CHAPTER 3

Optical waveguide

The purpose of this chapter is to provide a qualitative understanding of the
optically confining mechanism occurring in a laser diode. There are two things required
to operate a laser : (i) a gain medium that can amplify the electromagnetic radiation
propagating inside it and provide the spontaneous emission and (i) a feedback
mechanism that confine the electromagnetic field through the well-defined optical
modes. The optical feedback is obtained by using the cleaved facets that form a Fabry-
Perot cavity and mode confinement is achieved through dielectric waveguiding which
concerns to two optical modes : Transverse-Electric (TE) or Transverse-Magnetic

(IM).

3.1 Dielectric waveguide

The successful operation of laser requires that the generated optical field
should remain confined in the vicinity of the gain region. In DH laser diode, the optical
confinement occurs by virtue of a fortunate coincidence. The active layer with a
smaller bandgap also has a higher refractive index compared with that of the
surrounding cladding layers. Because of the index difference, the active layer in effect
acts as a dielectric waveguide. The physical mechanism behind the confinement is total
internal refraction as illustrated in Fig. 3.1. When a ray traveling at an angle &
(measured from the interface normal) hits the interface, it is reflected back if the angle
O exceeds the critical angle &, given by

—y
6. = sin s | 3.1

where n; and n; are the refractive indices of the cladding and active layer respectively.
Thus, rays traveling nearly parallel to the interface are trapped and constitute the
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waveguide mode. This mechanism is often referred to as index-guiding. A more
detailed discussion of waveguide modes requires the use of Maxwell’s equations and is
given in next sections.
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Fig. 3.1 Dielectric waveguiding in a heterostructure laser diode. The relatively higher refractive

index ( n; > n; ) of the active layer allows total internal reflection to occur at the two
interfaces for angle such that 8 2 6, as shown in ray b and c.

3.2 Waveguide modes

In a heterostructure laser, the emitted light has finite transverse dimensions,
since it should be confined in the vicinity of the this active region, which provides gain
for stimulated emission. The output is in the form of narrow beam with an elliptic cross
section. Depending on the laser structure, the field distribution across the beam can
take certain well-defined forms, often referred to as the Jaser modes. Mathematically, a
laser mode is the specific solution of the time-independent Maxwell’s wave equation
that satisfies all the boundary conditions imposed by the laser structure. In the general
multimode case, the optical field is denoted by E,.» , where the subscript m denoted
the longitudinal or axial modes. The subscripts p and g take integer values; they stand
for the transverse and lateral modes specifying the field distribution in the direction
perpendicular and parallel to the junction plane, respectively. An understanding of the
number of allowed modes and the resulting field distributions is essential for their
control, since it is often desirable to design laser diode that emit light predominantly in
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a single mode. Further, important laser characteristics such as the near- and far-field '
widths depend on details of the laser modes. For laser diode, the far-field distribution
plays an important role as it controls the amount of power coupled into a fiber optic.
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' Fig. 3.2 Cross-section schematic of (a) gain-guided and (b) index-guided devices.

In transverse heterostructure, the field confinement in the transverse direction
occurs through index-guiding described in the previous section. However, the field
confinement in lateral direction is not always due to index-guiding. Laser diode can be
classified as gain-guided and index-guided depending on whether it is the lateral
variation of the optical gain or the refractive index that confines the mode. Fig. 3.2
shows schematically the both kinds of devices. Historically, gain-guided devices based
on the strip geometry were developed first in view of their ease of fabrication.
However, such devices have a number of undesirable characteristics that become
worse as the laser wavelength increases. Index guiding is therefore almost invariably
used in most practical laser diodes. Both gain-guided and index-guided structures and
performances have been already discussed in the previous chapter.

3.3 Effective index approximation

The mathematical description of the laser modes is based on the time-
independent Maxwell’s wave equation

VE+eax)k’E =0 (3.2)

where the x axis is parallel and the y axis is perpendicular to the junction plane shown
inFig. 3.3 and k, = @ /c = 2z /4 is the vacuum wave number. The dielectric constant
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& may vary with x and y but is assumed to be independent of z , the direction of field
propagated along the cavity length. For some laser diodes (e.g. distributed feedback
(DFB) lasers), & varies with z. In normal cases, such variations are small enough that
they can be ignored in the discussion of the waveguide modes. The spatially varying
dielectric constant in generally of the form,

&x.y). = ) (3.3)
where the subscript j numbers various layers in a heterostructure laser. To account for

the absorption, the dielectric constant & is a complex number in each layer. Further, as
in the references [8,54], within the active layer it also varies with external pumping.
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Fig. 3.3 Clarification of the x, y and z axis used in the effective refractive index approximation.

