดทางเข้าของสารอาหารทำให้ปริมาณเชื้อลดลง และผลของสาร ฟลูออไรด์ที่ปลดปล่อยออกมามีผลโดยตรงต่อเชื้อด้วย เช่นการใช้สารผนึกหลุมร่องฟันชนิดผสม ฟลูออไรด์ (Teethmate-F) สามารถยับยั้งการเจริญเติบโตของเชื้อจุลินทรีย์ชนิดสเตรปโตคอกคัส-มิวแทน (*Streptococcus mutans*) ในจานเลี้ยงเชื้อได้ (Loyola – Rodriguez และ Garcia – Godoy, 1996) ส่วน Carlsson และคณะ (1997) รายงานว่าปริมาณเชื้อแลคโตเบซิลัส (Lactobacillus) ในน้ำลายเด็กภายหลังได้รับการผนึกหลุมร่องฟันด้วยสารผนึกหลุมร่องฟันชนิด ผสมฟลูออไรด์มีปริมาณลดลง

สำหรับผลในการต้านทานการเกิดฟันผุ เมื่อผนึกหลุมร่องฟันด้วยสารผนึกหลุมร่องฟัน ชนิดผสมฟลูออไรด์แล้วนำไปผ่านกระบวนการที่ทำให้เกิดฟันผุ จะช่วยให้ความลึกของรอยผุน้อย กว่าชนิดไม่ผสมฟลูออไรด์ (Jensen และคณะ, 1990) และยังป้องกันการเกิดการผุรอบ ๆ สาร ผนึกหลุมร่องฟันได้ทั้งในฟันแท้และฟันน้ำนม (Hicks และ Flaitz, 1992; 1998) ต่อมามีรายงาน ผลการผนึกทับฟันที่ผุด้วยสารผนึกหลุมร่องฟันชนิดผสมฟลูออไรด์ พบว่าการผุไม่มีการลุกลามต่อ ถ้าการยึดติดบริเวณขอบของสารเคลือบหลุมร่องฟันยังสมบูรณ์ดีอยู่ (Garcia–Godoy และคณะ, 1997; Handelman และคณะ, 1985) นอกจากนี้ข้อดีอีกประการของการใช้สารผนึกหลุมร่องฟัน ชนิดผสมฟลูออไรด์ คือฟลูออไรด์ที่ปล่อยเข้าไปในผิวเคลือบฟันอาจทำให้เกิดการสะสมของแร่ธาตุ ที่ฟันเพิ่มขึ้น อันจะเห็นจากความแข็งผิวที่เพิ่มขึ้น (ten Cate, และ Arends, 1977; White, 1987)

#### การวัดความแข็งผิวแบบจุลภาค

ความแข็งผิวเป็นวิธีการที่ใช้สำหรับวัดการสูญเสียแร่ธาตุของฟัน (ten Cate และ Arends, 1977; White, 1987; Featherstone และคณะ, 1983) การวัดความแข็งจุลภาค (Microhardness test) เป็นการวัดความแข็งโดยใช้หัวกด (Indentor) กดลงบนพื้นผิว แรงกดที่ ใช้มีค่าต่างกันไปแล้วแต่ความแข็งของผิวที่ต้องการศึกษา โดยที่พื้นผิวนั้นต้องได้รับการขัดจน เรียบเป็นมันเงาและไม่มีความโค้ง จึงจะได้ค่าที่เชื่อถือได้ และในขณะที่ทำการวัดต้องไม่มีแรงสั่น สะเทือนต่อตัวเครื่อง เพราะแรงสั่นสะเทือนเพียงเล็กน้อยสามารถทำให้ค่าคลาดเคลื่อนได้ (Koulourides, 1968)

หัวกดที่นิยมใช้ในการศึกษาทางทันตกรรมมี 2 ชนิดคือ หัวกดชนิดวิกเคอร์ (Vickers indentor) และหัวกดชนิดนูป (Knoop indentor) ซึ่งหัวกดทั้งสองชนิดมีลักษณะรูปทรงปิระมิดที่ ทำมุมต่างกัน (Ryge และคณะ, 1961) หัวกดชนิดวิกเคอร์ทำมุม 136 องศาในทุกด้าน และ หัวกดชนิดนูปทำมุม 172.5 และ130 องศาดังภาพที่ 4 และ 5





ภาพที่ 5 แสดงรอยกดและหัวกดชนิดนูป (Davidson และคณะ, 1974)

การวัดความแข็งมีความสัมพันธ์กับปริมาณแร่ธาตุของผิวพันบริเวณนั้น (Featherstone และคณะ, 1983) สำหรับการนำวิธีการวัดความแข็งมาใช้เป็นดัชนีบอกความรุนแรงของรอยโรค การผุในระยะแรกสามารถทำได้ 2 วิธี คือ

 กดหัวกดในแนวตั้งฉากกับผิวเคลือบฟัน (ภาพที่ 6-I) ค่าที่วัดได้จะเป็นค่าความแข็งผิว (Surface hardness) ซึ่งเป็นค่าโดยรวมของความรุนแรงของรอยโรคการผุในบริเวณนั้น โดยทั่ว ไปจะทำการวัด 3-5 ตำแหน่งต่อชิ้นตัวอย่างแล้วนำมาหาค่าเฉลี่ย

 กดหัวกดในแนวขนานกับผิวเคลือบพันหลังตัดชิ้นพันตั้งฉากกับผิวเคลือบพัน ผ่าน บริเวณที่ต้องการทดสอบ (ภาพที่ 6-II) โดยจะทำการวัดตำแหน่งแรกที่จุดห่างจากผิวนอกของ เคลือบพันเข้ามาประมาณ 15-20 ไมโครเมตร แล้วทำการวัดตำแหน่งต่อ ๆ ไปตามระยะที่ กำหนด ค่าที่ได้จะเป็นค่าความแข็งของพันตามแนวตัดขวาง ดังนั้นค่าที่วัดได้จะมีความจำเพาะ มากกว่าวิธีแรก ความรุนแรงของรอยโรคการผุจะต้องทำการวิเคราะห์จากการอินทีเกรทค่าความ แข็งที่ตำแหน่งต่าง ๆ ของรอยผุ



ภาพที่ 6 แสดงแผนภาพทิศทางการกดของหัวกด (Arends และคณะ, 1980) I แสดงการกดในแนวตั้งฉากกับผิวเคลือบฟัน II แสดงการกดในแนวขนานกับผิวเคลือบฟัน

การใช้เครื่องวัดความแข็งแบบจุลภาคในการศึกษาการเปลี่ยนแปลงปริมาณแร่ธาตุในผิว เคลือบฟัน อยู่ภายใต้สมมติฐานว่า ความแข็งผิวฟันมีความสัมพันธ์กับปริมาณแร่ธาตุ โดยมี การศึกษาที่สนับสนุนสมมติฐานดังกล่าว คือ การแซ่ชิ้นตัวอย่างผิวเคลือบฟันในสารละลายกรด อ่อนจะทำให้มีการสูญเสียแร่ธาตุออกจากผิวฟัน เกิดรูพรุนและมีค่าความแข็งผิวฟันลดลง (Koulourides และ Reed, 1964) ส่วนการที่ผิวฟันมีค่าความแข็งเพิ่มขึ้น เกิดจากการมีแร่ธาตุ รวมทั้งฟลูออไรด์มาสะสมในช่องว่างเหล่านี้เมื่อชิ้นฟันอยู่ในสภาวะที่เหมาะสม (Koulourides และ คณะ, 1974; ten Cate และ Arends, 1977) แต่อย่างไรก็ตามข้อจำกัดในการวัดความแข็ง แบบจุลภาคในการศึกษาเกี่ยวกับการสะสมกลับของแร่ธาตุที่ผิวฟัน คือ สามารถบอกได้เพียงว่ามี การสะสมของแร่ธาตุในรูพรุน ทำให้ชิ้นตัวอย่างฟันมีความแข็งขึ้น แต่ไม่สามารถบอกได้ถึงองค์ ประกอบทางเคมี หรือลักษณะรูปร่างของผลึกแร่ธาตุที่สะสมได้ (Koulourides, 1968)

Wilson และ Love (1995) ใช้ความแข็งผิวชนิดตัดขวางเป็นดัชนีในการศึกษาผลของวัสดุ อีลาสโตเมอร์ชนิดที่สามารถปลดปล่อยฟลูออไรด์ (Fluoride-releasing elastomer) ยึดเครื่องมือ จัดพัน โดยรายงานว่าอีลาสโตเมอร์ที่ผสมฟลูออไรด์ทำให้ผิวเคลือบพันที่ห่างขอบวัสดุ 50 และ 75 ไมโครเมตร มีความแข็งมากกว่าชนิดไม่ผสมฟลูออไรด์ ส่วน Tantbirojn และคณะ (1997) ใช้ความแข็งผิวชนิดตัดขวางเช่นกัน แสดงให้เห็นว่าวัสดุกลาสไอโอโนเมอร์ (Glass ionomer) ทำให้เกิดการสูญเสียแร่ธาตุของผิวพันในบริเวณข้างเคียงน้อยกว่าสารเรซินที่ใช้เคลือบผิวพัน หลังผ่านขบวนการทำให้สูญเสียแร่ธาตุ (Demineralizing procedure) เช่นเดียวกับ Pereira และคณะ (1998) ที่รายงานว่าการใช้วัสดุกลาสไอโอโนเมอร์อุดพันทำให้ผิวเคลือบพันบริเวณข้าง เคียงมีความแข็ง และมีความต้านทานการสูญเสียแร่ธาตุมากขึ้น

จากการทบทวนวรรณกรรมที่กล่าวมานั้น ยังไม่มีผู้รายงานถึงการใช้สารผนึกหลุมร่องพัน ชนิดผสมฟลูออไรด์กับพันที่เริ่มผุ ว่าทำให้มีปริมาณแร่ธาตุแตกต่างกับการใช้สารผนึกหลุมร่องพัน ชนิดไม่ผสมฟลูออไรด์หรือไม่ ซึ่งเป็นวัตถุประสงค์ของการศึกษานี้ที่จะใช้ความแข็งผิวของรอยโรค การผุในระยะแรกบริเวณข้างใต้วัสดุผนึกหลุมร่องพันเป็นดัชนี โดยจำลองสภาวะทางคลินิกของ พันที่เริ่มผุในระดับที่ผิวเคลือบพันยังไม่เป็นรูทะลุลงไป



# สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

# บทที่ 3 วิธีดำเนินการวิจัย

#### ประชากรเป้าหมาย

ผิวเคลือบฟันที่มีการผุในระยะเริ่มแรก

## กลุ่มตัวอย่าง

ฟันกรามน้อยที่ถอนจากผู้ป่วยเนื่องจากการจัดฟัน ซึ่งปราศจากรอยแตก รอยผุ และ รอยอุดจำนวน 60 ซี่

# เครื่องมือที่ใช้ในการวิ<mark>จั</mark>ย

# 1. อุปกรณ์ที่ใช้ในการทดลอง

1.1 เครื่องตัดฟันใบเลื่อยเพชรชนิดความเร็วต่ำ (Accutom 50, Struers, Denmark) ดังภาพที่ 7



ภาพที่ 7 ภาพเครื่องตัดฟันใบเลื่อยเพชรชนิดความเร็วต่ำ

1.2 เครื่องขัดพัน (Metaserv 2000 Grinder and Polisher, Beuhler, USA.) ดัง ภาพที่ 8



ภาพที่ 8 เครื่องขัดฟัน

1.3 เครื่องวัดความแข็งแบบจุลภาค (Microhardness Tester, Mitutoyo MVK-G3
 Akashi Corp. Japan) ดังภาพที่ 9



ภาพที่ 9 ภาพเครื่องวัดความแข็งผิวฟัน

- 1.4 กล้องสเตอริโอไมโครสโคป (SZH 10, Olympus Optical Co., Japan)
- 1.5 เครื่องฉายแสงซึ่งกำเนิดแสงสีฟ้า (Curing light XL 3000, 3M Co., USA.)
- 2. วัสดุที่ใช้ในการทดลอง
  - 2.1 ผงพัมมิสปราศจากฟลูออไรด์ (Fluoride free pumice)
  - 2.2 สารละลายที่ทำให้เกิดการสูญเสียแร่ธาตุ (Demineralizing solution) ที่ค่าความเป็น กรดด่างเท่ากับ 5.0 ซึ่งเตรียมโดยมีส่วนผสมของกรดแลคติกความเข้มข้น 0.1 โมลาร์ กรดโพลีอะคริลิกความเข้มข้นร้อยละ 2 (Carbopol C907 B.F. Goodrich Company, USA.) และไฮดรอกซีอะพาไทท์ (BioRad, USA)
  - 2.3 น้ำลายเทียมซึ่งมีส่วนประกอบของ แคลเซียมฟอสเฟต (Calcium phosphate)
    คาร์บอกซีเมททิลเซลลูโลส (Carboxymethyl cellulose) โซเดียมฟอสเฟต
    (Sodium phosphate) และซอร์บิทอล (Sorbitol)
  - 2.4 สารผนึกหลุมร่องฟันดังแสดงในภาพที่ 10
  - เดลทอน (Delton<sup>®</sup>) (Dentsply, USA) (Lot. #990022, Exp. 06-2001)
  - เดลทอนพลัส (Delton<sup>®</sup>plus) (Dentsply, USA) (Lot. #000511, Exp. 11-2001)
  - เฮลิโอซีล (Helioseal<sup>®</sup>) (Vivadent, USA) (Lot. #B36998, Exp. 08-2002)
  - เฮลิโอซีลเอฟ (Helioseal<sup>®</sup>F) (Vivadent, USA) (Lot. #C15717, Exp. 07-2002)



ภาพที่ 10 แสดงรูปสารผนึกหลุมร่องฟันที่ใช้ในการวิจัย

### วิธีการวิจัยและการเก็บรวบรวมข้อมูล

1. การเตรียมชิ้นตัวอย่าง (Specimen preparation)

 1.1 ทำความสะอาดฟัน โดยการล้างคราบเลือดและน้ำลาย ขูดเศษเนื้อเยื่อรอบ ๆ ราก ฟันให้สะอาดขัดผิวเคลือบฟันด้วยผงพัมมิสผสมน้ำ 15 วินาที ล้างน้ำให้สะอาด แล้วแซ่ฟันไว้ใน น้ำเกลือ

1.2 การเตรียมผิวเคลือบฟันเพื่อทำการทดลอง แบ่งผิวด้านข้างแก้ม (Buccal surface) ของตัวฟันเป็น 3 ส่วนในแนวตัดขวาง ทาผิวเคลือบฟันและส่วนรากฟันทั้งหมดด้วยน้ำยาทาเล็บ ยกเว้นหน้าต่างขนาด 2 x 2 ตารางมิลลิเมตร 2 ช่อง ขอบล่างของหน้าต่างอยู่ที่เส้นแบ่งส่วน กลางและส่วนปลายฟัน บริเวณดังกล่าวเป็นบริเวณที่มีผิวเคลือบฟันเป็นระนาบมากที่สุด ดังภาพ ที่ 11



ภาพที่ 11 แสดงภาพหน้าต่างบนชิ้นตัวอย่างที่ใช้ในการทดลอง

1.3 นำชิ้นฟันมาส่องด้วยกล้องสเตอริโอไมโครสโคปกำลังขยาย 40 เท่า ส่องบริเวณ
 หน้าต่างทั้งสองเพื่อคัดเลือกชิ้นฟันที่ไม่มีรอยแตก รอยผุ และรอยอุดมาเตรียมชิ้นตัวอย่าง
 1.4 ระหว่างรอทำการทดลอง ชิ้นตัวอย่างที่ผ่านการคัดเลือกแล้วจะจัดเก็บไว้ในกล่อง
 พลาสติกที่มีฝาปิดเก็บความชื้น

2. การสร้างรอยผูจำลอง (Artificial carious lesion formation)

2.1 นำชิ้นพันที่เตรียมไว้มาแช่ในสารละลายที่ทำให้เกิดการสูญเสียแร่ธาตุ (Demineralizing solution) เพื่อทำให้เกิดรอยผุเริ่มแรก (Incipient carious lesion) บนผิว เคลือบพื้นในบริเวณหน้าต่างที่ไม่ได้ทาเคลือบด้วยยาทาเล็บ โดยแช่ขึ้นพื้นแต่ละชิ้นในสารละลาย ดังกล่าว ปริมาตร 16 มิลลิลิตรในขวดพลาสติกที่มีฝ่าปิดเป็นเวลา 9 วัน ที่อุณหภูมิ 37 องศาเซลเซียส

2.2 เมื่อครบกำหนดเวลา นำชิ้นฟันมาล้างด้วยน้ำปราศจากอิออนประมาณ 10 นาที แล้วเก็บชิ้นฟันไว้ในกล่องพลาสติกที่มีฝาปิดเก็บความชื้น

# การสุ่มชิ้นตัวอย่างเข้ากลุ่ม

3.1 แบ่งฟัน 60 ซี่เป็นสองชุด

ชุดแรกผนึกด้วยเดลทอน และ เดลทอนพลัส จำนวน 30 ซี่ ชุดที่สองผนึกด้วยเฮลิโอซีล และ เฮลิโอซีลเอฟ จำนวน 30 ซี่

3.2 ชิ้นฟันหนึ่งชิ้นมีหน้าต่าง 2 ช่อง ใช้วิธีจับฉลากว่าจะผนึกหน้าต่างแรกด้วยสารชนิด ใด เมื่อผนึกหน้าต่างแรกด้วยสารผนึกหลุมร่องฟันชนิดไม่ผสมฟลูออไรด์ อีกหน้าต่างจะต้องรับ การผนึกด้วยสารชนิดผสมฟลูออไรด์ หรือถ้าผนึกหน้าต่างแรกด้วยสารผนึกหลุมร่องฟันชนิด ผสมฟลูออไรด์อีกหน้าต่างจะต้องรับการผนึกด้วยชนิดไม่ผสมฟลูออไรด์

> กลุ่มควบคุม คือหน้าต่างที่ผนึกด้วยสารผนึกหลุมร่องพื้นที่ไม่ผสมฟลูออไรด์ กลุ่มทดลอง คือหน้าต่างที่ผนึกด้วยสารผนึกหลุมร่องพื้นที่ผสมฟลูออไรด์

## 4. การผนึกผิวฟันที่ผุด้วยสารผนึกหลุมร่องฟัน

ทำการผนึกผิวฟันที่ผุด้วยสารผนึกหลุมร่องฟัน (ภาพที่ 12) ตามคำแนะนำของบริษัทผู้ ผลิตดังนี้

- 4.1 เดลทอน (Delton) และ เดลทอนพลัส (Delton plus)
  - 4.1.1 ทากรดฟอสฟอริกเข้มข้นร้อยละ 37 โดยน้ำหนักที่บริเวณหน้าต่างทีละบาน เป็นเวลา 30 วินาที
  - 4.1.2 ล้างให้สะอาดด้วยน้ำเป็นเวลา 30 วินาที
  - 4.1.3 เป่าให้แห้งนาน 10 วินาทีด้วยกระบอกฉีด 3 ทางที่ปราศจากน้ำหรือน้ำมัน จากเก้าอี้ทำฟัน
  - 4.1.4 ทาสารผนึกหลุมร่องฟันโดยใช้พู่กันเล็ก ๆ เป็นตัวนำวัสดุให้ทั่วหน้าต่าง

- 4.1.5 ฉายแสงจากเครื่องกำเนิดแสงสีฟ้าที่มีความยาวคลื่น 470 นาโนเมตรนาน 20
  วินาที ให้ปลายหลอดนำแสงอยู่ใกล้วัสดุมากที่สุดโดยห่างประมาณ 1-2
  มิลลิเมตร
- 4.2 เฮลิโอซีล (helioseal) และ เฮลิโอซีลเอฟ (helioseal-F)
  - 4.2.1 ทากรดฟอสฟอริกเข้มข้นร้อยละ 37 โดยน้ำหนักที่บริเวณหน้าต่างทีละบาน เป็นเวลา 30 วินาที
  - 4.2.2 ล้างให้สะอาดด้วยน้ำเป็นเวลา 30 วินาที
  - 4.2.3 เป่าให้แห้งนาน 10 วินาทีด้วยกระบอกฉีด 3 ทางที่ปราศจากน้ำหรือน้ำมัน จากเก้าอี้ทำฟัน
  - 4.2.4 ทาส<mark>ารผนึกหลุมร่องฟันโดยใช้พู่กันเล็ก ๆ เป็นตัวนำวัสดุให้ทั่วหน้าต่างรอ 15</mark> วิน<mark>าที</mark>
  - 4.2.5 ฉายแสงจากเครื่องกำเนิดแสงสีฟ้าที่มีความยาวคลื่น 470 นาโนเมตรนาน 20 วินาที ให้ปลายหลอดนำแสงอยู่ใกล้วัสดุมากที่สุดโดยห่างประมาณ 1-2 มิลลิเมตร

จากนั้นแช่ชิ้นฟันในน้ำลายเทียมที่อุณหภูมิ 37 องศาเซลเซียส เป็นเวลา 7 วัน



ภาพที่ 12 แสดงภาพชิ้นตัวอย่างที่ได้รับการผนึกด้วยสารผนึกหลุมร่องฟัน

# การเตรียมชิ้นตัวอย่างเพื่อวัดความแข็งผิวพัน

ตัดปลายรากพื้นทิ้งไป แล้วเตรียมชิ้นตัวอย่างสำหรับวัดความแข็งผิวในแนวหน้าตัดด้วย การตัดชิ้นตัวอย่างทางด้านบดเคี้ยวในแนวใกล้กลางไปทางไกลกลาง (Mesio-distal) ให้ต่ำกว่า ขอบหน้าต่างบน 0.5 มิลลิเมตร ตัดในแนวตั้งฉากกับผิวเคลือบพื้น ดังภาพ 13





ภาพ 13.1 ภาพ 13.2 ภาพที่ 13 แสดงการตัดส่วนรากฟันและการตัดบริเวณด้านบดเคี้ยว 13.1 แสดงด้านข้างแก้มของชิ้นตัวอย่าง 13.2 แสดงหน้าตัดของชิ้นตัวอย่าง

นำชิ้นตัวอย่างที่ตัดแล้ว ฝังลงในกระบอกพลาสติกเส้นผ่านศูนย์กลาง 2 เซนติเมตร สูง 1 เซนติเมตรด้วยเรซินอีพอกซีซนิดบ่มด้วยตัวเองกระบอกละ 1 ชิ้นดังภาพที่ 14 แล้วขัดผิวหน้า ตัดด้างใกล้ด้านบดเคี้ยวที่ถูกตัดออกให้เรียบด้วยเครื่องขัดอัตโนมัติ โดยใช้กระดาษทรายน้ำ เบอร์ 320, 600 และ 1200 ตามลำดับ ตามด้วยการใช้ผ้าสักหลาดและผงแกมมาอะลูมินา ขนาด 0.05 ไมโครเมตรจนได้ผิวเป็นมัน



ภาพที่ 14 แสดงการฝังชิ้นตัวอย่างเพื่อนำไปวัดความแข็ง

#### การวัดค่าความแข็งผิวฟัน

ชิ้นตัวอย่างจะถูกลบชื่อกลุ่มที่ติดอยู่โดยผู้ช่วยทันตแพทย์และใส่ตัวเลขแทน เพื่อไม่ให้ผู้ วัดซึ่งเป็นผู้เดียวตลอดการศึกษาทราบว่าชิ้นพืนที่วัดอยู่ในกลุ่มทดลองใด เป็นการลดอคติที่อาจ เกิดขึ้นแล้วทำการวัดความแข็งผิวในแนวหน้าตัดด้วยเครื่องวัดความแข็งแบบจุลภาค (Microhardness tester) จุดที่วัดจะต้องพ้นจากจุดที่ลึกที่สุดของสารผนึกหลุมร่องพันที่แทรกลง มาในปริซึมของเคลือบพันเพื่อให้ได้ค่าความแข็งแท้จริงของเคลือบพัน การวัดค่าความแข็งผิวพัน วิกเคอร์ในการทดลองนี้ ทำโดยการกดด้วยหัวกดวิกเคอร์ ด้วยแรง 5, 10 และ 25 กรัมเป็น เวลา 15 วินาทีในตำแหน่งต่าง ๆ ดังแสดงในตารางที่ 1 ซึ่งจะได้รอยกดบนเคลือบพันเป็นรูป สี่เหลี่ยมขนมเปียกปูนซึ่งมีขอบคมขัดดังภาพที่ 15 ผู้วิจัยทำการวัดเส้นทะแยงมุมของรอยกด จากนั้นเครื่องจะอ่านค่าความแข็งผิววิกเคอร์ (Vickers hardness number) โดยคำนวณจาก สูตร

VHN (Vickers hardness number) = 
$$F \ge 1.89 \times 10^5$$
  
d<sup>2</sup>  
F = แรงที่ใช้กด (กรัม)

ขนาดเส้นทะแยงมุมของรอยกดหรือความลึกของรอยกดบนเคลือบฟันมีความสัมพันธ์ เชิงเส้นตรงกับปริมาณแร่ธาตุที่ผิวฟัน (Mineral content) (Koulourides และ Reed, 1964)

| ระยะห่างจากผิว <mark>เคลือบฟัน (ไมโครเมตร)</mark> | แรงที่ใช้ในการกด (กรัม) |
|---------------------------------------------------|-------------------------|
| 20                                                | 5                       |
| 30                                                | 10                      |
| 40                                                | 10                      |
| 50                                                | 10                      |
| G<br>60                                           | 10                      |
| 70                                                | 10                      |
| 80                                                | 25                      |
| 90                                                | 25                      |
| 100                                               | 25                      |
| 110                                               | 25                      |

| 120 | 25 |
|-----|----|
| 130 | 25 |

ตารางที่ 1 แสดงแรงที่ใช้กดผิวฟันในตำแหน่งต่าง ๆ



ภาพที่ 15 แสดงตำแหน่งรอยกดที่ภาคตัดขวางของชิ้นตัวอย่าง

ตำแหน่งแรกของรอยกดอยู่ลึกจากผิวเคลือบพัน 20 ไมโครเมตร ซึ่งเป็นจุดที่พ้นจากจุด ลึกสุดของเรซินแทกที่แทรกลงมาในผิวเคลือบพัน ซึ่งสามารถเห็นได้ก่อนการกดผิวพัน จุดต่อ ๆ ไปจะวัดที่ความลึกทุก ๆ 10 ไมโครเมตรและเลื่อนไปด้านข้าง 30 ไมโครเมตร เพื่อป้องกันมิให้ รอยกดอยู่ใกล้กันมากเกินไป

