การวิเคราะห์เชิงปริมาณของสารไอโซฟลาโวนอยด์หลักในใบกวาวเครือขาว

Pueraria mirifica

นางสาวจุฑามาศ จึงสุขเจริญ

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีชีวภาพ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2550 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

QUANTITATIVE ANALYSIS OF MAJOR ISOFLAVONOIDS IN THE

LEAVES OF WHITE KWAO KRUA Pueraria mirifica

Miss Jutarmas Jungsukcharoen

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Biotechnology Faculty of Science Chulalongkorn University Academic Year 2007 Copyright of Chulalongkorn University

Thesis Title	QUANTITATIVE ANALYSIS OF MAJOR
	ISOFLAVONOIDS IN THE LEAVES OF WHITE KWAO
	KRUA Pueraria mirifica
Ву	Miss Jutarmas Jungsukcharoen
Field of Study	Biotechnology
Thesis Advisor	Associate Professor Wichai Cherdshewasart, D.Sc.
Thesis Co-advisor	Associate Professor Polakit Sangvanich, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

S. Hamongkene Dean of the Faculty of Science

(Professor Supot Hannongbua, Ph.D.)

THESIS COMMITTEE

K. Timakhupt Chairman

(Associate Professor Kumthorn Thirakupt, Ph.D.)

Julii Chf Principle Thesis Advisor

(Associate Professor Wichai Cherdshewasart, D.Sc.)

Pollit Sangvanich

Thesis Co-advisor

(Associate Professor Polkit Sangvanich, PhD.)

bearchif Boonding External Member

(Associate Professor Chuenchit Boonchird, Ph.D.)

N. Ngamojanavanich Member (Associate Professor Nattaya Ngamrojanavanich, Ph.D.)

จุฑามาศ จึงสุขเจริญ: การวิเคราะห์เชิงปริมาณของสารไอโซฟลาโวนอยค์หลักในใบ กวาวเครือขาว *Pueraria mirifica*. (QUANTITATIVE ANALYSIS OF MAJOR ISOFLAVONOIDS IN THE LEAVES OF WHITE KWAO KRUA *Pueraria mirifica*) อ.ที่ปรึกษา: รศ.คร.วิชัย เชิดชีวศาสตร์, อ.ที่ปรึกษาร่วม: รศ.คร.พลกฤษณ์ แสงวณิช จำนวนหน้า 129 หน้า.

ในการศึกษานี้ได้ทำการวิเคราะห์เชิงปริมาณของสารไอโซฟลาโวนอยค์ 5 ชนิด คือ พิวราริน ใคด์ซิน เงนิสติน ไคด์เซอีน และ เงนิสเตอีน ในใบกวาวเครื่องาว 3 สายพันธุ์ได้แก่ PM-III, PM-IV และ PM-V มาเตรียมสารสกัดหยาบ เพื่อนำไปวิเคราะห์และสึกษาความสัมพันธ์ ระหว่างปริมาณสาร ไอโซฟลาโวนอยค์หลักเป็นเวลา 6 เดือนตั้งแต่ เดือนมีนาคมจน 2550 ถึงเดือน สิงหาคม 2550 ค่อเนื่องกัน โดยใช้เทคนิครีเวอร์สเฟสเอชพีแอลซี เทียบกับสารมาครฐาน พบว่าใน ใบกวาวเครือขาวประกอบด้วยสารไอโซฟลาโวนอยด์หลัก 3 ชนิดคือ พิวราริน ไดด์ซิน เจนิสติน โดยก่าเฉลี่ยปริมาณสารที่สูงที่สุดคือ ไดด์ซินใน PM-V ซึ่งมีปริมาณสาร 5.059.96 ± 365.61 มิลลิกรับ/100 กรับผงละเอียด รองลงมาคือเจนิสติน และ พิวราริน มีปริมาณสาร 3.062.35 ± 382.13 มิลลิกรับ/100 กรับผงละเอียด และ 468.19 ± 83.55 มิลลิกรับ/100 กรับผงละเอียด ตามลำดับ แต่ไม่ พบไดค์เซอีน และ เงนิสเตอีน ปริมาณสารไอ โซฟลา โวนอยค์รวมของ PM-V เดือนมิถุนายน 2550 สูงสุดโดยมีค่าเป็น 11.33 เท่าของปริมาณไอโซฟลาโวนอยค์ค่ำสุดของ PM-III ในเคือนเมษายน 2550 เมื่อเปรียบเทียบปริมาณสารไอโซฟลาโวนอยค์ทั้งหมดพบว่าเดือนมิถนายน 2550 มีปริมาณ สารสูงที่สุดคือ 5,766.34 ± 411.27 มิลลิกรับ/100 กรับผงละเอียด โดยมีปริมาณเป็น 2.93 เท่าของ ปริมาณสารไอโซฟลาโวนอยค์ที่ต่ำที่สุดในเดือนเมษายน 2550 และยังพบว่า พิวราริน ไดค์ซิน และ เจนิสติน มีความสัมพันธ์กับสารไอโซฟลาโวนอยด์รวมในระดับนัยสำคัญ 0.01 ในการศึกษานี้แสดงให้เห็นถึงการสกัดสารไอโซฟลาโวนอยด์ คือ พิวริน ไดด์ซิน และ เจนิสตินจากกวาวเครือขาว P. mirifica ในแปลงปลูกโดยใช้กระบวนการทาง เทคโนโลยีชีวภาพทำให้ได้สารที่มีปริมาณสูง

จุฬาลงกรณมหาวทยาลย

สาขาวิชา	เทคโนโลยีชีวภาพ	ลายมือชื่อนิสิต (utarma o	Jungsuk Charoon	ali
ปีการศึกษา	2550	ถายมือชื่อนิสิต (แน้นทาน ถายมือชื่ออาจารย์ที่ปรึกษาวิท	ทยานิพนธ์หลัก helv	Chi
		ลายมือชื่ออาจารย์ที่ปรึกษาวิท		

4972255523: MAJOR BIOTECHNOLOGY

KEYWORD: Pueraria mirifica/ Isoflavonoid/ PHYTOESTROGEN/ RP-HPLC

JUTARMAS JUNGSUKCHAROEN: QUANTITATIVE ANALYSIS OF MAJOR ISOFLAVONOIDS IN THE LEAVES OF WHITE KWAO KRUA *Pueraria mirifica.* THESIS ADVISOR: ASSOC. PROF. WICHAI CHERDSHEWASART, D.Sc., THESIS COADVISOR: ASSOC. PROF. POLKIT SANGVANICH, Ph.D., 129 pp.

The RP-HPLC analysis of 5 major isoflavonoids including puerarin, diadzin, genistin, daidzein and genistein was applied to Pueraria mirifica leaves derived from 3 plant cultivars; PM-III, PM-IV and PM-V in every month from March, 2007 to August, 2007. The results indicated that there were only puerarin, daidzin and genistin, not daidzein and genistein present in P. mirifica leaves. The highest isoflavonoid contents during the 6 months were daidzin in PM-V (5,059.96 ± 365.61 mg/100g powder). The maximum amount of puerarin (468.19 ± 83.55 mg/100g powder) and genistin (3,062.35 ± 382.13 mg/100g powder) were found in PM-V, while the maximum daidzin amount was found in PM-V. The total isoflavonoid contents of PM cultivar in June 2007 were the highest (5,766.34 ± 411.27 mg/100g powder) and in April 2007 was the lowest (509.03 ± 45.06 mg/100g powder). The lowest puerarin (62.88 \pm 15.02 mg/100g powder) and daidzin (194.63 \pm 18.32 mg/100g powder respectively) were found in PM-III where as the minimum genistin was found in PM-V (131.59 ± 18.22 mg/100g powder). The results demonstrated that the leaf isoflavonoid contents were under the influence of plant genetics and monthly climatic change. The highest total isoflavonoid amount in PM-V was found in June 2007 which was 11.33 times higher than the lowest amount of PM-III in April 2007. The isoflavonoid contents of PM cultivar in June 2007 were the highest which was 2.93 times higher than in April 2007. The study demonstrates the highly biotechnological potential of manufacturing puerarin, daidzin and genistin from the cultivated P. mirifica leaves.

Field of studyBiotechnologyStudent's signatureStudent's signatureAcademic year2007Principal Advisor's signatureWhen CM Co-advisor's signature Pollit Sangvanich

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation and grateful thanks to my advisor, Associate Professor Dr. Wichai Cherdshewasart for his helpful guidance, suggestions, continual encouragement and keen interest throughout this study. Especially I would like to really thank Associate Professor Punya Temcharoen with his kindness guidance, Associate Professor Dr. Polkit Sangvanich my co-advisor, Associate Professor Dr. Nattaya Ngamrojanavanich, Department of Chemistry for guidance of extraction techniques, Assistant Professor Dr. Kumthorn Thirakupt, Head of Department of Biology for providing laboratory space.

Special thanks for Silpakorn University, Department of Biology and Department of Chemistry for laboratory facilities, Program in Biotechnology, Faculty of Science, Chulalongkorn University for access to use the necessary instruments for my thesis. I would like to thank Assistant Professor Dr. Khanitha Phudhom for her kind permission to use the rotary evaporator and other instruments for extraction.

I am indebted to Dr. Suttijit Sriwatcharakul and Dr. Rattana Panriansaen for their excellent assistance and encouragement. Sincere Thanks to my advisor's mother for her generous help when I collected the PM leaves.

I really express my whole-heartedly appreciation to Papa, Mama, my younger brother who support and encourage me. I would like to thank all of friends, especially Tee who always help me everything and encourage me when I was in troubles.

This project was granted by Central of Excellence in Biodiversity, Faculty of Science, Chulalongkorn University.

CONTENTS

Page

THAI ABSTRACT	iv
ENGLISH ABSTRACT	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii
CHAPTER I INTRODUCTION	1
CHAPTER II LITERATURE REVIEW	3
2.1. Phytoestrogens; chemical approach	3
2.2. Phytoestrogens; physiological approach	15
2.3. The phytoestrogens of rich plant; <i>Pueraria mirifica</i>	24
CHAPTER III MATERIALS AND METHODS	34
3.1. Plant materials	34
3.2. Leaf harvest	34
3.3. Plant leaf crude extraction	37
3.4. Analysis of isoflavonoid contents	37
3.5. Statistical analysis	38
CHAPTER IV RESULTS AND DISCUSSIONS	39
4.1. Characteristics of leaves powder	39
4.2. Plant crude extraction	39
4.3. Analysis of isoflavonoids	42
4.3.1. Standard curve establishments	42
4.3.2. Quantitaive analysis of isoflavonoids in PM leaf crude estracts	48
4.3.3. The analysis of isoflavonoids in PM leaf crude extracts	55
CHAPTER V CONCLUSIONS	61
REFERENCES	63
APPENDICES	84
BIOGRAPHY	129

LISTS OF TABLES

Page

Table 2.1.	Common phytoestrogens and their sources		
Table 2.2.	Relative binding activity of estrogen and various		
	phytoestrogens binding to ER α and ER β	19	
Table 2.3.	Summary of the chemical constituents of P. mirifica (adapted		
	from Panriansaen, 2000)	28	
Table 2.4.	Summary of the recent reports of the biological effects of P.		
	mirifica on animal model	32	
Table 2.5.	The growth-promoting effects of chemical compound extracts		
	of P. mirifica on MCF-7 human breast cancer cells		
	(Chansakaow et al., 2000 ^a and 2000 ^b)	33	
Table 4.1.	The leaves crude butanol extract contents of 3 PM cultivars;		
	PM-III, PM-IV and PM-V in each area	40	
Table 4.2.	The retention time of five standard isoflavonoids calculated by		
	Empower [™] program	41	
Table 4.3.	The isoflavonoid contents of PM-III, PM-IV and PM-V		
	(mg/100g powder)	57	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Page

Figure 2.1. The relationship between the various groups phytoestrogens (given in bold) and members of each gro The compounds in brackets are not inherently presen plants but are oestrogenic products resulting f metabolism of members of that class of phytoestrogen	it in From
Figure 2.2. The flavone biosynthesis	
Figure 2.3. The ring migration of flavone	
Figure 2.4. The structural similarities of phytoestrogens to oestrac	diol.
The similarity of the structure of the human hormone	e 1)
Oestradiol, 2) Genistein, 3) Coumestrol, 4) Secoisolaricire	esi-
-nol and 5) 8-Prenylnaringenin from the four classes	s of
phytoestrogen from Figure 2.1. All the structures possess	s the
phenolic (A) and hydroxyl (B) moieties outlined in boxes	s on
the oestradiol structure and the distances between the	two
groups in each compound are similar	11
Figure 2.5. A general schematic of the steps involved in extraction	and
analysis of phytoestrogens (Adlercreutz et al., 1986 and Frank	se et
al., 1994)	12
Figure 2.6. Mechanisms of estrogen receptor activation on target of	cells
(Adapted from Diel, Schmidt, and Volla	mer,
2002)	16
Figure 2.7. Structure-activity relationships of estrogen and so	ome
phytoestrogens (coumestrol and zearalenol) on estro	ogen
receptor lignands (Clarke et al., 1996)	16
Figure 2.8. Schematic of some phytoestrogen metabolism in intes	stine
(Anderson and Garner, 1997)	18
Figure 2.9. Leaves (a), flower (b), tuberous root (c) and pod (d) o	
mirifica	27

х

Figure 2.10.	Schematic diagram of mammary carcinogenesis and potential	
	sites of chemoprevention in each stepwise (adapted from	
	Mehta, 2000)	29
Figure 3.1.	The plant trial field of PM; a) PM-III, b) PM-IV and c) PM-	
	V	34
Figure 3.2.	The selected plot in each trial field cultivar of PM; a) PM-III,	
	b) PM-IV and PM-V	36
Figure 4.1.	The characteristic of 3 PM leaves powder	39
Figure 4.2.	The dark-brown crude butanol extract of PM-III, PM-IV and	
	PM-V	39
Figure 4.3.	The chromatogram of standard puerarin(0.1 μ g/ μ l) at 254 nm	43
Figure 4.4.	The chromatogram of standard daidzin (0.1 μ g/ μ l) at 254 nm	43
Figure 4.5.	The chromatogram of standard genistin (0.1 μ g/ μ l) at 254 nm	44
Figure 4.6.	The chromatogram of standard daidzein (0.25 μ g/ μ l) at 254	
	nm	44
Figure 4.7.	The chromatogram of standard genistein 0.25 μ g/ μ l at 254	
	nm	45
Figure 4.8.	The chromatogram of 5 standard isoflavonoids; puerarin	
	(0.025 µg/µl), daidzin (0.003 µg/µl), genistin (0.003 µg/µl),	
	daidzein (0.025 μ g/ μ l) and genistein (0.025 μ g/ μ l) at 254 nm.	45
Figure 4.9.	Standard curve of puerarin at 254 nm	46
Figure 4.10.	Standard curve of daidzin at 254 nm	46
Figure 4.11.	Standard curve of genistin at 254 nm	47
Figure 4.12.	Standard curve of daidzein at 254 nm	47
Figure 4.13.	Standard curve of genistein at 254 nm	48
Figure 4.14.	The chromatogram of PM-III leaves in April 2007	49
Figure 4.15.	The chromatogram of PM-IV leaves in April 2007	49

Figure 4.16.	The chromatogram of PM-V leaves in April 2007	50
Figure 4.17.	The chromatogram of PM-III leaves in May 2007	50
Figure 4.18.	The chromatogram of PM-IV leaves in May 2007	51
Figure 4.19.	The chromatogram of PM-V leaves in May 2007	51
Figure 4.20.	The chromatogram of PM-III leaves in June 2007	52
Figure 4.21.	The chromatogram of PM-IV leaves in June 2007	52
Figure 4.22.	The chromatogram of PM-V leaves in June 2007	53
Figure 4.23.	The chromatogram of PM-III leaves in July 2007	53
Figure 4.24.	The chromatogram of PM-IV leaves in July 2007	54
Figure 4.25.	The chromatogram of PM-V leaves in July 2007	54
Figure 4.26.	The chromatogram of PM-III leaves in August 2007	55
Figure 4.27.	The chromatogram of PM-IV leaves in August 2007	55
Figure 4.28.	The chromatogram of PM-V leaves in August 2007	56

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF ABBREVIATIONS

°C	Degree Celcius
AU	Absorbance Unit
cm	Centimeter
E_2	17β-Estradiol
ER	Estrogen Receptor
ERα	Estrogen Receptor Alpha
ERβ	Estrogen Receptor Beta
g	Gram
h	Hour
L	Liter
М	Molarity
ml	Mililiter
nm	Nanometer
S.E.	Standard error
UV	Ultraviolet
μg	Microgram
μL	Microliter

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

Isoflavonoids are major ingredient of phytoestrogens with anticancer properties (Watanabe et al., 2002; Lof and Weiderpass, 2006). The important source of isoflavonoids is mainly seeds from legume plants. Soy isoflavonoids are well studied with most results derived from daidzein and genistein (Ingram et al., 1997). Other plant sources for isoflavonoids are also investigated. Among the phytoestrogenrich plant materials, the tubers of kudzu (Pueraria lobata) widely used in traditional Chinese, Japanese and Korean medicines, and white Kwao Krua (Pueraria mirifica) (Kashemsanta et al., 1952) used in the Thai traditional medicines for treatment of menopausal symptoms are extensively studied. Kudzu is found to enrich with isoflavonoids, especially puerarin (Kaufman et al., 1997). P. mirifica is found to contain active phytoestrogens including miroestrol (Jones and Pope, 1961), deoxymiroestrol (Chansakaow et al., 2000^a). The wild P. mirifica population exhibits 5 major isoflavonoids including puerarin, daidzin, genistin, daidzein and genistein (Cherdshewasart et al., 2007^a) with varied estrogenic activity in ovariectomized rats (Cherdshewasart et al., 2007^b). The cultivated plant tubers also store high amount of 5 major isoflavonoids since the first year of cultivation (Cherdshewasart and Sriwatcharakul, 2007).

Estrogenic activity of the tuberous materials was extensively evaluated in *P. mirifica*. Evaluation in female mice and monkeys revealed a dose-dependent estrogenic disruption (Jaroenporn *et al.*, 2007; and Trisomboon *et al.*, 2007). In ovariectomized rats or aging female monkeys, consumption of *P. mirifica* exhibited a dose-dependent replacement action for estrogen (Malaivijitnond *et al.*, 2006; and Trisomboon *et al.*, 2006). The plant crude extract exhibited biphasic estrogenic activity in MCF-7 cells with proliferation at low dose and antiproliferation (anti-estrogen) at high dose (Cherdshewasart *et al.*, 2004), with a possible role of metabolic activation at its cellular action (Lee *et al.*, 2002). The pretreatment with plant powder showed antiproliferation to induce mammary tumor in female rats (Cherdshewasart *et al.*, 2007). *P. mirifica* also exhibited positive response for induced osteoporosis in

orchidectomized male rats (Urasopon *et al.*, 2007). Clinical trial of the plant powder consumption exhibited successive treatment of menopausal symptoms in Thai menopausal women (Muangman and Cherdshewasart, 2001) without adverse effect in both human and animal skin tests (Cherdshewasart, 2003).

P. mirifica is a twinning vine with a lot of produced leaves during their growth and development. Leaf harvest is not complicated as tuber harvest. Leaf might be a better alternative in term of commercialized farming for phytoestrogens production, especially isoflavonoids. We therefore establish a chemical analysis of major isoflavonoids in leaves of *P. mirifica* to evaluate the potential of isoflavonoid extraction from leaves of this plant.

Aims of the study are as followed:

To analyze the major isoflavonoids from the leaves of 3 cultivars of *P*. *mirifica*, namely PM-III, PM-IV and PM-, by RP-HPLC analysis after chlorophyll elimination.

CHAPTER II

LITERATURE REVIEW

2.1 Phytoestrogens; chemical approach

2.1.1 Introduction and Classification

Phytoestrogens are molecules with estrogenic activity that are found in plants. Several different classes of molecules have been identified as phytoestrogens so far; these are not identical to human estrogens, but have some structural similarities which allow them to interact with estrogen receptors (a protein within certain cells which can bind to endogenous estrogens, phytoestrogens, or xenoestrogens. Once coupled with its estrogenic molecule, this protein communicates with other molecules and starts a process that ultimately leads to certain genes being switched on or off. The genes regulate many hormone-influenced systems) in human cells. 'Phytoestrogen,' then, is more of a functional classification than a chemical classification.

Following publication of the Allen Doisy bioassay for estrogens in 1923 (Allen and Doisy, 1923), plant extracts were first reported to exhibit estrogenic activity in 1926 (Loewe et al., 1927). By 1975, several hundred plants had been found to exhibit estrogenic activity on bioassay or to contain estrogenically active compounds (Farnsworth et. al., 1975). Phytoestrogens assumed biological and economic importance in the 1940s, with the outbreak of infertility in sheep grazing on pastures rich in subterranean clover in Western Australia, later known as "Clover Disease" (Bennets et al., 1946).

There were three main classes of phytoestrogens: isoflavones, coumestans, and lignans, which occur in various plants or seeds (Table 2.1). A single plant often contains more than one class of phytoestrogen for example, isoflavonoids were found predominately in soybeans (*Glycine max* L.), whereas coumestans were preliminary identified by genus of *Trifolium* such as clovers (Franke et al., 1994) and species of *Pueraria* and *Glycyrrhiza* (Dewick, 1993). Genistein and daidzein were the major

isoflavonoids also found in soybeans and their products. The available data especially in epidemiological study was examined the relationship between the consumption of natural food containing phytoestrogens and the reduced risk of cardiovascular symptoms, cancer and osteoporosis.

The chemical structure of phytoestrogen was diphenolic (better bisphenolic) compounds that comprised of 2 benzene rings (A and B) linked through a heterocyclic pyran or pyrone ring (C) in the middle (Figure 2.1). The basic structure of phytoestrogens was closely similar to natural and synthetic estrogens and antiestrogens such as resorcyclic acid lactones (e.g. zearalenone). When both structures of phytoestrogen and estradiol were superimposed, the distance between the hydroxyl groups were identical (Figure 2.2). Isoflavonoids are often present as glucoside conjugates (glycones) such as genistin, daidzin and glycitin. These glycosides can be further metabolized in gut to aglycone such as genistein, daidzein and glycitein. Based on the structural similarities, phytoestrogens could bind to estrogen receptors (ERs) (Setchell, 1998 and Hopert et al., 1998) and acted as a weak estrogen (Setchell, 1998).

Table 2.1 Common phytoestrogens and their sources

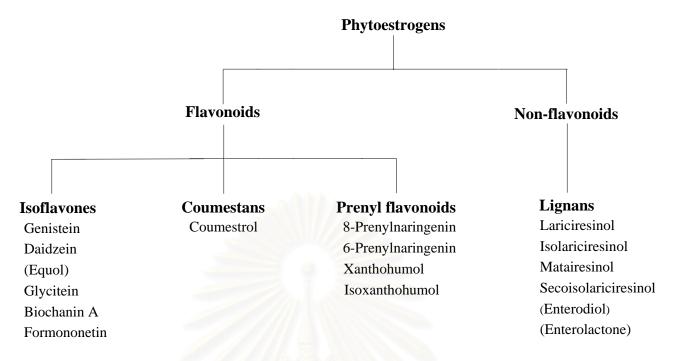
(http://www.herbalchem.net/Introductory.htm).

Class	Examples	Sources	Concentration
			(mg/100g powder)
Isoflavones	Daidzein	Soybeans and soy products:	
		Soy flour	1.65 - 130.92
		Soybeans raw	9.89 - 124.20
ลพ		Soy protein isolate	7.70 - 68.89
9		Miso	7.10 - 36.64
		Tempeh	4.67 - 27.30
		Tofu	8.00 - 25.80
		Soy cheese	0.20 - 21.10
		Soy milk	1.14 - 9.84
		Infant formulas	0.75 - 9.65
		Soy dog	3.40

		Shoyu	0.60 - 1.40
		Soy sausage	0.75
		Commercial soy sauce	0.10
		Soy oil	0
		Other sources:	
		Kudzu root	185
		Split peas, raw	0 - 7.26
		Red clover leaf *	4.2
		Mung bean sprouts	0.70
		Kudzu leaf	0.375
		Red clover seed	0.178
		Sesame seed	0.140
		Chick peas, raw	0 - 0.08
		Alfalfa (mature)	0.062
		Peanuts, raw	0.01 - 0.05
		Black-eyed peas, raw	0 - 0.03
	28.4	Pinto beans, raw	0 - 0.02
		Fenugreek seed	0.01
		Lentils, raw	0 - 0.01
	0	Alfalfa sprouts	0
	S.	Black beans, raw	0**
		Kidney beans, cooked	0
		Red clover sprouts	0
	Formononetin	Red clover (mature)	1322
	ลถาบน	Kudzu Root	7.090
		Red clover sprouts	2.28
٩W	1941129	Red clover seed	1.270
9		Alfalfa sprouts	0.34
		Chickpeas	0.094 - 0.215
		Soybeans	0.018 - 0.121
		Kudzu Leaf	0.087
		Alfalfa (mature)	trace
		Red clover tea	trace

		(flowering tops)	
	Genistein	Soybeans and soy products:	
		Soy flour	2.75 - 145.23
		Soybeans, raw	13.00 - 138.24
		Soy protein isolate	27.17 - 105.10
		Miso	11.70 - 52.39
		Tofu	11.10 - 42.15
		Tempeh	1.11 - 39.77
		Soy cheese	0.50 - 38.20
		Infant formulas	1.58 - 15.43
		Soy milk	1.12 - 11.28
		Soy dog	8.20
		Soy sausage	2.70
		Shoyu	0.30 - 1.54
		Commercial soy sauce	0
		Soy oil	0
		Other sources:	
		Red clover leaf*	56.0
		Kudzu root	12.60
		Kudzu leaf	2.52
		Mung bean sprouts	2.00
		Pinto beans, raw	0.52
		Peanuts, raw	0.08 - 0.39
		Red clover Sprouts	0.35
		Split peas, raw	0 - 0.10
0.09		Chick peas, raw	0 - 0.12
N N		Black-eyed peas, raw	0 - 0.03
9		Fenugreek seed	0.01
		Lentils, raw	0 - 0.01
		Alfalfa (mature)	trace
		Alfalfa sprouts	0
		Black beans, raw	0**
		Kidney beans, cooked	0

	Biochanin A	Red clover	833
		Chickpeas	0.838 - 3.080
		Kudzu Root	1.400
		Kudzu Leaf	1.240
		Red clover sprouts	0.44
		Red clover seed	0.381
		Peanuts	0.031
		Alfalfa (mature)	trace
		Red clover tea	trace
		(flowering tops)	
	Glycitein	Soybeans and soy products:	
		Soy protein isolate	5.40 - 26.40
		Soy flours	3.95 - 28.8
		Soy beans, raw	6.72 - 20.40
		Soy cheese	2.70 - 4.10
		Soy dogs	3.40
		Miso	2.30 - 3.80
	1	Infant formulas	0.28 - 3.45
	aces	Tempeh	0.90 - 3.20
	0	Tofu	1.70 - 2.90
	CA.	Soymilk	0.36 - 0.86
		Shoyu	0.45
		Soy sausage	0.30
	ສຸດວັບເຄ	Soy oil	0
	ลยาบน	Commercial soy sauce	0
Coumestans	Coumestrol	Red clover sprouts	28.1
NN	101/136	Mature alfalfa	2.5 - 6.5
9		Alfalfa sprouts	4.7
		Kudzu leaf	1.57
		Soybean sprouts	0.45 - 1.21
		Mung bean sprouts	1.00
		Soybean, 'Santa Rosa'	0.19
		variety	


	Red clover leaf	0.105
	Soybean (mature, other	~ 0
	varieties) and soy products	
Matairesinol	Flax seed	1.087
	Sesame seed	0.608
	Teas (brewed)	0.090 - 0.305
	Rye bran	0.167
	Oat bran	0.155
	Rye meal	0.065
	Broccoli	0.023
	Poppy seed	0.012
	Other grains, legume	Up to ~ 0.01
	seeds, and nuts	
	Black currants	0.01
	Strawberries	0.005
Secoisolariciresi	nol Defatted flax meal	600 - 700
	Flax seed	369.9
	Pumpkin	3.870
	Teas (brewed)	1.050 - 2.887
	Lingonberry	1.510
	Strawberry	1.205
	Cranberry	1.054
ลถาบ	Blueberry	0.835
	Zucchini	0.817
จพาลงกร	Sunflower seed	0.610
9	Kudzu leaf	0.476
	Broccoli	0.414
	Black currant	0.388
	Garlic	0.380
	Carrot	0.370
	Peanut	0.298 - 0.333

Soybean	0.013 - 0.273
Cashew	0.257
Caraway seed	0.221
Cow pea	0.195 – 0.196
(Vigna unguiculata)	
Walnut	0.163
Kidney bean	0.056 - 0.153
Red cabbage	0.141
Raspberry	0.139
Rye bran	0.132
Hazelnut	0.119
Wheat bran	0.110
Sesame seed	0.090

* Daidzein and genistein were present in their glycosidic forms, daidzin and genistin. No free aglycones were detected in red clover.

** Despite claims to the contrary, none of the scientific literature indicates that Black beans contain more than a trace of isoflavones. They are, however, rich in other flavonoids, as indicated by their dark purpleblack color. See p 119 of this report [have patience downloading, it's a big PDF file] from the Institute for Environment and Health, Ministry of Agriculture, UK.

Figure 2.1. The relationship between the various groups of phytoestrogens (given in bold) and members of each group. The compounds in brackets weren't inherently presented in plants but were oestrogenic products resulting from metabolism of members of that class of phytoestrogen.

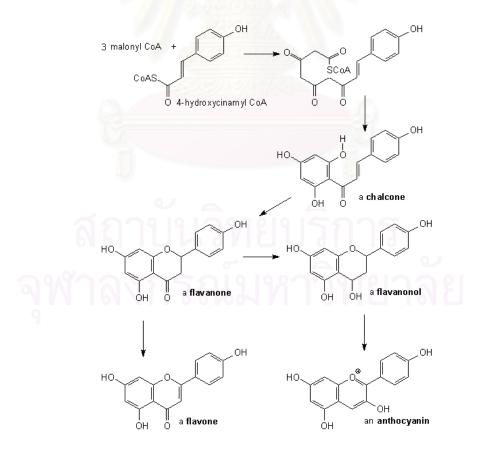


Figure 2.2. The flavone biosynthesis.

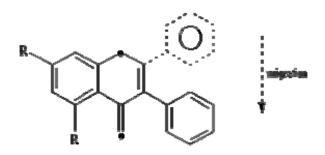
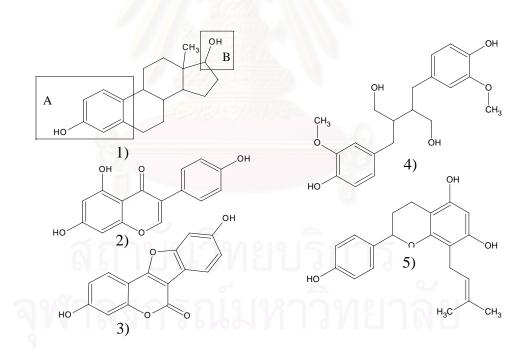



Figure 2.3. The ring migration of flavone.

Isoflavonoid had been established that acetate gives rise to ring A and that phenylalamine, cinnamate and cinnamate derivatives were incorporated into ring B and C-2, -3, and -4 of the heterocyclic ring. Since crhalcones and flavanones had been efficient precursors of isoflavonoids, the required aryl migration of ring B from the former 2 or beta position to the 3 or alpha position of the phenylpropanoid precursor must take place after formation of the basic C_{15} skeleton (Figure 2.2-2.3.).

Figure 2.4. The structural similarities of phytoestrogens to oestradiol. The similarity of the structure of the human hormone 1) Oestradiol, 2) Genistein, 3) Coumestrol, 4) Secoisolariciresinol and 5) 8-Prenylnaringenin from the four classes of phytoestrogen from Figure 2.1. All the structures possess the phenolic (A) and hydroxyl (B) moieties outlined in boxes on the oestradiol structure and the distances between the two groups in each compound are similar.

2.1.2 Analysis of phytoestrogens

Generally, phytoestrogens and their metabolites are present in part per billion to part per million in plants, foodstuff as well as in biological fluids such as urine, plasma and feces. Initially, phytoestrogens were analyzed using simply techniques such as thin-layer and paper chromatography. However, the development of increasingly sensitive technologies was advanced phytoestrogen analysis considerably. The most widely used methods for quantify of phytoestrogens were high performance liquid chromatography with ultraviolet detection (HPLC-UV) (Wang et al., 1990 and Thomas et al., 2001), gas chromatography with mass spectrometric detection (GC-MS) (Mazur et al, 1996; Tekel et al., 1999 and Nesbitt, Lam and Thompson, 1999) and liquid chromatography with mass spectrometric detection (LC-MS) (Coward et al., 1996; Cimino et al., 1999 and Doerge, Churchwell, and Delclos et al., 2000).

These developments were also useful in pharmacological and toxicological studies. Prior to analysis and their metabolites, phytoestrogens might be isolated from matrices. The extraction of phytoestrogens were required. During extraction, phytoestrogen might be lost; an appropriate internal standard might be added prior to extraction. A general schematic of the steps involved in extraction and anyalyse of phytoestrogens was shown in Figure 2.3

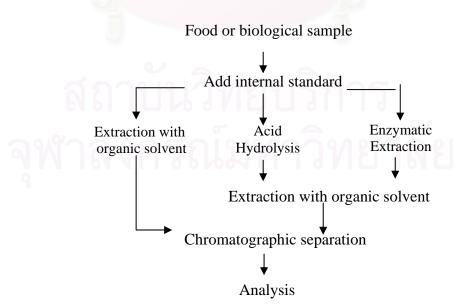


Figure 2.5. A general schematic of the steps involved in extraction and analysis of phytoestrogens (Adlercreutz et al., 1986 and Franke et al., 1994).

2.1.2.1.High performance liquid chromatography with ultraviolet detection (HPLC-UV)

The most appropriate analytical method was dependent on the type of biological matrix and compound to be analysed. The analytical methods used in phytoestrogen analysis required reference standards, which were pure, samples of the analyte and were used to calibrate the analytical method to ensure it performs in the way that is anticipated (Thompson & Wood, 1993). As methods were developed, the limits of detection and quantification were decreased so that phytoestrogens can now be measured in foodstuffs and biological samples down to concentrations of parts per billion.

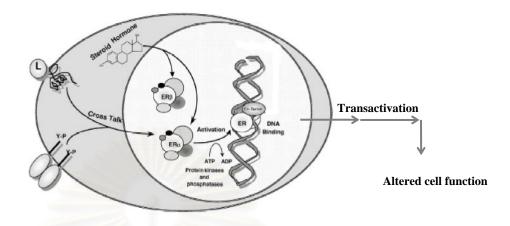
HPLC-UV was a relatively rapid way of measuring phytoestrogens compared to mass spectrometric (MS) based methods (Setchell & Welsh 1987; Wang et al, 1990; Franke et al, 1994; Saloniemi et al, 1995; Obermeyer et al, 1995; Franke & Custer, 1996; Coward et al, 1998; Murphy et al, 1999; Zhang et al, 1999; Nakamura et al, 2000; Thomas et al, 2001). Following isolation of phytoestrogens from the matrix, they were directly separated and quantified. This method allows simultaneous purification and measurement of complex mixtures. UV detection was generally less sensitive than MS detection and the reported detection limits could be variable. The analytes were quantified by comparison with calibration curves derived from reference standards. However, substances presented in the sample, but not in the reference standard, which might co-elute with the analyte during chromatography, might lead to falsely high measurements of the analyte. Reference standards were not available for many phytoestrogens, such as the acetyl- and malonyl isoflavone glucosides. Therefore, measurements of these compounds were based on calibration curves of isoflavone glucosides and aglucones. Research indicated that this approach could introduce errors in measurements (Coward et al, 1993). However, when reference materials of the acetyl- and malonylglucosides were available such assumptions could be tested and results re-calculated.

2.1.2.2.Gas chromatography with mass spectrometric detection (GC-MS)

GC-MS was sufficiently sensitive to measure concentrations of phytoestrogens of less than parts per million (Adlercreutz et al, 1991a and b; 1993; 1995; 1999; Morton et al, 1994; 1997; Joannou et al, 1995; Mazur et al, 1996; Liggins et al, 1998; 2000; Tekel et al, 1999; Nesbitt et al, 1999; Lampe et al, 1999; Heinonen et al, 1999; Foster et al, 2002). Measurement was usually done with the use of internal standards (preferably isotopically labelled analogues of the analytes), but unlike HPLC-UV, the standard and the analyte was measured under exactly the same conditions. Samples might be treated to remove conjugating groups prior to analysis by GC-MS and as a result phytoestrogens couldn not be measured as they appear in the matrix. As such, the analytical results obtained using this method is expressed as quantity of 'total phytoestrogen'. Chemical and enzymatic methods were developed to remove these groups (Liggins et al, 1998; Mazur et al, 1996). Enzymatic methods were preferable for isoflavones as they could be unstable under acidic conditions (Liggins et al, 1998). However, lignan glucosides were resistanted to enzymatic hydrolysis and required strong acid to remove the sugars (Mazur et al, 1996).

2.1.2.3. Liquid chromatography with mass spectrometric detection (LC-MS)

LC-MS was also sufficiently sensitive to measure concentrations of phytoestrogens of less than parts per million (Setchell & Welsh, 1987; Barnes et al, 1994; Coward et al, 1996; Cimino et al, 1999; Doerge et al, 2000a and b; Rong et al, 2000; Chang et al, 2000). However, in contrast to GC-MS, removal of conjugating groups was not required prior to analysis. Therefore, different forms of phytoestrogens could be measured and expressed directly rather than as a value of 'total phytoestrogen'. However, measurement was dependent on the availability of internal standards for each analyte and many of these materials were unavailable at present. Laboratories using LC-MS have to use the available aglycone standards and hydrolyse samples prior to analysis. As such, the advantage of non-destructive sample preparation that LC-MS offers over GC-MS has not yet been realized. More recently, methods used LC coupled to mass spectrometers in tandem (MS/MS) were developed for the analysis of phytoestrogens (Valentin-Blasini et al, 2000; Coldham et al, 2002; Fang et al, 2002).


2.2. Phytoestrogens; physiological approach

2.2.2. Phytoestrogen action

Numerous studies were shown that phytoestrogens can exert multi-functions through genomic and non-genomic mechanisms of cellular regulation by competing to estrogen receptor binding or interfering to estrogen biosynthesis and metabolism.

2.2.1.1. Cellular and molecular mechanisms

According to the classic concept, estrogens were steroid hormones, which involved in the important functions for the sexual processes and act through protein, estrogen receptors which distributed in reproductive tissues such as ovary, mammary, uterus and vagina. Until recently, ER was identified into two subtypes, ER β and ER α . $ER\beta$, discovered only a few years ago, was heterodimers in DNA binding domain (over 95% amino acid identity) and splicing variants of ERa (Kuiper et al., 1996 and Mosselman et al., 1996). ERs were predominately presented in nucleus where was formed the complex with heat shock proteins when received the stimulating (Figure 2.4 and 2.5). Bound ERs were activated to the specific DNA-binding sites called estrogen receptor response elements (ERE) or AP-1 site. After binding, the target gene transcription in initiated or repressed which ultimately elicited biological responses as agonist or antagonist characters (Clark, et al., 1996; Fitzpatrick, 1999 and Diel, Smolnikar, and MIchna, 1999) depende on the phytoestrogens concentration and target organ (Setchell et al., 1998). If phytoestrogens induce biological effect as estradiol, they were considered as agonist, however, the potency was too weak that require much higher concentrations to boost the responses as well as estradiol. On the other hand, phytoestrogens could act as antagonists by block the binding of estrogen that caused an interrupted hormone response.

Figure 2.6. Mechanisms of estrogen receptor activation on target cells (Adapted from Diel, Schmidt, and Vollmer, 2002)

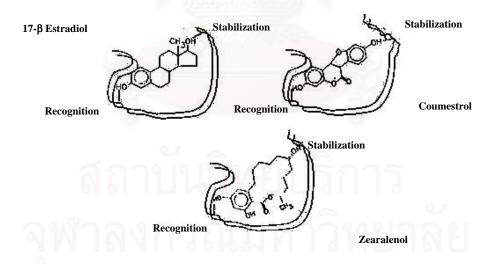


Figure 2.7. Structure-activity relationships of estrogen and some phytoestrogens (coumestrol and zearalenol) on estrogen receptor lignands (Clarke et al., 1996)

2.2.1.2. Biotransformation and metabolism

The metabolisms of isoflavonoids and lignans showed similar patterns in animal (Price and Fenwick, 1985) and human (Adlercreutz et al., 1991) whereas coumestan had not been identitied. After consumption, isoflavone and lignan glycosides were probably hydrolyzed within gastrointestinal tract by gastric acid (Xu et al., 1995) and intestinal microflora hydrolysis enzymes. The precursor of genistein and daidzein are biochanin A and formononetin, respectively (Figure 2.6). After absorption, isoflavonoids were transported to the liver, reconjugated and then excreted in urine and bile. The reconjugation of aglycone with glucuronic acid and sulfuric acid was function by hepatic phase II enzymes (Morton et al., 1994 and Adlercreutz et al., 1993). However, genistin was partly absorbed without previous cleavage (Andlauer, Kolb, and Fürst, 2000). In human, aglycones were absorbed faster and in greater amounts than their glycosides (Izumi et al., 2000). The maximum peak of isoflavonoids was range at 7-8 hours after consuming a single soy meal (King and Bursill, 1998). Those isoflovones were detected in biological fluid including plasma (Adlercreutz et al., 1994), amniotic fluid (Adlercreutz et al., 1999), urine (Adlercreutz et al., 1991), feces (Adlercreutz, et a., 1995), milk (Franke and Custer, 1996), saliva, breast aspirate (Hargreaves et al., 1999) and prostatic fluid (Finlay et al., 1991).

Biochanin A and formononetin were metabolized by gut microflora to genistein and daidzein, respectively. Genistein could be further metabolized to 4-ethylphenol and daidzein to equol, dihydrodaidzein and *O*-desmethylangolensin (Anderson and Garner, 1997). The data suggested that equol has a greater antioxidant effect than other phytoestrogens, which often found in highest level in biological matrices and exerted significant biological effects (Hodgson et al., 1996).

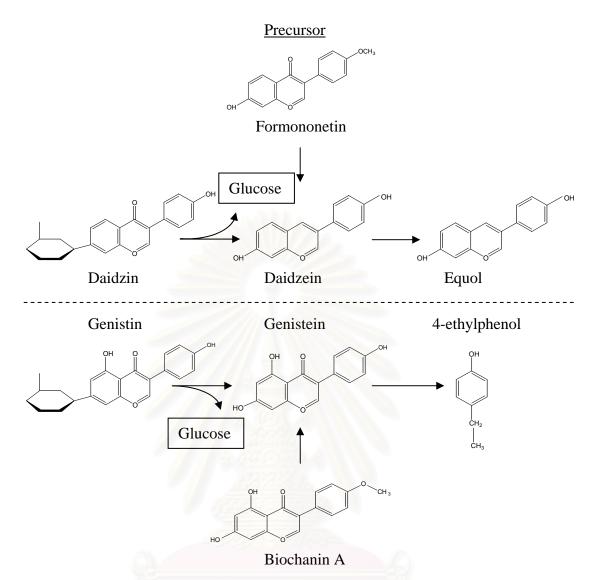


Figure 2.8. Schematic of some phytoestrogen metabolism in intestine (Anderson and Garner, 1997).

2.2.1.3. Phytoestrogens potency and active concentration

Bound compound to both type of ERs could stimulate transcription of ERE, with different tissue expression patterns. The splicing variants leaded to different relative binding affinities in different compounds. Assessment of estrogenic potency varies acrossed assays such as receptor binding affinity, transcriptional activation, cell proliferation and *in vivo* assays. It is derived from the difference in copies of EREs in used cells. Generally, a low concentration of phytoestrogen (1-100 nM) stimulates cell growth, whereas, a high concentration (5-100 μ M) showed suppression. This was called a biphasic pattern.

Phytoestrogens could bind with higher affinity to $ER\beta$ on transcriptional level than to ER α (Kuiper, et al., 1997 and 1998 and Casanova et al., 1999). Phytoestrogens could affect endogenous hormonal production by inhibiting the key enzyme of hormonal biosynthesis (Evans, Griffiths and Morton, 1995; Kao et al, 1998 and Makela et al., 1998) or stimulating of sex hormone binding globulin (SHBG) (Adlercreutz et al., 1987), however, the estrogenic potency was less than estradiol. The proliferation action occured at nanomolar concentration level. In vitro study, the concentration of phytoestrogens to elicit a responsed on ER α and ER β site are 0.145 and 0.0084 μ M, respectively (IC₅₀ values for competition of estradiol-recepter binding) (Kuiper et al., 1998). Compared with all phytoestrogens, coumestrol was the highest estrogenic potency (Kuiper et al., 1997), however, an affinity to ERa was ten times less than estradiol. It was noticed that the methoxy derivative of genistein and biochanin A did not bind ER, but they could show estrogenic activity in vivo. This might be the role of hydroxyl substituents at 4' and 7' positions in phytoestrogen groups (Figure 2.6). The ranking of phytoestrogens potency as compared with estradiol is estradiol > courstrol > 8-prenylnaringenin > equal > genistein > biochaninA > daidzein > genistin > glucoronide > daidzin > glucoronide > formononetin (Kuiper et al., 1997 and Milligan et al., 2000) (Table 2.2).

Commoned	Binding at ERa	Binding at ERß
Compound	(%)	(%)
17- β Estradiol ^a	100	100
Estrone ^a	60	37
Estriol ^a	14	21
Progesterone ^a	<0.001	< 0.001
Testosterone ^a	< 0.01	<0.01
Coumestrol ^a	94	185
Genistein ^a	5	36
Daidzein ^a	0.2	1
8-Prenylnaringenin ^b	10	10
β-Sitosterol ^a	< 0.001	< 0.001
Tamoxifen ^a	7	6

Table 2.2. Relative binding activity of estrogen and various phytoestrogens binding to ER α and ER β

(^aKuiper et al., 1997 and ^bMilligan et al., 2000)

2.2.2. Biological and pharmacological effects

2.2.2.1. Hormonal effects

The hormonal effects have been shown in both animal and human, however, the results have been inconsistency depending on the analytical methods. Phytoestrogens were quite weak according to both *in vitro* and *in vivo* assays, which possessing less than activity of estradiol between 1,000 and 10,000 (Folman and Pope, 1966 and Markiewicz et al., 1993). The phytoestrogen-rich plant, red clover demonstrated hyperestrogenize and infertility in grazing animals (Bennets, Underwood and Shier 1946 and Shutt and Braden, 1968). In uterine growth of female mice, subcutaneous injection of genistein could inhibit the stimulation of estrone (Folman and Pope, 1966). The length of the follicular phase in pre-menopausal women was increased when administered within isoflavone-rich diet (Cassidy, Bingham and Setchell, 1995 and Lu et al., 1996). On the other hand, progesterone (Lu et al., 1996 and Lu et al., 2000) and testosterone could be decreased (Strauss et al., 1998). Estradiol-17 β in serum was also affected (Cassidy, Bingham, and Setchell, 1995). At high dosages of isoflavonoids, the feedback-regulating system of the hypothalamus-pituitary gland axis was interrupted and affected to hormonal status.

Genistein was shown to exert both estrogenic and antiestrogenic activity in human cell lines (MCF-7) (Wang, Sathyamoorthy, and Phang, 1996 and Sathyamoorthy, Wang, and Phang, 1994). In cell culture, the low concentration of those compounds to stimulate estrogen-dependent receptor gene activity was 10-1000 nM (Kuiper et al., 1998). Moreover, some reports were shown that soy isoflavonoids could increase nerve growth factor mRNA and brain-derived neurotropic factor mRNA in rats (Pan, Anthony and Clarkson, 1999) and also affected the cell signaling conduction on receptor expression. At high concentration of genistein, EGF receptor expression was inhibited in rat uterus and vagina (Akiyama et al., 1987 and Brown and Lamartiniere, 2000). Phytoestrogens might involve in estrogen synthesis and metabolism through interfering and/or inhibiting estrogen related enzyme such as 17- β -hydroxysteroid oxidoreductase; the conversion catalyst of estrone to estradiol (Makela et al, 1995), aromatase (Kellis and Vickery, 1984 and Pelissero et al., 1996) and steroid sulphatase (Murkies, Wilcox, and Davis, 1998 and Krazeisen et al., 2001). Aromatase converted the androgens, dehydroepiandosterone and testrone to estrogen and estradiol, repectively. Inhibition of these enzymes would alter the balance between estradiol and the less potent of estrone. Genistein and daidzein also suppressed glucocorticoid and stimuated androgen production in human adrenal cortical cells cultures (Mesiano et al., 1999).

In HepG2 liver cancer cells culture, isoflavonoids was reported to stimulate the biosynthesis of SHBG. It was noticed that the change of SHBG concentration affect in relatively large changes in amount of free and bound hormones whereas the change of total hormone concentration affected in relatively small changes (Loukovaara et al., 1995 and Mousavi and Adlercreutz, 1993). To sum up, the action of phytoestrogen depended on the hormonal status of animal and human.

2.2.2.2. Anticarcinogenic effect

There were evidences in human studies, pointing to the potency of soy products or phytoestrogen such as genistein or daidzein to inhibit and prevent on various cancers such as endometrial (Goodman et al., 1997), prostate, (Jacobsen, Knutsen and Fraser, 1998; Herbert et al., 1998; Kolonel et al., 2000 and Strom et al., 1999), stomach (Nagata, 2000 and Nagata et al., 2002), colon (Nagata, 2000), thyroid (Horn-Ross, Hoggatt and Lee, 2002), lung (Seow et al., 2002) and mammary (Lee et al., 1991; Yuan et al., 1995; Hirose et al., 1995; Wu et al., 1996; Ingram et al., 1997; Witte et al., 1997; Key et al., 1999; Dai et al., 2001 and Shu et al., 2001). It was noticed that all these cancers are hormone-dependent.

Understandably, anticancer effects of soybean were primarily attracted attention on breast cancer. The low incidence of breast cancer in East Asia was found associated with consumption of typically Asian/oriental diet (Tham, Gardner and Haskell, 1998). Animal studies support the notion that phytoestrogen were also found to exert the inhibition of chemically induced mammary cancer (Barnes et al., 1990; Lamartiniere et al., 1995a, Murrill et al., 1996 and Gotoh et al., 1998a and 1998b). It was confirmed *in vitro* studies, isoflavonoids inhibited cancer cell growth including prostate cancer cell line (Davis et al., 1998 and Hillman et al., 2001) and MCF-7 human breast cancer cell line (Hsu, Ying, and Chen, 2000).

There was a correlation of reduced risk of breast cancer with a high plasma level of phytoestrogens such as mammalian lignan, enterolactone (Pietinen et al., 2001). Several reports were shown that genistein could inhibit the growth of both hormone-dependent and hormone-independent cancers with IC₅₀ at 5 - 100 μ M/L (2-25 μ g/mL) (reviewed in Messina, 1999). However, genistein could stimulate those cancers at physiologically concentrations (<5-6 μ M/L) (Zhang et al., 1999 and Ren et al., 2001).

The numerous mechanisms might be involved such as the inhibition of angiogenesis (Fotsis et al., 1993), protein tyrosine kinases (Akiyama et al., 1987) and related hormonal enzymes. The preventive effect of isoflavonoids might be involved the decreasing synthesis and altering metabolism form of estrogen (Xu et al., 1998 and 2000). In addition, genistein was shown to inhibit the metastatic activity of breast cancer (Scholar and Toews, 1994) and prostate cancer cells (Santibanez, Navarro and Martinez, 1997). Cell cycle progression at G_2 -M was arrested by genistein that result to the differentiation and apoptosis of various cancer cell lines including human gastric cancer (Yanagihara et al., 1993), human breast carcinoma (Shao et al., 1998), leukemia (Spinozzi, et al., 1994), melanoma (Rauth, Kichina, and Green, 1997) and colon (Kuo, 1996).

In vitro and *in vivo* studies, at micro molar concentration level of phytoestrogens exert various non-hormonal related effects. Genistein was shown to inhibit DNA topoisomerase I and II (Yamashita, Kawada, and Nakono, 1990; Ji et al., 1999; Martin et al., 2000 and Salti et al., 2000) that effected to DNA damage and epidermal growth factor-induced phosphatidylinositol turnover (Imoto et al., 1988). Biochanin A was linked to increase nitric oxide level that later induction of cell apoptosis (Hsu et al., 1999). In addition, phytoestrogens might exert their effects by decreasing the activity of enzymes that activate procarcinogens, such as cytochrome P450 (CYPs) (Roberts-Kirchhoff et al., 1999).

2.2.2.3. Other effects

Epidemiological observations and laboratory animals and *in vitro* investigations were revealed a number of biological properties suggesting a prevention of western diseases such as cardiovascular, atherosclerosis,

hypercholesterolemia, menopausal symptoms and osteoporosis (review in Kurzer and Hu 1997; Bingham et al., 1998 and Tham et al., 1998).

In vivo and epidemiologic studies were demonstrated that soy protein reduced risk of coronary heart disease and atherosclerosis (Anderson et al., 1999; Anthony, 2000, and van der Schouw et al., 2000). The effects resulted from a reduction of plasma low-density lipoprotein (LDL) (Tovar-Palacio et al., 1998; Crouse et al., 1999 and Ashton and Ball, 2000) cholesterol and triglycerides (Anderson, Johnstone, and Cook-Newell, 1995 and Ho et al., 2000). Soy could reduce absorption of dietary (Greaves et al., 2000), arterial permeability, concentration and delivery of LDL (Wagner et al., 2000) and increased LDL receptor quantity and activity (Baum et al., 1998).

Many studies suggested that phytoestrogens play role in maintaining bone density in postmenopausal women (Dalais et al., 2003; Alekel et al., 2000 and Kim et al., 2002). In animal studies, isoflavonoids could prevent bone loss that occurs as a result of estrogen deficiency in ovariectomized rats (Fanti et al., 1998; Vincent and Fitzpatrick, 2000; Picherit et al., 2000 and Uesugi et al., 2001). Postmenopausal woman seemed to benefit the most from consumption of soy phytoestrogens. Bone mineral density (BMD) of the lumbar spine was increased with the treatment of 90 mg. isoflavonoids per day for 24 weeks (Potter et al., 1998). Osteoclastic bone resorption was inhibited by genistein and daidzein (Ono, Ma, and Yamaguchi, 2000) but stimuted osteoblastic bone formation (Yamaguchi, Gao, and Ma, 2000). However, data available in human about the effect of isoflavonoids on osteoporesis is limited.

Since estrogen has an important effect on the immune system. A changing of estrogen level resulted to autoimmune diseases that commonly occur in women (Enmark and Gustafsson 1998 and 1999). Isoflavonoids were also exerted an antiinflammatory potential in various animal models. High dosages of daidzein (20 and 40 mg/kg) could enhance several immonologic function (Zhang, Li, and Wang, 1997) and was provened to increase the activation of murine lymphocytes (Wang, Higuchi, and Zhang, 1997). Moreover, isoflavone glucuronides were able to activate natural killer cells to increase the immune defenses of the body against cancer (Zhang et al., 1999).

2.3. The phytoestrogens of Pueraria mirifica

2.3.1. Pueraria mirifica

Ethnobotany and application: *P. mirifica* was long recorded as domestic consumption to promote youth in both male and female (Suntara, 1931). Traditionally, women in some area of Thailand consume a traditional Thai remedy that includes both tuberous powder of *P. mirifica* and Tripala; *Terminalia bellerica*, *Terminalis chebula* and *Phyllanthus emblica* to relieve vasomotor symptoms (hot flashes and night sweats) associated with menopause. Recently, *P. mirifica* powder was extracted and used in cosmetic industry such as breast cream, eye gel and skin moisturizer. The beneficial of skin application was used for breast firming and anti-wrinkle. Moreover, the plant powder packed in capsule was manufactured and distributed as food supplement for aging (Dweck, 2002).

Botanical characteristics and habitats: *Pueraria mirifica* Airy Shaw et. Suvatabandhu (synonym: *Pueraria candollei* Wall. ex Benth var. *mirifica* Airy Shaw et Suvatabandhu), family Leguminosae, subfamily Papilinoideae, the same as soy, bean and pea (Ridley, 1967 and Suvatti, 1978). The plant is known as "Kwao Krua" or "Kwao Krua Kao (White Kwao Krua)". *P. mirifica* was previously referred as *B. superba* until February 1947, it was identified as a new species of *Pueraria* and was named *Pueraria mirifica* Airy Shaw et. Suvatabandhu (Lakshnakara and Suvatabandhu, 1952).

The plant is a long-living twinning wood. The leaves were pinnately three foliate stipulate; terminal leaflet. The tuberous roots were varied in sizes and shapes. The flower was bluish-purple legume shaped, blooming during late January to early April. The length of the inflorescence of certain flowers was approximately 15-40 cm. The flower contained five sepals and the petals were one standard with two keels. The pod was slender typically short or elongate, smooth or hairy, including 1-10 single seeds when fully matured and dried which turned into various color. (Smitasiri and Wungjai, 1986 and Cherdshewasart and Sriwatcharakul, 2007) (Figure 2.7).

P. mirifica was found in the deciduous forest of the northern, western and northeastern parts of Thailand at the 80-800 meters level (Panriansaen, 2000 and Lakshnakara and Suvatabandhu, 1952). Recent survey revealed that the plant is distributed in at least 28 provinces (Subtaeng and Cherdshewasart, 2003). Variation within province was also found. The co-habitated plant of *P. mirifica* was typically teak and bamboo. The plant was not found in the forest with high-density trees. The vine of *P. mirifica* elongated for climbing over the trees while spreads on the ground in an open area (Panriansaen, 2000 and Panriansaen and Cherdshewasart, 2003). Attempts had been made to establish *in vitro* multiplication and plantation of *P. mirifica*. It was found that the plant tissue was responded to plant hormones and plantlets could initiate from *in vitro* (Cherdshewasart et al., 1996). The derived plants could initiate tubers (Sompornpailin et al., 2003).

Chemical constituents: *P. mirifica* had been found to contain at least 20 chemicals in the group of phytoestrogen with similar effects to estrogen. Miroestrol was the first isolated chemical and found in the amount of approximately 1.5 mg/ 100 g dry weight (Bound and Pope, 1960) and also shown estrogenic activity in rat vaginal cornification test (Jones and Pope, 1961). The chemical structure was not classified as steroid (Benson et al., 1961). The other compounds, mainly found in *P. mirifica* were isoflavonoids, chromenes, coumarins, sterols (Table 2.3 and figure 2.8) and macromolecule such as protein, lipid and starch (Appendix C). Deoxymiroestrol was isolated and found to be the compound with higher estrogenic potency than miroestrol, approximately 10-folds. However, it was easily oxidized by the air and converted to miroestrol and isomiroestrol (Chansakaow et al., 2000^a).

The determination of isoflavone content, puerarin, daidzin, genistin, daidzein and genistein in the extracts of *P. mirifica* root from various location of Thailand by HPLC fingerprint assay revealed a great diversity of both total and individual assayed-isoflavone (Subtang, 2002 and Subtaeng and Cherdshewasart, 2003). The five isoflavonoids and isoflavone glycosides, daidzein, genistein puerarin, daidzin, and genistin had been used as markers. Whereas miroestrol cannot be used for quantitative standardization of *P. mirifica* root extract because no available commercialized standard. **Toxicity of** *P. mirifica*: Several animal toxicology studies had been completed on *P. mirifica* using both crude powders and standardized extracts. *In vitro* study, *P. mirifica* root extract was not mutagenic by Ames test. (Julsiri and Cherdshewasart, 2003). LD₅₀ of *P. mirifica* root extract, a single dose of 40 g/kg BW failed to induce signs of acute or subacute toxicity in mice (Chivapat et al., 2000). In long-term feeding experiments, a chronic toxicology study in rats treated orally with *P. mirifica* root extract at daily doses of 10, 100 and 1,000 mg/kg for 90 consecutive days revealed that at doses of 10 mg/kg BW or 100 mg/kg BW exhibited no toxic effects. However, in one study, a daily dose of 1000 mg/kg BW for 90 days induced reversible anemia and pathologic changes in the kidneys and testicles (Chivapat et al., 2000). The later study was found that plant powder and extract were evaluated and no toxicity was found (Cherdshewasart et al., 2000 and Cherdshewasart, 2003).

Figure 2.9. Leaves (a), flower (b), tuberous root (c) and pod (d) of *P. mirifica*

Category	Chemical	Reference
Isoflavonoids	Daidzein	Ingham et al., 1986 ^a
	Genistein	Ingham et al., 1986 ^a
	Kwakhurin	Ingham et al., 1986 ^a
	Kwakhurin hydrate	Ingham et al., 1989
Isoflavone	Daidzin	Ingham et al., 1986 ^a
glycosides	(daidzein-7-o-glucoside)	
	Genistin (genistein-7-o-glucoside)	Ingham et al., 1986 ^a ; Ingham et al.,
		1989
	Mirificin	Ingham et al., 1986 ^a ; Ingham et al.,
	(puerarin 6"-o-β-apiofuranoside)	1986 ^b
	Puerarin (daidzein-8-glucoside)	Nilandihi et al., 1957
		Ingham et al., 1986 ^a ; Ingham et al.,
		1986 ^b ; Ingham et al., 1989
	Puerarin 6"-monoacetate	Ingham et al., 1989
Chromenes	Miroestrol	Schoeller et al., 1940
		Bound and Pope, 1960
		Jones and Pope, 1960
	Deoxymiroestrol	Chansakaow et al., 2000 ^a
	Isomiroestrol	Chansakaow et al., 2000 ^a
Coumestans	Coumestrol	Ingham, et al., 1986; Ingham, et al.,
		1988
	Mirificoumestan	Ingham et al., 1988
	Mirificoumestan glycol	Ingham et al., 1988
	Mirificoumestan hydrate	Ingham et al., 1988
Sterols	β- sitosterol	Hoyodom, 1971
	Stigmasterol	Hoyadom, 1971
Pterocapans	Pueriicapene	Chansakaow et al., 2000 ^b
	Tuberosin	Chansakaow et al., 2000 ^b
Acid	Tetracosanoic acid	Chansakaow et al., 2000 ^b

 Table 2.3.
 Summary of the chemical constituents of *P. mirifica* (adapted from Panriansaen, 2000)

Isoflavone and Isoflavone glycosides

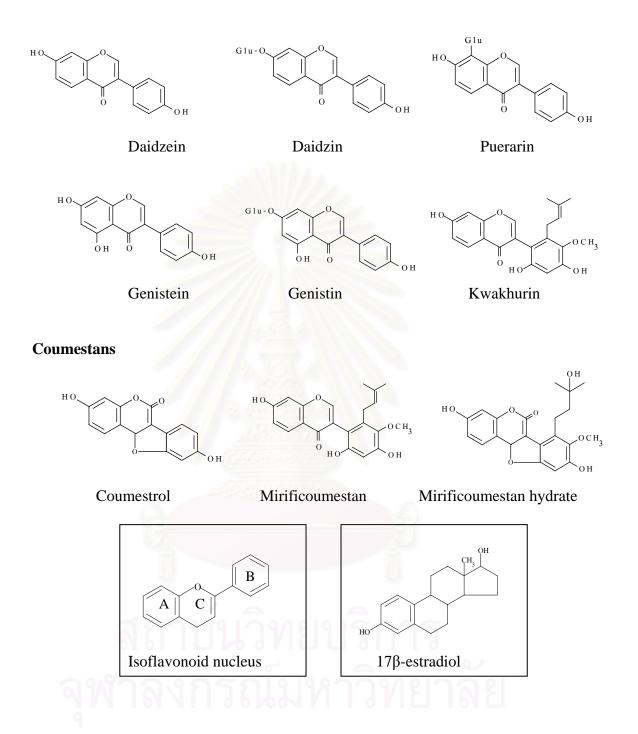


Figure 2.10. The structure of chemical compounds in *P. mirifica* and isoflavonoid nucleus compare with estrogen

Chromenes

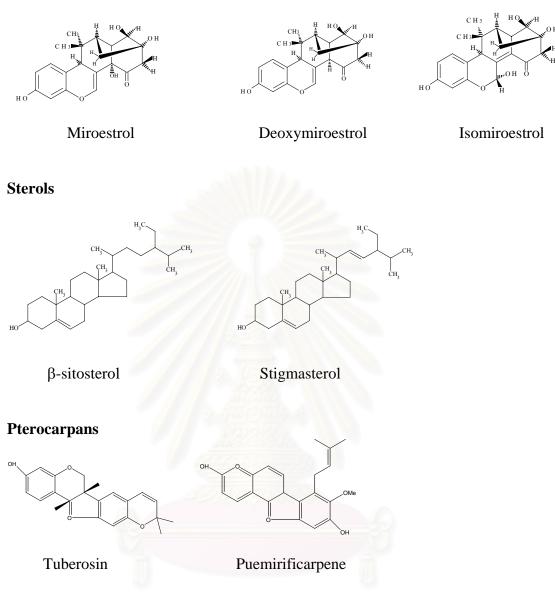


Figure 2.10. The structure of chemical compounds in *P. mirifica* and isoflavonoid nucleus compare with estrogen (continued)

Hormonal effect of *P. mirifica*: Many studies on *P. mirifica* were mostly evaluated in estrogenic activity on the reproductive system. In animal model, *P. mirifica* showed many effects depended on the method of bioassay such as dosage and period of exposure. The biological effects were identified in Table 2.4. It was revealed that miroestrol had 0.7 time of estradiol on mammary gland proliferation activity (Pope et al., 1958). In ovariectomized rat, *P. mirifica* root extraction induced proliferation of the cornifined cell, increased uterus weight (Malaivijitnond, 2006) and exhibited strong estrogenic activity in uterotrophic assay (Kim et al., 2003). Uterus

and vagina weight of *P. mirifica*-treated immature rat was significantly increased (Sawatdipong, 1981). *P. mirifica* could influence the reproductive functions in both sex of rats, but the response was greater in male than female (Malaivijitnond et al., 2004; 2003^a; 2003^b and Kaitthaipipat, 2001). In monkey, a single dose of 1,000 mg/kg BW of *P. mirifica* disrupted ovarian function, menstrual cycle and also decreased the Parathyroid hormone and serum calcium level (Trisomboon, et al. 2004), *P. mirifica* greatly influenced menstrual cycles and may suppress ovulation by lowering serum levels of gonadotropins (Trisomboon, et al. 2005), *P. mirifica* had estrogenic action by increasing reddish sexual skin coloration in aged menopausal monkeys (Trisomboon, et al. 2006^b). In clinical trial, miroestrol (Cain, 1960) and the crude drug showed the effectiveness in treatment of menopausal symptom (Muangman and Cherdshewasart, 2001; Lamlertkittikul and Chandeying, 2004)

Estrogenic activity of *P. mirifica* was responded in dose-dependent manner on MCF-7 cells and HepG2 cells. The mechanism of action of the plant extract was evaluated. It was found that the chemicals needed a metabolic activation to promote their actions within human cells. Recombinant yeast exhibited no estrogenic activity because it lacked metabolic enzyme (Lee et. al., 2002). Crude extract of *P. mirifica* showed biphasic effect on the growth of MCF-7 as well as 17β -estradiol with proliferative effect at low concentration and antiproliferative effect at high concentration with ED₅₀ value of 642.83 µg/ml (Cheewasopit, 2001; Cheewasopit et al., 2003; Trisap et al., 2003 and Cherdshewasart et al., 2004^a). While the crude extract of *P. mirifica* indicated no proliferative and anti-proliferative effect in HeLa cells at 100 and 1,000 µg/mL (Cherdshewasart et al., 2004^b)

To compare the estrogenic activity in each compound on MCF-7 system, it was found that those compounds had different degree of estrogenic activity (17 β -estradiol (lower 10⁻¹²) > deoxymiroestrol (10⁻¹⁰-10⁻⁹)>miroestrol (10⁻⁸)>coumestrol (10⁻⁷) \approx genistein (10⁻⁷) > daidzein (10⁻⁶) \approx kwakhurin (10⁻³)). Whereas daidzin, puerarin, puermicapene, tuberosin and isomiroestrol had no estrogenic activity (Chansakaow et al., 2000^a; Chansakaow et al., 2000^b) as shown in Table 2.5.

animal model			
Effects	References		
1. Reproductive system			
1.1 Reproductive organ development			
• Promoted mammary duct and	• Pope et al., 1958, Smitasiri et al., 1986;		
breast enlargement in mice,	Panriansaen, 2005		
rat, pig	• Sukhavachana, 1940; Sawatdipong,		
• Proliferated the uterus ,	1981; Malaivijitnond et al., 2006		
vaginal cornification in rat	• Trisomboon et al., 2006		
• Estrogenic effect on			
Gonadotrophin levels, sexual			
skin coloration in monkeys			
1.2 Fertilization and birth control	• Smitasiri, 1988		
• Increased mating behavior	• Smitasiri and Pangjit, 1986, Smitasiri,		
• Anti-fertilization	1988		
	• Sangkaew and Smitasiri, 1985, Smitasiri		
• Induce abortion	et al., 1986		
	Langkalichan and Smitasiri, 1985		
• Reduction of sperm			
2. Others	• Thaiyanun et al., 1992, Chivapat et al.,		
Cholesterol level	2000		
	• Anuntalabhochai and Jersrichai, 1986,		
• Calcium level	Bulintanthikul, 1978, Trisomboon et al.,		
	2004		

Table 2.4. Summary of the recent reports of the biological effects of *P. mirifica* on animal model

Compounds	Content	Growth-promoting effects on MCF-		
	(mg/100 g powder)	7 (Minimal concentrations)(M)		
Isoflavone and glycosi	de			
Genistein	0.6	10 ⁻⁷		
Genistin	Data not shown	Data not shown		
Daidzein	46.1	10 ⁻⁶		
Daidzin	8.5	No activity		
Kwakhurin	0.6	>10 ⁻⁶		
Chromenes				
Miroestrol	3.0	10 ⁻⁸		
Deoxymiroestrol	2.0	10 ⁻¹⁰ -10 ⁻⁹		
Isomiroestrol	2.2	no activity		
Coumestrol	0.07	10 ⁻⁷		
Pterocarpens				
Tuberosin	0.3	No activity		
Puemiricarpene	1.8	No activity		
Acid				
Tetracosanoic acid	15.3			
17β-estradiol (control)	-	<10 ⁻¹²		

Table2.5. The growth-promoting effects of chemical compound extracts of *P. mirifica* on MCF-7 human breast cancer cells. (Chansakaow et al., 2000^a; Chansakaow et al., 2000^b)

* Minimal concentration of compounds that caused 50% MCF-7 breast cancer cells growth when compared to the control

CHAPTER III

MATERIALS AND METHODS

3.1. Plant materials

The fresh mature leaves of 3 cultivars of *P. mirifica* (PM-III, PM-IV and PM-V) cultivated in a field trial at Banpong District of Ratchaburi Province (E99°52°/N13°37°) were collected in March-August 2007. The original of plant cultivar, leaf and pod morphometry of the 3 plant cultivars was previously described (Cherdshewasart and Sriwatchrakul, 2007).

3.2. Leaf harvest

The mature fresh leaves, weight at least 3 kg were randomly harvested from 3 plots of each plant cultivar since March 2007 to August 2007. The collected samples were cleaned with distilled water and dried in hot air oven at 80° C for 72 hours and subsequently powdered at a size of 120 μ m.

a)

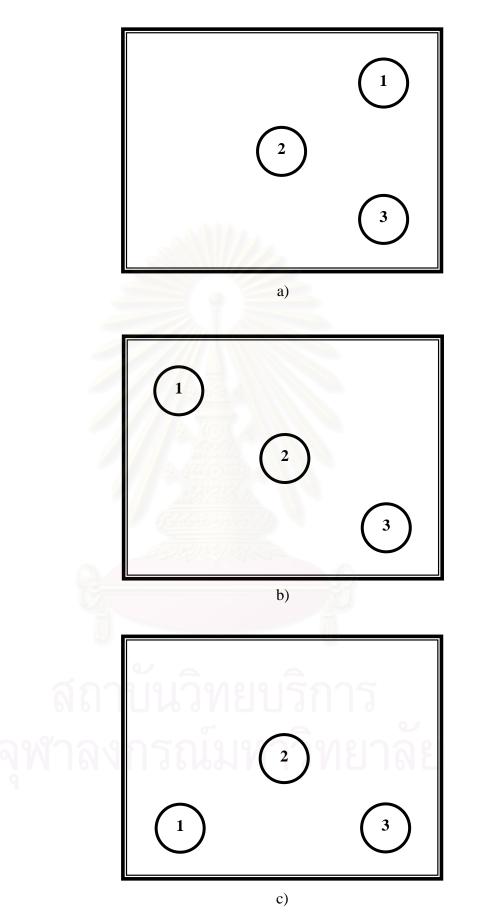

Figure 3.1. The plant field trial of PM; a) PM-III, b) PM-IV and c) PM-V

Figure 3.1. The plant trial field of PM; a) PM-III, b) PM-IV and c) PM-V

Figure 3.2. The selected plot in each trial field cultivar of PM; a) PM-III, b) PM-IV and PM-V.

3.3. Plant leaf crude extraction

The 50 g of leaf powder was mixed with 500 ml methanol for 3 times by agitation in incubator-shaker overnight. The pellet was discarded and the supernatant was filtered (Whatman filter paper No.4, Whatman, USA) and evaporated in rotary evaporator *in vacuo* (Buchi, Germany) at 45°C until completely dried. The plant crude extract was dissolved in distilled water and partition in chloroform to get rid of chlorophyll. The obtained crude extract was dissolved in butanol and the supernatant was subsequently evaporated at 55°C until completely dried. The crude extract was weighted and stored in a tightly-capped bottle at 4°C.

3.4. Analysis of isoflavonoid contents

3.4.1. Chemicals and equipments

Isoflavonoid standards, including puerarin, genistin, daidzein and genistein were purchased from Sigma (St. Louis, MO, U.S.A.), daidzin was purchased from Fluka Biochemika (Buchs, Switzerland). The organic solvents for chromatography (HPLC grade) were purchased from Merck (Germany). The water of over 16 M Ω /cm for a component of the mobile phase of HPLC was prepared by Maxima Ultrapure Water Systems (ELGA). HPLC system control and data processing were carried out by a WatersTM apparatus (Waters-717 plus Autosampler, Waters-600 Controller, Waters-2996 Photodiode Array Detector). The reversed phase C18 column (250 x 4.6 mm) was filled with 5 μ m ODS2 (Waters Spherisorb, Ireland), pre-filtered with Waters Spherisorb S5 ODS2 (4.6x10 mm) guard cartridge. The filter set was Millipore membrane at 0.45 μ m pore size with 13 mm diameter for the sample and 47 mm diameter for the mobile phase, of HA type for aqueous solution and HV type for organic solvent. The chromatography manager software EmpowerTM was operated on a personal computer.

3.4.2. HPLC sample preparation

One mg of leaf crude extract was dissolved at room temperature with 1 ml methanol (Merck). The supernatant was filtrated with a 0.45 μ m pore size, 13 mm diameter membrane.

3.4.3. Quantitative HPLC

Methods for isoflavonoid analysis were modified from those previously described (Cherdshewasart *et al.*, 2007^a) by setting the linear gradient system for 50 min from 100: 0 to 55: 45 with 0.1 % acetic acid: acetonitrile, with a flow rate of 1 ml/min and analyzed at the wavelength of 254 nm. The standard isoflavonoids were serially diluted from 1:1 to 1:16 with methanol to establish the concentrations of 1/4, 1/8, 1/16, 1/32 and 1/64 mg/ml, to generate a five point calibration curve. Calibration curves were obtained for all isoflavonoids by plotting the standard concentration as a function of peak area from HPLC analysis of a 10 μ l injection volume. The concentrations in the samples. The analyses of the samples were run in triplicate and identified by comparing the retention times and quantified for the amount using standard curves of peak area of the isoflavonoid standards.

3.5. Statistical analysis

The isoflavonoid contents from the samples of *P. mirifica* were analyzed for statistical significant by One-Way ANOVA, Duncan analysis, Post-Hoc Multiple Comparison test and of variance at the significance level of P < 0.05 with the aid of SPSS program.

CHAPTER IV

RESULTS AND DISCUSSIONS

4.1. Characteristics of the leaf powders

The 120 μm leave powders of PM-III, PM-IV and PM-V are shown in Figure 4.1.

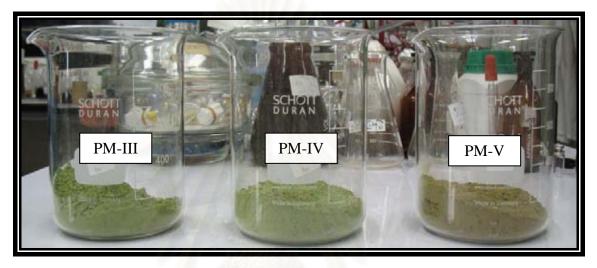
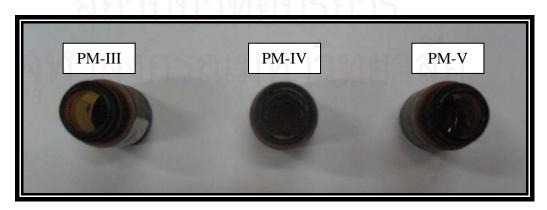



Figure 4.1. The characteristic of 3 PM leaves powder. This may notified

4.2. Plant leaf crude extraction

Plant leaf powders were extracted with solvents, 1:10 (w/v), for 3 times and evaporated in rotary evaporator *in vacuo* until completely dried and stored at 4 °C (Figure 4.2.)

Figure 4.2. The dark-brown leaf crude butanol extract of PM-III, PM-IV and PM-V.

The leaves crude butanol extract contents of 3 PM cultivars; PM-III, PM-IV and PM-V were shown in Table 4.1. Mean \pm S.E.M. of Area 3 in July 2007 was the highest amount that is 1.7121 ± 0.2644 g where as the maximum of cultivar was PM-III in June 2007 (2.0900 g). In the term of total area, the total area of July 2007 was the highest (4.2141 \pm 0.4233). The butanol crude extract (0.2576 g) and the total content of April 2007 was the highest amount (1.3339 \pm 0.3575 g). The results demonstrated the influence of both climatic changes and plant genetics on yield of plant crude extracts.

Month		Leaf crude butanol extract contents (g)				
(2007)	Cultivars	Area of plant leaf collection				
(2007)		1	2	3	Total	
April	PM-III	0.2994	0.2745	0.2576	0.8315	
	PM-IV	0.7332	0.6694	0.6231	2.0257	
	PM-V	0.3847	0.3745	0.3854	1.1446	
	Mean \pm S.E.M.	0.4724 ± 0.1327	0.4395 ± 0.1185	0.4220 ± 0.1071	1.3339 ± 0.3575	
	PM-III	1.3546	1.0135	0.7254	3.0935	
May	PM-IV	1.0312	1.0031	1.1013	3.1356	
	PM-V	0.7324	0.7842	0.7856	2.3022	
	Mean \pm S.E.M.	1.0394 ± 0.1797	0.9336 ± 0.0748	0.8708 ± 0.1166	2.8438 ± 0.2711	
	PM-III	2.0900	1.6190	1.3458	5.0548	
June	PM-IV	0.7550	0.9532	1.4622	3.1704	
	PM-V	1.3318	1.2618	1.4133	4.0069	
	Mean ± S.E.M.	1.3923 ± 0.3866	1.2780 ± 0.1924	1.4071 ± 0.0337	4.0774 ± 0.5451	
July	PM-III	1.7262	1.4963	1.8382	5.0607	
	PM-IV	0.4598	1.2316	2.0938	3.7852	
	PM-V	1.1624	1.4297	1.2043	3.7964	
	Mean \pm S.E.M.	1.1161 ± 0.3663	1.3859 ± 0.0795	1.7121 ± 0.2644	4.2141 ± 0.4233	
	PM-III	0.5241	0.2964	0.7518	1.5723	
August	PM-IV	1.2599	1.7224	1.144	4.1263	
	PM-V	1.4079	1.3754	1.3925	4.1758	
	Mean \pm S.E.M.	1.0640 ± 0.2733	1.1314 ± 0.4294	1.0961 ± 0.1865	3.2915 ± 0.8597	

Table 4.1. The leaves crude butanol extract contents of 3 PM cultivars; PM-III, PM-IV and PM-V in each area.

The characteristic of the leaves crude butanol extracts is sticky wax-like material with dark brown colour.

4.3. Analysis of isoflavonoids of the leaf crude extract

4.3.1. Standard curve establishments

Standard of five major isoflavonoids; puerarin, daidzin, genistin, daidzein and genistein, were selected for the quantitative analysis of leaf crude extracts. They were detected in different retention times (Figure 4.3. - 4.8. and Table 4.2.) and their standard concentrations were properly diluted in Figure 4.9. - 4.13.

Isoflavonoid peak	Retention time (min)	Area	% Area	Height	Amount (µg/µl)
Puerarin	14.395	256984	4.83	31995	0.0250
Daidzin 🥖	15.995	30232	0.57	2876	0.0030
Genistin	19.072	81396	1.53	5144	0.0030
Daidzein	26.682	415416	7.81	20917	0.0250
Genistein	34.843	4534289	85.26	102760	0.0250

 Table 4.2.
 The retention time of five standard isoflavonoids calculated by EmpowerTM program

The quantitative of each standard isoflavonoid was calculated by EmpowerTM program and compared with the standard chromatogram and determined for the R² of the standard curve (Figure 4.3-4.8) that are 0.9768, 0.9899, 0.9871, 0.9943 and 0.9985 for puerarin, daidzin, genistin, daidzein and genistein, respectively. The results demonstrated that the 5 major isoflavonoid standards were clearly distinguished from the separated retention times.

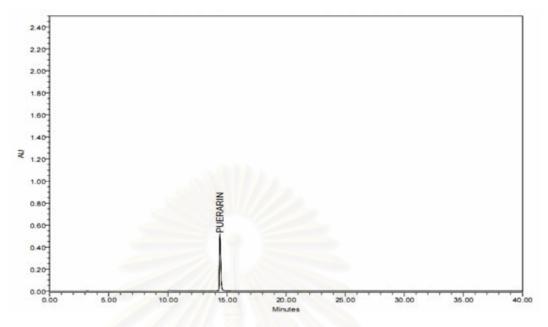


Figure 4.3. The chromatogram of standard puerarin (0.1 μ g/ μ l) at 254 nm

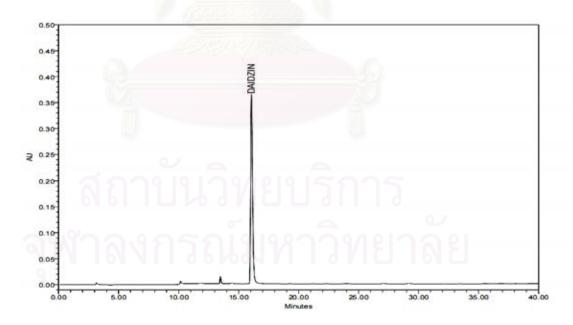
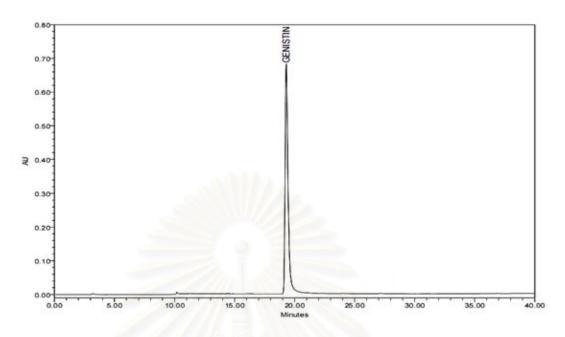



Figure 4.4. The chromatogram of standard daidzin (0.1 μ g/ μ l) at 254 nm

Figure 4.5. The chromatogram of standard genistin $(0.1 \ \mu g/\mu l)$ at 254 nm

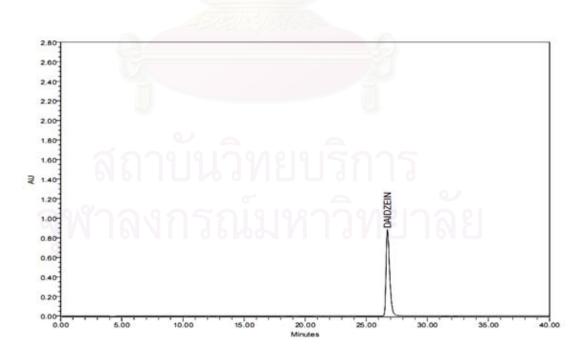


Figure 4.6. The chromatogram of standard daidzein (0.25 μ g/ μ l) at 254 nm

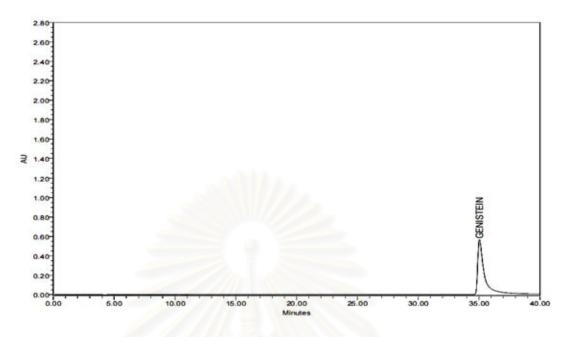


Figure 4.7. The chromatogram of standard genistein 0.25 μ g/ μ l at 254 nm

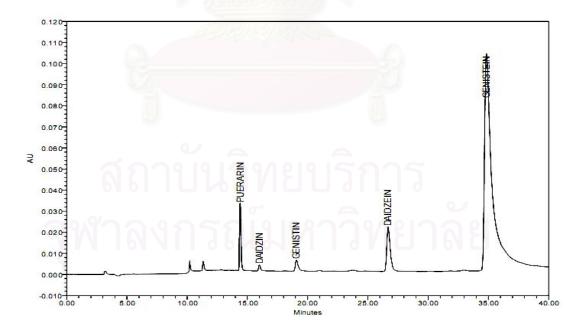


Figure 4.8. The chromatogram of 5 standard isoflavonoids; puerarin (0.025 μg/μl), daidzin (0.003 μg/μl), genistin (0.003 μg/μl), daidzein (0.025 μg/μl) and genistein (0.025 μg/μl) at 254 nm

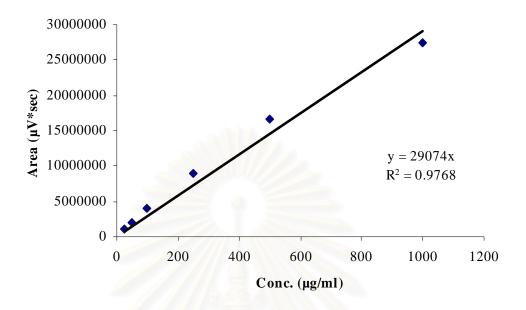


Figure 4.9. Standard curve of puerarin at 254 nm

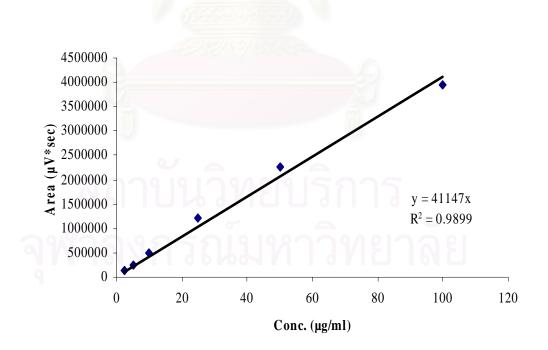


Figure 4.10. Standard curve of daidzin at 254 nm

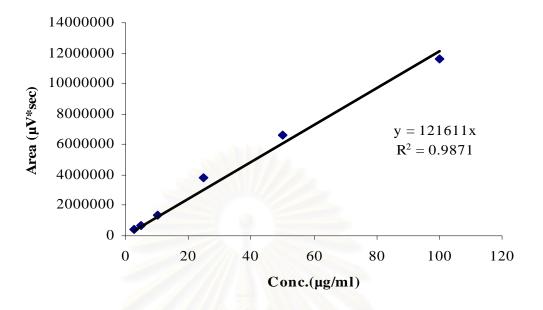


Figure 4.11. Standard curve of genistin at 254 nm

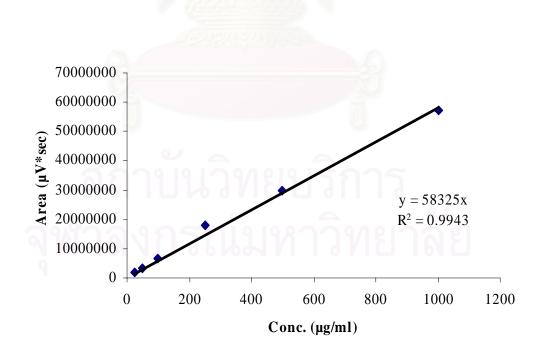


Figure 4.12. Standard curve of daidzein at 254 nm

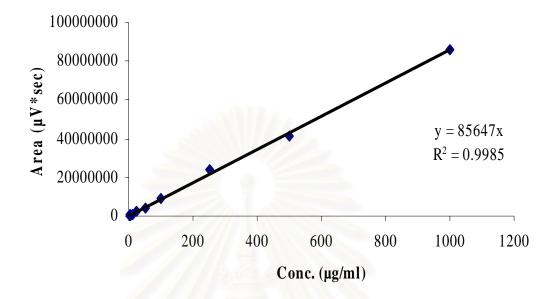


Figure 4.13. Standard curve of genistein at 254 nm

4.3.2 Quantitative analysis of isoflavonoids in PM leaf crude extracts

The leaf crude extracts were dissolved in absolute methanol and determined for 5 major isoflavonoids puerarin, daidzin, genistin, daidzein and genistein by RP-HPLC analysis at 254 nm and calculated using Empower[™] program. The results were demonstrated in Figure 4.14 to 4.28

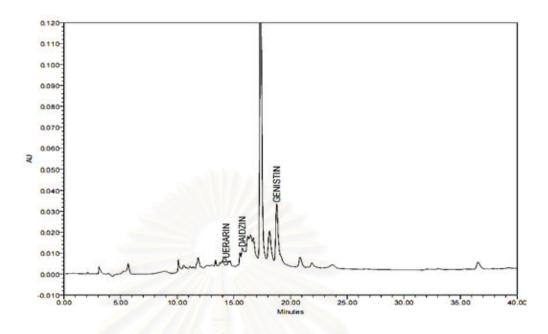


Figure 4.14. The chromatogram of PM-III leaves in April 2007

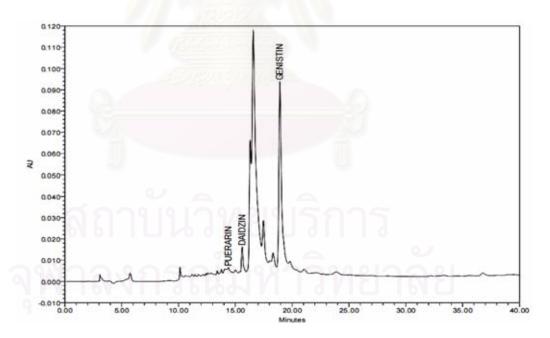


Figure 4.15. The chromatogram of PM-IV leaves in April 2007

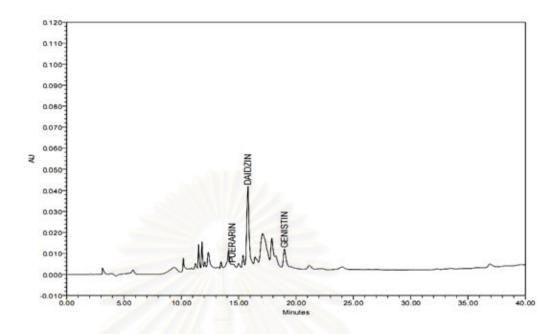


Figure 4.16. The chromatogram of PM-V leaves in April 2007

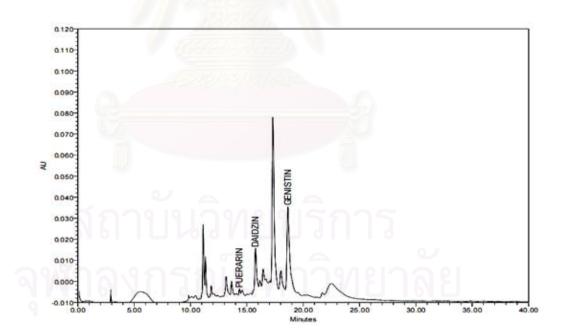


Figure 4.17. The chromatogram of PM-III leaves in May 2007

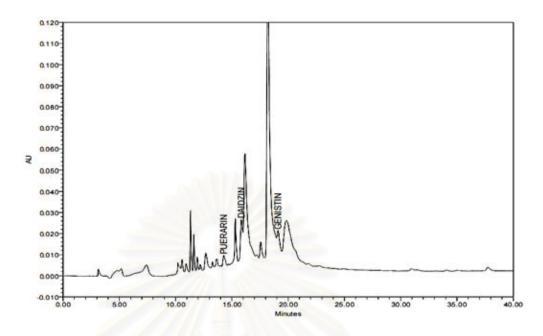


Figure 4.18. The chromatogram of PM-IV leaves in May 2007

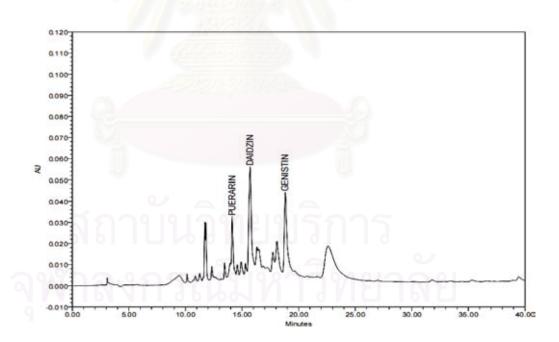


Figure 4.19. The chromatogram of PM-V leaves in May 2007

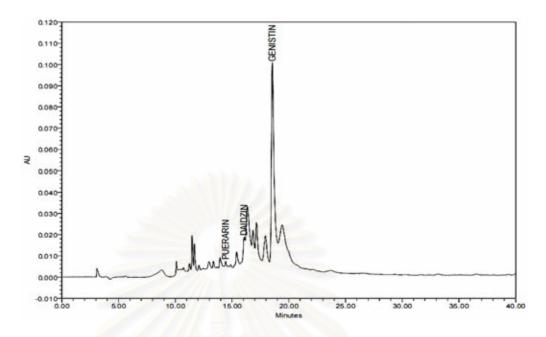


Figure 4.20. The chromatogram of PM-III leaves in June 2007

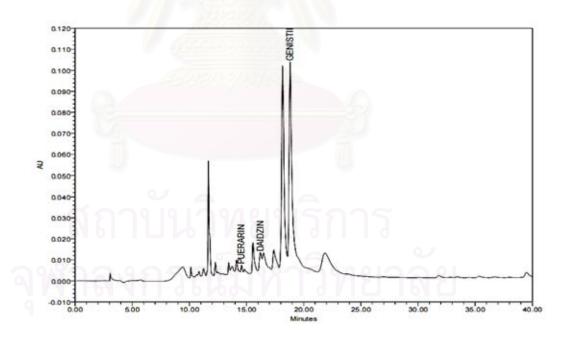


Figure 4.21. The chromatogram of PM-IV leaves in June 2007

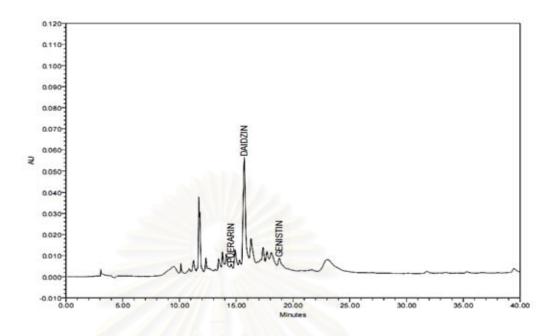


Figure 4.22. The chromatogram of PM-V leaves in June 2007

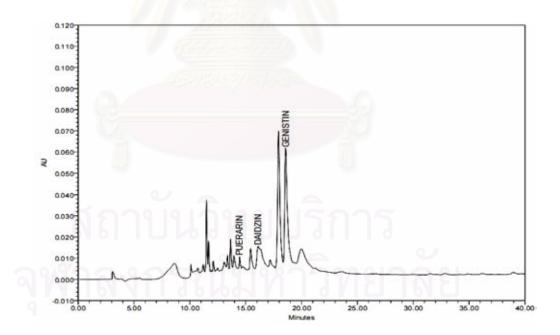


Figure 4.23. The chromatogram of PM-III leaves in July 2007

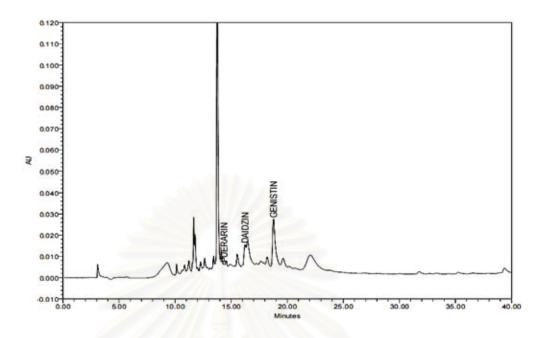


Figure 4.24. The chromatogram of PM-IV leaves in July 2007

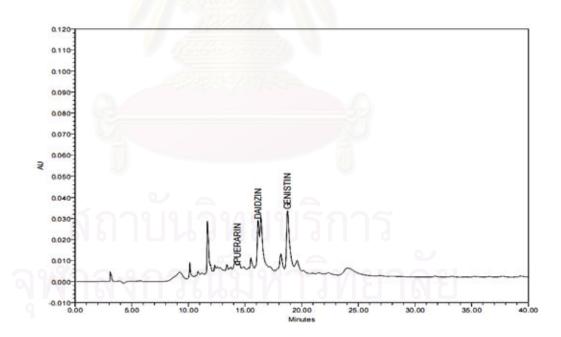


Figure 4.25. The chromatogram of PM-V leaves in July 2007

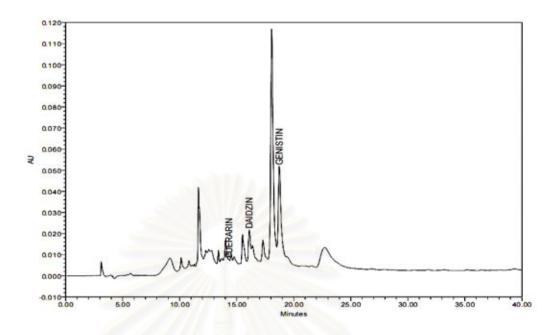


Figure 4.26. The chromatogram of PM-III leaves in August 2007

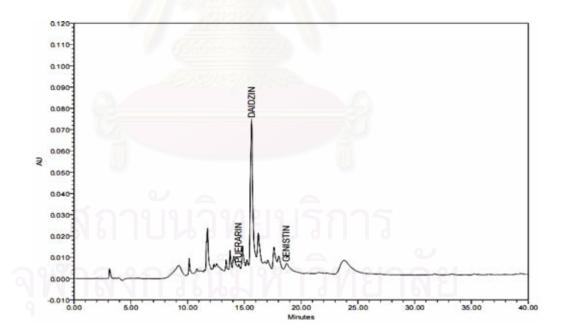


Figure 4.27. The chromatogram of PM-IV leaves in August 2007

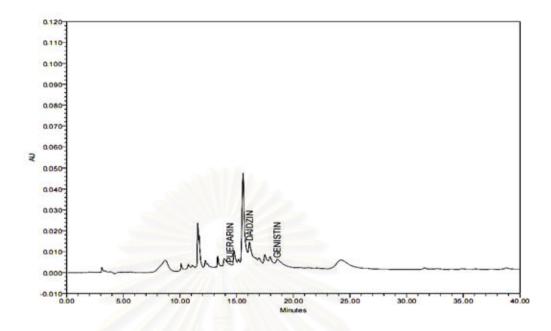


Figure 4.28. The chromatogram of PM-V leaves in August 2007

4.3.2 The analysis of isoflavonoids in PM leaf crude extracts

The leaf isoflavonoid contents of *P. mirifica* were analyzed for statistical significant by the One-Way ANOVA, Duncan analysis, Post-Hoc Multiple Comparison test and of variance at the significance level of P < 0.05 (Table 4.2.).

Month	Cultivor	Isoflavonoid contents; Mean ± S.E. (mg/100g powder)				
(2007)	Cultivar	Puerarin	Daidzin	Genistin	Total	
April	PM-III	62.88 ± 15.02^{a}	194.63 ± 18.32^{a}	$251.52 \pm 19.55^{\mathrm{a}}$	$509.03 \pm 45.06^{\mathrm{a}}$	
	PM-IV	$248.64 \pm 49.67^{a,b,c}$	$2,269.60 \pm 690.39^{d,e}$	$1,337.58 \pm 399.8^{c,d,e}$	$3,855.82 \pm 380.04^{d,e,f}$	
	PM-V	56.69 ± 11.11^{a}	$568.89 \pm 170.34^{a,b}$	131.59 ± 18.22^{a}	$757.16 \pm 158.70^{\rm a}$	
	Mean \pm S.E.M	$127.45 \pm 21.68^{a^{\prime}}$	$1,042.62 \pm 346.95^{a'}$	$605.13 \pm 59.58^{a',b'}$	$1,775.21 \pm 451.92^{a'}$	
	PM-III	$182.06 \pm 33.48^{a,b,c,d}$	$997.99 \pm 167.84^{a,b}$	$1,277.70 \pm 161.87^{b,c,d,e}$	$2,457.75 \pm 139.70^{\circ}$	
Moy	PM-IV	$444.43 \pm 75.77^{d,e}$	$2,541.20 \pm 333.10^{e}$	413.41 ± 65.79^{a}	$3,399.04 \pm 277.49^{c,d,e,f}$	
May	PM-V	$352.47 \pm 134.80^{c,d,e}$	$3,082.61 \pm 270.05^{e,f}$	$495.00 \pm 161.57^{a,b}$	$3,\!930.08 \pm 475.91^{d,e,f}$	
	$Mean \pm S.E.M$	$326.32 \pm 54.97^{b'}$	$2,207.27 \pm 227.49^{b'}$	$728.70 \pm 107.92^{a',b'}$	$3,262.29 \pm 217.68^{b'}$	
T	PM-III	$286.06 \pm 38.73^{b,c,d,e}$	$1,213.42 \pm 248.81^{a,b,c}$	$3,062.35 \pm 382.13^{\rm f}$	$4,561.82 \pm 454.57^{\rm f}$	
	PM-IV	$233.26 \pm 53.72^{a,b,c,d}$	$861.84 \pm 28.87^{a,b}$	$2,018.39 \pm 592.42^{e}$	$3,113.49 \pm 636.21^{c,d,e}$	
June	PM-V	468.07 ± 80.89^{e}	5,059.96 ± 365.61 ^g	238.31 ± 20.94^{a}	$5,766.34 \pm 411.27^{g}$	
	Mean \pm S.E.M	$329.13 \pm 38.86^{b'}$	$2,378.40 \pm 399.02^{b'}$	$1,773.02 \pm 321.40^{c'}$	$4,480.55 \pm 353.97^{c'}$	
July	PM-III	468.19 ± 83.55^{e}	$1,440.49 \pm 289.30^{\mathrm{b,c,d}}$	$927.92 \pm 323.30^{\mathrm{a,b,c,d}}$	$2,836.60 \pm 295.50^{ m c,d}$	
	PM-IV	$229.08 \pm 42.43^{a,b,c,d}$	$870.90 \pm 214.13^{a,b}$	$951.36 \pm 203.69^{a,b,c,d}$	$2,051.34 \pm 452.56^{\rm b,c}$	
	PM-V	$330.59 \pm 34.22^{b,c,d,e}$	$1,321.72 \pm 298.22^{b,c,d}$	$1,412.44 \pm 80.70^{d,e}$	$3,064.75 \pm 331.90^{c,d,e}$	
	Mean \pm S.E.M	$342.62 \pm 37.28^{b'}$	$1,211.04 \pm 157.24^{a'}$	$1,097.24 \pm 132.5^{b'}$	$2,650.90 \pm 220.24^{a',b'}$	
August	PM-III	$123.29 \pm 35.56^{a,b}$	$394.94 \pm 93.59^{a,b}$	$563.53 \pm 154.25^{\mathrm{a,b,c}}$	$1,081.77 \pm 280.10^{\mathrm{a,b}}$	
	PM-IV	$217.67 \pm 11.84^{a,b,c}$	$3{,}804.92 \pm 658.43^{\rm f}$	$303.08 \pm 30.57^{\mathrm{a}}$	$4,\!325.68\pm 640.73^{\rm e,f}$	
	PM-V	$263.28 \pm 43.65^{a,b,c,d,e}$	$2,167.33 \pm 126.33^{c,d,e}$	185.23 ± 22.75^{a}	$2{,}615.84 \pm 140.88^{\rm c,d}$	
	Mean \pm S.E.M	$201.41 \pm 21.68^{a'}$	$2,122.40 \pm 348.68^{b^2}$	$350.62 \pm 59.58^{a^2}$	$2,674.43 \pm 345.99^{a',b'}$	

Table 4.3.The isoflavonoid contents of PM-III, PM-IV and PM-V (mg/100g powder).

Data are mean \pm SEM, n = 3

Means within a column followed by the same letters are not significant different at the 5% level by Duncan's test

There were differences in leaf presence and morphology among different plant cultivars. In March, PM-V was defoliated. In addition, the leaves of PM-IV were the largest and that of PM-V were the smallest.

The 5 standard major isoflavonoids were analyzed by RP-HPLC with C_{18} column to evaluate the retention time range of puerarin, daidzin, genistin, daidzein and genistein are 14.100-15.250 min, 15.900-16.100 min, 18.950-19.310 min, 26.450-26.900 min and 34.600-35.500 min respectively. The contents of leaf isoflavonoid were calculated with EmpowerTM program based on standard curves of major isoflavonoids. The chromatograms exhibited only 3 identified peaks of puerarin, daidzin and genistin.

The highest isoflavonoid content during the 6 months was daidzin in PM-V (5,059.96 \pm 365.61 mg/100g powder). The maximum amount of puerarin (468.19 \pm 83.55 mg/100g powder) and genistin (3,062.35 \pm 382.13 mg/100g powder) were found in PM-V, while the maximum daidzin amount was found in PM-V. The total isoflavonoid content of *P. mirifica* in June 2007 was the highest (5,766.34 \pm 411.27 mg/100g powder) and in April 2007 was the lowest (509.03 \pm 45.06 mg/100g powder). The lowest puerarin (62.88 \pm 15.02 mg/100g powder) and daidzin contents (194.63 \pm 18.32 mg/100g powder respectively) were found in PM-III while the minimum genistin was found in PM-V (131.59 \pm 18.22 mg/100g powder). The results demonstrated that the leaf isoflavonoid contents were under the influence of plant genetics and monthly climatic change. The highest total isoflavonoid amount in PM-V was found in June 2007 which was 11.33 times higher than the lowest amount of PM-III in April 2007. The isoflavonoid contents of PM in June 2007 were the highest which was 2.93 times higher than in April 2007.

In terms of statistical analysis, the isoflavonoid contents from the leaf samples of *P. mirifica* were analyzed for statistical significant by One-Way ANOVA, Duncan analysis, Post-Hoc Multiple Comparison test and of variance at the significance level of P < 0.05.

P. mirifica leaves showed only 3 major isoflavonoids including puerarin, daidzin and genistin. These chemicals are glycoside isoflavonoids. Unlike *P. mirifica* tubers in other independent assays and different extraction protocols, aglycoside

isoflavonoids daidzein and genistein were not present in P. mirifica leaves. Leaves were extracted with methanol, chloroform and butanol stepwise before dissolving the leaf crude extracts with methanol, while tuberous powders were direct extracted with methanol with the aid of sonication, prior to injection to HPLC. The leaves were most likely being the synthetic sites of isoflavonoids, and subsequently translocated to tubers which was the accumulation sites. If this is correct, *P. mirifica* may synthesis isoflavonoids only in a form of glycoside. This may be a possible protection role of such chemicals during translocation or the enzymes needed for aglycosylation are less abundant in leaf tissues. In tuberous tissues, some of the isoflavonoids could be transformed, at least the aglycosylation to form daidzein and genistein. The analysis of isoflavonoid contents in *P. mirifica* tubers in both wild plants (Cherdshewasart et al., 2007) and cultivated plants (Cherdshewasart and Sriwatcharakul 2007) had found the higher contents of puerarin over other isoflavonoids. This was contrast in leaf in which daidzin was the predominant isoflavonoids. The first possibility is that not only the aglycosylation of daidzin and genistin into daidzein and genistein but also a further transformation of daidzin and/or daidzein into puerarin was also occurred in tuberous tissues. This proposed mechanism is possible because the contents of the 3 isoflavonoids; puerarin , daidzin and genistin in leaves were approximately 2.95, 52.45 and 52.80 times of that found in the wild plant tubers respectively (Cherdshewasart et al., 2007). The second possibility is that leaves may capable of synthesis aglycoside daidzein and genistein but the two aglycosides were eliminated by chloroform or butanol solvent during the extraction processes. This can be confirmed by using tuberous powder collected from the same plants and months, submitted to the same extraction processes as did for leaves. If there was no daidzein and genistein present in the HPLC fingerprint then the second possibility is correct.

This study demonstrated the high potential of *P. mirifica* leaves as an enrich source of plant isoflavonoids. Even the plant leaves synthesized only glycoside isoflavonoids but the human consumed isoflavonoids could be metabolized by intestinal flora (Xu et al., 1995) and metabolic activation enzymes (Lee et al., 2002; Cherdshewasart and Sriwatcharakul, 2008) into active compounds with more bioactivities.

Isoflavonoids in plants are plant secondary metabolites. The complicate isoflavonoid synthetic pathways and elicitors for these chemical syntheses were not evaluated in this study. In addition, the transformation of isoflavonoids into primary

metabolites for plant growth also not evaluated either. This study thus opens many possibilities for plant physiologists to investigate these facts. The outcome will obviously aid understanding roles of factors affecting isoflavonoid synthesis in leaf and translocation to tuber which finally results in bioactivity (estrogenic activity) of the tuberous materials for human consumption.

CHAPTER V

CONCLUSIONS

The results demonstrated that the adapted extraction methods comprised of methanol, chloroform and butanol solvents could eliminate chlorophyll from the crude extract and thus possible to determine for major isoflavonoid contents by RP-HPLC.

The results demonstrated also that only puerarin, daidzin and genistin were found in leaf crude extract derived from such extraction solvents. The data was different from the methanol extract of tuberous samples of the same plant species in which daidzein and genistein were also found. In addition, the leaf total isoflavonoid contents were found more than that of tuberous samples in another study.

In the biotechnological approach, a large scale production of puerarin, daidzin and genistin from *P. mirifica* leaves is definitely possible. *P. mirifica* is a twinning plant that produces a lot of leaves during plant growth and differentiation. Even the plants were defoliated during late winter to early summer, for example, March in this study, but cutting and watering could induce all year leaf production. Even though the tubers could accumulate 5 major isoflavonoids since the first year of age (Cherdshewasart and Sriwatcharakul, 2007), the tubers were newly differentiated with small size. Normally at least 3 year-old tubers were required for harvest while the leaves were produced since the first month of plant cultivation. Even though some of these chemicals are available from chemical synthesis but the prize is still high. Moreover, isoflavonoids from plant sources have advantage over those derived from chemical synthesis because they can be used in food and cosmetic industry without strong regulation.

This study should be completed by analysis of the annual isoflavonoid of plant leaves. This will enable us investigate the differential profile of isoflavonoids during the 12 months period. The influence of plant genetics and seasonal changes can be more precisely evaluated. This will benefit to farmers to set the right harvest period for plant leaves. Moreover, metabolomics study of the plant leaves will enable to find more chemicals present in the leaves. Puerarin, genistin and daidzin were not only the total found chemicals in the analyzed HPLC fingerprints, but some unknown peaks were also detected. Proteomics study of plant leaves and tubers will enable the investigation into key proteins or enzymes related to isoflavonoid synthesis and transformation, including glycosylation/aglycosylation of isoflavonoids in the two plant tissues. This will open a possibility to clone some key gene(s) of these pathways and end up with construction of transgenic *P. mirifica* that produce higher amount of desired isoflavonoids in leaves or tubers.

REFERENCES

- Adlercreutz, H., Fotsis, T., Bannwart, C., Wahala, K., Makela, T., Brunow, G. and Hase, T. 1986. Determination of urinary lignans and phytoestrogen metabolites, potential antiestrogens and anticarcinogens, in urine of women on various habitual diets. *Journal of Steroid Biochemistry* 25: 791-797.
- Adlercreutz, H., Hockerstedt, K., Bannwart, C., Bloigu, S., Hamalainen, E., Fotsis, T. and Ollus, A. 1987. Effects of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of oestrogens and on sex hormone binding globulin (SHBG). *Journal of Steroid Biochemistry* 27: 1135-1144.
- Adlercreutz. H., Honjo, H., Higashi, A., Fotsis, T., Hamalainen, E., Hasegawa, T. and Okada, H. 1991. Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. *American Journal of Clinical Nutrition* 54: 1093-1100.
- Aldercreutz, H., Mousavi, Y., Clark, J., Hockerstedt, K., Hamalainen, E., Wahala, K., Makel, T. and Hase, T. 1992. Dietary phytoestrogens and cancer: *In vitro* and *in vivo* studies. *Journal of Steroid Biochemistry and Molecular Biology* 41(3-8): 331-337.
- Adlercreutz, H., Fotsis, T., Lampe, J., Wahala, K., Mäkelä, T., Brunow, G. and Hase, T. 1993. Quantitative determination of lignans and isoflavonoids in plasma of omnivorous and vegetarian women by isotope dilution gas chromatography- mass spectrometry. *The Scandinavian Journal of Clinical* & Laboratory Investigation 215: 5-18.
- Adlercreutz, H., Fotsis, T., Watanabe, S., Lampe, J., Wähälä, K., Mäkelä, T. and Hase
 T. 1994. Determination of lignans and isoflavonoids in plasma by isotopedilution gas chromatography-mass spectrometry. *Cancer Detection and Prevention* 18: 259-271.
- Adlercreutz, C.H.T., Goldin, B.R., Gorbach, S.L., Höckerstedt, K.A.V., Watanabe, S.,
 Hämäläinen, E.K., Markkanen, M.H., Mäkela, T.H., Wähälä, K.T., Hase,
 T.A. and Fotsis, T. 1995. Soybean phytoestrogen intake and cancer risk. *Journal of Nutrition* 125: 7578-770S.

- Adlercreutz, H., Yamada, T., Wahala, K. and Watanabe, S. 1999. Maternal and neonatal phytoestrogens in Japanese women during birth. *American Journal* of Obstetrics & Gynecology 180: 737-743.
- Akiyama, T., Ishida, J., Nakagawa, S., Ogawara, H., Watanabe, S., Itoh, N., Shibuya,
 M. and Fukami, Y. 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. *Journal of Biological Chemistry* 262: 5592-5595.
- Alkel, D.L., Germain, A.S., Peterson, C.T., Hanson K.B., Stewart, J.W. and Toda, T. 2000. Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. *American Journal of Clinical Nutrition* 72: 844-852.
- Allen, E. and Doisy E.A. 1923. An ovarian hormone. Preliminary report on its localization, extraction and purification, and action in test animals. *JAMA* 81,819–821.
- Alice, L.M., Gisela W. and Susan R.D. 1998. Phytoestrogens. Journal of Clinical Endocrinology and Metabolism. 83:297-303.
- Anderson, J., Johnstone, B. and Cook-Newell, M. 1995. Meta-analysis of the effects of soy protein intake on serum lipids. *The New England Journal of Medicine* 333: 276-282.
- Anderson, J.J.B. and Garner, S.C. 1997. Phytoestrogens and human function. *Nutrition Today* 32:232-239.
- Anderson, J.J.B., Anthony, M., Messina M. and Garner, S. 1999. Efffects of phytooestrogens on tissue. *Nutrition Research Reviews* 12: 75-116.
- Andlauer, W., Kolb, J. and Fürst, P. 2000. Absorption and metabolism of genistin in the isolated rat small intestine. *FEBS Letters* 475:127-130.
- Anthony, M.S. 2000. Soy and cardiovascular disease: cholesterol lowering and beyond. *Journal of Nutrition* 130: 662S-663S.
- Anuntalabhochai, S. and Jesrichai, S. 1986. Effect of high dosages of a local Thai plant, white gwow (*Pueraria mirifica* Shaw et. Suvat.) on coturnix quails: II-The changes of calcium, total protein and cholesterol concentration in blood serum. *Journal of the Science Faculty of Chiang Mai University* 13: 29-37. (in Thai)
- Ashby, J., Odum, J., Paton, D., Lefevre, P.A., Beresford, N. and Sumpton, J.P. 2000. Re-evaluation of the first synthetic estrogen, 1-keto-1,2,3,4-

tetrahydrophenanthrene, and biphenol A using both the ovariectomized rat model used in 1933 and additional assays. *Toxicology Letters* 115: 231-238.

- Ashton, E. and Ball, M. 2000. Effects of soy as tofu vs meat on lipoprotein concentrations. *European Journal of Clinical Nutrition* 54: 14-19.
- Balk, J.L., Whiteside, D.A., Naus, G., DeFerrari, E. and Roberts, J.M. 2002. A pilot study of the effects of phytoestrogen supplementation on postmenopausal endometrium. *Journal of the Society of Gynecology Investigation* 9: 238-242.
- Barnes, S.; Grubbs, C.; Setchell, K.D.; Carlson, J. 1990. Soybeans inhibit mammary tumors in models of breast cancer. *Progress in Clinical and Biological Research* 347:239-253.
- Barnes, S., Grubbs, C., Setchell, K.D.R. and Carlson, J. 1990. Soybeans inhibit mammary tumors in models of breast cancer. In: Pariza, M. (ed). *Mutagens* and Carcinogens in the Diet, pp. 239-253. New York: Wiley-Liss New York.
- Baum, J.A., Teng, H., Erdman, J.W.Jr., Weigel, R.M., Klein, B.P., Persky, V.W., Freels, S., Surya, P., Bakhit, R.M., Ramos, E., Shay, N.F. and Potter, S.M. 1998. Long-term intake of soy protein improves blood lipid profiles and increases mononuclear cell low-density-lipoprotein receptor messenger RNA in hypercholesterolemic, postmenopausal women. *American Journal* of Clinical Nutrition 68:545-551.
- Bennets, H.W., Underwood, E.J. and Shier, F.L. 1946. A specific breeding problem of sheep on subterranean clover pastures in Western Australia. *Australian Veterinary Journal* 22: 2-12.
- Benson, G.K., Cowie, A.T. and Hosking, Z.D. 1961. Mammogenic activity of miroestrol. *Journal of Endocrinology*.21: 401-409
- Bingham, S.A.. Atkinson, C.. Liggins, J.. Bluck, L. and Coward, A. 1998. Phytooestrogens: where are we know?. *British Journal of Cancer* 79: 393-406.
- Bound, D.G. and Pope, G.S. 1960. Light absorption and chemical properties of miroestrol, the oestrogenic substance of *Pueraria mirifica*. Journal of the Chemical Society 3196-3705.
- Brown, N.M. and Lamartiniere, C.A. 2000. Genistein regulation of transforming growth factor-α, epidermal growth factor (EGF), and EGF receptor

expression in the rat uterus and vagina. *Cell Growth & Differentiation* 111: 255–260.

- Bulintanthikul, Y. 1978. Effects of *Pueraria mirifica* crude extract on the serum calcium and the tibia cartilagenous plate in the gonado-parathyroidectocmized Weanling rat. *Master's Thesis*. Kasetsart University 36 pp. (in Thai)
- Cain, J.C. 1960. Miroestrol: an estrogen from the plant *Pueraria mirifica*. *Nature* 158: 774-777.
- Cassidy, A., Bingham, S. and Setchell, K. 1995. Biological effects of isoflavones in young women: importance of the chemical composition of soyabean products. *The British Journal of Nutrition* 74:587–601.
- Chansakaow, S., Ishikawa, T., Seki, H., Sekine, K., Okada, M. and Chaichantipyuth, C. 2000^a. Identification of deoxymiroestrol as the actual rejuvenation principle of Kwao Keur", *Pueraria mirifica*. The known miroestrol may be an artifact. *Journal of Natural Products* 63: 173-175.
- Chansakaow, S., Ishikawa, T., Seki, H., Sekine, K., Okada, M., Higuchi, Y. and Chaichantipyuth, C. 2000^b. Isoflavonoids from *Pueraria mirifica* and their estrogenic activity. *Planta Medica* 66: 572-575.
- Cherdshewasart, W., Sompornpailin. K. and Reecharoen, S. 1996. Tissue culture and field trial of *Pueraria mirifica* (Airy Shaw& Suvatabandhu). Principles Regulating Biosynthesis and Storage of Secondary Products. *The Phytochemical Society of Europe and the Martin-Luther-University*, Halle-Wittenberg. The Federal Republic of Germany.
- Cherdshewasart, W. 2003^a. Toxicity tests of a phytoestrogen-rich herb; *Pueraria* mirifica. Journal of Scientific Research of Chulalongkorn University 28: 1-12.
- Cherdshewsart, W. and Nimsakul, N. 2003^b. The clinical trial of *Butea superba* as an herbal alternative treatment for erectile dysfunction. *Asian Journal of Andrology* 5: 243-246.
- Cherdshewasart , W., Cheewasopit, W. and Picha, P. 2004^a. The differential antiproliferation effect of white (*Pueraria mirifica*), red (*Butea superb*), and black (*Mucuna collettii*) Kwao Krua plants on the growth of MCF-7 cells. *Journal of Ethnopharmacology* 93: 255-260.

- Cherdshewasart, W., Cheewasopit, W. and Picha, P. 2004^b. Anti-proliferation effects of the white (*Pueraria mirifica*), red (*Butea superb*), and black (*Mucuna collettii*) Kwao Krua plants on the growth of HeLa cells. Journal of Scientific Research of Chulalongkorn University 29 (1):27-32.
- Cherdshewasart, W., Panriansaen, R. and Picha, P. 2007^a. Pretreatment with phytoestrogen-rich plant decreases breast tumor incidence and exhibits lower profile of ERα and ERβ. *Maturitas*, 58: 174-181.
- Cherdshewasart, W and Sriwatcharakul, S. 2007^b. Major isoflavonoid contents of the 1-year-cultivated phytoestrogen-rich herb, *Pueraria mirifica. Biosci. Biotechnol. Biochem.* 71: 2527-2533.
- Cherdshewasart, W., Subtang, S. and Dahlan, W. 2007^c. Major isoflavonoid contents of the phytoestrogen rich-herb *Pueraria mirifica* in comparison with *Pueraria lobata. Journal of Pharmaceutical Biomedical Analysis* 43: 428-434.
- Cherdshewasart, W., Kitsamai, Y. and Malaivijitnond, S. 2007^d. Evaluation of the estrogenic activity of the wild *Pueraria mirifica* by cornification assay. *Journal of Reproduction and Development* 53: 385-393.
- Cherdshewasart, W. and Sriwatcharakul, S. 2008^a. Metabolic activation promotes estrogenic acitivity of the phytoestrogen-rich plant. *Maturitas*, 59: 128-136.
- Cherdshewasart, W., Urasopon, N., Hamada, Y. and Malaivijitnond, S. 2008^b. Preventive effects of *Pueraria mirifica* on bone loss in overiectomized rats. *Maturitas*, 59: 137-148.
- Cherdshewasart, W. and Sutjit, W. 2008^c. Correlation of antioxidant activity and major isoavonoid contents of the phytoestrogen-rich *Pueraria mirifica* and *Pueraria lobata* tubers. *Phytomedicine* 15: 38-43.
- Chivapat, S., Chavalittumrong, P.,; Rattanajarasroj, S. and Panyamang, S. 2000. Toxicity study of *Pueraria mirifica* Airy Shaw et Suvatabandu. *Bulletin Department of Medical Science* 42 : 202-223. (in Thai)
- Chulasiri, M. and Cherdshewasart, W. 2003. Biotechnology of Phytoestrogen-Rich;
 P. mirifica: IV. Mutagenicity and antimutagenicity by Ames. The 29th
 Congress on Science and Technology of Thailand at Khonkaen University, 20-22 October 2003. Thailand.

- Clark, R., Hilakivi-Clake, L., Cho, E., James, M.R. and Leonnessa, F. 1996. Estrogens, phytoestrogens, and breast cancer. Advance in Experimental Medicine and Biology 401: 63-85.
- Clarkson, T.B., Anthony, M.S. and Hughes, C.L. 1995. Estrogenic soybean isoflavones and chronic disease risks and benefits. *Trends in Endocrinology and Metabolism* 6: 11-16.
- Cornwell, T., Cohick, W. and Raskin, I. 2004. Dietary phytoestrogens and health. *Phytochemistry* 65(8):995-1016.
- Crouse, J.R., Morgan, T., Terry, J.G., Ellis, J., Vitolins, M. and Burke, G.L. 1999. A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. *Archives of Internal Medicine*159: 2070-2076.
- Dai, Q., Shu, X.O., Jin, F., Potter, J.D.;, Kushi, L.H., Teas, J., Gao, Y.T. and Zheng,
 W. 2001. Population-based case-control study of soyfood intake and breast cancer risk in Shanghai. *The British Journal of Nutrition* 85: 372-378.
- Dalais, F.S., Ebeling, P.R., Kotsopoulos, D., McGrath, B.P. and Teede, H.J. 2003.
 The effects of soy protein containing isoflavones on lipids and indices of bone resorption in postmenopausal women. *Clinical Endocrinology (Oxf)* 58: 704-709.
- Davis, J.N., Singh, B., Bhuiyan, M. and Sarkar, F.H., 1998. Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. *Nutrition and Cancer* 32: 123-131.
- Dearing, M.D., Foley, W.J. and McLean S. 2005. Theinfluence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. *Annual Review of Ecology, Evolution, and Systematics* 36: 169-189.
- Diel, P., Smolnikar, K. and Michna, H. 1999. *In vitro* test systems for the evaluation of the estrogenic activity of natural products. *Planta Medica* 65: 197-203.
- Doerge, D.R., Churchwell, M.I. and Delclos, K.B. 2000. On-line sample preparation using restricted-access media in the analysis of the soy isoflavones, genistein and daidzein, in rat serum using liquid chromatography electrospray mass spectrometry. *Rapid Communications in Mass Spectrometry* 14: 673-678.
- Dweck, A.C. 2002. The *Pueraria* family with special interest in *Pueraria mirifica*. *Personal Care Magazine* 3(1): 7-10.

- Enmark, E. and Gustafsson, J.A. 1999. Oestrogen receptors-an overview. *Journal of International Medicine* 246: 133-138.
- Evans, B.A.J., Griffiths, K. and Morton, M.S. 1995. Inhibition of 5a-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. *Journal of Endocrinology* 147: 295-302.
- Fanti, P., Monier-Faugere, M.C., Geng, Z., Schmidt, J., Morris, P.E., Cohen, D. and Malluche, H.H. 1998. The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. *Osteoporosis International* 8: 274-281.
- Farnsworth N.R., Bingel A.S., Cordell G.A., Crane F.A. and Fong H.H.S. 1975. Potential value of plants as sources of new antifertility agents II. *Journal of Pharmaceutical Science*. 64: 717–754.
- Finlay, E.M.H., Wilson, D.W., Adlercreutz, H. and Griffiths, K. 1991. The identification and measurement of 'phyto-oestrogens' in human saliva, plasma, breast aspirate or cyst fluid, and prostatic fluid using gas chromatography-mass spectrometry. *Journal of Endocrinology* 129: 49
- Fitzpatrick, L.A. 1999. Selective estrogen receptor modulators and phytoestrogens: new therapies for the postmenopausal women. *Mayo Clinic Proceedings* 74: 601-607.
- Folman, Y. and Pope, G.S. 1966. The interaction in the immature mouse of potent estrogen with coumesterol, genistein and other utero-vaginotrophic compounds of lower potency. *Journal of Endocrinology*. 34: 215-225.
- Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R. and Schweigerer, L. 1993. Genistein, a dietary-derived inhibitor of *in vitro* angiogenesis. *Proceedings of the National Academy of Sciences, USA* 90: 2690-2694.
- Franke, A.A., Custer, L.J., Cerna, C.M. and Narala, K.K. 1994. Quantitation of phytoestrogens in legumes by HPLC. *Journal of Agricultural and Food Chemistry* 42: 1905-1913.
- Franke, A.A. and Custer, L.J. 1996. Daidzein and genistein concentrations in human milk after soy consumption. *Clinical Chemistry* 42:955-964.
- Goodman, M.T., Wilkens, L.R., Hankin, J.H., Lyu, L.C., Wu, A.H. and Kolonel, L.N. 1997. Association of soy and fiber consumption with the risk of endometrial cancer. *American Journal of Epidemiology* 146: 294-306.

- Gotoh, T., Yamamda, K., Yin, H., Ito, H. Kataoka, T. and Dohi, K. 1998^a. Chemoprevention of N-nitroso-N-methylurea-induced rat mammary cancer by miso and tamoxifen, alone and in combination. *Japanese Journal of Cancer Research* 89: 137-142.
- Gotoh, T., Yamada, K., Yin, H., Ito, A., Kataoka, T. and Dohi, K. 1998^b.
 Chemoprevention of *N*-nitroso-*N*-methylurea-induced rat mammary carcinogenesis by soy foods or biochanin A. *Japanese Journal of Cancer Research* 89: 487-495.
- Greaves, K.A., Wilson, M.D., Rudel, L.L., Williams, J.K. and Wagner, J.D. 2000. Consumption of soy protein reduces cholesterol absorption compared to casein protein alone or supplemented with an isoflavone extract or conjugated equine estrogen in ovariectomized cynomolgus monkeys. *Journal of Nutrition* 130: 820-826.
- Hargreaves, D.F., Potten, C.S., Harding, C., Shaw, L.E., Morton, M.S., Roberts S. A., Howell, A. and Bundred, N.J. 1999. Two-week dietary soy supplementation has an estrogenic effect on normal premenopausal breast. *Journal of Clinical Endocrinology and Metabolism* 84: 4017-4024.
- Herbert, J.R.; Hurley, T.G.; Olendzki, B.C.; Tea, J.; Ma, Y.;Hample, J.S. 1998. Nutritional and socioeconomic factors in relation to prostate cancer mortality: a cross-national study. *Journal of the National Cancer Institute* 90(21): 1637-1647.
- Hillman, G.G.; Forman, J.D.; Kucuk, O.; Yudelev, M.; Maughan, R.; Rubio, J.; Layer, A.; Tekyi-Mensah, S.; Abrams, J.; Sarkar, F. H. 2001. Genistein potentiates radiation effect on prostate carcinoma cells. *Clinical Cancer Research* 7: 382-390.
- Hirose, K., Tajima, K., Hamajima, N., Inoue, M., Takezaki, T., Kuroishi, T., Yoshida, M. and Tokudome, S. 1995. A large-scale, hospital-based case-control study of risk factors of breast cancer according to menopausal status. *Japanese Journal of Cancer Research* 86: 146-154.
- Hodgson, J.M., Croft, K.D., Puddey, I.B., Mori, T.A. and Beillin, L.J. 1996. Soybean isoflavonoids and their metabolic products inhibit *in vitro* lipoprotein oxidation in serum. *Journal of Nutritional Biochemistry* 7: 664-669.

- Horn-Ross, P.L., Hoggatt, K.J. and Lee, M.M. 2002. Phytoestrogens and thyroid cancer risk: the San Francisco Bay area thyroid cancer study. *Cancer Epidemiology, Biomarkers & Prevention* 11(1): 43-49.
- Hoyodom, M. 1971. Constituents of the tuberous roots of *Pueraria mirifica*. *Master's Thesis, Chulalongkorn University*. 33 pp. (in Thai)
- Hsu, J.T., Hung, H.C., Chen, C.J., Hsu, W.L. and Ying, C. 1999. Effects of the dietary phytoestrogen biochanin A on cell growth in the mammary carcinoma cell line MCF-7. *The Journal of Nutritional Biochemistry* 10(9): 510-7.
- Hsu, J.T., Ying, C. and Chen, C.J. 2000. Regulation of inducible nitric oxide synthetase by dietary phytoestrogen in MCF-7 human mammary cancer cells. *Reproduction Nutrition Development* 40: 11-18.
- Imoto, M., Yamashita, T., Sawa, T., Kurasawa, S., Naganawa, H., Takeuchi, T., Bauquan, Z. and Umezawa, K. 1988. Inhibition of cellular phosphotidylinositol turnover by psitectorigenin. *FEBS Letters* 230: 43-46.
- Ingham, J.L., Tahara, S. and Dziedzic, S.Z 1986. A chemical investigation of Pueraria mirifica root. Zeitschrift fur Naturforschung Section C: Biosciences 41: 403-408.
- Ingham, J.L., Tahara, S. and Dziedzic, S.Z. 1988. Coumestan from the roots of *Pueraria mirifica* root. *Zeitschrift fur Naturforschung Section C: Biosciences* 43: 5-10.
- Ingham, J.L., Tahara, S. and Dziedzic, S.Z. 1989. Minor isoflavones from the root of *Pueraria mirifica*. Zeitschrift fur Naturforschung Section C: Biosciences 44 (9/10): 724-726.
- Ingram, D., Sanders, K., Kolybaba, M. and Lopez, D. 1997. Case-control study of phyto-eostrogens and breast cancer. *The Lancet* 350: 990-994.
- Izumi, T., Piskula, M.K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y and Kikuchi, M. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. *Journal of Nutrition* 130: 1695-1699.
- Jacobsen, B.K., Knutsen, S.F. and Fraser, G.E. 1998. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). *Cancer Causes Control* 9: 553-557.

- Jaroenporn, S., Malaivijitnond, S., Wattanasirmkit, K., Watanabe, G., Taya, K. and Cherdshewasart, W. 2007. Assessment of fertility and reproductive toxicity in adult female mice after long-term exposure to *Pueraria mirifica*. *Journal* of Reproductive and Development 53: 995-1005.
- Ji, S.; Willis, G.M., Frank, G.R., Cornelius, S.G. and Spurlock, M.E. 1999. Soybean isoflavones, genistein and genistin, inhitbit rat myoblast proliferation, fusion and myotube protein synthesis. *Journal of Nutrition* 129: 1291-1297.
- Jones, H.E.H. and Pope, G.S. 1960. A study of the action of miroestrol and other oestrogens on the reproductive tract of the immature female mouse. *Journal of Endocrinology* 20: 229-235.
- Jones, H.E.H. and Pope, G.S. 1961. A method for the isolation of miroestrol from *Pueraria mirifica. Journal of Endocrinology* 22: 303-312.
- Kao, Y.C., Zhou, C., Sherman, M., Laughton, C.A. and Chen, S. 1998. Molecular basis of the inhibition of human aromatase (oestrogen synthetase) by flavone and isoflavone phytoestrogens: a site-directed mutagenesis study. *Environmental Health Perspectives* 106: 85-92.
- Kaufman, P.B., Duke, J.A., Brielmann, H. and Hoyt, J.E. 1997. A comparative survey of legume plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. *Journal of Alternative Complemental Medicine* 3: 7-12.
- Kasemsanta, M.L.C., Suvatabhandu, K. and Airy, S.H.K. 1952. A new species of *Pueraria* (Leguminosae) from Thailand, yielding an oestrogenic principle. *Kew Bull* 7: 263-266.
- Kellis, Jr.J.T. and Vickery, L.E. 1984. Inhibition of human estrogen synthetase (aromatase) by flavones. *Science* 225: 1032-1034.
- Key, T.J., Sharp, G.B., Appleby, P.N., Beral, V., Goodman, M.T. and Soda, M. 1999. Soya foods and breast cancer risk: a prospective study in Hiroshima and Nagasaki. *British Journal of Cancer* 81: 1238–1256.
- Kim, H.Y., Hong, J.H., Kim, D.S., Kang, K.J., Han, S.B., Lee, E.J., Chung, H.W., Song, K.H., Sho, K.A., Kwack, S.J., Kim, S.S., Park, K.L., Kim, M.C., Kim, C.M. and Song, I.S. 2003. Isoflavone content and estrogen activity in arrowsoot Purerariae Radix. *Food Science Biotechnology* 12: 29-33.

- Kim, M. K., Chung, B. C., Yu, V. Y., Nam, J. H., Lee, H. C., Huh, K. B. and Lim, S.
 K. 2002. Relationships of urinary phyto-oestrogen excretion to BMD in postmenopausal women. *Clinical Endocrinology (Oxf)* 56: 321-328.
- King, R.A. and Bursill, D.B. 1998. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. *American Journal* of Clinical Nutrition 67: 867-872.
- Kolonel, L.N., Hankin, J.H., Whittemore, A.S., Wu, A.H., Gallagher, R.P., Wilkens, L.R., John, E.M., Howe, G.R., Dreon, D.M., West, D.W. and Paffenbarger, R.S.Jr. 2000. Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. *Cancer Epidemiology, Biomarkers & Prevention* (8):795-804.
- Krazeisen, A., Breitling, R., Moller, G. and Adamski, J. 2001. Phytoestrogens inhibit human 17 beta-hydroxysteroid dehydrogenase type 5. *Molecular and Cellular Endocrinology* 171:151-162.
- Kuiper, G.G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J. and Nilsson, S.; Gustafsson, J.A. 1997. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. *Endocrinology* 138:863-870.
- Kuiper, G.G., Enmark, E., Pelto-Huikko, M., Nilsson, S. and Gustafsson, J.A. 1996.
 Cloning of a novel receptor expressed in rat prostate and ovary.
 Proceedings of the National Academy of Sciences, USA 93: 5930-5935.
- Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saag, P.T., van der Burg, B. and Gustafsson, J.A., 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. *Endocrinology* 139, 4252–4263.
- Kuo, S.M. 1996. Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. *Cancer Letters* 110:41-48.
- Kurzer, M.S. and Hu, X. 1997. Dietary phytoestrogens. *Annual Review of Nutrition* 17: 353-381
- Lakshnakara, K.M.C. and Suvatabandhu, K. 1952. A new species of *Pueraria* (leguminosae) from Thailand, yielding and oestrogenic principle. *Kew Bulletin* : 263-266.

- Lamartiniere, C.A., Moore, J.B., Brown, N.M., Thompson, R., Hardin, M.J. and Barnes, S. 1995. Genistien suppresses mammary cancer in rats. *Carcinogenesis* 16: 2833-2840.
- Lampe, J. W., Gustafson, D.R., Hutchins, A.M., Martini, M.C., Li, S., Wähälä, K., Grandits, G.A., Potter J.D. and Slavin, J.L. 1999. Urinary isoflavonoid and lignan excretion on a western diet: relation to soy, vegetable, and fruit intake. *Cancer Epidemiology Biomarkers & Prevention* 8: 699 - 707.
- Langkalichan, Y. and Smitasiri, Y. 1985. Effect of white Qwow (*Pueraria mirifica*) on reproduction in male albino rat. *The 11th Conference Science & Technology*. Kasetsart university, Bangkok, Thailand: 334-335. (in Thai)
- Lee, H.P., Gourley, L., Duffy, S.W., Esteve, J. and Day, N.E. 1991. Dietary effects on breast-cancer risk in Singapore. *The Lancet* 337: 1197-1200.
- Lee, Y.S., Park, J.S., Cho, S.D., Son, J.K., Cherdshewasart, W. and Kang, K.S. 2002. Requirement of metabolic activation for estrogenic activity of *Pueraria mirifica*. *Journal of Veterinary Science* 3(4): 273-277.
- Loukovaara, M., Carson, M., Palotie, A. and Adlercreutz, H.; 1995. Regulation of sex hormone-binding globulin production by isoflavonoids and patterns of isoflavonoid conjugation in HepG2 cell cultures. *Steroids* 60: 656-661.
- Lu, L.J.W., Anderson. K.E., Grady, J.J. and Nagamani, M. 1996. Effects of soya consumption for one month on steroid hormones in premenopausal women: implications for breast cancer risk reduction. *Cancer Epidemiology, Biomarkers and Prevention* 5:63–70.
- Lu, L.J.W., Anderson, K.E., Grady, J.J., Kohen, F. and Nagamani, M. 2000. Decreased ovarian hormones during a soya diet: implications for breast cancer prevention. *Cancer Research* 60: 4112-4121.
- Makela, S., Poutanen, M., Kostian, M.L., Lehtimaki, N., Strauss, L., Santti, R. and Vihko, R. 1998. Inhibition of 17 beta-hydroxysteroid oxidoreductase by flavonoids in breast and prostate cancer cells. *Proceedings of the National Academy of Sciences, USA* 217:310-316.
- Makela, S., Poutanen, M., Lehtimaki, J., Kostian, M.L., Santti, R. and Vihko, R. 1995. Estrogen-specific 17 beta-hydroxysteroid oxidoreductase type 1 (E.C.1.1.1.62) as a possible target for the action of phytoestrogens. *Proceedings of the Society for Experimental Biology and Medicine*. 208: 51–59.

- Malaivijitnond, S., Chansri, K., Kijkuokul, P., Urasopon, N. and Cherdshewasart, W.
 2006. Using vaginal cytology to assess the estrogenic activity of phytoestrogen-rich herb. *Journal of Ethnopharmacology* 107: 354-360.
- Markiewicz, L., Garey, J., Adlercreutz, H. and Gurpide, E. 1993. In vitro bioassays of nonsteroidal phytoestrogens. *Journal of Steroid Biochemistry and Molecular Biology* 45:399-405.
- Martin-Cordero, C., Lopez-Lazoro, M.;, Pinero, J., Ortiz, T., Cortes, F. and Ayuso,
 M.J. 2000. Glucosylated isoflavones as DNA topoisomerase II poisons.
 Journal of Enzyme Inhibition (Chur) 15: 455-460.
- Mazur, W., Fotsis, T., Wahala, K., Ojala, S., Salakka, A. and Adlercreutz, H. 1996. Isotope dilution gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. *Analytical Biochemistry* 233: 169-180.
- Mazur, W. and Adlercreutz, H. 1998. Naturally occurring oestrogens in food. *Pure & Applied Chemistry*. 70: 1759 1776.
- Mazur, W., Duke, J.A., Wahala, K., Rasku, S. and Adlercreutz, H.
 1998. Isoflavonoids and Lignans in Legumes: Nutritional and Health Aspects in Humans. *Journal of Nutritional Biochemistry* 9: 193 - 200.
- Mazur, W. 1998. Phytoestrogen content in foods. *Baillière's Clinical Endocrinology* and Metabolism. 12: 729 - 742.
- Mesiano, S., Katz, S.L., Lee J.Y. and Jaffe, R.B. 1999. Phytoestrogens alter adrenocortical function: genistein and daidzein suppress glucocorticoid and stimulate androgen production by cultured adrenal cortical cells. *The Journal of Clinical Endocrinology & Metabolism* 84 (7): 2443-2448.
- Milligan, S.R., Kalita, J.C., Pocock, V., Van De Kauter, V., Stevens J.F., Deinzer, M.L., Rong, H. and De Keukeleire, D. 2000. The endocrine activities of 8prenylnaringenin and related hop (*Humulus lupulus* L.) flavonoids. *Journal* of Clinical Endocrinology and Metabolism 85: 4912-4915.
- Morton, M.S., Wilcox, G., Wahlquist, M.L. and Griffiths, K. 1994. Determination of lignans and isoflavonoids in human female plasma following dietary supplementation. *Journal of Endocrinology* 142:251-259.
- Mosselman, S., Pohlman, J. and Dijkema, R. 1996. ERB: identification and characterization of a novel human estrogen receptor. *FEBS Letters* 392: 49– 53.

- Mousavi, Y. and Adlercreutz, H. 1993. Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture. *Steroids* 58:301-304.
- Muangman, V. and Cherdshewasart, W. 2001. Clinical trail of the phytoestrogen-rich herb, *Pueraria mirifica* as a crude drug in the treatment of symtoms in menopausal women. *Siriraj Hospital Gazette* 53: 300-309.
- Murkies, A.L., Wilcox, G. and Davis, S. R. 1998. Clinical review 92-Phytoestrogen. *The Journal of Clinical Endocrinology & Metabolism* 83: 297-303.
- Murrill, W.B., Brown, N.M., Zhang, J.X., Manzolillo, P.A., Barnes, S. and Lamartiniere, C.A. 1996. Prepubertal genistein exposure suppresses mammary cancer and enhances gland differentiation in rats. *Carcinogenesis* 17:1451-1457.
- Nagata, C. 2000. Ecological study of the association between soy product intake and mortality from cancer and heart disease in Japan. *International Journal of Epidemiology* 29(5):832-836.
- Nesbitt, P.D., Lam, Y. and Thompson, L.U. 1999. Human metabolism of mammalian lignan precursors in raw and processed flaxseed. *American Journal of Clinical Nutrition* 69:549-555.
- Nestel, P.J., Yamashita, T., Sasahara, T., Pomeroy, S., Dar,t A., Komesaroff. P., Owen, A. and Abbey, M. 1999. Isoflavones from red clover improve systemic arterial compliance but not plasma lipids in menopausal women. *Journal of Clinical Endocrinology & Metabolism.* 84: 895 - 898.
- Nilandihi, T., Kamthong, B., Isarasena, K. and Shiengthong, D. 1957. Constituents of the tuberous roots of *Pueraria mirifica*. Zeitschrift fur Naturforschung Section C: Biosciences 5: 41.
- Panriansaen, R. 2000. Characterization of *Pueraraia mirifica* populations from various parts of Thailand. *Master's Thesis, Chulalongkorn University* (in Thai).
- Picherit, C., Coxam, V., Bennetau-Pelissero, D.C., Kati-Coulibaly, S., Davicco, M.J., Lebecque, P., Barlet, J.P. 2000. Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats. *Journal of Nutrion* 130: 1675-1681.

- Pisetpakasit, R.1976. A Pharmaconostical study of *Pueraria mirifica*. *Master's thesis, Chulalongkorn University* (in Thai).
- Pope, G.S., Gruny, H.M., Jones, H.E.H. and Tait, S.A.S. 1958. The oestrogenic substance (miroestrol) from the tuberous root of *Pueraria mirifica*. *Journal* of endocrinology 17: 15-16.
- Potter, S.M., Baum, J.A., Teng, H., Stillman, R.J., Shay, N.F. and Erdman, J.W. 1998. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. *American Journal of Clinical Nutrition* 68: 1375S-1379S.
- Price, K.R. and Fenwick, G.R. 1985. Naturally occurring oestrogens in foods-a review. *Food Additives and Contaminants* 2:73-106.
- Rauth, S., Kichina, J. and Green, A. 1997. Inhibition of growth and induction of differentiation of metastatic melanoma cells *in vitro* by genistein: chemosensitivity is regulated by cellular p53. *British Journal of Cancer* 75:1559-1566.
- Reinli, K. and Block, G. 1996. Phytoestrogen content of foods A compendium of literature values. *Nutrition and Cancer* 26: 123-148.
- Ren, M.Q., Kuhn, G., Wegner, J. and Chen, J. 2001. Isoflavones, substances with multi-biological and clinical properties. *European Journal of Clinical Nutrition* 40: 135-146.
- Rijke, E., Zafra-Gomez, A., Ariese F., Brinkman, U.A.T. and Gooijer, C. 2001.
 Determination of isoflavone glucoside malonates in *Trifolium pratense* L. extracts: quantification and stability studies. *Journal of Chromatography A*. 932: 55 64.
- Roengsumran, S., Petsom, A., Ngamrojanavanich, N., Rugsilp, T., Sittiwicheanwong,
 P., Khorphueng, P., Cherdshewasart, W. and Chaichantipyuth, C. 2000.
 Flavonoid and flavonoid glycoside from *Butea superba* and their cAMP
 Phosphodiesterase inhibitory Acitvitiy. *Journal of the Science Faculty of Chulalongkorn University* 1: 170-176.
- Saloniemi, H., Wähälä, K., Nykänen, K.P., Kallela, K. and Saastamoinen, I. 1995. Phytoestrogen content and estrogenic effect of legume fodder. *Proceedings* of the Society for Experimental Biology and Medicine 208: 13 - 17.

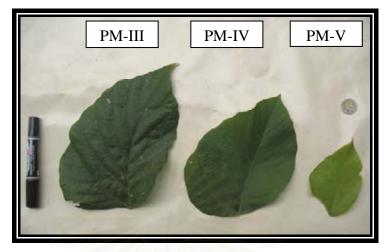
- Salti, G.I., Grewal, S., Mehta, R.R., Das, G.T., Boddie, A.W. and Constantinou, A.I. 2000. Genistein induces apoptoesis and topoisomerase II-mediated DNA breakage in colon cancer cells. *European Journal of Cancer* 36: 796-802.
- Santibanez, J.F., Navarro, A. and Martinez, J. 1997. Genistein inhibits proliferation and *in vitro* invasive potential of human prostatic cancer cell lines. *Anticancer Research* 17(2A):1199-1204.
- Sathyamoorthy, N., Wang, T.T. and Phang, J.M. 1994. Stimulation of pS2 expression by diet-derived compounds. *Cancer Research*_54: 957-961.
- Sawatdipong, S. 1981. Deveopment of screenin tests for oestrogenic activity of extracts of some northern Thai plants and investigations of their effect on mammary gland development in mice. *Journal of the Science Faculty of Chiang Mai University* 4: 3-4. (in Thai)
- Schoeller, W., Dohrn, M. and Hohweg, W. 1940. An estrogenic substance from the tubers of the Siamese vine, *Butea superba*. *Nuturwissenschaften* 28: 532.
- Setchell, K.D. 1998. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. *American Journal of Clinical Nutrition* 68: 13338–1346S.
- Setchell, K.D., Zimmer-Nechemias, L., Cai, J. and Heubi J.E. 1998. Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. *American Journal of Clinical Nutrition* 68:1453S–1461S.
- Setchell, K.D.R., Brown, N.M., Desei, P., Linda, Z.N., Wolfe, B.E., Brashear, W.T., Kirschner, A.S., Cassidy, A. and Heubit, J.E. 2001. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. *Journal of Nutrition*. 131: 1362S - 1375S.
- Shao, Z.M., Wu, J., Shen, Z.Z. and Barsky, S.H. 1998. Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. *Anticancer Research*_18: 1435-1439.
- Shu, X.O., Jin, F., Dai, Q., Wen, W., Potter, J.D.;, Kushi, L.H., Ruan, Z., Gao, Y.T. and Zheng, W. 2001. Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. *Cancer Epidemiology*, *Biomarkers & Prevention* 10: 483-488.
- Shukla, S., Mathur, R. and Prakash, A. 1987. Effect of butanolic extract of *Pueraria* tuberosa DC. on the oestrous cycles of adult rats. Indian Journal of Pharmacological Sciences 19: 49-53.

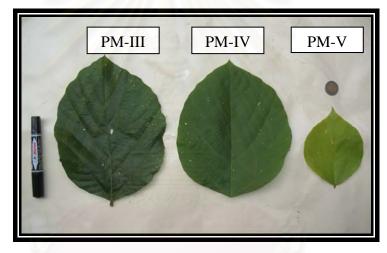
- Shutt, D.A., Braden, A.W.H. 1968. The significance of equol in relation to the oestrogenic responses in sheep ingesting clover with a high formononetin content. *Australian Journal of Agricultural Research* 19: 545-53.
- Smitasiri, Y. 1988. *Pueraria mirifica*: An antifertility plant for dogs. *The* 2nd *Conference, Chiangmai University*: 85. (in Thai)
- Smitasiri, Y. and Pangjit, S. 1986^a. Antifertility effects of *Pueraria mirifica* in albino rats. *Journal of the Science Faculty of Chiang Mai University* 13: 75-80. (in Thai)
- Smitasiri, Y. and Wungjai, C. 1986^b. Some biological aspects of *Pueraria mirifica*: flower, pod and seed. *Journal of the Science Faculty of Chiang Mai University* 14 (1): 67-74.
- Smitasiri, Y., Pangjit, S. and Anantalabhochai, S. 1986^c. Inhibition of lactation in latating rats with *Pueraria mirifica* compared with estrogen. *Journal of the Science Faculty of Chiang Mai University* 16:7-11. (in Thai)
- Smitasiri, Y., Yunyatum, U., Songjitsawad, A., Sripromma, P., Trisisilp, S.; and Anuntalabhochai, S. 1986^d. Postcoital antifertility effects of *Pueraria mi*rifica in rat. *Journal of the Science Faculty of Chiang Mai University* 13: 19-28
- Spinozzi, F., Pagliacci, M.C., Migliorati, G., Moraca, R., Grignani, F., Riccardi, C. and Nicoletti, I. 1994. The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. *Leukemia Research* 18(6): 431-439.
- Sriwatcharakul, S. 2006. Quantitative HPLC analysis of isoflavonoids and bioassays of the farm-grown white Kwao Krua. *Doctor's thesis, Chulalongkorn University* (in Thai).
- Strauss, L., Makela, S., Joshi, S., Huhtaniemi, I. and; Santi, R. 1998^a. Genistein exerts estrogenic-like effects in male mouse reproductive tract. *Molecular* and Cellular Endocrinology 144: 83-93.
- Strauss, L., Santti, R., Saarinen, N., Streng, T., Joshi, S. and Makela, S. 1998^b. Dietary phytoestrogens and their role in hormonally dependent disease. *Toxicology Letters* 102–103: 349–354.
- Strobl, J.S. and Lippman, M.E. 1979. Prolonged retention of estradiol by human breast cancer cells in tissue culture. *Cancer Res* 39: 3319-3327.

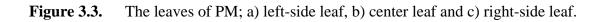
- Stroheker, T., Chagnan, M.C., Pinner, M.F., Berges, R. and Canivenc-Lavier, M.C. 2003. Estrogenic effects of food wrap packaging xenoestrogens and flavoniods in female rats: a comparative study. *Reprod Toxicol* 17: 421-432.
- Tekel, J., Daeseleire, E., Heeremans, A. and van Peteghem, C. 1999. Development of a simple method for the determination of genistein, daidzein, biochanin A, and formononetin (biochanin B) in human urine. *Journal of Agricultural* and Food Chemistry 47:3489-3494.
- Terenius, L. 1971. The allen doisy test for estrogens reinvestigated. *Steroids* 17: 653-618
- Thaiyanun, P., Trakulboon, P. and Anuntalabhochai, S. 1992. Effect of white Kwao Krua II. Red blood cell and white blood cell production. *Journal of* Associated Medical Science Chaingmai University 25 (3): 107-114. (in Thai)
- Tham, D.M., Gardner, D.D. and Haskell, W.L. 1998. Clinical review 97-potential health benefits of dietary phytoestrogen-a review of the clinical, epidemiological, and mechanistic evidence. *The Journal of Clinical Endocrinology & Metabolism* 83: 2223-2235.
- Thomas, B.F., Zeisel, S.H., Busby, M.G., Hill, J.M., Mitchell, R.A., Scheffler, N.M., Brown, S.S., Bloeden, L.T., Dix, K.J. and Jeffcoat, A.R. 2001. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. *Journal of Chromatograpy B* 760: 191-205.
- Thompson, M. and Wood, R.; 1993. International harmonized protocol for proiciency testing of (chemical) analytical laboratories. *Journal of the Association of Official Agricultural Chemistry*. 76: 929–940.
- Tovar-Palacio, D., Pottor, S.M., Haermann, J.C. and Shay, N.F. 1998. Intake of soy protein and soy protein extracts influences lipid metabolism and heptic gene expression in gerbils. *Journal of Nutrition* 128: 839-842.
- Trisomboon, H., Malaivijitnond, S., Watanabe, G. and Taya, K. 2004. Estrogenic effects of *Pueraria mirifica* on the mentrual cycle and hormone-related ovarian functions in cyclic female cynomolgus monkeys. *Journal of Pharmacological Sciences* 94: 51-59.
- Trisomboon, H., Malaivijitnond, S., Watanabe, G. and Taya, K. 2005. Ovulation block by *Pueraria mirifica*. *Journal of Endocrine* 26: 33-39.

- Trisomboon, H., Malaivijitnond, S., Watanabe, G., Cherdshewasart, W. and Taya, K. 2006^a. The estrogenic effect of *Pueraria mirifica* on gonadotropin levels in aged monkeys. *Journal of Endocrine* 2: 129-134.
- Trisomboon, H., Malaivijitnond, S., Cherdshewasart, W., Watanabe, G. and Taya, K. 2006^b. Effect of *Pueraria mirifica* on the sexual skin coloration of aged menopausal cynomolgus monkeys. *Journal of Reproduction and Development* 52: 537-542.
- Trisomboon, H., Malaivijitnond, S., Cherdshewasart, W., Watanabe, G. and Taya, K.
 2007. Assessment of urinary gonadotropin and steroid hormone profiles of female cynomolgus monkeys after treatment with *Pueraria mirifica* herb. *Journal of Reproduction and Development* 53: 395-403
- Uesugi, T., Toda, T., Tsuji, K. and Ishida, H. 2001. Comparative study on reduction of bone loss and lipid metabolism abnormality in ovariectomized rats by soy isoflavones, daidzin, genistin, and glycitin. *Biological & Pharmaceutical Bulletin* 24: 368-372.
- Urasopon, N., Hamada, Y., Asaoka, K., Cherdshewasart, W. and Malaivijitnond, S. 2007. *Pueraria mirifica*, a phytoestrogen-rich herb, prevents bone loss in orchidectomized rats. *Maturitas* 56: 322-331.
- USDA Nutrient Data Laboratory. Citing: Petterson & Kiessling. 1984. Journal of the Association of Official Agricultural Chemistry. 67: 503 506.
- Wagner, J.D., Zhang, L., Greaves, K.A., Shadoan, M.K. and Schwenke, D.C. 2000. Soy protein reduces the arterial low-density lipoprotein (LDL) concentration and delivery of LDL cholesterol to the arteries of diabetic and nondiabetic male cynomolgus monkeys. *Metabolism, Clinical and Experimental* 49: 1188-1196.
- Wang, G., Kuan, S.S., Francis, O.J., Ware, G.M. and Carman, A.S. 1990. A simplified HPLC method for the determination of phytoestrogens in soybean and its processed products. *Journal of Agricultural and Food Chemistry* 38: 185-190.
- Wang, T.T.Y., Sathyamoorthy, N. and Phang, J.M. 1996. Molecular effects of genistein on estrogen receptor mediated pathways. *Carcinogenesis* 17: 271-275.

- Wang, W., Higuchi, C.M. and Zhang, R. 1997. Individual and combinatory effects of soy isoflavones on the *in vitro* potentiation of lymphocyte activation. *Nutrition and Cancer* 29: 29-34.
- Watanabe, S., Uesugi, S. and Kikuchi, Y. 2002. Isoflavones for prevention of cancer, cardiovascular diseases, gynecological problems and possible immune potentiation. *Biomedical Pharmacother*. 56, 302-312.
- Witte, J.S., Ursin, G., Siemiatycki, J., Thomson, W.D., Paganini-Hill, A. and Haile, R.
 W. 1997. Diet and premenopausal bilateral breast cancer: case-control study. *Breast Cancer Research and Treatment* 42: 243-251.
- Wuttke, W., Jarry, H., Becker, T., Schultens, A., Christoffel, V., Gorkow, C. and Seidlova-Wuttke, D. 2003. Phytoestrogens: endrocrine disrupter or replacement for hormone replacement therapy. *Marturitas* 44: S9-S20.
- Xu, X., Harris, K.S., Wang, H.J., Murphy, P.A. and Hendrich, S. 1995.
 Bioavailability of soybean isoflavones depends upon gut microflora in women. *Journal of Nutrition* 125: 2307-2315.
- Xu, X., Duncan, A.M., Merz, B.E. and Kurzer, M.S. 1998. Effects of soy isoflavones on estrogen and phytoestrogen metabolism in premenopausal women. *Cancer Epidemiology, Biomarkers & Prevention* 7: 1101-1108.
- Xu, X., Duncan, A.M., Wangen, K.E. and Kurzer, M.S. 2000. Soy consumption alters endogenous estrogen metabolism in postmenopausal women. *Cancer Epidemiology, Biomarkers & Prevention* 9: 781-786.
- Yamaguchi, M., Gao, Y.H. and Ma, Z.J. 2000. Synergistic effect of genistein and zinc on bone components in the femoral-metaphyseal tissues of female rats. *Journal of Bone and Mineral Metabolism* 18: 77-83.
- Yamashita, Y., Kawada, S. and Nakano, H. 1990. Induction of mammalian topoisomerase II dependent DNA clevage by nonintercalative flavonoids, genistein and orobol. *Biochemical Pharmacology* 39: 737-744.
- Yanagihara, K., Ito, A., Toge, T. and Numoto, M. 1993. Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. *Cancer Research* 53(23): 5815-5821.
- Yuan, J.M., Wang, Q.S., Ross R.K., Henderson, B.E. and Yu, M.C. 1995. Diet and breast cancer in Shanghai and Tianjin, China. *The British Journal of Nutrition* 71: 1353–1358.

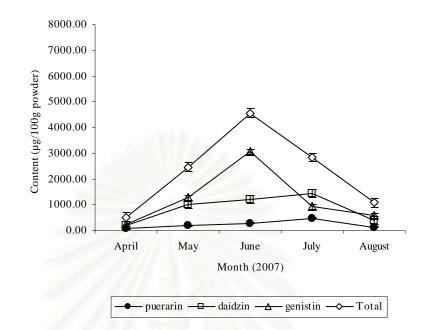

- Zhang, R., Li, Y. and Wang, W., 1997. Enhancement of immune function in mice fed high doses of soy daidzein. *Nutrition and Cancer* 29: 24-28.
- Zhang, W., Dai, Q., Custer, L.J., Shu, X.O., Wen, W.Q., Jin, F. and Franke, A.A. 1999. Urinary excretion of isoflavonoids and the risk of breast cancer. *Cancer Epidemiology, Biomarkers & Prevention* 8: 35-40.


APPENDICES


Appendix A

The characteristics of PM fresh leaves

a)


Appendix B

Isoflavonoid contents calculation (µg/100g powder)

The 50 g dry leave powder have a crude extract x g. Injected 10 μ l of 1 mg/ml crude extract in RP-HPLC to evaluate an isoflavonoid content y mg/ml

In	10	µl evaluated isoflavonoid content			У	mg
	1000	µl evaluated isoflavonoid content			100 y	mg
	1	mg crude extract			100 y	mg
	х	mg crude extract			100 xy	/ g
In	50	g have a crude extract			100 xy	/ g
In	100	g have a crude extract		=	200 xy	/ g
<u>So</u> : T	he isofla	avonoid contents of PM leaves are	200 x	y g /100)g powd	er

Appendix C Correlation Graphs

Figure 4.29. Isoflavonoid contents of PM-III (mg/100g powder). Genistin is the highest contents in June, whereas puerarin is the lowest in the same month

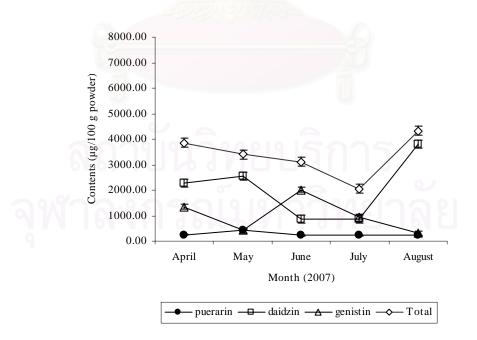
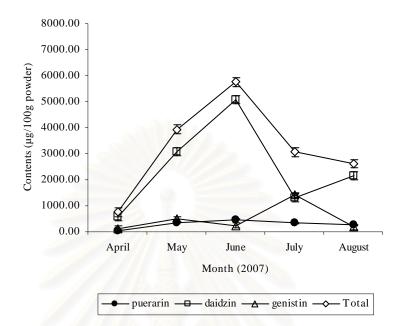
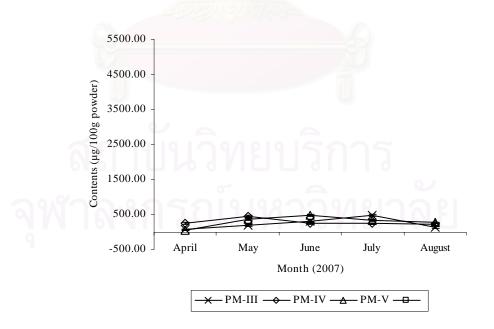
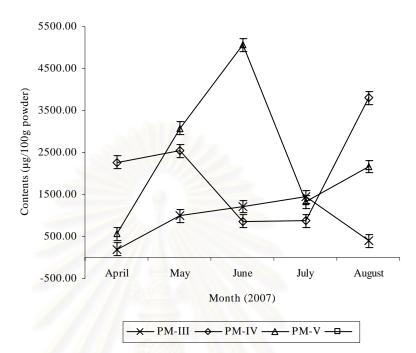


Figure 4.30. Isoflavonoid contents of PM-IV (mg/100g powder)

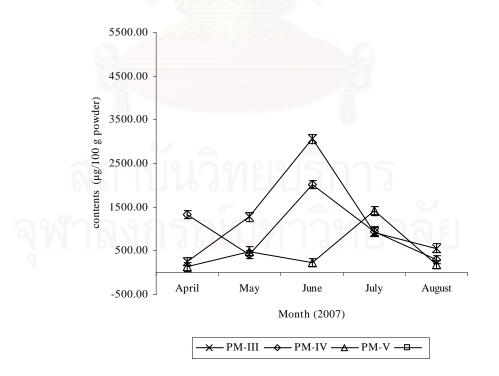

Figure 4.31. Isoflavonoid contents of PM-V (mg/100g powder). Daidzin is the highest contents in May, whereas puerarin is the lowest in August

Figure 4.32. Puerarin contents of PM-III, PM-IV and PM-V in April-August 2007 (mg/100g powder)

Figure 4.33. Daidzin contents of PM-III, PM-IV and PM-V in April-August 2007 (mg/100g powder)

Figure 4.34. Genistin contents of PM-III, PM-IV and PM-V in April-August 2007 (mg/100g powder)

Appendix D Statistical Analysis

	Kolm	nogorov-Smir	nov ^a	Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.	
Puerarin contents (mg/100g powder)	.205	122	.000	.825	122	.000	
Daidzin contents (mg/100g powder)	.148	122	.000	.873	122	.000	
Genistin contents (mg/100g	.204	122	.000	.752	122	.000	
Total contents (mg/100g	.102	122	.003	.959	122	.001	

Tests of	Normality
----------	-----------

a. Lilliefors Significance Correction

Oneway

				95% Confidence Interval for Mean					
		Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Puerarin contents	April 2007	14	127.4529	114.23554	30.53073	61.4952	193.4105	29.94	401.64
(mg/100g powder)	May 2007	27	326. <mark>3</mark> 189	285.64305	54.97203	213.3223	439.3155	101.35	1414.08
	June 2007	27	329.13 <mark>0</mark> 4	201.92454	38.86040	249.2517	409.0091	75.50	799.08
	July 2007	27	342.6200	193.72413	37.28223	265.9853	419.2547	91.96	837.52
	August 2007	27	201.4141	112.67608	21.68452	156.8409	245.9872	29.64	563.16
	Total	122	280.0852	210.83275	19.08790	242.2956	317.8747	29.64	1414.08
Daidzin contents	April 2007	14	1042.6214	1298.17397	346.95159	293.0781	1792.1648	164.70	3480.88
(mg/100g powder)	May 2007	27	2207.2674	1182.05399	227.48640	1739.6624	2674.8724	405.40	4540.88
	June 2007	27	2378.4044	2073.39053	399.02419	1558.1985	3198.6104	161.90	6392.64
	July 2007	27	1211. <mark>035</mark> 6	817.02572	157.23667	887.8309	1534.2402	91.96	3107.16
	August 2007	27	2122.3970	1811.78384	348.67796	1405.6792	2839.1149	118.56	5948.80
	Total	122	1872.2338	1589.71245	143.92580	1587.2947	2157.1729	91.96	6392.64
Genistin contents	April 2007	14	605.1329	755.14469	201.82091	169.1253	1041.1404	76.94	2639.52
(mg/100g powder)	May 2007	27	728.7015	560.78582	107.92328	506.8620	950.5410	72.54	1625.52

Descriptives

	June 2007	27	1773.0156	1670.04454	321.40022	1112.3679	2433.6632	126.18	4533.20
	July 2007	27	1097.2415	688.52108	132.50594	824.8716	1369.6114	172.62	2216.88
	August 2007	27	350.61 <mark>5</mark> 9	309.59773	59.58211	228.1431	473.0887	118.56	1202.88
	Total	122	943.5276	1054.22747	95.44527	754.5685	1132.4867	72.54	4533.20
Total contents	April 2007	14	1775.2071	1687.91904	451.11534	800.6317	2749.7826	439.20	4551.92
(mg/100g powder)	May 2007	27	3262.2878	1131.09961	217.68022	2814.8397	3709.7359	1722.95	6005.68
	June 2007	27	4480 <mark>.5</mark> 504	1839.29625	353.97273	3752.9490	5208.1517	1736.50	7458.08
	July 2007	27	2650.8 <mark>97</mark> 0	1144.42250	220.24421	2198.1786	3103.6155	459.80	4289.10
	August 2007	27	2674.4270	1797.82131	345.99087	1963.2326	3385.6215	266.76	6406.40
	Total	122	3095.8466	1733.06293	156.90415	2785.2134	3406.4797	266.76	7458.08

Post Hoc Tests

-		-	Internet	ole Comparisons				
Dependent Variable		(I) Collecting	(J) Collecting	Mean Difference			95% Confiden	ce Interval
	-	month	month	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Puerarin contents	Tukey HSD	April 2007	May 2007	-198.86603 [*]	65.70616	.025	-380.9233	-16.8088
(mg/100g powder)			June 2007	-201.67751 [*]	65.70616	.022	-383.7348	-19.6203
			July 2007	-215.16714 [*]	65.70616	.012	-397.2244	-33.1099
			August 2007	-73.96122	65.70616	.793	-256.0185	108.0960
		May 2007	April 2007	198.86603 [*]	65.70616	.025	16.8088	380.9233
			June 2007	-2.81148	54.29917	1.000	-153.2625	147.6395
			July 2007	-16.30111	54.29917	.998	-166.7521	134.1499
			August 2007	124.90481	54.29917	.152	-25.5462	275.3558
		June 2007	April 2007	201.67751*	65.70616	.022	19.6203	383.7348
			May 2007	2.81148	54.29917	1.000	-147.6395	153.2625
			July 2007	-13.48963	54.29917	.999	-163.9406	136.9614
			August 2007	127.71630	54.29917	.136	-22.7347	278.1673
		July 2007	April 2007	215.16714 [*]	65.70616	.012	33.1099	397.2244
		Ĩ	May 2007	16.30111	54.29917	.998	-134.1499	166.7521

Multiple Comparisons

		_					
		June 2007	13.48963	54.29917	.999	-136.9614	163.9406
		August 2007	141.20593	54.29917	.077	-9.2451	291.6569
	August 2007	April 2007	73.96122	65.70616	.793	-108.0960	256.0185
		May 2007	-124.90481	54.29917	.152	-275.3558	25.5462
		June 2007	-127.71630	54.29917	.136	-278.1673	22.7347
		July 2007	-141.20593	54.29917	.077	-291.6569	9.2451
LSD	April 2007	May 2007	-198.86603*	65.70616	.003	-328.9936	-68.7384
		June 2007	-201.67751 [*]	65.70616	.003	-331.8051	-71.5499
		July 2007	-215.16714 [*]	65.70616	.001	-345.2948	-85.0395
		August 2007	-73.96122	65.70616	.263	-204.0888	56.1664
	May 2007	April 2007	198.86603*	65.70616	.003	68.7384	328.9936
		June 2007	-2.81148	54.29917	.959	-110.3481	104.7252
		July 2007	-16.30111	54.29917	.765	-123.8378	91.2355
		August 2007	124.90481 [*]	54.29917	.023	17.3682	232.4415
	June 2007	April 2007	201.67751*	65.70616	.003	71.5499	331.8051
		May 2007	2.81148	54.29917	.959	-104.7252	110.3481
		July 2007	-13.48963	54.29917	.804	-121.0263	94.0470
		August 2007	127.71630 [*]	54.29917	.020	20.1796	235.2530

	July 2007	April 2007	215.16714 [*]	65.70616	.001	85.0395	345.294
		May 2007	16.30111	54.29917	.765	-91.2355	123.83
		June 2007	13.48963	54.29917	.804	-94.0470	121.026
		August 2007	141.20593 [*]	54.29917	.011	33.6693	248.74
	August 2007	April 2007	73.96122	65.70616	.263	-56.1664	204.08
		May 2007	-124.90481*	54.29917	.023	-232.4415	-17.36
		June 2007	-127.71630 [*]	54.29917	.020	-235.2530	-20.17
		July 2007	-141.20593 [*]	54.29917	.011	-248.7426	-33.66
Bonferroni	April 2007	May 2007	-198.86603 [*]	65.70616	.030	-386.8674	-10.86
		June 2007	-201.67751*	65.70616	.027	-389.6788	-13.67
		July 2007	-215.16714*	65.70616	.014	-403.1685	-27.16
		August 2007	-73.96122	65.70616	1.000	-261.9626	114.04
	May 2007	April 2007	198.86603*	65.70616	.030	10.8647	386.86
		June 2007	-2.81148	54.29917	1.000	-158.1746	152.55
		July 2007	-16.30111	54.29917	1.000	-171.6643	139.06
		August 2007	124.90481	54.29917	.232	-30.4583	280.26
	June 2007	April 2007	201.67751*	65.70616	.027	13.6762	389.67
		May 2007	2.81148	54.29917	1.000	-152.5517	158.17

August 2007 127.71630 54.29917 .203 -27.6469 283.079 July 2007 April 2007 215.16714 65.70616 .014 27.1658 403.168 May 2007 16.30111 54.29917 1.000 -139.0620 171.664 June 2007 13.48963 54.29917 1.000 -141.8735 168.852 August 2007 April 2007 141.20593 54.29917 1.000 -141.8735 168.852 August 2007 April 2007 73.96122 65.70616 1.000 -114.1572 296.569 August 2007 April 2007 -124.90481 54.29917 .203 -280.2680 30.458 June 2007 -127.71630 54.29917 .203 -283.0794 27.646 July 2007 -141.20593 54.29917 .105 -296.5691 14.157 June 2007 -141.20593 54.29917 .105 -296.5691 14.157 June 2007 -141.20593 54.29917 .002 -348.3924 -54.962			_			-		
July 2007 April 2007 215.16714 ⁱ 65.70616 .014 27.1658 403.168 May 2007 16.30111 54.29917 1.000 -139.0620 171.664 June 2007 13.48963 54.29917 1.000 -141.8735 168.852 August 2007 141.20593 54.29917 .105 -141.1572 296.569 August 2007 April 2007 73.96122 65.70616 1.000 -114.0401 261.962 May 2007 -124.90481 54.29917 .203 -280.2680 30.458 June 2007 -127.71630 54.29917 .203 -283.0794 27.646 June 2007 -141.20593 54.29917 .105 -296.5691 14.157 June 2007 -127.71630 54.29917 .003 -283.0794 27.646 July 2007 -141.20593 54.29917 .005 -296.5691 14.157 Tamhane April 2007 May 2007 -198.86603 ⁱ 62.88124 .031 -385.9066 -11.825 June			July 2007	-13.48963	54.29917	1.000	-168.8528	141.8735
May 2007 16.30111 54.29917 1.000 -139.0620 171.664 June 2007 13.48963 54.29917 1.000 -141.8735 168.852 August 2007 141.20593 54.29917 1.005 -141.1572 296.569 August 2007 April 2007 73.96122 65.70616 1.000 -114.0401 261.962 May 2007 -124.90481 54.29917 .232 -280.2680 30.458 June 2007 -127.71630 54.29917 .203 -283.0794 27.646 July 2007 -141.20593 54.29917 .105 -296.5691 14.157 June 2007 -141.20593 54.29917 .003 -283.0794 27.646 July 2007 -141.20593 54.29917 .005 -296.5691 14.157 Tamhane April 2007 May 2007 -198.86603 62.88124 .031 -385.9066 -11.825 June 2007 -201.67751 49.41919 .002 -348.3924 -54.962			August 2007	127.71630	54.29917	.203	-27.6469	283.0794
June 2007 13.48963 54.29917 1.000 -141.8735 168.852 August 2007 141.20593 54.29917 1.005 -14.1572 296.569 August 2007 April 2007 73.96122 65.70616 1.000 -114.0401 261.962 May 2007 -124.90481 54.29917 .232 -280.2680 30.458 June 2007 -127.71630 54.29917 .203 -283.0794 27.646 July 2007 -141.20593 54.29917 .105 -296.5691 14.157 Tamhane April 2007 May 2007 -198.86603 62.88124 .031 -385.9066 -11.825 June 2007 -201.67751 49.41919 .002 -348.3924 -54.962		July 2007	April 2007	215.16714 [*]	65.70616	.014	27.1658	403.1685
August 2007 141.20593 54.29917 .105 -14.1572 296.569 August 2007 April 2007 73.96122 65.70616 1.000 -114.0401 261.962 May 2007 -124.90481 54.29917 .232 -280.2680 30.458 June 2007 -127.71630 54.29917 .203 -283.0794 27.646 July 2007 -141.20593 54.29917 .105 -296.5691 14.157 Tamhane April 2007 May 2007 -198.86603 62.88124 .031 -385.9066 -11.825 June 2007 -201.67751 49.41919 .002 -348.3924 -54.962			May 2007	16.30111	54.29917	1.000	-139.0620	171.6643
August 2007 April 2007 73.96122 65.70616 1.000 -114.0401 261.962 May 2007 -124.90481 54.29917 .232 -280.2680 30.458 June 2007 -127.71630 54.29917 .203 -283.0794 27.646 July 2007 -141.20593 54.29917 .105 -296.5691 14.157 Tamhane April 2007 May 2007 -198.86603 62.88124 .031 -385.9066 -11.825 June 2007 -201.67751 49.41919 .002 -348.3924 -54.962			June 2007	13.48963	54.29917	1.000	-141.8735	168.8528
May 2007 -124.90481 54.29917 .232 -280.2680 30.458 June 2007 -127.71630 54.29917 .203 -283.0794 27.646 July 2007 -141.20593 54.29917 .105 -296.5691 14.157 Tamhane April 2007 May 2007 -198.86603 62.88124 .031 -385.9066 -11.825 June 2007 -201.67751 49.41919 .002 -348.3924 -54.962			August 2007	141.20593	54.29917	.105	-14.1572	296.5691
June 2007 -127.71630 54.29917 .203 -283.0794 27.646 July 2007 -141.20593 54.29917 .105 -296.5691 14.157 Tamhane April 2007 May 2007 -198.86603 62.88124 .031 -385.9066 -11.825 June 2007 -201.67751 49.41919 .002 -348.3924 -54.962		August 2007	April 2007	73.96122	65.70616	1.000	-114.0401	261.9626
July 2007 -141.20593 54.29917 .105 -296.5691 14.157 Tamhane April 2007 May 2007 -198.86603 ³ 62.88124 .031 -385.9066 -11.825 June 2007 -201.67751 ³ 49.41919 .002 -348.3924 -54.962			May 2007	-124.90481	54.29917	.232	-280.2680	30.4583
Tamhane April 2007 May 2007 -198.86603 [*] 62.88124 .031 -385.9066 -11.825 June 2007 -201.67751 [*] 49.41919 .002 -348.3924 -54.962			June 2007	-127.71630	54.29917	.203	-283.0794	27.6469
June 2007 -201.67751 [*] 49.41919 .002 -348.3924 -54.962			July 2007	-141.20593	54.29917	.105	-296.5691	14.1572
	Tamhane	April 2007	May 2007	-198.86603*	62.88124	.031	-385.9066	-11.8254
			June 2007	-201.67751 [*]	49.41919	.002	-348.3924	-54.9626
July 2007 -215.16/14 48.18807 .001 -358.3152 -72.019			July 2007	-215.16714 [*]	48.18807	.001	-358.3152	-72.0191
August 2007 -73.96122 37.44788 .455 -188.4174 40.494			August 2007	-73.96122	37.44788	.455	-188.4174	40.4949
May 2007 April 2007 198.86603 62.88124 .031 11.8254 385.906		May 2007	April 2007	198.86603*	62.88124	.031	11.8254	385.9066
June 2007 -2.81148 67.32054 1.000 -200.5870 194.964			June 2007	-2.81148	67.32054	1.000	-200.5870	194.9640
July 2007 -16.30111 66.42205 1.000 -211.6578 179.055			July 2007	-16.30111	66.42205	1.000	-211.6578	179.0555
			August 2007	124.90481	59.09435	.349	-52.0045	301.8141

	June 2007	April 2007	201.67751*	49.41919	.002	54.9626	348.3924
		May 2007	2.81148	67.32054	1.000	-194.9640	200.5870
		July 2007	-13.48963	53.85253	1.000	-170.9353	143.9560
		August 2007	127.71630	44.50111	.063	-3.9772	259.4098
	July 2007	April 2007	215.16714 [*]	48.18807	.001	72.0191	358.3152
		May 2007	16.30111	66.42205	1.000	-179.0555	211.6578
		June 2007	13.48963	53.85253	1.000	-143.9560	170.9353
		August 2007	141.20593 [*]	43.12984	.021	13.7479	268.6640
	August 2007	April 2007	73.96122	37.44788	.455	-40.4949	188.4174
		May 2007	-124.90481	59.09435	.349	-301.8141	52.0045
		June 2007	-127.71630	44.50111	.063	-259.4098	3.9772
		July 2007	-141.20593*	43.12984	.021	-268.6640	-13.7479
Dunnett T3	April 2007	May 2007	-198.86603*	62.88124	.030	-385.1836	-12.5484
		June 2007	-201.67751 [*]	49.41919	.002	-347.8484	-55.5066
		July 2007	-215.16714 [*]	48.18807	.001	-357.7773	-72.5570
		August 2007	-73.96122	37.44788	.423	-187.6930	39.7705
	May 2007	April 2007	198.86603*	62.88124	.030	12.5484	385.1836
		June 2007	-2.81148	67.32054	1.000	-200.0154	194.3924
 	0						

			- ,			I	I	
			July 2007	-16.30111	66.42205	1.000	-211.0766	178.4744
			August 2007	124.90481	59.09435	.329	-51.2248	301.0344
		June 2007	April 2007	201.67751*	49.41919	.002	55.5066	347.8484
			May 2007	2.81148	67.32054	1.000	-194.3924	200.0154
			July 2007	-13.48963	53.85253	1.000	-170.5361	143.5568
			August 2007	127.71630	44.50111	.061	-3.5226	258.9552
		July 2007	April 2007	215.16714 [*]	48.18807	.001	72.5570	357.7773
			May 2007 🥖	16.30111	66.42205	1.000	-178.4744	211.0766
			June 2007	13.48963	53.85253	1.000	-143.5568	170.5361
			August 2007	141.20593*	43.12984	.021	14.1739	268.2380
		August 2007	April 2007	73.96122	37.44788	.423	-39.7705	187.6930
			May 2007	-124.90481	59.09435	.329	-301.0344	51.2248
			June 2007	-127.71630	44.50111	.061	-258.9552	3.5226
			July 2007	-141.20593*	43.12984	.021	-268.2380	-14.1739
Daidzin contents	Tukey HSD	April 2007	May 2007	-1164.64598	502.81144	.147	-2557.8254	228.5334
(mg/100g powder)			June 2007	-1335.78302	502.81144	.067	-2728.9624	57.3964
			July 2007	-168.41413	502.81144	.997	-1561.5936	1224.7653
			August 2007	-1079.77561	502.81144	.207	-2472.9550	313.4038
		May 2007	April 2007	1164.64598	502.81144	.147	-228.5334	2557.8254

			-					
			June 2007	-171.13704	415.52029	.994	-1322.4520	980.1779
			July 2007	996.23185	415.52029	.123	-155.0831	2147.5468
			August 2007	84.87037	4 <mark>15.52029</mark>	1.000	-1066.4446	1236.1853
		June 2007	April 2007	1335.78302	502.81144	.067	-57.3964	2728.9624
			May 2007	171.13704	415.52029	.994	-980.1779	1322.4520
			July 2007	1167.36889*	415.52029	.045	16.0540	2318.6838
			August 2007	256.00741	415.52029	.972	-895.3075	1407.322
		July 2007	April 2007	168.41413	502.81144	.997	-1224.7653	1561.593
			May 2007	-996.23185	415.52029	.123	-2147.5468	155.083
			June 2007	-1167.36889*	415.52029	.045	-2318.6838	-16.054
			August 2007	-911.36148	415.52029	.190	-2062.6764	239.953
		August 2007	April 2007	1079.77561	502.81144	.207	-313.4038	2472.955
			May 2007	-84.87037	415.52029	1.000	-1236.1853	1066.444
			June 2007	-256.00741	415.52029	.972	-1407.3223	895.307
			July 2007	911.36148	415.52029	.190	-239.9535	2062.676
L	SD	April 2007	May 2007	-1164.64598*	502.81144	.022	-2160.4377	-168.854
			June 2007	-1335.78302*	502.81144	.009	-2331.5747	-339.991
			July 2007	-168.41413	502.81144	.738	-1164.2058	827.377
		29	August 2007	-1079.77561*	502.81144	.034	-2075.5673	-83.9839

	May 2007	April 2007	1164.64598*	502.81144	.022	168.8543	2160.4377
		June 2007	-171.13704	415.52029	.681	-994.0532	651.7791
		July 2007	996.23185 [*]	4 <mark>15.520</mark> 29	.018	173.3157	1819.1480
		August 2007	84.87037	415.52029	.839	-738.0458	907.7865
	June 2007	April 2007	1335.78302*	502.81144	.009	339.9913	2331.5747
		May 2007	171.13704	415.52029	.681	-651.7791	994.0532
		July 2007	1167.36889 [*]	415.52029	.006	344.4527	1990.2850
		August 2007	256.00741	415.52029	.539	-566.9088	1078.9236
	July 2007	April 2007	168.41413	502.81144	.738	-827.3776	1164.2058
		May 2007	-996.23185*	415.52029	.018	-1819.1480	-173.3157
		June 2007	-1167.36889*	415.52029	.006	-1990.2850	-344.4527
		August 2007	-911.36148 [*]	415.52029	.030	-1734.2776	-88.4453
	August 2007	April 2007	1079.77561*	502.81144	.034	83.9839	2075.5673
		May 2007	-84.87037	415.52029	.839	-907.7865	738.0458
		June 2007	-256.00741	415.52029	.539	-1078.9236	566.9088
		July 2007	911.36148 [*]	415.52029	.030	88.4453	1734.2776
Bonferroni	April 2007	May 2007	-1164.64598	502.81144	.223	-2603.3120	274.0200
		June 2007	-1335.78302	502.81144	.090	-2774.4490	102.8830
	2	July 2007	-168.41413	502.81144	1.000	-1607.0801	1270.2519

	·	August 2007	-1079.77561	502.81144	.338	-2518.4416	358.8904
	May 2007	April 2007	1164.64598	502.81144	.223	-274.0200	2603.3120
	Way 2007						
		June 2007	-171.13704	415.52029	1.000	-1360.0418	1017.7677
		July 2007	996.23185	415.52029	.181	-192.6729	2185.1366
		August 2007	84.87037	415.52029	1.000	-1104.0344	1273.7751
	June 2007	April 2007	1335.78302	502.81144	.090	-102.8830	2774.4490
		May 2007	171.13704	415.52029	1.000	-1017.7677	1360.0418
		July 2007	1167.36889	415.52029	.058	-21.5359	2356.2737
		August 2007	256.00741	415.52029	1.000	-932.8974	1444.9122
	July 2007	April 2007	168.41413	502.81144	1.000	-1270.2519	1607.0801
		May 2007	-996.23185	415.52029	.181	-2185.1366	192.6729
		June 2007	-1167.36889	415.52029	.058	-2356.2737	21.5359
		August 2007	-911.36148	415.52029	.303	-2100.2662	277.5433
	August 2007	April 2007	1079.77561	502.81144	.338	-358.8904	2518.4416
		May 2007	-84.87037	415.52029	1.000	-1273.7751	1104.0344
		June 2007	-256.00741	415.52029	1.000	-1444.9122	932.8974
		July 2007	911.36148	415.52029	.303	-277.5433	2100.2662
Tamhane	April 2007	May 2007	-1164.64598	414.88006	.093	-2441.1296	111.8377
		June 2007	-1335.78302	528.76811	.148	-2908.5746	237.0086

		_					-
		July 2007	-168.41413	380.91833	1.000	-1377.6347	1040.8064
_		August 2007	-1079.77561	491.88589	.299	-2549.7580	390.2068
N	1ay 2007	April 2007	1164.64598	<mark>414.88006</mark>	.093	-111.8377	2441.1296
		June 2007	-171.13704	459.31511	1.000	-1529.4203	1187.1462
		July 2007	996.23185 [*]	276.53830	.008	183.3227	1809.1410
_		August 2007	84.87037	416.32485	1.000	-1140.9821	1310.7228
Jı	une 2007	April 2007	1335.78302	528.76811	.148	-237.0086	2908.5746
		May 2007	171.13704	459.31511	1.000	-1187.1462	1529.4203
		July 2007	1167.36889	428.88656	.097	-116.6194	2451.3571
_		August 2007	256.00741	529.90247	1.000	-1294.3493	1806.3641
JI	uly 2007	April 2007	168.41413	380.91833	1.000	-1040.8064	1377.6347
		May 2007	-996.23185*	276.53830	.008	-1809.1410	-183.3227
		June 2007	-1167.36889	428.88656	.097	-2451.3571	116.6194
		August 2007	-911.36148	382.49143	.204	-2051.5179	228.7949
A	ugust 2007	April 2007	1079.77561	491.88589	.299	-390.2068	2549.7580
		May 2007	-84.87037	416.32485	1.000	-1310.7228	1140.9821
		June 2007	-256.00741	529.90247	1.000	-1806.3641	1294.3493
 		July 2007	911.36148	382.49143	.204	-228.7949	2051.5179
Dunnett T3 A	pril 2007	May 2007	-1164.64598	414.88006	.087	-2432.1966	102.9046

						-
	June 2007	-1335.78302	528.76811	.142	-2902.4976	230.9315
	July 2007	-168.41413	380.91833	1.000	-1364.9414	1028.1132
	August 2007	-1079.77561	4 <mark>91.885</mark> 89	.283	-2543.4987	383.9475
May 2007	April 2007	1164.64598	414.88006	.087	-102.9046	2432.1966
	June 2007	-171.13704	459.31511	1.000	-1524.8091	1182.5350
	July 2007	996.23185 [*]	276.53830	.008	185.7088	1806.7549
	August 2007	84.87037	416.32485	1.000	-1137.2304	1306.9711
June 2007	April 2007	1335.78302	528.7 <mark>6</mark> 811	.142	-230.9315	2902.4976
	May 2007	171.13704	459.31511	1.000	-1182.5350	1524.8091
	July 2007	1167.36889	428.88656	.093	-110.9564	2445.6942
	August 2007	256.00741	529.90247	1.000	-1290.3383	1802.3531
July 2007	April 2007	168.41413	380.91833	1.000	-1028.1132	1364.9414
	May 2007	-996.23185 [*]	276.53830	.008	-1806.7549	-185.7088
	June 2007	-1167.36889	428.88656	.093	-2445.6942	110.9564
	August 2007	-911.36148	382.49143	.194	-2046.9082	224.1852
August 2007	April 2007	1079.77561	491.88589	.283	-383.9475	2543.4987
	May 2007	-84.87037	416.32485	1.000	-1306.9711	1137.2304
	June 2007	-256.00741	529.90247	1.000	-1802.3531	1290.3383
	July 2007	911.36148	382.49143	.194	-224.1852	2046.9082

Genistin contents	Tukey HSD	April 2007	May 2007	-123.56862	308.89336	.995	-979.4439	732.3066
(mg/100g powder)			June 2007	-1167.88270 [*]	308.89336	.002	-2023.7580	-312.0074
			July 2007	-492.10862	308.89336	.505	-1347.9839	363.7666
			August 2007	254.51693	308.89336	.923	-601.3583	1110.3922
		May 2007	April 2007	123.56862	308.89336	.995	-732.3066	979.4439
			June 2007	-1044.31407*	255.26758	.001	-1751.6041	-337.0240
			July 2007	-368.54000	255.26758	.601	-1075.8301	338.7501
			August 2007	378.08556	255.26758	.577	-329.2045	1085.3756
		June 2007	April 2007	1167.88270 [*]	308.89336	.002	312.0074	2023.7580
			May 2007	1044.31407*	255.26758	.001	337.0240	1751.604
			July 2007	675.77407	255.26758	.068	-31.5160	1383.064
			August 2007	1422.39963*	255.26758	.000	715.1096	2129.689
		July 2007	April 2007	492.10862	308.89336	.505	-363.7666	1347.983
			May 2007	368.54000	255.26758	.601	-338.7501	1075.830
			June 2007	-675.77407	255.26758	.068	-1383.0641	31.516
			August 2007	746.62556*	255.26758	.033	39.3355	1453.915
		August 2007	April 2007	-254.51693	308.89336	.923	-1110.3922	601.358
			May 2007	-378.08556	255.26758	.577	-1085.3756	329.204
		2	June 2007	-1422.39963*	255.26758	.000	-2129.6897	-715.1096

•	•	—					
		July 2007	-746.62556*	255.26758	.033	-1453.9156	-39.3355
LSD	April 2007	May 2007	-123.56862	308.89336	.690	-735.3157	488.1785
		June 2007	-1167.88270*	308.89336	.000	-1779.6298	-556.1356
		July 2007	-492.10862	308.89336	.114	-1103.8557	119.6385
		August 2007	254.51693	308.89336	.412	-357.2302	866.2640
	May 2007	April 2007	123.56862	308.89336	.690	-488.1785	735.3157
		June 2007	-1044.31407*	255.26758	.000	-1549.8581	-538.7700
		July 2007	-368.54000	255.26758	.151	-874.0841	137.0041
		August 2007	378.08556	255.26758	.141	-127.4585	883.6296
	June 2007	April 2007	1167.88270*	308.89336	.000	556.1356	1779.6298
		May 2007	1044.31407*	255.26758	.000	538.7700	1549.8581
		July 2007	675.77407*	255.26758	.009	170.2300	1181.3181
		August 2007	1422.39963 [*]	255.26758	.000	916.8556	1927.9437
	July 2007	April 2007	492.10862	308.89336	.114	-119.6385	1103.8557
		May 2007	368.54000	255.26758	.151	-137.0041	874.0841
		June 2007	-675.77407*	255.26758	.009	-1181.3181	-170.2300
		August 2007	746.62556*	255.26758	.004	241.0815	1252.1696
	August 2007	April 2007	-254.51693	308.89336	.412	-866.2640	357.2302
	2	May 2007	-378.08556	255.26758	.141	-883.6296	127.4585

		June 2007	-1422.39963*	255.26758	.000	-1927.9437	-916.8
		July 2007	-746.62556*	255.26758	.004	-1252.1696	-241.0
Bonferroni	April 2007	May 2007	-123.56862	3 <mark>08.89336</mark>	1.000	-1007.3878	760.2
		June 2007	-1167.88270*	308.89336	.002	-2051.7018	-284.0
		July 2007	-492.10862	308.89336	1.000	-1375.9278	391.7
		August 2007	254.51693	308.89336	1.000	-629.3022	1138.3
	May 2007	April 2007	123.56862	308.89336	1.000	-760.2505	1007.3
		June 2007	-1044.31407*	255.26758	.001	-1774.6968	-313.9
		July 2007	-368.54000	255.26758	1.000	-1098.9227	361.8
		August 2007	378.08556	255.26758	1.000	-352.2972	1108.4
	June 2007	April 2007	1167.88270*	308.89336	.002	284.0636	2051.7
		May 2007	1044.31407*	255.26758	.001	313.9314	1774.6
		July 2007	675.77407	255.26758	.092	-54.6086	1406.1
		August 2007	1422.39963*	255.26758	.000	692.0169	2152.7
	July 2007	April 2007	492.10862	308.89336	1.000	-391.7105	1375.9
		May 2007	368.54000	255.26758	1.000	-361.8427	1098.9
		June 2007	-675.77407	255.26758	.092	-1406.1568	54.6
		August 2007	746.62556*	255.26758	.041	16.2428	1477.0
	August 2007	April 2007	-254.51693	308.89336	1.000	-1138.3361	629.3

	<u>-</u>						
		May 2007	-378.08556	255.26758	1.000	-1108.4683	352.2972
		June 2007	-1422.39963*	255.26758	.000	-2152.7823	-692.0169
		July 2007	-746.62556*	255.26758	.041	-1477.0083	-16.2428
Tamhane	e April 2007	May 2007	-123.56862	228.86484	1.000	-840.2114	593.0742
		June 2007	-1167.88270*	379.51256	.038	-2294.6394	-41.1260
		July 2007	-492.10862	241.43219	.417	-1234.8516	250.6343
		August 2007	254.51693	210.43219	.940	-432.3222	941.3560
	May 2007	April 2007	123.56862	228.86484	1.000	-593.0742	840.2114
		June 2007	-1044.31407*	339.03619	.042	-2063.9380	-24.6902
		July 2007	-368.54000	170.89546	.306	-869.0427	131.9627
		August 2007	378.08556*	123.27799	.038	13.1330	743.0381
	June 2007	April 2007	1167.88270*	379.51256	.038	41.1260	2294.6394
		May 2007	1044.31407*	339.03619	.042	24.6902	2063.9380
		July 2007	675.77407	347.64339	.462	-363.5288	1715.0769
		August 2007	1422.39963*	326.87632	.002	428.8022	2415.9970
	July 2007	April 2007	492.10862	241.43219	.417	-250.6343	1234.8516
		May 2007	368.54000	170.89546	.306	-131.9627	869.0427
		June 2007	-675.77407	347.64339	.462	-1715.0769	363.5288
		August 2007	746.62556*	145.28542	.000	313.5075	1179.7436

		-					
	August 2007	April 2007	-254.51693	210.43219	.940	-941.3560	432.3222
		May 2007	-378.08556*	123.27799	.038	-743.0381	-13.1330
		June 2007	-1422.39963*	326.87632	.002	-2415.9970	-428.8022
		July 2007	-746.62556*	145.28542	.000	-1179.7436	-313.5075
Dunnett T3	April 2007	May 2007	-123.56862	228.86484	1.000	-833.8368	586.6996
		June 2007	-1167.88270*	379.51256	.037	-2290.4561	-45.3093
		July 2007	-492.10862	241.43219	.385	-1229.6624	245.4452
		August 2007	254.51693	210.43219	.905	-422.6617	931.6956
	May 2007	April 2007	123.56862	228.86484	1.000	-586.6996	833.8368
		June 2007	-1044.31407*	339.03619	.040	-2059.0339	-29.5942
		July 2007	-368.54000	170.89546	.295	-867.7110	130.6310
		August 2007	378.08556*	123.27799	.037	14.4033	741.7678
	June 2007	April 2007	1167.88270 [*]	379.51256	.037	45.3093	2290.4561
		May 2007	1044.31407*	339.03619	.040	29.5942	2059.0339
		July 2007	675.77407	347.64339	.437	-359.0705	1710.6187
		August 2007	1422.39963*	326.87632	.002	434.5603	2410.2390
	July 2007	April 2007	492.10862	241.43219	.385	-245.4452	1229.6624
		May 2007	368.54000	170.89546	.295	-130.6310	867.7110
	2	June 2007	-675.77407	347.64339	.437	-1710.6187	359.0705

			August 2007	746.62556*	145.28542	.000	315.2621	1177.9890
		August 2007	April 2007	-254.51693	210.43219	.905	-931.6956	422.6617
			May 2007	-378.08556*	123.27799	.037	-741.7678	-14.4033
			June 2007	-1422.39963*	326.87632	.002	-2410.2390	-434.5603
		. <u>.</u>	July 2007	-746.62556*	145.28542	.000	-1177.9890	-315.2621
Fotal contents	Tukey HSD	April 2007	May 2007	-1487.08063*	506.15301	.032	-2889.5188	-84.6425
mg/100g powder)			June 2007	-2705.34323 [*]	506.15301	.000	-4107.7814	-1302.9051
			July 2007	-875.68989	506.15301	.420	-2278.1281	526.7483
			August 2007	-899.21989	506.15301	.392	-2301.6581	503.2183
		May 2007	April 2007	1487.08063*	506.15301	.032	84.6425	2889.5188
			June 2007	-1218.26259*	418.28174	.034	-2377.2289	-59.2963
			July 2007	611.39074	418.28174	.589	-547.5756	1770.3571
			August 2007	587.86074	418.28174	.625	-571.1056	1746.8271
		June 2007	April 2007	2705.34323*	506.15301	.000	1302.9051	4107.7814
			May 2007	1218.26259*	418.28174	.034	59.2963	2377.2289
			July 2007	1829.65333*	418.28174	.000	670.6870	2988.6196
			August 2007	1806.12333*	418.28174	.000	647.1570	2965.0896
		July 2007	April 2007	875.68989	506.15301	.420	-526.7483	2278.1281
		2	May 2007	-611.39074	418.28174	.589	-1770.3571	547.5756

-		_					-
		June 2007	-1829.65333*	418.28174	.000	-2988.6196	-670.6870
		August 2007	-23.53000	418.28174	1.000	-1182.4963	1135.4363
	August 2007	April 2007	899.21989	506.15301	.392	-503.2183	2301.6581
		May 2007	-587.86074	418.28174	.625	-1746.8271	571.1056
		June 2007	-1806.12333*	418.28174	.000	-2965.0896	-647.1570
	·	July 2007	23.53000	418.28174	1.000	-1135.4363	1182.4963
LSD	April 2007	May 2007	-1487.08063*	506.15301	.004	-2489.4901	-484.6711
		June 2007	-2705.34323*	506.15301	.000	-3707.7527	-1702.9337
		July 2007	-875.68989	506.15301	.086	-1878.0994	126.7196
		August 2007	-899.21989	506.15301	.078	-1901.6294	103.1896
	May 2007	April 2007	1487.08063*	506.15301	.004	484.6711	2489.4901
		June 2007	-1218.26259*	418.28174	.004	-2046.6477	-389.8775
		July 2007	611.39074	418.28174	.147	-216.9943	1439.7758
		August 2007	587.86074	418.28174	.163	-240.5243	1416.2458
	June 2007	April 2007	2705.34323*	506.15301	.000	1702.9337	3707.7527
		May 2007	1218.26259*	418.28174	.004	389.8775	2046.6477
		July 2007	1829.65333 [*]	418.28174	.000	1001.2683	2658.0384
		August 2007	1806.12333*	418.28174	.000	977.7383	2634.5084
	July 2007	April 2007	875.68989	506.15301	.086	-126.7196	1878.0994

		_					
		May 2007	-611.39074	418.28174	.147	-1439.7758	216.994
		June 2007	-1829.65333*	418.28174	.000	-2658.0384	-1001.268
		August 2007	-23.53000	4 <mark>18.28174</mark>	.955	-851.9151	804.85
	August 2007	April 2007	899.21989	506.15301	.078	-103.1896	1901.62
		May 2007	-587.86074	418.28174	.163	-1416.2458	240.52
		June 2007	-1806.12333*	418.28174	.000	-2634.5084	-977.73
		July 2007	23.53000	418.28174	.955	-804.8551	851.91
Bonferroni	April 2007	May 2007	-1487.08063*	506.15301	.040	-2935.3077	-38.85
		June 2007	-2705.34323*	506.15301	.000	-4153.5703	-1257.1
		July 2007	-875.68989	506.15301	.863	-2323.9169	572.53
		August 2007	-899.21989	506.15301	.782	-2347.4469	549.00
	May 2007	April 2007	1487.08063*	506.15301	.040	38.8536	2935.3
		June 2007	-1218.26259*	418.28174	.043	-2415.0685	-21.4
		July 2007	611.39074	418.28174	1.000	-585.4152	1808.1
		August 2007	587.86074	418.28174	1.000	-608.9452	1784.66
	June 2007	April 2007	2705.34323*	506.15301	.000	1257.1162	4153.57
		May 2007	1218.26259*	418.28174	.043	21.4566	2415.0
		July 2007	1829.65333 [*]	418.28174	.000	632.8474	3026.45
	2	August 2007	1806.12333*	418.28174	.000	609.3174	3002.92

	July 2007	April 2007	875.68989	506.15301	.863	-572.5372	2323.9169
		May 2007	-611.39074	418.28174	1.000	-1808.1967	585.4152
		June 2007	-1829.65333*	4 <mark>18.2817</mark> 4	.000	-3026.4593	-632.8474
		August 2007	-23.53000	418.28174	1.000	-1220.3360	1173.2760
	August 2007	April 2007	899.21989	506.15301	.782	-549.0072	2347.4469
		May 2007	-587.86074	418.28174	1.000	-1784.6667	608.9452
		June 2007	-1806.12333*	418.28174	.000	-3002.9293	-609.3174
	- <u>-</u>	July 2007	23.53000	418.28174	1.000	-1173.2760	1220.3360
Tamhane	April 2007	May 2007	-1487.08063	500.88894	.075	-3069.1216	94.9603
		June 2007	-2705.34323*	573.41237	.001	-4444.4733	-966.2131
		July 2007	-875.68989	502.00853	.639	-2459.7376	708.3578
		August 2007	-899.21989	568.51977	.737	-2626.4368	827.9970
	May 2007	April 2007	1487.08063	500.88894	.075	-94.9603	3069.1216
		June 2007	-1218.26259	415.54948	.052	-2444.0735	7.5483
		July 2007	611.39074	309.66464	.424	-293.8956	1516.6771
		August 2007	587.86074	408.77177	.820	-617.0895	1792.8109
	June 2007	April 2007	2705.34323*	573.41237	.001	966.2131	4444.4733
		May 2007	1218.26259	415.54948	.052	-7.5483	2444.0735
	2	July 2007	1829.65333*	416.89832	.001	600.3203	3058.9864

· · · · ·	•						
		August 2007	1806.12333 [*]	494.98119	.006	359.0506	3253.1961
	July 2007	April 2007	875.68989	502.00853	.639	-708.3578	2459.7376
		May 2007	-611.39074	309.66464	.424	-1516.6771	293.8956
		June 2007	-1829.65333*	416.89832	.001	-3058.9864	-600.3203
		August 2007	-23.53000	410.14290	1.000	-1232.0830	1185.0230
	August 2007	April 2007	899.21989	568.51977	.737	-827.9970	2626.4368
		May 2007	-587.86074	408.77177	.820	-1792.8109	617.0895
		June 2007	-1806.12333 [*]	494.98119	.006	-3253.1961	-359.0506
		July 2007	23.53000	410.14290	1.000	-1185.0230	1232.0830
Dunnett T3	April 2007	May 2007	-1487.08063	500.88894	.070	-3053.4703	79.3091
		June 2007	-2705.34323*	573.41237	.001	-4434.7605	-975.9260
		July 2007	-875.68989	502.00853	.587	-2444.2464	692.8666
		August 2007	-899.21989	568.51977	.700	-2616.5130	818.0732
	May 2007	April 2007	1487.08063	500.88894	.070	-79.3091	3053.4703
		June 2007	-1218.26259	415.54948	.051	-2440.1498	3.6246
		July 2007	611.39074	309.66464	.408	-291.6047	1514.3862
		August 2007	587.86074	408.77177	.798	-613.2993	1789.0208
	June 2007	April 2007	2705.34323*	573.41237	.001	975.9260	4434.7605
	2	May 2007	1218.26259	415.54948	.051	-3.6246	2440.1498

	_ July 2007	1829.65333*	416.89832	.001	604.2200	3055.086
	August 2007	1806.12333*	494.98119	.006	362.7143	3249.532
July 2007	April 2007	875.68989	5 <mark>02.00853</mark>	.587	-692.8666	2444.246
	May 2007	-611.39074	309.66464	.408	-1514.3862	291.604
	June 2007	-1829.65333*	416.89832	.001	-3055.0866	-604.220
	August 2007	-23.53000	410.14290	1.000	-1228.3153	1181.255
August 2007	April 2007	899.21989	568.51977	.700	-818.0732	2616.513
	May 2007	-587.86074	408.77177	.798	-1789.0208	613.299
	June 2007	-1806.12333*	494.98119	.006	-3249.5324	-362.714
	July 2007	23.53000	410.14290	1.000	-1181.2553	1228.315

*. The mean difference is significant at the 0.05 level.

Homogeneous Subsets

Puerarin contents (mg/100g powder)										
			Subset for a	alpha = 0.05						
	Collecting month	Ν	1	2						
Tukey HSD ^a	April 2007	14	127.4529	///2						
	August 2007	27	201.4141	201.4141						
	May 2007	27		326.3189						
	June 2007	27		329.1304						
	July 2007	27		342.6200						
	Sig.		.722	.126						
Duncan ^a	April 2007	14	127.4529							
	August 2007	27	201.4141							
	May 2007	27		326.3189						
	June 2007	27		329.1304						
	July 2007	27	600	342.6200						
	Sig.		.213	.797						

Puerarin contents (mg/100g powder)										
			Subset for a	alpha = 0.05						
	Collecting month	Ν	1	2						
Tukey HSD ^a	April 2007	14	127.4529							
	August 2007	27	201.4141	201.4141						
	May 2007	27		326.3189						
	June 2007	27		329.1304						
	July 2007	27		342.6200						
	Sig.		.722	.126						
Duncan ^a	April 2007	14	127.4529							
	August 2007	27	201.4141							
and and and	May 2007	27		326.3189						
	June 2007	27		329.1304						
	July 2007	27		342.6200						
	Sig.		.213	.797						

Means for groups in homogeneous subsets are displayed.

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 22.771.

			Subset fo <mark>r a</mark>	pha = 0.05
	Collecting month	Ν	1	2
ukey HSD ^a	April 2007	14	104 <mark>2.6214</mark>	
	July 2007	27	121 <mark>1.0356</mark>	1211.0356
	August 2007	27	2122.39 <mark>7</mark> 0	2122.3970
	May 2007	27	220 <mark>7.2674</mark>	2207.2674
	June 2007	27		2378.4044
	Sig.		.082	.081

Duncan ^a	April 2007	14	1042.6214	
	July 2007	27	1211.0356	
	August 2007	27		2122.3970
	May 2007	27		2207.2674
	June 2007	27		2378.4044
	Sig.		.710	.598

a. Uses Harmonic Mean Sample Size = 22.771.

Genistin contents	(mg/100g powder)
-------------------	------------------

			Subse	t for alpha = 0	.05	Duncan ^a	August 2007	27	350.6159		
	Collecting month	Ν	1	2	3	and	April 2007	14	605.1329	605.1329	U
Tukey HSD ^a	August 2007	27	350.6159	5			May 2007	27	728,7015		
	April 2007	14	605.1329					21	720.7015	728.7015	l .
	May 2007	27	728.7015				July 2007	27		1097.2415	I
	July 2007	27	1097.2415	1097.2415	นอิง	กคุณริ	June 2007	27			1773.015
	June 2007	27	61	1773.0156	19 9						6
	Sig.	5	.062	.114	ະຄໍ		Sig.	01	.203	.097	1.000

			Subse	et for alpha = <mark>0</mark>	0.05	
	Collecting month	Ν	1	2	3	
Tukey HSD ^a	August 2007	27	350.6159			Т
	April 2007	14	605.1329			
	May 2007	27	728.7015			
	July 2007	27	1097.2415	1097.2415		3.8
	June 2007	27		1773.0156	2	5
	Sig.		.062	.114	3. 470	5775
Duncan ^a	August 2007	27	350.6159		12	C
	April 2007	14	605.1329	605.1329	Nababara.	Seller ?
	May 2007	27	728.7015	728.7015	6-220	132
	July 2007	27		1097.2415		
	June 2007	27			1773.015	
				0	6	
	Sig.		.203	.097	1.000	18

			Subse	t for alpha = 0).05
	Collecting month	Ν	1	2	3
Tukey HSD ^a	August 2007	27	350.6159		
	April 2007	14	605.1329		
	May 2007	27	728.7015		
	July 2007	27	1097.2415	1097.2415	l H
	June 2007	27		1773.0156	
	Sig.		.062	.114	
Duncan ^a	August 2007	27	350.6159		
	April 2007	14	605.1329	605.1329	
632	May 2007	27	728.7015	728.7015	
	July 2007	27		1097.2415	
	June 2007	27			1773.015 6
1915	Sig.		.203	.097	1.000
כנויו	Sig.		.203	.097	1.0

a. Uses Harmonic Mean Sample Size = 22.771.

	Tota	I conte	ents (mg/100g	oowder)		Duncan ^a	April 2007	14	1775.2071		
	Collecting		Sul	oset for alpha =	0.05		July 2007	27	2650.8970	2650.8970	
	month	Ν	1	2	3		August 2007	27	2674.4270	2674.4270	
Tukey HSD ^a	April 2007	14	1775.2071				May 2007	27		3262.2878	
	July 2007	27	2650.8970	2650.8970			June 2007	27			4480.5504
	August 2007	27	2674.4270	2674.4270			Sig.		.064	.209	1.000
	May 2007	27		3262.2878	3262.28	B Means for	groups in homoge	neous s	ubsets are disp	layed.	1
	June 2007	27			4480.5	a. Uses Ha	rmonic Mean Sam	ple Siz	e = 22.771.		
	Sig.		.285	. <mark>6</mark> 65		064					

Homogeneous Subsets

			6	Subse	t for alpha = 0.0	05	
	Code	Ν	1	2	3	4	5
Fukey HSD ^a	45	4	56.6850				
	43	5	62.8800				
	83	9	123.2933	123.2933	6 J VIE	ו ברו	
	53	9	182.0589	182.0589	182.0589	000	
	84	9	217.6733	217.6733	217.6733		

Puerarin contents (mg/100g powder)

	74	9	229.0822	229.0822	229.0822		
	64	9	233.2622	233.2622	233.2622		
	44	5	248.6400	248.6400	248.6400		
	85	9	263.2756	263.2756	263.2756		
	63	9	286.0556	286.0556	286.0556		
	75	9	330.5867	330.5867	330.5867		
	55	9	352.4711	35 <mark>2.471</mark> 1	352.4711		
	54	9		444.4267	444.4267		
	65	9			468.0733		
	73	9			468.1911		
	Sig.		.123	.061	.158		
uncan ^a	45	4	56.6850				
	43	5	62.8800	4			
	83	9	123.2933	123.2933			
	53	9	182.0589	182.0589	182.0589		
	84	9	217.6733	217.6733	217.6733		
	74	9	229.0822	229.0822	229.0822	229.0822	
	64	9	233.2622	233.2622	233.2622	233.2622	
	44	5	248.6400	248.6400	248.6400	248.6400	

85	9	263.2756	263. <mark>2756</mark>	263.2756	263.2756	263.2756
63	9		286.0556	286.0556	286.0556	286.0556
75	9		330.5867	330.5867	330.5867	330.5867
55	9			352.4711	352.4711	352.4711
54	9				444.4267	444.4267
65	9			1 3 202		468.0733
73	9			b Ton		468.1911
Sig.		.066	.065	.132	.052	.062

a. Uses Harmonic Mean Sample Size = 7.563.

ANA GLANG	S.C.	
111111200		

Daidzin contents (mg/100g powder)

Г

				51214	Subse	Subset for alpha = 0.05					
	Code	Ν	1	2	3	4	5	6	7		
Tukey HSD ^a	43	5	194.6280			À					
	83	9	394.9400								
	45	4	568.8900	568.8900							
	64	9	861.8400	861.8400	861.8400	เรก(าร				
	74	9	870.8978	870.8978	870.8978		1				
	53	9	997.9889	997.9889	997.9889	997.9889	ยาละ				

								-
63	9	1213.4156	1213.4156	1213.4156	1213.4156			
75	9	1321.7200	1321.7200	1321.7200	1321.7200			
73	9	1440.4889	1440.4889	1440.4889	1440.4889			
85	9	-	2167.3333	2167.3333	2167.3333	2167.3333		
44	5			2269.6000	2269.6000	2269.6000	2269.6000	
54	9			N 21-2 (4)	2541.2044	2541.2044	2541.2044	
55	9			O A		3082.6089	3082.6089	
84	9						3804.9178	3804.9178
65	9			Taiala I.				5059.9578
Sig.		.337	.057	.164	.079	.815	.083	.325
43	5	194.6280	1920	211.211.21.				
83	9	394.9400	394.9400	and a second				
45	4	568.8900	568.8900					
64	9	861.8400	861.8400					
74	9	870.8978	870.8978					
53	9	997.9889	997.9889			5		
63	9	1213.4156	1213.4156	1213.4156	L 9 U	9		
75	9		1321.7200	1321.7200	1321.7200			
73	9		1440.4889	1440.4889	1440.4889			
	75 73 85 44 54 55 84 65 Sig. 43 83 45 64 74 53 63	759739859445549559849659Sig.9435839454649749539639	7591321.72007391440.48898591440.48898591440.4869445595491440.486559194.01659.337435194.6280839394.9400454568.8900649861.8400749997.98896391213.4156	7591321.72001321.72007391440.48891440.48898592167.333344654549455946594659337659394.94008339394.94004544568.8900649861.84007499870.89786391213.4156	7591321.72001321.72001321.72007391440.48891440.48891440.48898592167.33332167.3333445592167.33332167.333354942269.60002269.60005494444559444659446594465944435194.6280394.9400839394.9400394.9400454568.8900568.8900649861.8400861.8400749870.8978870.8978539997.9889997.98896391213.41561213.4156	75 9 1321.7200 1321.7200 1321.7200 1321.7200 73 9 1440.4889 1440.4889 1440.4889 85 9 2167.3333 2167.3333 2167.3333 44 55 9 2269.6000 2269.6000 54 9 2 2269.6000 2269.6000 54 9 2 2269.6000 2269.6000 54 9 2 2269.6000 2269.6000 54 9 2 2269.6000 2269.6000 54 9 2 2269.6000 2269.6000 54 9 2 2541.2044 2541.2044 55 9 2 2 2541.2044 55 9 2 3 2 2 65 9 3337 .057 .164 .079 43 56 194.6280 394.9400 394.9400 .140.146 64 9 861.8400 861.8400 .140.146 .140.146 74 9 870.8978 .997.9889 .	7591321.72001321.72001321.72001321.72001321.72007391440.48891440.48891440.48891440.48891440.48898592167.33332167.33332167.33332167.33334455922269.60002269.60002269.6000549222269.60002269.60002269.60005492223082.60893082.60898492443082.60893082.60898493330.571.640.79.815509334.9400394.94004.079.8154355194.6280568.8900568.89004.079.8154354568.8900568.8900568.89004.0144.0144549861.8400861.84004.0144.0144.014749870.8978870.89784.0144.0144.014539997.9889997.98894.0144.0144.0146391213.41561213.41561213.41561213.41564.014	7591321.72001321.72001321.72001321.72001321.72007391440.48891440.48891440.48891440.48898592467.33332167.33332167.33332167.333344652269.60002269.60002269.60002269.6000549-22541.20442541.20442541.204455923082.60893082.60898493082.60893082.60898493082.60893082.60898593082.60898493082.60898493082.6089859509839394.9400394.9400649861.8400668.8900749870.8978870.8978539997.9889997.9889631213.41561213.41561213.4156

85	9			2167.3333	2167.3333	2167.3333		
44	5				2269.6000	2269.6000		
54	9					2541.2044		
55	9					3082.6089	3082.6089	
84	9						3804.9178	
65	9			13 20 4				5059.9578
Sig.		.061	.057	.063	.065	.075	.124	1.000

a. Uses Harmon	ic Mean S	Sample Size :	= 7.563.	2000)123		
				NA AN		

Genistin contents (mg/100g powder)

ł.			Subset for alpha = 0.05							
	Code	Ν	1	2	3	4	5	6		
Tukey HSD ^a	45	4	131.5850	4			J			
	85	9	185.2300							
	65	9	238.3089	2						
	43	5	251.5200		วิทย	าริก	าร			
	84	9	303.0844	ПОИ						
	54	9	413.4067	งกร	ຄຳາຍ	ະລົາ	ยาลัง			

			_			1		
	55	9	494.9978					
	83	9	563.5333					
	73	9	927.9178	927.9178				
	74	9	951.3644	951.3644				
	53	9	1277.7000	1277.7000				
	44	5	1337.5840	1337.5840	R 202 (8)			
	75	9	1412.4422	1412.4422	COLA			
	64	9		2018.3867	2018.3867			
	63	9			3062.3511			
	Sig.		.054	.198	.259	0		
Duncan ^a	45	4	131.5850	A.C.	NUN UNUL			
	85	9	185.2300		and and			
	65	9	238.3089	2				
	43	5	251.5200					
	84	9	303.0844			~		
	54	9	413.4067		201010	incon	~	
	55	9	494.9978	494.9978	JVIE	ווזכע	9	
	83	9	563.5333	563.5333	563.5333			
	73	9	927.9178	927.9178	927.9178	927.9178	I I A E	

74	9	951.3644	9 <mark>51.3644</mark>	951.3644	951.3644		
53	9		1277.7000	1277.7000	1277.7000	1277.7000	
44	5			1337.5840	1337.5840	1337.5840	
75	9				1412.4422	1412.4422	
64	9					2018.3867	
63	9	4		13 200 4			3062.3511
Sig	j .	.066	.062	.065	.254	.071	1.000

a. Uses Harmonic Mean Sample Size = 7.563.

Total contents (mg/100g powder)

			Subset for alpha = 0.05						
	Code	Ν	1	2	3	4	5	6	7
ukey HSD ^a	43	5	509.0280			N.			
	45	4	757.1600	757.1600		Ű			
	83	9	1081.7667	1081.7667	1081.7667				
	74	9	2051.3444	2051.3444	2051.3444	2051.3444	5		
	53	9	2457.7478	2457.7478	2457.7478	2457.7478	2457.7478		
	85	9	9.900	2615.8389	2615.8389	2615.8389	2615.8389	2615.8389	

									-
	73	9		2836.5978	2836.5978	2836.5978	2836.5978	2836.5978	
	75	9			3064.7489	3064.7489	3064.7489	3064.7489	
	64	9			3113.4889	3113.4889	3113.4889	3113.4889	
	54	9				3399.0378	3399.0378	3399.0378	
	44	5				3855.8240	3855.8240	3855.8240	3855.8240
	55	9	- 1		8 <u>36 3</u> 8	3930.0778	3930.0778	3930.0778	3930.0778
	84	9			D. O. A		4325.6756	4325.6756	4325.6756
	63	9			Salaria A			4561.8222	4561.8222
	65	9			Diala I				5766.3400
	Sig.		.100	.056	.069	.134	.140	.101	.117
Duncan ^a	43	5	509.0280	1913	1918-211-211				
	45	4	757.1600		and a second				
	83	9	1081.7667	1081.7667			1		
	74	9		2051.3444	2051.3444				
	53	9			2457.7478	~			
	85	9	30		2615.8389	2615.8389	5		
	73	9	6 6	าบน	2836.5978	2836.5978	19		
	75	9			3064.7489	3064.7489	3064.7489		
	64	9	11/16	ורוזע	3113.4889	3113.4889	3113.4889		

54	9			3399.0378	3399.0378	3399.0378	3399.0378	
44	5				3855.8240	3855.8240	3855.8240	
55	9				3930.0778	3930.0778	3930.0778	
84	9					4325.6756	4325.6756	
63	9						4561.8222	ĺ
65	9			N 20-2 (4)			t	5766.3400
Sig.		.377	.112	.056	.062	.070	.090	1.000

a. Uses Harmonic Mean Sample Size = 7.563.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Post Hoc Tests

Puerarin contents (mg/100g powder)						
			Subset for a	lpha = 0.05		
	Code	Ν	1	2		
Tukey HSD ^a	4	14	127.4529			
	8	27	201.4141	201.4141		
	5	27		326.3189		
	6	27		329.1304		
	7	27		34 <mark>2.6200</mark>		
	Sig.		.722	.126		
Duncan ^a	4	14	127.4529			
	8	27	201.4141			
	5	27		326.3189		
	6	27		329.1304		
	7	27		342.6200		
	Sig.		.213	.797		

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 22.771.

		ontents (mg	roug powaer)	
			Subset for a	alpha = 0.05
	Code	Ν	1	2
Tukey HSD ^a	4	14	1042.6214	
	7	27	1211.0356	1211.0356
	8	27	2122.3970	2122.3970
	5	27	2207.2674	2207.2674
	6	27		2378.4044
	Sig.		.082	.081
Duncan ^a	4	14	1042.6214	
Trist	7	27	1211.0356	
	8	27		2122.3970
	5	27		2207.2674
	6	27		2378.4044
	Sig.		.710	.598

Daidzin contents (mg/100g powder)

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 22.771.

Genistin contents (mg/100g powder)

			Subse	t for alpha :	= 0.05
	Code	Ν	1	2	3
Tukey HSD ^a	8	27	350.6159		
	4	14	605.1329	4	
	5	27	728.7015		
	7	27	1097.241 5	1097.241 5	
	6	27		1773.015 6	
	Sig.		.062	.114	
Duncan ^a	8	27	350.6159		
	4	14	605.1329	605.1329	
	5	27	728.7015	728.7015	
	7	27		1097.241 5	
	6	27			1773.015 6
	Sig.		.203	.097	1.000

the second					
	I To	otal content	s (mg/100g pc	wder)	
			Sub	set for alpha =	0.05
	Code	Ν	1	2	3
Tukey HSD ^a	4	14	1775.2071		
	7	27	2650.8970	2650.8970	
	8	27	2674.4270	2674.4270	
	5	27		3262.2878	3262.287
	6	27			4480.550
4	Sig.		.285	.665	.06
Duncan ^a	4	14	1775.2071		
	7	27	2650.8970	2650.8970	u -
	8	27	2674.4270	2674.4270	U
	5	27		3262.2878	
	6	27			4480.550
	Sig.		.064	.209	1.00

a. Uses Harmonic Mean Sample Size = 22.771.

a. Uses Harmonic Mean Sample Size = 22.771.

BIOGRAPHY

Miss Jutarmas Jungsukcharoen was born on June 19, 1984 in Chonburi province, Thailand. She received the Bachelor Degree of Science (Biotechnology), Faculty of Engineering and Industrial Technology, Silpakorn University in 2005. She has studied for Program in Biotechnology, Faculty of Science, Chulalongkorn University since 2006.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย