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CHAPTER 1

INTRODUCTION

1.1 Motivations

As software projects continue to grow in scale and scope, formal methods are

introduced for software development to ensure the accuracy and provable of system.

It should be better to have a sound basis in logic and introduction to the logical

frameworks used in modeling, specifying and verifying computer systems [1]. Formal

methods provide a simple and clear presentation, covering propositional and predicate

logic and some specialized logics used for reasoning about the correctness of

computer systems. In the early stage of software development process, a formal

requirements engineering method [2] is emphasized to elicit the real world needs and

several graphical tools will be proposed to accomplish the formal software

requirements specification method. In order to exploit formal methods, a lot of formal

specification languages are designed to cope with variety of software systems such as

concurrent system, real-time system or even the legacy business application.

There is still a wide gap between the current practice of software requirements

engineering and the research on formal specification and software formal

development. Since a formal specification of software system is difficult to write and

understand, a number of active researches are conducted in order to extend the

capability of software analyst and designer. Several specific development

environment and tools to capture formal specification are proposed, including the

relevant specification languages to ease the transformation of formal specification [3],

[4] and also the reverse engineering tasks – to transform program codes to formal

specifications [5].  We expect that it should be practical for software analyst and

designer to be able to investigate their software system specifications in the early

stage of the system development. Our work is also motivated by the related research

works of Jin [6] and Beeck [7] which the formal specification is generated from

requirements definition and then verifiable.
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This research aims to provide a practical mean for software analyst and

designer to be capable of preparing their formal specifications with brief experiences

in mathematical logic background.  Our notion is to provide a scheme to obtain a

formal specification in the early stage of requirements analysis using graphical tools,

called “Requirements Particle Network”  (RPN), to ease the formalization and its

refinements.

1.2 Research Objectives

• To propose an explicit method for formal specification in order to capture user

requirements into a mathematical form.

• To propose a set of graphical notations, called RPN, in order to assist

requirements engineer or software analyst with a brief experience in formal

methods to prepare the formal requirements specification of a software

system.

• To propose a set of transformation rules to produce formal specification from

the specific RPN’s graphical notations.

1.3 Scope

• The formal specification is synthesized in Z notation.

• Z/EVES is used as our tools and proof system.

• The transformation rules are defined to produce the formal specification.

.

1.4 The Structure of this Dissertation

This dissertation is organized as follows. Chapter 1 is the introduction of the

research. Chapter 2 is the literature surveys on the specification methods, including

structured, object-oriented and formal specification methods. The preliminary

backgrounds are overviewed as well. Chapter 3 presents our graphical notations

called RPN and its formal definitions. Chapter 4 describes our main research topics
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on how to synthesize formal specification using RPN. The case studies are

summarized in chapter 5 and chapter 6 is our conclusions, contributions, and future

works.
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CHAPTER 2

PRELIMINARIES

In this chapter, the related works are surveyed and some preliminary

backgrounds are described.

2.1 Formal Methods

With the increasing complexity of software and the greater requirements for

reliability, it has become accepted that the old ad hoc informal methods of specifying

and implementing software requirements specification are no longer good enough to

software development. Even with the use of software engineering and structural

design methods, the quality of large-scale software is often still poor.

As an alternative, formal methods provide a mean of specifying computer

systems that is unambiguous, concise and well suited to the development of complex

software systems for which accuracy and reliability are critical [8]. Using them can

help reduce the possibility of errors that occur during the construction of software due

to impreciseness and misinterpretation. The mathematical notations are simply used

as part of the languages to represent the systems and made them provable. In [9],

Jategaonkar mentioned that formal methods technology can provide significant

benefits to the software development life cycle. For example, these benefits include

more precise requirements, together with early detection of ambiguities and

inconsistencies.

Any formal method should have two key components as mentioned in [8],

[10], [11] - Formal specification language and its proof system. A formal specification

language is designed to have a well-defined firm mathematical semantic to specify the

property of a software system. As well, a proof system is generally considered to

provide the developer as a deductive apparatus to derive and manipulate any sequence

of valid statements of the language from the given axiom of the system so that the

specification statements are proved.
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Since a heavy mathematical training is needed and it seems difficult to learn,

formal methods are practically used in the industry with care guidelines. J. Bowen and

M.G. Hinchey proposed ten guidelines in [12] for any software developer who want

to gain benefit from formal methods. These guidelines will help ensure that formal

methods can be successfully applied in an industrial context. As mentioned in [12], it

is important to begin with choosing an appropriate formal notation with the accepted

estimated investment cost to use it. The integration of formal methods and the

traditional development methods should be considered and gradually conducted with

strong quality standards of documentation and procedures.

In [13], Larsen et. al., investigated formal methods into specification and

modeling activities of a security critical system's development. The study provided

evidence on the effects of introducing formal specification in projects that could

benefit from the use of a formal language, such as those that must attain high

assurance levels. The study consisted of the parallel development by two separate

engineering teams: one team employed conventional development methodology using

structural analysis with CASE support tools and the other team employed formal

specification language (VDM-SL) wherever they felt it appropriate. The study

confirmed the applicability of Bowen's guidelines in [12].

In [14], Hall’s study found the use of formal methods highly effective in

detecting more errors at a lower cost per error, than unit testing. In addition to the

selection of the appropriate formal specification language, the powerful methods of

refinement is needed to cope with the complexity of real systems and the big change

in structure that takes place between the system specification and the system

architecture.

2.2 Software Specification Methods

In this section, several structured, object-oriented, and formal software

specification methods are introduced in brief.
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2.2.1 Structured Specification Methods

Over the past two decades, a large number of methods have been proposed for

the specification of software systems. The Yourdon approach [18] has been well

known for system modeling. Yourdon worked with DeMarco in 1978, Weinberg in

1978, Constantine in 1979, and with Gane and Sarson in 1979 to provide a structured

specification method. The context diagram along with a set of dataflow diagrams

(DFD) [19] is used to represent external communication and conceptual

decomposition of the system respectively. In addition, an entity-relationship diagram

(ERD) [19] is used to show the conceptual structure of the data manipulated during

the activity.

While, Structured Analysis and Design Technique (SADT) is an another

method to functionally decompose the activities to be performed by a system into

subactivities [20]. SADT uses activity diagram to represent the external functions,

conceptual components (activities), and communication between those components.

As well as Yourdon approach, The highest-level activity diagram represents the

overall functionality of the system. The lower-level diagrams describe the

decomposition into subactivities and their communications. The subactivities are

recursively decomposed until a clear understanding of the activities to be performed

by the system is reached.

Information Engineering (IE) is a structured method for modeling the

information needs of a business proposed by Martin and Finkelstein [18]. The IE

method delivers the information systems that a business needs using a function

refinement tree to refine the business mission into business functions and refines these

into business processes. The ER diagram is used to represent data model. The

interesting idea of IE is that the conceptual decomposition of the information system

corresponds to the decomposition of the subject domain of the business. The IE

method is considered as a data-oriented approach so that business procedures change

rapidly, data types are relatively stable [21].
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2.2.2 Object-Oriented Specification Methods

Coad and Yourdon [22] use a class diagram to represent the conceptual

decomposition of the system into objects. Then, Booch represents the structure of a

software system by means of a class diagram and the behavior of the objects by

means of state diagram [23].  The sequence diagrams are used to represent object

communication. The conceptual decomposition of the software into objects is

represented using a class diagram. A dotted cloud symbol is used to represent the

classes. The diagram can be annotated by various kinds of constraints. Several

diagrams are used in Booch’s method. For example, state transition diagram is used to

specify object behavior and either collaboration diagram or sequence diagram is used

to show the flow of messages in object communication.

The object modeling technique (OMT) was introduced by Loomis et al. [24]

and made popular by Rumbaugh et al. [25]. The decomposition of the system into

objects is represented by the object model, which is a class diagram. While, the

behavior of instances of classes is represented by the dynamic model, which is a

statechart variant.  Dataflow diagram is used to represent object operations called

functional model. The OMT has been modified since 1991 from OMT91 to OMT95.

OMT95 can be viewed as a halfway method between OMT91 and the UML.

The Unified Modeling Language (UML) [26] happened as a result of a joint

effort by Booch, Jacobson, and Rumbaugh to unify the existing notations for object-

oriented software specification. The intention is that it will be used as a diagram

convention in object-oriented software specification and develop into the standard for

practitioners.

2.2.3 Formal Specification Methods

As the structured and object-oriented specification methods are being

exploited conventionally, an alternative of formal methods in specifying is accepted.

Formal specification methods are being used to improve the quality of written

specification, and particularly to eliminate errors at an early stage of software

development [27].
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The objective of software engineering is to model software systems to support

effective system synthesis and analysis. The traditional approach is using semi-formal

models and accompanying design methodologies. Until now, formal models represent

an alternative to semi-formal models supporting precise representation and proof

capabilities. Semantics are simply a mapping from objects in the problem domain to

well form formula in the formal language [15]. We can model any known

characteristics using the semantic mapping mentioned. Thus, this particular formal

system becomes a formal model of target problem domain.

In general, formal specification [16] is a set of valid statements written in

mathematical notations to describe properties in which an information system must

have, without constraining the way in which these properties are achieved. The

mathematical statements in mathematical logic [17] describe what the system must do

without saying how it is to be done. The developer of a computer system may not

have to deal with the mass of detailed program code, or to speculate about the

meaning of phrases in an imprecisely written description.

With a given formal specification of a software system (written in any formal

specification language such as Z, CSP, LOTUS, etc.), the states of the software

system operation are formally described and the refinement of system specification

can be conducted to fit the requirements or needs.

To compromise between conventional methods and formal methods, Zhang

[28] experimented the combination structured specification method using DFDs and

formal specification method using Interval Temporal Logic (ITL) for requirements

analysis. He conducted the structured analysis with DFDs methods, which provided

the readability of the overall system definitions. Then, ITL has been used to cope with

the specification, design, verification and validation of real-time system in his case

study.

Formal specification methods are being used in specifying important

software systems. In general, these specifications are expressed as a set of operations

to be implemented, which includes the types of values to be input to and output from

each operation. Jones [29] termed two distinct types of methods as model-oriented

and property-oriented. In the model-oriented approach the specification includes an

abstract model of the internal state of the component being specified, so that the

behavior of individual operations is defined in terms of their effect upon the
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components of the state. In the property-oriented approach (commonly called the

algebraic approach) the behavior of individual operations is defined by stating the

equivalent equations between different combinations of operations, with no explicit

model of the state being necessary.

The Vienna Development Method (VDM) is a formal software specification

method. VDM provides three components: a notation for expressing software

specification; an inference system for constructing proofs of correctness; and a

methodological framework for developing software from a specification in a formally

verifiable manner [8]. In VDM, the high-level abstract data types of the original

specification can be moved to the data types of the target programming language,

which is called “reification”. As well, the operational decomposition of specified

functions and operations can be converted into more implementable versions for the

target language. At present, VDM does not include the ability to specify concurrent

processes and this seems to be a disadvantage in the specification of communication

protocol and other areas where such constructs would be useful.

The Z specification method uses Z notation along with Z Theorem Prover.

The Z notation is based on typed set theory and first-order logic. Z provides a

construct, called a schema, to describe a specification’s state space and operations. A

schema groups variable declarations with a list of predicates that constrain the

possible values of a variable. Several formal methods tools are available for Z. For

example, Z/EVES [30] supports the analysis of Z specifications in several ways:

syntax and type checking, schema expansion, precondition calculation, domain

checking, and general theorem proving.

The B-Method is another formal method by Jean-Raymond Abrial [31],[32]

uses the paradigm of Abstract Machine (AM) as unit of specification. An AM consists

of summarily in two main parts. The first part is the static state of the system, which is

described using the variables and the invariant of the variables. The second part is the

dynamic behavior of the system that is expressed through its operations using the

paradigm of Abrial’s generalised substitution language (GSL). The B-Method has a

particularly strong notion of layered development [33], which allows a complex

development to be decomposed in a rich variety of ways using a small number of

basic constructs. This makes the refinement of industrial-scale systems practical.
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DisCo (Distributed Co-operation) [4],[34] is a formal specification method

for reactive systems. It incorporates a specification language, a methodology for

developing specifications using the language, and tool support for the methodology.

Currently the support tools include an animation facility for executing specifications,

a tool for visualizing execution histories as scenarios, and a link to a mechanical

theorem prover for verification. The method has a solid formal basis, but the

specification language uses concepts and notations familiar to people with a

conventional software engineering background. DisCo is an incremental process.

Disco starts with very simple behavior, and gradually adds details until the

specification is at the desired level. Development focuses on collective behavior, that

is, how objects co-operate. Developing a DisCo specification can be compared to

carving a shape out of a block of wood. The original block of wood represents all the

possible behaviors, and removing a piece of wood corresponds to a design step that

disallows some of the behaviors. In early stages of the process we get a rough sketch,

in which details are then gradually added. DisCo employs the closed world principle,

meaning that a DisCo specification always describes a system together with its

environment.

The CafeOBJ Object-Oriented Methodology for component-based

specification and verification was proposed in [35]. The methodology exploited

CafeOBJ [36] behavioral abstraction paradigm to define the component-based

specification in terms of new algebraic logic based. The composition of objects or

components of the system are represented using UML’s class diagrams as a static

view of the system. The compound objects expected to be decomposed into a set of

non-compound objects (objects with no components) called base level objects. The

ADJ diagrams are used to represent the dynamic connection of the objects. CafeOBJ

provides a verification process through its proof tree using built-in rewrite engine. A

network based environment of CafeOBJ development called CAFE [37] was proposed

for supporting systematic creation, checking, verification, and maintenance of formal

specifications in the industrial world.
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2.3 Z Notation

Z is a formal specification language. The Z notation is used to describe the

behavior of a system. It uses the simple mathematics, consisting of first order

predicate logic and set theory. However, it offers a very elegant way of structuring the

specifications to be manageable modules called schema. Z grew out of work at

Oxford University’s Programming Research Group and it has been applied to

numerous projects involving both software and hardware in a number of application

areas, such as financial, security, safety, critical, etc.[54],[55]. One of the

disadvantages of Z is that it provides little in the way of methodology. The word

methodology mentioned means two things [56]: a management methodology

describing how and to what Z can be applied, and how to control the process of

developing a system from a Z specification. Second, a formal methodology which

describes a set of rules for transforming a Z specification into another more detailed

description.

The Z specifications can be written in the “states-and-operations” style. In this

style a system is described by specifying operations which describe changes to the

state of the software system. The state of the system and the operations are written in

Z using schemas which structure the specification into convenient components. A

calculus is provided to combine the schemas in appropriate ways, and this schema

calculus helps to structure the specifications.

Z uses propositional and predicate logic to express relationships between the

components of a system. The propositional logic used contains a number of

connectives, such as negation, conjunction, disjunction, implication, and equivalence.

The predicate logic introduces the quantification into the language, together with free

and bound variable, such as universal quantification (for all) and existential

quantification (there exists).The set theory is also used to define as relations,

functions and sequence. Membership, the empty set, equality, and subset are all

defined. The power set constructor, Cartesian products, union, intersection, and

difference are all available with the language, as well.

Z provides a built-in type, namely the type of integers Ζ. One way to build

further types is to simply declare them. A given set is a declaration of the form
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A schema can be included in another schema in order for a new schema to be

reused the existing schema. In addition, a new schema can be constructed with the

combination of the existing schemas, for example, using schema conjunction,

disjunction, and composition, etc.

There are a number of tools to support Z, such as OZ, CaDZ, Object-Z.  They

offer varying degrees of functionality, such as syntax and type checking, theorem

proving, and animation. In our research, Z/EVES is used as the tool to check the

correctness of types and syntax.

2.4 Decision Table

A decision table [38] is a tabular form for specifying decision logic. A

decision table provides an effective means of defining both the problems and their

corresponding logical solutions.

The typical example shown in figure 2.1 is a decision table. Each vertical

combination of preconditions and actions is called a decision rule. The advantages of

using decision tables become even more apparent in larger, more complex situations.

Rule 
1

Rule 
2

Rule 
3

Rule 
4

Rule 
5

.. Rule 
R

Precondition 1
Precondition 2
Precondition 3

Precondition P

Action 1

...

Action 2
Action 3
...
Action A

X

X

X

X

X
X

X
X

X

X

X
X

X

X

X

X

X

X
X

X

Figure 2.1: An example of typical decision table.
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A decision table can be divided into four quadrants. The upper left quadrant,

called the condition stub, should contain all those conditions being examined for a

particular problem segment. The condition entry is the upper right quadrant. These

two sections describe the set, or string, of conditions that is to be tested. The lower

left quadrant, called the action stub, contains a simple narrative format for all possible

actions resulting from the conditions listed above the horizontal line. Action entries

are given in the lower right quadrant. Appropriate actions resulting from the various

combinations of responses to the conditions will be indicated in the action entry.

A decision table displays any precondition that must be satisfied before any

prescribed actions will be performed. They are becoming very popular in computer

programming and system design as a tool for organizing logic, especially when

attempting to handle very complex situations, and to be able to account for every

possible combination of conditions. Furthermore, the modification of the

requirements of a software system is easily documented by the unique form of the

problem statement in decision tables. Decision table is easy to learn because of its

simple structure and efficiency in using it can be reached with little experience.

2.5 Formal Specification Synthesis for Database Applications

This research was our previous work and reported in [39]. We proposed the

rules of generating formal specifications of the structural property of a relational data

model. The entity relationship diagram and its data dictionary, commonly prepared

during the early stage of software development, are used as original data model

definitions.

An entity relationship diagram is transformed into three categories of schemas

in Z: Entity schema, Entity Extension schema, and Relationship schema.  The Entity

schema represents all of the attributes and types in an entity. In the meantime, the

Entity Extension schema defines the constraints of structural property such as primary

key, foreign key, as well as the integrity constraints. The Relationship schema defines

the relations between entities along with the cardinality ratio - one-to-one, one-to-

many, and many-to-one relationship. The transformation rules are briefly presented in

the following subsections.
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CHAPTER 3

REQUIREMENTS PARTICLE NETWORK

In this chapter, the Requirements Particle Network (RPN) is clearly described.

We intend to introduce some basic concepts of our proposed network in the narrative

way and conclude with the formal definitions at the end of this chapter. In section 3.1,

we describe the structural building blocks and the connections of a RPN. Then, the

behavioral part of RPN is described in section 3.2. Moreover, the definition of RPN

has been worked out and finally defined in section 3.3.

3.1 Structural Aspects of RPN

A RPN is written and considered as a hypergraph, which a set of nodes and

connecting edges are shown. In practical, a RPN represents a requirements primitive -

a small event occurred in a software system. We will discuss on how to specify the

requirements primitives of a software system in the later chapter. The basic building

blocks of a RPN are the nodes appeared and connected with the edges. We provide

two kinds of nodes: an operation node and a data entity node. An operation node

denotes a primitive operation needed to be exploited in the particular event or the

requirements primitives. A primitive operation is an atomic which is the smallest part

of requirements primitive.

For example, the atomic operations that perform store-and-retrieve activities

in a software system can be insert, delete and update operation in order to manipulate

the state of the target software system. While, a data entity node denotes a data value

or data set to be used as a data source and a data sink in a RPN. A data source is

usually depicted as an origin of the input data, and vice versa, a data sink is

considered as a destination of the output data. Each node is connected to an adjacent

node with an edge to gradually depict the structural skeleton of a RPN.
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3.1.1 An Operation Node in RPN

An operation node, in RPN, has ports for input, output, and condition input

and output. Every port is associated with a type, which specifies the set of data values

that the port can hold.  We show a graphical notation of an operation node of RPN in

figure 3.1.

Primitive
operation

“What” Port

“Where” Port

“Precond” Port

“Out” Port

“Ack” Port

“Nack” Port

Figure 3.1. A graphical notation of a node of RPN representing a primitive operation

We introduce a set of ports for input called “What”, “Where”, and “Precond”

ports and a set of ports for output called “Out”, “Ack”, and “Nack” ports.

• A “What” port is usually used to specify the input data value to be

performed by the primitive operation. For example, a “Retrieve” operation

will perform the seeking of the target data value specified by “What” port.

• A “Where” port is used to specify the target data set or data container to be

involved in the primitive operation. For example, a “Retrieve” operation

will perform the seeking of a data value specified by “What” port from the

target data set or data container named by “Where” port.

• A “Precond” port is used to hold the invariant of the primitive operation.

In practical, the invariant of the primitive operation will be asserted before

the operation occurred, so we called this invariant as “precondition”. The

precondition should be asserted and its result must be true.
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• An “Out” port is used to forward the message from the operation. The

message may be a data value or data set of any type.

• An “Ack” port is the successful consequence of the operation within a

node. When an operation is performed and considered as a success task,

the data value of true is forwarded, otherwise, the data value of false is

forwarded instead.

• A “Nack” port returns the opposite value of an “Ack” port. We may use

the data value from “Nack” port to indicate the failure of the operation

when it holds the value of true.

3.1.2  An Edge in RPN

The only way to communicate with the outside world of a RPN node is to send

and receive any message via ports. The input messages will be used and the output

messages are produced. To complete a RPN, the ports of two nodes are connected by

edges. A RPN has two different kinds of edges, of which, we address “message” edge

and “status” edge.

• A “message” edge is used to specify the direction of communication of

data values from a source operation node to a sink operation node. Each

message edge has exactly one port at its head and exactly one port at its

tail.

• A “status” edge is specifically used to specify the direction of

communication of Boolean value (true or false) or a predicate from a

source port to a sink port.