To obtain an exact solution of Eq.(3.2) is a difficult task. It is essential to make
certain simplifying assumptions whose nature and validity vary from device to device.
For index guided laser such as BH, the effect of gain or loss on the passive-cavity
modes can be often ignored. The resulting rectangular waveguide problem can then be
solved to obtain transverse and lateral modes supported by the device. This approach
is, however, not suitable for gain-guided lasers where the lateral modes arise precisely
because of the active-region gain.

An alternative approach is based on the effective index approximation [5-10).
Instead of solving the two-dimension wave equation, the problem is split into two one-
dimensional parts whose solutions are relatively easy to obtain. Such an approach is
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partially successful for both gain-guided and index-guided lasers. At the same time, it is
helpful for a physical understanding of the guiding mechanism. The physical motivation
behind the effective index approximation is that often the dielectric constant &(x,y)
varies slowly in the lateral x direction compared to its variation in the transverse y
direction. To a good approximation, the slab-waveguide problem in the y direction can
be solved for each x and the resulting solution can then be used to account for the
lateral variation. The electric field in Eq,(3.2) is thus approximated by

E = @ E(yx) Edx) e”* (3.9

where £ is the propagation constant of the mode and & is the unit vector in the
direction along which the mode is polarized. On substituting Eq.(3.4) in Eq.(3.2) we
obtain

1OE + 10°E, + [sxnk'-p1E = 0. (3.5)
E X Eya‘*_yf

In the effective index approximation, the transverse field distribution E,(y;x) is obtain
first by solving '

OE, + [ &%y ki =) 1E, =0 (3.6)
5 ’

where Siy(x) is the effective propagation constant for a fixed value of x. the lateral field
distribution E(x) is then obtained by solving

O’ + [fp0)-B°1E = 0~ (3.7)
ax

For a given laser structure Eqgs. (3.6) and (3.7) can be used to obtain the transverse and
lateral modes, respectively. Since &(x,y) is generally complex, Sy(x) is also complex.
The complex refractive effective index is defined as

ng(®) = Bu®) / ko . (3.8)
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Equation (3.6) is a one-dimensional eigenvalue equations and can be solved
using the method developed for dielectric slab waveguides. Although it is in general
possible to include the gain or loss occurring in each layer, the resulting analysis is
cumbersome. A simpler approach is to treat the effect of gain or loss as a small
perturbation to the eigenvalue problem. This is justified for heterostructure lasers since
the mode confinement in the y direction occurs mainly because of the index step at the
heterostructure interfaces. The dielectric constant £(x,y) is of the form

axy) = m’(y) + Adxy) (3.9)

where n, is the background (real) refractive index, constant for each layer. The small
perturbation { Ae| « ny’ includes the loss and the contribution of external pumping, If
we use the first-order perturbation theory [55,56], the eigenvalue given by n,rbecomes

Neg(x) = M(x) + Ang(x) (3.10)
where n,(x) is obtained by solving the unperturbed eigenvalue equation

G°E, + ki[ni()-nl)1E, = 0 (3.11)

5

and the perturbation 4n, is obtained using

2mtn, = _f By B d . (.12)
S E oo |

Since Ag(x,y) is constant within each layer, Eq.(3. 12) can be simplified to become

- % I() 45) (3.13)

e

dn,(x) =

where the sum is over the number of layers, 4g is the dielectric perturbation of jth
layer, and ‘
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e -,/ Eom dy | (3.14)
S Bomd

is the fraction of the mode intensity contained in that layer. For the active layer, [ is
referred to as the confinement or filling factor since it indicates the extent to which the
mode is confined to the active region. Both I and the effective index n, vary with x if
the active layer is not laterally uniform in thickness. This is the case, for example, the
_ BH, CSP, CDH and RW devices discussed in chapter 2.

3.4 Transverse mode

The transverse modes are obtained by solving Eq.(3.11) and depend on the
thickness and refractive indices of the various layers used to fabricate a laser diode.
The number of tayers to be considered depends on the specific laser structure, and it is
often necessary to consider all layers for a reasonably accurate description of the
transverse modes. Slab-waveguide model used for studying is found to support two
sets of the modes, the TE and TM modes, which are distinguished on the basis of their
polarization. For TE modes, the electric field E is polarized along the heterojunétion
plane, i.e., the polarization vector in Eq.(3.4) is along the x axis. For TM modes, it is
the magnetic field A that is polarized along x axis.

In both cases, the same equation (3.11) can be used to obtain the field
distributions. The boundary condition that the tangential component of the electric and
magnetic fields be continuous (£, and dF, /dy matching) at every dielectric interface.
- The other boundary condition for the guided modes is that the field £, should vanish as
y tends. to infinity. It should be pointed out that a slab waveguide alsc supports
unguided modes, that so-called radiation modes, for which the latter boundary
condition does not apply. For a laser diode, these radiation modes are not of significant
interest and would not be considered. However, their inclusion is crucial if an arbitrary
optical field is expanded in terms of a complete set of waveguide modes.

As discussed before, the analysis depends on the laser structure containing
various thickness and refractive indices. For the transverse mode, we will consider the
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DH structure for example. The other structures corresponding to ridge waveguide
analysis will be examined in the next chapter.
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Fig. 3.4 Schematic and index profile of a DH structure. Shaded area designates the waveguiding

region.

The DH is a basic structure involved in dielectric waveguiding which may be
understood using a three-layer slab waveguide shown schematically in Fig. 3.4. The
active layer of thickness d is surrounded on both sides by cladding layers. If the
cladding layers are sufficiently thick such that the mode is largely confined within the
three layers, the remaining layers can be ignored.

A general solution of Eq.(3.11) is of the form

A7 + Azen? , y<0
Ey) = < Bicos(xy) + Bisin(xy) , 05ysd (3.15)

Cre?? + Cyen? , d<y
where 7 = k.(n’-n?)? (3.16)
x = k(ni-nl)? (317

v = ko, (nl-ni)” (3.18)
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and n/, n2 and n3 are the material refractive indices for the lower cladding, active and

upper cladding layers, respectively, with n2 > nl and n3.

~ The boundary condition which E,(y—Zx) =0 reveals that

It
=)

Aje* + Ase =
Cre ™+ Cre* =0,

thus, A, and C; must be set to zero

A;=0
C.=0

The continuity of £, and dE, /dy at y = 0 requires that

and also at y.= d requires that

A> = Bicos(xd) + Bisin(xd)
-y Az

Ii

From these four equation (3.23) - (3.26), we obtain the eigenvalue equation

0 1 0 -1

0 0 K ¥

1 ~cos(k d} ~sin(x d) 0
| -w xsinfxd) -xcostkdl 0

=

-k B;sin(xd) + xBycos(xd) .

A

B,
B;
C

-

(3.19)
(3.20)

(3.21)
(3.22)

(3.23)
(3.24)

(3.25)
(3.26)

(3.27)

whose solutions yield the effective mode index (n,). In general, multiple solutions are
possible corresponding to different TE modes. For all guided modes, the inequality n2

> ne > nl and n3 is satisfied.
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The TM modes are obtained using the same procedure. The only difference lies
in the application of boundary conditions. The continuity of the tangential component
of the electric field (E,) requires that n/(dE/dy) be continuous across the
heterostructure interface at y = 0 and y = d. Here n;is either nl, n2 or n3 depending
on the side from which the interface is approached. The origin of this difference
between TE and TM modes can be traced back to Maxwell’s equation. In the
heterostructure laser diodes, the TE modes are generally favored over the TM modes
since the facet reflectivity is higher for TE modes [10]. In the further discussion we
therefore consider only the TE modes.

As mentioned before, a quantity that plays an important role for heterostructure
laser is the transverse confinement factor ( It) because it represents the fraction of the
mode energy within the active layer that is available for interaction with the injected
charged carriers. Using E(y) from Eq.(3.15) in

I =/ Boyay (3.28)
S En@

Fig. 3.5 shows the simulation results of effective refractive index () and
transverse confinement factor (/7) as the functions of the active layer thickness (d) for
the 0.870 um GaAs lasers with AlyGay.cAs cladding layers. By varying the Al-content
(x) in the ternary compound, the bulk refractive indices of both cladding layers (n; and
n; )can be set to 3.35, 3.40, 3.45 and 3.50 corresponding to Figs. 3.5a, 3.5b, 3.5¢ and
3.5d, while the active-layer index is 3.62 constantly. In these four graphs, both
effective index and confinement factor increase with active layer thickness and tend to
steady. It should be noted that there is a fact investigated from the graph comparison,
The higher optical mode occurs when active layer thickness increases, the maximum
thickness maintaining fundamental mode are 0.30, 0.40, 0.45 and 0.45 um according
to the cladding layer indices 3.35, 3.40, 3.45 and 3.50, respectively. In the other
words, less index difference between active and cladding layers (n2-n;,) produces higher
mode discrimination which a fundamental mode operation and increased confinement
factor can be achieved at the larger active layer thickness.
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Fig. 3.5 Simulation results of transverse confinement facior (I7) and effective refractive index (n,)
as the functions of the active layer thickness (d) for 0.870 um Gads DH lasers with varied
cladding-layer indices fa) 3.35, (b) 3.40, (c) 3.45 and (d) 3.50. The solid and dotted line are
represented to effective refractive index and confinement factor, respectively.




28

1 T 1 ¥ T ¥ 1 Ll 1 Ll 1
10 ? 3.626
4 3.800
m
L 08l ] 2
8 49576 ©
g g
®
uw 06| A o
- 3.550 )
€
E - 8.626 %
G 04 |- . o
£ | -3
E - 8.600 §
021t 1 =
© 4 3.475 §
]
0.0 - 3.460
i " (] " (1 i i i 1 i i i i i i A 1 i 1 i L
00 02 04 06 08 %0 12 14 16 18 20
Active Layer Thickness (pm)
(c)
1 1 L L] f 1 1 I ¥ 1 T
10 |- - 3.625
L
m
L 08} - 3.600
S |} Q
-4 <
S oo} {3575 @
€
: ; |
§ 0.4 4 3.850 g I
g '
t .l
0.2 Jass 5
© 2
5
0.0 - 3.500
] [ [ ) 1 [] [] 1 i 1 i

0.0 . 0.2 04 06 . 0.8 ' 1.0 l 1.2 ; 14 ‘ 1.6 . 1.8 ‘ 2.0
Active Layer Thickness {pm)

(d)

Fig. 3.5 {cont) Simulation results of transverse confinement factor (I'y ) and effective refractive
index (n.) as the functions of the active layer thickness (d) for 0.870 um Gads DH lasers
with varied cladding-layer indices (a) 3.35, (b) 3.40, (c) 3.45 and (d} 3.50. The solid and
dotted line are represented to effective refractive index and confinement factor, respectively.
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3.5 Lateral modes

The lateral modes are obtained by solving Eq.(3.7) which after using Eqs. (3.8)
and (3.10) becomes

O°E, + kF{[n{)+ an(x)V-B’(x)}E: =0 (3.29)
o

The lateral-mode behavior in laser diodes is different depending on whether
gain guiding or index guiding is used to confine the lateral modes. In a gain-guided
device, n,(x) is a constant not depending on lateral direction. By contrast, in a index-
guided device, structural lateral variations are used to make n, larger in a central region
of width w illustrated in Fig. 3.2b. For the latter case, the slab-waveguide problem
discussed in the previous section is solved separately in the two regions, and

ndx) = [ n" | if |x| sw2 (3.30)
n™ | otherwise :

where n,” and n,” are the effective indices corresponding to the central and out-of-
central region, respectively. Their magnitude depends on the structural details, and the
lateral index step

anp = ntton (3.31)

determines the extent of index guiding. Whether the lateral mode is index-guided or
gain-guided depends on the relative magnitudes of An; and An,(x), and in general both
should be considered,

3.5.1 Index-guided laser diodes

The devices with the index step An, » | Anx) | fall in the category of index-
guided devices such as BH and RW laser diodes. In this case, the effect of gain can be
treated as a small perturbation to the index-guided lateral mode and one can follow a
perturbation procedure similar to that outlined in Egs. (3.10) - (3.14). The mode-
propagation constant is given by
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B =rhn +ia/2 (3.32)

whose n;, and «; are the refractive index and the absorption coefficient of a lateral
mode supported by the rectangular waveguide of width w and thickness d. The lateral
modes are obtained by solving the symmetrical three-layer slab-waveguide problem

J°E, + ki[nl(x)-nm’]E. = 0. (3.33)
ox
The mode-absorption coefficient ¢ is obtained using the first-order perturbation
theory [10] and is given by \
@ = ko Im /2 nx) anx) E2(x) de (3.34)

m S Ex) i
where An,(x) is given by Eq.(3.13).
By the same procedure as transverse mode, we can obtain numerical solutions

of n; and o, from the eigenvalue equation. And the lateral confinement factor (I1) can
be considered from

no=uf E () dbe (3.35)
S B

Finally, we can represents the fraction of overall mode energy contained within
active region, overall confinement factor ( I'), as following

r=nr (3.36)

where I and I7 are the transverse and lateral confinement factor defined by Eqgs.
(3.28) and (3.35), respectively.
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3.5.2 Gain-guided laser diodes

For gain-guided devices, the effective index n, in Eq.(3.29) is constant along
the lateral direction x, and the mode confinement occurs through An,(x) given by Eq.
(3.13). In contrast to index-guided lasers where the index changes discontinuously [see
Eq.(3.30)], 4n,(x) varies continuously.

The problem of lateral-mode determination for a gain-guided laser diodes is,
however, exceedingly complex, and in general a numerical approach' is necessary. This
is so because stimulated emission couples the carrier-diffusion and the wave equations,
and the two should be solved self-consistently for each value of the device current. A
further complication is that the injected current density [J(x)] is itself laterally non-
uniform because of current spreading in the bell-shape (see Fig. 2.3a). Moreover, the
problem should includes Auger recombination for more precise determination.

This thesis does not show the details to solve gain-guided problem because its
complexity and it is not the major mechanism in Ridge Waveguide which is the thesis’s
objective. Anyway, some literature [10,30] have shown several numerical models and
various assumptions for the gain-guided laser diodes.
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