แต่ละตัวอย่างจะทำการวัดความแข็งสองบริเวณแล้วนำมาหาค่าเฉลี่ยความแข็งวิกเคอร์ ของแต่ละตำแหน่งความลึกจากผิวเคลือบฟัน

# 7. การเปลี่ยนค่าความแข็งผิวฟันให้เป็นร้อยละของการสูญเสียแร่ธาตุ (Volume percent mineral)

แปลงค่าความแข็งวิกเคอร์ให้เป็นความแข็งนูป (Knoop hardness number, KHN) ตามคำแนะนำของบริษัท (Zwick 3212 Instruction manual) โดยใช้การทำนายล่วงหน้า
(Forecast) ในโปรแกรมเอ็กเซล (Excel) ทำนายจากค่ามาตราฐานดังแสดงในภาคผนวก แล้ว นำค่าความแข็งนูปมาเปลี่ยนเป็นร้อยละของปริมาตรแร่ธาตุ (Volume percent mineral) โดยใช้ สูตร

Volume percent mineral = 4.3  $\sqrt{\text{KHN}}$  + 11.3 (Featherstone และคณะ, 1983)

ค่าที่ได้จะนำมาวาดเป็นรูปกราฟความสัมพันธ์ ระหว่างร้อยละของปริมาตรแร่ธาตุกับ ความลึกจากผิวเคลือบพัน ค่าปริมาณการสูญเสียแร่ธาตุ (Mineral loss, ΔZ - Value) คำนวน จากการอินทีเกรท (Integrate) พื้นที่ระหว่างร้อยละปริมาตรแร่ธาตุที่ความลึกจากผิวเคลือบพัน ต่าง ๆ กับค่าเฉลี่ยร้อยละปริมาตรแร่ธาตุของเคลือบพันปกติซึ่งเป็นบริเวณที่อยู่ใต้รอยผุจำลองดัง ภาพที่ 16 การอินทีเกรทวิเคราะห์โดยโปรแกรมสำเร็จรูป "WinVPM" (Tantbirojn, 1998) ดังแสดง ในภาคผนวก



ปริมาณการสูญเสียแร่ธาตุของตัวอย่างในกลุ่มเดียวกันจะถูกนำมาหาค่าเฉลี่ยและส่วน เบี่ยงเบนมาตราฐาน เพื่อวิเคราะห์หาความแตกต่างระหว่างกลุ่มทดลองกับกลุ่มควบคุมแต่ละชุด

# การวิเคราะห์ข้อมูล

การวิเคราะห์ข้อมูลอาศัยคอมพิวเตอร์โดยใช้โปรแกรมสถิติ SPSS 9.5 F/W 97 โดย

 ใช้สถิติเชิงพรรณนา ได้แก่ การวัดแนวโน้มเข้าสู่ส่วนกลาง (ค่าเฉลี่ย) และการวัดการ กระจาย (ส่วนเบี่ยงเบนมาตรฐาน)

 ใช้สถิติวิเคราะห์แพร์ทีเทส (Paired t-test) เพื่อทดสอบความแตกต่างของปริมาณ การสูญเสียแร่ธาตุของผิวเคลือบพันที่ผุ หลังผนึกด้วยสารผนึกหลุมร่องพันเรซินชนิดผสมฟลูออไรด์ และชนิดไม่ผสมฟลูออไรด์โดยเทียบระหว่างเดลทอนกับเดลทอนพลัส และเฮลิโอซิลกับเฮลิโอซิล-เอฟตามลำดับ

 3. ใช้สถิติวิเคราะห์หาค่าสัมประสิทธิ์สหสัมพันธ์เพื่อทดสอบความแม่นย้าของการวัดค่า ความแข็งวิกเคอร์ (α-Coefficient) (บุญชม ศรีสะอาด, 2538)

# บทที่ 4 ผลการศึกษา

การศึกษาผลของสารผนึกหลุมร่องพันเรซินซนิดผสมฟลูออไรด์และไม่ผสมฟลูออไรด์ต่อ ปริมาณแร่ธาตุของรอยผุจำลองในระยะเริ่มแรก ในพันกรามน้อยจำนวน 60 ซี่ โดยแบ่ง 30 ซี่ แรกผนึกด้วยสารผนึกหลุมร่องพันชนิดเดลทอน และเดลทอนพลัส และ 30 ซี่หลังผนึกด้วยเฮลิ-โอซีล และเฮลิโอซีลเอฟ ในขั้นแรกของการวิเคราะห์ผลการศึกษาได้นำค่าร้อยละของปริมาตรแร่ ธาตุที่แปลงจากค่าความแข็งผิวพัน มาทำเป็นกราฟที่ความลึกต่าง ๆ ดังภาพที่ 17

ค่าเฉลี่ย (Mean) และส่วนเบี่ยงเบนมาตราฐาน (Standard deviation) ของปริมาณแร่ ธาตุที่สูญเสียไปของรอยผุจำลองได้แสดงไว้ในตาราง 2 และภาพที่ 18

| สารผนึกหลุมร่องพัน         | จำนวนตัวอย่าง (ตัวอย่าง) | Mean ± SD ของปริมาณการ<br>สูญเสียแร่ธาตุ (VPM-µm) |
|----------------------------|--------------------------|---------------------------------------------------|
| เดลทอน (Delton)            | 30                       | 1422.70 ± 441.46                                  |
| ~ ~ ~                      | CHERY MARCE              |                                                   |
| เดลทอนพลัส (Delton-Plus)   | 30                       | 1287.32 ± 420.84                                  |
| เฮลิโอซีล (Helioseal)      | 30                       | 1222.78 ± 284.49                                  |
| เฮลิโอซีลเอฟ (Helioseal-F) | 30                       | 1164.77 ± 266.79                                  |

ตารางที่ 2 แสดงค่าเฉลี่ย และส่วนเบี่ยงเบนมาตรฐาน ของปริมาณการสูญเสียแร่ธาตุของ รอยผุจำลองหลังผนึกด้วยสารผนึกหลุมร่องพันเรซินชนิดต่าง ๆ

เมื่อน้ำค่าเฉลี่ยของปริมาณการสูญเสียแร่ธาตุมาทดสอบทางสถิติแพร์ทีเทส (Paired ttest) พบว่าค่าเฉลี่ยของเดลทอน กับเดลทอนพลัส และเฮลิโอซีลกับเฮลิโอซีลเอฟ ไม่แตกต่างกัน อย่างมีนัยสำคัญทางสถิติ (P>0.05) ดังตาราง 3

| Sealant               | Pair     | red Differen | ces     | t     | df | Sig. |
|-----------------------|----------|--------------|---------|-------|----|------|
|                       | Mean     | SD           | SE      |       |    |      |
| Delton-Delton Plus    | 135.3790 | 363.5814     | 66.3806 | 2.039 | 29 | .051 |
| Helioseal-Helioseal F | 58.0146  | 246.0749     | 44.9269 | 1.291 | 29 | .207 |

ตารางที่ 3 แสดงการวิเคราะห์ข้อมูลของปริมาณการสูญเสียแร่ธาตุ โดยใช้สถิติแพร์ทีเทส (Paired t-test)

ภาพที่ 19-22 แสดงรอยกดจากเครื่องวัดความแข็งผิวฟัน ลักษณะรอยกดจะมีขนาด ใกล้เคียงกันในกลุ่มเดลทอนกับเดลทอนพลัส และเฮลิโอซีลกับเฮลิโอซีลเอฟ

จากการใช้สถิติวิเคราะห์หาค่าสัมประสิทธิ์สหสัมพันธ์เพื่อทดสอบความแม่นยำของการวัด ค่าความแข็งวิกเคอร์ พบว่ามีค่าเท่ากับ 0.9



ภาพที่ 17 กราฟแสดงค่าร้อยละของปริมาตรแร่ธาตุที่ระยะความลึกต่าง ๆ



ภาพที่ 18 กราฟแสดงค่าเฉลี่ยของการสูญเสียแร่ธาตุในวัสดุผนึกร่องพันกลุ่มต่าง ๆ



ภาพที่ 19 แสดงรอยกดบนภาคตัดขวางของผิวเคลือบพันผุจำลองที่ผนึกด้วยเดลทอน (Delton)



ภาพที่ 20 แสดงรอยกดบนภาคตัดขวางของผิวเคลือบฟันผุจำลองที่ผนึกด้วยเดลทอนพลัส (Delton-Plus)



ภาพที่ 21 แสดงรอยกดบนภาคตัดขวางของผิวเคลือบฟันผุจำลองที่ผนึกด้วยเฮลิโอซีล (Helioseal)



ภาพที่ 22 แสดงรอยกดบนภาคตัดขวางของผิวเคลือบพันผุจำลองที่ผนึกด้วยเฮลิโอซีลเอฟ (Helioseal-F)

# บทที่ 5 อภิปรายผล สรุปผลการวิจัยและข้อ เสนอแนะ

### อภิปรายผลการวิจัย

ประสิทธิภาพที่ต้องการทางคลินิกของสารผนึกหลุมร่องพันชนิดผสมฟลูออไรด์ในการใช้ สำหรับผนึกทับรอยผุ คือการกระตุ้นให้เกิดการคืนกลับของแร่ธาตุในบริเวณนั้น การศึกษาที่ สามารถจำลองสถานการณ์ดังกล่าวอย่างสมจริง ควรประกอบด้วยการวัดความแข็งรอยผก่อน และหลังการผนึกด้วยสารผนึกหลุมร่องฟัน เพื่อวิเคราะห์การสะสมกลับของแร่ธาตุ แต่ในการ ทดลองนี้ผู้วิจัยไม่สามารถวัดความแข็งผิวฟันก่อนผนึกรอยผุด้วยสารผนึกหลุมร่องฟัน เพราะเมื่อ ทำการตัดฟันเพื่อน้ำมาวัดความแข็งผิวในแนวตัดขวางแล้ว ไม่สามารถนำไปทดลองต่อได้อีก จึง ทำการวัดปริมาณแร่ธาตุที่สูญเสีย (Mineral loss) ในรอยผุจำลอง ซึ่งคำนวณจากค่าความแข็ง ้ผิวฟันที่ความลึกต่าง ๆ หลังจากผนึกทับรอยผูจำลองด้วยสารผนึกหลุมร่องฟันชนิดผสมฟลูออไรด์ เปรียบเทียบกับชนิดไม่ผสมฟลูออไรด์ เพื่อศึกษาว่าสารผนึกหลุมร่องพันที่มีฟลูออไรด์เมื่อนำมา ้ผนึกทับรอยผูจำลองทำให้มีปริมาณแร่ธาตุในรอยผูแตกต่างจากสารผนึกหลุมร่องฟันชนิดไม่ ้ผสมฟลูออไรด์หรือไม่ โดยมีสมมติฐานว่ารอยผุจำลองก่อนผนึกด้วยสารผนึกหลุมร่องฟัน มีการ สูญเสียแร่ธาตุที่เท่าเทียมกันในฟันซี่เดียวกัน ดังนั้นความแตกต่างใด ๆ ที่อาจเกิดขึ้นภายหลังการ ู้ผนึกด้วยสารผนึกหลุมร่องฟันที่ผสมและไม่ผสมฟลูออไรด์ เป็นผลตามมาจากการปลดปล่อยฟลู-ออไรด์ที่กระตุ้นให้มีการสะสมแร่ธาตุเพิ่มขึ้น จากการศึกษานำร่อง การแช่ฟันในสารละลายที่ทำ ให้เกิดการสูญเสียแร่ธาตุ (Demineralizing solution) เป็นเวลา 9 วัน จะทำให้เกิดรอยผุจำลองที่ มีความลึกประมาณ 70 ไมโครเมตร สม่ำเสมอในบริเวณเคลือบพันที่อยู่ระนาบเดียวกัน (White, 1987)

ข้อจำกัดอีกประการหนึ่งของการศึกษานี้ ได้แก่ ผิวเคลือบพันตัวอย่างที่ผู้วิจัยใช้เป็นผิว เคลือบพันด้านข้างแก้ม (Buccal surface) ซึ่งไม่ใช่ด้านที่ใช้สารผนึกหลุมร่องพันจริง แต่เป็น ด้านที่มีผิวเรียบ ซึ่งสามารถจำลองการผุในระยะเริ่มต้น และสามารถวัดค่าความแข็งผิวใต้วัสดุได้ ดีกว่าด้านบดเคี้ยว (Occlusal surface) ทำให้ไม่สามารถขยายผลจากการทดลองนี้ไปยังสภาพ การณ์จริงที่มีการผุในร่องพันได้ แต่ผลการทดลองสามารถนำไปใช้ในกรณีที่มีการเกิดรอยผุใน ระยะเริ่มต้นบนผิวพันที่เรียบได้ โดยเฉพาะเมื่อมีผู้แนะนำให้นำสารผนึกหลุมร่องพันมาผนึกทับ รอยผุในระยะเริ่มต้น (White spot lesions) ในด้านเรียบ เพื่อป้องกันไม่ให้รอยผุนั้นลุกลามต่อ ซึ่งมีการศึกษาพบว่ารอยผุที่ถูกผนึกทับด้วยสารผนึกหลุมร่องพันจะไม่มีการลุกลามต่อไป (Goepferd และ Olberding, 1989)

ในปัจจุบันสารผนึกหลุมร่องพันที่มีจำหน่ายในประเทศไทยผลิตขึ้นจากหลายบริษัท เดล-ทอน (Delton) เป็นสารผนึกหลุมร่องฟันเรซินที่นิยมมานานและมีใช้กันอย่างกว้างขวาง ในระยะ หลังมีการนำเข้าสารผนึกหลุมร่องฟันอื่น ๆ อีกหลายชนิด เช่น เฮลิโอซีล (Helioseal) เฮลิโอซีลเอฟ (Helioseal-F) และเดลทอนพลัส (Delton-Plus) เป็นต้น สองชนิดหลังมีการเติมฟลูออไรด์เพิ่มลง ฟลูออไรด์ที่เติมลงในเดลทอนพลัส อยู่ในรูปของแบเรียมอะลูมิโนฟลูโรโบโรซิลิเกทกลาส ไข| (Barium alumino fluroboro silicate glass) และโซเดียมฟลูออไรด์ (Sodium fluoride) ส่วน ในเฮลิโอซีลเอฟอยู่ในรูปของฟล<mark>ูโอโรซิลิเกท</mark>กลาส (Fluoro silicate glass) ซึ่งสารผนึกหลุมร่อง ฟันทั้งสี่ชนิดได้รับการยอมรับจากสมาคมทันตแพทย์แห่งอเมริกา (American Dental Association ,ADA) (ADA, 1997; ADA, 1987) งานวิจัยครั้งนี้ได้ทำการศึกษาเปรียบเทียบสารผนึกหลุม ร่องฟันทั้งชนิดที่ผสมฟลูออไรด์และไม่ผสมฟลูออไรด์ ที่มีเครื่องหมายการค้าเดียวกัน ได้แก่ เดล-ทอนพลัส (Delton-Plus) กับเดลทอน (Delton) และ เฮลิโอซีลเอฟ (Helioseal-F) กับเฮลิโอซีล (Helioseal) เพื่อควบคุมตัวแปรอื่น ๆ ที่อาจส่งผลกระทบ และมิได้เปรียบเทียบข้ามกลุ่มด้วย การ ที่ผู้วิจัยออกแบบการทดลองครั้งนี้เพื่อเปรียบเทียบเพียงครั้งละสองกลุ่ม เนื่องจากฟันแต่ละซี่มีผิว เคลือบพันที่เป็นระนาบและอยู่ในระดับห่างปลายพันเท่า ๆ กันในบริเวณจำกัด เหมาะเป็นผิวตัว อย่างเพียงสองตำแหน่งเท่านั้น บริเวณที่ห่างจากปลายพื้นเท่ากันจะมีการสร้างตัวพื้นและมีการ สะสมแร่ธาตุพร้อม ๆ กัน จึงถือได้ว่ามีปริมาณแร่ธาตุเริ่มต้นเท่ากัน (Purdell-Lewis และคณะ, 1976) การเลือกใช้ผิวฟันบริเวณอื่นจะทำให้การแบ่งชิ้นตัวอย่างเข้ากลุ่มมีความผันแปรสูง ไม่ สามารถตั้งสมมติฐานได้ว่าค่าปริมาณแร่ธาตุเริ่มต้นเท่ากันจึงเปรียบเทียบกันได้ยาก

วิธีวัดปริมาณแร่ธาตุของเคลือบฟันมีมากมายหลายวิธี ไม่ว่าจะเป็นการวัดความแข็งผิว (Microhardness test) การใช้ภาพถ่ายรังสีจุลภาค (Microradiograph) การใช้กล้องจุลทรรศน์ ชนิดแสงโพลาโรซ์ (Polarized light microscope) เป็นต้น การวัดความแข็งผิวฟัน เป็นวิธีหนึ่งที่ ง่าย ไม่ทำลายชิ้นตัวอย่างและเหมาะกับการทดลองที่ต้องการศึกษาในเชิงปริมาณ ส่วนวิธีที่ใช้ใน การศึกษาเกี่ยวกับแร่ธาตุบริเวณรอยผุโดยใช้กล้องจุลทรรศน์ชนิดแสงโพลาไรซ์ ไม่สามารถแสดง ถึงการสูญเสียแร่ธาตุในเชิงปริมาณได้ (Featherstone และคณะ, 1983; Pimenta และคณะ, 1998) การวัดการได้รับหรือการสูญเสียแร่ธาตุในผิวเคลือบฟันสามารถหาได้จากการวัดความแข็ง ผิวฟัน และยังสามารถแปลงเป็นปริมาณแร่ธาตุที่สูญเสียได้ดังการวิจัยนี้ แต่ไม่สามารถบอกได้ว่า เป็นแร่ธาตุชนิดใด

การวัดค่าความแข็งผิวนั้น หลังจากทำการกดด้วยหัวกดวิกเคอร์จนได้รูปสี่เหลี่ยมขนม เปียกปูนแล้ว ผู้วิจัยจะเป็นผู้วัดขนาดเส้นทะแยงมุมของรอยกดเพื่อให้เครื่องคำนวณความแข็งผิว ้ในขั้นตอนวัดเส้นทะแยงมมผู้วิจัยทดสอบความแม่นยำโดยคำนวณค่าสหสัมพันธ์ของการวัดได้เท่า กับ 0.9 แสดงว่ามีความแม่นยำค่อนข้างสูง และการวัดนั้นจุดกดจุดแรกอยู่ลึกจากผิวเคลือบฟัน 20 ไมโครเมตร เป็นจดที่พ้นจากจดลึกสดของเรซินแทกที่แทรกลงมาในผิวเคลือบฟัน ซึ่งสามารถ เห็นได้ก่อนการกดผิวฟัน และเป็นจุดที่พ้นจากชั้นผิวรอยผุแล้ว (Surface zone) ดังปรากฏในภาพ ที่ 17 เนื่องจากการวัดความแข็งที่ชั้นผิวรอยผุจะเป็นจุดที่ยังมีส่วนของเรซิน ค่าที่ได้จะไม่เป็นค่า ของเคลือบพื้นที่แท้จริง จุดต่อ ๆ ไปจะวัดที่ความลึกทุก ๆ 10 ไมโครเมตรและเลื่อนไปทางข้างห่าง กัน 30 ไมโครเมตร เพื่อป้องกันรอยกดที่จะทับกัน แรงกดที่ใช้กดจุดแรกเท่ากับ 5 กรัม จุดที่ 2 ถึง 6 เท่ากับ 10 กรัม และจุดที่ 7 ถึง 12 เท่ากับ 25 กรัม ที่ผู้วิจัยใช้แรงต่างกันเนื่องจากในรอยผุ ยิ่งใกล้ผิวพันจะมีค่าความแข็งผิวน้อยลงตามลำดับถ้าใช้แรงมากใกล้ผิวพันจะทำให้รอยกดมีขนาด ใหญ่เกินวัดได้ จากการวิจัยนำร่องพบว่าบริเวณที่ห่างจากผิวพันเท่า ๆ กัน ถึงแม้ใช้แรงกดต่าง กันก็จะคำนวณได้ความแข็งที่ใกล้เคียงกัน นอกจากนี้เครื่องวัดความแข็งจะคำนวณค่าความแข็ง ผิววิกเคอร์ (Vickers hardness number) โดยใช้ขนาดแรงที่กด และขนาดเส้นทะแยงมุมของ รอยกดที่วัดได้บนวัตถุ ความเชื่อถือได้ของการวัดความแข็งผิวของการศึกษานี้แสดงให้เห็นได้โดย ผู้วิจัยได้ทำการเปรียบเทียบค่าร้อยละปริมาตรแร่ธาตุของผิวเคลือบฟันปกติของตัวอย่างที่ผู้วิจัยใช้ ทดลองซึ่งมีค่าประมาณร้อยละ 88.6 กับค่าปกติที่ Nikiforuk (1985) แสดงไว้เท่ากับร้อยละ 87 ซึ่งใกล้เคียงกัน

การหาค่าปริมาณแร่ธาตุที่สูญเสียผู้วิจัยได้ใช้โปรแกรมวินวีพีเอม (WinVPM) (Tantbirojn, 1998) ซึ่งเป็นโปรแกรมที่ถูกเขียนขึ้นเพื่อคำนวณร้อยละของปริมาตรแร่ธาตุและปริมาณแร่ธาตุที่ สูญเสียจากค่าความแข็งผิวนูป (Knoop hardness numbers) แต่เนื่องจากข้อจำกัดเรื่องเครื่อง มือที่ใช้ในการวิจัยซึ่งไม่มีหัวกดชนิดนูป ผู้วิจัยจึงได้ใช้การวัดความแข็งผิววิกเคอร์ (Vickers hardness) แล้วแปลงเป็นความแข็งผิวฟันโดยใช้คำสั่งฟอร์แคส (Forecast) ในโปรแกรมเอกเซล (Excel) ทำนายจากค่ามาตราฐาน ตามคำแนะนำของบริษัทผู้ผลิตเครื่องวัดความแข็ง (Zwick 3212 Instruction manual) จากนั้นนำค่าความแข็งผิวนูปมาหาค่าปริมาณแร่ธาตุที่สูญเสีย ซึ่งการคำนวณหาร้อยละของปริมาณแร่ธาตุที่สูญเสีย โปรแกรมวินวีพีเอ็มจะเลือกจุดตัด (Cut off point) ที่จะแยกส่วนของรอยผูกับส่วนของเคลือบพันปกติ โดยกำหนดว่าจุดเริ่มต้นของรอยผุคือ จุดที่ค่าร้อยละปริมาตรแร่ธาตุลดลงมากกว่าค่าเฉลี่ยของเคลือบพันปกติมากกว่าร้อยละ 10

จากผลการวิจัยพบว่า ค่าเฉลี่ยของปริมาณแร่ธาตุที่สูญเสียของรอยผุจำลอง ภายหลัง การผนึกด้วยสารผนึกหลุมร่องฟันเรซินชนิดเดลทอนพลัส (Delton-Plus) เท่ากับ 1287.32 และ

เดลทอน (Delton) เท่ากับ 1422.70 ซึ่งไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ และค่า เฉลี่ยของปริมาณแร่ธาตุที่สูญเสียไปในรอยผุจำลอง ภายหลังการผนึกด้วยสารผนึกหลุมร่องฟัน เรซินชนิดเฮลิโอซีลเอฟ (Helioseal-F) เท่ากับ 1164.77 และเฮลิโอซีล (Helioseal) เท่ากับ 1222.78 ซึ่งไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติเช่นกัน สำหรับค่าส่วนเบี่ยงเบนมาตร-ฐานของปริมาณแร่ธาตุที่สูญเสียไปในรอยผุจำลอง ภายหลังการผนึกด้วยสารผนึกหลุมร่องฟัน เรซินชนิดเดลทอน (Delton) เดลทอนพลัส (Delton-Plus) เฮลิโอซีล (Helioseal) และเฮลิโอซีลเอฟ (Helioseal-F) ในการทดลองนี้พบว่ามีค่า 441.46, 420.84, 284.49 และ 266.79 ตามลำดับ การที่ส่วนเบี่ยงเบนมาตราฐานมีค่าสูงอาจเกิดจากการที่ชิ้นตัวอย่างหรือฟันแต่ละซึ่มีการสะสมของ แร่ธาตุในเบื้องต้นต่างกัน (Grobler และ Louw, 1986) ซึ่งอาจเกิดจากมีประสบการณ์การได้ รับฟลูออไรด์ต่างกันทำให้รอยผุที่เกิดมีความรุนแรงต่างกัน แต่ทั้งนี้ผู้ทำการวิจัยได้พยายามควบ คุมการเกิดความแตกต่างของกลุ่มควบคุมและกลุ่มทดลอง โดยการใช้ฟันซี่เดียวกันและในบริเวณ ที่มีการสะสมของแร่ธาตุเบื้องต้นใกล้เคียงกัน เป็นกลุ่มควบคุมและกลุ่มทดลอง ผู้วิจัยยังใช้การ จับฉลากว่าจะให้ด้านใดเป็นกลุ่มควบคุม และกลุ่มทดลองในแต่ละชิ้นทดลอง นอกจากนั้นผู้วิจัย ้ยังวัดผลโดยไม่ทราบว่ากลุ่มไหนเป็นกลุ่มควบคุมหรือกลุ่มทดลอง เพื่อลดอคติที่อาจเกิดได้ แต่ จากการศึกษาค่าปริมาณแร่ธาตุของผิวเคลือบพันปกติในกลุ่มต่าง ๆ ผู้วิจัยพบว่ามีความแตกต่าง ในกลุ่มเฮลิโอซีล กับเฮลิโอซีลเอฟ ส่วนกลุ่มเดลทอน กับเดลทอนพลัสไม่มีความแตกต่างที่ค่า P=0.05 (ค่าเฉลี่ย ± ส่วนเบี่ยงเบนมาตรฐานของกลุ่มเฮลิโอซีล, เฮลิโอซีลเอฟ, เดลทอนและเดล-ทอนพลัสมีค่าเท่ากับ 87.10±3.17, 89.<mark>11±2.28, 89.39</mark>±2.52 และ 88.81±2.53 ตามลำดับ) ซึ่ง อาจเกิดจากความคลาดเคลื่อน ในขั้นตอนการวัดค่าความแข็งผิวฟันในกลุ่มเฮลิโอซีลและเฮลิโอ-ซีลเอฟในชิ้นตัวอย่าง

ส่วนผลการศึกษานี้แสดงให้เห็นว่า ปริมาณแร่ธาตุในรอยผุจำลองภายหลังการผนึกด้วย สารผนึกหลุมร่องพันเรซินซนิดผสมฟลูออไรด์ ไม่ความแตกต่างกับซนิดไม่ผสมฟลูออไรด์อย่างมี นัยสำคัญทางสถิติ ซึ่งอธิบายได้ว่าอาจเนื่องมาจากเกิดกระบวนการสะสมแร่ธาตุไม่มากพอ ภายใต้สภาวะของช่องปากถ้าฟลูออไรด์ที่ถูกปล่อยออกมาจากสารผนึกหลุมร่องพันเรซินซนิด ผสมฟลูออไรด์ มีปริมาณสูงจะรวมตัวกับแคลเซียมในรอยผุบนผิวเคลือบพัน เกิดเป็นแคลเซียม-ฟลูออไรด์ (Calcium fluoride) ในระหว่างวันแคลเซียมฟลูออไรด์จะละลายตัวออกมาในช่องปาก จากการเปลี่ยนสภาวะความเป็นกรดด่าง ฟลูออไรด์ที่ออกมาอยู่ในของเหลวรอบตัวพันจะมีการ รวมตัวกับแคลเซียมและฟอสเฟต (Phosphate) แลกเปลี่ยนไฮดรอกซิลไอออนเกิดเป็นฟลูออริเดท-ไอดรอกซีอะพาไทท์ซึ่งเป็นผลึกที่มีขนาดเล็กลงเกาะกันแน่นขึ้น มีปริมาณเร่ธาตุเพิ่มขึ้นทนต่อการ ละลายตัวในกรดได้มากขึ้น (Aoba, 1997) แต่ถ้าฟลูออไรด์ปริมาณต่ำที่ถูกปล่อยออกมาอย่าง ช้า ๆ จะเกิดการแลกเปลี่ยนกับไฮดรอกซิลไอออน (Hydroxyl ion) ในผลึกอะพาไทท์ (Apatite) ได้ เป็นฟลูออริเดทไฮดรอกซีอะพาไทท์ (Fluoridated hydroxyapatite) ดังที่มีรายงานปริมาณฟลู-ออไรด์ที่เพิ่มขึ้นบนผิวฟัน หลังได้รับการผนึกด้วยสารผนึกหลุมร่องพันเรซินซนิดผสมฟลูออไรด์ (Tanaka และคณะ, 1987; Capilouto และคณะ, 1990) แต่ปฏิกิริยาทั้งหลายนี้จะเกิดขึ้นได้ อย่างเต็มที่ก็ต่อเมื่อผิวฟันมีการสัมผัสกับของเหลวรอบ ๆ ตัวฟันซึ่งมีองค์ประกอบของแร่ธาตุที่ทำ ให้เกิดการสะสมแร่ธาตุเข้ามาในเคลือบฟัน โดยอาศัยเวลาที่นาน และปริมาณฟลูออไรด์ที่มากพอ (Koulourides, 1990; Featherstone และคณะ, 1983) ซึ่งกระบวนการดังกล่าวเป็นกระบวน การสำคัญที่ทำให้เกิดการสะสมกลับของแร่ธาตุ (Remineralization) แต่ในการศึกษานี้สารผนึก หลุมร่องฟันที่ยึดติดแน่นอยู่กับผิวเคลือบฟันเหนือรอยผูจำลองอาจขวางกั้นการเกิดกระบวนการดัง กล่าว เช่น แคลเซียมฟลูออไรด์ไม่สามารถละลายตัวออกมาสู่น้ำลายเทียมที่ผู้วิจัยนำชิ้นตัวอย่าง และขณะเดียวกันฟลูออไรด์ที่ถูกปล่อยจากสารผนึกหลุมร่องฟันสู่น้ำลายเทียมก็ไม่ แซ่ไว้ได้ สามารถสะสมกลับสู่รอยผุจำลองที่อยู่ใต้สารผนึกหลุมร่องฟันได้เช่นกัน นอกจากนี้ระยะเวลาที่ทำ การแช่ชิ้นตัวอย่างในน้ำลายเทียมหลังผนึกด้วยสารผนึกหลุมร่องฟันเป็นเวลาเพียง 7 วัน อาจ ไม่นานเพียงพอที่จะทำให้มีการสะสมคืนกลับของแร่ธาตุ ในปริมาณที่สามารถวัดความแข็งแล้ว คำนวณออกมาในระดับที่ทำให้มีความแตกต่างอย่างมีนัยสำคัญทางสถิติได้

ข้อสังเกตุที่น่าสนใจประการหนึ่งของการศึกษานี้ ได้แก่การที่ปริมาณการสูญเสียแร่ธาตุ มีแนวโน้มที่มีค่าต่ำกว่ากลุ่มสาร ของกลุ่มสารผนึกหลุมร่องฟันชนิดผสมฟลูออไรด์ทั้งสองชนิด ้ผนึกหลุมร่องพันที่ไม่ผสมฟลูออไรด์ ถึงแม้ว่าจะไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติก็ ตาม โดยเฉพาะเมื่อเปรียบเทียบระหว่างเดลทอนกับเดลทอนพลัส พบว่าค่านัยสำคัญของสถิติ ทดสอบ (Significance, Sig.) มีค่าเท่ากับ 0.051 มากกว่าระดับนัยสำคัญที่กำหนด (p-value) ไว้ 0.05 เพียงเล็กน้อยเท่านั้น จากการรวบรวมบทวิทยาการที่ผ่านมาพบว่าสารผนึกหลุมร่องฟันเรซิน ชนิดผสมฟลูออไรด์ เช่น ที่ธเมทเอฟ (Teethmate-F) ฟลูโรซีลด์ (Fluroshield) และเฮลิโอซีลเอฟ (Helioseal-F) มีการปลดปล่อยฟลูออไรด์ในปริมาณสูง (Garcia-Godoy และคณะ, 1997; Loyola-Rodriguez และ Garcia-Godoy, 1996; Cooley และคณะ, 1990; Rock และคณะ, 1990) โดยเฉพาะในช่วง 1 - 2 วันแรก แต่ผู้วิจัยไม่พบรายงานการปลดปล่อยฟลูออไรด์ของเดล-ทอนพลัส (Delton Plus) เนื่องจากการเกิดการสะสมกลับของแร่ธาตุต้องอาศัยฟลูออไรด์เป็น จักรกลที่สำคัญ ซึ่งในเดลทอนพลัสมีการเติมฟลูออไรด์ที่ไม่เหมือนกับเฮลิโอซีลเอฟ เดลทอนพลัส มีการเติมฟลูออไรด์ 2 ชนิด คือ แบเรียมอะลูมิโนฟลูโรโบโรซิลิเกทกลาส (Barium alumino fluroboro silicate glass) และโซเดียมฟลูออไรด์ (Sodium fluoride) เฮลิโอซีลเอฟซึ่งมี ฟลูออไรด์ชนิดเดียวคือ ฟลูโอโรซิลิเกทกลาส (Fluoro silicate glass)

ประโยชน์ของการใช้สารผนึกหลุมร่องฟันเรซินชนิดผสมฟลูออไรด์มีหลายประการ เช่น การศึกษาของ Jensen และคณะ (1990) พบว่าฟันที่ผนึกด้วยสารผนึกหลุมร่องฟันเรซินชนิด ผสมฟลูออไรด์เมื่อนำไปผ่านกระบวนการที่ทำให้เกิดการผุ จะเกิดการผุของผิวเคลือบฟันน้อยกว่า การใช้ชนิดไม่ผสมฟลูออไรด์ และถ้าเป็นการผนึกทับฟันที่ผูก็สามารถป้องกันการลุกลามของฟันที่ ผต่อด้วย (Garcia-Godoy และคณะ, 1997) และถ้ามีการหลุดของสารผนึกหลุมร่องฟันเรซิน ชนิดผสมฟลูออไรด์ ผิวพันที่เคยได้รับการผนึกเป็นผิวพันที่มีปริมาณฟลูออไรด์สูงจะเกิดการแลก เปลี่ยนแร่ธาตุได้ ทำให้มีความต้านทานการละลายต่อกรดได้ดี ประโยชน์ที่สำคัญอีกประการคือ การป้องกันฟันผุรอบ ๆ วัสดุมีประสิทธิภาพดีขึ้นเมื่อเทียบกับสารผนึกหลุมร่องฟันเรซินชนิดไม่ ผสมฟลูออไรด์ (Hicks และ Flaitz, 1992; 1998; 2000) เนื่องจากบริเวณด้านข้างซึ่งไม่ถูกผนึก ทับด้วยวัสดุสามารถเกิดการแลกเปลี่ยนแร่ธาตุกับของเหลวรอบตัวฟันได้ เช่นเดียวกับการศึกษา ของ Dijkman และ Arends (1992) ที่รายงานว่าการผุตามขอบในบริเวณข้าง ๆ วัสดุบูรณะพันที่ ผสมฟลูออไรด์จะลดลง โดยมีหลายทางที่ผิวฟันได้รับฟลูออไรด์จากวัสดุบูรณะ เช่น ฟลูออไรด์ จะผ่านคราบจุลินทรีย์ (plaque) เข้าไปบนผิวพื้นข้างเคียง รวมทั้งฟลูออไรด์บางส่วนยังผ่านออก สู่น้ำลาย และสามารถเกิดการสะสมกลับเข้ามาบนผิวพันได้ด้วย

ภายใต้สภาวะที่ศึกษาในการวิจัยครั้งนี้ ปริมาณการสูญเสียแร่ธาตุของรอยผุจำลองที่ถูก ู่ผนึกทับด้วยสารผนึกหลุมร่อง<mark>ฟันเรซินชนิดผสมฟลูออไรด์และช</mark>นิดไม่ผสมฟลูออไรด์ไม่มีความแตก ซึ่งอาจเป็นดัชนีที่บ่งชี้ว่าสารผนึกหลุมร่องฟันชนิดผสมฟลูออไรด์ไม่ได้ช่วยให้เกิดการ ต่างกัน สะสมกลับของแร่ธาตุที่รอยผุจำลองนั้น เนื่องจากการสะสมกลับของแร่ธาตุต้องอาศัยปัจจัยหลาย แต่ในทางคลินิกการผนึกทับรอยผุด้วยสารผนึกหลุมร่องฟันเรซินชนิด ประการดังกล่าวมาแล้ว ้ผสมฟลูออไรด์ และไม่ผสมฟลูออไรด์สามารถหยุดการลุกลามต่อของรอยผุได้จากการยึดติดที่ดี เท่า ๆ กัน (Jensen และคณะ, 1990; Koch และคณะ 1997; Vrbic, 1998) และสารผนึก หลุมร่องฟันเรซินชนิดผสมฟลูออไรด์ยังทำให้ผิวเคลือบฟันนั้นมีปริมาณฟลูออไรด์เพิ่มขึ้น (Tanaka และคณะ, 1987) ป้องกันการผูตามขอบวัสดุ (Hicks และ Flaitz, 1992; 1998) และผลจาก ฟลูออไรด์ที่ผนึกทับฟันผุจะทำให้จำนวนเชื้อจุลินทรีย์ลดลง (Theilade และคณะ, 1977) และมี ประโยชน์ในกรณีที่สารผนึกหลุมร่องฟันเรซินชนิดผสมฟลูออไรด์หลุดไป ผิวพันที่มีฟลูออไรด์สูงจะ สามารถเกิดการแลกเปลี่ยนแร่ธาตุกับสภาพแวดล้อม และเกิดการสะสมกลับของแร่ธาตุได้ แต่ สารผนึกหลุมร่องพันเรซินชนิดผสมฟลูออไรด์มีราคาสูงกว่าชนิดไม่ผสมฟลูออไรด์ จึงต้องนำปัจจัย ทั้งหมดมาพิจารณาให้เหมาะสมในการเลือกใช้ด้วย

## สรุปผลการวิจัย

 ค่าเฉลี่ยของปริมาณแร่ธาตุที่สูญเสียไปของรอยผุจำลอง ภายหลังการผนึกด้วยสาร ผนึกหลุมร่องฟันเรซินชนิดเดลทอน (Delton) เดลทอนพลัส (Delton-Plus) เฮลิโอซีล (Helioseal) และเฮลิโอซีลเอฟ (Helioseal-F) มีค่าเท่ากับ 1422.70±441.46, 1287.32±420.84, 1222.78± 284.49 และ 1164.77±266.79 VPM-µm ตามลำดับ

 ค่าเฉลี่ยของปริมาณแร่ธาตุที่สูญเสียไปของรอยผุจำลอง ภายหลังการผนึกด้วยสาร ผนึกหลุมร่องฟันเรซินชนิดเดลทอนพลัส (Delton-Plus) ไม่มีความแตกต่างอย่างมีนัยสำคัญทาง สถิติ เมื่อเปรียบเทียบกับกลุ่มเดลทอน (Delton) ที่ระดับความเชื่อมั่น 0.05 (p = 0.051)

 3. ค่าเฉลี่ยของปริมาณแร่ธาตุที่สูญเสียไปของรอยผุจำลอง ภายหลังการผนึกด้วยสาร ผนึกหลุมร่องฟันเรซินชนิดเฮลิโอซีลเอฟ (Helioseal-F) ไม่มีความแตกต่างอย่างมีนัยสำคัญทาง สถิติ เมื่อเปรียบเทียบกับกลุ่มเฮลิโอซีล (Helioseal) ที่ระดับความเชื่อมั่น 0.05 (p =0.207)

# ข้อเสนอแนะ

 การผนึกทับรอยผุในระยะเริ่มต้นอาจไม่ใช้ทางเลือกช่วยให้รอยผุเกิดการสะสมกลับ ของแร่ธาตุได้ จึงควรมีการศึกษาต่อไปทางคลินิกในแง่ของการผนึกทับรอยผุ หรือสร้างสภาพแวด ล้อมให้เอื้ออำนวยต่อการเกิดการสะสมกลับทางอื่น เช่น การใช้ฟลูออไรด์เฉพาะที่โดยทันตแพทย์ การใช้ยาสีฟันผสมฟลูออไรด์ ควบคู่กับการควบคุมปริมาณคราบจุลินทรีย์ (Plaque control) รวมทั้งการใช้วัสดุบูรณะฟันชนิดอื่น ๆ ที่ผสมฟลูออไรด์เพื่อช่วยลดการผุต่อในอนาคต แต่อย่างไร ก็ดีการผนึกทับรอยผุทั้งหมดจะลดสภาวะการผุลงได้ ตราบเท่าที่สารผนึกหลุมร่องฟันยังคงผนึก แน่นกับผิวเคลือบฟัน

 เมื่อพิจารณาผลการวิจัยที่แสดงปริมาณการสูญเสียแร่ธาตุของกลุ่มสารผนึกหลุมร่อง พันชนิดผสมฟลูออไรด์ทั้ง 2 ชนิด มีแนวโน้มต่ำกว่ากลุ่มสารผนึกหลุมร่องพันที่ไม่ผสมฟลูออไรด์ การเพิ่มเวลาหลังการผนึกทับรอยผุให้มากขึ้น อาจทำให้มีปริมาณแร่ธาตุในรอยผุเพิ่มขึ้นได้ เนื่อง จากการปลดปล่อยฟลูออไรด์จากสารผนึกหลุมร่องพันชนิดผสมฟลูออไรด์ยังคงมีต่อเนื่องได้ตลอด 1 เดือน (Garcia – Godoy และคณะ, 1997) และบางชนิดมีได้ถึง 6 เดือน (Rock และคณะ, 1990) ถึงแม้ว่าจะมีปริมาณการปลดปล่อยลดลงอย่างมากก็ตาม  แนวทางในการศึกษาต่อถึงผลของสารผนึกหลุมร่องพันชนิดผสมฟลูออไรด์เมื่อผนึก ทับรอยผุ ควรจะคำนึงถึงปัจจัยในการสร้างสภาวะแวดล้อมที่ทำให้เกิดการสะสมกลับของแร่ธาตุ ได้เต็มที่ ได้แก่ การเผยผิวพันข้างเคียงวัสดุให้สัมผัสของเหลวรอบตัวพันซึ่งจะทำให้มีการแลก เปลี่ยนแร่ธาตุทั้งในบริเวณผิวสัมผัสและบริเวณข้างเคียงที่อยู่ใต้วัสดุ รวมทั้งการจำลองสภาวะ การเปลี่ยนแปลงค่าความเป็นกรดด่างในระหว่างวันด้วยด้วยดังการทดลองของ Jensen และ คณะ (1990) ซึ่งถือว่าเป็นการสะท้อนถึงประสิทธิภาพของการใช้สารผนึกหลุมร่องพันชนิดผสม ฟลูออไรด์ผนึกทับรอยผุได้



# ภาษาไทย

สาธารณสุข, กระทรวง. 2538. <u>รายงานผลการสำรวจสภาวะทันตสุขภาพแห่งชาติครั้งที่ 4 พ.ศ.</u> <u>2537 ประเทศไทย</u>. (พิมพ์ครั้งที่ 1), กรมอนามัย. กองทันตสาธารณะสุข: กรุงเทพฯ. บุญชม ศรีสะอาด. 2538. วิธีการทางสถิติที่ใช้วิเคราะห์คุณภาพของเครื่องมือรวบรวมข้อมูล. (พิมพ์ครั้งที่ 2), <u>บทที่ 6 วิธีการทางสถิติสำหรับการวิจัย.</u> หน้า 154-179. สุวิริยาสาส์น: กรุงเทพฯ

#### ภาษาอังกฤษ

- Aasenden, R.; and Peebles, T.C. 1974. Effects of fluoride supplementation from birth on human decicuous and permanent teeth. <u>Arch Oral Biol</u> 19:321-326.
- Adair, S.M. 1994. Epidermiology and Mechanisms of Dental Disease. In J. R. Pinkham, (2<sup>nd</sup>ed.), <u>Pediatric Dentistry: Infancy Through Adolescence</u>, pp. 175-176. Philadelphia: Lea&Febiger.
- American Dental Association Council on Scientific Affairs. 1997. Dental sealants. J Am Dent Assoc 128: 485-488.
- American Dental Association. 1987. Council on dental health and health planning: and council on dental materials, instruments, and equipment. Pit and fissure sealants. <u>J Am Dent Assoc</u> 144: 671-672.
- Aoba, T. 1997. The effect of fluoride on apatite structure and growth. <u>Crit Rev Oral</u> <u>Biol Med</u> 8(2): 136-153.
- Arends, J.; and Christoffersen J. 1986. The nature of early caries lesions in enamel. J Dent Res 65: 2-11.
- Arends, J.; Reintsema, H.; and Dijkman, T.G. 1988. Calcium fluoride-like material formed in partially demineralized human enamel in vivo owing to the action of fluoridated toothpastes. <u>Acta Odontol Scand</u> 46:347-353.
- Arends, J.; Schuthof, J.; and Jongebloed, W.G. 1980. Lesion depth and Microhardness indentations on artificial white spot lesion. <u>Caries Res</u> 14:190-195.
- Augusto do Rego, M.; and Maximo de Araujo, M.A. 1996. A 2-year clinical evaluation of fluoride-containing pit and fissure sealants placed with an invasive technique. <u>Quintessence Int</u> 27: 99-103.
- Capilouto, M.L.; DePaola, P.F.; and Gron, P. 1990. In vivo study of slow-release fluoride resin and enamel uptake. <u>Caries Res</u> 24: 441-445.

- Carlsson, A.; Petersson, M.; and Twetman, S. 1997. 2-year clinical performance of a fluoride-containing sealant in young schoolchildren at caries risk. <u>Am J Dent</u> 10: 115-119.
- Cooley, R.L.; McCourt, J.W.; Huddleson, A.M.; and Paul Casmedes, H. 1990. Evaluation of a fluoride-containing sealant by SEM, microleakage, and fluoride release. <u>Pediatr Dent</u> 12: 38-42.
- Dijkman, G.E.H.M.; and Arends, J. 1992. Secondary caries in situ around fluoriderelesasing light-curing composites: A quantitative model investigation on four materials with a fluoride content between 0 and 26vol%. <u>Caries Res</u> 26: 351-357.
- Davidson, C.L.; Hoekstra, I.S.; and Arends, J. 1974. Microhardness of sound, decalcified and etched tooth enamel related to the calcium content. <u>Caries</u> <u>Res</u> 8: 135-144.
- Donly, K.J.; and Ruiz, M. 1992. In vitro demineralization inhibition of enamel caries utilizing an unfilled resin. <u>J Clin Pediatr Dent</u> 14: 22-24.
- Elderton, R.J. 1985. Management of early dental caries in fissures with fissure sealant. <u>Br Dent J</u> 158: 254-258.
- Featherstone, J.D.B.; Duncan, J.F.; and Cutress, T.W. 1978. Surface layer phenomena in in-vitro early caries-like lesions of human tooth enamel. <u>Arch Oral Biol</u> 23: 397-404.
- Featherstone, J.D.B.; Ten Cate, J.M.; Shariati, M.; and Arends, J. 1983. Comparison of artificial caries-like lesion by quantitative microradiography and microhardness profiles. <u>Caries Res</u> 17: 385-391.
- Fross, H.; and Seppa, L. 1990. Prevention of enamel demineralization adjacent to glass ionomer filling materials. <u>Scand J Dent Res</u> 98: 173-178.
- Garcia-Godoy, F.; Abarzua, I.; De Goes, M.F.; and Chan, D.C.N. 1997. Fluoride release from fissure sealants. <u>J Clin Pediatr Dent</u> 22: 45-49.
- Garcia-Godoy, F.; Summitt, J.B.; and Donly, K.J. 1997. Caries progression of white spot lesions sealed with an unfilled resin. <u>J Clin Pediatr Dent</u> 21: 141-143.

- Geopferd, S.J.; and Olberling, P. 1989. The effect of sealing white spot lesions on lesion progression in vitro. <u>Pediatr Dent</u> 11: 14-16.
- Gray, J.A. 1966. Kinetics of enamel dissolution during formation of incipient carieslike lesions. <u>Arch Oral Biol</u> 11: 397-421.
- Grobler, S.R.; and Louw, A.J. 1986. Enamel-fluoride levels in deciduous and permanent teeth of children in high, medium and low fluoride areas. <u>Arch Oral Biol</u> 31(7): 423-426.
- Groeneveld, A.; Van Eck, A.A.M.J.; and Backer Dirks, O. 1990. Fluoride in caries prevention: Is the effect pre- or post-eruptive ? J Dent Res 69 (Spec Iss): 751-755.
- Handelman, S.L.; Leverett, D.H.; and Iker, H.P. 1985. Longitudinal radiographic evaluation of the progress of caries under sealants. <u>J Pedodon</u> 9: 119-126.
- Handelman, S.L.; Leverett, D.H.; Espeland,M.; and Curzon, J. 1987 Retention of sealants over carious and sound tooth surfaces. <u>Community Dent Oral</u> <u>Epidermiol</u> 15: 1-5.
- Hick, M.J.; and Flaitz, C.M. 1992. Caries-like lesion formation around fluoride releasing sealant and glass ionomer. <u>Am J Dent</u> 5: 329-334.
- Hick, M.J.; and Flaitz, C.M. 1998. Caries formation in vitro around a fluoridereleasing pit and fissure sealant in primary teeth. <u>J Dent Child</u> 65: 161-168.
- Hick, M.J.; and Flaitz, C.M. 1999. The acid techinque in caries prevention: Pit and fissure sealants and preventive restoration. In J.R. Pinkham, (2<sup>nd</sup>ed.), <u>Pediatric Dentistry: Infancy Through Adolescence</u>, pp. 481-488. Philadelphia: Lea&Febiger.
- Hick, M.J.; and Flaitz, C.M. 2000. Occlusal caries formation in vitro: comparison of resin-modified glass ionomer with fluoride-releasing sealant. <u>J Clin Pediatr</u> <u>Dent</u> 24: 309-314.
- Holmen, L.; Thylstrup, A.; Featherstone, J.D.B.; Fredebo, L.; and Shariati, M. 1985. A scanning electron microscopic study of surface changes during development of artificial caries. <u>Caries Res</u> 19: 11-21.