In figure 3.2, we show the drawing of “message” edge and “status” edge

between two nodes.
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“Search”

“Store”

Where

What

Where

Nack

Precond

Out

What

Message
Edge

Status Edge

Figure 3.2 A drawing of “message” and “status” edge between two nodes

3.1.3 Data Entity Nodes in RPN

In practice, we can draw any terminal node (a node which either no input or

no output) as a data entity node – a data source to be used to feed the data value to the

next node or the data sink as the destination of the output from any node. For

example, a data entity node called “Video Title” is the data source of operation node

called “Retrieve”. The “Retrieve” node expects a data value from “Video Title” to be

able to perform the search and help us to know whether the expected video title has

already been in the video stock. From the figure 3.3, we assign a data entity node

called “Video Stock” to be our target container when the operation begins to search.

We simply draw a message edge between “Video Title” node and “Retrieve”

node via “What” port. In similar, we have a message edge between “Video Stock”

node and “Retrieve” node via “Where” port either.

3.2 Behavioral Aspects of RPN

In figure 3.4, we show a sample of RPN which performs a registration of a

new video title into the current video stock. The following narrative items introduce

the components of the RPN:
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• “Retrieve” node is an operation node that performs the searching of an input

video title from the target video stock. It forwards the video title to the next

node via “Out” port. The “Act” port forwards a Boolean value as “true” when

the video title is founded. Otherwise, the “Act” port will return “false”. The

“Nack” port forwards the opposite Boolean value of “Ack” port. It means that

the “Nack” port will be true when the video title is not found.

• “Store” node is another operation node that performs the inserting of an input

video title into the target video stock. The “Precond” port of “Store” will be

asserted before the inserting. When the inserting is successfully done, the

“Ack” port will return “true.” Otherwise, the “Nack” port will be true.

• “OutDevice” node is an operation node that display the message specified by

the “What” port on any device specified by the “Where” port. Usually, we can

use the node to forward any desired message to a monitor CRT.

“Retrieve”
Particle

What

Where

Precond

Out

Ack

Nack

Video Title

Video Stock

‘Boolean-value status’‘Boolean-value status’

‘Boolean-value status’

Message as Video Title

Figure 3.3 Sample of  the operation nodes and data entity nodes in RPN

The behavior of a RPN is determined by the behavior of individual nodes and

their connectivity, which determines the flow of messages and status values in

Boolean. In figure 3.4, there are two possible paths: P1 and P2. In this case, both P1

and P2 are used to describe the behavior of the RPN. They specify how the RPN react

to the outside world. The mentioned RPN will try to retrieve a video title from

specified video stock. It will display a message “Existing Title” on a monitor CRT, if

there exists the video title in video stock. Otherwise, it stores the video title into video

stock and finally displays message “Register Done” on a monitor CRT. We would
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like to make it more clearly that a data entity node may be considered as an abstract

data sink, in this case – a monitor CRT.

“Retrieve”

What

Where

Nack

Ack

Out

“Store”

What

Precond

Where

Ack

Video Title

Video StockPrecond

Video Stock

Precond

P1
P2

Ack

“…”

“….”

Figure 3.4 A sample of RPN with path P1 and path P2

3.3 Formal Definition of Requirements Particle Network

A Requirements Particle Network [52] is a well-defined graphical diagram

that provides the composition rules to compose a set of primitive operations into a

complex operation. We consider each primitive operation on data entity such as

insertion, deletion, etc. as a particle in the network. We briefly overview the formal

definitions of the requirements particle network in this section.

Definition 1: (Data Entity)

A data entity DE is the representative of data element or a set of data

elements. Data entity DE is defined as an ordered pair <Name, Type>. Let de be a

data entity, de.Name refers to attribute “Name” and de.Type refers to attribute “Type”.
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Definition 2: (Requirements Particle)

A requirements particle RP is an atomic node that performs a specific task. A

requirements particle is formally defined as a collection of ordered attributes <Name,

What, Where, Precond, Out, Ack, Nack>. Let rp be a requirements particle, p.Name

refers to attribute “Name” while the rest of attributes are referred as rp.What,

rp.Where, rp.Precond, rp.Out, rp.Ack, rp.Nack, respectively. 

The last six attributes are called communication ports. Each requirements

particle communicates to outside world via these communication ports. A number of

messages are received via “What” and “Where” port while precondition status is

obtained via “Precond” port. “Out” port is used by each particle to forward

postconditions to the successive particles. Boolean-value status will be transmitted to

successive particles as well via “Ack” and “Nack” port.

Definition 3: (Requirements Particle Network)

A requirements particle network is a tuple RPN = (V, P, D, ES, EM). We

define V = P ∪ D. P is a set of nodes called requirements particle nodes. D is a set of

nodes called data entity nodes. ES is a set of edges on P X P, called status edges. EM

is a set of edges on     V X V, called message edges. Let p,q ∈ P and d ∈ D, edges are

written as p ⎯⎯ →⎯Status  q ∈ ES, p ⎯⎯⎯ →⎯Message  q ∈ EM, d ⎯⎯⎯ →⎯Message  q ∈ EM. A

requirements particle network is a network of requirements particles and associated

data entity. Practically, software functional requirements specification can be

represented by a set of requirements particle networks. 

Definition 4: (Final Formal Specification from RPN)

The final formal specification is generated from RPN as a complex formal

specification CFS = (FS(RPN), CRP(RPN)), where FS(RPN) represents a set of

specification modules defined on each RPN and  CRP(RPN) is a connection

description for FS(RPN). A set of formal specification modules FS(RPN) defined as

{FST(p,RPN) | p ∈ P}, where FST(p,RPN) is a transform function defined by

transformation rule 1 (defined in the next chapter). A well-defined requirements

particle definition of formal specification is assigned to match each p.Name. CRP

(RPN) can be obtained by transformation rule 2  (defined in the next chapter). 
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CHAPTER 4

FORMAL SPECIFICATION SYNTHESIS USING RPN

In this chapter, we present our main research approach to synthesize formal

specification using the new graphical notations, called “Requirements Particle

Network” or RPN in short. In section 4.1, we begin the overview of the research

methodology to indicate the main steps on the specification techniques. The

definitions of our related components are described in section 4.2 and how to

synthesize formal specification is described in section 4.3. The proof obligation

guided by Z/EVES [53], is briefly described in section 4.4.

4.1 Research Methodology

This section introduces our research methodology. One of our research

objectives is to propose a scheme for preparing formal specification during the early

stage of the software development lifecycle. The users’ needs are assumed to be

elicited using some relevant requirements elicitation techniques and documented into

a form of textual, formatted description, so-called “Informal requirements

documents.” In requirements engineering research areas, several approaches are

proposed. Among those techniques, scenario-based approach is one of the most

famous [40], [41]. Generally, all of the flows of actions in a software system expected

to be completely documented.

With the conventional way of semi-formal modeling techniques, the informal

requirements will be converted into diagrams, charts and some formatted descriptions.

For example, a particular software system may be described with a set of data flow

diagrams, entity relationship diagram, and their data dictionaries [19] or a set of Use

Case diagrams, and their collaborations [26], [19].

At this stage, the software analyst may try to write the formal specifications of

the user requirements to model the software system. However, as we mentioned
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earlier, the formal specification of a software system is still difficult to be prepared

from the mentioned diagrams and charts.

In our research, we propose an alternative scheme to prepare the formal

specifications in the following steps:

• Rewrite the textual and formatted descriptions of the user requirements

into a decision table [38].

• Define the primitive operation needed.

• Define the requirements particle definition for each primitive operation

defined in the previous step.

• Draw a RPN for each decision rule in the decision table.

• Apply the transformation rules to convert RPN into a set of Z

specifications.

• Combine the final formal specifications of all decision rules.

We assume that the textual and formatted descriptions of the user

requirements have already been completely elicited. The descriptions of user

requirements are rewritten into a decision table – a set of conditions and actions. A set

of primitive operations is defined to perform the actions needed for each decision rule

in our decision table. A requirements particle definition – a substitutable Z

specification, are defined for each primitive operation.

The requirements particle networks of a particular software system can be

simply drawn from the corresponding decision rules. A final formal specification of

software system will be expected as a result using the transformation rules.

4.2 Definition of Formal Specifications

Definition 5: A specification of software functional requirements SPEC is considered

as a collection of rules that the target software system is obliged to follow as to

accomplish user’s needs. To provide a formal framework of how to write a

unambiguous functional specification for software requirements engineer, the

software functional requirements specification is formally defined as SPEC =
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({RPN}, CPS) where {RPN} is a set of requirements particle networks, and CPS is a

connection description for {RPN}. RPN and CPS are defined in the next paragraph. In

our approach, a connection description is defined as a schema in Z. 

4.3 How to Synthesize Formal Specifications from RPN

In order to synthesize a formal requirements specification, the step-by-step

procedure is defined as follows:

• Develop SPEC using decision table approach.

• Draw requirements particle network for each rule in SPEC.

• Transform each RPN into formal specification of each primitive with a

connection description, using transformation rule 1 and 2.

• Compose the final formal specification, using transformation rule 3.

Transformation Rule 1: Transform Function FST(p,RPN)

This rule selects the formal definition which represents each requirements

particle RP and substitute all of the state variables within the specification with the

name of data entity and the outcome from the previous RP, as follows:

• Select requirements particle definition that matches p.Name.

• Substitute all the state variables named “What” with d.Name where d

⎯⎯⎯ →⎯Message p.What.

• Substitute all the state variables named “Where” with d.Name where d

⎯⎯⎯ →⎯Message p.Where.

• Substitute the state variables named “Precond” with the predicates of

status edge from q.Ack or q.Nack where q ∈ P and q ⎯⎯ →⎯Status p.Precond.

Transformation Rule 2. Generating CRP(RPN)

The rule generates the predicates that glue all of the available partial specification

of each FST together, as follows:
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Z/EVES provides an alternative for the Goal proof using precondition

reference, we set up the expected goal predicate to be proved as the following theme:

For each operation OP:

 OP ⎢ [∆EN; in?:IN; out!:OUT]

The goal predicate is defined as:

Α EN; in?:IN; •  pre OP

The Z/EVES proof steps transform the goal predicate to an equivalent

predicate. The implicit precondition in Z of each OP will be explored before proof

process. The additional explicit predicates may be needed during the proof in order to

achieve the goal predicate.

For the Test Case checking, we have to specify more details on how to

represent the given type set such as STRING, FUELTYPE, etc. We define the

STRING as a sequence of characters while a character is defined as an integer value

of ASCII code. A set of test cases is prepared to test all of the operations generated.

We then observe the result of the test case from the status provided by Z/EVES. The

proofs show the correct results so that all of the proposed rules are practical to be

used.
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CHAPTER 5

CASE STUDIES

In this chapter, we present the case studies to illustrate formal specification

synthesis using RPN. In section 5.1, we gradually describe how to synthesize formal

specification in Z with the first case study called “Video Shop System”, using the

definitions and transformation rules defined in previous chapter. In section 5.2, we

intend to experiment on how to apply RPN to generate the composite operations on

realistic database definitions in the second case study called “Van Hire System.”

5.1 Introduction to Video Shop System

A sample of video shop’s requirements defined in [44] is selected and used in

our experiment in this case study. The video shop has video club members who may

hire videos. The functional requirements of video shop system concerns with how to

register new video titles, how to search the video title for hiring, how to register a new

member, and how to return a hired video back for each member.

According to our scheme, the informal requirements gathered should be

categorized and prepared to construct a decision table. The simple way is to determine

and extract all of independent events occurred. An event list, so-called ‘Shall’

statements, of requirements of video shop system is listed as follows:

• A new video title shall be registered into video stock.

• An existing video title shall be hired by a club member.

• A new club member shall be added into the system.

• A hired video shall be returned back into video stock.

Each event statement listed above will be considered as a rule in the target

decision table and a set of preconditions and actions is about to defined in the next

step.
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5.1.1 Decision Table of Video Shop System

A decision table defines a set of rules to be implemented by the target

software system. The developer should be able to identify a set of conditions to be

satisfied and a set of actions to be performed for each rule.

Table 5.1 Decision table of the Video shop system

PreConditions Rule1 Rule2 Rule3 Rule4

1) Video title exists X

2) Video title does not exist X

3) Member name exists X

4) Member name does not exist X

5) Hiring record exist X

Actions

1) Insert new video title into video stock X

2) Hire video title from stock X

3) Insert new club member X

4) Return the hired video title X

From decision table 5.1, four decision rules are shown and each rule is

described by a set of preconditions and actions. The next step is to define the

primitive operations to be needed to perform the assertion of the preconditions and

implement the actions. As we mentioned earlier, the primitive operations we expected

would be the operations to manipulate the set of data, such as inserting, deleting,

updating, and searching etc. In this case, we finally come up with 3 primitive

operations – “Search”, “Store”, “Remove.” We also called these three primitive

operations as “Particle” in our RPN notation.



37

The decision rules would be discussed in detail on how to use our primitive

operations to perform the assertion and actions as follows:

• Rule 1: Insert New Video. This rule specifies the action of inserting a

new video title into video stock. A “Search” operation should be used to

search if the video title exists. If not, the new video title will be stored into

the video stock using a “Store” operation.

• Rule 2: Hire a Video. This rule specifies the action of hiring video title

from video stock. A “Search” operation should be used to search if the

hirer is club member and a “Search” operation is also used to search if the

video title exists. If the preconditions are satisfied. The existing video title

will be hired to the club member. In order to keep the hiring record, a

“Store” operation will be used to store the hiring record.

• Rule 3: Insert New Member. This rule specifies the action of inserting a

new club member. A “Search” operation should be used to search if the

club member exists. If not, the new member name will be stored into the

video stock using a “Store” operation.

• Rule 4: Return a Video. This rule specifies the action of returning the

hired video title. A “Search” operation should be used to search if the

hiring record exists. The existing hiring record will deleted by using

“Remove” operation.

The decision rules would be verified with the end user, if needed. At this

stage, the informal requirements specification is now rewritten into a set of rules. A

set of operations is identified and it is ready to go on the next step - defining a

requirements particle definition for each primitive operation. We intend to keep the

number of primitive operations minimized and encourage the reusability of the

defined primitive operations.
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5.1.2 Requirements Particle Definitions of Primitive Operations

From the previous section, we design to have 3 primitive operations for this

case - “Store”, “Search”, and “Remove” operations. In this section, we present a

relevant and generic requirements particle definition in Z for each primitive operation

– “Particle”.

“Store” Particle Notation. The “Store” particle notation is shown in figure

5.1 and its corresponding Z requirements particle definition is listed in horizontal

schema format. As seen in the requirements particle definition, the schema name is

named after the particle name. The first part of the schema is the declaration of local

variables – names and types. The second part of the schema is the axiom predicates

that specify the union between the current set of data and the set of a new member.

Moreover, the output ports are specified to forward both data and status messages to

the consecutively connected particle.

“Store”
Particle

What

Where

Precond

Out

Ack

Nack

Video Title

Video Stock

‘Boolean-value status’‘Boolean-value status’

‘Boolean-value status’

Message as Video Title

Figure 5.1 Sample of “Store” Particle Notation

Store ⎢ [What? : What_Type;
Where?, Where’ : Where_Type;
Ack! : Boolean;
Nack! : Boolean;
Out! : Out_type; |
Precond ∧
Where’ = Where? ∪ {What?} ∧
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Out! = What? ∧
Ack! = What? ∈ Where’ ∧
Nack! = What? ∉ Where’]

“Search” Particle Notation. The “Search” particle notation is shown in

figure 5.2 and its corresponding Z requirements particle definition is listed in

horizontal schema format. As seen in the requirements particle definition, the schema

name is named after the particle name. The first part of the schema is the declaration

of local variables – names and types. The second part of the schema is the axiom

predicates that specify the assertion of the membership of a set. Moreover, the output

ports are specified to forward both data and status messages to the consecutively

connected particle.

“Search”
Particle

What

Where

Precond

Out

Ack

Nack

Video Title

Video Stock

‘Boolean-value status’‘Boolean-value status’

‘Boolean-value status’

Message as Video Title

Figure 5.2 Sample of “Search” Particle Notation

Search ⎢ [What? : What_Type;
Where? : Where_Type;
Ack! : Boolean;
Nack! : Boolean;
Out! : Out_Type;  |
Precond ∧
Out! = What? ∧
Ack! = What? ∈ Where? ∧
Nack! = What? ∉ Where?]
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“Remove” Particle Notation. The “Remove” particle notation is

shown in figure 5.3 and its corresponding Z requirements particle

definition is listed in horizontal schema format. As seen in the

requirements particle definition, the schema name is named after the

particle name. The first part of the schema is the declaration of local

variables – names and types. The second part of the schema is the axiom

predicates that specify the difference between the current set of data and

the set of a member. Moreover, the output ports are specified to forward

both data and status messages to the consecutively connected particle.

“Remove”
Particle

What

Where

Precond

Out

Ack

Nack

Video Title

Video Stock

‘Boolean-value status’‘Boolean-value status’

‘Boolean-value status’

Message as Video Title

Figure 5.3 Sample of “Remove” Particle Notation

Remove ⎢ [What? : What_Type;
Where?, Where’ : Where_Type;
Ack! : Boolean;
Nack! : Boolean;
Out! : Out_Type;  |
Precond ∧
Where! = Where? \ {What?} ∧
Out! = What? ∧
Ack! = What? ∉ Where’ ∧
Nack! = What? ∈ Where’]

At this point, we now provide a set of primitive operation

notations and their corresponding Z requirements particle definition to be
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used in the next step. The decision rules will be concerned and RPNs will

be drawn to represent each decision rule. Then, each Z requirements

particle definition will play its role.

5.1.3 RPN for Each Decision Rule

This section presents RPN drawing for each decision rule defined according to

the decision table. The Z requirements particle definitions, in this case formal

definitions for “Store”, “Search”, and “Remove” are determined to specify the

primitive operations in a RPN drawing. The transformation rule 1, described in

previous chapter, is used to perform the substitution with the appropriate data sets into

the formal definitions to construct a meaningful Z specification part. After finishing

the substitution, transformation rule 2 is then used to generate the glue predicates to

gather all of the partial Z specifications together. Thus, a decision rule is now

formally defined.

To implement the substitution by using transformation rule 1, we need to do

the inclusion of relevant schemas and renaming local variables within each Z schema

uniquely. The details are shown below.

Rule 1: Insert New Video.

As shown in figure 5.4, the rule of inserting new video will search for the

existing of the video title. If the video title is not existing in the current video stock,

the new video title will be then inserted into the video stock. We found that data sets

of “Video Title”, “Video Stock” are essentially needed to carry the video title and the

video stock. Practically, in Z, given set named “VIDEOTITLE” and its power set

named “VIDEOSTOCK” are specified.
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“Search”

“Store”

Video Title

Video Stock
What

Where

Video Stock

WhatWhere

Nack

Precond

Out

Video Title

Figure 5.4 RPN Drawing for Rule1 – Insert New Video

The partial Z specification generated from the RPN is listed as follows:

The data sets are defined as follows:

[VIDEOTITLE]
VIDEOSTOCK = = Π VIDEOTITLE

The operation schemas and local variables are defined and renamed as

follows:

Rule1Search ⎢ [VideoTitle? : VIDEOTITLE;
VideoStock? : VIDEOSTOCK;
Rule1SearchAck! : Boolean;
Rule1SearchNack! : Boolean;
Rule1SearchOut! : VIDEOTITLE |
Rule1SearchOut! = VideoTitle? ∧
Rule1SearchAck! = VideoTitle? ∈ VideoStock? ∧
Rule1SearchNack! = VideoTitle? ∉ VideoStock?]

Rule1Store ⎢ [VideoTitle? : VIDEOTITLE;
VideoStock?, VideoStock’ : VIDEOSTOCK;
Rule1Store Ack! : Boolean;
Rule1Store Nack! : Boolean;
Rule1Store Out! : VIDEOTITLE;
Rule1Search |
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                       VideoTitle? ∉ VideoStock? ∧
VideoStock’ = VideoStock? ∪ {VideoTitle?} ∧
Rule1Store Out! = VideoTitle? ∧
Rule1Store Ack! = VideoTitle? ∈ VideoStock’ ∧
Rule1Store Nack! = VideoTitle? ∉ VideoStock’]

The glue predicate is defined (using transformation rule 2) as follows:

Rule1 ⎢ Rule1Search ∧ Rule1Store

Rule 2: Hire a Video.

As shown in figure 5.5, the rule of hiring a video will verify the membership

of the hirer by searching the existing club member. Only club member is allowed to

hire a video. Then, a search operation will check for the existing of the video title. If

the video title exists in the current video stock, the relevant hiring record will be

stored. We found that data sets of “Video Title”, “Video Stock”, “Hirer”, “Club

Member”, Hirer-Video”, and “Hiring Record” are essentially needed. Practically, in

Z, given sets named “VIDEOTITLE”, “HIRER”, “HIRERVIDEO” and their power

sets named “VIDEOSTOCK”, “CLUBMEMBER”, and “HIRINGRECORD” are

specified respectively.

