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CHAPTER I

INTRODUCTION

Flow over submerged obstacles is one of the classical problems in fluid mechanics.

It concerns several related physical applications ranging from the flow of water over

rocks to atmospheric/oceanic stratified flows encountering topographic obstacles,

or even a moving pressure distribution on a free surface.

Free surface flows over an obstacle have been investigated by many re-

searchers for various bottom topography. Lamb [42] considered linear problem of

free-surface flow over a submerged semi-elliptical obstacle. He obtained solutions

with a train of waves on the downstream for subcritical flow and solutions without

waves for supercritical flow. Forbes and Schwartz [27] used the boundary inte-

gral method to find fully nonlinear solutions of subcritical and supercritical flows

over a semi-circular obstacle. Their findings confirmed and extended the previ-

ous results of Lamb. Forbes [23] computed numerical solutions of critical flow

over a semi-circular obstacle for which the flow was in subcritical regime ahead of

the obstacle and supercritical regime behind the obstacle. This type of solution

is generally referred as “hydraulic fall”. Vanden-Broeck [60] showed numerically

that there exist two types of supercritical flow for which the first type of solution

corresponds to those obtained by the perturbation of uniform flow, and the other

by the perturbation of solitary wave. Both profiles were symmetric with respect

to the obstacle. Supercritical and critical flows over a submerged triangular ob-

stacle were investigated by Dias and Vanden-Broeck [17]. They employed a series



2

truncation technique and calculated numerically the solutions. They illustrated,

for critical regime, that the flow behavior near the apex of the triangle was sim-

ilar to the flow over a wedge as the size of the triangle increases to the limiting

case. They also conjectured, for supercritical regime, that the flow could approach

a limiting configuration with a stagnation point on the free surface with a 120◦

angle.

Shen et al. [57], Shen and Shen [56] and Shen [55] studied weakly nonlinear

problem of stationary solutions of flow over an obstacle. Like in the fully nonlinear

problem, they found two branches of solutions for supercritical flow and showed

that Forbes’s solution [23] was a limit of the cnoidal wave solution. Zhang and Zhu

[66] proposed a model based on a nonlinear integral equation in terms of hodograph

variables for free-surface flow over an arbitrary bottom obstruction. Their results

did not suffer the upstream spurious waves as compared to those obtained by

Forbes and Schwartz [27]. Later, Dias and Vanden-Broeck [16] proposed new

solution in the critical flow regime and referred as the “generalized hydraulic fall”.

This solution was characterized by downstream supercritical flow with a train of

waves on the upstream side. The presence of these waves in their numerical

solution was the result of removing the upstream radiation condition.

When the fluid is subjected to the interaction of gravity and surface tension,

the flow pattern can be sophisticated and the problem is generally difficult to solve.

Forbes [22] was among the first to proposed numerical solutions of nonlinear flows

over a semi-circular obstruction under the effect of gravity and surface tension.

Three different branches of solution were presented in comparison with the results

of linear problem. Sketches of typical free-surface profiles over a single obstacle

are shown in Figure 1.1.

In case of flows over two obstacles, Pratt [54] investigated this problem
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experimentally and theoretically using weakly nonlinear analysis. Though his

experiments showed that there were only three stationary critical flow solutions

(see Figure 1.2 (d)-(f)), he suggested that there could be up to nine possible

steady flow configurations. Later, Belward [3] computed numerical solutions of

a critical flow for which the hydraulic fall occurred at the leftmost obstacle with

downstream supercritical flow. It should be noted that, for this solution, the flow

pattern in the neighborhood of the rightmost obstacle was similar to that of the

perturbation from uniform stream as in the case of flow over an obstacle. This flow

configuration had been found in the experiments of Pratt [54] as shown in Figure

1.2(f). Recently, Binder, Vanden-Broeck and Dias [9] showed also that there exist

two types of solution in subcritical flow regime, and one type in supercritical flow

regime as illustrated in Figure 1.2 (a)-(c).

In this thesis, we consider the steady free-surface flows over submerged

obstacles at the bottom of a channel. The fluid is assumed to be inviscid and

incompressible; and the flow is irrotational. Flow domain is bounded below by

a horizontal rigid bottom, except at the presence of obstacles, and above by a

free surface. The conditions of incompressibility and irrotationlity of the fluid

motion imply the existence of potential function and stream function. The fluid

domain in the physical plane is transformed onto the complex plane. Gravity and

surface tension are included in the dynamic boundary condition. The fully non-

linear problem is solved numerically by the boundary integral equation technique.

This integral equation provides a relationship between the flow variables on the

free surface. One of the advantages of this technique is that mesh points in the

numerical scheme need only be placed on the free surface and the bottom rather

than throughout the entire flow domain. We obtain the numerical solutions by

solving a system of nonlinear algebraic equations on the free surface using New-
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ton’s method. Details of the formulation and the numerical procedure of the fully

nonlinear problem are given in chapter II. The weakly nonlinear problem associ-

ated with the stationary and time-dependent forced Korteweg-de Vries equations

are presented in chapter III. In chapter IV, we recapture the big picture of free-

surface flows over a single obstacle problem. For a simple understanding in this

thesis, we shall denote a positive obstacle as “bump”and a negative obstacle as

“dip”. Solutions of the fully nonlinear and the weakly nonlinear problems are

calculated and compared for each case to constitute a check on these numerical

results. Solution diagrams are consequently presented to shows the existence of

different flow regimes. Finally, free-surface flows over two submerged obstacles

are discussed in chapter V.
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(a) Subcritical flow (b) Supercritical flow

(c) Hydraulic fall (d) Generalized hydraulic fall

Figure 1.1: Sketches of four basic free-surface flows over a single obstacle: (a) Subcritical

and uniform flow on upstream with waves on downstream. (b) Supercritical flow. (c)

Critical flow with upstream subcritical and downstream supercritical known as the

“hydraulic fall”. (d) “Generalized hydraulic fall” solution in critical flow regime.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Sketches of the basic free-surface flows over two triangular obstacles for

which (a) and (b) are in subcritical regimes, (c) is in supercritical regime, and (d)-(f)

are in critical regimes.



CHAPTER II

FULLY NONLINEAR PROBLEM

In this chapter, mathematical formulation and numerical procedure for the fully

nonlinear problem of free-surface flows over two submerged obstacles are pre-

sented. The problem is formulated as an integral equation by using a relationship

between the flow variables on the free surface based on the boundary integral equa-

tion technique (Forbes and Schwartz [27], Forbes [22], Zhang and Zhu [66], Bel-

ward [3], Dias and Vanden-Broeck [16], Tooley and Vanden-Broeck [58], Binder,

Vanden-Broeck and Dias [9], Binder and Vanden-Broeck [8], and others). This

integral equation is then discretized as a system of nonlinear algebraic equations

and solved numerically by using Newton’s method. Details of the mathematical

formulation and the numerical procedure are given in §2.1 and §2.2, respectively.

2.1 Mathematical Formulation

Steady two-dimensional free-surface flows over two submerged obstacles at the

channel bottom are considered. The fluid is assumed to be inviscid and incom-

pressible; and the flow is irrotational. Flow domain is bounded below by a hor-

izontal bottom CD, except at the presence of obstacles, and above by a free

surface AB. Sketch of the physical domain is shown in Figure 2.1. Flow direction

is chosen to be from left to right.

We introduce Cartesian coordinates (x, y) with the x-axis along the hori-

zontal bottom and the y-axis directed vertically upwards through the apex of the
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A

B

C Dx

y

UH

y = H + η(x)

y = h(x)

g

Figure 2.1: Sketch of free-surface flow over two obstacles in physical plane.

rightmost obstacle. Gravity g is acting in the negative y-direction. Far upstream

as x → −∞, the flow approaches a uniform stream with constant velocity U and

constant depth H.

We denote the free surface by y = H + η(x) where η(x) is the elevation of

free surface from the undisturbed flow level y = H. The bottom is described by

y = h(x). On the horizontal segments of the bottom, h ≡ 0. At the obstacles, it

is assumed that h(x) is either a positive or negative continuous function. Under

this requirement, the solutions are found to be qualitatively similar for different

obstacle shapes. For simplicity, we consider the isosceles triangular shaped ob-

stacles whose base length equals to twice its height. Let Ii, Ji and Ki denote the

upstream corner, the apex, and the downstream corner positions of the obstacle i,

respectively (see Figure 2.2). Here i = 1, 2 refer to the leftmost and the rightmost

obstacles, respectively. The obstacle height hobi is defined as vertical distance of

the apex away from the horizontal bottom. The distance between two obstacles
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x

y

I1

J1

K1 I2

J2

K2

hob1

hob2

xd

Figure 2.2: Geometry of the obstacles.

is defined by

xd = xJ2
− xJ1

. (2.1)

The velocity components in the x- and y- directions are denoted by u and v,

respectively.

2.1.1 Dynamic and Kinematic Boundary Conditions

For inviscid fluid, the flow is governed by the Euler equations

ρ
Dq

Dt
= −∇p + ρF.

Here ρ is the fluid density, q(x, t) = ui + vj is the velocity vector of fluid motion,

D
Dt

= ∂
∂t

+q ·∇ is the total (or material) derivative, p is the fluid pressure, and F is

the external or body force. In this study, the effects of gravity and surface tension

are both taken into accounts. For steady irrotational flow of an incompressible

fluid, the Euler equations can be reduced to

1

2
(u2 + v2) +

p

ρ
+ gy − T

ρ
κ = B∗ (2.2)

along a streamline. Equation (2.2) is known as the Bernoulli equation or dy-

namic boundary condition on the free boundary. On the free surface, p is given
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as constant atmospheric pressure. Here T is the coefficient of surface tension, κ is

the curvature of the free surface, and B∗ is the Bernoulli constant. The curvature

is defined by κ = η′′(x)
(

1+
(

η′(x)
)2

)3/2 . Equation (2.2) can be rewritten as

1

2
(u2 + v2) + gy − T

ρ
κ = B∗∗, (2.3)

where B∗∗ = B∗ − p

ρ
.

On the rigid bottom y = h(x), the normal velocity must vanish. This

implies that the kinematic boundary condition on this boundary is

uhx = v on y = h(x). (2.4)

2.1.2 Dimensionless Variables

It is convenient to normalize the physical problem by introducing appropriate

scaling variables. This can be done by choosing far upstream velocity U as the

unit velocity and far upstream depth H as the unit length. The dimensionless

variables are

u∗ =
u

U
, v∗ =

v

U
,

x∗ =
x

H
, y∗ =

y

H
,

η∗ =
η

H
, h∗ =

h

H
.

After dropping the asterisks, the nondimensional forms of equations (2.3)

and (2.4) can readily be obtained as

u2 + v2 +
2

F 2
y − 2

F 2
κBo = B̄ on y = 1 + η, (2.5)

uhx = v on y = h(x). (2.6)

Here F = U√
gH

is the upstream Froude number, Bo = T
ρgH2 is the Bond number

and B̄ = B∗∗

U2 is the dimensionless Bernoulli constant. In reference to the linear
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wave theory, the flow regimes can be defined as follows. If F < 1, the flow is

subcritical. If F > 1, the flow is supercritical. If F < 1 on one side and F > 1 on

the other side, the flow is critical. We determine the constant term on the right

hand side of (2.5) by using the uniform flow condition at far upstream. This gives

u2 + v2 +
2

F 2
(y − 1) − 2

F 2
κBo − 1 = 0 on y = 1 + η. (2.7)

2.1.3 Potential Function and Stream Function

The problem can be greatly simplified by the use of complex function theory.

From the assumption of incompressibility, conservation of fluid mass implies

∂u

∂x
+

∂v

∂y
= 0. (2.8)

A differentiable function ψ(x, y) can be chosen as

u =
∂ψ

∂y
and v = −∂ψ

∂x
(2.9)

so that (2.8) is automatically satisfied. The function ψ is known as the stream

function. For irrotational flow, we have the following relationship

∇× q =
∂v

∂x
− ∂u

∂y
= 0.

This equation can be satisfied by letting

q = u(x, y)i + v(x, y)j =
∂φ

∂x
i +

∂φ

∂y
j = ∇φ, (2.10)

where the differentiable function φ = φ(x, y) is known as the potential function.

From (2.9) and (2.10), we can deduce that

∂φ

∂x
=

∂ψ

∂y
and

∂φ

∂y
= −∂ψ

∂x
. (2.11)

Relations (2.11) are the well known Cauchy-Riemann equations in the theory

of functions of complex variables.
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A B

C DI1 J1 K1 I2 J2 K2

φ

ψ
ψ = 0

ψ = −1

Figure 2.3: Sketch of flow domain in the f -plane.

Next, we introduce the complex potential function f by

f(x, y) = φ(x, y) + iψ(x, y),

and the complex velocity w by

w(x, y) ≡ u − iv =
df

dz
.

Here z = x + iy.

Without loss of generality, we choose the streamline ψ = 0 on the free

surface and φ = 0 at the point x = 0 on the bottom (J2). By the definition of v in

(2.9), the bottom is another streamline with ψ = −1. The values of φ at the apex

of obstacles Ji are denoted by φJi
and those at the upstream Ii and downstream

Ki corners of the obstacles by φIi
and φKi

for i = 1, 2. The flow configuration

in the f -plane is an infinite strip as shown in Figure 2.3. This concludes the

mathematical formulation of the problem. We seek w as an analytic function of f

in the strip −1 < ψ < 0. This function must approach 1 as φ → −∞, and satisfy

(2.6) and (2.7).
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0

ABDC I1 J1 K1 I2 J2 K2

−1 α

β

Figure 2.4: Sketch of flow in the upper half ζ-plane.

2.1.4 Conformal Mapping

To obtain the required integral equation, we map conformally the flow domain

from the complex f -plane onto upper half of the complex ζ-plane by

ζ = α + iβ = e−πf .

The free surface and the bottom are mapped onto positive and negative real axes of

the ζ-plane, respectively (see Figure 2.4). All the reference points in the complex

f - and ζ-planes are listed in Table 2.1.

Let us introduce a new complex function τ̂ − iθ̂ = ln
(

df
dz

)

, the so-called

hodograph variables or logarithmic velocity. It is related to the complex

velocity by

w = u − iv = eτ̂−iθ̂. (2.12)

Here θ̂(α, β) represents the direction of the velocity (−π ≤ θ̂ ≤ π) and eτ̂ is the

flow speed (eτ̂ =
√

u2 + v2). In ζ-plane, the kinematic boundary condition (2.6)
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(x, y) plane f -plane ζ-plane

A ψ = 0, φ = φA = −∞ α = αA = ∞, β = 0

B ψ = 0, φ = φB = ∞ α = αB = 0, β = 0

C ψ = −1, φ = φC = −∞ α = αC = −∞, β = 0

D ψ = −1, φ = φD = ∞ α = αD = 0, β = 0

I1 ψ = −1, φ = φI1 α = αI1 , β = 0

J1 ψ = −1, φ = φJ1
α = αJ1

, β = 0

K1 ψ = −1, φ = φK1
α = αK1

, β = 0

I2 ψ = −1, φ = φI2 α = αI2 , β = 0

J2 ψ = −1, φ = φJ2
= 0 α = αJ2

= −1, β = 0

K2 ψ = −1, φ = φK2
α = αK2

, β = 0

Table 2.1: Values of reference points in the f -plane and the ζ-plane.

on the bottom (−∞ < α < 0) can be expressed as

θ̂(α,−1) =



































































θ
up
1 , αI1 < α < αJ1

,

θdo
1 , αJ1

< α < αK1
,

θ
up
2 , αI2 < α < αJ2

,

θdo
2 , αJ2

< α < αK2
,

0 , otherwise

(2.13)

where θ
up
i and θdo

i are the inclined acute angles of upstream and downstream side

of the obstacle ith with θdo
i = −θ

up
i for i = 1, 2.
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ABDC I1 J1 K1 I2 J2 K2

R

−R R

ε

Γ

C1

C2
C3 C4

α0

α

β

Figure 2.5: Contour Γ in the complex ζ-plane.

2.1.5 Boundary Integral Equation

In this section, an integral equation relating τ̂ and θ̂ on the free surface and the

bottom in ζ-plane is derived. Firstly, we consider a contour integral of the form

∮

Γ

τ̂(α, β) − iθ̂(α, β)

ζ − ζ0

dζ

where ζ0 is a point on the free surface or the bottom (ζ0 = α0). The path Γ

consists of (see Figure 2.5)

C1 := semi-circular arc of radius R centered at the origin,

C2 := contour line from −R to α0 − ε,

C3 := semi-circular arc of radius ε centered at α0, and

C4 := contour line from α0 + ε to R.

That is

∮

Γ

τ̂(α, β) − iθ̂(α, β)

ζ − α0

dζ =

∫

C1

τ̂(α, β) − iθ̂(α, β)

ζ − α0

dζ +

∫ α0−ε

−R

τ̂(α, 0) − iθ̂(α, 0)

α − α0

dα

+

∫

C3

τ̂(α, β) − iθ̂(α, β)

ζ − α0

dζ

+

∫ R

α0+ε

τ̂(α, 0) − iθ̂(α, 0)

α − α0

dα. (2.14)
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From Cauchy theorem, integral over the closed contour Γ in (2.14) is zero.

That is

∫

C1

τ̂(α, β) − iθ̂(α, β)

ζ − α0

dζ +

∫ α0−ε

−R

τ̂(α, 0) − iθ̂(α, 0)

α − α0

dα +

∫

C3

τ̂(α, β) − iθ̂(α, β)

ζ − α0

dζ

+

∫ R

α0+ε

τ̂(α, 0) − iθ̂(α, 0)

α − α0

dα = 0. (2.15)

On the contour C3, we have ζ = α0 + εeiλ such that

λ = 0 at ζ = α0 + ε,

λ = π at ζ = α0 − ε.

Then the integral on the contour C3 can be written as

∫

C3

τ̂(α, β) − iθ̂(α, β)

ζ − α0

dζ

=

∫ 0

π

τ̂(α0 + ε cos λ, ε sin λ) − iθ̂(α0 + ε cos λ, ε sin λ)

εeiλ
iεeiλdλ

= −i

∫ π

0

[

τ̂(α0 + ε cos λ, ε sin λ) − iθ̂(α0 + ε cos λ, ε sin λ)
]

dλ. (2.16)

Using (2.16), (2.15) becomes

∫

C1

τ̂(α, β) − iθ̂(α, β)

ζ − α0

dζ +

∫ α0−ε

−R

τ̂(α, 0) − iθ̂(α, 0)

α − α0

dα

− i

∫ π

0

[

τ̂(α0 + ε cos λ, ε sin λ) − iθ̂(α0 + ε cos λ, ε sin λ)
]

dλ

+

∫ R

α0+ε

τ̂(α, 0) − iθ̂(α, 0)

α − α0

dα = 0.

Taking limit as ε → 0, we have

τ̂(α0, 0) − iθ̂(α0, 0) =
1

iπ

∫

C1

τ̂(α, β) − iθ̂(α, β)

ζ − α0

dζ

+
1

iπ

∫ R

−R

τ̂(α, 0) − iθ̂(α, 0)

α − α0

dα. (2.17)

As |α| → ∞ or R → ∞, we have w → 1 or eτ̂−iθ̂ → 1 implying τ̂ − iθ̂ → 0

and hence the first integral on the right hand side of (2.17) vanishes. The integral
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equation (2.17) can now be reduced to

τ̂(α0, 0) − iθ̂(α0, 0) =
1

iπ

∫ ∞

−∞

τ̂(α, 0) − iθ̂(α, 0)

α − α0

dα. (2.18)

This integral is of Cauchy principal value. By taking the real part of (2.18), we

obtain

τ̄(α0) = − 1

π

∫ ∞

−∞

θ̄(α)

α − α0

dα (2.19)

where τ̄(α) and θ̄(α) denote the values of τ̂ and θ̂ on the free surface and the

bottom.

After applying the kinematic boundary condition (2.13), the integral in

(2.19) on an interval (−∞, 0) can be simplified as follows.
∫ 0

−∞

θ̄(α)

α − α0

dα =

∫ αI1

−∞

θ̄(α)

α − α0

dα +

∫ αJ1

αI1

θ̄(α)

α − α0

dα +

∫ αK1

αJ1

θ̄(α)

α − α0

dα

+

∫ αI2

αK1

θ̄(α)

α − α0

dα +

∫ αJ2

αI2

θ̄(α)

α − α0

dα +

∫ αK2

αJ2

θ̄(α)

α − α0

dα

+

∫ 0

αK2

θ̄(α, 0)

α − α0

dα

= θ
up
1 ln

∣

∣

∣

∣

αJ1
− α0

αI1 − α0

∣

∣

∣

∣

+ θdo
1 ln

∣

∣

∣

∣

αK1
− α0

αJ1
− α0

∣

∣

∣

∣

+ θ
up
2 ln

∣

∣

∣

∣

αJ2
− α0

αI2 − α0

∣

∣

∣

∣

+ θdo
2 ln

∣

∣

∣

∣

αK2
− α0

αJ2
− α0

∣

∣

∣

∣

= θ
up
1 ln

∣

∣

∣

∣

∣

(αJ1
− α0)

2

(αI1 − α0) (αK1
− α0)

∣

∣

∣

∣

∣

+ θ
up
2 ln

∣

∣

∣

∣

∣

(αJ2
− α0)

2

(αI2 − α0) (αK2
− α0)

∣

∣

∣

∣

∣

.

Finally, equation (2.19) can be rewritten as

τ̄(α0) = −θ
up
1

π
ln

∣

∣

∣

∣

∣

(αJ1
− α0)

2

(αI1 − α0) (αK1
− α0)

∣

∣

∣

∣

∣

− θ
up
2

π
ln

∣

∣

∣

∣

∣

(αJ2
− α0)

2

(αI2 − α0) (αk2
− α0)

∣

∣

∣

∣

∣

− 1

π

∫ ∞

0

θ̄(α)

α − α0

dα. (2.20)

This provides a relation between τ̄ and θ̄ on the free surface and the bottom.

To determine the free surface and the bottom profile, we consider the iden-

tity

d

dζ
(x + iy) = w−1 =

(

eτ̄−iθ̄
)−1

−πe−πf
= −e−τ̄

πζ
(cos θ̄ + i sin θ̄).
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Taking real and imaginary parts for β = 0, we have

∂x

∂α
= −e−τ̄(α)

πα
cos θ̄(α)

and

∂y

∂α
= −e−τ̄(α)

πα
sin θ̄(α).

On AB (0 < α0 < ∞), free-surface profile can be obtained from

x(α0) = xA +
1

π

∫ ∞

α0

e−τ̄(α)

α
cos θ̄(α)dα, (2.21)

and

y(α0) = 1 +
1

π

∫ ∞

α0

e−τ̄(α)

α
sin θ̄(α)dα. (2.22)

Here xA is the x coordinate at point A.

On CD (−∞ < α0 < 0), the bottom profile is determined from

x(α0) = − 1

π

∫ α0

αJ2

e−τ̄(α)

α
cos θ̄(α)dα, (2.23)

and

y(α0) =
1

π

∫ 0

α0

e−τ̄(α)

α
sin θ̄(α)dα. (2.24)

Next we are required to calculate the curvature κ of the free surface. It is

convenient to express κ in terms of the hodograph variables as follows. We rewrite

the first and the second derivatives of η as

η′(x) = ηααx = tan θ̄

and

η′′(x) = (tan θ̄)ααx

=

(

sec2 θ̄
∂θ̄

∂α

)

(

− πα

e−τ̄ cos θ̄

)

= sec3 θ̄

(

−παeτ̄ ∂θ̄

∂α

)

.
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Accordingly, the curvature κ is

κ =
η′′(x)

(

1 +
(

η′(x)
)2

)3/2

=
sec3 θ̄

(

−παeτ̄ ∂θ̄
∂α

)

(1 + tan2 θ̄)3/2

= −παeτ̄ ∂θ̄

∂α
. (2.25)

From (2.25) and
√

u2 + v2 = eτ̄ , equation (2.7) becomes

e2τ̄ +
2

F 2
(y − 1) +

2

F 2
παeτ̄ ∂θ̄

∂α
Bo − 1 = 0. (2.26)

Equations (2.20), (2.21)-(2.24) and (2.26) define a system of nonlinear in-

tegral equations for unknowns θ̄ on the free surface.

2.2 Numerical Procedure

In this section, we describe numerical approach for the nonlinear problem de-

rived in previous section. This numerical procedure has been successfully used by

Zhang and Zhu [66], Vanden-Broeck [61], and others for solving nonlinear integral

equations.

Firstly, we write the hodograph variables in terms of the independent vari-

able φ by the change of variables

α = χφe
−πφ,

where

χφ =















1 , if φ is on the free surface,

−1 , if φ is on the bottom.

Values of α for the corresponding values of φ at the apex and the corners of

obstacles are given in Table 2.2. For simplicity, we use the notation τ(φ) =

τ̄(χφe
−πφ), θ(φ) = θ̄(χφe

−πφ), x(φ) = x(χφe
−πφ) and y(φ) = y(χφe

−πφ).
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I1 αI1 = −e−πφI1

J1 αJ1
= −e−πφJ1

K1 αK1
= −e−πφK1

I2 αI2 = −e−πφI2

J2 αJ2
= −e−πφJ2

K2 αK2
= −e−πφK2

Table 2.2: Values of α at the apexs and corners of obstacles.

Equation (2.20) becomes

τ(φ0) = τ̄(α0) = − θ
up
1

π
ln

∣

∣

∣

∣

∣

(

e−πφJ1 + χφ0
e−πφ0

)2

(

e−πφI1 + χφ0
e−πφ0

) (

e−πφK1 + χφ0
e−πφ0

)

∣

∣

∣

∣

∣

− θ
up
2

π
ln

∣

∣

∣

∣

∣

(

e−πφJ2 + χφ0
e−πφ0

)2

(

e−πφI2 + χφ0
e−πφ0

) (

e−πφK2 + χφ0
e−πφ0

)

∣

∣

∣

∣

∣

−
∫ ∞

−∞

θ(φ)e−πφ

e−πφ − χφ0
e−πφ0

dφ. (2.27)

The third term on the right hand side of equation (2.26) can be rewritten as

2

F 2
παeτ̄ ∂θ̄

∂α
Bo =

2

F 2
πe−πφeτ ∂θ

∂φ

∂φ

∂α
Bo

= − 2

F 2
eτ ∂θ

∂φ
Bo,

and (2.26) becomes

e2τ(φ) +
2

F 2
(y(φ) − 1) − 2

F 2
eτ(φ) ∂θ(φ)

∂φ
Bo − 1 = 0. (2.28)

Finally, the free-surface profile can be calculated from

x(φ0) = xA +

∫ φ0

−∞
e−τ(φ) cos θ(φ)dφ, (2.29)

y(φ0) = 1 +

∫ φ0

−∞
e−τ(φ) sin θ(φ)dφ, (2.30)
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and the bottom profile is determined from

x(φ0) =

∫ φ0

0

e−τ(φ) cos θ(φ)dφ, (2.31)

y(φ0) = −
∫ ∞

φ0

e−τ(φ) sin θ(φ)dφ. (2.32)

To solve the problem numerically, the free surface must be truncated at

φ1 and φN+1 for the corresponding far upstream x → −∞, and far downstream

x → ∞, respectively. The truncated free surface is then discretized into N equally

segments with

φI =

(

−N

2
+ I − 1

)

∆, I = 1, 2, . . . , N + 1.

Here ∆ > 0 is the mesh spacing, N is an even integer, and the unknown variables

on the free surface are

θI = θ(φI), I = 1, 2, . . . , N + 1.

Next, we evaluate the values τmI of τ(φ) at the midpoints

φmI =
φI + φI+1

2
, I = 1, 2, . . . , N (2.33)

by applying trapezoidal rule to the integral in (2.27) with summation over the

points φI . Symmetry of the quadrature and of the distribution of mesh points

enable us to evaluate the integral which is of Cauchy principal value as if it were

an ordinary integral (see Appendix). Then we replace (2.27) by

τ(φ0) = − θ
up
1

π
ln

∣

∣

∣

∣

∣

(

e−πφJ1 + χφ0
e−πφ0

)2

(

e−πφI1 + χφ0
e−πφ0

) (

e−πφK1 + χφ0
e−πφ0

)

∣

∣

∣

∣

∣

− θ
up
2

π
ln

∣

∣

∣

∣

∣

(

e−πφJ2 + χφ0
e−πφ0

)2

(

e−πφI2 + χφ0
e−πφ0

) (

e−πφK2 + χφ0
e−πφ0

)

∣

∣

∣

∣

∣

−
∫ φN+1

φ1

θ(φ)e−πφ

e−πφ − χφ0
e−πφ0

dφ.
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Following Hocking and Vanden-Broeck [39], the above integral can be re-written

as

∫ φN+1

φ1

θ(φ)e−πφ

e−πφ − χφ0
e−πφ0

dφ =

∫ φN+1

φ1

(

θ(φ) − θ(φ0)
)

e−πφ

e−πφ − χφ0
e−πφ0

dφ

+

∫ φN+1

φ1

θ(φ0)

e−πφ − χφ0
e−πφ0

e−πφdφ

=

∫ φN+1

φ1

(

θ(φ) − θ(φ0)
)

e−πφ

e−πφ − χφ0
e−πφ0

dφ

− θ(φ0)

π
ln

∣

∣

∣

∣

e−πφN+1 − χφ0
e−πφ0

e−πφ1 − χφ0
e−πφ0

∣

∣

∣

∣

before applying the trapezoidal rule. The value of τmI can be calculated from

τmI = τ(φmI) = − θ
up
1

π
ln

∣

∣

∣

∣

∣

(

e−πφJ1 + e−πφmI
)2

(

e−πφI1 + e−πφmI

) (

e−πφK1 + e−πφmI

)

∣

∣

∣

∣

∣

− θ
up
2

π
ln

∣

∣

∣

∣

∣

(

e−πφJ2 + e−πφmI
)2

(

e−πφI2 + e−πφmI

) (

e−πφK2 + e−πφmI

)

∣

∣

∣

∣

∣

−
N+1
∑

j=1

(

θj − θ(φmI)
)

e−πφj

e−πφj − e−πφmI
ωj∆

+
θ(φmI)

π
ln

∣

∣

∣

∣

e−πφN+1 − e−πφmI

e−πφ1 − e−πφmI

∣

∣

∣

∣

.

Here

wj =















1
2
, if j = 0 and N + 1,

1, otherwise,

and θ(φmI) is the value of θ at the midpoint I and evaluated by the four-point

interpolation, denoted by θmI . That is

θm1 =
5

16
θ1 +

15

16
θ2 −

5

16
θ3 +

1

16
θ4,

θmI = − 1

16
θI−1 +

9

16
θI +

9

16
θI+1 −

1

16
θI+2, I = 2, 3, ..., N − 1

and

θmN =
5

16
θN+1 +

15

16
θN − 5

16
θN−1 +

1

16
θN−2.
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Next we evaluate xI = x(φI) and yI = y(φI) by applying the trapezoidal

rule to equations (2.29) and (2.30), respectively. This gives

x1 = xA,

y1 = 1,

xI = xI−1 + e−τmI−1 cos (θmI−1) ∆,

yI = yI−1 + e−τmI−1 sin (θmI−1) ∆, I = 2, 3, . . . , N + 1.

For xA, we assume that xA is equal to the x value at φ = φ1 on the bottom since

the flow is essentially uniform far upstream. This technique was also used by Goh

and Tuck [29], and Zhang and Zhu [66]. We then determine y at the midpoints

(2.33) by using four-point interpolation formula. The dynamic boundary condition

(2.28) is satisfied by substituting these values of τ and y at the midpoints. The

derivative in (2.28) is approximated at the midpoints (2.33) by using five-point

finite difference formula with O (∆4). This yields N nonlinear algebraic equations.

A radiation condition is required to close the system. Based on the direction of

the flow velocity on the upstream free surface, we set

θ1 = 0. (2.34)

In order to calculate the shape of obstacles, we define the equally spaced

mesh points between the apex Ji and the downstream corner Ki of the obstacle i

by

φJK
i,j = φJi

+ (j − 1)∆KJ
i , j = 1, 2, . . . , NB + 1

and the midpoints by

φmJK
i,j =

φJK
i,j + φJK

i,j+1

2
, j = 1, 2, . . . , NB. (2.35)

Here

∆KJ
i =

φKi
− φJi

NB
,
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and NB is an even integer. Then the values of y on the downstream JiKi of the

obstacle can be obtained by integrating numerically (2.32). This gives

y
(

φJK
i,NB+1

)

= y (φKi
) = 0,

y
(

φJK
i,j

)

= y
(

φJK
i,j+1

)

− e−τmJK
i,j sin θdo

i ∆KJ
i

for j = NB,NB − 1, . . . , 1. Here τmJK
i,j is the value of τ at the midpoints (2.35).

Similarly, we can calculate y on the upstream IiJi of the obstacle by using equally

spaced mesh points from φIi
and φJi

. The following conditions must be imposed

to ensure the obstacle geometry:

y (φJi
) = hobi (2.36)

and y (φIi
) = 0, (2.37)

for i = 1, 2. Here the values of φIi
and φKi

are to be found as parts of the solution

for given values of φJi
. Values of x on the bottom are also calculated in order to

find positions of obstacle on the bottom. For given values of φJi
the distance xd

between two obstacles is defined by

xd = x(φJ2
) − x(φJ1

).

The values of x(φJ2
) and x(φJ1

) can be obtained by integrating numerically (2.31).

In this study, we set the difference |φJ2
−φJ1

| = 20 or φJ1
= −20 for all calculations.

For given values of F,Bo, hob1 and hob2, we obtain the system of N + 5

nonlinear equations for (2.28), (2.34), (2.36) and (2.37) with N + 5 unknowns:

θI , I = 1, 2, . . . , N + 1, φI1 , φK1
, φI2 and φK2

. This system is solved by Newton’s

method.

Numerical accuracy is tested by varying the number of mesh points N

and the mesh spacing ∆. For N = 1600, the computed profiles with ∆ = 0.05

and ∆ = 0.10 are shown in Figure 2.6. On the other hand, Figure 2.7 shows a
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Figure 2.6: Typical free-surface profiles for F = 0.7470, Bo = 0.0, hob1 = 0.10 and

hob2 = 0.20 when N = 1600. The solid line is for ∆ = 0.05 and the dashed line is for

∆ = 0.10.

comparison of computed profiles when N = 800 and 1600 for a fixed ∆ = 0.10.

A quantitative examination can be conducted by defining the root mean squared

error (RMSE) between two free-surface profiles i and j as

RMSE =

√

√

√

√

1

M

M
∑

k=1

(yi(xk) − yj(xk))
2
.

The values of RMSE of the results are shown in Table 2.3. In this study, we

choose N = 800 and ∆ = 0.10 in all calculations.
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Figure 2.7: Typical free-surface profiles for F = 0.7470, Bo = 0.0, hob1 = 0.10 and

hob2 = 0.20 when ∆ = 0.10. The solid line is for N = 800 and the dashed line is for

N = 1600.

N = 1600, ∆ = 0.05 N = 800, ∆ = 0.10

and and

N = 1600, ∆ = 0.10 N = 1600, ∆ = 0.10

RMSE 1.84 × 10−4 1.68 × 10−4

Table 2.3: The root mean squared error RMSE for the free-surface profiles with different

values of N and ∆.



CHAPTER III

WEAKLY NONLINEAR PROBLEM

When the Froude number F is close to 1, water waves are generally of small

amplitude and can be described by the weakly nonlinear theories. It is now very

well accepted that the forced Korteweg-de Vries (fKdV) equation is an appropriate

model for many applications in weakly nonlinear free-surface flow problems. The

fKdV equation was used as a model equation of free-surface flows over obstacles by

Akylas [2], Pratt [54], Grimshaw and Smyth [33], Shen, Shen and Sun [57], Shen

and Shen [56], Shen [55], Milewski and Vanden-Broeck [50], Dias and Vanden-

Broeck [16], Binder, Vanden-Broeck and Dias [9] and many others.

In this chapter, the forced Korteweg-de Vries (fKdV) equation for the steady

flow and the time dependent problems of gravity-capillary free-surface flows over

obstacles are formulated in §3.1. In §3.2, numerical procedure for the steady flow

and time dependent problems are presented.

3.1 Derivation of the Forced Korteweg-de Vries (fKdV)

Equation

Two-dimensional free-surface flows over obstacles in a channel of finite depth are

considered. We assume that the fluid is inviscid and incompressible, and the flow

is irrotational. Effects of gravity g and surface tension T are introduced in the

free-surface condition. The flow is uniform with constant velocity U and constant
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depth H at far upstream. We introduce Cartesian coordinates (x, y) with x-axis

along the horizontal bottom and y-axis vertically upwards through the apex of

the rightmost obstacle. Gravity is acting in the negative y-direction.

We denote the free surface by y = H + η(x, t) where η(x, t) is the elevation

of free surface from the undisturbed flow level y = H at position x and time t.

The function y = h(x) represents the bottom topography. The derivation is based

on long wavelength and small obstacle asymptotics. The governing equations in

terms of the potential function φ(x, y, t) are

φxx + φyy = 0, −∞ < x < ∞, h(x) < y < H + η(x, t), (3.1)

with dynamic and kinematic conditions at the free surface y = H + η(x, t)

φt +
1

2
(φ2

x + φ2

y) + gη −
Tηxx

(1 + η2
x)

3/2
= 0, (3.2)

ηt + φxηx = φy, (3.3)

and kinematic condition at the bottom y = h(x)

φxhx = φy. (3.4)

Let’s introduce the dimensionless variables

φ′ =
φ

UH
, (x′, y′) =

(x, y)

H
, t′ =

U

H
t,

η′ =
η

H
, h′ =

h

H
.

Substituting these variables into equations (3.1)-(3.4) and dropping the primes,

the normalized governing equations are

φxx + φyy = 0, −∞ < x < ∞, h(x) < y < 1 + η(x), (3.5)

F 2φt +
F 2

2
(φ2

x+φ2

y) + η − Bo
ηxx

(1 + η2
x)

3/2
= 0, at y = 1 + η(x), (3.6)

ηt + φxηx = φy, at y = 1 + η(x), (3.7)

φxhx = φy, at y = h(x). (3.8)



29

Here F = U√
gH

is the Froude number, Bo = T
ρgH2 is the Bond number.

Next, we change the variables (x, t) to the new variables (ξ, τ) by

ξ = ε1/2(x − t) and τ = ε3/2t,

where ε =
(

H
L

)2
¿ 1 is a small positive parameter, and L is the characteristic

length in the long waves assumption. Equations (3.6)-(3.8) become

εφξξ + φyy = 0, −∞ < ξ < ∞, h(ξ) < y < 1 + η(ξ, τ), (3.9)

ε1/2F 2 (εφτ − φξ) +
F 2

2
(εφ2

ξ + φ2

y) + η − Bo
εηξξ(

1 + εη2
ξ

)3/2
= 0, at y = 1 + η(ξ, τ),

(3.10)

ε3/2ητ − ε1/2ηξ + εφξηξ = φy, at y = 1 + η(ξ, τ), (3.11)

εφξhξ = φy, at y = h(ξ). (3.12)

For small obstacle of order ε2, the bottom profile can be expressed by

y = ε2h̄(ξ),

and consequently (3.12) becomes

ε3φξh̄ξ = φy. (3.13)

Asymptotically, we expand φ, η and F 2 as

φ = ε1/2

[
ξ

ε
+ φ0(ξ, y, τ) + εφ1(ξ, y, τ) + ε2φ2(ξ, y, τ) + . . .

]
,

η = εA(ξ, τ) + ε2η2(ξ, τ) + ε3η3(ξ, τ) + . . . ,

F 2 = 1 + ελ.

At the free surface y = 1+ εA+ ε2η2 + . . ., the derivatives φξ, φτ and φz can
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be expanded around y = 1 as

φξ =ε1/2

[
1

ε
+ φ0ξ + ε {φ1ξ + Aφ0ξy + Aξφ0y}

+ ε2

{
φ2ξ + Aφ1ξy + Aξφ1y + η2φ0ξy + η2ξφ0y +

1

2
A2φ0ξyy + AAξφ0yy

}
+ O(ε3)

]
,

φτ =ε1/2

[
φ0τ + ε {φ1τ + Aφ0τy + Aτφ0y}

+ ε2

{
φ2τ + Aφ1τy + Aτφ1y + η2φ0τy + η2τφ0y +

1

2
A2φ0τyy + AAτφ0yy

}
+ O(ε3)

]
,

φy =ε1/2

[
φ0y + ε {φ1y + Aφ0yy} + ε2

{
φ2y + Aφ1yy + η2φ0yy +

1

2
A2φ0yyy

}
+ O(ε3)

]
.

Substituting these expansions into equations (3.9)-(3.13), we obtain a sequence of

equations and boundary conditions for all order of ε.

At zeroth order O(1):

φ0yy = 0

with φ0ξ +
1

2
φ2

0y + A = 0, φ0y = 0, at y = 1

and φ0y = 0, at y = 0.

These imply that

φ0 = M(ξ, τ),

and

A = −Mξ.

At first order O(ε):

φ0ξξ + φ1yy = 0

with φ0τ − φ1ξ + η2 − λφ0ξ +
1

2
φ2

0ξ − BoAξξ = 0, Aξ = φ1y, at y = 1

and φ1y = 0, at y = 0.

These imply that

φ1 = −
y2

2
Mξξ + N(ξ, τ)
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and

Nξ = Mτ + (
1

2
− Bo)Aξξ + η2 − λA +

1

2
A2.

At second order O (ε2):

φ1ξξ + φ2yy = 0

with Aτ − η2ξ + Aξφ0ξ = φ2y + Aφ1yy, at y = 1,

and h̄ξ = φ2y, at y = 0.

We have

φ2 =
y4

4!
Mξξξξ −

y2

2
Nξξ + h̄ξy + P (ξ, τ).

Using these φ0, φ1, φ2, A, and η2 in the kinematic condition at y = 1, we obtain a

relation for A on the free surface:

2Aτ − 3AAξ + λAξ −

(
1

3
− Bo

)
Aξξξ = h̄ξ. (3.14)

This equation is the well-known forced Korteweg-de Vries (fKdV) equation. Rewrit-

ing (3.14), we have

Aτ −
3

4

(
A2

)
ξ
+

(F 2 − 1)

2
Aξ −

(
1

3
− Bo

)

2
Aξξξ =

1

2
hξ. (3.15)

In case of steady flow problem, the time derivative in (3.15) is omitted

and ξ = x. Upon the integration with respect to x under the condition that far

upstream flow is uniform, equation (3.15) is reduced to

3

2
A2 −

(
F 2 − 1

)
A +

(
1

3
− Bo

)
Axx = −h. (3.16)

Equation (3.16) is called the stationary forced Korteweg-de Vries (sfKdV) equa-

tion.

In case of no forcing (h ≡ 0), equation (3.16) can be multiplied by Ax and

integrated with respect to x under the far upstream constraint. In doing so, we

obtain (
1

3
− Bo

)
A2

x = (F 2 − 1)A2 − A3 + C, (3.17)
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Physical Space Fourier Space

Ψt = L(Ψ)
FFT // Ψ̂t = L̂(Ψ̂)

RK4
²²

Ψn+1 Ψ̂n+1

IFFT
oo

Figure 3.1: Schematic diagram of the transformations in the Fourier-PS method. Here

L is the difference operators, the subscript t denotes time derivatives, the superscript

n + 1 indicates next time step.

where C is a constant of integration. It should be noted that, the two fixed

points of equation (3.17) in the phase plane diagram correspond to A = 0 and

A = 2

3
(F 2 − 1). This shall be discussed further in chapters 4 and 5.

3.2 Numerical Procedure

Equation (3.15) can be solved numerically by using a combination of the Fourier

pseudospectral method in space and the Runge-Kutta method in time. This is gen-

erally called the “Fourier-pseudospectral” (Fourier-PS) method. This method

is well suited for dispersive wave problems such as (3.15). At the boundaries of

domain (−L,L), periodic conditions must be imposed.

Let Â = Â(k, τ) and ĥ = ĥ(k) be the Fourier transform of A(ξ, τ) and h(ξ),

respectively. The transformed equation of (3.15) is

Âτ =
3

4
ikÂ2 −

F 2 − 1

2
ikÂ +

1

3
− Bo

2
(ik)3Â +

1

2
ikĥ. (3.18)

Here k is called the Nyquist or reflection frequency or wave number. The nu-

merical procedure follows closely to that of Milewski and Tabak [49]. Schematic

illustration of the Fourier-PS method is depicted in Figure 3.1. First, we discretize
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ξ into N equally spaced grid points ξ0, ξ1, . . . , ξN−1 where N is an even integer.

Let An
j denote the value of A at grid point ξj and time tn, and kj denotes the

Nyquist frequency at grid point ξj such that

[
k0, k1, k2, . . . , kN

2
−1

, kN
2

,kN
2

+1
, kN

2
+2

, . . . , kN−2, kN

]

=
π

L

[
0, 1, 2, . . . ,

N

2
− 1, 0,−

N

2
+ 1,−

N

2
+ 2, . . . ,−2,−1

]
.

The initial value of Aj is set as A0
j = 0, for all j ∈ {0, 1, . . . , N − 1}.

For given values of F,Bo and h(ξ), we can find An+1

j as follows.

1. Calculate Ân
j by the Fast Fourier Transform (FFT).

2. Use the Runge-Kutta method of order 4 (RK4) to calculate Ân+1

j from

equation (3.18).

3. Calculate An+1

j from Ân+1

j by the inverse Fast Fourier Transform (IFFT).

To find steady flow solutions of (3.16), we solve the initial-value problem

(3.16) with initial conditions

lim
x→−∞

A(x) = lim
x→−∞

Ax(x) = 0

by the RK4. First, we define a new function w such that w(x) = Ax(x) satisfying

a system of first-order differential equations

Ax = g(x,A,w) = w,

wx = f(x,A,w) =
3

1 − 3Bo

[
(F 2 − 1)A −

3

2
A2 − h

]
.

Next, we discretize the physical domain into M + 1 mesh points with spacing ∆.

The value of A and w at xi+1 can be calculated from

Ai+1 = Ai +
1

6
(r1 + 2r2 + 2r3 + r4),

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4),
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where

r1 = ∆ · f(xi, Ai, wi), k1 = ∆ · g(xi, Ai, wi),

r2 = ∆ · f(xi + 1

2
∆, Ai + 1

2
r1, wi + 1

2
k1), k2 = ∆ · g(xi + 1

2
∆, Ai + 1

2
r1, wi + 1

2
k1),

r3 = ∆ · f(xi + 1

2
∆, Ai + 1

2
r2, wi + 1

2
k2), k3 = ∆ · g(xi + 1

2
∆, Ai + 1

2
r2, wi + 1

2
k2),

r4 = ∆ · f(xi + ∆, Ai + r3, wi + k3), k4 = ∆ · g(xi + ∆, Ai + r3, wi + k3).

A plot of A versus Ax is called phase portrait (phase plane or Poincaré

diagram in some literatures). As we shall see later, the phase portraits can be

used to explain qualitative descriptions of flow over obstacles.



CHAPTER IV

FREE-SURFACE FLOWS OVER A SINGLE OBSTACLE

In this chapter, we use the numerical procedure described in previous chapters

to compute fully nonlinear and weakly nonlinear solutions of free-surface flows

over a single obstacle when Bo ≥ 0. Here we set hob1 = 0. Since the results

are qualitatively similar for different shapes of obstacle, the isosceles triangular

obstacle with the base length twice its height is considered in this study. The

obstacle is classified as “bump” if hob2 > 0, and “dip” if hob2 < 0.

4.1 Flow without Surface Tension (Bo = 0)

Bump (hob2 > 0)

For subcritical flow F < 1, there exist two types of solutions for which the first

type “SUB1” is characterized by a train of nonlinear waves behind the obstacle.

This solution was earlier found by Forbes and Schwartz [27] (see Figure 4.1(a)).

The second type “SUB2” is called “drag-free” or “depression wave” solution as

shown in Figure 4.2(a).

As the Froude number F decreases to its critical value Fc (along the solid

curve in Figure 4.6), the amplitude of the nonlinear waves of the SUB1 solution

decreases and ultimately vanishes. When F < Fc, only the second type of solution

SUB2 can be found. There is a unique critical value Fc associated with each bump

size which determines the continuation of nonsymmetric (SUB1) and symmetric
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(SUB2) solutions. For the corresponding phase trajectory in Figure 4.2(b), we

start at the fixed point η = 0 with a downward jump onto an inner periodic

orbit. After moving half circle clockwise, the orbit takes another downward jump

returning to the same fixed point η = 0. It should be noted that the train

of nonlinear waves on the downstream of time-dependent weakly nonlinear result

does not vanishes, e.g., amplitude of the waves remains finite (see in Figure 4.2(c)).

This indicates that the SUB2 solution is not stable in time. In 1982, Forbes [24]

presented the SUB2 solution for flows over a semi-elliptic obstacle whose length

l of obstacle is much larger than its height h, i.e., h ¿ l. It was found that, for

some values of l, the free-surface profile possesses a single “trapped wave” in the

region above the obstacle (cf. Figure 2 in [24]). In the present findings, the SUB2

solution can be found for small F and the condition h ¿ l is irrelevant. For fully

nonlinear problem, the SUB1 solution exists in the region between the dashed

line with circle and the solid line with square and the SUB2 solution exists on

the left of the solid line with square in Figure 4.6. Figures 4.1 (c)-(e) show the

corresponding weakly nonlinear solutions of SUB1.

For supercritical flow F > 1, there is a two-parameter family of solutions

depending on the height of obstacle hob2 and the Froude number F which is

similar to the case of subcritical flow. The profiles are symmetric with respect to

the obstacle center (x = 0). This solution is characterized by an elevation wave

associated with the bump. Two types of supercritical solutions can be found for

which one is a perturbation of uniform flow (Forbes and Schwartz [27]), the so-

called “SUP1”, where as the other is a perturbation of a solitary wave (Vanden-

Broeck [60]), the so-called “SUP2”. Typical free-surface profiles of SUP1 and

SUP2 are shown in Figure 4.3(a) for hob2 = 0.30 and F = 1.35. The solid

curve is a profile of SUP1 solution and the dotted curve is a profile of SUP2
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Figure 4.1: Typical free-surface profiles of SUB1 for a bump. (a) Fully nonlinear profile

for F = 0.70 and hob2 = 0.10. (b) Plot of y − 1 versus dy
dx

= tan θ of the fully nonlinear

phase trajectory. (c) Weakly nonlinear profile. (d) Weakly nonlinear phase portrait.

(e) Time evolution of the SUB1 solution.
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Figure 4.2: Typical free-surface profiles of SUB2 for a bump. (a) Fully nonlinear profile

for F = 0.20 and hob2 = 0.10. (b) Plot of y − 1 versus dy
dx

= tan θ of the fully nonlinear

phase trajectory. (c) Time evolution of the SUB2 solution.
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solution. Fully nonlinear phase trajectories of these solutions are illustrated in

Figure 4.3(b). The solid and dotted curves represent trajectories of SUP1 and

SUP2, respectively. Figure 4.3(c) is a solution profile of time-dependent fKdV

equation for hob2 = 0.30 and F = 1.35 with zero initial condition (A(ξ, 0) = 0).

This solution is SUP1 solution type. The flow is strong enough that all transient

waves are swept downstream so that the free surface with elevated profile in the

vicinity of the obstacle remains stationary. For SUP2 solution type, Choi et al.

[13] employed the initial condition

A(ξ, 0) = (F 2 − 1 − c)sech2

{

√

3(F 2 − 1 − c)(ξ − ξ0)/2
}

to calculate the SUP2 time dependent fKdV solution (cf. Figure 10 in [13]). Here

c is the wave speed, and ξ0 is the phase shift.

Unlike these flow regimes, when the Froude number is close to its critical

value F = 1, the solution of flow over an obstacle depends only on one parameter.

If the obstacle height hob2 is chosen as parameter, then the Froude number F

shall be part of the solution. This type of solution is traditionally called the

“hydraulic fall” and denoted by “CRI” in this thesis. Typical fully nonlinear

free-surface profile is shown in Figure 4.4(a). A qualitative comparison between

weakly nonlinear phase space in Figure 4.4(d) and fully nonlinear trajectory in

Figure 4.4(b) shows good agreement. As the height of the obstacle increases, flow

near the obstacle apex possesses similar behavior as the case of flow over a wedge

(see Figure 4.5). From the numerical calculations, it is found that the hydraulic

fall solutions exist on the basis of one-to-one correspondence of the Froude number

and the height of obstacle which lies on the dashed line with circle in Figure 4.6.

Regions of existence of different types of solutions are illustrated in Figure

4.6. In summary, for pure gravity flow (Bo = 0) over a bump, there exist two

types of subcritical and supercritical flows, and a one-to-one correspondence of F
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Figure 4.3: Typical free-surface profiles of supercritical flow over a bump. (a) Fully

nonlinear profile for F = 1.35 and hob2 = 0.30. (b) Plot of y − 1 versus dy
dx

= tan θ of

the fully nonlinear phase trajectories. The solid curve is a profile of SUP1 solution and

the dotted curve is a profile of SUP2 solution. (c) Time evolution of the solution for

F = 1.50 and hob2 = 0.30.
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Fully nonlinear profile with F = 0.622. (b) Plot of y − 1 versus dy
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nonlinear phase trajectory. (c) Weakly nonlinear profile with F = 0.676. (d) Weakly

nonlinear phase portrait.
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and hob2 for the hydraulic fall solutions.

Dip (hob2 < 0)

For subcritical flow, there exist two types of solutions for which one is characterized

by a train of nonlinear waves and shall be called “SUB1”, and the other by an

elevation wave and shall be referred as “SUB2”. The SUB1 solution is shown in

Figure 4.7(a) for F = 0.60 and hob2 = −0.20. A train of nonlinear wave on the

downstream of obstacle is similar to the bump case except in the dip region where

the free surface is uplifted. A comparison of fully nonlinear and weakly nonlinear

phase trajectories in Figure 4.7 (b) and (d) shows qualitatively good agreement.

The SUB2 solution takes on the form of symmetric elevation wave with respect

to the obstacle center. Typical fully nonlinear profile of SUB2 is shown in Figure

4.8(a).

For supercritical flow, there exists a unique depression wave solution which

can be viewed as perturbation of a uniform stream as shown in Figure 4.9(a) and

shall be called “SUP”. All of the above solutions of flows over a dip are found to

be qualitatively in good agreement with the weakly nonlinear results as shown in

Figures 4.7-4.9 (c), respectively.

In case of critical flow, the upstream free surface is elevated in the region

of dip and followed by a hydraulic fall on the downstream of the obstacle and

shall be referred as “CRI”. Typical profile of this CRI solution for F = 0.82

and hob2 = −0.45 is shown in Figure 4.10(a). A qualitative comparison of fully

nonlinear and weakly nonlinear phase trajectories in Figure 4.10 (b) and (d) shows

good agreement. Figure 4.10(c) shows a weakly nonlinear solution for F = 0.79

and hob2 = −0.25. For the time-dependent fKdV solution, there is a periodic

generation of upstream waves, and a hydraulic fall over the obstacle (see Figure
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Figure 4.7: Typical free-surface profiles of SUB1 for a dip. (a) Fully nonlinear profile for

F = 0.60 and hob2 = −0.20. (b) Plot of y − 1 versus dy
dx

= tan θ of the fully nonlinear

phase trajectory. (c) Weakly nonlinear profile for F = 0.60 and hob2 = −0.11. (d)

Weakly nonlinear phase portrait. (e) Time evolution of the SUB1 solution for F = 0.60

and hob2 = −0.20.
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Figure 4.8: Typical free-surface profiles of SUB2 for a dip. (a) Fully nonlinear profile

for F = 0.20 and hob2 = −0.20. (b) Plot of y−1 versus dy
dx

= tan θ of the fully nonlinear

phase trajectory. (c) Time evolution of the SUB2 solution.
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Figure 4.9: Typical free-surface profiles of supercritical flow over a dip. (a) Fully non-

linear profile for F = 1.50 and hob2 = −0.50. (b) Plot of y − 1 versus dy
dx

= tan θ of the

fully nonlinear phase trajectory. (c) Time evolution of the SUP solution.
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4.10(e)). Figure 4.11 illustrates regions of existence of solutions for subcritical,

supercritical, and critical flow regimes in the presence of a dip.

4.2 Flow under Gravity and Surface Tension (Bo > 0)

When surface tension is considered together with gravity in the problem, there

is an additional parameter Bond number Bo that can play significant role on

small amplitude waves. For flows over a single obstacle, solutions are found to be

qualitatively similar to the case of gravity flow.

Bump (hob2 > 0)

For subcritical flow, the solution with downstream waves was previously proposed

by Forbes [22]. His solution contained nonphysical waves of small amplitude on the

upstream side. In our computation, upstream radiation condition is imposed to

remove these unwanted numerical phenomenon. In Figure 4.12(a), the amplitude

of a train of nonlinear waves increases with decreasing wavelength as the Bond

number increases for the SUB1 solution. Comparison of weakly nonlinear and

fully nonlinear solutions with the phase trajectories are shown in Figure 4.12.

Typical profiles of nonlinear free surface of the SUB2 solution, when F = 0.50 and

hob2 = 0.15, is shown in Figure 4.13(a). It is found that solution for small Bond

number exhibits a sharper trough at x = 0 than those of large Bond number. As

shown in Figure 4.14, the effect of surface tension can be seen from the amplitude

of downstream waves. In particular, subcritical flow solution changes from SUB1

to SUB2 as the Bond number increases.

Effect of surface tension on supercritical flow regime, SUP1 and SUP2, are

shown in Figure 4.15-4.17, respectively. The maximum free-surface elevation for

hob2 = 0.10 is slightly greater than that obtained in the case Bo = 0 of SUP1
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Figure 4.10: Typical free-surface profiles of critical flow over a dip. (a) Fully nonlinear

profile for F = 0.82 and hob2 = −0.45. (b) Plot of y − 1 versus dy
dx

= tan θ of the fully

nonlinear phase trajectory. (c) Weakly nonlinear profile for F = 0.79 and hob2 = −0.25.

(d) Weakly nonlinear phase portrait. (e) Time evolution of the critical solution for

F = 0.90 and hob2 = −0.25.
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The horizontal axis is the Froude number F and the vertical axis is the dimensionless
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and dash-pointed line are 0.24 and 1.04, respectively.

solution (see Figure 4.15). This behavior is similar to the results of Forbes [22].

For the SUP2 solution, nonuniformity of the surface tension effect is found in the

numerical results. That is, the maximum level of elevation wave increases when

the height of obstacle is small (see Figure 4.16) but decreases when the height of

obstacle is large (see Figure 4.17) as the Bond number increases in both cases.

For a given Bond number, free-surface profile on upstream side of criti-

cal flows changes from the flat profile to the shape of half wave packet as hob2

decreases to its critical height hob∗ (see Figure 4.18(a)). For hob2 < hob∗, crit-

ical solution does not exist. Fully nonlinear phase trajectories of these results

are shown in Figure 4.18(b). The trajectory starts at the fixed point η = 0. It

then jumps downwards to the solitary wave orbit and returns to the fixed point

η = 2

3
(F 2 − 1). Figure 4.18(c) shows the effect of surface tension for a given value

of hob2. Similar behavior can also be found as in the previous case for a given
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Figure 4.12: Typical free-surface profiles of SUB1 for a bump. (a) Fully nonlinear

profiles for hob2 = 0.10, F = 0.70 and Bo = 0, 0.005 and 0.01. (b) Plots of y − 1 versus

dy
dx

= tan θ of the fully nonlinear phase trajectories. (c) Weakly nonlinear profiles for

hob2 = 0.11, F = 0.70 and Bo = 0, 0.05 and 0.10. (d) Weakly nonlinear phase portraits.
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Figure 4.14: Time evolution of gravity-capillary subcritical solutions for hob2 = 0.10

and F = 0.70.
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Figure 4.15: Typical free-surface profiles of SUP1 for a bump. (a) Fully nonlinear

profiles for F = 1.20, hob2 = 0.25 and Bo = 0, 0.05 and 0.10. (b) Plots of y − 1 versus

dy
dx

= tan θ of the fully nonlinear phase trajectories.
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Figure 4.16: Typical free-surface profiles of SUP2 when F = 1.20 and hob2 = 0.10.

(a) Fully nonlinear profiles for Bo = 0.0, 0.02 and 0.04. (b) Free-surface profiles in the

vicinity of the obstacle. (c) Plots of y − 1 versus dy
dx

= tan θ of the fully nonlinear phase

trajectories.
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Figure 4.17: Typical free-surface profiles of SUP2 when F = 1.20 and hob2 = 0.25.

(a) Fully nonlinear profiles for Bo = 0.0, 0.02 and 0.04. (b) Free-surface profiles in the

vicinity of the obstacle. (c) Plots of y − 1 versus dy
dx

= tan θ of the fully nonlinear phase

trajectories.
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Figure 4.18: Typical free-surface profiles of critical flows. (a) Fully nonlinear profiles for

Bo = 0.10 and hob2 = 0.165, 0.20, 0.25, 0.30. The critical height hob∗ is 0.165. (b) Plots

of y − 1 versus dy
dx

= tan θ of the fully nonlinear phase trajectories. (c) Fully nonlinear

profiles for hob2 = 0.20 and Bo = 0.10, 0.20, 0.30. The critical Bond number Bo∗ is

0.10. (d) Plots of y − 1 versus dy
dx

= tan θ of the fully nonlinear phase trajectories.
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Figure 4.19: Relationship between the Froude number F and the Bond number Bo of

critical free-surface flows over a bump for hob2 = 0.20.

Bond number with various values of the height of obstacle. In particular, when

the Bond number decreases to its critical value Bo∗, the profile on upstream side

change from the flat profile to the shape of half wave packet. It is found that

the Froude number F , which is part of the solution, is a decreasing function of

the Bond number Bo. Figure 4.19 shows the relationship between the Froude

number F and the Bond number Bo for hob2 = 0.20. Weakly nonlinear results

and weakly nonlinear phase portraits for critical flows are shown in Figure 4.20(a)

and (b) for hob2 = 0.10 and Bo = 0.10, 0.20 and 0.30, respectively. It should be

noted that the free-surface profile on upstream side of weakly nonlinear solution

does not change from the flat profile to the shape of half wave packet.

Dip (hob2 < 0)

For given values of hob2 and F , the amplitude and wavelength of the SUB1 solu-

tion over a dip decrease as the Bond number increases. Typical free-surface profiles

are shown in Figure 4.21(a). This solution can be found only for small values of
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Figure 4.20: Weakly nonlinear free-surface profiles of critical flow over a bump. (a)

Weakly nonlinear profiles for hob2 = 0.10 and Bo = 0.10, 0.20, and 0.30. (b) Plots of A

versus Ax of the weakly nonlinear phase portraits.
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the Bond number. When the Bond number increases (Bo = 0.05 → 0.19), the

maximum wave elevation over a dip for the SUB2 solution decreases (see Figure

4.21(c)). In particular, as the Bond number increases, solution type of the sub-

critical flows over a dip changes from SUB1 to SUB2 which is similar to the case

of flows over a bump (see Figure 4.22).

In case of supercritical free-surface flows over a dip, surface tension plays

a role on the amplitude of the depression wave as shown in Figure 4.23(a). The

minimum level of flow over a dip is found to be a decreasing function of the Bond

number. Figure 4.23(b) shows the phase trajectories of fully nonlinear solutions

of supercritical flows over a dip for various values of Bo. Each phase trajectory

starts from a fixed point η = 0 with downstream jump onto a solitary wave orbit.

After moving clockwise along the solitary wave orbit, we have another downward

jump returning to the same fixed point η = 0. As Bo increases, the diameter of

solitary wave orbit increases with the implication of the decreasing value of the

minimum level of flow.

In case of critical flow, as the Bond number increases, the maximum wave

elevation over a dip increases whereas the far downstream level decreases as shown

in Figure 4.24(a). Typical profile of weakly nonlinear solution and its phase space

are illustrated in Figure 4.24 (c) and (d), respectively. Here, the Froude number

F is treated as part of the solution which is an inverse proportion of the far

downstream free surface elevation. Figure 4.25 shows that the Froude number is

a decreasing function of the Bond number that is similar to the case of flows over

a bump.
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Figure 4.21: Typical free-surface profiles of SUB1 and SUB2 for gravity-capillary waves

over a dip. (a) Fully nonlinear profiles of SUB1 for hob2 = −0.40, F = 0.60 and

Bo = 0.0, 0.002 and 0.004. (b) Plots of y − 1 versus dy
dx

= tan θ of the fully nonlinear

phase trajectories. (c) Fully nonlinear profiles of SUB2 for hob2 = −0.30, F = 0.40 and

Bo = 0.05, 0.10, 0.15 and 0.19. (d) Plots of y−1 versus dy
dx

= tan θ of the fully nonlinear

phase trajectories.
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Figure 4.22: Time evolution of the gravity-capillary subcritical solutions for hob2 =

−0.40 and F = 0.60.
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Figure 4.23: Typical free-surface profiles of gravity-capillary supercritical flows over a

dip. (a) Fully nonlinear profiles for F = 1.50 and hob2 = −0.40. (b) Plots of y − 1

versus dy
dx

= tan θ of the fully nonlinear phase trajectories.

4.3 Conclusions

In this chapter, two-dimensional flows of an ideal fluid over a single obstacle are

considered. The fluid is subjected to the combined effects of gravity and surface

tension. Fully nonlinear solutions and weakly nonlinear solutions are compared

for a single bump (hob2 > 0) or dip (hob2 < 0). Classical and previous solutions

are completely recovered, and new solutions are proposed.

For free-surface flows over a bump, there are total of five solution types.

First type SUB1 is the subcritical flow which is characterized by a train of nonlin-

ear waves behind the obstacle. Second type SUB2 is the wave-free subcritical flow

or drag-free solution which is a new proposed family of solution. Third type SUP1

is the supercritical flow perturbed from a uniform stream. SUP2 solution is an-

other representation of the supercritical flow perturbed from a solitary wave and

constitutes the fourth type. It should be noted that both SUP1 and SUP2 profiles

are quite similar except the wave amplitude over an obstacle. Last type of solu-

tions is the critical flow which is characterized by a hydraulic fall. The first four



63

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

-10 -5  0  5  10  15  20

Bo = 0
Bo = 0.02
Bo = 0.04
Bo = 0.06

(a)

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-0.1 -0.05  0  0.05  0.1

Bo = 0
Bo = 0.02
Bo = 0.04
Bo = 0.06

(b)

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

-10 -5  0  5  10  15  20

Bo = 0.0
Bo = 0.50
Bo = 0.10

(c)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1

Bo = 0.0
Bo = 0.05
Bo = 0.10

(d)

Figure 4.24: Typical free-surface profiles of gravity-capillary critical flow over a dip. (a)

Fully nonlinear profiles for hob2 = −0.20 and Bo = 0, 0.02, 0.04 and 0.06. (b) Plots of

y − 1 versus dy
dx

= tan θ of the fully nonlinear phase trajectories. (c) Weakly nonlinear

profiles for hob2 = −0.16 and Bo = 0, 0.05, and 0.10. (d) Weakly nonlinear phase

portraits.
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Figure 4.25: Relationship between the Froude number F and the Bond number Bo of

critical free-surface flows over a dip for hob2 = −0.20.

types are two-parameter family of solutions that depend on the Froude number

F and the height of obstacle hob2. The hydraulic fall solution is a one-parameter

family of solution for which the Froude number F is part of the solution. In addi-

tion, if the upstream radiation condition is removed, Dias and Vanden-Broeck [16]

found another solution called “generalized hydraulic fall”. This solution is charac-

terized by a downstream supercritical flow and a train of nonlinear waves on the

upstream side. All solutions except the generalized hydraulic fall are presented in

the solution diagram in the (F , hob2)-plane.

For free-surface flows over a dip, the computed solutions can be categorized

into four different types. First type SUB1 is the subcritical flow characterized by

a train of nonlinear waves behind the obstacle with the uplifted free surface in the

dip region. Second type SUB2 is the subcritical flow characterized by an elevation

wave. Third type is the supercritical flow with a depression wave perturbed from a

uniform stream. Last type is the critical flow for which the free surface is elevated

in the region of dip followed by a hydraulic fall. The first three types of these
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solution are the two-parameter family of solution similar to the case of flow over

a bump. The fourth type is a one-parameter family of solution depending on

the obstacle height hob2. Regions of existence of these numerical solutions in the

presence of a dip are summarized in the solution diagram.

While the inclusion of surface tension has direct influence on the wavelength

and the wave amplitude in the subcritical flow regime, but it is rather ambiguous

in the case of supercritical flow regime. In the critical flow regime over a bump,

the upstream free-surface profile changes from the rigid lid to the shape of half

wave packet as the obstacle height decreases to its critical value hob∗. When

hob2 < hob∗, no critical solution can be found. For critical flow over a dip, the

maximum free surface elevation right above the dip is an increasing function of

the Bond number.



CHAPTER V

FREE-SURFACE FLOWS OVER TWO OBSTACLES

Free-surface flows over two obstacles are considered in this chapter. The isosceles

triangular obstacles with acute angles θ
up
1

= θ
up
2

= π
4

are chosen. For gravity

flows without surface tension, two new solutions of the fully nonlinear problem

are proposed in §5.1. In §5.2, free-surface flows in critical regime under gravity and

surface tension over two obstacles are considered. There exist two new solution

types of this critical flow.

5.1 Flow without Surface Tension (Bo = 0)

In this section, we consider free-surface flows without surface tension over two

obstacles. Far upstream as x → −∞, the flow is uniform. There is, in general, a

five-parameter family of solutions for flows over two obstacles. These parameters

can be chosen as the Froude number F , the Bond number Bo, the obstacle heights

hob1, hob2 and the distance between the two obstacles xd. In this thesis, we let the

distance between the obstacles be given as a constant in the complex potential

f -plane, i.e., |φJ2
− φJ1

| = 20.

In 1984, Pratt [54] investigated this problem experimentally and partially

solved the weakly nonlinear problem. He proposed three stationary critical flow

solutions from his experimental results: (1) SUB HF: Subcritical flow over the

leftmost obstacle with a train of nonlinear wave on downstream side trapped be-

tween the obstacles and a hydraulic fall over the rightmost obstacle (see Figure
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5.1(a)), (2) DF HF: Depression wave or drag-free over the leftmost obstacle with

a hydraulic fall over the rightmost obstacle (see Figure 5.1(b)) and (3) HF SUP:

Hydraulic fall over the leftmost obstacle followed by an elevated profile of su-

percritical flow over the rightmost obstacle (see Figure 5.1(c)). In his weakly

nonlinear calculation, only the SUB HF solution could be found. It should be

noted that the DF SUP solution does not exist in case of flow without surface

tension. In particular, the DF SUP is the result of using SUB HF as initial data

with the inclusion of surface tension. Further discussion shall be presented in §5.2.

Belward [3] computed fully nonlinear solutions of HF SUP type. For this

solution, free-surface profile at the rightmost obstacle was similar to the solu-

tion which was the perturbation of a uniform stream in case of supercritical flow

over a single obstacle. This flow configuration had been found experimentally by

Pratt [54]. However, Belward’s results was inaccurate due to nonphysical waves of

small amplitude on the upstream side of the leftmost obstacle. Dias and Vanden-

Broeck [19] constructed a “hybrid” flow over two submerged obstacles which can

be viewed as the superposition of two basic flows over a single obstacle. They

computed numerically fully nonlinear solutions of the subcritical flow over the

leftmost obstacle with a train of nonlinear waves on downstream and a hydraulic

fall over the rightmost obstacle. This solution is of SUB HF type. They used this

result to describe the behavior of generalized hydraulic fall over a single obstacle

when the distance between the obstacles was large.

In 2005, Binder, Vanden-Broeck and Dias [9] calculated four types of solu-

tions in subcritical and supercritical flow regimes. Two of these were subcritical

flows. (1) SUB SUB: There were two sets of nonlinear waves with different ampli-

tudes on the free-surface. One was trapped between the two obstacles with larger

amplitude than the other that was on downstream of the rightmost obstacle. Typ-
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ical profile is shown in Figure 5.2(a). (2) SUB SYM: The profile was symmetrical

with trapped waves between two obstacles of equal height (see Figure 5.2(b)). The

remaining two types were supercritical flows. (3) SUP SUP: An elevation wave

over each obstacle characterizes this solution. The fully nonlinear profile is shown

in Figure 5.2(c). (4) SUP TRAP: The flow was supercritical with waves trapped

between two obstacles as shown in Figure 5.2(d).

Here we present another solution of SUB SUB type, that is the amplitude

of trapped wave between two obstacles is smaller than those on downstream of

the rightmost obstacle for the same values hob1 = hob2 = 0.10 as the profile in

Figure 5.2(a) with different Froude number F . Typical profile of this solution

type is shown in Figure 5.3. If the distance between the obstacles of SUB HF is

sufficiently small, the trapped waves between two obstacles can not be visually

seen since the wavelength would be larger than the distance between the obstacles

(see Figure 5.4). Our remark to the new type of critical flow of Binder, Vanden-

Broeck and Dias [9] as shown in Figure 5.4 (f) is that their solution is actually

not the new type. Furthermore, the number of waves trapped between obstacles

decreases as the distance between the obstacles decreases. When this distance is

small, the free-surface profile over the leftmost obstacle looks like a hydraulic fall

and no waves trapped between two obstacles (see Figure 5.4(e)). In this thesis,

we have recovered all results of Belward [3]: HF SUP, Dias and Vanden-Broeck

[19] : SUB HF and Binder, Vanden-Broeck and Dias [9]: SUB SUB, SUB SYM,

SUP SUP and SUP TRAP.

In the followings, we shall present the two new types of solutions of free-

surface flows over two obstacles.
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1. Depression Waves over the Obstacles (DF DF)

This subcritical flow solution can be described as depression waves that occur

right above the leftmost and the rightmost obstacles. Typical free-surface profile

for hob1 = 0.05, hob2 = 0.10, F = 0.20 and xd = 19.9762 is shown in Figure

5.5(a). Phase trajectory of the fully nonlinear solution in Figure 5.5(b) can be

described as follows. The solution starts at the fixed point y − 1 = 0 with a

first downward jump onto an inner periodic orbit O1 (small orbit). After moving

clockwise half a circle on O1, there is a second downward jump back to the same

fixed point. Next we have a third downward jump onto an outer periodic orbit

O2 (large orbit) and move clockwise half a circle on this orbit. Finally, there is a

fourth downward jump returning to the same fixed point y − 1 = 0 again. Since

the weakly nonlinear solution can not yet be found, we are unable to compare

qualitatively with the corresponding fully nonlinear phase trajectory.

It should be noted that amplitude of the depression waves increases as a

function of the height of obstacle (see Figure 5.6). Figure 5.7 shows typical profiles

of subcritical flow over two obstacles for various values of the Froude number F . It

should be noted that, as F decreases, amplitude of the waves trapped between two

obstacles and on downstream of the rightmost obstacle decreases and ultimately

vanishes showing similar behavior as in the case of depression waves over a single

obstacle.

2. Hydraulic Fall over the Leftmost Obstacle with Supercritical Flow

over the Rightmost Obstacle (HF SUP)

This solution is in the critical flow regime for which hydraulic fall occurs at the

leftmost obstacle and F > 1 over the rightmost obstacle. There are two types of

solution, i.e., (1) HF SUP U: The flow is perturbed from a uniform stream and (2)
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HF SUP S: The flow is perturbed from a solitary wave. Typical fully nonlinear

free-surface profiles of HF SUP U and HF SUP S, for hob1 = hob2 = 0.10 and

F = 0.9005 are shown in Figure 5.8(a). The HF SUP U solution was found

earlier in Pratt’s experiments [54] and by Belward [3] in his computation of fully

nonlinear problem. The HF SUP S solution is a new type of solution. Fully

nonlinear trajectories of HF SUP U and HF SUP S in Figure 5.8(a) are shown in

Figure 5.8(b). The trajectory starts at the fixed point y−1 = 0 with a downward

jump onto the solitary wave orbit. It then moves clockwise one cycle on this orbit

and goes directly to another fixed point y − 1 = 2

3
(F 2 − 1). It is obvious that the

solitary wave orbit of HF SUP U is smaller than that of HF SUP S.

Computation procedure for the fully nonlinear results of HF SUP U con-

sists of two steps.

Step 1 : Use initial data

θinitial = −0.001 × sech2(φ − φhob1)

to calculate solution with a hydraulic fall over the leftmost obstacle

(hob1 6= 0, hob2 = 0).

Step 2 : Use solution from step 1 as initial guess to find HF SUP U

solution for hob2 6= 0.

Here φhob1 is the value of φ at the apex of the leftmost obstacle.

To obtain the solution of HF SUP S type, we need only the first step of the

above procedure and set hob1 = hob2 in the calculation.

This type of solutions depends only on two parameter hob1 and hob2. Typ-

ical profiles for HF SUP U and HF SUP S are shown in Figure 5.9(a) and (c),

respectively, for various values of the height of the rightmost obstacle hob2. As
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hob2 increases, the maximum free-surface elevation over the rightmost obstacle

increases for HF SUP U and decreases for HF SUP S and ultimately reaches the

elevation of the far upstream free surface y = 1. Figure 5.9(b) and (d) show

the corresponding phase trajectories of Figure 5.9(a) and (c), respectively. As

hob1 increases, profile between two obstacles decreases and approach same level

as x → ∞. In addition, amplitude of the elevation wave over the rightmost obsta-

cle is a decreasing function of hob1 for HF SUP U; but it is an increasing function

of hob1 for HF SUP S as shown in Figure 5.10. Clearly, these solution behaviors

can be seen in the phase trajectories.

In this case, the Froude number F is treated as part of the solution and

depends only on the height of the leftmost obstacle hob1. Relationship between

the Froude number F and the height of the leftmost obstacle hob1 is shown in

Figure 5.11. Figure 5.12 shows that, for a given hob1, the Froude number F is

independent of the height of the rightmost obstacle .

Finally, Figure 5.13 summarizes the relationship between the height of the

rightmost obstacle hob2 and the amplitude |A| of elevation wave over the right-

most obstacle, for hob1 = 0.05, 0.10 and 0.20. Numerical results show that |A|

is an increasing function of hob2 for HF SUP U solution type but is a decreasing

function of hob2 for HF SUP S. Comparison with the previous results of Dias and

Vanden-Broeck [17] indicates that, in the neighborhood of the rightmost obstacle,

the free-surface prefile behaves in the exact same way as that of flow over a single

obstacle. This comparison provides an alternative check on our results.

Table 5.1 summarizes all solution types of free-surface flows over two ob-

stacles without surface tension. There are 8 types with 9 free-surface profiles. We

can completely recover all solution types that obtained by Pratt [54], Belward [3],

Dias and Vanden-Broeck [19] and Binder, Vanden-Broeck and Dias [9].
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Figure 5.1: (a) SUB HF: Subcritical flow over the leftmost obstacle with a train of

nonlinear waves and a hydraulic fall over the rightmost obstacle. (b) DF HF: Drag-free

profile over the leftmost obstacle and a hydraulic fall over the rightmost obstacle. (c)

HF SUP: Critical flow with a hydraulic fall over the leftmost obstacle and an elevation

wave over the rightmost obstacle.
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Figure 5.2: (a) SUB SUB: Nonsymmetric subcritical solution with two sets of nonlinear

waves of different amplitudes for F = 0.640, hob1 = hob2 = 0.10 and xd = 19.9206. (b)

SUB SYM: Symmetric subcritical solution with waves trapped between the obstacles

for F = 0.5763, hob1 = hob2 = 0.10 and xd = 19.9440. (c) SUP SUP: Symmetric

supercritical solution with elevation waves for F = 1.50, hob1 = hob2 = 0.20 and xd =

20.0471. (d) SUP TRAP: Supercritical solution with a train of waves trapped between

the obstacles for F = 1.50, hob1 = hob2 = 0.30 and xd = 2.1163.
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Figure 5.4: Free-surface profiles of critical flow SUB HF solution for various val-

ues of the distance between the obstacles. (a)-(e) hob1 = hob2 = 0.05 and xd =

19.6384, 9.9392, 9.3831, 6.7660 and 4.8550, respectively. (f) Solution proposed by Binder,

Vanden-Broeck and Dias [9].
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Figure 5.5: Typical free-surface profile of depression waves or drag-free subcritical

solution over each obstacles (DF DF) for hob1 = 0.05, hob2 = 0.10, F = 0.20 and

xd = 19.9762. (a) Fully nonlinear profile. (b) Phase trajectory.
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free-surface profiles for F = 0.20, hob2 = 0.10 and various values of hob1.



78

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 1.00005

-30 -25 -20 -15 -10 -5  0  5  10

y

x

(a) F = 0.25

 0.9991

 0.9992

 0.9993

 0.9994

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 1.0001

-30 -25 -20 -15 -10 -5  0  5  10  15

y

x

(b) F = 0.35

 0.998

 0.9985

 0.999

 0.9995

 1

 1.0005

 1.001

 1.0015

-30 -25 -20 -15 -10 -5  0  5  10  15

y

x

(c) F = 0.45

 0.996

 0.997

 0.998

 0.999

 1

 1.001

 1.002

 1.003

-30 -25 -20 -15 -10 -5  0  5  10  15

y

x

(d) F = 0.55

Figure 5.7: Effect of Froude number F on the SUB SUB solution for hob1 = hob2 = 0.05.

As F decreases, the SUB SUB solution profile eventually changes to the DF DF profile

in (a).
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Figure 5.9: Effect of the rightmost obstacle height hob2 on HF SUP U and HF SUP S

solutions when hob1 = 0.20. (a) Fully nonlinear profiles of HF SUP U. (b) Phase

trajectories. (c) Fully nonlinear profiles of HF SUP S. (d) Phase trajectories.
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solutions when hob2 = 0.10. (a) Fully nonlinear profiles of HF SUP U. (b) Phase
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Table 5.1: Solution types of free-surface flows over two obstacles without surface tension.

The symbol
√

denotes the existing solutions and
√∗ denotes a new family of numerical

solution. P[54]: Experimental results of Pratt [54], B[3]: Numerical results of Belward

[3], DV[19]: Numerical results of Dias and Vanden-Broeck [19], and BVD[9]: Numerical

results of Binder, Vanden-Broeck and Dias [9].
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Table 5.1: (continued)

5.2 Flow under Gravity and Surface Tension (Bo > 0)

In this section, critical free-surface flows over the two obstacles under gravity and

surface tension are considered. We seek solutions that are essentially characterized

by a hydraulic fall at either one of these obstacles. In the absence of surface ten-

sion, there are three solution types, namely SUB HF, HF SUP U and HF SUP S

as shown in the previous section.

As we shall see later, when Bo > 0, there are two possible cases of critical

flow in the presence of two obstacles under the combined effects of gravity and

surface tension. The first case corresponds to a situation in which a hydraulic

fall occurs at the rightmost obstacle. In this case, the SUB HF solution of pure

gravity flow is used as an initial data in the numerical procedure. There are two

types of solution that shall be discussed in §5.2.1. The second case corresponds
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Figure 5.14: Solution profiles of type SUB HF when hob1 = hob2 = 0.10. (a), (c) Fully

nonlinear solutions for Bo = 0.0 and 0.04, respectively. (b), (d) Phase trajectories of

the corresponding solutions (a) and (c).

to the flow in which a hydraulic fall occurs at the leftmost obstacle. Like in the

first case, the HF SUP U and HF SUP S solutions of pure gravity flow are used

to find the required numerical solutions. Two types of solution can be found for

which one of these is the newly proposed solution. Detail of these solutions are

presented in §5.2.2.

5.2.1 Hydraulic Fall at the Rightmost Obstacle

When a hydraulic fall occurs at the rightnost obstacle, there are two possible

types of solution: (1) a profile with waves trapped between the obstacles, the so-
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called “SUB HF” and (2) a profile with depression wave right above the leftmost

obstacle which shall be called “DF HF”. Free-surface profile of type (2) is similar

to the one obtained in the experiments of Pratt [54].

1. Waves Trapped between the Obstacles (SUB HF)

This type of solution is similar to the case of pure gravity flow (Bo = 0), i.e., there

are waves trapped between two obstacles followed by a hydraulic fall right over

the rightmost obstacle. Typical free-surface profile for hob1 = hob2 = 0.10, F =

0.8875 and Bo = 0.04 is shown in Figure 5.14(c). The corresponding fully nonlin-

ear phase trajectory in Figure 5.14(d) can be described as follows. The solution

curve starts at a fixed point y − 1 = 0 with a first jump onto an inner periodic

orbit. After moving clockwise some distance on this periodic orbit, there is a

second jump onto a solitary wave orbit which then moves to another fixed point

y−1 = 2

3
(F 2−1). Qualitatively, the phase trajectories of pure gravity problem and

gravity-capillary problem do have similar pattern. However, the amplitude and

wavelength of trapped waves and the Froude number are different as can be seen

from the size of the inner periodic orbit and the a fixed point y − 1 = 2

3
(F 2 − 1).

This solution type can only be found when for Bo ≤ 0.04. The amplitude

of waves trapped between the obstacles appears to be an increasing function of

the Bond number. Figure 5.15 compares different solution profiles for various

values of the Bond number. In this case, the Froude number F is treated as

part of the solution. When hob1 ≥ hob2, the Froude number appears to be a

decreasing function of the Bond number. On the other hand, if hob1 < hob2, the

Froude number becomes an increasing function of the Bond number. For example,

when hob1 = hob2 = 0.10, the Froude number F is 0.9906, 0.8878 and 0.8875 as

Bo = 0, 0.02 and 0.04, respectively, but when hob1 = 0.10, hob2 = 0.20, the Froude
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number F is 0.7469, 0.7594 and 0.7742 as Bo = 0, 0.02 and 0.04, respectively. For

given values of Bo and hob1, the Froude number decreases as the height of the

rightmost obstacle hob2 increases as shown in Figure 5.16. However, when the

Bond number Bo and the height of the rightmost obstacle hob2 are fixed, the

relationship between the Froude number F and the height of the leftmost obstacle

hob1 is no longer a monotone function. It appears that there exists a maximum

value of Froude number in each case as shown in Figure 5.17.

For weakly nonlinear problem, the sfKdV model can be used to find the

SUB HF solution type. The weakly nonlinear profiles are shown in Figure 5.18,

for hob1 = 0.05, hob2 = 0.10 and Bo = 0, 0.10 and 0.20. The fully nonlinear phase

trajectories in Figure 5.14 (b) and (d) provide a qualitative check on the phase

space analytic in Figure 5.18 (b), (d) and (f). It should be noted that weakly

nonlinear solutions can be found for the Bond number between 0 and 1

3
.

2. Depression Wave over the Leftmost Obstacle with Hydraulic Fall

(DF HF)

Free-surface flow of this type is of uniform and symmetric depression wave in the

neighborhood of the leftmost obstacle with a hydraulic fall right over the rightmost

obstacle. Typical free-surface profile for hob1 = hob2 = 0.10, F = 0.8599 and

Bo = 0.40 is shown in Figure 5.19(a). This solution is called the “DF HF” solution

and can be thought of as a hybrid between subcritical and critical flows over

each obstacle. Pratt [54] found this DF HF solution in his experiments when

hob1 < hob2, but could not find the weakly nonlinear solution. In this thesis, it is

shown that this type of solution can be found for the fully nonlinear problem with

no restrictions on the values of hob1 and hob2. The phase trajectory in Figure

5.19(b) starts at a fixed point y − 1 = 0 with a negative vertical jump onto an
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inner periodic orbit. After moving half cycle clockwise, it jumps back to the same

fixed point. Then, there is a negative jump onto the solitary wave orbit and goes

directly to another fixed point y − 1 = 2

3
(F 2 − 1).

For given values of hob1 and hob2, amplitude of the depression wave at the

leftmost obstacle decreases as the Bond number increases (see in Figure 5.20). As

Bo ↓ B̃o, the upstream free-surface profile over the rightmost obstacle behaves in

a similar manner as the case of hydraulic fall over a single obstacle (see Figure

4.18(c)), and the portion of depression wave at the rightmost obstacle tends to

the shape of symmetric wave packet. Typical free-surface profiles are shown in

Figure 5.21 (a)-(f) for hob1 = hob2 = 0.10 and Bo = 0.40, 0.35, 0.30, 0.25, 0.23

and 0.21, respectively. Here B̃o is the minimum value of the Bond number which

depends on the obstacle heights hob1 and hob2. For example, B̃o = 0.21 for

hob1 = hob2 = 0.10.

Again, the Froude number F is part of the solution and appears to be func-

tions of the Bond number Bo and the height of the rightmost obstacle hob2. Figure

5.22 (a)-(c) show the dependence of the Froude number F and the amplitude of

depression wave over the leftmost obstacle |A| on the Bond number Bo for given

values of hob1 and hob2. Let B̂o be a value of Bond number such that the Froude

number takes on its minimal. For example, B̂o is 0.40, when hob1 = hob2 = 0.20.

The amplitude |A| is small when Bo is close to B̂o with a small variation as Bo

increases.

5.2.2 Hydraulic Fall at the Leftmost Obstacle

In case of pure gravity flow (Bo = 0), there are two types of solution: HF SUP U

and HF SUP S. The first type is a solution with hydraulic fall at the leftmost

obstacle followed by an elevation wave which is perturbed from a uniform stream
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over the rightmost obstacle. The other type is similar to the HF SUP U except

that the elevation wave over the rightmost obstacle is perturbed from a solitary

wave.

In this consideration, we use both solutions, HF SUP U and HF SUP S,

from pure gravity flow as initial data for computing the corresponding solution

types. It is found that, when HF SUP U is used as an initial profile, a new family

of capillary-gravity waves can be found for large Bond number. As for HF SUP S

initial data, there exists solution only for small Bond number for which the solution

profile is similar to HF SUP S.

1. HF SUP S Initial Data.

Solution in this case is characterized by a hydraulic fall at the leftmost obstacle

followed by an elevation wave right above the rightmost obstacle which is the

perturbation of a solitary wave. This solution can be found only for small Bond

numbers, 0 ≤ Bo ≤ 0.04. Free-surface profile is similar to the case of pure gravity

problem. Typical free-surface profiles with the phase trajectories are shown in

Figure 5.23. Each trajectory starts at a fixed point y − 1 = 0 with a negative

jump onto the solitary wave orbit. It then moves clockwise one cycle on this orbit

and goes directly to another fixed point y − 1 = 2

3
(F 2 − 1).

Size of the above solitary wave orbit depends on the value of Bond num-

ber Bo and clearly relates to the maximum level of an elevation wave over the

rightmost obstacle. This maximum level of an elevation wave over the rightmost

obstacle increases as the Bond number increases and ultimately approaches the

limiting configuration of a 120◦ angle at the crests (see in Figure 5.24). The fixed

point y − 1 = 2

3
(F 2 − 1) moves to the left in the phase trajectory as the Bond

number increases. This implies that the Froude number F is a decreasing function
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of the Bond number Bo. A relationship between the Bond number Bo and the

Froude number F is shown in Figure 5.25.

Figure 5.26 shows that amplitude of the elevation wave over the rightmost

obstacle |A| is an increasing function of Bo for given values of hob1 and hob2.

In addition, as hob1 and hob2 increases, the solution can be found only for small

values of the Bond number Bo. A comparison of free-surface profiles for various

values of hob2 is shown in Figure 5.27. The behavior of free-surface profile is same

in case of pure gravity problem, i.e., the maximum level of an elevation wave over

the rightmost obstacle decreases as the hob2 increases and ultimately approaches

the far upstream level.
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2. HF SUP U Initial Data

When the HF SUP U solution of pure gravity problem is used as an initial guess

for Bo > 0, there are two possible types of solution such that a hydraulic fall

occurs at the leftmost obstacle. First type of solution can be found for small

Bond number and does have similar profile as in the case of HF SUP S. The other

is a new type of solution which can be found only when Bo > 0.04. This solution is

characterized by a hydraulic fall followed by waves trapped between the obstacles.

The implication of small Bond number is that gravity is a dominant force.

So, as we may expect, the solution profile is similar to the case of pure gravity

problem. From the numerical calculations, this solution can be found only for

small value of the Bond number, i.e., 0 ≤ Bo ≤ 0.04. Typical fully nonlinear

free-surface profiles are shown in Figure 5.28(a) for hob1 = 0.15, hob2 = 0.10

and Bo = 0.0, 0.02 and 0.04. The phase trajectories in Figure 5.28(b) show

similar patterns to the case of flows without surface tension. At the fixed point

y − 1 = 2

3
(F 2 − 1), we can see that the Froude number depends on the Bond

number Bo. This relationship is shown in Figure 5.29. In addition, amplitude of

the elevation wave over the rightmost obstacle |A| is merely an increasing function

of the Bond number Bo (see Figure 5.30). These behaviors are also found in the

previous case that used HF SUP S as the initial data.

For given values of hob1 and Bo, in the neighborhood of the rightmost

obstacle, the profile is symmetric with respect to the obstacle for all values of

hob2. In particular, the effect of hob2 is solely on the amplitude of elevation wave

over the rightmost obstacle |A| (see Figure 5.31).

The above numerical solution ceases to exist when Bo > 0.04. However,

when Bo is chosen to be sufficiently large, there is a new type of solution. This so-

lution is characterized by a hydraulic fall at the leftmost obstacle, and an elevation
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wave over the rightmost obstacle with waves trapped between them. From this

characteristic, it shall be denoted by “HF SUP UT”. Typical free-surface profile is

shown in Figure 5.32(a) for hob1 = 0.20, hob2 = 0.15, F = 0.4978 and Bo = 0.35.

Its trajectory in Figure 5.32(b) starts at a fixed point y − 1 = 0 with a negative

jump onto the solitary wave orbit and moves to another fixed point. Then, there

is a positive jump to the periodic orbit around the second fixed point. After mov-

ing clockwise some distance on this orbit, there is another positive jump back to

the second fixed point. So far, this solution type can be found only in the fully

nonlinear problem.

As the Bond number increases, the number of waves trapped between the

obstacles decreases while the values of Froude number change intermittently. Pro-

files in Figure 5.33 (a)-(f) are shown for various values of Bond number. For given

values of Bo and hob1, amplitude of the waves trapped between the obstacles

increases as the obstacle size hob2 gets bigger (see Figure 5.34). This may lead to

a conjecture that these waves would ultimately approach a limiting configuration

with a bubble at the trough (Aider and Debiane [1]). Due to the limitation of our

present numerical technique, we are unable to calculate these bubble solutions.

The relationship between hob2 and F for Bo = 0.40 and hob1 = 0.10 is shown in

Figure 5.35.

Table 5.2 summarizes the solution types of free-surface flows over two sub-

merged obstacles with gravity and surface tension. In this case, there are 5 types

of solution: SUB HF, DF HF, HF SUP U, HF SUP S and HF SUP UT. The

DF HF solution is the newly discovered numerical solution, and the HF SUP S

and HF SUP UT are also the two new solutions of free-surface flows over two

obstacles.
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5.3 Conclusions

Free-surface flow over two obstacles under the influence of gravity and surface

tension is considered in this chapter. For pure water at 25◦C, the surface tension

T is 0.07197 N/m and the density is 998 km/m3. The corresponding values of

Bond number in this case are 0.0736 and 0.2943 when the water depth is 1.0 and

0.5 cm, respectively. In case of seawater, the water density is 1025 km/m3 (“Ocean

- Density and Pressure”. Encyclopedia Britannica., USA, 1965.). For water in

the Gulf of Thailand whose average depth is 45 m, the flow is gravity-dominated

since the Bond number is very small ( approximately 7.96×10−11). Fully nonlinear

problem is solved numerically by using the boundary integral equation technique.

Previous solutions obtained by Pratt [54], Belward [3], Dias and Vanden-Broeck

[19] and Binder, Vanden-Broeck and Dias [9] are completely recovered and new

types of solution are proposed for both pure gravity and gravity-capillary flows.

In the case of pure gravity problem, all possible flow regimes (subcritical,

supercritical and critical flows) are considered. There are 8 types of solution as

depicted in Table 5.1 : SUB SUB, SUB SYM, DF DF, SUP SUP, SUP TRAP,

SUB HF, HF SUP U, and HF SUP S with 9 free-surface profiles. For SUB SUB

type, there are two different flow patterns. First, the amplitude of waves trapped

between the obstacles is larger than those on downstream of the rightmost ob-

stacle. This solution was found earlier by Binder, Vanden-Broeck and Dias [9].

For the other solution of this type, the amplitude of waves trapped between the

obstacles is smaller than those on downstream of the rightmost obstacle. It should

be noted that these solutions correspond to the same values of hob1 and hob2 but

for different values of the Froude number.

In summary, the main results concern new solutions of the gravity and

gravity-capillary waves over two obstacles. For gravity waves, there are two new
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types of solution, DF DF and HF SUP S. The DF DF solution of subcritical flow

is characterized by the depression wave or drag-free profile over each obstacle.

This can be found only when the Froude number F and the height of the obstacles

hob1 and hob2 are small. The HF SUP S solution of the critical flow regime is

characterized by a hydraulic fall over the leftmost obstacle with an elevation wave

over the rightmost obstacle. This solution type can be found for the same set of

parameters as the HF SUP U solution. To obtain HF SUP S solution, the choice

of the initial data is important as suggested on page 70.

For critical flows of the gravity-capillary waves, this study focuses on the

case in which the flow is uniform on both far upstream and far downstream.

There are 5 types of solution: SUB HF, DF HF, HF SUP U, and HF SUP S, and

HF SUP UT. Among these, HF SUP UT is a new solution which is the perturba-

tion of HF SUP U solution. This solution can be found for larger Bond number.

The other new solution DF HF is the case in which there is a depression wave

over the leftmost obstacle and a hydraulic fall over the rightmost obstacle. It was

first discovered in the experiments of Pratt [54] when hob1 < hob2. Our numerical

solutions confirm the existence of this flow pattern.

Next question to be answered in the future study should concern the sta-

bility of these solutions. One of the several approaches is to solve numerically the

time-dependent solutions of this fully nonlinear problem by using, for example, a

semi-Lagrangian approach.
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Figure 5.28: Typical free-surface profiles of HF SUP U solution for hob1 = 0.15 and

hob2 = 0.10. (a) Fully nonlinear profiles. (b) Phase trajectories.
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112

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  0.05  0.1  0.15  0.2

F

hob2

Figure 5.35: Relationship between the rightmost obstacle height hob2 and the Froude

number F for Bo = 0.40 and hob1 = 0.10.



113

Solution type P[54] Present work
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Table 5.2: Solution types of free-surface flows over two obstacles under gravity and

surface tension. The symbol
√

denotes the existing solutions and
√

∗ denotes a new

family of numerical solutions. P[54]: Experimental results of Pratt [54].
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APPENDIX

Monacella (1961) proved that a singularity in the Cauchy principal value

integrals can be ignored in the numerical integration. This is achieved by spacing

the mesh points symmetrically with respect to the pole. We show here by using

the trapezoidal rule to compute the Cauchy principal value integral. We can also

use the Simpson’s rule to approximate such integral.

Let f be a continuous function. We approximate the integral of f over

a finite interval [a, b] by partitioning [a, b] into N subintervals with t0 = a and

tN = b. Thus
∫

b

a

f(t)dt ≈

N
∑

i=0

f(ti)hwi. (A.1)

Here h = b−a

N
and

wi =















1

2
, i = 0 and N

1 , otherwise.

(A.2)

We consider a function
f(t)

t − x
with f(x) 6= 0 and x ∈ (a, b). The integral of

f(t)

t − x

over the variable t is of Cauchy principal value form. For any ε > 0, we can write

this integral as

∫

b

a

f(t)

t − x
dt = lim

ε→0

[
∫

x−ε

a

f(t)

t − x
dt +

∫

b

x+ε

f(t)

t − x
dt

]

. (A.3)

To compute this integral, we rewrite the integral on the left hand side of (A.3) as

∫

b

a

f(t)

t − x
dt =

∫

b

a

f(t) − f(x)

t − x
dt + f(x)

∫

b

a

1

t − x
dt. (A.4)

Next we consider N + 1 equally spaced mesh point ti, i = 0, . . . , N . Thus x is the

midpoint between ti and ti+1 for i = 0, 1, . . . , N − 1. There are two possible cases

to be taken into account: (i) x = b−a

2
and (ii) x 6= b−a

2
.
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Case (i) x = b−a

2
.

It can easily be shown that
∫

b

a

1

t−x
dt = 0. Thus (A.4) becomes

∫

b

a

f(t)

t − x
dt =

∫

b

a

f(t) − f(x)

t − x
dt. (A.5)

Using the trapezoidal rule, we approximate the integral on the right hand

side of (A.5) by

∫

b

a

f(t)

t − x
dt ≈

N
∑

i=0

f(ti) − f(x)

ti − x
hwi

=
N

∑

i=0

f(ti)

ti − x
hwi − f(x)

N
∑

i=0

1

ti − x
hwi

=
N

∑

i=0

f(ti)

ti − x
hwi. (A.6)

N
∑

i=0

1

ti − x
hwi = 0 because x is midpoint of the interval [a, b]. Equation (A.6)

suggests that the Cauchy principal value integral can be approximated as if it

were an ordinary integral.

Case (ii) x 6= b−a

2
.

Assuming that x is a midpoint on any interval [c, d] ⊂ [a, b]. We now rewrite

(A.3) as
∫

b

a

f(t)

t − x
dt =

∫

c

a

f(t)

t − x
dt +

∫

d

c

f(t)

t − x
dt +

∫

b

d

f(t)

t − x
dt. (A.7)

The first and third integrals on the right hand side of (A.7) are not Cauchy

principal values. Thus they can be approximated by trapezoidal rule. The second

integral is a Cauchy principal value with x as a midpoint of the interval [c, d]. The

discussion in case (i) shows that it can also be evaluated by the trapezoidal rule.

Therefore
∫

b

a

f(t)

t − x
dt ≈

N
∑

i=0

f(ti)

ti − x
hwi

Which is the same as (A.6). Thus, the singularity is subtracted from the Cauchy

principal value integral leaving nonsingular integrals to evaluate as claimed.
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