- Jensen, M.E.; Wefel, J.S.; Triolo, P.T.; and Hammesfahr, P.D. 1990. Effects of a fluoride-releasing fissure sealant on artificial enamel caries. <u>Am J Dent</u> 3: 75-78.
- Jensen, O.E.; Billings, R.J.; and Featherstone, J.B.D. 1990. Clinical evaluation of fluroshield pit and fissure sealant. <u>Clin Prev Dent</u> 12:24-27.
- Koch, M.J.; Garcia-Godoy, F.; Mayer, T.; and Staehle, H.J. 1997. Clinical evaluation of Helioseal F fissure sealant. <u>Clin Oral Invest</u> 1(4): 199-202.
- Koulourides, T. 1968. Experimental changes of enamel mineral density. In. R. S. Harris (ed.), <u>Art and Science of Dental Caries Research</u>, pp. 355-378. New York: Acedemic Press.
- Koulourides, T. 1990. Summary of session II: Fluoride and the caries process. <u>J Dent</u> <u>Res 69</u> (Spec Iss) : 558.
- Koulourides, T.; Phantumvanit, P.; Munksgaard, E.C.; and Housch, T. 1974. An intraoral model used for studies of fluoride incorporation in enamel. <u>J Oral Pathol</u> 3: 185-196.
- Koulourides, T.; and Reed, J.L. 1964. Effects of Calcium phosphate and fluoride ion on the rate of softening and dissolution of tooth enamel. <u>Arch Oral Biol</u> 9: 585-594.
- Loyola-Rodriguez, J.P.; and Garcia-Godoy, F. 1996. Antibacterial activity of fluoride release sealants on mutans streptococci. <u>J Clin Pediatr Dent</u> 20: 109-111.
- Lysaght, V.E. 1949. 136° Diamond pyramid hardness method. . In C.H. Wilson (ed.) Indentation hardness Testing. pp.114. Reinhold Publishing Corp. New York, N Y press.
- Marcushamer, M.; Neuman, E.; and Garcia-Godoy, F. 1997. Fluoridated and nonfluoridated unfilled sealants show similar shear strength. <u>Pediatr Dent</u> 19: 189-290.
- Margolis, H.C.; and Moreno, E.C. 1985. Kinetic and thermodynamic aspects of enamel demineralization. <u>Caries Res</u> 19: 22-35.
- Mertz-Fairhurst, E.J.; Schuster, G.S.; and Fairhurst, C.W. 1986. Arresting caries by sealants: results of clinical study. <u>J Am Dent Assoc</u> 122: 197-197.

- Moreno, E.C.; and Zahradnik, R.T. 1974. Chemistry of enamel subsurface demineralization *in vitro*. J Dent Res 53: 226-235.
- Nasir, H.I.; Retief, D.H.; and Jamison, H.C. 1985. Relationship between enamel fluoride concentration and dental caries in a selected population. <u>Community Dent Oral Epidemiol</u> 13: 65-67.
- Nikiforuk, G. 1985. Understanding dental caries. 1. Etiology and mechanisms. Basic and clinical aspects. G. Nikiforuk (ed.). <u>The nature of tooth substance</u> pp.92. Karger, Basel.
- Ogaard, B.; Cruz, R. and Rolla, G. 1992. Fluoride dentifrices: a possible mechanism. In G. Emberry, and G. Rolla (ed.). <u>Clinical and Biological Aspects of Dentifrices</u>, pp.305-312. Oxford: Oxford university press.
- Park, K.; Georgeseu, M.; Scherer, W.; and Schulman, A. 1993. Comparison of shear strength, fracture patterns and microleakage among unfilled, filled, and fluoride-releasing sealants. <u>Pediatr Dent</u> 15: 418-421.
- Pereira, P.N.R.; Inokoshi, S.; Yamada, T.; and Tagami, J. 1998. Microhardness of in vitro caries inhibition zone adjacent to conventional and resin-modified glass ionomer cements. <u>Dent Mater</u> 14: 179-185.
- Pimenta, L.A.F.; Fontana, U.F.; Cury, J.A.; Serra, M.C.; and Elderton, R.J. 1998. Inhibition of demineralization in vitro around amalgam restorations. <u>Quintessence Int</u> 29: 363-367.
- Purdell-Lewis, D.J.; Groeneveld, A.; and Arends, J. 1976. Hardness tests on sound enamel and artificially demineralized white spot lesions. <u>Caries Res</u> 10: 201-215.
- Retief, D.H.; Harries, B.E.; and Bradley, E.L. 1987. Relationship between enamel fluoride concentration and dental caries experience. <u>Caries Res</u> 21: 68-78.
- Ripa, L.W. 1983. Occlusal sealants: An overview ofclinical studies. <u>J Public Health</u> <u>Dent</u> 43: 216-225.
- Rock, W.P.; Perry, F.H.; and Smith, A.J. 1996. A comparative study of fluoridereleasing composite resin and glass ionomer material used as fissure sealants. <u>J Dent 24</u>: 275-280.

- Rohr, M.; Makinson, O.F.; and Burrow, M.F. 1991. Pit and fissures: Morphology. <u>J Dent</u> <u>Child</u> 57: 11-18.
- Rolla, G, and Saxegaard, E. 1990. Critical evaluation of the composition and use of topical fluorides, with emphasis on the role of calcium fluoride in caries inhibition. <u>J Dent Res 69</u>(Spes Iss): 780-785.
- Ryge, G.; Foley, D.E.; and Fairhurst, C.W. 1961. Micro-indentation hardness. <u>J Dent</u> <u>Res</u> 40: 1116-1126.
- Silverstone, L.M. 1968. The surface zone in caries and in caries-like lesions produces in vitro. Bri Dent J 20: 145-157.
- Tanaka, M.; Ono, H.; Kadoma, Y.; and Imai, Y. 1987. Incorporation in human enamel of fluoride slowly released from sealant in vivo. <u>J Dent Res</u> 66: 1591-1593.
- Tantbirojn, D. "Surface modulation of dental hard tissues." (Doctoral dissertation, Graduate School, University of Minnesota, 1998): p190-195.
- Tanbirojn, D.; Douglas, W.H.; and Versluis, A. 1997. Inhibitive Effect of a Resin-Modified Glass Ionomer Cement on Remote Enamel Artificial Caries. <u>Caries</u> <u>Res</u> 31: 275-280.
- ten Cate, J.M.; and Arends, J. 1977. Remineralization of artificial enamel lesions in vitro. <u>Caries Res</u> 11: 277-286.
- Theilade, E.; Fejerskov, O.; Migasena, K.;and Prachyabrued, W. 1977. Effect of fissure sealing on the microflora in occlusal fissures of human teeth. <u>Arch Oral Biol</u> 22: 251-259.
- Varughese, K.; and Moreno, E.C. 1981. Crystal growth of calcium apatotes in dilute solutions containing fluoride. <u>Calcif Tissue Int</u> 33: 431-439.
- Vrbic, V. 1999. Retention of a fluoride-containing sealant on primary and permanent teeth 3 years after placement. <u>Prev Dent</u> 30: 825-828.
- Waggoner, W.F. 1991. Managing occlusal surfaces of young permanent molars. J <u>Am Dent Assoc</u> 122: 72-76.
- Waggoner, W.F.; and Siegal, M. 1996. Pit and fissure sealant application: Updating the technique. <u>J Am Dent Assoc</u>. 127: 351-361.
- Weintraub, J.A. 1989. The effectiveness of pit and fissure sealants. <u>J Public Health</u> <u>Dent</u> 47: 317-330.

- White, D.J. 1987. Use of Synthetic Polymer Gels for Artificial Carious Lesion Preparation. <u>Caries Res</u> 21: 228-242.
- Wilson, T.G.; and Love, B. 1995. Clinical effectiveness of fluoride-releasing elastomers. Il Enamel microhardness levels. <u>Am J Orthod Dentofacial Orthop</u>107: 379-381.
- Oral Health Research Institute. 1997. Standard laboratory operating procedure. Preparation of Carbopol Demineralizing Solution. Indianapolis, Indiana



# สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

## การแปลงค่าความแข็งผิวฟัน

การแปลงค่าความแข็งผิวพันวิกเคอร์ (Vickers hardness number) ให้เป็น ความแข็งผิวพันนูป (Knoop hardness number) ใช้คำสั่งการทำนายล่วงหน้า (forecast) ใน โปรแกรมเอกเซล (Excel) ดังนี้

- 1. เลือกเมนูฟังชัน (function) แล้วเลือกคำสั่งการทำนายล่วงหน้า (forecast)
- 2. ใส่ค่าความแข็งผิวฟันวิกเคอร์ที่ต้องการแปลงเป็นตัวแปร X
- 3. ใส่ค่าความแข็งผิวพันวิกเคอร์ที่ทราบเป็นตัวแปร X'S
- 4. ใส่ค่าความแข็งผิวฟันนูปที่ทราบเป็นตัวแปร Y'S
- 5. จะได้ค่าความแข็งผิวฟันนูปที่ต้องการทราบทันทีดังตัวอย่าง

| Microsoft E                              | acel - V-k       |                                            | Halls -                                  |           |          |           |           |       |
|------------------------------------------|------------------|--------------------------------------------|------------------------------------------|-----------|----------|-----------|-----------|-------|
| Ele Edt                                  | ⊻iew Insert Fg   | mat Icols                                  | Data Window                              | Help      |          |           |           | _16 × |
|                                          | a a v nº         | S al                                       | DRY                                      |           | . 0. 6   | 2 5       | · 21 %    | 2     |
| Anal                                     | • 10             | • B /                                      | UNE                                      | ETHER     |          | 3 %       |           | · A · |
| FORECAST                                 | -XJ=             | -FORECA                                    | ST(312 H12 H                             | 23.612.63 | 231      |           |           |       |
| FORECAST                                 |                  |                                            |                                          |           |          |           |           | -     |
|                                          | × 312            | 1233811                                    | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | -         | - 312    |           |           | -4    |
| Know                                     |                  |                                            |                                          | -         | J - (107 | 216-309   | 4125286   |       |
| ALC: N                                   | - Intenes        |                                            |                                          |           |          |           |           |       |
| Know                                     | n_x*s [612623    |                                            |                                          |           | - (100   | ,200,300, | 400,500,E |       |
|                                          |                  |                                            |                                          |           | - 207    | 001120    |           |       |
| -                                        | be zero.         |                                            |                                          | -         | 0.0000   |           |           |       |
| 2                                        | Formula result + | 327.465463                                 | 19                                       | L         | OK       |           | Cancel    |       |
| 12                                       | 000              | 100                                        | 107                                      |           |          | 50        |           | _     |
| 13                                       | 12:G23)          | 200                                        | 216                                      |           |          |           |           |       |
| 14                                       |                  | 300                                        | 309                                      |           |          |           |           |       |
| 15                                       |                  | 400                                        | 412                                      |           |          |           |           |       |
| 16                                       |                  | 500                                        | 528                                      |           |          |           |           |       |
| 17                                       |                  | 600                                        | 636                                      |           |          |           |           | 0.11  |
| 18                                       |                  | 700                                        | 735                                      |           |          |           |           |       |
|                                          |                  |                                            | 100                                      |           |          |           |           |       |
| 19                                       |                  | 800                                        | 822                                      |           |          |           |           | 21    |
| 19<br>20                                 |                  | 800<br>900                                 | 822<br>895                               |           |          |           |           | ž.    |
| 19<br>20<br>21                           |                  | 800<br>900<br>95                           | 822<br>895<br>107                        |           |          |           |           |       |
| 19<br>20<br>21<br>22                     |                  | 800<br>900<br>95<br>90                     | 822<br>895<br>107<br>102                 |           |          |           |           |       |
| 19<br>20<br>21<br>22<br>23               |                  | 800<br>900<br>95<br>90<br>85               | 822<br>895<br>107<br>102<br>97           | 0         |          |           |           |       |
| 19<br>20<br>21<br>22<br>23<br>4 4 5 H\ S | heet1 / Sheet2   | 800<br>900<br>95<br>90<br>85<br>( Sheet3 / | 822<br>895<br>107<br>102<br>97           | 0         |          |           |           |       |

## ขั้นตอนการใช้งานโปรแกรมวินวีพีเอ็ม 'Win VPM'

 เตรียมข้อมูลป้อนโปรแกรมโดยใช้นามสกุล .txt ข้อมูลที่เตรียมให้เรียงลำดับบนลงล่างจาก ระยะห่าง 20, 30,......,130 ไมครอนจากผิวฟัน โดยคำนวณทีละ 5 กลุ่ม ดังตัวอย่าง

| Distance | group 1 | group 2             | group 3 | group 4 | group 5 |
|----------|---------|---------------------|---------|---------|---------|
| 20       | 58.16   | 51.49               | 131.5   | 44.32   | 101.73  |
| 30       | 68.84   | 57.65               | 218.37  | 67.96   | 156.24  |
| 40       | 106.14  | 57.96               | 201.7   | 86.65   | 170.39  |
| 50       | 162.31  | 102.4               | 221.9   | 143.32  | 168.37  |
| 60       | 189.38  | 210.29              | 280.49  | 226.45  | 208.27  |
| 70       | 227.46  | 227.97              | 252.71  | 239.58  | 181.5   |
| 80       | 320.39  | 311.81              | 336.05  | 278.98  | 266.86  |
| 90       | 275.44  | 308.27              | 311.81  | 350.24  | 314.84  |
| 100      | 349.18  | 314.33              | 313.32  | 351.7   | 300.7   |
| 110      | 315.85  | 357.26              | 321.91  | 323.42  | 306.25  |
| 120      | 348.68  | 336.05              | 350.19  | 299.69  | 340.6   |
| 130      | 341.61  | <mark>323.93</mark> | 311.81  | 317.36  | 322.01  |

2. การป้อนข้อมูลใส่ Win VPM.exe เมื่อเลือกโปรแกรม Win VPM แล้วใส่ชื่อแฟ้มข้อมูล .txt

โปรแกรมจะทำงานโดยอัตโนมัติจนเสร็จ

```
(Inactive A:\WINVPM.EXE)
                                                                  - 0 ×
Enter input file name: Index2.txt
                                                                      .
Output file name: Index2.vpm
Cut off point = 4 percent.
reading the input file...
(null)calculating mineral content...
calculating average...
                                       Point=
Average= 90.4353 Curve= 1
                                              9
Average=
               88.8262 Curve= 2
                                       Point=
                                              7
               88.7029 Curve= 3
                                       Point= 7
Average=
Average=
              89.1974 Curve= 4
                                       Point= 8
Average=
               87.8266 Curve= 5
                                       Point= 8
calculating surface...
Area below = 1713.630
                       Area above = 11.931
                                            Curve = 1
Area below = 1792.293 Area above = 45.085
                                            Curve = 2
Area below = 741.835 Area above = 28.969
                                            Curve = 3
Area below = 1655.132 Area above = 41.798
                                            Curve = 4
Area below = 1228.608
                       Area above = 27.091
                                            Curve = 5
write volume percent mineral...
write raw data (KHN)...
*** FINISH ***
•
```

3. ผลที่ได้จากโปรแกรมจะแสดงข้อมูลดิบความแข็งผิวพันนูป (Knoop hardness numbers), ร้อยละปริมาตรแร่ธาตุ (Volume percent mineral), ปริมาณแร่ธาตุที่สูญเสีย คำนวณจาก การอินทีเกรทพื้นที่เหนือเส้นกราฟ (ΔZ-Value, Total และค่าเฉลี่ยของร้อยละ area) ปริมาตรแร่ธาตุของผิวเคลือบพันปกติ (Group 1-5)

| Data file name: | Index2.txt |                |         |                    |           |           |
|-----------------|------------|----------------|---------|--------------------|-----------|-----------|
| Average=        | 90.4353    | Curve=         | 1       | For points 9 to 12 |           |           |
| Average=        | 88.8262    | Curve=         | 2       | For points 7 to 12 |           |           |
| Average=        | 88.7029    | Curve=         | 3       | For points 7 to 12 |           |           |
| Average=        | 89.1974    | Curve=         | 4       | For points 8 to 12 |           |           |
| Average=        | 87.8266    | Curve=         | 5       | For points 8 to 12 |           |           |
| Area below AV=  | 1713.63    | Area above AV= | 11.9306 | Total Area =       | 1701.6994 | Curve = 1 |
| Area below AV=  | 1792.293   | Area above AV= | 45.0847 | Total Area =       | 1747.2084 | Curve = 2 |
| Area below AV=  | 741.8349   | Area above AV= | 28.9686 | Total Area =       | 712.8662  | Curve = 3 |
| Area below AV=  | 1655.1316  | Area above AV= | 41.7981 | Total Area =       | 1613.3335 | Curve = 4 |
| Area below AV=  | 1228.6084  | Area above AV= | 27.0913 | Total Area =       | 1201.5171 | Curve = 5 |

Volume percent mineral:

| Distance        | Group 1   | group 2                  | group 3 | group 4 | group 5 |  |
|-----------------|-----------|--------------------------|---------|---------|---------|--|
| 2               | 0 44.093  | 3 42 <mark>.15</mark> 53 | 60.6096 | 39.9265 | 54.6704 |  |
| 3               | 0 46.977  | 43.9489                  | 74.8426 | 46.7483 | 65.0483 |  |
| 4               | 0 55.6004 | 44.0365                  | 72.3691 | 51.327  | 67.4294 |  |
| 5               | 0 66.0824 | 54.8129                  | 75.3541 | 62.778  | 67.0957 |  |
| 6               | 0 70.4746 | 73.6559                  | 83.3157 | 76.0075 | 73.3557 |  |
| 7               | 0 76.1516 | 6 76.2243                | 79.6565 | 77.857  | 69.2304 |  |
| 8               | 0 88.2676 | 87.23                    | 90.1262 | 83.1216 | 81.5442 |  |
| 9               | 0 82.6645 | 6 86.7978                | 87.23   | 91.7732 | 87.598  |  |
| 10              | 0 91.6513 | 87.5362                  | 87.4136 | 91.9408 | 85.865  |  |
| 11              | 0 87.7203 | 92.5757                  | 88.45   | 88.6307 | 86.55   |  |
| 12              | 0 91.5938 | 90.1262                  | 91.7675 | 85.7397 | 90.658  |  |
| 13              | 0 90.7756 | 88.6916                  | 87.23   | 87.9028 | 88.4619 |  |
|                 |           |                          |         |         |         |  |
|                 |           |                          |         |         |         |  |
| Raw Data (KHN): |           |                          |         |         |         |  |

Raw Data (KHN):

| Distance | Group 1 | group 2 | group 3 | group 4 | group 5 |        |  |
|----------|---------|---------|---------|---------|---------|--------|--|
|          | 20      | 58.16   | 51.49   | 131.5   | 44.32   | 101.73 |  |
|          | 30      | 68.84   | 57.65   | 218.37  | 67.96   | 156.24 |  |
| 9        | 40      | 106.14  | 57.96   | 201.7   | 86.65   | 170.39 |  |
| ŧ        | 50      | 162.31  | 102.4   | 221.9   | 143.32  | 168.37 |  |
| (        | 60      | 189.38  | 210.29  | 280.49  | 226.45  | 208.27 |  |
| 1        | 70      | 227.46  | 227.97  | 252.71  | 239.58  | 181.5  |  |
| 8        | 80      | 320.39  | 311.81  | 336.05  | 278.98  | 266.86 |  |
| 9        | 90      | 275.44  | 308.27  | 311.81  | 350.24  | 314.84 |  |
| 10       | 00      | 349.18  | 314.33  | 313.32  | 351.7   | 300.7  |  |
| 1        | 10      | 315.85  | 357.26  | 321.91  | 323.42  | 306.25 |  |
| 1:       | 20      | 348.68  | 336.05  | 350.19  | 299.69  | 340.6  |  |
| 1:       | 30      | 341.61  | 323.93  | 311.81  | 317.36  | 322.01 |  |

## การใช้โปรแกรมแปลงค่าความแข็งผิวพันนูปเป็นปริมาณแร่ธาตุ

Custom program for the calculation of Volume Percent Minerals and  $\Delta Z$ -values from Microhardness experiment.

โปรแกรม 'Win VPM' เป็นโปรแกรมที่ถูกเขียนขึ้นเพื่อคำนวณเปอร์เซนต์ปริมาณแร่ธาตุ จากค่าความแข็งผิวนูป (Knoop hardness numbers) ดังแสดงข้างล่าง ร้อยละปริมาตรแร่ธาตุ ของผิวเคลือบฟันปกติจะถูกเฉลี่ยจากค่าความแข็งผิวฟันปกติที่อยู่ใต้รอยผุ ซึ่งมีความผันแปรน้อย กว่า 4 เปอร์เซ็นต์ ค่าปริมาณแร่ธาตุที่สูญเสีย (ΔZ-Value) ถูกคำนวณจากการอินทีเกรทพื้นที่ ระหว่างกราฟปริมาตรแร่ธาตุของรอยผูกับค่าเฉลี่ยร้อยละปริมาตรแร่ธาตุของผิวเคลือบฟัน

```
/* Volume Percentage Mineralisation and Delta Z for Enamel (Versluis, October 19, 1995)*/
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
double surface(double a, double b,double c, double d,double p, double q);
double tri_surface(double a, double b);
double distance(double x1, double y1, double x2, double y2);
double mineral(double x);
FILE *fr, *fw;
int i, j, l, no, k;
int colum;
double real_average, average, sum, criterion, division, area_below, area_above;
double x,x1,x2,y1,y2,y0,x3;
double a,b,c,d,p,q;
double A[50][7],Y[7];
char name1[12];
char name2[12];
char *name3;
char ch;
char *title;
void main(void)
 1
         printf("Volume Percentage Mineralisation and Delta-Z\n\n");
         printf("*** START ***\n\n");
          printf("\nEnter input file name: ");
          fscanf(stdin, "%s", namel);
fscanf(stdin, "%*c");
          if(strstr(name1,".")!='\0')
          1
                  name3=strstr(name1,".");
                  k=strlen(namel);
                   l=strlen(name3);
                  strncpy(name2, name1, k-1);
          else(strcpy(name2,name1);)
          strcat(name2,".vpm");
          if ((fr = fopen(name1, "r")) == NULL)
                   printf("cannot open file %s\n", namel);
                   exit(1);
```

```
for (i=1; i<no; i++) {
                             x1=A(i-1)[0];
                             y1=A[i-1][j];
                             x2=A[i][0];
                             y2=A[i][j];
                             y0=Y[j];
                              a=distance(x1,y1,x2,y2);
                             a=distance(x1,y1,x2,y2);
b=distance(x2,y2,x2,y0);
c=distance(x2,y0,x1,y0);
d=distance(x1,y0,x1,y1);
p=distance(x2,y2,x1,y0);
q=distance(x1,y1,x2,y0);
if (y1<=y0 %6 y2<=y0);</pre>
                             1
                                       area below=area_below+surface(a,b,c,d,p,q);
                              }
                             else
                                       if (y1>y0 && y2>y0)
                                        1
                                                 area_above=area_above+surface(a,b,c,d,p,q);
                                        1
                                        else
                                        1
                                                 if (y1>y0 && y2<=y0)
                                                           x3=(y0+(y2*x1-y1*x2)/(x2-x1))*((x2-x1)/(y2-
y1));
                                                           a=distance(x1,y0,x3,y0);
b=distance(x1,y1,x1,y0);
c=distance(x3,y0,x2,y0);
d=distance(x2,y2,x2,y0);
area_above=area_above+tri_surface(a,b);
                                                           area_below=area_below+tri_surface(c,d);
                                                  1
                                                 else{
                                                           if (y1<=y0 && y2>y0)
                                                            (
                                                                     x3=(y0+(y2*x1-y1*x2)/(x2-x1))*((x2-
x1)/(y2-y1));
                                                                      a=distance(x1,y0,x3,y0);
                                                                     b=distance(x1,y1,x1,y0);
c=distance(x3,y0,x2,y0);
                                                                     d=distance(x2, y2, x2, y0);
          area_below=area_below+tri_surface(a,b);
          area_above=area_above+tri_surface(c,d);
                                                            3
                                        }
                              }
                    1
                    printf("Area below = %5.31f Area above = %5.31f Curve = %i\n",
area_below,area_above,j);
fprintf(fw,"Area below AV=\t%6.41f\tArea above AV=\t%6.41f\tTotal Area
=\t%6.4lf\tCurve = %i\n", area_below, area_above, area_below-area_above, j);
          }
          printf("write volume percent mineral...\n");
          fprintf(fw,"\n\nVolume percent mineral:\n");
          rewind(fr);
          ch='#';
          while (ch != '\n')
          (
                    fscanf(fr, "%c", &ch);
fprintf(fw, "%c", ch);
          for(i=0; i<no; i++)
```