“Search”

“Search”

“Store”

Hirer

Club MemberWhat

Where

Ack

Precond

Video Title

Video Stock
What

Where

Hirer-Video

Hiring Record
What

Where
Ack

Precond

Figure 5.5 RPN Drawing for Rule2 – Hire a Video
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The Z specification generated from the RPN is listed as follows:

The data sets are specified as follows:

[VIDEOTITLE]
VIDEOSTOCK = = Π VIDEOTITLE
[HIRER]
CLUBMEMBER = = Π HIRER
[HIRERVIDEO]
HIRINGRECORD = = Π HIRERVIDEO

The operation schemas are specified as follows:

Rule2Search1 ⎢ [Hirer? : HIRER;
ClubMember? : CLUBMEMBER;
Rule2Search1Ack! : Boolean;
Rule2Search1Nack! : Boolean;
Rule2Search1Out! : HIRER  |
Rule2Search1Out! = Hirer? ∧
Rule2Search1Ack! = Hirer? ∈ ClubMember? ∧
Rule2Search1Nack! = Hirer? ∉ ClubMember?]

Rule2Search2 ⎢ [VideoTitle? : VIDEOTITLE;
VideoStock? : VIDEOSTOCK;
Rule2Search2Ack! : Boolean;
Rule2Search2Nack! : Boolean;
Rule2Search2Out! : VIDEOTITLE;
Rule2Search1 |
Hirer? ∈ ClubMember?∧
Rule2Search2Out! = VideoTitle? ∧
Rule2Search2Ack! = VideoTitle? ∈ VideoStock? ∧
Rule2Search2Nack! = VideoTitle? ∉ VideoStock?]

Rule2Store ⎢ [HirerVideo? : HIRERVIDEO;
HiringRecord?, HiringRecord’ : HIRINGRECORD;
Rule2Store Ack! : Boolean;
Rule2Store Nack! : Boolean;
Rule2Store Out! : HIRERVIDEO;
Rule2Search2 |
VideoTitle? ∈ VideoStock? ∧



45

HiringRecord’ = HiringRecord? ∪ {HirerVideo?} ∧
Rule2Store Out! = HirerVideo? ∧
Rule2Store Ack! = HirerVideo? ∈ HiringRecord’ ∧
Rule2Store Nack! = HirerVideo? ∉ HiringRecord’]

The glue predicate is defined as follows:

Rule2 ⎢ Rule2Search1 ∧ ( Rule2Search2 ∧ Rule2Store )

Rule 3: Insert New Member.

As shown in figure 5.6, the rule of inserting new club member will search for

the existing of the hirer. If the hirer is not existing in the current set of club members,

the new hirer will be then inserted into the club member set. We found that data sets

of “Hirer”, “Club Member” are essentially needed. Practically, in Z, given set named

“HIRER” and its power set named “CLUBMEMBER” are specified.

“Search”

“Store”

Hirer

Club Member
What

Where

Club Member

WhatWhere

Nack

Precond

Out
Hirer

Figure 5.6 RPN Drawing for Rule 3 – Insert New Member

The partial Z specification generated from the RPN is listed as follows:

The data sets are defined as follows:
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[HIRER]
CLUBMEMBER = = Π HIRER

The operation schemas and local variables are defined and renamed as follows:

Rule3Search ⎢ [Hirer? : HIRER;
ClubMember? : CLUBMEMBER;
Rule3SearchAck! : Boolean;
Rule3SearchNack! : Boolean;
Rule3SearchOut! : HIRER; |
Rule3SearchOut! = Hirer? ∧
Rule3SearchAck! = Hirer? ∈ ClubMember? ∧
Rule3SearchNack! = Hirer? ∉ ClubMember?]

Rule3Store ⎢ [Hirer? : HIRER;
ClubMember?, ClubMember’ : CLUBMEMBER;
Rule3StoreAck! : Boolean;
Rule3StoreNack! : Boolean;
Rule3StoreOut! : HIRER;
Rule3Search  |
Hirer? ∉ ClubMember? ∧
ClubMember’ = ClubMember? ∪ {Hirer?} ∧
Rule3StoreOut! = Hirer? ∧
Rule3StoreAck! = Hirer? ∈ ClubMember’ ∧
Rule3StoreNack! = Hirer? ∉ ClubMember’]

The glue predicate is defined as follows:

Rule3 ⎢ Rule3Search ∧ Rule3Store

Rule 4: Return a Video.

As shown in figure 5.7, the rule of returning a video will search for the

existing of the hiring record. If the hiring record exists in the current hiring record, the

hiring record will be then removed from the hiring record set. We found that data sets

of “Hirer-Video”, “Hiring Record” are essentially needed. Practically, in Z, given set

named “HIRERVIDEO” and its power set named “HIRING RECORD” are specified.
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“Search”

“Remove”

Hirer-Video

Hiring Record
What

Where

Hiring Record

WhatWhere

Ack

Precond

Out

Hirer-Video

Figure 5.7 RPN Drawing for Rule 4 – Return a Video

The partial Z specification generated from the RPN is listed as follows:

The data sets are defined as follows:

[HIRERVIDEO]
HIRINGRECORD = = Π HIRERVIDEO

The operation schemas and local variables are defined and renamed as

follows:

Rule4Search ⎢ [HirerVideo? : HIRERVIDEO;
HiringRecord? : HIRINGRECORD;
Rule4SearchAck! : Boolean;
Rule4SearchNack! : Boolean;
Rule4SearchOut! : HIRER;
Rule4SearchPrecond? : Boolean
| Rule4SearchPrecond? =  TRUE ∧
Rule4SearchOut! = HirerVideo? ∧
Rule4SearchAck! = HirerVideo? ∈ HiringRecord? ∧
Rule4SearchNack! = HirerVideo? ∉ HiringRecord?]

Rule4Remove ⎢ [HirerVideo? : HIRERVIDEO;
HiringRecord?, HiringRecord’ : HIRINGRECORD;
Rule4RemoveAck! : Boolean;
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Rule4RemoveNack! : Boolean;
Rule4RemoveOut! : HIRERVIDEO;
Rule4Search |
HirerVideo? ∈ HiringRecord? ∧
HiringRecord’ = HiringRecord? \ {HirerVideo?} ∧
Rule4RemoveOut! = HirerVideo? ∧
Rule4RemoveAck! = HirerVideo? ∉ HiringRecord’ ∧
Rule4RemoveNack! = HirerVideo? ∈ HiringRecord’]

The glue predicate is defined as follows:

Rule4 ⎢ Rule4Search ∧ Rule4Remove

5.1.4 Final specifications

The final specification of video shop system, VDOSHOPSPEC, is formally

concluded from all of possible decision rules. The transformation rule 3 is referred to

do this gathering by using disjunctive approach.

VDOSHOPSPEC ⎢ Rule1 ∨ Rule2 ∨ Rule3 ∨ Rule4

We list the complete Z specifications of video shop system in appendix A.1.

The final version of the formal specifications would be used as the first draft to

describe the software system.

5.1.5 Conclusions on Video Shop System

Since the case study of video shop system is not too complicate, we could

gradually walkthrough the steps of our specification synthesis scheme in detail. The

data sets of the system, such as Video Title, Hirer, etc. are directly viewed as the set

of elements. The insertion is considered as the union of two sets and the deletion is

the difference of two sets, in set theory.

As reported in [52], we conducted a workshop of developing software

requirements specification of this case. More than 80 attendants (undergraduate and
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graduate students) with experience in drawing data flow diagrams are gathered.

Average time to accomplish the specification procedure is 50 minutes and more than

90% of the attendants produce the complete RPNs. The final formal specifications are

consequently mapped from their RPNs without any major complication.

In the next case study, we would describe how to cope with the data entity and

relations between them in the database application. Our RPN notations will be applied

to construct composite operations on database structures, which are formally defined

in [39].

5.2 Introduction to Van Hire System

The objective of this case study is to demonstrate the usage of RPN on

database application specification. Refer to [39], we proposed the transformation rules

to generate a set of Z schemas from tabular form of entities and relations for a van

hire system. We now extend the work to cover the specification of the composite

operations using RPN notations and report in [45]. The contents of the reports will be

described in this section.

In this section, we begin with the brief overview of the related formal

definitions on how we define the entity and relation tables from the ER diagrams and

how to define the structural constraints among entities and relations. We then

concentrate on the usage of RPN to define the composite operations, that is the main

concerns for this dissertation.

Here is the informal description of a van hire system. A van hire system is to

be developed for a garage, which runs a van hire business.  Each van is classified into

only one van class.  A van in the garage will be in service no more than 10 years.  A

customer begins to make a booking for a particular van class and an available van in

the specified category will be assigned. The customer will check out the van at the

garage’s hire center and finally return the van at the end of hire period. The historical

data is not needed for this system.
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5.2.1 The Entity Relationship Diagram of Van Hire System

In figure 5.8, the entity relationship diagram shows four entities and four

relations among entities. The entities are VAN, VANCLASS, CUSTOMER, and

BOOKING. The relations are ISIN, ISGIVEN, RESERVE, MAKES. The ISIN is the

many-to-one relation between VAN and VANCLASS. The RESERVE is the many-

to-one relation between BOOKING and VANCLASS. The MAKES is the one-to-

many relation between CUSTOMER and BOOKING. The ISGIVEN is the one-to-

one relation between VAN and BOOKING. The data dictionary table shown in figure

5.10 and figure 5.11 include all of the attribute names, attribute types, attribute

constraints, the selections of primary keys and foreign keys and relationship among

entities.

VANCLASS

BOOKING

CUSTOMER

VANisin

makesreserve

isgiven

n

1

1
n

1

1

n
1

Figure 5.8: ER Diagram of Van Hire System [39]

5.2.2 Formal Specification Synthesis Scheme

In [39], we utilize the conceptual model of the entity relationship diagram and

their data dictionaries, which are commonly prepared by software analyst and

designer to be our original inputs. Now, we propose the extended part of the



51

specification and the overview of the new scheme of formal specification synthesis is

shown in figure 5.9. The final specifications include both structural property and

behavioral property of relational data model. The structural property is specified by Z

data schemas – entity schemas, entity extension schemas, and relationship schemas.

Meanwhile, the behavioral property is specified by Z operation schemas – primitive

operation schemas and new composite operation schemas.

Table 5.2 Data Dictionary for all Entity Names of Van Hire System

Entity Name: VAN

Attribute name Attribute type Key Constraint

RegistrationNo string PK

Model string

vanclassFK CLASSNAME FK(VANCLASS-className)

usedPeriod integer usedPeriod ⎠ 10

Entity Name: VANCLASS

Attribute name Attribute type Key Constraint

className CLASSNAME PK

fuelType FUELTYPE

Entity Name:  BOOKING

Attribute name Attribute type Key Constraint

bookingCode string PK

startDate date

endDate date

customerID string FK(CUSTOMER-customerId)

class CLASSNAME FK(VANCLASS-className)

vanNo string FK(VAN-registerNo)

Entity Name:  CUSTOMER

Attribute name Attribute type Key Constraint

CustomerId string PK

Name string

Address string

Table 5.3  Relationship Dictionary of Van Hire System
Relation Name Entity1 Entity2 Cardinality ratio Constraint

isin VAN VANCLASS n-1

reserve BOOKING VANCLASS n-1

makes CUSTOMER BOOKING 1-n

isgiven BOOKING VAN 1-1
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5.2.2.1 Formal Specification of Structural Property

The transformation rules of generating formal specifications of the structural

property of relational data model is proposed in [39]. The entity relationship diagram

and its data dictionary, commonly prepared during the early stage of software

development, are used as original definitions. An entity relationship diagram is

transformed into three categories of schemas in Z: Entity schema, Entity Extension

schema, and Relationship schema. The Entity schema represents all of the attributes

and types in an entity. In the meantime, the Entity Extension schema defines the

constraints of structural property such as primary key, foreign key, as well as the

integrity constraints. The Relationship schema defines the relations between entities

along with the cardinality ratio - one-to-one, one-to-many, and many-to-one

relationship.

Entity Relationship Diagrams
and Data Dictionary

Generate
Entity 
Structure

Behavioral
Property

Structural
Property

Formal Specification

Generate
Primitive
Operation

Generate
Composite
Operation

Primitive
Operations

Figure 5.9 Formal Specification Synthesis Scheme for Database Application

5.2.2.2 Composition of Primitive Operations

This section describes how to compose the primitive operations, such as

insertion, deletion, updating, etc. into a composite operation. The requirements

particle network is used to construct a new composite operation.
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5.2.2.3 Constructing a New Composite Operation

A new composite operation is a set of primitive operations that are tightly

coupled and is defined by a RPN. Each primitive operation can be justified and fit as a

particle node in the RPN.

5.2.2.4 Composition Operation Generating Rules

Based on our formal specification synthesis scheme, a composite formal

specification is generated using a RPN as follows:

• Select a set of primitive operations OPi that provide the relevant features.

• Compose each primitive operation from top-down style.

• Specify the operation for the Ack path, if the current operation is

successfully performed.

• Specify the operation for the Nack path, if the current is fail.

• Specify the Data entity for each operation, if needed.

• Define the rest of the operations.

For example, a RPN called COMPO1 is designed as shown in figure 5.10 and

OP1, …, OP6 are our primitive operations such as insert, delete, etc. If the operation

OP1 is successfully performed then pursue the operation OP2 and if not, invoke OP3.

OP1

OP2 OP3

OP4 OP5
OP6

Ack Nack

D1

D3

D6

D2

D5D4
Ack

Nack
Nack

Figure 5.10 A Composite Operation ‘COMPO1’
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The composite operation ‘COMPO1’ is generated as follows:

COMPO1 ⎢ (OP1∧OP2∧OP4) ϖ

(OP1∧¬OP2∧OP5) ϖ (¬OP1∧¬OP3∧OP6)

5.2.3 Samples of Composite Operations for Van Hire System

In this section, we give the samples of two composite operations - booking

and returning a van. The RPN approach is slightly modified so that we could reuse the

primitive operations of inserting, deleting, and updating given from [39]. By using

them, we do not need to add more Z notations for maintaining the structural

constraints of the entities and relations. Moreover, the cascading inserting and

deleting are still implicitly supported.

The following Z specifications will give a idea of how the primitive operations

called “InsertBooking” and  “DeleteBooking” work. Both of operations will be

invoked in our RPN formal definitions.

[DATE, FUELTYPE, STRING]

Vanclass ⎢ [ClassName : STRING;
FuelType : FUELTYPE]

Van ⎢ [Reg : STRING;
Model : STRING;
Class : STRING]

Customer ⎢ [CustId : STRING;
CustName : STRING;
CustAddr : STRING]

Booking ⎢ [BookId : STRING;
StartDate : DATE;
EndDate : DATE;
CustId : STRING;
Class : STRING;
VanNo : STRING]
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VanclassExt ⎢ [ VanclassSet : Φ Vanclass |
Α Vanclass1, Vanclass2 : Vanclass |
Vanclass1 ∈ VanclassSet ∧
Vanclass2 ∈ VanclassSet ∧
Vanclass1 ⎣   Vanclass2 •
Vanclass1.ClassName ⎣   Vanclass2.ClassName]

VanExt ⎢ [ VanSet : Φ Van |
Α Van1, Van2 : Van |
Van1 ∈ VanSet ∧
Van2 ∈ VanSet ∧
Van1 ⎣   Van2 •
Van1.Reg ⎣   Van2.Reg ∧
Α VanVar : Van •
(∃ VanclassVar : Vanclass •
VanVar.Class = VanclassVar.ClassName)]

CustomerExt ⎢ [ CustomerSet : Φ Customer |
Α Customer1, Customer2 : Customer |
Customer1 ∈ CustomerSet ∧
Customer2 ∈ CustomerSet ∧
Customer1 ⎣  Customer2 •
Customer1.CustId ⎣   Customer2.CustId]

BookingExt ⎢ [ BookingSet : Φ Booking |
Α Booking1, Booking2 : Booking |
Booking1 ∈ BookingSet ∧
Booking2 ∈ BookingSet ∧
Booking1 ⎣  Booking2 •
Booking1.BookId ⎣  Booking2.BookId ∧
Α BookingVar : Booking •
(∃ VanVar : Van •
BookingVar.VanNo = VanVar.Reg)
Α BookingVar : Booking •
(∃ VanclassVar : Vanclass •
BookingVar.VanNo = VanclassVar.ClassName)
Α BookingVar : Booking •
(∃ CustomerVar : Customer •
BookingVar.CustId = CustomerVar.CustId)]

InsertBooking ⎢ [ ∆ BookingExt;
NewValue? : Booking
InsertCustomer
InsertVanclass
InsertVan |
BookingSet’ = BookingSet ∪ {NewValue?}]
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DeleteBooking ⎢ [ ∆ BookingExt;
dBooking? : Booking |
BookingSet’ = BookingSet \ {dBooking?}]

UpdateBooking ⎢ [ DeleteBooking; InsertBooking]

5.2.3.1 Samples of Decision Table for Van Hire System

A decision table is prepared to describe the conditions and actions of van hire

system, especially for composite operations.

Table 5.4 Decision Table of the Van Hire System

PreConditions Rule1 Rule2

1) Van exists X

2) Hiring record exist X

Actions

1) Insert the hiring record X

2) Delete the existing hiring record X

From decision table 5.4, two decision rules are shown and each rule is described by a

set of preconditions and actions. The next step is to define the primitive operations to

be needed to perform the assertion of the preconditions and implement the actions.

The decision rules are listed below.

• Rule 1: Book a Van. This rule specifies the action of booking a van in van

hire system. A “Search” operation should be used to search if the van

exists. If the van exists, the booking record will be recorded using a

“InsBooking” operation.

• Rule 2: Return a Van. This rule specifies the action of returning a van

back to van hire system. A “Search” operation should be used to search if
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the booking record exists. If it exists, the booking record will be deleted

using a “DelBooking” operation.

5.2.3.2 Samples of Requirements Particle Definitions

From the previous section, there are 3 primitive operations for this case -

“Search”, “InsBooking”, and “DelBooking” operations. In this section, we present a

relevant and generic requirements particle definition in Z for each primitive operation

– “Particle”.

“Search” Particle Notation. The “Search” particle notation is shown in

figure 5.11 and its corresponding Z requirements particle definition is listed in

horizontal schema format. As seen in the requirements particle definition, the schema

name is named after the particle name. The first part of the schema is the declaration

of local variables – names and types. The second part of the schema is the axiom

predicates that specify the assertion of the membership of a set. Moreover, the output

ports are specified to forward both data and status messages to the consecutively

connected particle.

“Search”
Particle

What

Where

Precond

Out

Ack

Nack

Expected Van

 Van Set

‘Boolean-value status’‘Boolean-value status’

‘Boolean-value status’

Message as Video Title

Figure 5.11 Sample of “Search” Particle Notation
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Search ⎢ [What? : What_Type;
Where? : Where_Type;
Ack! : Boolean;
Nack! : Boolean;
Out! : Out_Type |
Precond ∧
Out! = What? ∧
Ack! = What? ∈ Where? ∧
Nack! = What? ∉ Where?]

“InsBooking” Particle Notation. The “InsBooking” particle notation is

shown in figure 5.12 and its corresponding Z requirements particle definition is listed

in horizontal schema format. As seen in the requirements particle definition, the

schema name is named after the particle name. The first part of the schema is the

declaration of local variables – names and types. The “InsertBooking” schema

generated from [39] will be included here to manipulate the state schema “Booking.”

Moreover, the output ports are specified to forward both data and status messages to

the consecutively connected particle.

/

“InsBooking
” Particle

What

Where

Precond

Out

Ack

Nack

‘Boolean-value status’‘Boolean-value status’

‘Boolean-value status’

Message as Video Title

Figure 5.12 Sample of “InsBooking” Particle Notation

InsBooking ⎢ [Ack! : Boolean;
Nack! : Boolean;
InsertBooking |
Precond ∧
Ack! = Precond ∧
Nack! = !Precond ]
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“DelBooking” Particle Notation. The “DelBooking” particle

notation is shown in figure 5.13 and its corresponding Z requirements

particle definition is listed in horizontal schema format. As seen in the

requirements particle definition, the schema name is named after the

particle name. The first part of the schema is the declaration of local

variables – names and types. The “DeleteBooking” schema generated

from [39] will be included here to manipulate the state schema

“Booking.” Moreover, the output ports are specified to forward both data

and status messages to the consecutively connected particle.

“DelBooking”

Particle

What

Where

Precond

Out

Ack

Nack

‘Boolean-value status’‘Boolean-value status’

‘Boolean-value status’

Message as Video Title

Figure 5.13 Sample of “DelBooking” Particle Notation

DelBooking ⎢ [Ack! : Boolean;
Nack! : Boolean;
DeleteBooking |
Precond ∧
Ack! = Precond ∧
Nack! = !Precond ]

5.2.3.3 Samples of RPNs
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This section presents RPN drawing for the sample decision rule defined

previously. The Z requirements particle definitions, in this case formal definitions for

“Search”, “InsBooking”, and “DelBooking” are determined to specify the primitive

operations in a RPN drawing. Similarly, the transformation rule 1 and transformation

rule 2 are then used to generate the partial Z specifications and their  glue predicates.

To implement the substitution by using transformation rule 1, we need to do the

inclusion of relevant schemas and renaming local variables within each Z schema

uniquely. The details are shown below.

Rule 1: Book a Van.

As shown in figure 5.14, the rule of booking a van will search for the existing

of the van. If the van exists, the new booking record will be then recorded into the

booking set. We found that data sets of “Van”, “Van Set” are essentially needed.

Practically, in Z, power set named “VANSET” are specified.

“Search”

“InsBooking”

Van

Van Set
What

Where

WhatWhere

Ack

Precond

Out

Figure 5.14 RPN Drawing for Rule1 – Book a Van

The partial Z specification generated from the RPN is listed as follows:
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The data sets are defined as follows:

VANSET = = Π VAN

The operation schemas and local variables are defined and renamed as

follows:

Rule1Search ⎢ [Van? : VAN;
VanSet? : VANSET;
Rule1SearchAck! : Boolean;
Rule1SearchNack! : Boolean;
Rule1SearchOut! : VAN |
Rule1SearchOut! = Van? ∧
Rule1SearchAck! = Van? ∈ VanSet? ∧
Rule1SearchNack! = Van? ∉ VanSet?]

Rule1InsBooking ⎢ [Rule1InsBookingAck! : Boolean;
Rule1InsBookingNack! : Boolean;
InsertBooking
Rule1Search |
Van? ∈ VanSet?  ∧
Rule1InsBookingAck! = (Van? ∈ VanSet?)∧
Rule1InsBookingNack! = ! (Van? ∈ VanSet?)]

The glue predicate is defined (using transformation rule 2) as follows:

Rule1 ⎢ Rule1Search ∧ Rule1InsBooking

Rule 2: Return a Van.

As shown in figure 5.15, the rule of returning a van will search for the existing

of the booking set. If the booking exists, the booking record will be then deleted from

the booking set. We found that data sets of “Booking”, “Booking Set” are essentially

needed. Practically, in Z, power set named “BOOKINGSET” are specified.
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“Search”

“DelBooking”

Booking

Booking SetWhat

Where

What
Where

Ack

Precond

Out

Figure 5.15 RPN Drawing for Rule1 – Return a Van

The partial Z specification generated from the RPN is listed as follows:

The data sets are defined as follows:

BOOKINGSET = = Π BOOKING

The operation schemas and local variables are defined and renamed as

follows:

Rule2Search ⎢ [Booking? : BOOKING;
BookingSet? : BOOKINGSET;
Rule2SearchAck! : Boolean;
Rule2SearchNack! : Boolean;
Rule2SearchOut! : BOOKING  |
Rule2SearchOut! = Booking? ∧
Rule2SearchAck! = Booking? ∈ BookingSet? ∧
Rule2SearchNack! = Booking? ∉ BookingSet?]

Rule2DelBooking ⎢ [Rule2DelBookingAck! : Boolean;
Rule2DelBookingNack! : Boolean;
DeleteBooking
Rule2Search |
Booking? ∈ BookingSet? ∧
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Rule2DelBookingAck! = (Booking? ∈ BookingSet?)∧
Rule2DelBookingNack! = ! (Booking? ∈ BookingSet?)]

The glue predicate is defined (using transformation rule 2) as follows:

Rule2 ⎢ Rule2Search ∧ Rule2DelBooking

5.2.4 Conclusions on Van Hire System

This case study is to extend the work of [39]. A systematic scheme of formal

specification synthesis for relational data model has been proposed in [39]. Starting

from the commonly used entity relationship diagram and its related data dictionary,

we propose a set of transformation rules to implement our knowledge on how to

interpret entity relationship model into formal model. The formal specification of both

structural and behavioral property of relational data model is produced with consistent

to the original requirements model. Without any given functional information, the

necessary primitive operations such as insertion, deletion, and updating are

generated. All of the primitive operations mentioned perform in the cascade manners

so that the referential integrity among relations is guaranteed.

In this case study, we now propose a composition technique to construct the

composite operations from primitive ones. The RPN is easy and simple enough for the

naive users of formal methods.

From the viewpoint of the software analyst and designer, the bringing together

of the graphical diagrams and text elements of the relational model of data in Z

specification helps to identify the omissions or errors in the structured analysis.

Writing the formal specification ensures that the constraints, conditions, and

definitions of structural property are covered. Thus, the investigation of the

requirements and design specifications can be conducted using mathematical proofs.



64

CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

This chapter concludes the comparison of our work to the related works. We

summarize the primary contributions of our research and review the central results of

our scheme of formal software specification synthesis. We also conclude the areas of

the future works.

6.1 Comparison to the Related Works

Several researches propose the scheme of transformation from structural

analysis methods to formal model. For example, the draft technique of formalizing an

entity relationship diagram as Z state schemas is proposed by [46]. The notations used

are the structured analysis method. The use of formal notations in the context of

structured analysis is seen as valuable and the production of Z from the entity

relationship diagrams is possible. In another case, the ADISSA method [47] expresses

requirements using a transaction-oriented refinement of Structured Systems Analysis.

The control part of ADISSA transactions are transformed into formal specification

called FSM transaction using a set of rules. The design stage decomposes the FSM

transaction into simpler transactions and implements them with a set of finite-state

machines. Consistency between the formal specification and the result of the design is

proved. The NDRASS system [6] also proposes NDRDL language based on the

methods of structured analysis. The formal specification is  generated by transforming

the entity relationship diagram, data flow diagram, and control flow diagram with the

related data dictionaries.

Comparing to the researches that develop rules from the structured analysis

methods, our approach is different to the others in the following aspects:
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• Most of the other approaches require complete information of both data and

function definitions. The consistency between data model and functional

model has to be checked. For example, a consistency checking approach

between entity relationship diagram (data model) and process action diagram

is proposed in [48]. The functions may refer to the undefined data entity or

some data entities may be unused.  Our approach provides the automatic

generation of the primitive operations on each data entity, which is tightly

coupled with all of the available data structure, as similar to an abstract data

type.

• Whenever the complicated actions are required, a new composite operation

can be constructed by reusing the previous generated primitive operations.

The requirements particle network is easy for a naive user.

6.2 Contributions

Following are the primary contributions of our research to the formal

specification area:

Explicit Method for Formal Specification Synthesis. Software developer

will be provided with our explicit method for formal specification synthesis. The

explicit method exploits the conventional techniques that most of the developers are

familiar with, such as using decision table to capture the preconditions and actions of

each decision rule. In our approach, a formal specification is constructed according to

the defined decision rules. The steps of our scheme are concluded as follows:

• Rewrite the textual and formatted descriptions of the user requirements

into a decision table.

• Define the primitive operation needed.

• Define the formal requirements particle definition for each primitive

operation defined in the previous step - Z specification are focused in our

studies.

• Draw a RPN for each decision rules in the decision table.
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• Apply the transformation rules to convert RPN into a set of Z

specifications.

• Combine the final formal specifications of all decision rules.

Graphical Notations RPN. In this research, we provide a novel graphical

notations, called “Requirements Particle Network” – RPN [52]. In chapter 3, we

describe both structural and behavioral aspects of RPN. We intend to retain the

efficiency and usability of the visual diagrams to capture the requirements of each

primitive event in the software system. By providing a set of operations, the developer

can select and compose a graphical network of a decision rule. As we mentioned

earlier, the operations in RPN should be reused to keep the minimum number of the

predefined operations. The RPN drawings are gathered and transformed into a set of

Z specifications using our transformation rules.

Transformation Rules to Synthesize Z Specifications.  In our approach, we

propose a set of transformation rules to synthesize Z specifications. In chapter 4, we

propose the transformation rule 1 for transform each primitive operation into partial Z

specifications by substitution mechanism. The transformation rule 2 will generate the

glue predicates to compose all of the partial Z specifications into a decision rule and

the transformation rule 3 will finalize the Z specifications by combine all of the

specifications for each decision rule together using disjunctive approach.

6.3 Future Works

There are several future works that we consider important and recommend to

be the next steps of this research.

6.3.1 Building the Common RPN Particle Library
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Among the variety of requirements and needs, it is very useful to investigate

and define more relevant requirements particles of the software systems for business

information system. A set of particles to perform calculation is required as well. In

addition, the reuse features of several common requirements particle networks should

be considered.

6.3.2 Applying the RPN for Other Formal Specification Languages

In this research, we select Z specification language in our implementation. Z

schema provides the features of reusability – schema inclusion, substitutions, etc. We

successfully define the formal requirements particle definition of a primitive

operation shown in the case studies. However, the RPN should be explored and

modified to apply with the other formal specification languages, such as VDM,

CafeOBJ, etc., in order to support more languages and to be more practical. At the

moment, we continue our works on CafeOBJ – a algebraic specification language.

The RPN needs to be modified to cope with the syntax structure of CafeOBJ

language.

6.3.3 Extending the Time Synchronization Notations

The graphical notations of RPN has no specific notations to support time

synchronization of the software specification. At the moment, RPN supports only

sequential system. The extra notation should be extended into the original RPN to

support the synchronization among operations. An operation may be activated by

more than one acknowledge values from the others and the “Precond” port should

support the composite values.

6.3.4 Program Generator from RPN

A formal specification of the target software system may be more useful if

there exists a method to generate the program source codes from the verified formal
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specifications. The expected source codes will be used as the prototype and any

modification can be done repeatedly before the implementation of the software

system begins. We have already investigated further steps towards the automatic

generation of program codes from Z specification. In [49], we experimentally

generate Java data object class from Z schemas.
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APPENDIX A: FINAL SPECIFICATION IN CASE STUDIES 

 

A.1 The Complete Z Specifications for Video Shop System 

 

[VIDEOTITLE] 

VIDEOSTOCK = = Π VIDEOTITLE 

[HIRER] 

CLUBMEMBER = = Π HIRER 

[HIRERVIDEO] 

HIRINGRECORD = = Π HIRERVIDEO 

 

Rule1Search ⎢ [VideoTitle? : VIDEOTITLE;  

VideoStock? : VIDEOSTOCK;  

Rule1SearchAck! : Boolean;  

Rule1SearchNack! : Boolean;  

Rule1SearchOut! : VIDEOTITLE |  

Rule1SearchOut! = VideoTitle? ∧  

Rule1SearchAck! = VideoTitle? ∈ VideoStock? ∧  

Rule1SearchNack! = VideoTitle? ∉ VideoStock?] 

 

Rule1Store ⎢ [VideoTitle? : VIDEOTITLE;  

VideoStock?, VideoStock’ : VIDEOSTOCK;  

Rule1Store Ack! : Boolean;  

Rule1Store Nack! : Boolean;  

Rule1Store Out! : VIDEOTITLE;  

Rule1Search |  

VideoTitle? ∉ VideoStock? ∧  

VideoStock’ = VideoStock? ∪ {VideoTitle?} ∧  

Rule1Store Out! = VideoTitle? ∧  
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Rule1Store Ack! = VideoTitle? ∈ VideoStock’ ∧  

Rule1Store Nack! = VideoTitle? ∉ VideoStock’] 

  

Rule2Search1 ⎢ [Hirer? : HIRER;  

ClubMember? : CLUBMEMBER;  

Rule2Search1Ack! : Boolean;  

Rule2Search1Nack! : Boolean;  

Rule2Search1Out! : HIRER |  

Rule2Search1Out! = Hirer? ∧  

Rule2Search1Ack! = Hirer? ∈ ClubMember? ∧  

Rule2Search1Nack! = Hirer? ∉ ClubMember?] 

 

Rule2Search2 ⎢ [VideoTitle? : VIDEOTITLE;  

VideoStock? : VIDEOSTOCK; 

Rule2Search2Ack! : Boolean;  

Rule2Search2Nack! : Boolean;  

Rule2Search2Out! : VIDEOTITLE;  

Rule2Search1 |  

Hirer? ∈ ClubMember? ∧  

Rule2Search2Out! = VideoTitle? ∧  

Rule2Search2Ack! = VideoTitle? ∈ VideoStock? ∧  

Rule2Search2Nack! = VideoTitle? ∉ VideoStock?] 

 

Rule2Store ⎢ [HirerVideo? : HIRERVIDEO;  

HiringRecord?, HiringRecord’ : HIRINGRECORD;  

Rule2StoreAck! : Boolean;  

Rule2StoreNack! : Boolean;  

Rule2StoreOut! : HIRERVIDEO;  

Rule2Search2 |  

VideoTitle? ∈ VideoStock? ∧  

HiringRecord’ = HiringRecord? ∪ {HirerVideo?} ∧  

Rule2Store Out! = HirerVideo? ∧  
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Rule2Store Ack! = HirerVideo? ∈ HiringRecord’ ∧  

Rule2Store Nack! = HirerVideo? ∉ HiringRecord’] 

 

 

Rule3Search ⎢ [Hirer? : HIRER;  

ClubMember? : CLUBMEMBER;  

Rule3SearchAck! : Boolean;  

Rule3SearchNack! : Boolean;  

Rule3SearchOut! : HIRER |  

Rule3SearchOut! = Hirer? ∧  

Rule3SearchAck! = Hirer? ∈ ClubMember? ∧  

Rule3SearchNack! = Hirer? ∉ ClubMember?] 

 

Rule3Store ⎢ [Hirer? : HIRER;  

ClubMember?, ClubMember’ : CLUBMEMBER;  

Rule3StoreAck! : Boolean;  

Rule3StoreNack! : Boolean;  

Rule3StoreOut! : HIRER;  

Rule3Search |  

Hirer? ∉ ClubMember? ∧  

ClubMember’ = ClubMember? ∪ {Hirer?} ∧  

Rule3StoreOut! = Hirer? ∧  

Rule3StoreAck! = Hirer? ∈ ClubMember’ ∧  

Rule3StoreNack! = Hirer? ∉ ClubMember’] 

 

  

Rule4Search ⎢ [HirerVideo? : HIRERVIDEO;  

HiringRecord? : HIRINGRECORD;  

Rule4SearchAck! : Boolean;  

Rule4SearchNack! : Boolean;  

Rule4SearchOut! : HIRER |  

Rule4SearchOut! = HirerVideo? ∧  
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Rule4SearchAck! = HirerVideo? ∈ HiringRecord? ∧  

Rule4SearchNack! = HirerVideo? ∉ HiringRecord?] 

 

Rule4Remove ⎢ [HirerVideo? : HIRERVIDEO;  

HiringRecord?, HiringRecord’ : HIRINGRECORD;  

Rule4RemoveAck! : Boolean;  

Rule4RemoveNack! : Boolean;  

Rule4RemoveOut! : HIRERVIDEO;  

Rule4Search  |  

HirerVideo? ∈ HiringRecord? ∧  

HiringRecord’ = HiringRecord? \ {HirerVideo?} ∧  

Rule4RemoveOut! = HirerVideo? ∧  

Rule4RemoveAck! = HirerVideo? ∉ HiringRecord’ ∧ 

Rule4RemoveNack! = HirerVideo? ∈ HiringRecord’]  

 

 Rule1 ⎢ Rule1Search ∧ Rule1Store 

 Rule2 ⎢ Rule2Search1 ∧ ( Rule2Search2 ∧ Rule2Store ) 

 Rule3 ⎢ Rule3Search ∧ Rule3Store 

 Rule4 ⎢ Rule4Search ∧ Rule4Remove 

 

 VDOSHOPSPEC ⎢ Rule1 ∨ Rule2 ∨ Rule3 ∨ Rule4 

 

 The Z specification is tested using Z/EVES’s try and prove by reduce 

commands. For example, we set the goal using try Rule1[VideoTitle? := Starwar, 

VideoStock? := \{ Barney \}]; and expect the result from Z/EVES to show that the 

new video title named ‘Starwar’ is in the video stock set. We then repeat the test for 

each rules. 

 

  

 

A.2 The Sample Z Specifications for Van Hire System 
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We present a part of Z schemas are generated using the transformation rules 

from [39]. The transformation rules actually maintain the integrity of structural 

constraints among the entities and relations such as primary key, foreign key, 

cardinality of the relations etc. The primitive operations such as inserting, deleting, 

updating, are given below along with several essential state schemas indicating the 

data sets or entities in database of van hire system.  

 

 

BOOLEAN ::= TRUE | FALSE 

[DATE, FUELTYPE, STRING] 

  

Vanclass ⎢ [ClassName : STRING;  

FuelType : FUELTYPE] 

 

Van ⎢ [Reg : STRING;  

Model : STRING;  

Class : STRING] 

 

Customer ⎢ [CustId : STRING;  

CustName : STRING;  

CustAddr : STRING] 

 

Booking ⎢ [BookId : STRING;  

StartDate : DATE;  

EndDate : DATE;  

CustId : STRING; 

Class : STRING; 

VanNo : STRING] 
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VanclassExt ⎢ [ VanclassSet : Φ Vanclass | 

Α Vanclass1, Vanclass2 : Vanclass | 

Vanclass1 ∈ VanclassSet ∧ 

Vanclass2 ∈ VanclassSet ∧ 

Vanclass1 ⎣   Vanclass2 • 

Vanclass1.ClassName ⎣   Vanclass2.ClassName]  

 

VanExt ⎢ [ VanSet : Φ Van | 

Α Van1, Van2 : Van | 

Van1 ∈ VanSet ∧ 

Van2 ∈ VanSet ∧ 

Van1 ⎣   Van2 • 

Van1.Reg ⎣   Van2.Reg ∧ 

Α VanVar : Van •  

(∃ VanclassVar : Vanclass •  

VanVar.Class = VanclassVar.ClassName)]  

 

CustomerExt ⎢ [ CustomerSet : Φ Customer | 

Α Customer1, Customer2 : Customer | 

Customer1 ∈ CustomerSet ∧ 

Customer2 ∈ CustomerSet ∧ 

Customer1 ⎣  Customer2 • 

Customer1.CustId ⎣   Customer2.CustId]  

 

BookingExt ⎢ [ BookingSet : Φ Booking | 

Α Booking1, Booking2 : Booking | 

Booking1 ∈ BookingSet ∧ 

Booking2 ∈ BookingSet ∧ 

Booking1 ⎣  Booking2 • 

Booking1.BookId ⎣  Booking2.BookId ∧ 

Α BookingVar : Booking •  

(∃ VanVar : Van •  
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BookingVar.VanNo = VanVar.Reg) 

Α BookingVar : Booking •  

(∃ VanclassVar : Vanclass •  

BookingVar.VanNo = VanclassVar.ClassName) 

Α BookingVar : Booking •  

(∃ CustomerVar : Customer •  

BookingVar.CustId = CustomerVar.CustId)]  

 

 

InsertBooking ⎢ [ ∆ BookingExt; 

NewValue? : Booking 

InsertCustomer 

InsertVanclass 

InsertVan | 

BookingSet’ = BookingSet ∪ {NewValue?}]  

 

DeleteBooking ⎢ [ ∆ BookingExt; 

dBooking? : Booking | 

BookingSet’ = BookingSet \ {dBooking?}]  

 

UpdateBooking ⎢ [ DeleteBooking; InsertBooking] 

 

InsertCustomer ⎢ [ ∆ CustomerExt; 

NewValue? : Customer | 

CustomerSet’ = CustomerSet ∪ {NewValue?}]  

 

DeleteCustomer ⎢ [ ∆ CustomerExt; 

dCustomer? : Customer;  

DeleteBooking | 

CustomerSet’ = CustomerSet \ {dCustomer?}]  

 

UpdateCustomer ⎢ [ DeleteCustomer; InsertCustomer] 
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InsertVan ⎢ [ ∆ VanExt; 

NewValue? : Van;  

InsertVanclass | 

VanSet’ = VanSet ∪ {NewValue?}]  

 

DeleteVan ⎢ [ ∆ VanExt; 

dVan? : Van;  

DeleteBooking | 

VanSet’ = VanSet \ {dVan?}]  

 

UpdateVan ⎢ [ DeleteVan; InsertVan] 

 

 

InsertVanclass ⎢ [ ∆ VanclassExt; 

NewValue? : Vanclass | 

VanclassSet’ = VanclassSet ∪ {NewValue?}]  

 

 

DeleteVanclass ⎢ [ ∆ VanclassExt; 

dVanclass? : Vanclass;  

DeleteBooking  

DeleteVan | 

VanclassSet’ = VanclassSet \ {dVanclass?}]  

 

UpdateVanclass ⎢ [ DeleteVanclass; InsertVanclass] 

 

 

 The following is the Z specifications of composite operations 

concluded from the case study. 

 

 

Rule1Search ⎢ [Van? : VAN;  

VanSet? : VANSET;  
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Rule1SearchAck! : Boolean;  

Rule1SearchNack! : Boolean;  

Rule1SearchOut! : VAN |  

Rule1SearchOut! = Van? ∧  

Rule1SearchAck! = Van? ∈ VanSet? ∧  

Rule1SearchNack! = Van? ∉ VanSet?] 

 

Rule1InsBooking ⎢ [Rule1InsBookingAck! : Boolean;  

Rule1InsBookingNack! : Boolean;  

InsertBooking 

Rule1Search |  

Van? ∈ VanSet?  ∧  

Rule1InsBookingAck! = (Van? ∈ VanSet?) ∧  

Rule1InsBookingNack! = ! (Van? ∈ VanSet?)] 

  

 

Rule2Search ⎢ [Booking? : BOOKING;  

BookingSet? : BOOKINGSET;  

Rule2SearchAck! : Boolean;  

Rule2SearchNack! : Boolean;  

Rule2SearchOut! : BOOKING |  

Rule2SearchOut! = Booking? ∧  

Rule2SearchAck! = Booking? ∈ BookingSet? ∧  

Rule2SearchNack! = Booking? ∉ BookingSet?] 

 

Rule2DelBooking ⎢ [Rule2DelBookingAck! : Boolean;  

Rule2DelBookingNack! : Boolean;  

DeleteBooking 

Rule2Search |  

Booking? ∈ BookingSet? ∧  

Rule2DelBookingAck! = (Booking? ∈ BookingSet?)∧  

Rule2DelBookingNack! = ! (Booking? ∈ BookingSet?)] 
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 Rule1 ⎢ Rule1Search ∧ Rule1InsBooking 

 Rule2 ⎢ Rule2Search ∧ Rule2DelBooking 
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