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CHAPTER I 

INTRODUCTION 

 Gaining a high productivity of rice in the actual rice field under some 

controlled condition is very costly and time consuming. To overcome these problems, 

prior to the actual growing process, a mathematical simulation of rice growth under 

various pre-specified parameters must be developed. 

 Virtual plants and the computational model of plants are increasingly seen as a 

useful tool for comprehending complex relationships between plant architecture, gene 

function, plant physiology, plant development, and plant productions [1]. 

Morphogenesis of the aerial parts of a plant has been successful in simulation. On the 

other hand, in agronomic applications where growers hope to control environmental 

conditions to seek for the highest possible yields, growers can use the virtual plant 

model to simulate plant growth under different cropping conditions so that they can 

optimize the best possible production yield. 

1.1 Problem Review and Motivation 

 The allometric relationship which is the relation between a physical or 

physiological attributes and plant size has been found in a broad variety of plant 

modeling research. They are often used for estimating unmeasured plant traits based 

on some easily measurable traits such as length or diameter. Examples of allometric 

relationship discussed in the literature include relationships between height and stem 

mass, height and stem diameter, fruit and seed mass, developmental rates of different 

organs, and growth rate and cell biomass. However, no unified allometric relation of 

the whole plant was previously reported. Each part of plant must be combined 

together with consistent growth. In addition, morphological and architectural model of 

plant should be considered and developed consequently. 

 In rice research, there are many rice growth models proposed by researchers 

and organizations [2, 3, 4, 5]. The rice growth models focus on studying the impact of 

climate that changes rice growth, including rice yields, and exploring adaptive 

management options (fertilizer, cultivar type, irrigation strategy, sowing date, etc.) [3, 

4, 5, 6, 7, 8]. Most models are proposed in forms of one-by-one function or simple 
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function with a small number of parameters as the input parameter of model. A more 

complex function is needed for finding more realistic relation of plant growth, but 

there is very hard to solve those complex functions. The mathematical techniques 

such as neural network, which mimic the biological human learning process, are 

excellent tools to solve many complex problems. The neural networks have the 

potential for solving problems in which some inputs and corresponding output values 

are known, but the relationship between the inputs and outputs is very complex. So, 

can we use this intelligent method to help simulate rice growth by mimicking its 

relationship between individual parts? 

 Light is usually the most important factor influencing the growth and 

development of plants while nutrients and water are not limited [9, 10]. To gain more 

understanding and take advantage from plant, many light interception models were 

developed and investigated in plant science research. Both 2D and 3D computer 

graphics was used as a tool for calculating amount of light that can be absorbed by the 

plant leaves or canopy. Leaf area estimation for light interception model could be 

estimated by satellite image [11, 12], and the rough calculation of light transmission 

through a plant canopy could be measured by processing the fish-eye hemispherical 

images [13, 14]. Many techniques for estimating light interception on 3D plant 

canopy were proposed [15, 16, 17, 18]. A more complex model of light calculation 

was also investigated. Indirect light such as diffuse and penetrated light was 

considered [9, 19], but did not integrate with the direct light interception model yet. 

Thus, a complex and realistic modeling technique of light calculation is also required. 

 This dissertation proposed a system of rice growth which integrated the neural 

networks for describing the relationship of rice parts. A new technique for calculating 

amount of light incident to leaves is also proposed. Research objectives are illustrated 

in the second section. The scope and limitations of this work will be shown in the 

third section. Section four summarizes the research contributions. Research 

methodology is described in section five. The last section expresses the organization 

of the dissertation.  
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1.2 Research Objectives 

 The objectives of this research are listed as follows: 

1. To find the quantitative relation and allometric relation of four individual parts 

of rice; stem, leaves, root, and panicle, by using a neural network. 

2. To propose a new methodology in simulating crop growth of rice by 

integrating the neural network which describes the growing behavior of 

individual rice parts. 

3. To construct the virtual rice, a three dimension architectural model of rice. 

4. To develop a novel technique for calculating amount of light incident to the 

leaves by applying radiosity rendering technique to the virtual rice.  

1.3 Scope and Limitations 

 In this dissertation, the scope of work is constrained as follows: 

1. Two types of rice; Khao Dawk Mali 105 (KDML105) rice and Pathumthani 1 

(PTT1) rice were investigated. 

2. In the light interception model, only area of leaf blade was considered. The 

light incident to other parts was ignored. 

3. For modeling of rice growth, we considered and investigated in the vegetative 

stage of rice.  

4. Biological knowledge such as germination behavior, direction of root part, and 

the sequencing in seedling phase were considered in constructing three-

dimension model but were ignored in rice growth system. 

5. Weather information and nutrients were considered in the rice growth system, 

but did not vary. 

6. The back-propagation neural network was used for describing the quantitative 

and allometric relationship among rice parts. 
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1.4 Research Methodology 

1. Review and study the research papers that are related to the rice crop system, 

rice structure, rice growth model and simulation, light interception model of 

plant, and three-dimension architectural model of rice. 

2. Design and set up the field experiment. 

3. Collect and analyze data. 

4. Develop a three-dimension architectural model of rice based on the L-system 

and rice growth data. 

5. Find the quantitative relation and allometric relation between four individual 

parts of rice; stem, leaves, root, and panicle, by using an artificial neural 

network (ANN). 

6. Develop a light interception model for rice leaves. 

7. Develop a new rice growth system by integrating neural network of four rice 

parts together. 

8. Evaluate the proposed light interception model by comparing the amount of 

light which calculate from model to the measured value. 

9. Evaluate the proposed rice growth model with the actual growing data. 

10. Analyze the results and summarize the outcome of study. 

1.5 Organization of the Dissertation 

 The dissertation is organized into six chapters. Chapter 2 expresses the 

theoretical background of rice architecture, rice growth stage, neural network, 

quantitative and allometry relationship, L-systems, and radiosity rendering technique. 

The reviews of the publications related to the architectural model of rice, rice growth 

modeling, famous rice crop modeling, usage of neural network in agricultural 

researches, and light interception model in plants are also revised in this chapter. 

Chapter 3 illustrates the growing conditions in the field experiment, including data 



                                                                                                              
                                                                                                                                                                5 

 
acquisition, and experimental design. Chapter 4 describes steps of three-dimension 

rice architectural model construction, a new technique for calculating amount of light 

incident to rice leaves, and the proposed rice crop system which combines a growing 

three-dimension architectural model of rice with the neural network. The results of 

constructing the three-dimension model of rice, calculation methodology of light 

incident to leaves, and use of neural network in rice growth simulation are shown in 

chapter 5. Chapter 6 concludes the research work and presents some directions for 

future work. 

 



CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

 In this chapter, the theoretical background on rice structure, rice growth stage, 

back propagation neural network, quantitative and allometric relationship,                

the L-system, and radiosity rendering technique are described. Literatures related to 

rice architectural modeling, rice growth modeling, light interception model of plant, 

rice crop modeling, and usage of neural network in agriculture are also reviewed.  

2.1 Theoretical Background 

2.1.1 Rice (Oryza sativa L.) Details and Nomenclature of Rice Components 

 Rice, Oryza sativa L., is a staple for a large part of the world's human 

population, especially in East, South and Southeast Asia, making it the second-most 

consumed cereal grain [20]. Rice provides approximately more than one-fifth of the 

calories consumed by humans [21]. 

 Rice cultivation is suite to countries and regions with low labor costs and high 

rainfall, as it is very labor-intensive to cultivate and requires plenty of water for 

cultivation. Rice can be grown practically anywhere, even on a steep hill or mountain. 

Although its species are native to South Asia and certain parts of Africa, centuries of 

trade and exportation have made it commonplace in many cultures. Rice can grow to 

1–1.8 m. tall, occasionally more depending on the variety and soil fertility. The edible 

seed is a grain 5–12 mm. long and 2–3 mm. thick. 

 The traditional method for cultivating rice is flooding the fields with or after 

setting the young seedlings. This simple method requires sound planning and 

servicing of the water damming and channeling, but reduces the growth of lesser 

robust weed and pest plants and reduces vermin that has no submerged growth state. 

However, with rice growing and cultivation the flooding is not mandatory, whereas all 

other methods of irrigation require higher effort in weed and pest control during 

growth periods and a different approach for fertilizing the soil. 
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 This dissertation intends to construct the architecture of rice shoot as a first 

objective, so that major components of rice structure are intensified. Nomenclature of 

rice components are described below: 

Nomenclature of rice components 

 

Figure 2.1: Structure and nomenclature of rice components (IRRI). 
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The parts of rice are the following 

Tiller - The shoot developing from the axillary bud meristem. 

Root - An axial system which is usually underground and more or less positively 

geotropic. 

Stem - An axial system which is usually above ground and more or less negatively 

geotropic. 

Node - The level (transverse plane) of a stem at which one or more leaves and 

associated auxiliary bud(s) arise. 

Internode - The portion of a stem between the level of insertion of two successive 

leaves, i.e. between two nodes. 

Leaf - Commonly thought of as one of the three basic parts of the seed plant body, a 

structure usually of determinate growth, without secondary thickening, and of 

superficial origin, often flattened and photosynthetic in part, and in the axil of which 

is found a bud. 

Leaf blade - The blade of a leaf, usually flattened, and expanded. 

Leaf sheath - Any tubular portion of the leaf surrounding the stem, as in the Poaceae. 

Leaf collar - A thin band of intercalary meristematic tissue at the junction of the leaf 

blade (lamina) and the leaf sheath found in grasses. 

Panicle - The grouping or arrangement in which flowers are borne on a plant. 

Flag leaf - The last mature leaf before the inflorescence in a cereal crop plant. 
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2.1.2 Rice Growth Stages System 

 This section discusses the growth stages of the rice plant. The information 

presented is based on the data and characteristics of IR64 variety, but applies 

generally to other rice varieties [2]. 

 The growth of the rice plant is divided into three phases: 

1. Vegetative (germination to panicle initiation), 

2. Reproductive (panicle initiation to flowering), and 

3. Ripening (flowering to mature grain). 

  These 3 growth phases consist of a series of 10 distinct stages. These 

stages are numbered and described as follows:  

Stage 0: germination to emergence. Seeds are usually pregerminated by soaking for 

24 hours and incubating for another 24 hours. After pregermination, the radicle and 

coleoptile protrude through the hull. By the second or third day after seeding in the 

seedbed, the first leaf breaks through the coleoptile. 

 (IRRI, 2005) 

Figure 2.2: Germination to emergence stage shows the emerged primary leaf still 

curled and an elongated radicle. 
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Stage 1: seedling. The seedling stage starts right after emergence and lasts until just 

before the first tiller appears. During this stage, seminal roots and five leaves 

(including primary leaf) are developed. 

  

 (IRRI, 2005) 

 

Figure 2.3: Stage 1, five leaves (including primary leaf) and root system are appeared. 

 

 As the seedling continues to grow, two more leaves develop. Leaves continue 

to develop at the rate of 1 every 3-4 days during the early stage. Secondary 

adventitious roots that form the permanent fibrous root system rapidly replace the 

temporary radicle and seminal roots. 

 

Stage 2: tillering. This stage extends from the appearance of the first tiller until the 

maximum tiller number is reached. Tillers emerge from the axiliary buds of the nodes 

and displace the leaf as they grow and develop. After emerging, the primary tillers 

give rise to secondary tillers. This occurs about 30 days after transplanting. The plant 

is now increasing in length and tillering very actively. Here is a field with plants at the 

early tillering stage. Note the tiller size and canopy development due to increased 

leafing and tiller development. Besides numerous primary and secondary tillers, new 

tertiary tillers arise from the secondary tillers as the plant grows longer and larger. 
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 By this stage, the tillers have multiplied to the point that it is difficult to pick 

out the main stem. Tillers continuously develop as the plant enters the next stage 

which is stem elongation. 

 

 (IRRI, 2005) 

  

Figure 2.4: The seedling shows the position of the two primary tillers with respect to 

the main culm and its leaves. 

  

Stage 3: stem elongation. This stage may begin before panicle initiation or it may 

occur during the latter part of the tillering stage. Thus, there may be an overlap of 

stages 2 and 3. The tillers continue to increase in number and height, with no 

appreciable senescence of leaves noticeable. Ground cover and canopy formation by 

the growing plants have advanced. Growth duration is significantly related to stem 

elongation. Stem elongation is more in varieties with longer growth duration. In this 

respect, rice varieties can be categorized into two groups: the short-duration varieties 

which mature in 105-120 days and the long-duration varieties which mature in 150 

days. 
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 (IRRI, 2005) 

  

Figure 2.5: In early-maturing semi-dwarfs like IR64, the fourth internode of the stem, 

below the point where the panicle emerges, elongates only from 2 to 4 cm before 

panicle initiation becomes visible.  

 

 (IRRI, 2005) 

 

Figure 2.6: Stems which have been dissected to show the length of the fourth 

internode at the panicle initiation stage. 
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 Maximum tillering, stem elongation, and panicle initiation occur almost 

simultaneously in short-duration varieties (105-120 days). In long-duration varieties 

(150 days), there is a so-called lag vegetative period during which maximum tillering 

occurs. This is followed by stem or internode elongation, and finally by panicle 

initiation. 

 These first four stages make up the vegetative phase, the first phase of rice 

plant growth. 

 

Stage 4: panicle initiation to booting. The initiation of the panicle primordium at the 

tip of the growing shoot marks the start of the reproductive phase. The panicle 

primordium becomes visible to the naked eye about 10 days after initiation. At this 

stage, 3 leaves will still emerge before the panicle finally emerges. 

   

 (IRRI, 2005) 

  

Figure 2.7: In short-duration varieties, the panicle becomes visible as a white feathery 

cone 1.0-1.5 mm long. It occurs first in the main culm and then in tillers where it 

emerges in uneven pattern. It can be seen by dissecting the stem. 

 

 As the panicle continues to develop, the spikelets become distinguishable. 

  



                             
14 

 

 (IRRI, 2005) 

  

Figure 2.8: The young panicle increases in size and its upward extension inside the 

flag leaf sheath causes the leaf sheath t bulge. This bulging of the flag leaf sheath is 

called booting. Booting is most likely to occur first in the main culm. 

  

 (IRRI, 2005) 

  

Figure 2.9: At booting, senescence (aging and dying) of leaves and nonbearing tillers 

are noticeable at the base of the plant. 
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Stage 5: heading or panicle exsertion. Heading is marked by the emergence of the 

panicle tip from the flag leaf sheath. The panicle continues to emerge until it partially 

or completely protrudes from the sheath. 
  

 (IRRI, 2005) 

Figure 2.10: Heading stage, panicle protrudes from flag leaf sheath. 
 

Stage 6: flowering. It begins when anthers protrude from the spikelet and, then, 

fertilization takes place.  
 

 (IRRI, 2005) 
 

Figure 2.11: At flowering, the florets open, the anthers protrude from the flower 

glumes because of stamen elongation, and the pollen is shed. The florets then close. 
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 The pollen falls on the pistil, thereby fertilizing the egg. The pistil is the 

feathery structure through which the pollen tube of the germinating pollen (round, 

dark structures in this illustration) will extend into the ovary.  

 Generally, the florets open in the morning. It takes about 7 days for all 

spikelets in a panicle to open. At flowering, 3-5 leaves are still active. 

  

 (IRRI, 2005) 

  

Figure 2.12: The flowering process continues until most of the spikelets in the panicle 

are in bloom.  

  

 Stage 4, 5, and 6 constitute the reproductive phase, the second phase of rice 

growth. The last 3 stages of growth, stages 7, 8, and 9 comprise the ripening phase. 

   

Stage 7: milk grain stage. In this stage, the grain has begun to fill with a milky 

material. The grain starts to fill with a white, milky liquid, which can be squeezed out 

by pressing the grain between the fingers. 
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 (IRRI, 2005) 

  

Figure 2.13: The panicle looks green and starts to bend. Senescence at the base of the 

tillers is progressing. The flag leaves and two lower leaves are green. 

  

Stage 8: dough grain stage. During this stage, the milky portion of the grain first 

turns into soft dough and later into a hard dough. The grains in the panicle begin to 

change from green to yellow. Senescence of tillers and leaves is noticeable. 

  

 (IRRI, 2005) 

 

Figure 2.14: The field starts to look yellowish. As the panicle turns yellow, the last 

two remaining leaves of each tiller begin to dry at the tips. 
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Stage 9: mature grain stage. The individual grain is mature, fully developed, hard, 

and has turned yellow. The upper leaves are now drying rapidly although the leaves of 

some varieties remain green. A considerable amount of dead leaves accumulate at the 

base of the plant. 

  

 (IRRI, 2005) 
 

Figure 2.15: Rice plants at the mature grain stage. Most of the filled grains have 

turned yellow and hard. 
 

 (IRRI, 2005) 
  

Figure 2.16: Stages 7 through 9, produce the milk grain, dough grain, and mature 

grain correspond to the ripening phase, the last phase in the development of rice plant. 
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2.1.3 Artificial Neural Network (ANN) 

Biological Neural Network   

 An artificial neural network (ANN), often just called a "neural network" (NN), 

is a mathematical model or computational model based on biological neural networks. 

Figure 2.17 shows the biological neural network which has two parts very important 

called the synapse and the dendrite. The dendrites are extensions of a neuron which 

connect to other neurons to form a neural network, while synapses are a gateway 

which connects to dendrites that come from other neurons. A biological neuron may 

thus be connected to other neurons as well as accepting connections from other 

neurons, and so we have the basis of a network.  

 Through those connections electrical pulses are transmitted, and information is 

carried in the timing and the frequency with which these pulses are emitted. So, our 

neuron receives information from other neurons, processes it and then relays this 

information to other neurons. The neuron must generate some kind of output based on 

the cumulative input. We still don't know the exact answer to the question as to what 

happens in a biological neuron. However, we do know that our neuron integrates the 

pulses that arrive and when this integration exceeds a certain limit, our neuron in turn 

emits a pulse. Finally, one more thing that you should know is that dendrites modify 

the amplitude of the pulses travelling through them. This modification varies with 

time, as the network `learns'.  

Dendrite 

Axon 

Synapse 

Nucleus 

 

Figure 2.17: A biological neural network. 
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Mathematical Representation of a Neuron 

 In order to represent the mathematical representation, a neural network can be 

represented as shown in Figure 2.18. We called one node of neuron as a perceptron. 

Incoming connections are represented by input lines with an associated weight. The 

neuron itself only performs accumulation and thresholding for incoming pulses from 

its inputs.  

 

Figure 2.18: Mathematical representation of a neuron. 

 When a pulse comes from a connection, it is first multiplied by a number 

called the “weight” of the connection which assigns a certain importance to the 

connection (identical to the largeness of a biological dendrite). Then, the neuron 

accumulates the overall result, and passing the value through a threshold which emits 

a pulse when a certain value is reached. The output of the threshold stage is in turn 

connected to the inputs to several other neurons, which forms a complete network. 

 Neural network consists of an interconnected group of artificial neurons and 

processes information using a connectionist approach to computation (see Figure 

2.19). In most cases an ANN is an adaptive system that changes its structure based on 

external or internal information that flows through the network during the learning 

phase. In more practical terms neural networks are non-linear statistical data modeling 

tools. They can be used to model complex relationships between inputs and outputs or 

to find patterns in data.  
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Figure 2.19: A biological neural network is an interconnected group of nodes, 

mimicking the network of neurons in the human brain. 

 Unfortunately, we can apply this simple mathematical model to practical 

computing and signal processing applications, since the signals transmitted through 

biological neurons are in the form of pulses. Instead, we adopt a further simplification 

by assuming that a set of real numbers are fed in, and a single real number is 

generated at the output. More sophisticated neural networks which continue to learn 

as they are being used may retain memory of the previous run. One may also employ 

feedback. So, we can use real input and output numbers to model the transactions 

between the different neurons. Instead of a biological threshold function, we use a 

mathematical function such as the sigmoid function, arctangent, arcsine, etc. These 

functions should be smooth and continuous (i.e. you should not use a piecewise linear 

or step function) and have an absolute upper and lower limit. They should also be 

differentiable.  

 The sigmoid function is one of the most widely used node transfer functions, 

and is illustrated in Figure 2.20:  
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Figure 2.20: Sigmoid function 

Multilayer Perceptron 

 The principal importance of a neural network is not only the way a neuron is 

implemented but also how their interconnections (more commonly called topology) 

are made. The topology of a human brain is too complicated to be used as a model 

because a brain is made of hundreds of billions of connections which can't be 

effectively described using such a low-level or highly simplified model.  

 A simple topology designed for easy implementation on a digital computer. 

One of the easiest forms of this topology at the moment is made of three layers : 

• One input layer (the inputs of the network)  

• One hidden layer  

• One output layer (the outputs of the network)  

 All neurons from one layer are connected to all neurons in the next layer as 

shown in Figure 2.21. This forms a whole network with full interconnection, please 

note also that the weight (and therefore the importance) of each connection is not 

represented (for practical reason) here but must exist in the reality. 
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Figure 2.21: Back-propagation Network topology (Caudill and Butler, 1992). 

Back-Propagation Neural Network 

 Back-Propagation Neural Network (BPNN), or propagation of error, is a 

common method of teaching artificial neural networks how to perform a given task. It 

is a supervised learning method. It requires a teacher that knows, or can calculate, the 

desired output for any given input. It is most useful for feed-forward networks 

(networks that have no feedback, that have no connections with the loop). The 

methodology of learning process can be summarized as the followings. 

Summary of the BPNN learning process: 

1. Feed training samples with their desired output or target to the neural network.  

2. Compare the network's output to the desired output from that sample. 

Calculate the error in each output neuron.  

3. For each neuron, calculate what the output should have been, and a scaling 

factor, how much lower or higher the output must be adjusted to match the 

desired output. This is the local error.  
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4. Adjust the weights of each neuron to lower the local error.  

5. Assign "gradient" for the local error to neurons at the previous level, giving 

greater responsibility to neurons connected by stronger weights. 

6. Repeat the steps above on the neurons at the previous level, using each one's 

"gradient" as its error. Since we have only moved a small step towards the 

desired state of a minimized error, the above procedure must be repeated many 

times until the mean square error (MSE) drops below a specified value. When 

this happens, the network is performing satisfactorily, and this training session 

for this particular example has been completed. 

 As the algorithm's name implies, the errors (and therefore the learning) 

propagate backwards from the output nodes to the inner nodes. So technically 

speaking, back-propagation is used to calculate the gradient of the error of the 

network with respect to the network's modifiable weights. This gradient is almost 

always then used in a simple stochastic gradient descent algorithm to find weights that 

minimize the error. Often the term "back-propagation" is used in a more general 

sense, to refer to the entire procedure encompassing both the calculation of the 

gradient and its use in stochastic gradient descent. Back-propagation usually allows 

quick convergence on satisfactory local minima for error in the kind of networks to 

which it is suited. 

 It is important to note that back-propagation networks are necessarily 

multilayer perceptrons (usually with one input, one hidden, and one output layer). In 

order for the hidden layer to serve any useful function, multilayer networks must have 

non-linear activation functions for the multiple layers: a multilayer network using 

only linear activation functions is equivalent to some single layer, linear network. 

Non-linear activation functions that are commonly used include the logistic function, 

the Gaussian functions, and other functions. The back-propagation algorithm for 

calculating a gradient has been rediscovered a number of times, and is a special case 

of a more general technique called automatic differentiation in the reverse 

accumulation mode. It is also closely related to the Gauss-Newton algorithm, and is 

also part of continuing research in neural back-propagation. 
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Modification of the neuron connection weights 

Consider the example in Figure 2.22:  
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Figure 2.22: Example of (2, 2, 2) BPNN. 

 This neural network comprises of 2 inputs, 2 hidden nodes, and 2 outputs 

(usually called (2, 2, 2) back-propagation neural network). Designating (I1, I2),       

(H1, H2), and (O1, O2) as the inputs, hidden-layer outputs and output-layer outputs 

respectively, the outputs of hidden node 1 and 2 are given by  
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where   is a weight parameter between input node ith and hidden node jth, 

  is a weight parameter between hidden node ith and output node jth, and 

 sigmoid function sgm(x) is denoted by  
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The output-layer outputs are given by 
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or, using (2.1) and (2.2), 
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 Now we can calculate the output given a particular set of inputs. This allows 

us to calculate the mean squared error (MSE) between the actual output and the 

desired output for the given input in this training example. This is simply the average 

of the squares of the difference between what we want and what we got. Since we are 

interested in the shape of the error curve rather than the precise MSE function, we 

don't need to divide by the number of outputs, and the minimisation algorithm will 

still find the correct minimum. Thus, our error function can be formally written as 
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or, using (2.6) and (2.7), 
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where  Dk is the kth desired output. 

 For example in the following example, suppose we have in the output 0.75 and 

0.05 and the desired outputs 0.9 and 0.1. The MSE is now ((0.9-0.75)2+(0.1-0.05)2)/2, 

which is equal to 0.0125 (remember in the BPNN algorithm we wouldn't need to 

divide by N). Clearly, for any given training example, this value is a function only of 
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the weights of the network. So, to reduce the error, we can try to move to the lowest 

point on this surface. To find this point, it is necessary to calculate the gradient of the 

error function with respect to each network weight. One may then move each weight 

slightly in the opposite direction to the gradient - if the surface is sloping upwards in a 

particular direction, we adjust the weights so that the point on the error surface moves 

downwards.  

 The gradient is fairly straightforward to calculate, due to the convenient fact 

that the derivative of the sigmoid function can be expressed in terms of the function 

itself: 
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                    (2.10) 

 The gradient is defined as the vector of partial derivatives of the multivariate 

function with respect to each of variable. Because the error is a function of the 

network outputs, calculation of a set of partial derivatives for each output node with 

respect to each associated connection weight is needed. This turns out to be trivial, 

since all other variables but the one of interest are held constant when the partial 

derivative is calculated. Thus, only one linear term is left in the calculation of the 

partial derivative of the output, and leaving the coefficient which is just the 

corresponding input. So, we can write 
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Now, the gradient of the error function can be calculated (note: 2
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o o oThe expression  is denoted 2( )((1 ( )) ( ))k kD O sgm S sgm S− − − nδ . 

 The new values for the network weights are calculated by multiplying the 

negative gradient with a step size parameter (called the learning rate) and adding the 

resultant vector to the vector of network weights attached to the current layer. This 

change does not take place, however, until after the middle-layer weights are updated 

as well, since this would corrupt the weight-update procedure for the middle layer.  

 Clearly, the error at the output will be affected by the weights at the middle 

layer, too. However, the relationship is more complicated. A new gradient is derived, 

but this time the output weights are treated as constants rather than the hidden-layer 

weights. Now, the actual output is a function of the weights attached to the middle 

layer only (and in a generic network there are LM of those, for L input nodes and M 

middle-layer nodes). Fortunately, it is still a relatively simple expression. 

2
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k jk ih
kij

E sgm S sgm S w I
w

δ
=

∂
= −

∂ ∑ o                          (2.13) 

 The middle weights are updated using the same procedure as for the output 

layer, and the output layer weights are updated as well. This is a complete training 

cycle for one piece of training data. It should be noted that the input layer is really 

only a buffer to hold the input vector. Therefore, it has no weights which need to be 

modified. However, in a more generic network, one may have more than one hidden 

layer. Again, the update procedure is quite similar. Once the modifications have been 

calculated, all weights (hidden and output) may be updated.  

 Please note: The above description assumes a (2, 2, 2) network. The only 

difference in the mathematics resulting from a larger network is longer summations. 

All of the principles are the same. The training process is analogous to the biological 

process of learning, the strength of individual connections between the neurons 

increases or decreases as human learn.  
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2.1.4 Quantitative and Allometric Relationship 

 Quantitative relation is a relation between magnitudes, and allometry is used 

to describe the morphological evolution of species, and is based on the relation 

between an organism's size and the size of any part of the organism. 

 Allometry is studied during the growth of a single organism; as a comparison 

between different organisms of the same species; and between organisms in different 

species. The allometric equation is graphed on an XY axis, with the body size on the 

x-axis and the part size on the y-axis. The scatter produced by the different 

measurements being compared can then be analyzed for useful data. 

 Allometry allows scientists to study biological functions as they increase as a 

power of body size. For instance, more energy is consumed by an elephant, but a 

mouse probably consumes more energy when that energy is measured as a function of 

mouse body weight.  

 The allometric equation is generally stated as 

y mx b= +                                                     (2.14) 

where  y = predicted size of body part; x = observed body weight; m = slope acquired; 

and b = the value of y where it intercepts the vertical axis. 

 Not all allometric comparisons are linear; the allometric equation is frequently 

modified to compensate for this. The point is to determine a consistent relationship for 

the species in question. Another example of allometric equation that compensates for 

nonlinear functions is: 

log( ) log( ) [log( )]y b m x= +                                       (2.15) 

 Most biological functions increase as some power of body size. For example, 

more energy is needed to "run" an elephant than to run a mouse; as body size 

increases, so does the energy needed by the organism. More cognitively, if bodies are 

operated by brains, then it seems reasonable that the larger the body, the larger the 

brain needed to operate it (more nerves needed to coordinate more muscles, etc). 
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However, such size-based relationships are rarely 1:1 (that is, it is rare to have a 1-

unit increase in body size produce exactly a 1-unit increase in metabolic rate, or brain 

size, or whatever).  

 So, considering in the relationship between body size and brain size; larger 

animals are expected to have larger brains, but we want to know more about the 

relationship for two reasons: 

• First, knowing something about the general relationship might tell us 

something interesting about brains and cognition and intelligence in general. 

• Second, if there is a general relationship, then we want to factor it out when 

talking about brain size in relation to cognition: cows have bigger brains than 

most monkeys, but that probably has more to do with having really bigger 

bodies than with unsuspected cow intelligence.  

 For starters, it makes sense to go out and measure a set of primate’s body and 

brain size samples: 

 

Figure 2.23: A plot of the data for 117 samplings of female body and brain weight. 

 Figure 2.23 shows a plot of the data for 117 samplings; adult females were 

used because it simplifies how one deals with sexual dimorphism, and for various 

theoretical reasons female mammals are thought to be the "ecological sex", with 

males more a derived form of females (driven by sexual selection). Here is what the 

data look like; note that body weight is given in kilos (1,000 gm) - so multiply the 

body weights by 1,000 to get them into the same units as brain weights. 
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 We can see that bigger-bodied species tend to have bigger brains. But how do 

we express that relationship?  

 There are several methods for calculating a regression, but the principle is 

simple: it is a line of best fit between the variables (see Figure 2.24). And the line 

itself can be described by a simple equation of the form  

y mx b= +                                                     (2.16) 

where y = predicted brain weight, x = observed body weight, m = slope and b = the 

value of y where the line intercepts the vertical axis.  

 

Figure 2.24: Linear regression for describing the relation between body and brain 

weight of female. 

 The regression here explains about 77% of the variance (R2). That means 

about 77% of variation in y is explained by variation in x. But there are still have 

some problems, looking at the line, it is clear that while it might be the best average 

straight line fitting those points, there is a strong tendency for points near the ends to 

fall below the line and points in the middle to fall above it. Basically, the relationship 

between body weight and brain weight does not seem to be linear.  

 Try a nonlinear regression, of course. Figure 2.25 shows a 2nd-order 

regression, and then the line explains about 89% of the variation.  
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Figure 2.25: The 2nd-order regression for describing the relation between body and 

brain weight of female. 

 However, 2nd-order equations are difficult to compare. So we convert the raw 

data to base-10 logs, as in the Figure 2.26 (note units need to be the same, so body 

weight is now in grams). When the data are expressed as logs, they fit a nice easy 

linear equation, the points are spread out, so we can see what is going on, and the R2 

value is essentially unchanged (the slight difference between 0.889 in the 

untransformed data and the 0.884 here is due to the transformation).  

 

Figure 2.26: The data are converted to base-10 log, then linear regression will be 

obtained with closely R2 value to previous method.   

 Now,  the equation for the line here is of the familiar "y = mx + b" form, but 

the "y" and "x" here are actually log(brain weight) and log(body weight). 

 This is an allometric equation; "allo" comes from Greek: allos is equal to 

"other", in this case "other than metric" that is, nonlinear (the alternative is a linear or 
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log( ) log( ) [log( )]y b m x

isometric equation, a 1:1 relationship -- e.g., for every kilo of body weight, add 20gm 

of brain). To express the same nonlinear relationship directly, that is, with an equation 

in which x is body weight, not log(body weight), we convert from the above which is 

really 

= +                                       (2.17) 

to the standard form for allometric equations, y = bxm . 

2.1.5 L-system 

 An L-system or Lindenmayer system is a parallel rewriting system, namely a 

variant of a formal grammar (a set of rules and symbols), most famously used to 

model the growth processes of plant development, but also able to model the 

morphology of a variety of organisms [22]. L-systems can also be used to generate 

self-similar fractals such as iterated function systems. L-systems were introduced and 

developed in 1968 by the Hungarian theoretical biologist and botanist from the 

University of Utrecht, Aristid Lindenmayer (1925–1989). 

 As a biologist, Aristid Lindenmayer worked with yeast and filamentous fungi 

and studied the growth patterns of various types of algae, such as the blue/green 

bacteria Anabaena catenula. Originally the L-systems were devised to provide a 

formal description of the development of such simple multi-cellular organisms, and to 

illustrate the neighborhood relationships between plant cells. Later on, this system 

was extended to describe higher plants and complex branching structures. 

 The recursive nature of the L-system rules leads to self-similarity and thereby 

fractal-like forms which are easy to describe with an L-system. Plant models and 

natural-looking organic forms are similarly easy to define, as by increasing the 

recursion level the form slowly 'grows' and becomes more complex. Lindenmayer 

systems are also popular in the generation of artificial life. 

 L-systems are now commonly known as parametric L systems, defined as a 

tuple 

{ }, , ,G V S Pω= ,                                             (2.18) 
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where, V (the alphabet) is a set of symbols containing elements that can be replaced 

 (variables), 

S is a set of symbols containing elements that remain fixed (constants), 

ω (start, axiom or initiator) is a string of symbols from V defining the initial 

state of the system, and  

P is a set of production rules or productions defining the way variables can be 

replaced with combinations of constants and other variables. A production 

consists of two strings; the predecessor and the successor.  

 The rules of the L-system grammar are applied iteratively starting from the 

initial state. As many rules as possible are applied simultaneously, per iteration; this is 

the distinguishing feature between an L-system and the formal language generated by 

a grammar. If the production rules were to be applied only one at a time, one would 

quite simply generate a language, rather than an L-system. Thus, L-systems are strict 

subsets of languages. 

 An L-system is context-free if each production rule refers only to an individual 

symbol and not to its neighbors. Context-free L-systems are thus specified by either a 

prefix grammar, or a regular grammar. If a rule depends not only on a single symbol 

but also on its neighbors, it is termed a context-sensitive L-system. 

 If there is exactly one production for each symbol, then the L-system is said to 

be deterministic (a deterministic context-free L-system is popularly called a D0L-

system). If there are several, and each is chosen with a certain probability during each 

iteration, then it is a stochastic L-system. Using L-systems for generating graphical 

images requires that the symbols in the model refer to elements of a drawing on the 

computer screen.  
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Examples of L-systems 

Example 1: Algae, L-system for modelling the growth of algae. 

variables : A B  

constants : none  

start  : A  

rules  : (A → AB), (B → A)  

which produces: 

n = 0 : A  

n = 1 : AB  

n = 2 : ABA  

n = 3 : ABAAB  

n = 4 : ABAABABA  

n = 5 : ABAABABAABAAB  

n = 6 : ABAABABAABAABABAABABA  

 

Example 2: Sierpinski triangle, the Sierpinski triangle drawn using an L-system. 

variables : A B  

constants : + −  

start  : A  

rules  : (A → B−A−B),(B → A+B+A)  

angle  : 60°  

 Here, A and B mean both "draw forward", + means "turn left by angle", and − 

means "turn right by angle" (see turtle graphics). The angle changes sign at each 

iteration so that the base of the triangular shapes are always in the bottom (they would 

be in the top and bottom, alternatively, otherwise). 

 

Figure 2.27: Sierpinski triangle  draw with evolution for n = 2, n = 4, n = 6, n = 9. 
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Example 3: Fractal plant 

variables : X F  

constants : + −  

start  : X  

rules  : (X → F-[[X]+X]+F[+FX]-X),(F → FF)  

angle  : 25°  

which produces the result in figure 2.28. 

 

Figure 2.28: Result of L-system generates the fractal plant (Lindenmayer, 1968). 

 Here, F means "draw forward", - means "turn left 25º", and + means "turn 

right 25º". X does not correspond to any drawing action and is used to control the 

evolution of the curve. The sign “[” corresponds to saving the current values for 

position and angle, which are restored when the corresponding “]” is executed. 
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2.1.6 Radiosity Rendering Technique 

 Radiosity is a global illumination algorithm used in 3D computer graphics 

rendering. Radiosity methods were first proposed in about 1950 in the engineering 

field of heat transfer [23]. They were later refined specifically for application to the 

problem of rendering computer graphics in 1984 by researchers at Cornell University 

[24]. Radiosity is an application of the finite element method to solving the rendering 

equation for scenes with purely diffuse surfaces. The surfaces of the scene to be 

rendered are each divided up smaller surfaces (patches). A form factor is computed 

for each pair of patches. Form factors are coefficients describing how well the patches 

can see each other. Patches that are far away from each other, or oriented at oblique 

angles relative to one another, will have smaller form factors.  

 The basic radiosity method has its basis in the theory of thermal radiation, 

since radiosity relies on computing the amount of light energy transferred among 

surfaces. In order to simplify computations, the method assumes that all scattering is 

perfectly diffuse. Surfaces are typically discretized into quadrilateral or triangular 

elements over which piecewise polynomials function is defined (for example see 

Figure 2.29). 

 

Figure 2.29: Rendered scene with radiosity technique (left), and discretized objects in 

the same scene (right). (Cornell’s box, www.geomerics.com) 
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 After this breakdown, the amount of light energy transfer can be computed by 

using the known reflectivity of the reflecting patch, combined with the view factor of 

the two patches. This dimensionless quantity is computed from the geometric 

orientation of two patches, and can be thought of as the fraction of the total possible 

emitting area of the first patch which is covered by the second patch. 

 More correctly, radiosity is the energy leaving the patch surface per discrete 

time interval and is the combination of emitted and reflected energy: 

 

dA E dA R B F dA= + ∫ ,                                     (2.19) B   

where: 

Bi is the radiosity of patch i.  

Ei is emitted energy.  

Ri is the reflectivity of the patch, giving reflected energy by multiplying by the 

incident energy (the energy which arrives from other patches).  

All j ( j i≠ ) in the rendered environment are integrated for BjFji dAj, to 

determine the energy leaving each patch j that arrives at patch i.  

Fij is the constant-valued view factor for the radiation leaving from patch i and 

hitting patch j.  

Considering 

i ij j jiA F A F= ,                                                  (2.20) 

so the equation 2.19 can be derived to 

        i i i jj ijB E R B F= + ∫ .                                             (2.21) 

 To ease for use, the integral is replaced and uniform radiosity is assumed over 

the patch, creating the simpler: 
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i i i j i
j

B E R B F
=

= + ∑                                             (2.22) 

 This equation can be applied to every patch.  The form factor, Fji, can be 

calculated in a number of ways. Early methods used a hemicube (an imaginary cube 

centered upon the first surface to which the second surface was projected, devised by 

Cohen and Greenberg in 1985) to approximate the form factor, which also solved the 

intervening patch problem [50]. This is quite computationally expensive, because 

ideally form factors must be derived for every possible pair of patches, leading to a 

quadratic increase in computation with added geometry. New methods include 

adaptive integration was proposed by G. Walton in 2002 [25]. He described the use of 

adaptive integration for the calculation of view factors between simple convex 

polygons with obstructions. The accuracy of the view factor calculation was 

controlled by a convergence factor. The adaptive integration method was compared 

with two other common methods implemented in a modern computer program and 

found to have significant advantages in accuracy and even advantages in 

computational speed in some cases. 

 

Figure 2.30: Comparison of scenes which are rendered with direct illumination (left) 

and radioity technique (right), (www.geomerics.com). 
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 Radiosity was perhaps the first rendering algorithm in widespread use which 

accounted for diffuse indirect lighting. Earlier rendering algorithms, such as Whitted-

style ray tracing were capable of computing effects such as reflections, refractions, 

and shadows, but despite being highly global phenomena these effects were not 

commonly referred to as "global illumination." As a consequence, the term "global 

illumination" became confused with "diffuse interreflection," and "Radiosity" became 

confused with "global illumination" in popular parlance. However, the three are 

distinct concepts. The scene generated by using direct illumination and global 

(radiosity) illumination are compared as shown in Figure 2.30. 

 The radiosity method in the current computer graphics context derives from 

(and is fundamentally the same as) the radiosity method in heat transfer. Calculation 

of Radiosity rather than surface temperatures is a key aspect of the radiosity method 

that permits linear matrix methods to be applied to the problem. However, the 

Radiosity algorithm is that it is relatively simple to explain and implement. This 

makes it a useful algorithm for applying to other works related to global illumination 

algorithms. 
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2.2 Literature Review 

2.2.1  Rice Architectural Model 

 Since mid-1960’s, researchers began to develop computer models for 

quantitatively studying plant growth [26]. Researches in computer simulations of 

plant growth, virtual plant research, are widely studied and broad applied in 

agronomy, forestry, ecology, and other areas. Virtual plant model is based on a 

description of eco-physiological processes and can be used to simulate synthetic and 

global variables of plant growth under different environmental conditions such as 

crop yields, biomass, leaf area index, mass number of organs, and nutrient uptakes. 

However, these eco-physiological models rarely treated plant morphology in details. 

In general, eco-physiological models focus on predicting biomass production at a crop 

level, and they are useful tools for predicting crop production and evaluating land 

productivity from readily available input data whereas virtual plant models are best 

suited for the modeling of plant architecture dynamics and processes. Virtual plant 

models focus on plant architecture and describe plants as individual entities. These 

models are used to simulate the spatial features of a plant and output the three-

dimensional architectural visualized as realistic images. 

 Physiological models of plants usually contain a simple description of the 

plant in a few broad compartments (roots, stems, leaves, flowers, fruits). These 

models aim at predicting the dry matter production as the result of the functioning of 

the plant (photosynthesis, respiration, biomass partitioning), which regulated by the 

environmental factors. They usually give accurate predictions of biomass productions 

and yields, but important aspects of plant architecture are missing. However, plant 

architectural models have been developed. These morphological models aim at 

generating 3-dimensional virtual plants that are faithful to botanical knowledge. This 

approach contains two complementary parts: (1) the mathematical models based on 

morphological knowledge and experimental measurements and, (2) the computer 

simulation and graphical representation of plant development based on these 

mathematical models. A well-known example is L-systems grammar [22], which 

provides the possibility to formalize the description of plant architecture. 
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 L-studio (http://www.cpsc.ucalgary.ca/Research/bmv/lstudio/) is a software 

package that uses L-systems grammar in combination with a graphical interface to 

create a three-dimensional virtual plant. In rice research, Tomonari Watanabe et al. 

[27] applied the L-systems formalism to create “three-dimensional virtual rice” plants, 

incorporating models of phonological development and leaf emergence period as a 

function of temperature and photo period, which were used to determine the timing of 

tiller emergence. The “three-dimensional virtual rice” model has a possibility to 

demonstrate the differences in the structure and development between cultivars and 

under different environmental conditions. 

2.2.2  Rice Growth Simulation System 

 Physiological and architectural plant models have originally been developed 

for different purposes and therefore have little in common, thus making combined 

applications difficult [28]. A recent trend is efforts to combine physiological and 

architectural models, i.e. linking structure and functioning of the plants. Mech and 

Prusinkiewicz [29] introduced the formalism of open L-systems, allowing exchange 

of information with the environment. Hence, it becomes possible to make the 

development of the structure responsive to external and local conditions [30]. One 

could also think of e.g. calculating assimilate production and organ sink strength 

(growth potential) using a physiological model, and feed this information into an L-

system. The L-system, then, allocates growth to specific buds, shoots and leaves in 

accordance with their relative growth potentials [31]. The L-system also calculated 

the numbers and size of organs present in the next cycle (e.g. the next day) and this 

information is fed into the physiological model. Complete integration of these 

modeling approaches should combine the strong points of both, resulting in a 

powerful tool which will bring modeling of ornamental quality a major step forward.  

 GREENLAB is one of the few plant models that links physiological plant 

activity with plant architecture. Recently, many papers on the development, 

simulation results and application of GREENLAB have been published, including 

colorful pictures of 3-dimensional virtual plants [32]. In GREENLAB plant fresh 

biomass production is computed from transpiration, assuming transpiration efficiency 

to be constant and atmospheric demand to be the driving force, under non-limiting 
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water supply [28]. The fresh biomass is then distributed among expanding organs 

according to their relative demand (as mentioned above). Demand for organ growth is 

estimated from allometric relationships (e.g. leaf surface to weight ratios) and kinetics 

of potential growth rate for each organ type. These are obtained through parameter 

optimization against empirical, morphological data sets by running the model in 

inverted mode. The model reproduced accurately the dynamics of plant growth, 

architecture and geometry of various annual and woody plants, enabling three-

dimensional visualization. Although calibrated by optimization to reconstruct 

observed, prototypic plants, and the model is able to simulate some of the plant’s 

phenotypic plasticity resulting from competition among sinks for resources. 

GREENLAB is able to simulate the variability of leaf size on the plant as a result of 

water stress in different phases of plant development and compensatory growth 

following pruning [28]. This, as well as the dynamic simulation of complex 

morphogenetic processes using the principle of sub-structures, constitutes important 

innovations in plant architectural modeling. 

2.2.3  Light Interception Model of Plant 

 Light is usually the most important factor influencing the growth and 

development of plants while nutrients and water are not limited [9, 10]. To gain more 

understanding and take advantage from plant, many light interception models were 

developed and investigated in plant science research. Both 2D and 3D computer 

graphics was used as a tool for calculating amount of light that can be absorbed by the 

plant leaves or canopy.  

 Leaf area estimation for light interception model could be estimated by 

satellite image. Francisco J. Flores et al. proposed the estimation method of leaf area 

from the multispectral satellite images [11]. The relationship between leaf area index 

(LAI) of loblolly pine plantations and broadband simple ratio (SR) vegetation index 

calculated from Landsat Enhanced Thematic Mapper Plus (ETM+) data was 

examined. The results suggest that stand LAI of loblolly pine plantations can be 

accurately estimated from readily available remote sensing data and provide an 

opportunity to apply the findings from eco-physiological studies in field plots to 

forest management decisions at an operational scale.  R.E.E. Jongschaap proposed the 
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integrating crop growth simulation and remote sensing to improve resource use 

efficiency in farming systems [12]. Remote sensing data collected by satellite were 

used to determined leaf area of plant in farm for predicting wheat production at 

regional scale.  

 Also the calculation of light transmission through a plant canopy could be 

measured by processing the fish-eye hemispherical images. Sinoquet et al. presented a 

method to measure light interception by vegetation canopies which uses a 3D digitizer 

and image processing software. Information on light interception is derived from the 

virtual images by using simple features of image analysis software. The method was 

applied to cotton, grapevine and young mango plants [13].  

 Many techniques for estimating light interception on 3D plant canopy were 

proposed [14-18]. Since 1993, Buwalda et al. proposed a method incorporating 

interactive computer graphics to simulate spatially variable radiation interception ad 

canopy photosynthesis [14]. The model was applied to examine spatial variability of 

photosynthesis within canopies of kiwifruit (Actinidia deliciosa) vine growing on two 

trellis types. R. Manfred et al. developed a three dimensional approach to modeling 

light interception in heterogeneous canopies in 1999 [15]. They proposed a simulation 

tool to assess radiation penetration into canopies that (1) give details on light 

absorption in heterogeneous canopy architectures and (2) comprise simple and easily 

adaptable routines. In 1999, Maria Luisa Espana et al. presented their 3D model of 

maize (Zea mays L.) canopy structure for accurate reflectance simulation [16]. They 

focused on fully developed maize plants without paying attention to the reproductive 

organs. Their 3D model of maize with small number of parameters was presented; 

they tried to reduce the number of parameter used to describe the 3D maize model. 

The canopy structure is used to compare the SAIL reflectance model to the 

reflectance simulated with PARCINOPY which is monte-carlo ray tracing model, but 

did not compare to the actual plants. B. Pommel et al. calculated the cumulative 

radiation intercepted by three 3D regular canopies, presenting a regular distribution as 

three different plant population densities [17]. The ADEL-Maize model which 

constructed based on L-system formalism, simulated 3D canopies of maize was 

proposed. The simulation results show that light interception on unchanged leaf size 

of canopies can be estimated. In 2007, Nathalie Lamanda et al. used 3D architectural 
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models to assess light availability and root bulkiness in agroforestry systems [18]. 

Light transmission and the number of coconut roots were assessed in coconut 

smallholdings from 6 to 60 years old. The modeling of light transmission through 

coconut stands was based on three-dimensional virtual coconut trees and a numerical 

light model that computed the shade cast by coconut trees on underlying crops. 

 More complex model of light calculation was also investigated. Indirect light 

such as diffuse and penetrated light was considered [9, 19], but did not integrate with 

the direct light interception model yet. Francisco de Castro and Ned Fetcher proposed 

their three dimensional model of interception of light by a plant canopy. Their canopy 

model was divided into small cubic cells, each on characterized by mean leaf angle 

and the leaf area index. The model can calculate the probability that a beam will 

penetrate to any given cell without being intercepted by the foliage in the path. The 

model had been tested against real measurements taken in an artificial plantation, 

reaching an R2 of 0.714 between predicted and observed values. Xiping Wang el al. 

presented their model to simulate the interception of DPAR in plant canopies [19]. 

Two sub-model were proposed; first is the 3D maize canopy surface which 

represented as small triangular facets according to 3D digitized data collected from 

field, and the second sub-model is divided sky for calculating diffused light. The 

Dividing Sky Hemisphere with Projection (DSHP) model was validated against 

DPAR measurements made in actual maize (Zea mays L.) canopy. However, more 

accuracy and realistic modeling technique of light calculation still required. 

2.2.4  Rice Crop Simulation Model 

 RICEMOD [5] is a FORTRAN and BASIC based eco-physiological model for 

irrigated rice production. The models aim to study the relative constraining effects of 

radiation, leaf blade nitrogen content, respiration rate, and assimilate partitioning on 

rice plant growth. Useful for predicting future production scenarios, but does not 

include the influence of CO2. It includes a number of physical parameters, including 

accommodation of subroutines dealing with soil and plant chemistry as well as 

physical processes of the atmospheric environment. The model is very sensitive to 

soil parameters and has been expanded to consider soil water deficit. Model 
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components include maximum leaf area index, timings of plant growth initiation and 

harvest, radiation-use efficiency (RUE), and harvest index (HI).  

 ORYZA2000 [7, 8] is the successor to a series of rice growth models. The 

models aim to study the impact of climate change rice yields and explore adaptive 

management options (fertilizer, cultivar type, irrigation strategy, sowing date, etc.). It 

is an update and integration of the models ORYZA1 for potential production, 

ORYZA-W for water-limited production, and ORYZA-N for nitrogen-limited 

production. 

 The model combines several modules: aboveground crop growth, 

evapotranspiration, nitrogen dynamics, soil-water balance, and others. A very simple 

model (VSM) for yield prediction of rice under different water and nitrogen 

applications was proposed in latest 2005 [33]. The VSM was developed for 

simulation of rice grain and biomass yields under different irrigation and nitrogen 

application management strategies. The model can provide the grain and biomass 

yields based on maximum leaf area index, harvest index, and light use efficiency. The 

model assumes a triangular pattern for leaf area changes and proportionately of 

biomass accumulation to the intercept solar radiation. The accuracy of the model was 

verified with independent data from other experiments in the study area and in the 

northern parts of Iran with sub-humid climate. 

2.2.5    Application of Neural Network in Agricultural Research 

 The future challenges confronting this dynamic, architectural plant model [28] 

will be (1) the need to substitute some of the lumped functions (black boxes) with 

mechanistic processes, such as energy interception and conversion, and water status 

dynamics and their physiological feedbacks on plant growth; (2) the formulation of 

feedbacks of physiological status on architecture, in addition to plant geometry; and 

(3) the demonstration that the resulting system is useful not only for re-creation of 

observed structures (representation, explanation), but also for the accurate prediction 

of the phenotypes in hypothetical environments (extrapolation). 

 A Neural Network (NN) is an information processing paradigm that is mimic 

biological nervous systems, such as the brain, process information. The key element 
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of this paradigm is the novel structure of the information processing system. It is 

composed of a large number of highly interconnected processing elements (neurons) 

working in unison to solve specific problems. Neural networks, like people, learn by 

example. A neural network is configured for a specific application, such as pattern 

recognition or data classification, through a learning process. Learning in biological 

systems involves adjustments to the synaptic connections that exist between the 

neurons. Neural networks are widely used for solving several kinds of problems, 

including highly complex problems in plant science, ecology, agro-ecology, and 

agriculture [34, 35, 36, 37].  

 Neural networks have several advantages over multivariate analysis 

techniques. They have potential to solve problems where large amount of data exist, 

but the relationships between system inputs and outputs are not well understood. They 

can handle noisy data with a higher degree of accuracy, and incomplete data [37]. 

There are several neural network models that used to describe the relationships 

between the characteristic of plant organs such as leaf area, or color [38], and their 

yields. Some models can be used to predict crop yields by considering the 

environments or climate changes as Uhrig’s model [39]. However, there is no 

integrated model that linking every parts of plant organs together. Especially, virtual 

rice model, which is performed by sub-network models, will be gained valuable 

advantages in both scientific and economic study.  



CHAPTER III 

MATERIALS AND DATA ACQUISITION 

3.1  Plant Materials  

 Experiments were performed on two different model cultivars: Khao Dawk 

Mali 105 rice (Oryza sativa L. cultivar ‘KDML105’) and Pathumthani 1 rice (Oryza 

sativa L. cultivar ‘PTT1’). Both rice cultivars are known as the most famous and very 

important to Thai export demand. 

Khao Dawk Mali 105 rice (Oryza sativa L. cultivar ‘KDML105’) 

 KDML105 rice is known as “Jasmine rice or Hom Mali rice” in Thailand, 

which stands for fragrant rice and is Thai specialty. Jasmine rice is smooth, shiny and 

silky in appearance and is considered the finest grade of rice in Thailand. When 

cooked, it produces a fragrant aroma and is slightly chewy in texture (see Figure 3.1). 

 

Figure 3.1: Thai Jasmine rice or Hom Mali rice. 
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Specification: 

⋅ Name: Khao Dawk Mali 105  

⋅ Characterstic: smooth, shiny and silky, photoperiod sensitive rice, in-season 

rice field 

⋅ Grain: brown color, tapering shape  

⋅ Average Height: about 1.50 meters  

⋅ Flowering: 20 October  

⋅ Texture of the Rice: soft white, tender and naturally fragrant  

⋅ Dormancy: 8 weeks  

⋅ Productivity: 750-1,047 Kg/Rai 

⋅ Cultivation: about 160-180 days (20 November)  

 

Pathumthani 1 (Oryza sativa L. cultivar ‘PTT1’). 

 Thai Pathumthani Fragrant Rice (Figure 3.2) is a kind of fragrant rice but said 

to be less fragrant than Jasmine rice. Also it's a year round crop and can be grown in 

an easier way. It has a natural aroma depending on its age, and when cooked, the rice 

kernels have a tender texture. 

 

Figure 3.2: Thai Pathumthani Rice 
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Specification: 

⋅ Name: Pathumthani 1  

⋅ Characteristics: smooth, shiny and silky, photoperiod insensitive rice, double-

crop field; off-season paddy field 

⋅ Average Height: 1.04 -1.33 meters  

⋅ Grain: brown color, tapering shape, hairy, long awn  

⋅ Texture of the Rice: soft white, tender and authentic naturally fragrant  

⋅ Dormancy: 3-4 weeks  

⋅ Productivity: 650 - 774 Kg/Rai  

⋅ Cultivation: about 104 - 126 days 

 

3.2  Experimental Site 

 The field experiment was carried out at the actual rice field in Loei province 

(17°48′ N, 101°74′ E), Thailand. Experiments for this dissertation were performed in 

small size (2m. x 3m.). Transplanted rice used in the studies was grown in the 

chamber (see Figure 3.3). Global weather data were also measured, data logger and its 

sensor were set on the tripod located in the center of experimental area. 

 

A B 

THAILAND 

C 

LOEI Province 

Figure 3.3: A) The experimental site is located in Loei province, north-east of 

Thailand. B) The 2m. x 3m. plots for seedling plant. C) A chamber set up with nets 

against bugs.  
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3.3 Data Acquisition 

 This dissertation is separated into three main parts of working steps; the first 

part is modeling and constructing a three-dimension architectural model which was 

proposed in 2006 [41], the second part is the calculation method of light incidence 

presented in 2008 [43], and the third part is rice growth system developed by using 

integrated neural network for describing quantitative and allometric relationship 

among each rice parts. Thus, we designed three experiments and collected data for 

those three models separately. And the acquisition of weather data is expressed in the 

last sub-section. 

3.3.1 Measurement of Rice Structure and Rice Growth 

 The experimental data used for constructing a three dimensional model of rice 

based on L-system was designed and performed in conditions as followings: Thai 

Jasmine Rice (Oryza sativa L. cultivar ‘KDML105’) and Pathumthani 1 rice (Oryza 

sativa L. cultivar ‘PTT1’) were planted on July 9th, 2006 in the actual rice field. 

Germination behavior of seedlings was observed. After 30 days from emergence, for 

each cultivar of rice, 10 similarly plants were selected and transplanted into pots. All 

components and characteristic of rice were observed until harvesting date on  

December 1st, 2006. Both rice cultivars were 145 days old.   

 For the measurement of rice growth, number of leaves, leaf width, leaf length, 

leaf shape, leaf angle, height of internode, and number of tillers were collected 

weekly. Germination behavior was observed during germination stage. Then a three-

dimension structural model of rice was constructed [41].  

3.3.2 Measurement of Light Incidence 

 A three-dimension architectural model of rice which used for modeling the 

calculation of the amount of light incidence was reconstructed. We observed and 

collected the characteristic data once again in year 2007. The same rice cultivars were 

planted on August 1st, 2007 in two blocks of size 2m. x 3m. After 15 days of growth, 

for each of rice cultivar, 10 similar plants were selected and transplanted into 10 pots 

each. There were two groups of pots for two types of rice. Details of leaf shape and 

leaf area were collected carefully. 
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 The intensities of PAR (PPFD, photosynthetic photon flux density) at fifty 

randomized positions on observed plant were measured. The observation was 

performed during  September 23rd, 2007 and September 30th, 2007. The rice during 

this time was in the early booting stage and the canopy heights for the KDML105 and 

PPT1 were 1.25 m and 1.1 m, respectively. There were 8–14 green leaves on every 

stem in both rice cultivars. Under and above canopy, PAR was measured.  

3.3.3 Measurement of Rice Growth Parameters for Constructing Growth System 

 Two rice cultivars, KDML105 and PTT1 were planted on August 1st, 2007 in 

the prepared 2m. x 3m. rice plots (Figure 3.3B). Seedlings are placed in a set of pots 

filled with the same soil. Fertilizer (16-16-16) which composes of Nitrogen (N), 

Phosphorous (P), and Potassium (K), was applied in the pots (Figure 3.4). The water 

level of each pot was controlled in equal level. After 15 days of growth, 25 similarly 

plants (with height, number of leaves, and root density) were selected and were 

transplanted into 25 pots for each rice cultivar. Plant architecture, rice growth 

parameters and the intensity of PAR (PPFD, photosynthetic photon flux density) were 

also measured. The weather station was set up in the middle of the field experiment.  

 

Figure 3.4: Twenty five pots filled with the same soil. Seedlings were transplanted to 

pots on 15 days after germination.  
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 In this dissertation, we divided rice structure into four main parts as stem, 

leaves, root, and panicle. Fourteen characteristics of rice parts, considered as the 

variables of functional model, were defined as shown in Table 3.1. 

Table 3.1: Four rice parts and their characteristic variables. 

Rice Part Part Characteristic Variable name 

Stem Width 

Length 

Biomass 

sW  

sL  

sM  

Leaf Width  

Length  

Area  

Biomass 

lW  

lL  

lA  

lM  

Root Length  

Number of Root  

Biomass 

rL  

rN   

rM  

Panicle Length  

Number of Panicle Branch 

Biomass  

Number of Grain 

pL  

pN  

pM  

gN  

 Weekly recordings of all rice parts were collected. Fourteen characteristic 

variables of rice parts are highly concentrated. Width, length, the number of grain, 

and the number of tillers will be measured from seedling to maturity; alternatively, 

dry-weight was also collected. We observed the pattern of growth in two steps 

consistent to the bi-phasic growth of rice [40]. Tiller density is an important indicator 

of high yields in rice production. Tillering is affected by the rice variety and 

numerous environmental factors, including temperature, and light. So, the 

accumulated light was considered as a variable effected to the model. Collected data 

were used in the analytical method of quantitative model and allometric relationship 

model. 
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3.3.4 Weather Data 

 There are six weather data were collected, five from six were collected by the 

HOBO data logger (H21-001) with smart sensors (S-LIB-M003, S-LIA-M002, S-

THB-M002, and S-WCA-M003, see Figure 3.5 and Appendix). The rain-fall (Rn) 

data were also retrieved from the meteorology station of Loei province. The 

experiments were performed during August 15th, 2007 and March 15th, 2008. The 

weather station was set up in the middle of the field experiment. Lists of five weather 

parameters which collected automatically are shown as followings: 

1. Air Temperature (measured in unit of degree Celsius, C ), T 

2. Relative Humidity (RH, %), H 

3. Solar Radiation (Energy flux, MJ/m2/day), Solar 

4. Photosynthetically Active Radiation (PAR, Mole quantum /m2/day), Par 

5. Wind Speed (km/day), Wd 

6. Rain-fall (mm), Rn 

  

Figure 3.5: The HOBO weather station with smart sensors. 



CHAPTER IV 

RICE ARCHITECTURAL MODEL, LIGHT INTERCEPTION 

MODEL, AND INTEGRATED NEURAL NETWORK MODEL 

 Three models; a three dimension rice architectural model [42], a light 

interception model [43], and an integrating of neural network model are proposed. 

This chapter describes the models methodology. Results of these three models led to 

constructing the rice growth system expresses in the last section of this chapter.  

4.1 Three-Dimension Rice Architectural Modeling 

 A three dimension dynamically model of rice has proposed in 2006 [41], the 

model was constructed from L-system and the growth model came from a set of 

weekly observed data under a biologically knowledge. The improvement of the three 

dimensional model of rice is reconstructed for more accuracy. The leaf shape and leaf 

area are considered more closely to the real leaf in order to calculate an amount of 

light incident to leaf area. The leaf shape and leaf curve data have been collected for 

constructing new model. The L-system of rice is presented in Section 4.1.1. The 

mechanical of dynamic rice model is shown in Section 4.1.2. The biological 

motivated conditions are illustrated in Section 4.1.3.  

 This three-dimension architectural model of rice will be used to calculate the 

light interception model. Section 4.1.4 shows an analytical method of leaf shape. The 

leaf curve is expressed in Section 4.1.5. Leaf segmentation method is described in 

Section 4.1.6, and the calculation of leaf area in the three-dimensional model of rice is 

presented in Section 4.1.7. 

4.1.1 L-system of Rice 

 The growth stages of rice are considered as three main stages; seedling, 

vegetative, and reproductive stage. The rice components are denoted by some 

characters in L-system is indicated in Figure 4.1.  

 Rice shoot part is important for finding the amount of light incidence in order 

to develop the rice growth system. During rice growth, apex will be developed to the 
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set of shoot part: stem, bud, and apex. Steps of rice shoot growth are shown in Figure 

4.2. 
L 

 

S 

A 

B 
R 

I 

Figure 4.1: Structures of rice which are described by L-system. 

  

 

 

 

 

Apex 

Apex 
Leaf Blade 

Stem / Internode Leaf Sheath

Leaf Blade 

Apex 

Figure 4.2: Steps of rice shoot growth. 

 Structure of rice model in each of growth stage can be described by L-system 

as shown below,  

Seedling Stage 

Seed  Seed[Coleoptile][Radicle] 

Coleoptile  Mesocotyl | Coleoptile | [PrimaryLeaf]A 

 

where  Seed is the axiom of the model, 

 Coleoptile is the first appearance component of shoot part, 

 Radicle is the first appearance component of root part, 

 Mesocotyl is the second appearance component of shoot part, 

 PrimaryLeaf is the first leaf of rice, and 

 A is rice shoot apex. 
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Vegetative 

A  I[R][F][B][SL]A | [F]A 

B  I[R][F][B][SL]A 

R : {Root path growing by biological motivation} r[R] 

A : {when DVI=1.0}  iP 

 

where  A is rice shoot apex, 

 B is the rice bud, 

 I is the stem internode, 

 F is the second appearance component of shoot part, 

 S is a leaf sheath, 

 L is a leaf blade, 

 P is rice panicle, 

 R is rice root part, 

 r is root segment, 

 i is internode of rice panicle, and 

 DVI is a developmental index of rice [42]. 

 

Note that, the Developmental Index (DVI) [42] was applied to represent the 

physiological development of the rice plant. DVI is a continuous variable and defined 

as 0 at first leaf emergence 1.0 at panicle initiation, 2.0 at heading and 3.0 at maturity. 

 

Reproduction 

 P  i[P]PG | iG 

 

where  P is the panicle, 

 i is internode of rice panicle, and 

  G is rice grain. 
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4.1.2 Dynamic Plant Part 

 The static three dimension architectural model of rice proposed by T. 

Watanabe [27] was used to modify the rice movement cause by wind and gravity. 

Each part of rice is considered as the following: 

Stem 

 Two wind force directions Fx(t) and Fy(t) are considered. Both forces change 

the angle of each segment of stem. Spring model with the modulus coefficient is also 

included. Figure 4.3 shows the concept of this part. Angle of stem segment will be 

change with respect to the direction of x axis. The angle of stem segment (θsx) is 

defined as, 

1( )sx
s

xSin
L

θ − Δ
=                                                      (4.1) 

where Ls is the length of stem. 

Distance of stem () which move away from the old direction line is calculated by, 

( )xF tx
k

Δ = −                                                        (4.2) 

where k is the elastic modulus parameter. 

 

                         

Direction of stem segment xΔ
 

Figure 4.3: Illustration of dynamic model concept. 
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The angle of stem segment (θsy) in the direction of y axis is defined as, 

1( )sy
s

ySinθ −

L
Δ

=                                                      (4.3) 

where Ls is the length of stem. 

Distance of stem in direction of y axis ( yΔ ) which move away from the old direction 

line is calculated by, 

( )yF t
y

k
Δ = −                                                        (4.4) 

where k is the modulus parameter. 

Leaf 

 The angle of leaf segment is defined as in the stem part. The gravity is also 

considered, so the mass of leaf is considered as one parameter in the model. Figure 

4.4 shows the details of leaf. Angle of each leaf segment is defined as, 

1( )l
l

zSin
L

θ − Δ
=                                                      (4.5) 

where Ll is the length of leaf segment. 

Distance of leaf segment move away from the previous direction is calculated by, 

( )zF t mgz
k
+

Δ = −                                                        (4.6) 

where k is the elastic modulus parameter depends on plant species. 
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Direction of leaf segment 

Stem 

Leaf segment 

mg

Figure 4.4: Dynamic leaf angle and characteristic. 

Root 

 The calculation of root segment angle (θr) is also defined as stem model. The 

concentration of nutrient solution in soil is onsidered instead of gravity. Figure 4.5 

shows the details of root. Angle of each root segment in direction of x axis (θrx) is 

defined as, 

1( )rx
r

xSin
L

θ − Δ
=                                                      (4.7) 

where Lr is the length of root segment. 

And the angle of each root segment in direction of y axis (θry) is defined as, 

1( )ry
r

ySin
L

θ − Δ
=                                                      (4.8) 

where Lr is the length of root segment. 

 

Distance of root segment move away from the previous direction is calculated by the 

concentration of nutrient in soil defined as biological motivation in Section 4.1.3. 
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Root segment 

 Direction of root segment 

Figure 4.5: Dynamic root angle and its characteristic. 

Panicle 

 The angle of panicle branch segment is also defined as stem model. The 

gravity is also considered, so mass of panicle is used as a parameter in the model. 

Figure 4.6 shows the details of panicle branch model. The angle of each panicle 

segment in the direction of x axis (θpx) is defined as, 

1( )px
p

xSin
L

θ − Δ
=                                                      (4.9) 

where Lp is the length of panicle branch segment. 

Distance of panicle segment move away from the previous direction is calculated by, 

( )xF t mgx
k
+

Δ = −                                                    (4.10) 

where k is the elastic modulus parameter depends on plant species. 

 

Direction of panicle branch segment Rice grain 

Figure 4.6: Dynamic panicle branch angle and its characteristic. 
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Also the angle of each panicle segment in the direction of y axis (θpy) is defined as, 

1( )py
p

ySinθ −

L
Δ

=                                                      (4.11) 

where Lp is the length of panicle branch segment. 

Distance of panicle segment move away from the previos direction is calculated by, 

( )yF t mg
y

k
+

Δ = −                                                    (4.12) 

where k is the elastic modulus parameter depends on plant species. 

4.1.3 Biologically Motivation 

 There are four biologically motivated conditions we considered during rice 

grow. Each condition can be described by mathematical model as shown below. 

1. Direction of shoot and root part are defined as shown in Figure 4.7. A new 

position of new root and shoot segment will be calculated by the equation, 

( ) ,newPos oldPos Gf t t= + Δ                                         (4.13) 

where f(t) is a growth rate of shoot or root part, G  is the direction of shoot or 

root part which emerge from seed. 

 

Figure 4.7: Root and shoot direction concept. 



                       
63 

 
2. Mesocotyl emergence is determined by the amount of Oxygen around seed, so 

L-system can be used to describe this behavior by setting: 

 

Seed  Seed[Coleoptile][Radicle] 

Coleoptile : {if O2 < h}  Mesocotyl [PrimaryLeaf]A 

Coleoptile : {if O2 > h}  [PrimaryLeaf]A 

 

where h is the amount of oxygen threshold obtained by experiment.  

 The emergence of mesocotyl is shown in Figure 4.8. In case of seed 

has less Oxygen, Mesocotyl must elongate until Coleoptile grow above soil or 

water.  

 

Figure 4.8: Emergence of Coleoptile and Mesocotyl elongation. 
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3. Sequence of seedling phase is set as followings; 

Anaerobic 

Seed : {if anaerobic}  1. Seed [Coleoptile] then 

        2. Seed [Radicle] 

Aerobic 

Seed : {if aerobic}   1. Seed [Radicle] then 

     2. Seed [Coleoptile]. 

 

  Root part of rice will be emerged before shoot part when seed 

breakdown in aerobic environment. In contrast, for anaerobic situation, shoot 

part will be emerged first. 

4. Panicle initialize is determined only in photoperiod sensitive rice. The 

condition is set as shown below, 

 A : {n-hours light / day}  iP 

  For the “Jasmine Rice”, the n-hour light per day is eleven. The apex 

development of Jasmine rice will produce a panicle at this condition. Time and 

day length depends on a position of plantation site and an annual date as 

shown in Figure 4.9. 

 

Chiangrai 
Loei 
Rayong 
Bangkok 
Songkla 

Figure 4.9: Time and day length depends on position of plant and annual date. 
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4.1.4 Leaf Area and Leaf Shape Analysis 

 Rice leaves are constructed by using shape and leaf area information collected 

from field. The shape blade is the same for all leaves, except flag leaves (see Figure 

4.10 and 4.11). The shapes of leaf margins are fitted by a polynomial functions 

constrained by start and end points. A different set of parameter values is used for flag 

leaves. 

 

Flag leaf 

 

 
 

Figure 4.10: Shape of rice flag leaf. The polynomial function is used to approximate 

flag leaf shape. Flag leaf has a different shape from generic leaf. 

 

Generic leaf 

 

 

Leaf width (cm.) 

Leaf width (cm.)

Leaf length (cm.) 

Leaf length (cm.) 
 

Figure 4.11: Shape of generic leaf. The polynomial function is used to approximate 

generic leaf shape.  
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4.1.5 Leaf Curves 

 This work constructs the three-dimensional architectural model using plant 

images that captured from different rotation positions. The collected images were 

analyzed, and translated to the coordinates system in three dimension space manually. 

Figure 4.12 shows the methodology for analyzing a leaf image. The polynomial 

function was used to determined leaf curve. Leaf curve function will be used to 

construct the three-dimension architectural model.  
 

Position 
Approx. 

y 

x 

 

Figure 4.12: Translating the leaf image to polynomial function. 

4.1.6 Three-Dimension Representation of Leaf 

 In this work, leaf is very important for calculating leaf area and the amount of 

light interception. To obtain the leaf area and the amount of light incident to leaf, each 

leaf of a three dimensional architectural model is digitized into small quadrilateral 

segment (polygons) along leaf length (see Figure 4.13). Each segment ith  on area of 

leaf patch ith with its length (Ll,i) equal to 

 , /l i lL L n=                                                       (4.14) 

where Ll is the leaf length, and n is the number of segment of a leaf. 
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Ll,i 

Figure 4.13: Leaf segmentation along the leaf length.  

4.1.7 Leaf Area Calculation 

 From the previous section, a leaf is divided into n segments. The area of the ith 

segment (Al,i) can be calculated as, 

                                               (4.15) 
,

, 1

, ,2 ( )
l i

l i

L

l i l l i l i
L

A f L d
−

= ∫ ,L

i

where   fl is shape function of rice leaf, and Ll,i is length of the ith segment. 

 Therefore, area of a leaf (Al) is obtained by sum all segment together as 

following, 

 ,
1

n

l l
i

A A
=

=∑                                                   (4.16) 

where n is the number of leaf segments. 

 

 



                       
68 

 
4.2 Light Incidence Model 

 A 3D architectural model of rice was reconstructed based on the experimental 

data. Details of virtual rice are illustrated in later section. Radiosity method is applied 

and modified appropriately for calculating amount of light in which impact to all 

position on plant leaves. 
 

4.2.1 Position of the Sun 
 

 

 

 

 

 

 

 

 

Figure 4.14: a) The earth orbit causes the declination angle (δ) with respect to Julian 

day. b) Show the elevation angle (β) measured up from horizontal, azimuth angle (α) 

measured clockwise from north, and zenith angle (θ) measured from vertical.  
  

 Since our model is developed in three dimensions, the geometrical 

relationships between the foliage element and the incident radiation are of primary 

importance. The model calculates the position of the sun at the latitude, longitude, 

date and hour of the simulation. The declination angle δ (in radians) of the sun 

depends on the date, is calculated by the formula:  
 

2 ( 10)
0.4093

365
yD

Cos
π

δ
+⎛ ⎞

= − × ⎜ ⎟
⎝ ⎠

                                   (4.17) 

 

where   is day of year: January 1st is set to 1 and December 31st is set to 365, 

 the value -0.4093 is the degree of 23.45 in radian unit [44]. 
 

 The elevation angleβ  and azimuth angle α  (angle in the horizontal plane 

measured from north eastward) of the sun (Figure 4.14) with respect to observer [9] 

are calculated by 

(a)                                                                    (b) 

North 

Earth 

θ 23.45 degree 

Equator Line 

δ 
Light Direction 

  Sun 
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Sin Sin Sin Cos Cos Cos h
 

β φ δ φ δ= +                              (4.18) 
 

Cos Sin hSin
Cos
δα

β
= −                                            (4.19) 

 

where φ is the latitude, and h is the “hour angle” (the angle between the meridian of 

the observer and the sun) of the sun at the position of rice plant.  

4.2.2 Direct Intercepted Light (DiPAR) 

 The amount of direct intercepted light depends on the position of the sun in the 

sky and leaf patch angle. Position of the sun can be obtained as described in previous 

section. Normal vector, , perpendicular to a surface of the ith leaf patch represents a 

direction of maximum light interception capability (Figure 4.15).  

N

 

Figure 4.15: Light incident to leaf element. 

 Thus, direct light from sun ( ) with respect to position of sun and leaf angle 

is 

iE

i i iE L N A= ⋅ × ,                                             (4.20) 

where L is the sun direct light beam, and  is the area of patch ith. iA
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iD

)j

4.2.3 Diffuse Intercepted Radiation (DfPAR) 

 Diffuse light come to leaf from every direction, in this work, the DSHP model 

[19], which is simulated a hemisphere over the object as a light source is applied to 

calculate the sky diffuse PAR (DfPAR) of each patch on 3D rice model. The sky 

diffuse PAR (DfPAR) is the ratio of the light calculate using Long’s method [45]. The 

diffuse ratio is depended on amount of light in observed day with respect to the 

amount of light on clearly sky day (the maximum value of PAR in a year). DfPAR 

value is depended on the amount of cloud and other environments. The hemisphere 

was divided by horizontal line and vertical line as shown in Figure 4.16. The light of 

each element of divided hemisphere is proportion to their area. Total diffuse light is 

calculated by summing light of all hemisphere elements.   
 

 Diffuse light from every elements of hemisphere to leaf patch are considered 

as a link from light source to target, but only light which can be lined to a leaf patch is 

considered. The  sum of DfPAR, , on each 3D model patch is 

(i f
j

D D H= ×∑ ,                                          (4.21) 

where jH  is the area of the jth element of sky hemisphere, fD  is the sky diffuse light, 

fD Lρ= , and ρ is the diffuse ratio. 

 

 
Leaf element or leaf segment 

                                   (a)                                                              (b)  

Figure 4.16: a) Sky hemisphere and b) diffuse light (DfPAR) calculation. 
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i i

4.2.4 Light Penetration Through a Leaf (DpPAR) 

 The light penetration though rice leaf is considered as a ratio of the amount of 

light (PAR) measured at the position above and under a leaf (see Figure 4.17). Twenty 

five sample data from the experiment with rice leaves and the transmission ratio (y) 

which is used to find DpPAR (Pi) are shown in Figure 4.18. The estimated light 

penetration ratio is in polynomial form, and the amount of light transmission through 

rice leaf and impact to leaf segment ith is illustrated as follow: 

y EP = ⋅ ,                                                  (4.22) 

where   y  is the transmission ratio obtained from experiment, Ei is direct light incident 

to patch ith. 

 

 

 
Rice leaf 

PAR Sensor (measure above a leaf)  

 

 

 

 

 
PAR Sensor (measure under a leaf)  

 

Figure 4.17: Measurement of the amount of light at position above and under a leaf. 

 

 
 

Figure 4.18: Light intensity at the position above and under a rice leaf collected from 

the field experiment (left). Penetration ratio over a day (right). 
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4.2.5 Total Intercepted Radiation of Each Element 

 The basic radiosity method has its basis in the theory of thermal radiation, 

since radiosity relies on computing the amount of light energy transferred among 

surfaces. In order to simplify computations, the method assumes that all scattering is 

perfectly diffuse. Surfaces are typically discretized into quadrilateral elements. The 

total intercepted light, λ, on each element ith can be calculated by considering three 

light compositions; direct light ( ), diffuse light ( ), and penetration light through 

other leaf impact to the ith element ( ).  

iE i

i

 The amount of light energy transfer can be computed by using the known 

reflectivity of the reflecting patch, combined with the form factor of the two patches. 

This dimensionless quantity is computed from the geometric orientation of two 

patches, and can be thought of as the fraction of the total possible emitting area of the 

first patch which is covered by the second patch. More correctly, radiosity is the 

energy leaving the patch surface per discrete time interval and is the combination of 

emitted and reflected energy. So, we formulate the light calculation as following,
 

i i i i i i i i i j ji jj
dA E dA D dA PdA R F dAλ λ= + + + ∫ ,                          (4.23) 

where iλ is the radiosity (amount of light interception) of patch i.  is direct light. iE iR  

is the reflectivity of the patch, giving reflected light by multiplying by the incident 

light (the light which arrives from other patches). All  ( j ) in the rendered 

environment are integrated for 

j

F dA

i≠

j ji jλ , to determine the light.  is the constant-

valued form factor for the light leaving 

jiF

j  and hitting patch i . In this work, all area is 

discretized, so the integral is replaced by summation and uniform radiosity is assumed 

over the patch, creating the simpler:
 

1

n

i i i i i j
j

E D P R Fλ
=

= + + + ∑ jiλ                                         (4.24) 

where Ri is the reflectivity of the patch (defined by 20% of light incident to patch),  Fji  

is the constant-valued form factor for the light leaving patch ith and hitting patch jth. 
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0.4531.60

 This equation can then be applied to each patch. The equation is 

monochromatic, so shading value on the three-dimensional model to represents the 

amount of light absorbed by each of leaf patch. 

4.3 Setting Number of Segment (n) 

 The number of segment (n) which can be set by user is very important to 

indicate the accuracy of both leaf area and light interception calculation. Higher 

number of leaf segments (patches) will give the integral leaf area (calculated using 

equation 4.15 and 4.16) closely the actual leaf area.  

 Same as the calculation of light interception, higher accuracy of the 

calculation means that the relative error is a small number. Relative error of light 

interception calculation using radiosity method of two rice cultivars: Jasmine rice 

(KDML105) and Pathumthani 1 (PTT1) were analyzed. Figure 4.19 shows that the 

relation between the number of leaf segments and relative error of light interception 

calculation on Jasmine rice is  

x−=y                                               (4.25)  

where  y is the relative error, and x is the number of leaf segments. 
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Figure 4.19: The relation between the number of leaf segments (patches) and the 

relative error of light interception calculation of the Jasmine rice (KDML105). 



                       
74 

 

0.5622.22y x−=

 As in Pathumhani rice (PTT1), Figure 4.20 shows that the relation between the 

number of leaf segments and relative error of light interception calculation on 

Pathumthani rice is  

                                              (4.26)  

where  y is the relative error, and x is the number of leaf segments. 
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Figure 4.20: The relation between the number of leaf segments (patches) and the 

relative error of light interception calculation of the Pathumthani rice (PTT1). 

 

4.4 Allometric Relationship of Characteristics and Rice Growth System 

 Allometric relationship models are widely used in agriculture and related 

fields. The models have potential to describe the relation between at least two of 

quantitative variables, these are relationship model for seed plant annual reproductive 

biomass based on standing leaf, stem and root biomass [46], root/shoot weight ratio, 

specific leaf area (SLA), specific root length (SRL), and leaf blade/sheath length ratio 

in rice [47], or other growth rate of an organism’s parts in relation to the whole [48]. 

In this work, relationships between characteristics of rice and its biomass are needed. 

A new allometric relationship model namely “Neuro-Allometric Relationship model” 

is proposed to solve this problem. 



                       
75 

 
 In this study, a backpropagation (BP) algorithm was employed to train our 

multilayer feed-forward neural network. Levenberg-Marquardt (LM), a second-order 

nonlinear optimization technique, was chosen from the various BP training algorithms 

available for use in this study. The LM algorithm is widely applied to many different 

domains and is faster and produces better results than other training methods [51, 52]. 

To update weights, the LM algorithm uses an approximation to the Hessian matrix. 

 We developed a neuro-allometric relationship model of each rice part, which 

are divided into 4 main parts as shown in Table 3.1. Development of a neural network 

requires extensive patterns or pairs of inputs and outputs (Figure 4.21). 

 

Figure 4.21: Schematic diagram of a neural network. 

 The model of individual parts is linked together with respect to the actual plant 

structure. Neuro-allometric models are also fed into an integrated model as a time 

series consideration. The proposed structure of integrated model is shown in Figure 

4.22. A final model will potentially mimic the growth of rice plant. 

 To obtain the complete neural network model which can be used for rice 

biomass prediction as dry weight, neuro-allometric relationship models must be 

incorporated.  

 Dry weight or biomass of rice will be obtained as output of the neuro-

allometric relationship model of leaf part. Eight characteristic parameters and six 

weather parameters including the amount of light calculated from light interception 

model are also considered. The neural network predicts each rice part’s biomass, so, 

the biomass of whole rice plant is the summation of the biomass of every rice parts.   
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Figure 4.22: Diagram of rice growth system with integrated neural network. 

 Six weather parameters which collected from the experiment (as shown in 

Table 4.1) are also considered and fed into every rice parts as input values. So, 

considering as time series model, outputs (dry weight or mass) of each rice part are 

considered as the input values for feeding to connected part in the next time step. 

Table 4.1: Weather parameters which are fed into the rice growth system. 

Weather Parameters Unit Variable Name

Air Temperature C  T 

Relative Humidity % H 

Solar Radiation MJ/m2/day Solar 

Photosynthetically Active Radiation mole-q /m2/day Par 

Wind Speed km/day Wd 

Rain-fall mm. Rn 
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1 ( , , , ,  ,  ,  ,  ,  , )t t t t
s s r l d n

 We can write the relation of all parameters in rice growth system as 

followings, 

f M M M T H Solar Par W R t+ =

n

M               (4.27) 

1 ( , , ,  ,  ,  ,  ,  , )t t t
r r s dM f M M T H Solar Par W R t+ =                      (4.28) 

1 ( , , ,  ,  ,  ,  ,  , )t t t
l l s d nM f M M T H Solar Par W R t+ =                      (4.29) 

1 ( , , ,  ,  ,  ,  ,  , )t t t
p p s d nM f M M T H Solar Par W R t+ =                      (4.30) 

where t denotes time, and f  denotes the neuro-allometric relationship of each part. 

 The results of the three-dimension rice architectural model, the light 

interception model, the integrating of neural network model and the constructing of 

the rice growth system will be shown in the next chapter. 



CHAPTER V 

RESULTS 

5.1 Three-Dimension Rice Architectural Modeling 

 A three dimension architectural model of rice was constructed based on the   

L-system [41]. Characters in L-system described the structure of a plant. The growth 

of each structure can be controlled by the growth function. The model is capable 

animate its scene by changing physical parameters such as wind force and gravity. 

The visualization result of three dimension rice model and its growth simulation is 

shown in Figure 5.1. The growth of root and emergence of mesocotyl simulation is 

shown in Figure 5.2. 

 

Figure 5.1: Growth of rice along the time since seedling to maturity. 

  

Figure 5.2: Growth of root and mesocotyl in anaerobic condition (left), and the mature 

rice plant on 130 days after emergence (right). 
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5.2 Evaluation of Light Incidence Model 

 To obtain the light interception model, a three-dimension architectural model 

of rice was reconstructed, leaf shape and leaf curve are investigated in details. Leaf 

blade is discretized into small patch for calculating the light interception model. Leaf 

area of simulated 3D rice and classical leaf area measurement are compared at 

different number of digitized patch (Table 5.1). 

 

Table 5.1: Comparison of simulated leaf area calculation based on classical method 

and our model. Both types of Thai rice with 85 days old was measured and observed. 

More number of polygons per a leaf gave more accuracy. 
 

No. of Patch / Leaf Actual Leaf Area (m2) Classical Method (m2) Our 3D Model (m2) 

KDML105 PTT1 KDML105 PTT1 KDML105 PTT1 

10 0.1470 0.1845 0.1250 0.1620 0.1325 0.1750 

20 0.1470 0.1845 0.1250 0.1620 0.1354 0.1766 

50 0.1470 0.1845 0.1250 0.1620 0.1389 0.1801 

250 0.1470 0.1845 0.1250 0.1620 0.1412 0.1816 

1000 0.1470 0.1845 0.1250 0.1620 0.1455 0.1839 

  

 Selected ten leaves of each rice variety were used for calculating their area. 

The actual leaf area of the rice type: Khao Dawk Mali 105 (KDML105) is about 

0.1470 m2, and the actual leaf area of ten leaves of Pathumthani 1 (PTT1) is about 

0.1845 m2. We calculated leaf area by using the classical calculation method which is 

the fraction of leaf width multiply leaf length (W L× ) obtain by the observation. The 

average leaf area of ten leaves of KDML105 is 0.1250 m2, and leaf area of PTT1 is 

0.1620 m2, respectively.  

 In the three-dimension architectural model, the accuracy of leaf area 

calculation can be specified by user. The results in Table 5.1 show that increasing of 

the number of polygon will give closer calculation to the actual area.   
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 Each organ is being modeled in the 3D [x, y, z] feature space. However, due to 

the complexity of the resulting model, it is not easy to display images and compute 

the radiative transfer in the canopy. We will thus approximate the 3D structure by a 

set of simple elementary patches allowing the rendering of leaf and stem surfaces and 

the computation of the photon fluxes within the canopy (see Figure 5.3). 
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(a)                                               (b)                                 (c) 
 

Figure 5.3: 3D architectural model of rice. a) Top view of the model, b) side view of 

the same rice plant, and c) represents amount of light intercepted on each leaf element 

as shading color, black color (0) means no light intercepted and white color (1) shows 

the maximum light assessment on leaf element. 

 The amount of light is observed and measure using two methods in both 

canopy level and leaf part level; light calculation with classic leaf area measurement, 

and our radiosity approach. The calculation using classic leaf area measurement will 

calculate the amount of light by ignoring leaf angle, diffuse light, and leaf shadow. 

 Figure 5.4 shows five sample positions of light measurement on actual rice 

leaf. Each measured value is used for model evaluation by compare with the result of 

light calculation at the same position on leaf of architectural model. In this 

dissertation, fifty randomized position on rice leaf were selected, then amount of light 

were measured and collected. Also in the same fifty randomized position as on actual 

plant, amount of light on the architectural model is calculated. Results of light 

interception simulation comparing to observed data are shown in the Figure 5.5. 

Simulated amount of light approach to the actual value measured at the same 

positions.  
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Figure 5.4: Five sample positions of light measurement on the actual rice leaf (left) 

and the three-dimension architectural model (right). 

 

 
 

Figure 5.5: Comparison of light interception between observed and actual data. 

 The results of two types of rice cultivars are compared in Table 5.2. High 

resolution of three-dimension architectural model supposes to give more accuracy 

than lower resolution in both types of rice. 

Table 5.2: Comparison of simulated light interception calculation using classical 

method and our method.   

No. of Polygon  Classical Method (μmol/m2/day) Proposed Light Model (μmol/m2/day) 

per Leaf KDML105 PTT1 KDML105 PTT1 

10 5.3875 6.9822 5.7064 7.5727 
100 5.3875 6.9822 6.1245 7.7666 

1000 5.3875 6.9822 6.2711 7.9045 
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 Figure 5.6 shows the graphical representation of each light measurement 

method. The amount of light calculated by classic method at several leaf positions 

were performed and represented as shaded color compare to our method (see Figure 

5.4).  Our approach gave more realistic light shading than the classical method. 

 

 
                                  (a)                                                                   (b) 

Figure 5.6: Comparison of graphical representation of two light measurement 

methods. a) Classical light calculation, b) Our approach, which considered the 

interception angle and amount of diffuse light. 

5.3 Rice Growth Simulation 

 Ten plants were selected, their measured data, which collected weekly, were 

prepared as input pattern of neural network. Eight parameters of plant data with six 

weather data and time were fed into the network. Each plant was 20 weeks old 

accounted from emergence, so 300 patterns of growth data were prepared.  

 After the neural network was trained, validation of the result of rice growth 

prediction by using data of the testing data set (other ten plants) was also tested. 

Measured data from plant emergence to 63 days old (9 weeks old) were fed the rice 

growth system, then the growth of rice since 64 days after emergence (week tenth) 

until it grow as mature were predicted. The accuracy of prediction measured by the 

relative error is less than 10%. Figure 5.11, 5.12, 5.13, and 5.14 show the results of 

predicted growth data comparing to actual growth data. 
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Figure 5.7: Schematic diagram of four neuro-allometric relationship models which are 

combined together. Weather data are also considered as input parameters in the rice 

growth system. 
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Figure 5.8: Comparison of rice growth prediction using proposed rice growth system 

and observed data. The number of hidden nodes is set to 21. Relative error of the 

prediction is equal to 9.7%. 
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Figure 5.9: Comparison of rice growth prediction using proposed rice growth system 

and observed data. The number of hidden nodes is set to 26. Relative error of the 

prediction is equal to 7.4%. 
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Figure 5.10: Comparison of rice growth prediction using proposed rice growth system 

and observed data. The number of hidden nodes is set to 29. Relative error of the 

prediction is equal to 4.6%. 
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Figure 5.11: Comparison of rice growth prediction using proposed rice growth system 

and observed data. The number of hidden nodes is set to 30. Relative error of the 

prediction is equal to 2.4%. 



CHAPTER VI 

CONCLUSIONS AND FUTURE WORKS 

6.1 Conclusions 

 This dissertation proposes an algorithm and an application using artificial 

neural network (ANN) for creating the quantitative relation and allometric relation 

among individual parts of rice: stems, roots, leaf, and panicles. The neural networks 

can be used for estimating the quantitative and allometric relation between rice parts, 

and simulated the growth of rice during vegetative stage. The novel methodology for 

calculating the amount of light incident to leaves is also proposed. The amount of 

light which is calculated by radiosity technique can be considered as the input light 

parameter in rice growth system.  

 Firstly, a three-dimension structural model of rice, (Oryza sativa L.), which is 

developed based on botanical knowledge and observed data in the field was proposed 

in 2006 [41]. The developed model is based on the rice growth stages proposed by 

IRRI (International Rice Research Institute). Each part of the model was considered 

as a unit of the growth characteristics, and combined each unit together using the 

physical linked model. Growth data were collected from two types of experiment. The 

Pathumthani1 rice (PTT1, 90071-93-8-1-1) was grown in pots under outdoor 

conditions, and the Jasmine rice (KDML105) was cultivated in rice field during paddy 

rice season in Loei province, northeast of Thailand.  

 A novel approach for calculating light interception was proposed in early 

April, 2008 [43]. The most realistic computer graphic technique, radiosity, is applied 

to the model, it makes more precise of light assessment on plant leaf. The three-

dimension architectural model was reconstructed using the same concept. More 

accuracy light calculation has more advantage in further researches. The proposed 

model has capable to be applied to the other kinds of plant. 

 Neural networks were used to approximate the growth of rice with many 

number of input parameters (growth conditions and environments), and applied the 

model to the three-dimension architectural model of rice during life cycle for the 

reality appearance. The integrated neural network model was linked to the three-
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dimension architectural model by linking neuro-allometric of rice parts together. The 

results of rice growth simulation using the proposed method led to conclude that the 

proposed rice growth model has capable to simulate rice growth system which can be 

used for predicting rice biomass.  

6.2 Future Works 

 This descriptive model may also serve as a stepping stone for constructing the 

mechanistic model. The model will provide a framework into which mechanistic 

components can easily be embedded. Neuro-allometric relationship model are 

obtained from analytical observed data, whereas functions are directly related to the 

characterized key attributes of each organ as the neuro-quantitative model. Then, an 

integrated model will be used for easier simulating of rice development in 

physiological, ecological, farming processes, and crop yields management. In 

addition, the linked three-dimension architectural model, which is dramatically 

enhanced the realistic rendering can be used as a visual model for software, movies, 

and games. Moreover, light interception model has capable to used in the further 

architectural research. 

Other possibilities can be investigated: 

• Automatic reconstruction of rice and other plant modeling. 

• Graphic adjustment for creating more realistic scene. 

• Studying of moreover environments should be investigated. 

• Reducing computational time of both light interception model and neural 

network model. 

• The amount of light which is calculated by radiosity technique will be 

considered as the input light parameter in rice growth system. It should be 

used to calculate the productivity of rice in reproductive stage. 
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APPENDIX A 

WEATHER STATION AND SENSORS 

A1. Data Logger (H21-001 Weather Station) 

Overview  

 The award-winning HOBO Weather Station offers easy configuration and 

dependable research-grade measurements at a reasonable cost. The HOBO Weather 

Station records up to 15 channels of measurements, and a broad range of plug-and-

play smart sensors are available for monitoring all kinds of environmental conditions 

from temperature and humidity to soil moisture, wind speed/direction, rainfall, leaf 

wetness, solar radiation, and barometric pressure. Input adapters for 4-20mA, DC 

voltage, and pulses increase the range of possible measurements. 

Technical Specifications  

⋅ Operating Range: -20° to 50°C (-4° to 122°F) with alkaline batteries, 

⋅ -40° to 70°C (-40° to 158°F) with lithium batteries  

⋅ Sensor Inputs: 10, expandable to 15 with optional adapters  

⋅ Data Channels: Maximum of 15 (some sensors use more than one data channel  

⋅ Communication: 3.5 mm serial port or weatherproof external connector  

⋅ Dimensions: 23 cm H x 10 cm D x 18 cm W (9 x 4 x 7 inches)  

⋅ Weight: 0.9 kg (2 lbs)  

⋅ Memory: 512K nonvolatile flash data storage  

⋅ Memory Modes: Stop when full, wrap around when full  

⋅ Operational Indicators: Seven status lights provide logging and sensor network 

status  

⋅ Logging Interval: 1 second to 18 hours, user-specified interval  

⋅ Battery Life: 1 year typical use (up to 10 sensors with 10 minutes or longer 

logging interval)  

⋅ Battery Type: Four standard AA alkaline batteries included (for operating 

conditions -20° to 50°C [-4° to 122°F]); optional AA lithium batteries 

available for operating conditions of -40° to 70°C (-40° to 158°F)  
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⋅ Time Accuracy: 0 to 2 seconds for the first data point and ±5 seconds per 

week at 25°C (77°F)  

⋅ Data Type: Supports measurement averaging based on availability of 

supporting data from sensor  

⋅ Logger Start Modes: Immediate, push-button, or delayed start options  

⋅ Data Communication: Current reading while logging, offload while logging, 

or offload when stopped  

⋅ Environmental Rating: Weatherproof  

⋅ Mounting Mast: (3.8 cm [1.5 inches] maximum diameter) or wall mount  

⋅ Enclosure Access: Hinged door secured by four screws  

⋅ Sensor Network Cable Length: 100 m (328 ft) maximum  

 

 
Figure A1: HOBO Weather station (Data Logger). 

 

 This product meets CE specification EN61326 criterion C for ESD, criterion C 

for Radiated Immunity, criterion C for Fast Transient, criterion B for Conducted 

Immunity, and criterion A for Power Frequency Magnetic Fields. To minimize 

measurement errors due to ambient RF, use the shortest possible probe cable length 

and keep the probe cable as far as possible from other cables.  
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A2. Silicon Pyranometer Smart Sensor (S-LIB-M003) 

Overview  

 The Solar Radiation Smart Sensor is a light sensor (silicon pyanometer) with a 

measurement range of 0 to 1280 W/m2 over a spectral range of 300 to 1100 nm. This 

sensor reports the average light intensity over a user-set set logging interval from a 

minumum of 1 second. Although the azimuth error is only ±2% error at 45° from 

vertical, a light sensor bracket and light sensor level are recommended. 

 

Figure A2: Solar radiation sensor. 

Technical Specifications  

⋅ Measurement parameters: average over logging interval, user-defined 

sampling interval from 1 second 

⋅ Measurement range: 0 to 1280 W/m2  

⋅ Operating Temperature Range: -40° to 75°C (-40° to 167°F)  

⋅ Accuracy: ±10 W/m2 or ±5%, whichever is greater in sunlight. Additional 

temperature induced error ±0.38 W/m2 /°C from 25°C (0.21 W/m2/°F from 

77°F)  

⋅ Resolution: 1.25 W/m2  

⋅ Drift: <±2% per year  

⋅ Spectral Range: 300 to 1100 nm  

⋅ Cosine Response Error: ±5%, 0° to 70°; ±10%, 70° to 80° from vertical  

⋅ Azimuth Error: ±2% error at 45° from vertical, 360° rotation  
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⋅ Calibration: Factory recalibration available  

⋅ Housing: anodized aluminum housing with acrylic diffuser and o-ring seal  

⋅ Dimensions: 4.1 cm high x 3.2 cm diameter (1 5/8 in. x 1 1/4 in.)  

⋅ Approximate Weight: 120 g (4 oz)  

⋅ Cable Length: 3 m (9.8 ft)  
 

Note: Light sensor bracket (M-LBA) and light sensor level (M-LLA) are also 

recommended. 

Operation 

The Silicon Pyranometer smart sensor supports measurement averaging. When 

measurement averaging is enabled, data is sampled more frequently than it is logged. 

The multiple samples are then averaged together and the average value is stored as the 

data for the interval. For example, is the logging interval is set at 10 minutes and the 

sampling interval is set at 1 minute, each record data point will be the average of 10 

measurements. Measurement averaging is useful for reducing noise in the data. It is 

recommended that you use measurement averaging whenever the Silicon Pyranometer 

smart sensor is placed in an area where the light level can vary quickly with respect to 

the logging interval (for example, during partly cloudy conditions).  

Spectral Characteristics 

 This sensor uses a silicon photodiode to measure solar power per unit area 

(watts per square meter). Silicon photodiodes are not ideal for use as solar radiation 

sensors and the photodiode in this Silicon Pyranometer is no exception (see Figure 

B3). An ideal pyranometer has equal spectral response from 280 to 2800 nm. 

However, when calibrated properly and used correctly, the Silicon Pyranometer smart 

sensor should perform well in most situations. 

 The sensor is calibrated for use in sunlight. Accordingly, if the sensor is used 

under natural sunlight, the measurement errors will be small. Note that significant 

errors may result from using the sensor under artificial light, within plant canopies, in 

greenhouses, or any other conditions where the spectral content differs from sunlight. 
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Sun’s Relative Intensity and the Typical Relative Response of  

the Silicon Pyranometer versus Wavelength 

 

Figure A3: S-LIB-M003 Silicon Pyranometer Response Curve. 

 

Typical Cosine Response of Silicon Pyranometer 

 

Figure A4: S-LIB-M003 Typical Cosine Response Curve. 
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Cosine Correction 

 The Silicon Pyranometer smart sensor housing is designed to give an accurate 

cosine response. Figure B4 shows a plot of relative intensity versus angle of incidence 

for a typical sensor and for the theoretical ideal response. Deviation from ideal 

response is less than 5% from 0 to 70 degrees and less than 10% from 70 to 80 

degrees. Note that as the angle approaches 90 degrees, the ideal cosine response 

approaches zero. As a result, small errors in measured intensity will result in very 

large percentage errors compared to the ideal response from 80-90 degrees. 

A3. PAR Smart Sensor (S-LIA-M002) 

Overview  

 The Photosynthetic Light (PAR) Smart Sensor is intended to measure light 

intensity for the frequencies relevant for photosynthesis. This sensor has a 

measurement range of 0 to 2500 μmol/m2/sec over wavelengths from 400 to 700 nm. 

Enclosed in the anodized aluminum housing with acrylic diffuser and o-ring seal, this 

model has a 3m cable; a light sensor bracket and light sensor level are recommended. 

Technical Specifications  

⋅ Measurement parameters: average over logging interval, user-defined 

sampling interval from 1 second 

⋅ Measurement range: 0 to 2500 μmol/m2/sec, wavelengths of 400 to 700 nm 

⋅ Operating Temperature Range: -40° to 75°C (-40° to 167°F) 

⋅ Accuracy: ±5 μmol/m2/sec or ± 5%, whichever is greater in sunlight; 

additional temperature-induced error ±0.75 μmol/m2/sec/degree C from 25°C. 

Cosine corrected 0 - 80 degrees, 360 degree rotation.  

⋅ Resolution: 2.5 μmol/m2/sec 

⋅ Drift: <±2% per year 

⋅ Housing: anodized aluminum housing with acrylic diffuser and o-ring seal 

⋅ Dimensions: 4.1 cm. height x 3.2.4 cm. diameter  

⋅ Approximate Weight: 120 g (4 oz) 

⋅ Cable Length: 3 meter (10') 
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Figure A5: Photosynthetically Active Radiation (PAR) sensor. 

 The PAR smart sensor is designed to detect photons between 400-700 nm. in 

wavelength. Ideally the sensor would count photons with equal efficiency between 

400-700 nm. and no photons would be counted outside this range. However, in 

reality, this sensor undercounts photons between 400-550 nm. and between 670-700 

nm., and t over counts photons between 550-670 nm. In most applications (where the 

sensor is used in natural sunlight) the error is not significant (see Figure B6). 

 

Figure A6: PAR Smart Sensor Typical Quantum Response. 
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A4. Temperature and Relative Humidity Smart Sensor (S-THB-M002) 

Overview  

 The 12-bit Temperature/RH Smart Sensor is designed to work with all Onset 

data loggers that accept Smart Sensors. All sensor parameters are stored inside the 

Smart Sensor, which automatically communicates configuration data information to 

the logger without any programming, calibration, or extensive user setup.  

Technical Specifications  

⋅ Measurement range: -40° to +75°C (-40° to +167°F), 0 to 100 %RH at -40° to 

+75°C (-40° to +167°F)  

⋅ Operating Range: Exposure to conditions below -20°C (-4°F) or above 95 

%RH may temporarily increase the maximum RH sensor error by an 

additional 1%  

⋅ Temperature range: -40°C to +75 °C (-40 °F to +167 °F)  

⋅ Accuracy: ±0.2°C over 0 to 50 °C (±.36°F over +32 to 122 °F); ±2.5 %RH 

from 10 to 90 %RH  

⋅ Resolution: 0.02°C @ +25°C (0.04°F at +77°F); 0.1% RH @ +25°C (+77°F)  

⋅ Drift: Temp: <0.1° C (0.18°F) per year; RH: <1% RH per year; hysteresis 1%  

⋅ Response time: Temp: 5 minutes in air moving 1 m/sec, RH: 10 minutes in air 

moving 1 m/sec with protective cap  

⋅ Housing: PVC cable jacket with ASA styrene polymer RH sensor cap 

modified hydrophobic polysulfide membrane  

⋅ Dimensions (sensor): .9 cm x 3.5 cm (.35 in x 1.39 in)  

⋅ Approximate Weight: weight varies with cable length  

⋅ Cable Length: 2 meter  
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Figure A7: Temp/RH smart sensor, Onset product. 

 

Note: Sensor requires protection from rain or direct splashing; Radiation shield (RS3) 

strongly recommended for use in sunlight; sensors can be used in intermittent 

condensing environments up to +30°C and non-condensing above +30°C.   

A5. Wind Speed and Direction Smart Sensor (S-WCA-M003) 

Overview  

 The combination Wind Speed and Direction Smart Sensor provides average 

wind speed, highest three second wind gust and average wind direction in the 

measurement interval. Designed with a large wind vane area for high sensitivity, the 

Wind Speed/Direction Smart Sensor offers high accuracy at an affordable price. This 

model measures average wind speed, highest three second wind gust and average 

wind direction (unit vector average) and utilizes anodized aluminum and stainless 

steel construction for durability in adverse conditions. Wind speed sensor has 

fiberglass reinforced thermoplastic cups and shielded stainless steel ball bearings for 

fast response. Wind vane has metal bushings. 

Technical Specifications  

⋅ Measurement parameters: average wind speed, highest three second wind gust, 

average wind direction (unit vector average)  

⋅ Operating Temperature Range: -40° to 75°C (-40° to 167°F)  



                       
                       

103 
 

⋅ Housing: Anodized aluminum and stainless steel construction for durability in 

adverse conditions. Wind speed sensor has fiberglass reinforced thermoplastic 

cups and shielded stainless steel ball bearings for fast response. Wind vane has 

metal bushings.  

⋅ Dimensions: Sensor: 317 mm (12.5 in.) Height x 419 mm (16.5 in.) Width  

⋅ Mounting Pole: 355 mm (14 in.) L x 12.7 mm (0.5 in.) diameter 

⋅ Approximate Weight: 700 g (1.5 lbs) (Sensor + cable + PC board in housing)  

⋅ Cable Length: 3.0 m (9.8 ft)  

⋅ Number of Data Channels: 3  

⋅ Length of Smart Sensor Network Cable: 3.0 m (9.8 ft)  

 
Figure A8: Wind speed and direction smart sensor. 

 

Note: Cross Arm is recommended please see the Half Cross Arm (M-CAB) or the 

Full Cross Arm (M-CAA) at vender’s website (www.onsetcomp.com). 
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