| Group              | Distance |      |                    | Delton |        |         | Delton-Plus |       |        |        |         |  |
|--------------------|----------|------|--------------------|--------|--------|---------|-------------|-------|--------|--------|---------|--|
|                    | (um)     |      | VHN                |        | KHN    | Δz      | VHN         |       |        | KHN    | Δz      |  |
|                    |          | 1    | 2                  | mean   |        |         | 1           | 2     | mean   |        |         |  |
|                    | 20       | 43.5 | 47.3               | 45.4   | 58.16  | j<br>k  | 48          | 49.4  | 48.7   | 61.49  |         |  |
|                    | 30       | 59.2 | 46.8               | 53     | 68.84  |         | 97.4        | 61.6  | 79.5   | 92.61  |         |  |
|                    | 40       | 65.7 | 120                | 92.9   | 106.14 |         | 95.3        | 83.5  | 89.4   | 102.61 |         |  |
|                    | 50       | 160  | 137                | 148.5  | 162.31 |         | 153         | 102   | 127.5  | 141.09 |         |  |
| 1 60<br>1 70<br>80 | 180      | 171  | 175.5              | 189.38 |        | 122     | 201         | 161.5 | 175.44 |        |         |  |
|                    | 70       | 205  | 221                | 213    | 227.46 | 1701.70 | 180         | 208   | 194    | 208.27 | 1381.84 |  |
|                    | 80       | 301  | 309                | 305    | 320.39 |         | 247         | 283   | 265    | 279.99 |         |  |
|                    | 90       | 347  | 274                | 260.5  | 275.44 |         | 299         | 309   | 304    | 319.38 |         |  |
|                    | 100      | 350  | 317                | 333.5  | 349.18 |         | 314         | 270   | 292    | 307.26 |         |  |
|                    | 110      | 347  | 254                | 300.5  | 315.85 |         | 274         | 292   | 283    | 298.17 |         |  |
|                    | 120      | 336  | 330                | 333    | 348.68 |         | 325         | 299   | 312    | 327.47 |         |  |
|                    | 130      | 322  | 330                | 326    | 341.61 |         | 240         | 297   | 268.5  | 283.52 |         |  |
|                    | 20       | 34.9 | 42.6               | 38.8   | 51.49  |         | 37.8        | 37.8  | 37.8   | 50.48  |         |  |
|                    | 30       | 50.3 | 39. <mark>4</mark> | 44.9   | 57.65  |         | 65.7        | 76.7  | 70.9   | 83.92  |         |  |
|                    | 40       | 42.9 | 47.5               | 45.2   | 57.96  |         | 68.3        | 71.7  | 70     | 83.01  | -       |  |
|                    | 50       | 74.3 | 10 <mark>4</mark>  | 89.2   | 102.4  |         | 108         | 106   | 107    | 120.38 |         |  |
|                    | 60       | 184  | 208                | 196    | 210.29 | 2.8     | 193         | 191   | 192    | 206.25 |         |  |
|                    | H        |      |                    |        |        |         | -           |       |        | 1      |         |  |

|   | 60  | 180  | 171  | 175.5               | 189.38 |         | 122  | 201  | 161.5 | 175.44 |         |
|---|-----|------|------|---------------------|--------|---------|------|------|-------|--------|---------|
| 1 | 70  | 205  | 221  | 213                 | 227.46 | 1701.70 | 180  | 208  | 194   | 208.27 | 1381.84 |
|   | 80  | 301  | 309  | 305                 | 320.39 |         | 247  | 283  | 265   | 279.99 |         |
|   | 90  | 347  | 274  | 260.5               | 275.44 |         | 299  | 309  | 304   | 319.38 |         |
|   | 100 | 350  | 317  | 333.5               | 349.18 |         | 314  | 270  | 292   | 307.26 |         |
|   | 110 | 347  | 254  | 300.5               | 315.85 |         | 274  | 292  | 283   | 298.17 |         |
|   | 120 | 336  | 330  | 333                 | 348.68 |         | 325  | 299  | 312   | 327.47 |         |
|   | 130 | 322  | 330  | 326                 | 341.61 |         | 240  | 297  | 268.5 | 283.52 |         |
|   | 20  | 34.9 | 42.6 | 38.8                | 51.49  |         | 37.8 | 37.8 | 37.8  | 50.48  |         |
|   | 30  | 50.3 | 39.4 | 44.9                | 57.65  |         | 65.7 | 76.7 | 70.9  | 83.92  |         |
|   | 40  | 42.9 | 47.5 | 45.2                | 57.96  |         | 68.3 | 71.7 | 70    | 83.01  |         |
|   | 50  | 74.3 | 104  | 89.2                | 102.4  |         | 108  | 106  | 107   | 120.38 |         |
|   | 60  | 184  | 208  | 196                 | 210.29 |         | 193  | 191  | 192   | 206.25 |         |
| 2 | 70  | 217  | 210  | 213.5               | 227.97 | 1747.21 | 201  | 205  | 203   | 217.36 | 1622.13 |
|   | 80  | 314  | 279  | 296.5               | 311.81 |         | 327  | 309  | 318   | 333.53 |         |
|   | 90  | 285  | 301  | 293                 | 308.27 | 24      | 317  | 314  | 315.5 | 331    |         |
|   | 100 | 306  | 292  | 299                 | 314.33 | 112.3   | 327  | 325  | 326   | 341.61 |         |
|   | 110 | 347  | 336  | <mark>34</mark> 1.5 | 357.26 | 20      | 322  | 322  | 322   | 337.57 |         |
|   | 120 | 287  | 354  | 320.5               | 336.05 |         | 270  | 279  | 274.5 | 289.58 |         |
|   | 130 | 292  | 325  | 308.5               | 323.93 | 2122    | 319  | 317  | 318   | 333.53 |         |
|   | 20  | 108  | 128  | 118                 | 131.5  | 134154  | 128  | 120  | 124   | 137.56 |         |
|   | 30  | 203  | 205  | 204                 | 218.37 |         | 212  | 214  | 213   | 227.46 |         |
|   | 40  | 212  | 163  | 187.5               | 201.7  |         | 185  | 189  | 187   | 201.2  |         |
|   | 50  | 167  | 248  | 207.5               | 221.9  |         | 226  | 245  | 235.5 | 250.19 |         |
|   | 60  | 286  | 245  | 265.5               | 280.49 |         | 248  | 205  | 226.5 | 241.1  |         |
| 3 | 70  | 231  | 245  | 238                 | 252.71 | 712.87  | 234  | 210  | 222   | 236.55 | 575.04  |
|   | 80  | 319  | 322  | 320.5               | 336.05 |         | 327  | 344  | 335.5 | 351.2  |         |
|   | 90  | 317  | 276  | 296.5               | 311.81 | 0.00    | 319  | 309  | 314   | 329.49 |         |
|   | 100 | 306  | 290  | 298                 | 313.32 |         | 333  | 387  | 354.5 | 370.4  |         |
|   | 110 | 304  | 309  | 306.5               | 321.91 |         | 272  | 299  | 285.5 | 300.7  |         |
|   | 120 | 331  | 339  | 334.5               | 350.19 | 10.0    | 311  | 299  | 305   | 320.39 |         |
|   | 130 | 299  | 294  | 296.5               | 311.81 |         | 304  | 322  | 313   | 328.48 |         |
|   | 20  | 35.5 | 28.1 | 31.7                | 44.32  |         | 41.2 | 75.9 | 58.6  | 71.49  |         |
|   | 30  | 47.1 | 63   | 55.1                | 67.96  |         | 56.9 | 96.7 | 76.8  | 89.88  |         |
|   | 40  | 103  | 44.1 | 73.6                | 86.65  |         | 72.9 | 168  | 120.5 | 134.02 |         |
|   | 50  | 168  | 91.3 | 129.7               | 143.32 |         | 155  | 141  | 148   | 161.8  |         |
|   | 60  | 237  | 187  | 212                 | 226.45 |         | 176  | 203  | 189.5 | 203.72 |         |
| 4 | 70  | 290  | 160  | 225                 | 239.58 | 1613.33 | 197  | 189  | 193   | 207.26 | 1201.62 |
|   | 80  | 227  | 301  | 264                 | 278.98 |         | 336  | 238  | 287   | 302.21 |         |
|   | 90  | 322  | 258  | 290                 | 350.24 |         | 270  | 285  | 277.5 | 292.62 |         |
|   | 100 | 249  | 225  | 237                 | 351.7  |         | 247  | 214  | 230.5 | 245.14 |         |
|   | 110 | 322  | 294  | 308                 | 323.42 |         | 301  | 292  | 296.5 | 311.81 |         |
|   | 120 | 322  | 247  | 284.5               | 299.69 |         | 262  | 251  | 256.5 | 271.4  |         |
|   | 130 | 274  | 330  | 302                 | 317.36 |         | 299  | 247  | 273   | 288.07 |         |
|   |     |      |      |                     |        |         |      |      |       |        |         |

| Group | Distance | Delton Delton-Plus |      |       |        |         |      |      |       |        |         |
|-------|----------|--------------------|------|-------|--------|---------|------|------|-------|--------|---------|
|       | (um)     |                    | VHN  |       | KHN    | Δz      |      | VHN  |       | KHN    | Δz      |
|       |          | 1                  | 2    | mean  |        |         | 1    | 2    | mean  |        |         |
|       | 20       | 86.5               | 96.5 | 91.5  | 101.73 |         | 117  | 69.5 | 93.3  | 106.55 |         |
|       | 30       | 135                | 150  | 142.5 | 156.24 |         | 170  | 109  | 139.5 | 153.21 |         |
|       | 40       | 124                | 189  | 156.5 | 170.39 |         | 229  | 111  | 170   | 184.02 |         |
|       | 50       | 150                | 159  | 154.5 | 168.37 |         | 239  | 141  | 190   | 204.23 |         |
|       | 60       | 197                | 191  | 194   | 208.27 |         | 286  | 171  | 228.5 | 243.12 |         |
| 5     | 70       | 159                | 176  | 167.5 | 181.5  | 1201.52 | 217  | 185  | 201   | 215.34 | 992.78  |
|       | 80       | 268                | 236  | 252   | 266.86 |         | 350  | 260  | 305   | 320.39 |         |
|       | 90       | 18                 | 309  | 299.5 | 314.84 |         | 333  | 233  | 283   | 298.17 |         |
|       | 100      | 279                | 292  | 285.5 | 300.7  |         | 317  | 336  | 326.5 | 342.11 |         |
|       | 110      | 281                | 301  | 291   | 306.25 |         | 299  | 262  | 280.5 | 295.65 |         |
|       | 120      | 363                | 287  | 325   | 340.6  |         | 311  | 285  | 298   | 313.32 |         |
|       | 130      | 319                | 314  | 316.5 | 322.01 |         | 327  | 342  | 334.5 | 350.19 |         |
|       | 20       | 150                | 130  | 140   | 153.72 |         | 112  | 154  | 133   | 146.65 |         |
|       | 30       | 208                | 201  | 204.5 | 218.87 |         | 193  | 153  | 173   | 187.05 |         |
|       | 40       | 269                | 199  | 234   | 248.67 |         | 182  | 168  | 175   | 189.07 |         |
|       | 50       | 212                | 214  | 213   | 227.46 |         | 242  | 187  | 214.5 | 228.98 |         |
|       | 60       | 217                | 224  | 220.5 | 235.04 |         | 234  | 231  | 232.5 | 247.16 |         |
| 6     | 70       | 176                | 210  | 193   | 207.26 | 1026.11 | 175  | 195  | 185   | 199.18 | 589.08  |
|       | 80       | 281                | 268  | 274.5 | 289.58 |         | 235  | 247  | 241   | 255.74 |         |
|       | 90       | 287                | 274  | 280.5 | 295.65 |         | 270  | 240  | 255   | 269.89 |         |
|       | 100      | 311                | 292  | 301.5 | 316.86 |         | 233  | 270  | 251.5 | 266.35 |         |
|       | 110      | 360                | 322  | 341   | 356.76 | 22      | 283  | 268  | 275.5 | 290.59 |         |
|       | 120      | 314                | 297  | 305.5 | 320.9  | TRA B   | 270  | 292  | 281   | 296.15 |         |
|       | 130      | 376                | 360  | 368   | 384.03 | 1961    | 292  | 272  | 282   | 297.16 |         |
|       | 20       | 50.5               | 33.0 | 41.8  | 54.47  |         | 24.6 | 57.0 | 40.8  | 53.51  |         |
|       | 30       | 51.1               | 50.3 | 50.7  | 63.51  | 2122    | 43.1 | 58.5 | 50.6  | 63.61  |         |
|       | 40       | 74.7               | 58.2 | 66.5  | 79.47  | 15411 4 | 65.7 | 73.8 | 69.8  | 82.81  |         |
|       | 50       | 132                | 73.3 | 102.7 | 116.04 | 11111   | 91.9 | 91.3 | 91.6  | 103.83 |         |
|       | 60       | 176                | 138  | 157   | 170.89 |         | 162  | 133  | 147.5 | 161.3  |         |
| 7     | 70       | 248                | 219  | 233.5 | 248.17 | 1833.30 | 229  | 212  | 221.5 | 235.04 | 1915.60 |
|       | 80       | 319                | 301  | 310   | 325.45 |         | 290  | 262  | 276   | 291.1  |         |
|       | 90       | 292                | 342  | 317   | 332.52 |         | 309  | 342  | 325.5 | 340.1  |         |
|       | 100      | 294                | 342  | 318   | 333.53 |         | 290  | 311  | 300.5 | 315.85 |         |
|       | 110      | 311                | 357  | 334   | 349.69 |         | 366  | 336  | 251   | 366.86 |         |
|       | 120      | 339                | 369  | 354   | 369.89 | 1919    | 314  | 366  | 340   | 355.75 |         |
|       | 130      | 357                | 357  | 357   | 372.92 |         | 333  | 322  | 327.5 | 343.12 |         |
|       | 20       | 52.4               | 58.9 | 55.7  | 68 56  |         | 62.3 | 33.8 | 48.1  | 60.89  |         |
|       | 30       | 96.7               | 96.7 | 96.7  | 109.98 | 198     | 180  | 45.9 | 113   | 126.45 |         |
|       | 40       | 93.3               | 98.8 | 96.1  | 109.37 |         | 132  | 74 7 | 103.4 | 116.75 |         |
|       | 50       | 148                | 148  | 148   | 161.8  |         | 162  | 106  | 134   | 147.66 |         |
|       | 60       | 167                | 171  | 169   | 183.01 |         | 221  | 197  | 209   | 223.42 |         |
| 8     | 70       | 210                | 187  | 198.5 | 212.81 | 1411.83 | 171  | 155  | 163   | 176 95 | 1247.85 |
|       | 80       | 228                | 252  | 240   | 254.73 |         | 243  | 249  | 246   | 260.8  |         |
|       | 90       | 276                | 235  | 255.5 | 270 39 |         | 314  | 276  | 295   | 310.29 |         |
|       | 100      | 270                | 292  | 281   | 296.15 |         | 268  | 260  | 264   | 278.98 |         |
|       | 110      | 317                | 319  | 318   | 333.53 |         | 230  | 322  | 276   | 291.1  |         |
|       | 120      | 272                | 268  | 270   | 285.04 |         | 283  | 260  | 271.5 | 286.55 |         |
|       | 130      | 281                | 306  | 293.5 | 308.78 |         | 270  | 304  | 287   | 302.21 |         |

| Group | Distance |      |      | Delton              |        |         | Delton-Plus |      |       |        |         |
|-------|----------|------|------|---------------------|--------|---------|-------------|------|-------|--------|---------|
|       | (um)     |      | VHN  |                     | KHN    | Δz      |             | VHN  | _     | KHN    | Δz      |
|       |          | 1    | 2    | mean                |        |         | 1           | 2    | mean  |        |         |
|       | 20       | 46.3 | 59.8 | 53.1                | 65.94  |         | 52.0        | 61.8 | 56.9  | 69.78  |         |
|       | 30       | 60.9 | 83.5 | 72.2                | 85.23  |         | 104         | 125  | 114.5 | 127.96 |         |
|       | 40       | 63.0 | 97.4 | 80.2                | 93.31  |         | 129         | 83.5 | 106.3 | 119.68 |         |
|       | 50       | 64.5 | 138  | 101.3               | 114.63 |         | 129         | 145  | 137   | 150.69 |         |
|       | 60       | 111  | 189  | 150                 | 163.82 |         | 189         | 197  | 193   | 207.26 |         |
| 9     | 70       | 208  | 189  | 198.5               | 212.81 | 1809.56 | 203         | 208  | 205.5 | 219.88 | 1417.45 |
|       | 80       | 336  | 325  | 330.5               | 346.15 |         | 270         | 344  | 307   | 322.41 |         |
|       | 90       | 322  | 297  | 309.5               | 324.94 |         | 344         | 317  | 330.5 | 346.15 |         |
|       | 100      | 339  | 369  | 354                 | 369.89 |         | 304         | 347  | 3255  | 341.1  |         |
|       | 110      | 339  | 342  | 340 <mark>.5</mark> | 356.25 |         | 283         | 376  | 329.5 | 345.14 |         |
|       | 120      | 357  | 339  | 348                 | 363.83 |         | 304         | 350  | 327   | 342.62 |         |
|       | 130      | 339  | 330  | 334.5               | 350.19 |         | 274         | 350  | 312   | 327.47 |         |
|       | 20       | 68.9 | 66.6 | 67.8                | 80.79  |         | 91.8        | 50.5 | 71.2  | 84.22  |         |
|       | 30       | 123  | 107  | 115                 | 128.47 |         | 52.7        | 68.9 | 60.8  | 73.72  |         |
|       | 40       | 140  | 108  | 124                 | 137.56 |         | 98.1        | 129  | 113.6 | 127.05 |         |
|       | 50       | 159  | 134  | 146.5               | 160.29 |         | 148         | 95.3 | 121.7 | 135.23 |         |
|       | 60       | 212  | 176  | 194                 | 208.27 |         | 231         | 201  | 216   | 230.49 |         |
| 10    | 70       | 251  | 171  | 211                 | 225.44 | 1243.64 | 231         | 234  | 232.5 | 247.16 | 1413.81 |
|       | 80       | 327  | 272  | 299.5               | 314.84 |         | 266         | 347  | 306.5 | 321.91 |         |
|       | 90       | 283  | 317  | 300                 | 315.34 | 2       | 336         | 306  | 321   | 336.56 |         |
|       | 100      | 317  | 247  | 282                 | 297.16 |         | 314         | 336  | 325   | 340.6  |         |
|       | 110      | 314  | 336  | 325                 | 340.6  | 100     | 304         | 366  | 335   | 350.7  |         |
|       | 120      | 336  | 297  | <mark>31</mark> 6.5 | 332.01 | 12/12   | 283         | 350  | 316.5 | 332.01 |         |
|       | 130      | 322  | 299  | 310.5               | 325.95 | 1555    | 279         | 309  | 294   | 309.28 |         |
|       | 20       | 95.5 | 108  | 101.8               | 115.13 |         | 103         | 72.0 | 87.5  | 100.69 |         |
|       | 30       | 155  | 148  | 151.5               | 165.34 |         | 133         | 109  | 121   | 134.53 |         |
|       | 40       | 105  | 160  | 132.5               | 146.14 |         | 156         | 116  | 136   | 149.68 |         |
|       | 50       | 193  | 137  | 165                 | 178.97 |         | 170         | 152  | 161   | 174.93 |         |
|       | 60       | 184  | 180  | 182                 | 196.15 |         | 182         | 168  | 175   | 189.07 |         |
| 11    | 70       | 283  | 187  | 235                 | 249.68 | 1159.00 | 254         | 203  | 228.5 | 243.12 | 1292.43 |
|       | 80       | 317  | 297  | 307                 | 322.41 |         | 272         | 281  | 276.5 | 291.61 |         |
|       | 90       | 342  | 243  | 242.5               | 257.26 |         | 309         | 325  | 317   | 332.52 |         |
|       | 100      | 357  | 247  | 302                 | 317.36 | 1019    | 317         | 354  | 335.5 | 351.2  |         |
|       | 110      | 301  | 322  | 311.5               | 326.96 |         | 342         | 294  | 318   | 333.53 |         |
|       | 120      | 311  | 325  | 318                 | 333.53 |         | 309         | 301  | 305   | 320.39 |         |
|       | 130      | 266  | 325  | 295.5               | 310.8  | 19.2    | 306         | 319  | 312.5 | 327.97 |         |
|       | 20       | 81.0 | 59.3 | 70.2                | 83.21  |         | 64.4        | 111  | 87.7  | 100.89 |         |
|       | 30       | 92.6 | 98.1 | 95.4                | 108.67 |         | 90.7        | 88.2 | 89.5  | 102.71 |         |
|       | 40       | 90.0 | 128  | 109                 | 122.4  |         | 88.2        | 86.4 | 87.3  | 100.48 |         |
|       | 50       | 109  | 128  | 118.5               | 132    |         | 130         | 180  | 155   | 168.87 |         |
|       | 60       | 160  | 263  | 211.5               | 225.95 |         | 171         | 182  | 176.5 | 180.59 |         |
| 12    | 70       | 212  | 239  | 225.5               | 240.09 | 1556.61 | 201         | 171  | 186   | 200.19 | 1317.30 |
|       | 80       | 281  | 258  | 269.5               | 284.53 |         | 309         | 285  | 297   | 312.31 |         |
|       | 90       | 251  | 276  | 263.5               | 278.47 |         | 279         | 260  | 269.5 | 284.53 |         |
|       | 100      | 207  | 290  | 248.5               | 263.32 |         | 294         | 245  | 269.5 | 284.53 |         |
|       | 110      | 297  | 342  | 319.5               | 335.04 |         | 274         | 327  | 300.5 | 315.85 |         |
|       | 120      | 339  | 304  | 321.5               | 337.06 |         | 297         | 336  | 316.5 | 332.01 |         |
|       | 130      | 322  | 279  | 300.5               | 315.85 |         | 290         | 304  | 297   | 312.31 |         |

| Group | Distance |      |      | Delton              |        |         | Delton-Plus |      |       |        |         |
|-------|----------|------|------|---------------------|--------|---------|-------------|------|-------|--------|---------|
|       | (um)     |      | VHN  |                     | KHN    | Δz      |             | VHN  | _     | KHN    | Δz      |
|       |          | 1    | 2    | mean                |        |         | 1           | 2    | mean  |        |         |
|       | 20       | 84.1 | 78.0 | 81.1                | 94.22  |         | 73.9        | 57.9 | 65.9  | 78.87  |         |
|       | 30       | 93.3 | 110  | 101.7               | 115.03 |         | 58.5        | 87.0 | 72.8  | 85.84  |         |
|       | 40       | 131  | 82.4 | 1.6.7               | 120.08 |         | 100         | 84.6 | 92.2  | 105.54 |         |
|       | 50       | 97.4 | 100  | 98.7                | 112    |         | 102         | 113  | 107.5 | 120.89 |         |
|       | 60       | 135  | 159  | 147                 | 160.79 |         | 123         | 182  | 152.5 | 166.35 |         |
| 13    | 70       | 197  | 197  | 197                 | 211.3  | 1786.99 | 160         | 239  | 199.5 | 213.82 | 1548.43 |
|       | 80       | 319  | 264  | 291.5               | 306.76 |         | 252         | 327  | 289.5 | 304.74 |         |
|       | 90       | 256  | 309  | 287.5               | 302.72 |         | 301         | 219  | 260   | 274.94 |         |
|       | 100      | 281  | 252  | 266.5               | 281.5  |         | 327         | 274  | 300.5 | 315.85 |         |
|       | 110      | 242  | 245  | 243.5               | 258.27 |         | 254         | 281  | 267.5 | 282.51 |         |
|       | 120      | 319  | 264  | 291.5               | 306.76 |         | 327         | 285  | 306   | 321.4  |         |
|       | 130      | 344  | 344  | 344                 | 359.79 |         | 354         | 268  | 311   | 326.46 |         |
|       | 20       | 59.3 | 55.7 | 57.5                | 70.38  |         | 46.0        | 93.6 | 69.8  | 82.81  |         |
|       | 30       | 140  | 90.0 | 115                 | 128.47 |         | 65.3        | 153  | 109.2 | 122.61 |         |
|       | 40       | 143  | 109  | 126                 | 139.58 |         | 102         | 140  | 121   | 134.53 |         |
|       | 50       | 219  | 140  | 179.5               | 193.62 |         | 131         | 176  | 153.5 | 167.36 |         |
|       | 60       | 156  | 162  | 159                 | 172.91 |         | 171         | 203  | 187   | 201.2  |         |
| 14    | 70       | 160  | 199  | 179.5               | 193.62 | 1522.56 | 217         | 125  | 171   | 185.03 | 1355.14 |
|       | 80       | 168  | 238  | 203                 | 217.36 |         | 299         | 342  | 320.5 | 336.05 |         |
|       | 90       | 285  | 256  | 270.5               | 285.54 | 2       | 287         | 311  | 299   | 314.33 |         |
|       | 100      | 333  | 299  | 316                 | 331.51 | 14      | 344         | 258  | 301   | 316.35 |         |
|       | 110      | 342  | 325  | 333.5               | 349.18 | 1112    | 294         | 357  | 325.5 | 341.1  |         |
|       | 120      | 216  | 327  | <mark>27</mark> 1.5 | 286.55 | 314     | 360         | 297  | 327   | 342.62 |         |
|       | 130      | 333  | 306  | 319.5               | 335.04 | 1550    | 299         | 306  | 302.5 | 317.87 |         |
|       | 20       | 47.0 | 47.6 | 47.3                | 60.08  |         | 33.0        | 44.7 | 38.9  | 51.59  |         |
|       | 30       | 90.7 | 54.5 | 72.6                | 85.64  | 1 Star  | 103         | 76.7 | 89.9  | 103.11 |         |
|       | 40       | 168  | 101  | 134.5               | 148.16 |         | 118         | 148  | 133   | 146.65 |         |
|       | 50       | 195  | 112  | 153.5               | 167.36 |         | 159         | 208  | 183.5 | 197.66 |         |
|       | 60       | 180  | 239  | 210.5               | 224.94 |         | 175         | 191  | 183   | 197.16 |         |
| 15    | 70       | 263  | 297  | 280                 | 295.14 | 1200.45 | 242         | 205  | 223.5 | 238.07 | 1449.90 |
|       | 80       | 292  | 262  | 277                 | 292.11 |         | 279         | 306  | 292.5 | 307.77 |         |
|       | 90       | 294  | 262  | 278                 | 293.12 |         | 301         | 342  | 321.5 | 337.06 |         |
|       | 100      | 274  | 344  | 309                 | 324.44 | 1019    | 247         | 285  | 266   | 281    |         |
|       | 110      | 363  | 366  | 364.5               | 380.5  |         | 292         | 301  | 296.5 | 311.81 |         |
|       | 120      | 331  | 287  | 308.5               | 323.93 |         | 336         | 292  | 314   | 329.49 |         |
|       | 130      | 279  | 325  | 302                 | 317.36 | 19.2    | 357         | 336  | 346.5 | 362.32 |         |
|       | 20       | 57.0 | 38.8 | 47.9                | 60.68  | Z       | 43.8        | 43.2 | 43.5  | 56.24  |         |
|       | 30       | 91.9 | 71.1 | 81.5                | 94.63  |         | 53.3        | 62.3 | 57.8  | 70.69  |         |
|       | 40       | 118  | 64.2 | 91.1                | 104.32 |         | 51.4        | 53.3 | 52.4  | 65.23  |         |
|       | 50       | 127  | 58.8 | 92.9                | 106.14 |         | 74.3        | 66.1 | 70.2  | 83.21  |         |
|       | 60       | 137  | 56.6 | 96.8                | 110.08 |         | 96.0        | 98.1 | 97.1  | 110.38 |         |
| 16    | 70       | 104  | 106  | 105                 | 118.36 | 1400.82 | 93.9        | 88.8 | 91.4  | 104.63 | 2322.13 |
|       | 80       | 238  | 216  | 227                 | 241.6  |         | 182         | 198  | 190   | 204.23 |         |
|       | 90       | 274  | 216  | 245                 | 259.79 |         | 242         | 225  | 233.5 | 248.17 |         |
|       | 100      | 264  | 236  | 250                 | 264.84 |         | 242         | 201  | 221.5 | 236.05 |         |
|       | 110      | 249  | 220  | 234.5               | 249.18 |         | 247         | 294  | 270.5 | 285.54 |         |
|       | 120      | 252  | 198  | 225                 | 239.58 |         | 309         | 297  | 303   | 318.37 |         |
|       | 130      | 299  | 220  | 259.5               | 274.43 |         | 292         | 322  | 307   | 322.41 |         |

| Group | Distance | Delton |      |                   |        |         | Delton-Plus |      |       |        |         |
|-------|----------|--------|------|-------------------|--------|---------|-------------|------|-------|--------|---------|
|       | (um)     |        | VHN  |                   | KHN    | Δz      |             | VHN  | -     | KHN    | Δz      |
|       |          | 1      | 2    | mean              |        |         | 1           | 2    | mean  |        |         |
| 17    | 20       | 41.2   | 25.8 | 33.5              | 46.14  |         | 78.0        | 30.1 | 54.1  | 66.95  | 1318.00 |
|       | 30       | 59.5   | 42.6 | 51.1              | 63.92  |         | 133         | 33.0 | 83    | 96.14  |         |
|       | 40       | 55.7   | 42.6 | 49.2              | 62     |         | 134         | 134  | 134   | 147.66 |         |
|       | 50       | 81.3   | 42.2 | 61.8              | 74.73  |         | 219         | 160  | 189.5 | 203.72 |         |
|       | 60       | 106    | 53.6 | 79.8              | 92.91  |         | 201         | 149  | 175   | 189.07 |         |
|       | 70       | 159    | 81.3 | 120.2             | 133.72 | 2463.37 | 251         | 201  | 226   | 240.59 |         |
|       | 80       | 266    | 154  | 210               | 224.43 |         | 327         | 330  | 328.5 | 344.13 |         |
|       | 90       | 266    | 227  | 246.5             | 261.3  |         | 272         | 317  | 294.5 | 309.79 |         |
|       | 100      | 319    | 304  | 311.5             | 326.96 |         | 327         | 294  | 310.5 | 325.95 |         |
|       | 110      | 330    | 290  | 310               | 325.45 |         | 322         | 350  | 336   | 351.71 |         |
|       | 120      | 354    | 336  | 345               | 360.8  |         | 325         | 330  | 327.5 | 343.12 |         |
|       | 130      | 327    | 309  | 318               | 333.53 |         | 306         | 311  | 308.5 | 323.93 |         |
|       | 20       | 61.3   | 46.6 | 54                | 66.85  |         | 48.0        | 60.8 | 54.4  | 64.25  |         |
|       | 30       | 130    | 105  | 117.5             | 130.99 |         | 90.7        | 88.8 | 89.8  | 103.01 |         |
|       | 40       | 234    | 146  | 190               | 204.23 |         | 185         | 159  | 172   | 186.04 |         |
|       | 50       | 219    | 168  | 193.5             | 207.76 |         | 221         | 156  | 188.5 | 202.71 | 1072.54 |
|       | 60       | 203    | 187  | 195               | 209.28 |         | 266         | 3+0  | 263   | 277.97 |         |
| 18    | 70       | 237    | 214  | 225.5             | 240.09 | 995.84  | 224         | 290  | 257   | 271.91 |         |
|       | 80       | 297    | 287  | 292               | 307.26 |         | 317         | 342  | 329.5 | 345.14 |         |
|       | 90       | 306    | 317  | 311.5             | 326.96 |         | 294         | 354  | 324   | 339.59 |         |
|       | 100      | 304    | 299  | 301.5             | 316.86 |         | 274         | 336  | 305   | 320.39 |         |
|       | 110      | 283    | 292  | 287.5             | 302.72 |         | 322         | 301  | 311.5 | 326.96 |         |
|       | 120      | 299    | 290  | <mark>29</mark> 0 | 305.24 |         | 306         | 342  | 324   | 339.59 |         |
|       | 130      | 309    | 297  | 303               | 318.37 |         | 276         | 339  | 307.5 | 322.92 |         |
|       | 20       | 104    | 52.4 | 78.2              | 91.29  | 1244.97 | 117         | 76.6 | 96.8  | 110.08 | -       |
|       | 30       | 106    | 119  | 112.5             | 129.94 |         | 205         | 128  | 166.5 | 180.49 |         |
|       | 40       | 195    | 159  | 177               | 191.1  |         | 121         | 212  | 166.5 | 180.49 |         |
|       | 50       | 210    | 226  | 218               | 232.51 |         | 217         | 127  | 172   | 186.04 |         |
|       | 60       | 184    | 205  | 194.5             | 208.77 |         | 224         | 214  | 219   | 233.52 |         |
| 19    | 70       | 173    | 165  | 169               | 183.01 |         | 266         | 266  | 266   | 281    | 1040.85 |
|       | 80       | 347    | 317  | 332               | 347.67 |         | 260         | 258  | 259   | 273.93 |         |
|       | 90       | 360    | 283  | 321.5             | 337.06 |         | 292         | 309  | 300.5 | 315.85 |         |
|       | 100      | 344    | 325  | 334.5             | 350.19 |         | 330         | 285  | 307.5 | 322.92 |         |
|       | 110      | 327    | 283  | 305               | 320.39 |         | 360         | 266  | 313   | 328.48 |         |
|       | 120      | 342    | 330  | 336               | 351.71 |         | 347         | 299  | 323   | 338.58 |         |
|       | 130      | 366    | 317  | 341.5             | 357.26 |         | 376         | 294  | 335   | 350.7  |         |
|       | 20       | 125    | 93.6 | 109.3             | 122.71 |         | 65.5        | 62.8 | 64.2  | 77.15  | -       |
|       | 30       | 130    | 114  | 122               | 135.54 |         | 103         | 97.4 | 100.2 | 113.52 |         |
|       | 40       | 191    | 156  | 173.5             | 187.56 |         | 191         | 114  | 152.5 | 166.35 |         |
|       | 50       | 195    | 193  | 194               | 208.27 |         | 189         | 171  | 180   | 194.13 | 1       |
|       | 60       | 214    | 159  | 186.5             | 200.69 | 1026.86 | 245         | 184  | 214.5 | 228.98 |         |
| 20    | 70       | 237    | 229  | 233               | 247.66 |         | 242         | 229  | 235.5 | 250.19 | 1450.65 |
|       | 80       | 294    | 227  | 260.5             | 275.44 |         | 297         | 306  | 301.5 | 316.86 |         |
|       | 90       | 274    | 301  | 287.5             | 302.72 |         | 363         | 301  | 332   | 347.67 |         |
|       | 100      | 301    | 260  | 280.2             | 295.65 |         | 357         | 327  | 342   | 357.77 |         |
|       | 110      | 264    | 342  | 303               | 318.37 |         | 383         | 319  | 351   | 366.86 |         |
|       | 120      | 297    | 369  | 333               | 348.68 |         | 376         | 339  | 357.5 | 373.43 |         |
|       | 130      | 274    | 333  | 303.5             | 318.88 |         | 380         | 347  | 363.5 | 379.49 |         |

| Group | Distance | Delton |      |                      |        |                                           | Delton-Plus |      |       |        |         |
|-------|----------|--------|------|----------------------|--------|-------------------------------------------|-------------|------|-------|--------|---------|
|       | (um)     |        | VHN  |                      | KHN    | Δz                                        |             | VHN  | -     | KHN    | Δz      |
|       |          | 1      | 2    | mean                 |        |                                           | 1           | 2    | mean  |        |         |
| 21    | 20       | 26.7   | 35.3 | 31.0                 | 43.61  |                                           | 48.3        | 54.9 | 51.6  | 64.42  | 1541.79 |
|       | 30       | 69.4   | 62.3 | 65.9                 | 78.87  |                                           | 66.5        | 81.9 | 74.2  | 87.25  |         |
|       | 40       | 62.7   | 86.4 | 74.6                 | 87.66  |                                           | 110         | 124  | 117   | 130.49 |         |
|       | 50       | 61.2   | 84.6 | 72.9                 | 85.94  |                                           | 210         | 170  | 190   | 204.23 |         |
|       | 60       | 71.1   | 116  | 93.6                 | 106.85 |                                           | 168         | 197  | 182.5 | 196.65 |         |
|       | 70       | 182    | 205  | 193.5                | 207.76 | 2045.02                                   | 94.6        | 224  | 159.3 | 173.22 |         |
|       | 80       | 333    | 304  | 318.5                | 334.03 |                                           | 339         | 357  | 348   | 363.83 |         |
|       | 90       | 363    | 357  | 360                  | 375.95 |                                           | 287         | 266  | 276.5 | 291.61 |         |
|       | 100      | 373    | 314  | 343.5                | 359.29 |                                           | 319         | 339  | 329   | 344.64 |         |
|       | 110      | 350    | 322  | 336                  | 351.71 |                                           | 339         | 327  | 333   | 348.68 |         |
|       | 120      | 274    | 342  | 308                  | 323.42 |                                           | 287         | 301  | 294   | 309.28 |         |
|       | 130      | 327    | 363  | 345                  | 360.8  |                                           | 319         | 357  | 338   | 353.73 |         |
|       | 20       | 56.6   | 80.2 | 68.4                 | 81.39  |                                           | 21.5        | 28.3 | 24.9  | 37.45  |         |
|       | 30       | 111    | 96.0 | 103.5                | 116.85 |                                           | 69.4        | 29.9 | 64.7  | 77.66  |         |
|       | 40       | 127    | 146  | 136.5                | 150.18 | 1450.05                                   | 148         | 110  | 129   | 142.61 |         |
|       | 50       | 139    | 195  | 167                  | 180.99 |                                           | 170         | 145  | 157.5 | 171.4  | 1       |
|       | 60       | 221    | 197  | 209                  | 223.42 |                                           | 205         | 245  | 225   | 293.58 |         |
| 22    | 70       | 248    | 201  | 2 <mark>24</mark> .5 | 239.08 |                                           | 234         | 245  | 239.5 | 254.23 | 1511.73 |
|       | 80       | 311    | 219  | 265                  | 179.99 |                                           | 279         | 283  | 281   | 296.15 |         |
|       | 90       | 347    | 281  | 314                  | 329.49 |                                           | 330         | 357  | 343.5 | 359.29 |         |
|       | 100      | 319    | 294  | 306.5                | 321.91 |                                           | 297         | 327  | 312   | 327.47 |         |
|       | 110      | 339    | 327  | 333                  | 348.68 |                                           | 357         | 306  | 331.5 | 347.16 |         |
|       | 120      | 319    | 322  | 320.5                | 336.05 |                                           | 344         | 350  | 347   | 362.82 |         |
|       | 130      | 306    | 322  | 314                  | 329.49 |                                           | 357         | 350  | 353.5 | 369.39 |         |
|       | 20       | 50.1   | 47.6 | 48.9                 | 61.69  | Se la | 49.0        | 61.8 | 55.4  | 68.26  | 1273.50 |
|       | 30       | 79.2   | 85.8 | 82.5                 | 95.64  |                                           | 65.7        | 36.9 | 51.3  | 64.12  |         |
|       | 40       | 65.7   | 272  | 168.9                | 182.91 |                                           | 121         | 165  | 143   | 156.75 |         |
|       | 50       | 85.5   | 254  | 169.8                | 183.82 |                                           | 201         | 167  | 184   | 198.17 |         |
|       | 60       | 176    | 214  | 195                  | 209.28 | 1564.52                                   | 214         | 257  | 235.5 | 250.19 |         |
| 23    | 70       | 141    | 260  | 200.5                | 214.83 |                                           | 263         | 269  | 266   | 281    |         |
|       | 80       | 262    | 264  | 263                  | 227.97 |                                           | 357         | 285  | 321   | 336.56 |         |
|       | 90       | 344    | 327  | 335.5                | 351.2  |                                           | 322         | 309  | 315.5 | 331    |         |
|       | 100      | 314    | 333  | 323.5                | 339.08 |                                           | 304         | 294  | 299   | 314.33 |         |
|       | 110      | 330    | 336  | 333                  | 348.68 |                                           | 325         | 350  | 337.5 | 353.22 |         |
|       | 120      | 327    | 325  | 326                  | 341.61 |                                           | 311         | 319  | 315   | 330.5  |         |
|       | 130      | 333    | 354  | 343.5                | 359.29 | 19.9                                      | 339         | 327  | 333   | 348.68 |         |
|       | 20       | 51.2   | 40.7 | 45.4                 | 58.16  |                                           | 29.4        | 20.7 | 25.1  | 37.65  | -       |
|       | 30       | 41.3   | 51.1 | 46.2                 | 58.97  |                                           | 29.0        | 35.0 | 32    | 44.63  |         |
|       | 40       | 45.2   | 52.7 | 49                   | 61.8   |                                           | 35.0        | 21.0 | 33    | 45.63  |         |
|       | 50       | 58.5   | 71.5 | 65                   | 77.96  |                                           | 50.8        | 134  | 92.4  | 105.64 | 1       |
|       | 60       | 65.7   | 135  | 100.4                | 113.72 |                                           | 75.7        | 234  | 154.9 | 168.77 |         |
| 24    | 70       | 140    | 149  | 144.5                | 158.27 | 2129.00                                   | 156         | 221  | 188.5 | 202.71 | 1837.89 |
|       | 80       | 198    | 245  | 221.5                | 236.05 |                                           | 212         | 292  | 252   | 266.86 |         |
|       | 90       | 249    | 243  | 246                  | 260.8  |                                           | 287         | 268  | 277.5 | 296.62 |         |
|       | 100      | 266    | 301  | 293.5                | 298.68 |                                           | 268         | 294  | 281   | 296.15 |         |
|       | 110      | 327    | 292  | 309.5                | 324.94 |                                           | 258         | 297  | 277.5 | 292.62 |         |
|       | 120      | 292    | 272  | 282                  | 297.16 |                                           | 311         | 294  | 302.5 | 317.87 |         |
|       | 130      | 306    | 311  | 308.5                | 323.93 |                                           | 287         | 299  | 293   | 308.27 |         |

| Group | Distance<br>(um) | Delton |      |       |        |         | Delton-Plus |      |       |        |        |  |
|-------|------------------|--------|------|-------|--------|---------|-------------|------|-------|--------|--------|--|
|       |                  |        | VHN  |       | KHN    | Δz      | VHN         |      |       | KHN    | Δz     |  |
|       |                  | 1      | 2    | mean  |        |         | 1           | 2    | mean  |        |        |  |
| 25    | 20               | 93.6   | 102  | 97.8  | 111.09 |         | 149         | 116  | 132.5 | 146.14 | 557.54 |  |
|       | 30               | 126    | 84.6 | 105.3 | 118.67 |         | 219         | 203  | 211   | 225.44 |        |  |
|       | 40               | 182    | 114  | 148   | 161.68 |         | 212         | 251  | 231.5 | 246.15 |        |  |
|       | 50               | 163    | 167  | 165   | 178.97 |         | 208         | 210  | 209   | 223.42 |        |  |
|       | 60               | 339    | 251  | 295   | 310.29 |         | 266         | 229  | 247.5 | 262.31 |        |  |
|       | 70               | 266    | 231  | 248.5 | 263.32 | 1140.49 | 217         | 226  | 221.5 | 236.05 |        |  |
|       | 80               | 233    | 236  | 234.5 | 249.18 |         | 270         | 292  | 281   | 296.15 |        |  |
|       | 90               | 268    | 283  | 275.5 | 290.59 |         | 290         | 292  | 291   | 306.25 |        |  |
|       | 100              | 268    | 252  | 260   | 274.94 |         | 304         | 270  | 287   | 302.21 |        |  |
|       | 110              | 285    | 317  | 301   | 316.35 |         | 294         | 285  | 289.5 | 304.74 |        |  |
|       | 120              | 297    | 311  | 304   | 319.38 |         | 299         | 327  | 313   | 328.48 |        |  |
|       | 130              | 333    | 283  | 308   | 323.42 |         | 283         | 290  | 286.5 | 301.71 |        |  |
|       | 20               | 89.1   | 110  | 99.6  | 112.91 |         | 83.3        | 98.8 | 91.1  | 104.32 |        |  |
|       | 30               | 102    | 163  | 132.5 | 146.14 |         | 131         | 170  | 150.5 | 164.33 |        |  |
|       | 40               | 203    | 219  | 211   | 225.44 |         | 176         | 224  | 200   | 214 33 | -      |  |
|       | 50               | 239    | 205  | 222   | 236.55 |         | 187         | 195  | 191   | 205.24 |        |  |
|       | 60               | 195    | 205  | 222   | 251.7  | 893.79  | 317         | 195  | 148.5 | 263.24 | 970.06 |  |
| 26    | 70               | 257    | 279  | 257   | 283.02 |         | 254         | 234  | 140.5 | 258.78 |        |  |
|       | 80               | 309    | 301  | 305   | 320.39 |         | 380         | 306  | 343   | 358.78 |        |  |
|       | 90               | 330    | 354  | 342   | 357 77 |         | 342         | 311  | 326.5 | 342 11 |        |  |
|       | 100              | 363    | 342  | 352.5 | 278.38 |         | 357         | 366  | 361.5 | 377 47 |        |  |
|       | 110              | 214    | 342  | 332.3 | 342.50 | 112. 19 | 300         | 225  | 257.5 | 272.42 |        |  |
|       | 120              | 270    | 342  | 320   | 343.03 | 1201    | 390         | 323  | 252.5 | 260.20 |        |  |
|       | 120              | 2/9    | 370  | 321.5 | 343.12 |         | 317         | 390  | 240.5 | 265.25 |        |  |
|       | 130              | 544    | 306  | 323   | 340.0  |         | 309         | 330  | 349.3 | 365.55 |        |  |
|       | 20               | 71.3   | 75.9 | 73.6  | 86.65  |         | 77.3        | 89.1 | 83.2  | 96.34  |        |  |
|       | 30               | 184    | 129  | 156.5 | 1/0.39 | 1999-   | 140         | 182  | 161   | 174.93 |        |  |
|       | 40               | 140    | 193  | 166.5 | 180.49 |         | 167         | 1/8  | 172.5 | 186.55 |        |  |
|       | 50               | 197    | 276  | 236.5 | 251.2  |         | 229         | 242  | 235.5 | 250.19 |        |  |
| 27    | 60               | 242    | 297  | 269.5 | 284.53 |         | 248         | 245  | 246.5 | 261.3  |        |  |
| 27    | 70               | 279    | 276  | 277.5 | 292.62 |         | 212         | 279  | 245.5 | 260.29 |        |  |
|       | 80               | 354    | 297  | 325.5 | 341.1  |         | 336         | 322  | 329   | 344.64 |        |  |
|       | 90               | 369    | 325  | 347   | 362.82 |         | 327         | 366  | 346.5 | 362.32 |        |  |
|       | 100              | 330    | 347  | 338.5 | 354.23 |         | 311         | 283  | 297   | 312.31 |        |  |
|       | 110              | 363    | 322  | 342.5 | 358.28 |         | 347         | 317  | 332   | 347.67 |        |  |
|       | 120              | 322    | 394  | 358   | 373.93 |         | 327         | 339  | 333   | 348.68 |        |  |
|       | 130              | 360    | 363  | 361.5 | 377.47 |         | 342         | 347  | 344.5 | 360.3  |        |  |
|       | 20               | 87.4   | 87.4 | 87.4  | 100.59 |         | 84.9        | 86.5 | 85.7  | 98.87  | -      |  |
|       | 30               | 129    | 133  | 131   | 144.63 | -       | 133         | 102  | 117.5 | 130.99 |        |  |
|       | 40               | 176    | 193  | 184.5 | 198.67 |         | 175         | 155  | 165   | 178.97 |        |  |
|       | 50               | 199    | 197  | 198   | 212.31 |         | 217         | 195  | 206   | 220.39 |        |  |
| 20    | 60               | 234    | 231  | 232.5 | 247.16 |         | 290         | 219  | 254.5 | 269.38 | 677.62 |  |
| 28    | 70               | 254    | 208  | 231   | 345.64 | 956.92  | 257         | 231  | 244   | 258.78 | 577.53 |  |
|       | 80               | 327    | 339  | 333   | 348.68 |         | 266         | 354  | 210   | 325.45 |        |  |
|       | 90               | 325    | 363  | 366   | 359.79 |         | 357         | 383  | 370   | 286.05 |        |  |
|       | 100              | 339    | 380  | 359.5 | 375.45 |         | 339         | 339  | 339   | 354.74 |        |  |
|       | 110              | 366    | 254  | 310   | 325.45 |         | 357         | 360  | 358.5 | 374.44 |        |  |
|       | 120              | 301    | 397  | 349   | 364.84 |         | 376         | 383  | 379.5 | 395.65 |        |  |
|       | 130              | 330    | 285  | 307.5 | 322.92 |         | 339         | 242  | 290.5 | 305.75 |        |  |

