CHAPTER V ## Summary 1. The biosynthetic pathway of glycine betaine in A. halophytica occurred by a two-step oxidation of choline, via an intermediate betaine aldehyde. (choline betaine aldehyde betaine) - 2. [¹⁴C] choline, [¹⁴C] ethanolamine, and [¹⁴C] glycine were precursors that could be converted to [¹⁴C] glycine betaine. The rate of conversion of these precursors to glycine betaine was higher in salt- stressed than in control cells. - 3. In salt-stressed cells, glycine betaine accumulation and biosynthesis were higher than control cells. The growth rate of *A. halophytica*, however, was decreased when the cells were grown under high osmolarity. - 4. The activity of choline dehydrogenase, which was mainly localized in membrane fraction, was increased when *A. halophytica* was grown under high osmolarity. - 5. The high external salinity induced the increase in the specific activity of choline dehydrogenase in A. halophytica.