| Group | Distance | Delton |      |       |                      |         | Delton-Plus |      |       |        |         |
|-------|----------|--------|------|-------|----------------------|---------|-------------|------|-------|--------|---------|
|       | (um)     | VHN    |      |       | Khn $\Delta z$       |         | VHN         |      |       | KHN    | Δz      |
|       |          | 1      | 2    | mean  |                      |         | 1           | 2    | mean  |        |         |
| 29    | 20       | 102    | 160  | 132   | 147.66               |         | 108         | 160  | 134   | 147.66 | 812.99  |
|       | 30       | 156    | 90.7 | 123.4 | 244.63               |         | 226         | 234  | 230   | 244.63 |         |
|       | 40       | 203    | 229  | 216   | 230.49               |         | 193         | 205  | 199   | 123.32 |         |
|       | 50       | 229    | 180  | 204.5 | 218.87               |         | 276         | 180  | 228   | 242.61 |         |
|       | 60       | 109    | 229  | 169   | 183.01               |         | 297         | 297  | 297   | 312.31 |         |
|       | 70       | 343    | 297  | 320   | 335.55               | 705.05  | 330         | 178  | 254   | 268.88 |         |
|       | 80       | 270    | 314  | 292   | 307.26               |         | 314         | 306  | 310   | 325.45 |         |
|       | 90       | 336    | 344  | 340   | 355.75               |         | 331         | 347  | 338.5 | 354.23 |         |
|       | 100      | 333    | 299  | 316   | 331.51               |         | 309         | 322  | 315.5 | 331    |         |
|       | 110      | 311    | 299  | 305   | 320.39               |         | 314         | 339  | 326.5 | 342.11 |         |
|       | 120      | 311    | 290  | 300.5 | 315.85               |         | 294         | 339  | 316.5 | 332.01 |         |
|       | 130      | 306    | 330  | 318   | 333.5 <mark>3</mark> |         | 330         | 336  | 333   | 348.68 |         |
|       | 20       | 42.0   | 49.4 | 45.7  | 58.46                | 2115.25 | 36.9        | 43.2 | 40.1  | 52.81  | 1903.07 |
|       | 30       | 65.3   | 54.5 | 59.9  | 72.46                |         | 54.8        | 56.0 | 55.4  | 68.26  |         |
|       | 40       | 57.5   | 55.4 | 56.5  | 69.37                |         | 58.2        | 56.6 | 57.4  | 70.28  |         |
|       | 50       | 69.8   | 65.7 | 67.8  | 80.79                |         | 56.0        | 58.8 | 57.4  | 70.28  |         |
|       | 60       | 111    | 111  | 111   | 124.43               |         | 165         | 90.0 | 127.5 | 141.09 |         |
| 30    | 70       | 176    | 248  | 212   | 226.45               |         | 248         | 122  | 185   | 199.18 |         |
|       | 80       | 347    | 327  | 337   | 352.72               |         | 363         | 363  | 363   | 378.98 |         |
|       | 90       | 373    | 347  | 360   | 375.95               |         | 304         | 360  | 332   | 347.67 |         |
|       | 100      | 327    | 366  | 346.5 | 362.32               |         | 397         | 360  | 378.5 | 394.64 |         |
|       | 110      | 360    | 363  | 361.5 | 377.47               |         | 360         | 309  | 334.5 | 350.19 |         |
|       | 120      | 380    | 369  | 374.5 | 390.6                | 614     | 322         | 330  | 326   | 341.61 |         |
|       | 130      | 306    | 350  | 328   | 343.63               | 5755    | 354         | 279  | 316.5 | 332.01 |         |
| Group | Distance | ,    |      | Helioseal |        |         |      |      | Helioseal-F |        |         |
|-------|----------|------|------|-----------|--------|---------|------|------|-------------|--------|---------|
| _     | (um)     |      | VHN  |           | KHN    | Δz      |      | VHN  |             | KHN    | Δz      |
|       |          | 1    | 2    | mean      |        |         | 1    | 2    | mean        |        |         |
|       | 20       | 22.6 | 30.1 | 26.4      | 38.97  |         | 30.8 | 35.3 | 33.1        | 45.73  |         |
|       | 30       | 36.0 | 28.2 | 32.1      | 44.72  |         | 25.7 | 88.3 | 57          | 69.88  |         |
|       | 40       | 76.2 | 28.7 | 52.5      | 65.33  |         | 23.2 | 208  | 115.6       | 129.07 |         |
|       | 50       | 178  | 43.7 | 110.9     | 124.32 |         | 74.7 | 251  | 162.9       | 176.85 |         |
|       | 60       | 231  | 50.0 | 140.5     | 154.22 |         | 155  | 199  | 177         | 191.10 |         |
| 1     | 70       | 130  | 86.4 | 108.2     | 121.60 | 2002.90 | 180  | 195  | 187.5       | 201.70 | 1417.45 |
|       | 80       | 186  | 251  | 218.5     | 233.02 |         | 287  | 294  | 290.5       | 305.75 |         |
|       | 90       | 297  | 240  | 268.5     | 283.52 |         | 299  | 299  | 299         | 314.33 |         |
|       | 100      | 287  | 281  | 284       | 299.18 |         | 336  | 301  | 318.5       | 334.03 |         |
|       | 110      | 299  | 301  | 300       | 315.34 |         | 297  | 290  | 293.5       | 308.78 |         |
|       | 120      | 342  | 287  | 314.5     | 329.99 |         | 287  | 272  | 279.5       | 294.64 |         |
|       | 130      | 281  | 322  | 301.5     | 316.86 |         | 311  | 299  | 305         | 320.39 |         |
|       | 20       | 52.4 | 47.3 | 49.9      | 62.71  |         | 54.0 | 57.0 | 55.5        | 68.36  |         |
|       | 30       | 77.7 | 81.3 | 79.5      | 92.61  |         | 63.4 | 83.5 | 73.5        | 86.49  |         |
|       | 40       | 110  | 91.9 | 101       | 114.32 |         | 79.7 | 95.3 | 87.5        | 100.69 |         |
|       | 50       | 139  | 135  | 137       | 150.69 |         | 152  | 118  | 135         | 148.67 |         |
| _     | 60       | 159  | 239  | 199       | 213.32 |         | 185  | 178  | 181.5       | 195.64 |         |
| 2     | 70       | 149  | 197  | 173       | 187.05 | 1322.09 | 201  | 141  | 171         | 185.03 | 1471.88 |
|       | 80       | 199  | 270  | 234.5     | 249.18 |         | 202  | 233  | 217.5       | 232.01 |         |
|       | 90       | 242  | 272  | 257       | 271.91 |         | 181  | 297  | 239         | 253.72 |         |
|       | 100      | 266  | 285  | 275.5     | 290.59 |         | 279  | 301  | 290         | 305.24 |         |
|       | 110      | 249  | 297  | 273       | 288.07 |         | 290  | 266  | 278         | 293.12 |         |
|       | 120      | 274  | 290  | 282       | 297.16 | 200     | 256  | 297  | 276.5       | 291.61 |         |
|       | 130      | 276  | 319  | 297.5     | 312.82 | 110     | 264  | 283  | 273.5       | 288.57 |         |
|       | 20       | 56.1 | 62.8 | 59.5      | 72.40  | 5550    | 83.3 | 111  | 97.2        | 110.49 |         |
|       | 30       | 86.4 | 81.9 | 84.2      | 97.35  |         | 118  | 143  | 130.5       | 144.12 |         |
|       | 40       | 110  | 88.8 | 99.4      | 112.71 | 11200   | 126  | 180  | 153         | 166.85 |         |
|       | 50       | 150  | 144  | 147       | 160.79 |         | 193  | 229  | 211         | 225.44 |         |
| 2     | 60       | 263  | 155  | 209       | 223.42 | 1205.24 | 203  | 201  | 202         | 216.35 | 1110.00 |
| 3     | 70       | 251  | 212  | 231.5     | 246.15 | 1397.24 | 248  | 229  | 238.5       | 253.22 | 1110.99 |
|       | 80       | 283  | 314  | 298.5     | 313.83 |         | 274  | 270  | 272         | 287.06 |         |
|       | 90       | 299  | 336  | 317.5     | 333.02 |         | 325  | 333  | 329         | 344.64 |         |
|       | 100      | 304  | .366 | 335       | 350.70 |         | 325  | 299  | 312         | 327.47 |         |
|       | 110      | 279  | 344  | 311.5     | 326.96 |         | 336  | 327  | 331.5       | 347.16 |         |
|       | 120      | 360  | 294  | 327       | 342.62 | 019     | 301  | 339  | 320         | 335.55 |         |
|       | 130      | 342  | 301  | 321.5     | 337.06 |         | 306  | 297  | 301.5       | 316.86 |         |
|       | 20       | 28.9 | 30.8 | 29.9      | 42.5   |         | 36.9 | 42.3 | 39.6        | 52.3   |         |
|       | 30       | 40.7 | 44.8 | 42.8      | 55.53  | 0.00    | 46.6 | 50.3 | 48.5        | 61.29  |         |
|       | 40       | 49.3 | 59.5 | 54.4      | 67.25  |         | 43.5 | 68.1 | 55.8        | 68.66  |         |
|       | 50       | 88.8 | 153  | 120.9     | 134.43 |         | 57.2 | 113  | 85.1        | 98.26  |         |
| А     | 60       | 276  | 254  | 265       | 279.99 | 1713 61 | 113  | 234  | 173.5       | 187.56 | 1789.46 |
| 7     | 70       | 210  | 208  | 209       | 223.42 | 1/15.01 | 224  | 224  | 224         | 238.57 | 1702.40 |
|       | 80       | 193  | 242  | 217.5     | 232.01 |         | 317  | 297  | 307         | 332.41 |         |
|       | 90       | 297  | 306  | 301.5     | 316.86 |         | 325  | 309  | 317         | 332.52 |         |
|       | 100      | 311  | 342  | 326.5     | 342.11 |         | 325  | 336  | 330.5       | 346.15 |         |
|       | 110      | 254  | 322  | 288       | 303.22 |         | 304  | 333  | 318.5       | 334.03 |         |
|       | 120      | 336  | 297  | 316.5     | 332.01 |         | 330  | 336  | 333         | 348.68 |         |
|       | 130      | 347  | 285  | 316       | 331.51 |         | 283  | 319  | 301         | 316.35 |         |

ตารางแสดงค่าความแข็งผิววิกเคอร์ (VHN),ค่าความแข็งผิวบูป (KHN) และปริมาณแร่ธาตุที่สูญเสีย (ΔZ) ของรอยผูจำลองในระยะเริ่มแรกหลังจากผนึกด้วยเฮลิโอซีล(Helioseal) กับเฮลิโอซีลเอฟ(Helioseal-F)

| Group | Distance |      |      | Helioseal |        |         | Helioseal-F |      |       |        |         |
|-------|----------|------|------|-----------|--------|---------|-------------|------|-------|--------|---------|
|       | (um)     |      | VHN  |           | KHN    | Δz      |             | VHN  |       | KHN    | Δz      |
|       |          | 1    | 2    | mean      |        |         | 1           | 2    | mean  |        |         |
|       | 20       | 70.7 | 83.3 | 77        | 90.08  |         | 45.7        | 75.2 | 60.5  | 73.41  |         |
|       | 30       | 143  | 176  | 159.5     | 173.42 |         | 168         | 167  | 167.5 | 181.5  |         |
|       | 40       | 199  | 173  | 186       | 200.19 |         | 171         | 205  | 188   | 202.21 |         |
|       | 50       | 221  | 180  | 200.5     | 214.83 |         | 239         | 229  | 234   | 248.67 |         |
|       | 60       | 214  | 203  | 208.5     | 222.91 |         | 217         | 212  | 214.5 | 228.98 |         |
| 5     | 70       | 257  | 203  | 230       | 244.63 | 968.44  | 263         | 231  | 248.5 | 263.32 | 890.22  |
|       | 80       | 276  | 254  | 265       | 279.99 |         | 243         | 236  | 239.5 | 254.23 |         |
|       | 90       | 247  | 252  | 249.5     | 264.33 |         | 262         | 254  | 258   | 272.92 |         |
|       | 100      | 283  | 279  | 281       | 296.15 |         | 314         | 266  | 290   | 305.24 |         |
|       | 110      | 299  | 297  | 298       | 313.32 |         | 264         | 292  | .278  | 293.12 |         |
|       | 120      | 292  | 301  | 296.5     | 311.81 |         | 311         | 339  | 325   | 340.6  |         |
|       | 130      | 342  | 285  | 313.5     | 328.98 |         | 283         | 301  | 292   | 307.26 |         |
|       | 20       | 36.0 | 34.0 | 35.5      | 48.13  |         | 36.9        | 32.6 | 34.8  | 47.45  |         |
|       | 30       | 56.0 | 44.3 | 50.2      | 63.01  |         | 66.5        | 37.1 | 51.8  | 64.62  |         |
|       | 40       | 59.2 | 44.1 | 51.7      | 64.52  |         | 80.2        | 53.6 | 66.9  | 79.88  |         |
|       | 50       | 80.2 | 219  | 149.6     | 163.42 |         | 251         | 113  | 182   | 196.15 |         |
|       | 60       | 195  | 224  | 209.5     | 223.93 |         | 248         | 203  | 225.5 | 240.09 |         |
| 6     | 70       | 272  | 290  | 281       | 296.15 | 1447.30 | 149         | 208  | 178.5 | 192.61 | 1464.14 |
|       | 80       | 304  | 281  | 292.5     | 307.77 | 9       | 266         | 314  | 290   | 305.24 |         |
|       | 90       | 309  | 301  | 305       | 320.39 |         | 325         | 297  | 311   | 326.46 |         |
|       | 100      | 325  | 319  | 322       | 337.57 |         | 344         | 306  | 325   | 340.6  |         |
|       | 110      | 276  | 336  | 306       | 321.4  |         | 292         | 301  | 296.5 | 311.81 |         |
|       | 120      | 314  | 294  | 304       | 319.38 |         | 283         | 292  | 287.5 | 302.72 |         |
|       | 130      | 325  | 327  | 326       | 341.61 | 23/4    | 297         | 301  | 299   | 314.33 |         |
|       | 20       | 35.8 | 46.3 | 41.1      | 53.82  | 10      | 67.1        | 73.2 | 70.2  | 83.21  |         |
|       | 30       | 96.0 | 99.5 | 97.8      | 111.09 | in      | 113         | 165  | 139   | 152.71 |         |
|       | 40       | 135  | 148  | 141.5     | 155.23 | 12223   | 157         | 210  | 183.5 | 197.66 |         |
|       | 50       | 180  | 170  | 175       | 189.07 | 11.5    | 152         | 210  | 181   | 195.14 |         |
|       | 60       | 234  | 187  | 210.5     | 224.94 | ala a   | 195         | 276  | 235.5 | 250.19 |         |
| 7     | 70       | 214  | 208  | 211       | 225.44 | 1267.73 | 210         | 242  | 226   | 240.59 | 860.43  |
|       | 80       | 314  | 254  | 284       | 299.18 |         | 301         | 246  | 273.5 | 288.57 |         |
|       | 90       | 290  | 297  | 293.5     | 308.78 |         | 299         | 272  | 285.5 | 300.7  |         |
|       | 100      | 240  | 262  | 251       | 265.85 |         | 294         | 299  | 296.5 | 311.81 |         |
|       | 110      | 242  | 254  | 248       | 262.82 |         | 266         | 325  | 295.5 | 310.8  |         |
|       | 120      | 299  | 297  | 297       | 313.32 |         | 258         | 314  | 286   | 301.2  |         |
|       | 130      | 297  | 287  | 292       | 307.26 | 010     | 274         | 333  | 303.5 | 318.88 |         |
|       | 20       | 86.5 | 73.2 | 79.9      | 93.01  | 211     | 73.9        | 94.6 | 84.3  | 97.45  |         |
|       | 30       | 101  | 90.7 | 95.9      | 109.17 |         | 85.8        | 121  | 103.4 | 116.75 |         |
|       | 40       | 185  | 72.4 | 128.7     | 142.3  |         | 71.1        | 103  | 87.1  | 100.28 |         |
|       | 50       | 185  | 103  | 144       | 157.76 | 1987    | 84.1        | 117  | 100.6 | 113.92 |         |
|       | 60       | 187  | 189  | 188       | 202.21 |         | 242         | 153  | 197.5 | 211.8  |         |
| 8     | 70       | 217  | 224  | 220.5     | 235.04 | 1463.65 | 263         | 229  | 246   | 260.8  | 1502.66 |
|       | 80       | 264  | 290  | 277       | 292.11 |         | 309         | 311  | 310   | 325.45 |         |
|       | 90       | 330  | 357  | 343.5     | 359.29 |         | 325         | 339  | 332   | 347.67 |         |
|       | 100      | 330  | 330  | 330       | 345.65 |         | 339         | 330  | 334.5 | 350.19 |         |
|       | 110      | 327  | 304  | 315.5     | 331    |         | 339         | 327  | 333   | 348.68 |         |
|       | 120      | 322  | 309  | 315.5     | 331    |         | 344         | 292  | 318   | 333.53 |         |
|       | 130      | 336  | 327  | 331.5     | 348.16 |         | 357         | 322  | 339.5 | 355.24 |         |

| Group | Distance |      |      | Helioseal |        |         | Helioseal-F |      |       |        |         |
|-------|----------|------|------|-----------|--------|---------|-------------|------|-------|--------|---------|
|       | (um)     |      | VHN  |           | KHN    | Δz      |             | VHN  |       | KHN    | Δz      |
|       |          | 1    | 2    | mean      |        |         | 1           | 2    | mean  |        |         |
|       | 20       | 86.5 | 82.5 | 84.5      | 97.66  |         | 85.7        | 131  | 108.4 | 121.8  |         |
|       | 30       | 112  | 176  | 144       | 157.76 |         | 135         | 155  | 145   | 158.77 |         |
|       | 40       | 155  | 195  | 175       | 189.07 |         | 234         | 195  | 214.5 | 228.98 |         |
|       | 50       | 224  | 219  | 221.5     | 236.05 |         | 254         | 205  | 229.5 | 244.13 |         |
|       | 60       | 203  | 266  | 234.5     | 249.18 |         | 293         | 251  | 272   | 287.06 |         |
| 9     | 70       | 195  | 234  | 214.5     | 228.98 | 1055.59 | 286         | 239  | 262.5 | 277.46 | 880.62  |
|       | 80       | 330  | 325  | 327.5     | 343.12 |         | 325         | 347  | 336   | 351.71 |         |
|       | 90       | 339  | 333  | 336       | 351.17 |         | 314         | 344  | 329   | 344.64 |         |
|       | 100      | 330  | 357  | 343.5     | 359.29 |         | 322         | 333  | 327.5 | 343.12 |         |
|       | 110      | 327  | 354  | 340.5     | 356.25 |         | 350         | 339  | 344.5 | 360.3  |         |
|       | 120      | 292  | 292  | 292       | 307.26 |         | 322         | 344  | 333   | 348.68 |         |
|       | 130      | 336  | 330  | 330       | 348.68 |         | 314         | 360  | 337   | 352.72 |         |
|       | 20       | 127  | 98.5 | 112.8     | 126.24 |         | 143         | 124  | 133.5 | 147.15 |         |
|       | 30       | 162  | 105  | 133.5     | 147.15 |         | 110         | 150  | 130   | 143.62 |         |
|       | 40       | 173  | 101  | 137       | 150.69 |         | 144         | 175  | 159.5 | 173.42 |         |
|       | 50       | 160  | 146  | 153       | 166.85 |         | 290         | 195  | 242.5 | 257.26 |         |
|       | 60       | 217  | 231  | 224       | 238.57 |         | 251         | 226  | 238.5 | 253.22 |         |
| 10    | 70       | 203  | 224  | 213.5     | 227.97 | 1167.89 | 245         | 283  | 264   | 278.98 | 998.86  |
|       | 80       | 287  | 292  | 289.5     | 304 74 |         | 309         | 333  | 321   | 336.56 |         |
|       | 90       | 207  | 314  | 306.5     | 321.91 |         | 333         | 344  | 338 5 | 354.23 |         |
|       | 100      | 325  | 330  | 327.5     | 343 12 |         | 319         | 366  | 342.5 | 358.28 |         |
|       | 110      | 325  | 344  | 334.5     | 350.19 |         | 342         | 369  | 355.5 | 371.41 |         |
|       | 120      | 319  | 344  | 331.5     | 347.16 |         | 347         | 342  | 344.5 | 360.3  |         |
|       | 130      | 309  | 342  | 325.5     | 340.1  | 14.0    | 301         | 342  | 321.5 | 337.06 |         |
|       | 20       | 55.2 | 52.8 | 54.1      | 66.05  |         | 60.2        | 51.6 | 56    | 69.79  |         |
|       | 20       | 68.5 | 68.1 | 68.2      | 81.20  | - ALLS  | 64.0        | 77.7 | 71.2  | 84.22  |         |
|       | 30       | 08.5 | 72.4 | 06.5      | 09.77  | 1 miles | 66.0        | 97.6 | 71.5  | 00.28  |         |
|       | 40<br>50 | 98.8 | 12.4 | 121.5     | 96.77  |         | 125         | 87.0 | 121   | 90.38  |         |
|       | 50       | 139  | 124  | 197.5     | 201.7  | Star P  | 101         | 210  | 200.5 | 214.92 |         |
| 11    | 70       | 210  | 199  | 187.5     | 201.7  | 1480.88 | 191         | 210  | 200.5 | 214.65 | 1613.77 |
|       | 70       | 219  | 229  | 224       | 238.37 |         | 165         | 212  | 198.5 | 212.01 |         |
|       | 80       | 242  | 201  | 221.5     | 227.06 |         | 206         | 204  | 320.5 | 215.24 |         |
|       | 90       | 211  | 217  | 214       | 220.40 |         | 222         | 242  | 227.5 | 252.22 |         |
|       | 110      | 211  | 201  | 206       | 221.4  |         | 206         | 342  | 214   | 220.40 |         |
|       | 120      | 214  | 201  | 207.5     | 212.82 |         | 222         | 322  | 220   | 245.65 |         |
|       | 120      | 220  | 201  | 297.5     | 217.36 |         | 333         | 327  | 228   | 242.62 |         |
|       | 130      | 530  | 2/4  | 302       | 517.50 | 219     | 342         | 314  | 328   | 545.05 |         |
|       | 20       | 02.8 | 31.0 | 40.9      | 59.67  |         | 40.3        | 50.6 | 38.5  | 51.19  |         |
|       | 30       | 91.3 | 66.9 | /9.1      | 92.2   |         | 52.7        | /1.5 | 62.1  | /5.03  |         |
|       | 40       | 123  | 62.7 | 92.8      | 103.04 | 0.00    | 56.6        | 70.6 | 63.6  | 76.54  |         |
|       | 50       | 79.7 | 87.0 | 83.4      | 96.55  |         | 77.2        | 88.8 | 83    | 96.14  |         |
| 12    | 60       | 155  | 135  | 145       | 158.77 | 1530.93 | 137         | 148  | 142.5 | 156.24 | 1759.81 |
| 12    | 70       | 132  | 125  | 128.5     | 142.1  | 1000,90 | 257         | 317  | 287   | 302.01 | 1,07,01 |
|       | 80       | 197  | 268  | 232.5     | 247.16 |         | 272         | 354  | 313   | 328.48 |         |
|       | 90       | 272  | 252  | 262       | 276.96 |         | 311         | 366  | 338.5 | 354.23 |         |
|       | 100      | 331  | 299  | 314.5     | 329.99 |         | 330         | 339  | 334.5 | 350.19 |         |
|       | 110      | 266  | 325  | 295.5     | 310.8  |         | 363         | 347  | 355   | 370.9  |         |
|       | 120      | 258  | 252  | 255       | 269.89 |         | 354         | 309  | 331.5 | 347.16 |         |
| 1     | 130      | 251  | 285  | 268       | 283.02 |         | 299         | 299  | 299   | 314.33 |         |

| Group | Distance |      |      | Helioseal |        |         | Helioseal-F |      |       |        |         |  |
|-------|----------|------|------|-----------|--------|---------|-------------|------|-------|--------|---------|--|
|       | (um)     |      | VHN  |           | KHN    | Δz      |             | VHN  |       | KHN    | Δz      |  |
|       |          | 1    | 2    | mean      |        |         | 1           | 2    | mean  |        |         |  |
|       | 20       | 42.0 | 57.5 | 49.8      | 62.6   |         | 141         | 84.1 | 112.6 | 126.04 |         |  |
|       | 30       | 102  | 135  | 118.5     | 132    |         | 189         | 226  | 207.5 | 221.9  |         |  |
|       | 40       | 140  | 208  | 174       | 188.06 |         | 199         | 111  | 155   | 168.87 |         |  |
|       | 50       | 146  | 165  | 155.5     | 169.38 |         | 152         | 197  | 174.5 | 188.57 |         |  |
|       | 60       | 212  | 226  | 219       | 233.52 |         | 185         | 231  | 208   | 222.41 |         |  |
| 13    | 70       | 191  | 269  | 230       | 244.63 | 1182.91 | 272         | 231  | 251.5 | 266.35 | 827.40  |  |
|       | 80       | 272  | 276  | 274       | 289.08 |         | 272         | 322  | 297   | 312.31 |         |  |
|       | 90       | 301  | 325  | 313       | 328.48 |         | 309         | 306  | 307.5 | 322.92 |         |  |
|       | 100      | 306  | 311  | 308.5     | 323.93 |         | 317         | 306  | 311.5 | 326.96 |         |  |
|       | 110      | 290  | 309  | 299.5     | 314.84 |         | 287         | 268  | 277.5 | 292.62 |         |  |
|       | 120      | 327  | 268  | 297.5     | 312.82 |         | 292         | 344  | 318   | 333.53 |         |  |
|       | 130      | 330  | 336  | 333       | 348.68 |         | 299         | 290  | 294.5 | 309.79 |         |  |
|       | 20       | 67.7 | 61.8 | 64.8      | 77.76  |         | 84.1        | 101  | 92.6  | 105.84 |         |  |
|       | 30       | 113  | 153  | 133       | 146.65 |         | 168         | 150  | 159   | 172.91 |         |  |
|       | 40       | 173  | 185  | 179       | 193.12 |         | 167         | 155  | 161   | 194.93 |         |  |
|       | 50       | 191  | 149  | 170       | 184.02 |         | 159         | 197  | 178   | 192.11 |         |  |
|       | 60       | 214  | 182  | 198       | 212.31 |         | 237         | 234  | 235.5 | 250.19 |         |  |
| 14    | 70       | 226  | 187  | 206.5     | 220.89 | 1179.91 | 266         | 224  | 245   | 259.79 | 1020.18 |  |
|       | 80       | 322  | 314  | 318       | 333.53 |         | 301         | 311  | 306   | 321.4  |         |  |
|       | 90       | 322  | 299  | 310.5     | 325.95 |         | 333         | 317  | 325   | 340.6  |         |  |
|       | 100      | 342  | 322  | 332       | 347.67 |         | 309         | 376  | 342.5 | 358.28 |         |  |
|       | 110      | 347  | 336  | 341.5     | 357.26 |         | 281         | 342  | 311.5 | 326.96 |         |  |
|       | 120      | 258  | 344  | 301       | 316.35 | 1       | 314         | 366  | 340   | 355.75 |         |  |
|       | 130      | 342  | 301  | 321.5     | 337.06 | I.D. A  | 347         | 319  | 333   | 348.68 |         |  |
|       | 20       | 78.7 | 95.5 | 87.1      | 100.28 |         | 81.0        | 112  | 96.5  | 109.78 |         |  |
|       | 30       | 73.8 | 99.5 | 86.7      | 00.88  | - ALL   | 138         | 112  | 127.5 | 141.09 |         |  |
|       | 40       | 103  | 143  | 123       | 136.55 | 150 la  | 145         | 203  | 127.5 | 188.06 |         |  |
|       | 50       | 105  | 143  | 144.5     | 158.27 |         | 143         | 203  | 1/4   | 196.00 |         |  |
|       | 60       | 127  | 102  | 157.5     | 171.4  | Star P  | 214         | 211  | 224   | 248.67 |         |  |
| 15    | 70       | 169  | 176  | 162       | 175.07 | 1078.12 | 105         | 102  | 104   | 246.07 | 997.90  |  |
|       | 80       | 106  | 190  | 182.5     | 106.65 |         | 222         | 195  | 222   | 206.27 |         |  |
|       | 80       | 225  | 240  | 222.5     | 247.16 |         | 222         | 222  | 222   | 250.55 |         |  |
|       | 100      | 223  | 240  | 232.5     | 247.10 |         | 200         | 207  | 205   | 220.20 |         |  |
|       | 110      | 240  | 270  | 240       | 200.8  |         | 299         | 242  | 303   | 275 44 |         |  |
|       | 120      | 240  | 243  | 242.5     | 257.20 |         | 279         | 242  | 200.5 | 2/5.44 |         |  |
|       | 120      | 234  | 231  | 242.5     | 237.20 |         | 203         | 290  | 212.5 | 227.07 |         |  |
|       | 130      | 212  | 242  | 237       | 270.91 |         | 314         | 511  | 512.5 | 327.97 |         |  |
|       | 20       | 36.9 | 34.7 | 35.8      | 48.46  | 1615.03 | 46.6        | 45.3 | 46    | 58.77  |         |  |
|       | 30       | 65.7 | 66.9 | 66.3      | /9.27  |         | 98.1        | 61.9 | 80    | 93.11  |         |  |
|       | 40       | 105  | 106  | 105.5     | 118.87 | 0.00    | 155         | 103  | 129   | 142.61 |         |  |
|       | 50       | 148  | 102  | 125       | 138.57 |         | 205         | 257  | 231   | 245.64 |         |  |
| 16    | 60       | 212  | 146  | 179       | 193.12 |         | 248         | 205  | 226.5 | 241.1  | 1228 50 |  |
| 10    | 70       | 191  | 219  | 205       | 219.38 |         | 245         | 219  | 232   | 246.65 | 1220.20 |  |
|       | 80       | 294  | 240  | 267       | 282.01 |         | 290         | 299  | 294.5 | 309.79 |         |  |
|       | 90       | 304  | 354  | 329       | 344.64 |         | 283         | 314  | 298.5 | 313.83 |         |  |
|       | 100      | 350  | 327  | 338.5     | 354.23 |         | 299         | 327  | 313   | 328.48 |         |  |
|       | 110      | 327  | 301  | 314       | 329.49 |         | 319         | 354  | 336.5 | 352.21 |         |  |
|       | 120      | 290  | 270  | 280       | 295.14 |         | 299         | 342  | 320.5 | 336.05 |         |  |
|       | 130      | 306  | 322  | 314       | 329.49 |         | 347         | 350  | 348.5 | 364.34 |         |  |

| Group | Distance |      |      | Helioseal |        |         |      |      | Helioseal-F |        |         |
|-------|----------|------|------|-----------|--------|---------|------|------|-------------|--------|---------|
|       | (um)     |      | VHN  |           | KHN    | Δz      |      | VHN  |             | KHN    | Δz      |
|       |          | 1    | 2    | mean      |        |         | 1    | 2    | mean        |        |         |
|       | 20       | 57.5 | 65.5 | 61.5      | 74.42  |         | 41.5 | 86.5 | 64          | 76.95  |         |
|       | 30       | 84.6 | 108  | 96.3      | 109.58 |         | 84.1 | 197  | 140.6       | 154.33 |         |
|       | 40       | 139  | 187  | 163       | 176.95 |         | 180  | 219  | 199.5       | 213.82 |         |
|       | 50       | 182  | 176  | 179       | 193.12 |         | 214  | 242  | 228         | 242.61 |         |
|       | 60       | 197  | 229  | 213       | 227.46 |         | 176  | 214  | 195         | 209.28 |         |
| 17    | 70       | 203  | 219  | 211       | 225.44 | 1228.87 | 237  | 239  | 238         | 252.71 | 1086.22 |
|       | 80       | 319  | 309  | 314       | 329.49 |         | 297  | 314  | 305.5       | 302.9  |         |
|       | 90       | 319  | 311  | 315       | 330.5  |         | 325  | 301  | 313         | 328.48 |         |
|       | 100      | 306  | 317  | 311.5     | 326.96 |         | 262  | 274  | 268         | 283.02 |         |
|       | 110      | 304  | 333  | 318.5     | 334.03 |         | 311  | 342  | 326.5       | 342.11 |         |
|       | 120      | 311  | 325  | 318       | 333.53 |         | 314  | 279  | 296.5       | 311.81 |         |
|       | 130      | 314  | 350  | 332       | 347.67 |         | 314  | 339  | 326.5       | 342.11 |         |
|       | 20       | 81.7 | 31.9 | 56.8      | 69.68  |         | 66.6 | 43.2 | 54.9        | 67.76  |         |
|       | 30       | 155  | 76.2 | 115.6     | 129.07 |         | 157  | 130  | 143.2       | 157.26 |         |
|       | 40       | 214  | 135  | 174.5     | 188.57 |         | 205  | 210  | 207.5       | 221.9  |         |
|       | 50       | 174  | 155  | 164.5     | 178.47 |         | 251  | 260  | 255.5       | 270.39 |         |
|       | 60       | 170  | 152  | 161       | 174.93 |         | 234  | 251  | 242.05      | 257.26 |         |
| 18    | 70       | 221  | 144  | 182.5     | 196.65 | 1316.05 | 305  | 224  | 264.5       | 279.48 | 931.92  |
|       | 80       | 283  | 207  | 245       | 259.79 |         | 347  | 339  | 343         | 358.78 |         |
|       | 90       | 216  | 233  | 224.5     | 239.08 |         | 344  | 339  | 341.5       | 357.26 |         |
|       | 100      | 333  | 254  | 293.5     | 308.78 |         | 274  | 350  | 312         | 327.47 |         |
|       | 110      | 301  | 249  | 275       | 290.09 |         | 330  | 342  | 336         | 351.71 |         |
|       | 120      | 311  | 285  | 298       | 313.32 |         | 336  | 301  | 318.5       | 334.03 |         |
|       | 130      | 342  | 276  | 309       | 324.44 | 2.32    | 327  | 342  | 334.5       | 350.19 |         |
|       | 20       | 72.6 | 106  | 89.3      | 102.5  |         | 88.2 | 103  | 95.6        | 108.87 |         |
|       | 30       | 124  | 155  | 139.5     | 153.21 |         | 137  | 219  | 178         | 192.11 |         |
|       | 40       | 184  | 162  | 173       | 187.05 |         | 226  | 187  | 206.5       | 220.89 |         |
|       | 50       | 219  | 214  | 216.5     | 231    | 111 - 5 | 231  | 203  | 217         | 231.5  |         |
|       | 60       | 234  | 237  | 235.5     | 250.19 | 112-22- | 279  | 224  | 251.5       | 266.35 |         |
| 19    | 70       | 231  | 199  | 215       | 229.48 | 881.08  | 193  | 182  | 187.5       | 201.7  | 1102.56 |
|       | 80       | 333  | 297  | 315       | 330.5  |         | 276  | 279  | 277.5       | 292.62 |         |
|       | 90       | 283  | 292  | 287.5     | 302.72 |         | 330  | 342  | 366         | 351.71 |         |
|       | 100      | 292  | 262  | 277       | 292.11 |         | 347  | 357  | 352         | 367.87 |         |
|       | 110      | 330  | 254  | 292       | 307.26 |         | 336  | 309  | 322.5       | 338.07 |         |
|       | 120      | 342  | 294  | 318       | 333.53 |         | 369  | 317  | 343         | 358.78 |         |
|       | 130      | 339  | 281  | 310       | 325.45 | 010     | 325  | 357  | 341         | 356.76 |         |
|       | 20       | 93.6 | 75.2 | 84.4      | 97.56  | ,<br>A  | 70.7 | 83.3 | 77          | 90.08  |         |
|       | 30       | 163  | 135  | 149       | 162.81 |         | 157  | 129  | 143         | 156.75 |         |
|       | 40       | 149  | 135  | 142       | 155.74 |         | 162  | 132  | 147         | 160.79 |         |
|       | 50       | 126  | 178  | 152       | 165.84 | 987     | 197  | 160  | 178.5       | 192.61 |         |
|       | 60       | 171  | 160  | 165.5     | 179.48 |         | 191  | 221  | 206         | 220.39 |         |
| 20    | 70       | 193  | 184  | 188.5     | 202.71 | 1177.02 | 234  | 187  | 210.5       | 224.94 | 1087.46 |
|       | 80       | 322  | 260  | 291       | 306.25 |         | 283  | 325  | 304         | 319.38 |         |
|       | 90       | 299  | 325  | 312       | 327.47 |         | 304  | 306  | 305         | 320.39 |         |
|       | 100      | 258  | 314  | 286       | 301.2  |         | 276  | 317  | 296.5       | 311.81 |         |
|       | 110      | 314  | 309  | 311.5     | 326.96 |         | 301  | 322  | 311.5       | 326.96 |         |
|       | 120      | 309  | 260  | 284.5     | 299.69 |         | 283  | 285  | 284         | 299.18 |         |
|       | 130      | 297  | 344  | 320.5     | 336.05 |         | 333  | 336  | 334.5       | 350.19 |         |

| Group | Distance |      |      | Helioseal |        |         | Helioseal-F |      |       |        |         |  |
|-------|----------|------|------|-----------|--------|---------|-------------|------|-------|--------|---------|--|
|       | (um)     |      | VHN  |           | KHN    | Δz      |             | VHN  |       | KHN    | Δz      |  |
|       |          | 1    | 2    | mean      |        |         | 1           | 2    | mean  |        |         |  |
|       | 20       | 62.3 | 55.3 | 58.8      | 71.7   |         | 138         | 73.9 | 106   | 119.37 |         |  |
|       | 30       | 96.7 | 145  | 120.9     | 134.43 |         | 131         | 176  | 153.5 | 167.36 |         |  |
|       | 40       | 163  | 162  | 162.5     | 176.45 |         | 210         | 208  | 209   | 223.42 |         |  |
|       | 50       | 157  | 114  | 135.5     | 149.17 |         | 157         | 199  | 178   | 192.11 |         |  |
|       | 60       | 176  | 157  | 166.5     | 180.49 |         | 123         | 152  | 137.5 | 151.19 |         |  |
| 21    | 70       | 178  | 168  | 173       | 187.05 | 999.54  | 221         | 205  | 213   | 227.46 | 1187.16 |  |
|       | 80       | 195  | 242  | 218.5     | 233.02 |         | 304         | 297  | 300.5 | 315.85 |         |  |
|       | 90       | 294  | 210  | 252       | 266.86 |         | 354         | 317  | 335.5 | 351.2  |         |  |
|       | 100      | 292  | 212  | 252       | 266.86 |         | 317         | 336  | 326.5 | 342.11 |         |  |
|       | 110      | 287  | 258  | 272.5     | 287.56 |         | 336         | 363  | 349.5 | 365.35 |         |  |
|       | 120      | 314  | 217  | 265.5     | 280.49 |         | 336         | 327  | 331.5 | 347.16 |         |  |
|       | 130      | 276  | 210  | 243       | 257.77 |         | 319         | 347  | 333   | 348.68 |         |  |
|       | 20       | 49.0 | 79.5 | 64.3      | 77.25  |         | 42.0        | 52.0 | 47    | 59.78  |         |  |
|       | 30       | 95.3 | 112  | 103.7     | 117.05 |         | 113         | 106  | 109.5 | 122.91 |         |  |
|       | 40       | 112  | 145  | 128.5     | 142.1  |         | 134         | 126  | 130   | 143.62 |         |  |
|       | 50       | 146  | 153  | 149.5     | 163.32 |         | 104         | 197  | 150.5 | 164.33 |         |  |
|       | 60       | 133  | 191  | 162       | 175.94 |         | 254         | 214  | 234   | 248.67 |         |  |
| 22    | 70       | 160  | 201  | 180.5     | 194.63 | 851.77  | 146         | 191  | 168.5 | 182.51 | 1230.60 |  |
|       | 80       | 231  | 290  | 260.5     | 275.44 |         | 285         | 292  | 288.5 | 303.73 |         |  |
|       | 90       | 276  | 258  | 267       | 282.01 |         | 297         | 327  | 312   | 327.47 |         |  |
|       | 100      | 279  | 279  | 279       | 294.13 |         | 292         | 281  | 286.5 | 301.71 |         |  |
|       | 110      | 262  | 333  | 297.5     | 312.82 |         | 317         | 333  | 325   | 340.6  |         |  |
|       | 120      | 233  | 251  | 242       | 256.75 |         | 336         | 301  | 318.5 | 334.03 |         |  |
|       | 130      | 279  | 243  | 261       | 275.95 | 23.4    | 336         | 227  | 281.5 | 296.66 |         |  |
|       | 20       | 76.6 | 65.5 | 71.1      | 84.12  | 10      | 68.3        | 98.5 | 83.4  | 95.55  |         |  |
|       | 30       | 155  | 121  | 138       | 151.7  |         | 149         | 170  | 159.5 | 173.42 |         |  |
|       | 40       | 152  | 122  | 137       | 150.69 | 1222    | 171         | 185  | 178   | 192.11 |         |  |
|       | 50       | 180  | 129  | 154.5     | 168.37 | 115 -   | 189         | 219  | 204   | 218.37 |         |  |
|       | 60       | 157  | 199  | 178       | 192.11 |         | 185         | 210  | 197.5 | 211.8  |         |  |
| 23    | 70       | 170  | 208  | 189       | 203.22 | 1325.72 | 205         | 185  | 195   | 209.28 | 1174.54 |  |
|       | 80       | 285  | 254  | 269.5     | 284.53 |         | 297         | 366  | 331.5 | 347.16 |         |  |
|       | 90       | 292  | 317  | 304.5     | 319.89 |         | 357         | 314  | 335.5 | 351.2  |         |  |
|       | 100      | 309  | 317  | 313       | 328.48 |         | 339         | 319  | 329   | 344.64 |         |  |
|       | 110      | 330  | 304  | 322       | 337.57 |         | 354         | 336  | 345   | 360.8  |         |  |
|       | 120      | 283  | 301  | 292       | 307.26 |         | 327         | 336  | 331.5 | 347.16 |         |  |
|       | 130      | 333  | 330  | 331.5     | 347.16 | 0.10    | 366         | 309  | 337.5 | 353.22 |         |  |
|       | 20       | 57.9 | 83.3 | 70.6      | 83.62  | 211     | 110         | 116  | 113   | 126.45 |         |  |
|       | 30       | 111  | 119  | 115       | 128.47 |         | 187         | 103  | 145   | 158.77 |         |  |
|       | 40       | 149  | 163  | 156       | 169.88 |         | 187         | 189  | 188   | 202.21 |         |  |
|       | 50       | 168  | 157  | 162.5     | 176.45 | 1981    | 245         | 152  | 198.5 | 212.81 |         |  |
|       | 60       | 182  | 159  | 170.5     | 184.53 |         | 263         | 217  | 240   | 254.73 |         |  |
| 24    | 70       | 170  | 185  | 177.5     | 191.6  | 1223.53 | 257         | 297  | 277   | 292.11 | 1157.33 |  |
|       | 80       | 306  | 270  | 288       | 303.22 |         | 314         | 287  | 300.6 | 315.85 |         |  |
|       | 90       | 354  | 251  | 302.5     | 317.87 | 1       | 366         | 350  | 358   | 373.93 |         |  |
|       | 100      | 301  | 317  | 309       | 324.44 | 1       | 363         | 317  | 340   | 355.75 |         |  |
|       | 110      | 276  | 299  | 287.5     | 302.72 | 1       | 276         | 304  | 290   | 305.24 |         |  |
|       | 120      | 279  | 285  | 282       | 297.16 |         | 327         | 342  | 334.5 | 350.19 |         |  |
|       | 130      | 363  | 301  | 332       | 347.67 |         | 333         | 376  | 354.5 | 370.4  |         |  |

| Group | Distance |      |      | Helioseal |        |         |      |      | Helioseal-F |        |         |
|-------|----------|------|------|-----------|--------|---------|------|------|-------------|--------|---------|
|       | (um)     |      | VHN  |           | KHN    | Δz      |      | VHN  |             | KHN    | Δz      |
|       |          | 1    | 2    | mean      |        |         | 1    | 2    | mean        |        |         |
|       | 20       | 112  | 138  | 125       | 138.57 |         | 167  | 150  | 158.5       | 172.41 |         |
|       | 30       | 184  | 203  | 193.5     | 207.76 |         | 193  | 205  | 199         | 213.32 |         |
|       | 40       | 180  | 191  | 185.5     | 199.68 |         | 199  | 203  | 101         | 114.32 |         |
|       | 50       | 205  | 212  | 208.5     | 222.91 |         | 214  | 212  | 213         | 227.46 |         |
|       | 60       | 210  | 224  | 217       | 231.5  |         | 251  | 239  | 245         | 259.79 |         |
| 25    | 70       | 203  | 254  | 228.5     | 243.12 | 734.87  | 221  | 234  | 227.5       | 242.11 | 861.82  |
|       | 80       | 264  | 304  | 284       | 299.18 |         | 333  | 317  | 325         | 340.6  |         |
|       | 90       | 333  | 309  | .321      | 336.56 |         | 306  | 306  | 306         | 321.4  |         |
|       | 100      | 319  | 290  | 304.5     | 319.89 |         | 306  | 330  | 318         | 333.53 |         |
|       | 110      | 272  | 258  | 265       | 279.99 |         | 297  | 285  | 291         | 306.25 |         |
|       | 120      | 304  | 287  | 295.5     | 310.8  |         | 281  | 312  | 296.5       | 311.81 |         |
|       | 130      | 317  | 301  | 309       | 324.44 |         | 283  | 325  | 304         | 319.38 |         |
|       | 20       | 68.9 | 70.1 | 69.5      | 82.5   |         | 90.9 | 97.5 | 94.2        | 107.45 |         |
|       | 30       | 111  | 134  | 122.5     | 136.04 |         | 115  | 111  | 113         | 126.45 |         |
|       | 40       | 163  | 185  | 174       | 188.06 |         | 159  | 118  | 138.5       | 152.2  |         |
|       | 50       | 109  | 165  | 137       | 150.69 |         | 180  | 217  | 198.5       | 212.81 |         |
|       | 60       | 157  | 221  | 189       | 203.22 |         | 203  | 173  | 188         | 202.21 |         |
| 26    | 70       | 189  | 297  | 243       | 257.77 | 1055.31 | 221  | 159  | 190         | 204.23 | 1248.95 |
|       | 80       | 260  | 336  | 298       | 313.32 |         | 256  | 247  | 251.5       | 266.35 |         |
|       | 90       | 281  | 281  | 281       | 296.15 |         | 254  | 236  | 245         | 259.79 |         |
|       | 100      | 283  | 299  | 291       | 306.25 |         | 290  | 281  | 285.5       | 300.7  |         |
|       | 110      | 301  | 336  | 318.5     | 334.03 |         | 304  | 270  | 287         | 302.21 |         |
|       | 120      | 319  | 290  | 304.5     | 319.89 |         | 327  | 330  | 328.5       | 344.13 |         |
|       | 130      | 283  | 294  | 288.5     | 303.73 | 2.3 .41 | 322  | 283  | 302.5       | 317.87 |         |
|       | 20       | 51.6 | 82.5 | 67.1      | 80.08  | . /     | 79.5 | 62.8 | 71.2        | 84.22  |         |
|       | 30       | 116  | 150  | 133       | 146.65 |         | 146  | 159  | 152.5       | 166.35 |         |
|       | 40       | 126  | 125  | 125.5     | 139.07 | 12/22   | 146  | 163  | 154.5       | 168.37 |         |
|       | 50       | 144  | 125  | 134.5     | 148.16 | 111 5   | 131  | 156  | 143.5       | 157.26 |         |
|       | 60       | 173  | 189  | 181       | 195.14 | A CAL   | 165  | 193  | 179         | 193.12 |         |
| 27    | 70       | 175  | 112  | 143.5     | 157.26 | 893.64  | 107  | 178  | 142.5       | 156.24 | 1103.13 |
|       | 80       | 180  | 228  | 204       | 218.37 |         | 195  | 230  | 212.5       | 226.96 |         |
|       | 90       | 294  | 243  | 268.5     | 283.52 |         | 319  | 270  | 294.5       | 309.79 |         |
|       | 100      | 240  | 206  | 223       | 237.56 |         | 228  | 266  | 247         | 261.81 |         |
|       | 110      | 266  | 222  | 244       | 258.78 |         | 292  | 290  | 291         | 306.25 |         |
|       | 120      | 236  | 213  | 224.5     | 239.08 |         | 281  | 238  | 259.5       | 274.43 |         |
|       | 130      | 299  | 220  | 259.5     | 274.43 | 0.10    | 274  | 266  | 270         | 285.04 |         |
|       | 20       | 68.3 | 89.1 | 78.7      | 91.8   | 5       | 114  | 118  | 116         | 129.48 |         |
|       | 30       | 106  | 129  | 117.5     | 130.99 |         | 195  | 155  | 175         | 189.07 |         |
|       | 40       | 1.5  | 97.4 | 101.2     | 114.53 |         | 219  | 189  | 204         | 218.37 |         |
|       | 50       | 129  | 126  | 127.5     | 141.09 | 981     | 143  | 214  | 178.5       | 192.61 |         |
|       | 60       | 126  | 112  | 119       | 132.51 |         | 212  | 208  | 210         | 224.43 |         |
| 28    | 70       | 159  | 150  | 154.5     | 168.37 | 1303.47 | 170  | 199  | 184.5       | 198.67 | 851.97  |
|       | 80       | 264  | 205  | 234.5     | 249.18 |         | 240  | 306  | 273         | 288.07 |         |
|       | 90       | 276  | 236  | 256       | 270.9  | 1       | 249  | 306  | 277.5       | 292.62 |         |
|       | 100      | 225  | 287  | 256       | 270.9  | 1       | 279  | 330  | 304.5       | 319.89 |         |
|       | 110      | 202  | 342  | 272       | 287.06 | 1       | 304  | 317  | 301.5       | 325.95 |         |
|       | 120      | 268  | 249  | 258.5     | 273.42 |         | 268  | 336  | 302         | 317.36 |         |
|       | 130      | 242  | 339  | 290.5     | 305.75 |         | 336  | 270  | 303         | 318.37 |         |

| Group | Distance | Helioseal |      |       |        |        |      | Helioseal-F |       |        |         |  |  |
|-------|----------|-----------|------|-------|--------|--------|------|-------------|-------|--------|---------|--|--|
|       | (um)     |           | VHN  |       | KHN    | Δz     |      | VHN         |       | KHN    | Δz      |  |  |
|       |          | 1         | 2    | mean  |        |        | 1    | 2           | mean  |        |         |  |  |
|       | 20       | 98.5      | 81.0 | 89.8  | 103.01 |        | 113  | 108         | 110.5 | 123.92 |         |  |  |
|       | 30       | 127       | 125  | 126   | 139.58 |        | 129  | 152         | 140.5 | 154.22 |         |  |  |
|       | 40       | 143       | 114  | 128.5 | 142.1  |        | 162  | 203         | 182.5 | 196.65 |         |  |  |
|       | 50       | 184       | 199  | 191.5 | 205.74 |        | 189  | 155         | 172   | 186.04 |         |  |  |
|       | 60       | 178       | 189  | 183.5 | 197.66 |        | 168  | 175         | 171.5 | 185.54 | 1091.63 |  |  |
| 29    | 70       | 214       | 210  | 212   | 226.45 | 845.38 | 99.5 | 180         | 139.8 | 153.52 |         |  |  |
|       | 80       | 292       | 290  | 291   | 306.25 |        | 287  | 283         | 285   | 300.19 |         |  |  |
|       | 90       | 304       | 336  | 320   | 335.55 |        | 242  | 304         | 273   | 288.07 |         |  |  |
|       | 100      | 230       | 283  | 256.5 | 271.4  |        | 297  | 294         | 295.5 | 310.8  |         |  |  |
|       | 110      | 256       | 299  | 277.5 | 292.62 |        | 266  | 285         | 275.5 | 290.59 |         |  |  |
|       | 120      | 309       | 301  | 305   | 320.39 |        | 301  | 330         | 315.5 | 331    |         |  |  |
|       | 130      | 251       | 279  | 265   | 279.99 |        | 330  | 309         | 319.5 | 335.04 |         |  |  |
|       | 20       | 114       | 75.2 | 94.6  | 107.86 |        | 55.7 | 145         | 100.4 | 113.72 | -       |  |  |
|       | 30       | 182       | 145  | 163.5 | 177.46 |        | 153  | 212         | 182.5 | 196.65 |         |  |  |
|       | 40       | 197       | 163  | 180   | 194.13 |        | 185  | 245         | 215   | 229.48 |         |  |  |
|       | 50       | 229       | 214  | 221.5 | 225.95 |        | 242  | 242         | 242   | 256.75 |         |  |  |
|       | 60       | 263       | 297  | 280   | 295.14 |        | 195  | 248         | 221.5 | 236.05 |         |  |  |
| 30    | 70       | 231       | 203  | 217   | 231.5  | 973.06 | 201  | 153         | 177   | 191.1  | 993.53  |  |  |
|       | 80       | 366       | 319  | 342.5 | 358.28 |        | 292  | 306         | 299   | 314.33 |         |  |  |
|       | 90       | 344       | 301  | 322.5 | 338.07 |        | 304  | 339         | 321.5 | 337.06 |         |  |  |
|       | 100      | 274       | 366  | 320   | 335.55 |        | 327  | 294         | 210.5 | 224.94 |         |  |  |
| -     | 110      | 344       | 309  | 326.5 | 342.11 |        | 294  | 297         | 295.5 | 310.8  |         |  |  |
|       | 120      | 319       | 344  | 331.5 | 347.16 |        | 301  | 319         | 310   | 325.45 |         |  |  |
|       | 130      | 333       | 350  | 341.5 | 357.26 | 2.59   | 314  | 344         | 329   | 344.64 |         |  |  |



## ประวัติผู้เขียนวิทยานิพนธ์

เรือโทหญิง ขวัญฤดี วัฒนธรรม เกิดวันที่ 13 ธันวาคม พ.ศ. 2516 ที่จังหวัด กรุงเทพมหานคร สำเร็จการศึกษาปริญญาตรีทันตแพทยศาสตร์ จากคณะทันตแพทยศาสตร์ จุฬา ลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2539 และเข้าศึกษาต่อในหลักสูตรวิทยาศาสตร์มหาบัณฑิต สาขาวิชาทันตกรรมสำหรับเด็ก คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เมื่อปีการ ศึกษา 2542 ปัจจุบันรับราชการที่โรงพยาบาลสมเด็จพระนางเจ้าสิริกิติ์ อำเภอสัตหีบ จังหวัด ชลบุรี สังกัดกรมแพทย์ทหารเรือ



สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย