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An element x of a semigroup [ring] A is said to regular if there is an element y of 4 such
that x = xyx, and A is called a regular semigroup [(Von Neumann) regular ring] if every element
of A is regular. A quasi-ideal of a semigroup [ring} A4 is a subsemigroup [subring] O of 4 such that
AQ ~ Q4 O, and a bi-ideal of A 15 a subsemigroup [subring] B of A such that BAB < B. Recall
that for nonempty subsets X and ¥ of a ring 4, XY denotes the set of all finite sums of the form
Yxy; where x;e X and y;e ¥, We say that a semigroup or a ring has the BQ-property if its quasi-
ideals and bi-ideals coineide, It is known that every regular semigroup and every regular ring has
the BQ-property.

For a nonempty set X let T(X) denote the full transformation semigroup on X, and for @ =
Yo X, let T(X, ) and T (X ¥)be the subsemigroups of 71.X) defined by

T, N={aciX)|ranag c¥}and T(X N={aecTX)|Ya ¥}

Symons and Magill introdueed and studied T(X, ¥) and T (X, ¥)in 1975 and 1966, respectively.
If ¥is a vector space over a field F, let Lg(}") be the set of all linear transformations

a: ¥ — V. For a subspace Wof F, define LV, W) and IF(V,W} analogously as follows :

LV, W)= {acL{¥)|ana c W} and LAV, = { ac L{V)| Wa c W},

and we also consider
KV, Wy={acLld{V)|W c kera}.

Then LV, W), L {V,W) and KV, W).are subsemigroups of (LV), =) and subrings of (L(V), +,
=) where o and + arc the compaosition and usual addition of linear transformations, respectively.
This research,consists of two major parts. In the first part, we give necessary and sufficient
conditions for the elements of these semigroups to be regular. As a consequence, characterizations
determining when these semigroups are regular are given. In the second part, we provide
necessary and sufficient conditions for these semigroups and rings to have the BQ-property.
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INTRODUCTION

In both semigroups and rings, quasi-ideals are a generalization of one-sided ide-
als and bi-ideals generalize quasi-ideals. The notion of quasi-ideal was introduced
by Steinfeld ([19], [18]) in 1953 and 1956 for rings and semigroups, respectively.
The notion of bi-ideal for semigroups was introduced in 1952 by Good and Hughes
[4] while the notion of bi-ideal for rings was given much later. It was introduced
by Lajos and Szasz [14] in 1971.

Kapp [9] used BQ to denote the class of all semigroups whose bi-ideals and
quasi-ideals coincide and Mielke [16] called a semigroup in the class BQ a BO-
semigroup. The following semigroups were known to be in the class BQ : regular
semigroups (Lajos [13]), left [right] simple semigroups (Kapp [9]) and left [right]
O-simple semigroups (Kapp [9]). In fact, Calais [2] proved that a semigroup S
belongs to BQ if and only if the bi-ideal and the quasi-ideal of S generated by any
x,y € S are identical.

This research deals with both semigroups and rings whose their bi-ideals and
quasi-ideals are identical. Then we shall say that a semigroup or a ring has the
BQ-property if its bi-ideals and quasi-ideals coincide, or equivalently, its bi-ideals
are quasi-ideals. In fact, from [10], we have that every (Von Neumann) regular
ring has the BQ-property.- Hence we deduce that in both semigroups and rings,
the regularity implies the BO-property. However, the converse is not generally
true. By the definition, a ring (R, +,-) is regular if and only if (R, ) is a regular
semigroup. However, this is not true for the BO-property. It is not difficult to see
that for a ring (R, +, -), if the semigroup (R, -) has the BQ-property, then the ring
(R,+,-) has the BQ-property. The converse is not true in general. This can be
seen in this work.

Some transformation semigroups having the BQ-property have been studied in

[11]. In [12] and [17], the authors characterized when their target semigroups of



linear tranformations have the BO-property.
We denote by T'(X) the full transformation semigroup on a nonempty set X.
It is well-known that 7'(X) is a regular semigroup. For a nonempty subset Y of

X, let

T(X,)Y)={aeT(X)|ran a C Y},
T(X,)Y)={aeT(X)|YaCY}.

Then T(X,Y) C T(X,Y) and both are subsemigroups of 7(X). The semigroup
T(X,Y) was introduced and studied by Symons [21] in 1975 while Magill [15]
introduced and studied the semigroup T(X,Y) in 1966.

The semigroup, under composition, of all linear transformations from a vector
space V over a field F into itself is denoted by Lp(V). It is also known that
Lr(V) is a regular semigroup. For a subspace W of V, Lp(V,W) and Lp(V, W)

are defined analogously, that is,

Lp(V,W)={a € Lp(V) | ran a« C W},
Le(V,W) ={a € Lp(V) | Wa C W}

The semigroup Lg(V, W) motivates us to consider the subsemigroup
Kr(ViW) ={a € Lp(V) | W C ker o}

of Lp(V). In fact, (Lg(V),4,0) is a ring where + and o are the usual addition and
composition of linear transformations and (Lz(V), -, 0) has Lp(V, W), Lg(V,W)
and K(V, W) as subrings. Observe that the semigroups Lr(V), Lg(V, W), Lp(V, W)
and Kg(V, W) mean (Lp(V), ), (Lp(V,W),0), (Lp(V,W),0) and (Kr(V,W), o),
respectively.

In this research, we determine the regular elements of all the semigroups defined
above and characterize when these semigroups are regular and when they have

the BQ-property. Moreover, we give characterizations determining when the ring

(LF(‘/a W): +> O)a (ZF(Vv W)a +7 O) and (KF(V: W)7 +a O) ha‘ve the BQ_prOpertY'



This research is organized as follows :

Chapter 1 contains definitions and quoted results which will be used for this
research. For better understanding, some examples are also provided.

In Chapter II, we give necessary and sufficient conditions for the elements of
the semigroups T(X,Y) and T(X,Y) to be regular. In addition, the numbers
of regular elements of T(X,Y) and T(X,Y) are counted in terms of the Stirling
number of the second kind when X is finite.

In Chapter III, necessary and sufficient conditions for the elements of the semi-
groups Lp(V,W), Lp(V, W) and Kp(V,W) to be regular are provided. The con-
ditions for the regularity of the elements of Lx(V, W) and Ly(V,W) are the same
as those for T(X,Y) and T(X,Y) in Chapter II. We also apply the characteriza-
tions of the regular elements of Ly (V, W) and Kp(V, W) to determine the regular
elements of some matrix semigroups over F.

Chapter IV deals with the BO-property of the semigroups T'(X,Y) and T(X,Y).
It is shown that T(X,Y) always has the BQ-property. The semigroup T(X,Y)
has the BQ-property if and ouly if ¥ = X, |Y| =1 or |X| < 3. Calais’s theorem
mentioned previously is useful for this work.

In Chapter V, we have similarly that the semigroups Lz (V, W) and Kg(V, W)
always have the BQ-property. However, it is shown that Ly(V, W) has the BO-
property if and only if one of the following conditions holds.

i) W=V.

(i) W ={0}.

(iii) F = Zy, dimp W = 1 and dimp V= 2.

Calais’s theorem is also referred for this characterization.

We are concerned with the BQ-property of the rings (Lg(V, W), +,0), (Kp(V, W),
+,0) and (Lp(V, W), +,0) in the last chapter. We have that the rings (Lz(V, W),
+,0) and (Kr(V, W), +, o) have the BQ-property since the semigroups (Lg(V, W), o)
and (Kz(V, W), o) have the BQ-property. The conditions for the ring (Lx(V, W), +, 0)



to have the BQ-property are much wider than those for the semigroup (Lz(V, W), 0).
It is shown that the ring (Lp(V, W), +, o) has the BQ-property if and only if one

of the following conditions holds.
(i) W

(i) W = {0}.
(iii) F' = Z, for some prime p and dimp W = 1.

(iv) F = Z, for some prime p and dimg (V/W) = 1.



CHAPTER 1

PRELIMINARIES

Let N, Z and R denote respectively the set of natural numbers (positive in-
tergers), the set of integers and the set of real numbers. For n € N, Z,, denotes
the set of integers modulo n.

For n,r € N with m > r, the number of partitions {1,...,n} into r blocks is
denoted by S(n,r) and is called a Stirling number of the second kind. It is known
that _

Stnfr)= 5 S Ay (:) (r— )"
=0
([1], page 12). Hence the number of maps from {1,2,...,n} onto {1,2,...,7} is
S(n,r)rl.

The cardinality of a set X is denoted by | X]|.

For a semigroup S, let S' = S if S has an identity, otherwise, let S' be the
semigroup S with an identity 1 adjoined.

An element a of a semigroup S is said to be reqular if a = axa for some z € S,
and S is called a regular semigroup if every element of S is regular. The set of all
regular elements of a semigroup S is:denoted by Reg (.9). Regular elements of a
ring R = (R, +,-) are regular elements of (R, -), and we call R a (Von Neumann)
reqular ring if every element of R is regular. The set of all regular elements of the
ring R is also denoted by Reg (R).

In this research, the value of a map « at z in the domain of « is denoted by
xa and the range of « is denoted by ran «.

For a nonempty set X, let T'(X) be the full transformation semigroup on X,

that is, the semigroup, under composition, of all mappings from X into itself.



It is known that T(X) is a regular semigroup ([6], page 4). The kernel of o €

T(X),ker a, is the equivalence relation o o™ on X, that is,

ker a = {(z,y) € X x X | zao = ya}.

s a ker a-

Then zker a = (za)a~! for all z € X, in particular, if x € ran a, za~
class. Also, the mapping zker a — za is a bijection of X /ker v onto ran «. Hence
for any o € T'(X), the set of equivalence classes of ker o and ran a have the same
cardinality.

For a vector space V over a field F, let Lp(V) denote the semigroup, under
composition, of all linear transformations from V into itself. Denote by M, (F)
the multiplicative semigroup of all n x n matrices over a field F'. We have that
(Lr(V),+,0) is a ring where 4+ and o are the usual addition and composition
of linear transformations, respectively. It is well-known that M, (F) = Lp(V) if
dimg(V) = n ([8], page 330), and Lp(V) is a regular semigroup ([7], page 63).
Hence M, (F) is a regular semigroup. Recall that for o € Lg(V),

kera=H{v € V jva = 0}.

The entry of A € M,(F) in the i* row and 7% column will be denoted by A;;.

A quasi-ideal of a semigroup S is a subsemigroup @ of S such that SQ N QS
C @, and a bi-ideal of S is a subsemigroup B of S such that BSB C B.

For nonempty subsets X and Y of a ring R, XY denotes the set of all finite
sums of the form > x;y; where z; € X and y; € Y. Also, for a nonempty subset X
of aring R, ZX denotes the set of all finite sums of the form > k;z; where k; € Z
and z; € X. Quasi-ideals and bi-ideals of rings are defined analogously. That is, a
quasi-ideal of R is a subring ) of R such that RQ N QR C @, and a bi-ideal of R
is a subring B of R such that BRB C B.

In both semigroups and rings, every left ideal and every right ideal is clearly a
quasi-ideal and every quasi-ideal is a bi-ideal. The following example shows that

the converse is not generally true.



Example 1.1. Let F be a field and n € N.

(1) For k,l € {1,2,...,n}, let Q¥ (F) consist of all matrices C' € M, (F) such that

Then for k,1 € {1,2,...,n}, QF(F) is a subsemigroup [subring] of the semigroup
[ring] MR(F)v

{
!
(i [= o )
0 0 =1 O 0
Mn(F) n(F): 4 . / ) ) ) $1,[L’2,...,$n€F
\ 0 0 z, O 0 )
and
( B \ )
00 0
0 0 0
EZ(F)Mn(F>: o e 2 e 13 Ti,To, ..., Ty € F
0 O 0
0~0 ... 0
\ L . J

which imply that M, (F)QE(F) N QF(F)M,,(F) = Q*(F), so QF(F) is a quasi-
ideal of the semigroup.[ring] M, (F). Moreover, if n.> 1, then for all £k, €
{1,2,...,n}, Q"(F)is neither ‘a left ideal nor a right ideal of the semigroup [ring]
(2) For n >4, let SU,(F') be the subsemigroup [subring] of the semigroup [ring]

M, (F) consisting of all strictly upper triangular matrices over F. Let



¢ T 3\
0O ... 0z O
0 00 vy
B=<1l0 ... 000 T,y €F
0 ... 000
\ L . J

Then B? = {0}, so B is a subsemigroup [subring] of the semigroup [ring] SU,,(F).
Moreover, BSU,(F)B = {0} € B. But

-O .0 1- _O 10 0- -0 01 O-
0 ... 00 000 Of |0 0 01
0 0O 0f=1]0 0 0 ... Of |0 000
_O 0 0_ _O 009 0_ _0 0 0 O_

-() 03 1 0— _0 0 O-

AL oAHEE, 1

=410 ... 0 00[]|0 ... 00

0 ... 01

_O b0 OJ _0 ~u ikl O_

€ (SU,.(F)BN BSU,(F))\B,
so B is a bi-ideal but not a quasi-ideal of the semigroup [ring] SU,(F).

Example 1.1 shows that quasi-ideals generalize left ideals and right ideals and
bi-ideals generalize quasi-ideals.

For a subset A of a semigroup S [ring R], let (A4), and (A4), denote respectively
the quasi-ideal and the bi-ideal of S [R] generated by A, that is, (A), is the
intersection of all quasi-ideals of S [R] containing A and (A), is the intersection
of all bi-ideals of S [R] containing A (see [20], page 10 and 12). Observe that

(A)p C (A), since every quasi-ideal is a bi-ideal.



Proposition 1.2. ([3], page 84-85) For a nonempty subset A of a semigroup S,
(i) (A),=S*"ANAS* and
(i) (A),=ASTAUA.

Proposition 1.3. ([22]) For a nonempty subset A of a ring R,
(A)y=ZA+ (RANAR).

Proposition 1.4. ([14]) For a nonempty subset A of a ring R,
(A)y=ZA+ZA* + ARA.

In particular, if R has an identity, then (A), = ZA + ARA.

Let BQ be the class of all semigroups whose bi-ideals and quasi-ideals coincide
and an elements in BQ are called BQ-semigroups. Important BO-semigroups are

the following ones.
Proposition 1.5. ([13]) Every regular semigroup is a BQ-semigroup.

Proposition 1.6. ([9]) Every left [right] simple semigroup and left [right] 0-simple

semigroup is a BQ-semigroup.

Recall that a semigroup S is left [right| simple if S has no proper left [right] ideal,
and a semigroup S with zero 0 is called left [right] 0-simple if S* # {0} and S has

no proper nonzero left [right] ideal.

Some examples of BQ-semigroups which are neither regular nor left [right]

simple are as follows.

Example 1.7. ([11]) Let X be an infinite set and S(X') the subsemigroup of 7'(X)
defined by
S(X)={aeT(X)|X \ran « is infinite}.

Then S(X) is a BQ-semigroup but it is neither regular nor left [right] simple

semigroup.
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Example 1.8. ([12]) For an infinite dimensional vector space V over a field F,

define the subsemigroup S(V') of Lr(V') by
S(V)={a€ Lp(V)|ais 1-1 and dimp(V/ran «) is infinite}.
Then S(V) is not regular and S(V') is a BQ-semigroup if and only if dimg (V') = Nj.
In fact, BO-semigroups have been characterized by Calais [2] as follows:

Proposition 1.9. ([2]) A semigroup S is a BQ-semigroup if and only if (x,y), =
(x,y)q for all z,y € S.

A BQ-ring is defined similarly to a BO-semigroup, that is, a BO-ring is a ring
whose bi-ideals are quasi-ideals. Kapp [10] provided a sufficient condition for a
bi-ideal of a ring R to be a quasi-ideal of R as follows: If B is a bi-ideal of a ring
R such that every element of B is regular in R, then B is a quasi-ideal of R. Then

we have the following proposition as its direct consequence.
Proposition 1.10. FEvery reqular ring is a BQ-ring.

This research is concerned with both semigroups and rings whose bi-ideals and
quasi-ideals coincide. Then we shall say that a semigroup or a ring has the BQ-
property if its quasi-ideals and bi-ideals are identical. Then every regular semigroup
and every regular ring has the BQ-property.

For a nonempty subset Y of anonempty set X, let

TX,)Y)={aeT(X)|rana CY},

T(X, V)= {aer(X)] Yo C Vi

Then T(X,Y) C T(X,Y) and both are subsemigroups of T'(X). Note that 1y, the
identity map on X, belongs to T(X,Y) and if Y # X, then 1x ¢ T(X,Y). The
semigroup T'(X,Y') was introduced and studied by Symons [21] in 1975 while Magill
[15] introduced and studied the semigroup T(X,Y) in 1966. Observe that these
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two types of transformation semigroups are generalizations of full transformation
semigroups.

We introduce the subsemigroups Lr(V, W) and Lp(V, W) analogously where
W is a subspace of V', that is,

Lpr(V,W)={a € Lp(V) |ran « C W},
Lr(V,W)={a & Lp(V)| Wa C W}.

Then Lyp(V,W) C Lg(V,W). Clearly, 0 (the zero map on V') belongs to Lx(V, W)
and Lp(V,W), and 1y € Lp(V,W) while 1y, & Lp(V,W) if W # V. We also
consider the subsemigroup K (V, 1) of the semigroup Lz(V') defined by

Kr(V, W)= {o€ Lp(V) | W C kera}.

Hence

Kp(V,W) ={a € Lp(V) | Wa = {0}}.

Then Kp(V,W) C Lp(V,W). Notice that 0 € Kg(V,W), Lp(V,V) = Lp(V) =
Kp(V.A0}), Lr(V.{0}) = {0} = Kp(V.V) and L(V,V) = Lp(V) = L(V,{0}).
Thus if W = {0} #V or W =V # {0}, then Lp(V, W) # Kp(V,W). Moreover,
if {0} #W C V, then Lp(V, W) and Kp(V, W) are not subsets of each other. To
see this, assume that {0} # W C V. Let B; be a basis of W and B a basis of V

containing B;. Define «, 5 € Lr(V) on B by bracket notation as follows:

v BxBj B wv
o = 7ﬂ:
v 0 0

v € B "1y ¢ e
Then ran a = (By) = ker 3, ker a.="(B ~ B;) = ran . Therefore we deduce that
a € Lp(VVIW)N Kp(V,W) and 8 € Kp(V,W) ~ Lp(V,W). We can see that
Lp(V,W), Lg(V,W) and Kx(V,W) are subrings of the ring (Lr(V),+,0) by the

following facts:
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for a, € Lp(V,W), rtan (a+ ) =V(a+08) CVa+VECW+W =W,

ran (—a) =ran o C W,
for a,8 € Lp(V,W), W(a+8) S Wa+WBCW+W =W,
W(—a)=Wa CW,
and for o, 3 € Kp(V,W), W(a + ) € Wa+ W3 C {0} + {0} = {0},
(—

W(—a) = Wa=H{0}.

For 1 <k <mn, let C,(F. k) and R, (F, k) be the matrix semigroups defined by

Co(F.k) = {A € Ma(F) | Aiy=0forall i,j € {1,....n} and j > k),
R,(F.k)={Ae€ M,(F) | Aj; =0forall 7,5 € {1,...,n} and i > k}.

In other words, C),(F, k) consists of all matrices in M, (F') of the form

f A
a1, et (i k0 0
921 (05)% 0 0
Gni ape 0 0

@11 Q12 A1n
ar1 Qg2 Qkn
0 0 0
0 0 0

and R, (F, k) consists of all matrices in M, (F") of the form

Observe that R, (F,n) = M,(F) = C,(F,n). It is clearly seen that if t1,...,t; €

{1,...,n} with t; <ty <--- <y, then S} and S, defined by

Si={Ae M, (F)|A;=0foralli,je{l,....,n}and j ¢ {t1,...,tx}},

So={Ae M, (F)|Ajj=0forallije{l,...,n}and i & {t1,..., tx}}
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are subsemigroups of M, (F") which are clearly isomorphic to C,,(F, k) and R, (F, k),
respectively. Notice that C,(F,k) and R,(F,k) are also subrings of the ring

(M, (F),+,-) where + and - are the usual addition and multiplication of matrices.

We recall the following basic facts of vector spaces and linear transformations

which will be used.

(1) If « € Lp(V), By is a basis of ker a, B, is a basis of ran « and for each u € B,

choose an element u' € ua™!, then By U {u/ | u € By} is a basis of V.

(2) If Uy and U, are subspaces of V| By is a basis of the subspace U; N Us,
By C Uy By and Bs C U, ~ B, are such that B; UBy and B; UB3 are bases of
U, and U,, respectively, then B; U B, U Bgs is a basis of the subspace Uy + Us
of V. In particular, if U; N U, = {0}, then B, U B3 is a basis of U; + Us.

(3) If W is a subspace of V such that dimp (/W) = 1 and B is a basis of W,
then for every u € VW, B U {u} is a basis of V.

(4) If By is a basis of W and B is a basis of V' containing By, then {v 4+ W | v €
BB} is the basis of the quotient space V/W and vy + W # vy + W for all
distinct vy, v € BNB;. Hence dimg (V/W) = |[B\B,|.



CHAPTER 11

REGULAR ELEMENTS OF SEMIGROUPS OF
TRANSFORMATIONS OF SETS

In this chapter, the regular elements of the semigroups T'(X,Y) and T'(X,Y) are

characterized. Some remarkable relationships of Reg (7'(X,Y)) and Reg (T(X,Y))

are also given. In addition, Reg (T(X,Y))) and Reg (T(X,Y)) are counted in terms

of | X, Y], and their Stirling numbers of the second kind when X is finite.
Throughout this chapter, X denotes a nonempty set and @ # Y C X. First,

we recall that
T(X.Y)={aeT(X)|ran a C Y},
TX,)Y)={acT(X)|YaCY}

For n,r € N with n > r, the number of all mappings from {1,2,...,n} onto

{1,2,...,r} is r1S(n,r) where

(a Stirling number of the second kind).

Theorem 2.1. For a € T(X,Y), the following statements are equivalent.
(i) a€eReg(T(X;Y)):

(ii) ran o =Ya.

(i) zker aNY # & for every z € X.

(

iv) za 'NY # @ for every x € ran a.

Proof. (i) = (ii). Let 8 € T'(X,Y) be such that « = afa. Then Xaf C Y, and

soran o = Xa = Xafa = (Xaf)a CYa C Xa =ran a. Hence (ii) holds.
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(ii) = (iii). For any z € X, za € ran o = Ya, so zaw = ya for some y € YV
which implies that y € (za)a™ = zker a.

1is a ker a-class.

(iii) = (iv). This is trivial since for every = € ran o, xa~
(iv) = (i). For each z € ran «, choose an element 2’ € za~'NY. Then 2'a = x
for every x € ran . Let a be a fixed element of Y. Define 5 : X — X by bracket

notation as follows:
o X B randoy

B = ,
' a

X € ran o

thatis, x0 =2’ forallz € ran wand z3 = aforall z € X~ran . Thenran 3 C Y
and for every x € X, zafa = (za)fa = (za)'a = zxa. Hence g € T(X,Y) and
a = afa. n

As a consequence of Theorem 2.1, a necessary and sufficient condition for

T(X,Y) to be a regular semigroup can be given as follows:

Corollary 2.2. The semigroup T'(X,Y') is reqular if and only if either X =Y or
Y| =1.

Proof. Suppose that Y C X and |Y| > 1. Let a and b be two distinct elements of

Y. Define a : X — X by
Y X

a b

V=

Then ran a = {a,b} C Y and ba™'NY = (X N\ ¥)NY = @. Hence o € T(X,Y)
and by Theorem 2.1, « is not a regular element of T(X,Y). This proves that if
T(X,Y) is a regular semigroup, then'Y = X or |[¥|= 1.

Since T(X,Y) =T(X) f ¥ = X and |T'(X,Y)]| = 1 if |Y| =1, the converse
holds. O

Theorem 2.3. For a € T(X,Y), the following statements are equivalent.

(i) a€ Reg (T(X,Y)).
(ii) ran anNY =Ya.
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(iii) zker aNY # @ for every x € X with za € Y, that is, v € Yo !,

(iv) za ' NY # & for every x € ran aNY.

Proof. (i) = (ii). Let 8 € T(X,Y) be such that & = aBa. Then Ya C XaNY =
ran aNY. If x € ran aNY, then z € Y and x = aa for some a € X. Consequently,
r =aa = aafa = zfa € Yo C Ya. Hence (ii) holds.

(ii) = (iii). Let z € X be such that zaw € Y. Then za € ran aNY = Yo,

I — gker a. Hence

so xa = ya for some y € Y. This implies that y € (za)a™
y € zker anNY.

(iii) = (iv). If z € ran aNY, then r = aa for somea € X,s0a € za™' CYa™'.
By (iii), aker a NY # @. But aker a = (aa)a™' = za™, so xza™' NY #£ @.

(iv) = (i). For each x € ran aNY’, choose an element 2’ € za~'NY. Also, for
x € ran a\ Y, choose an element 7 € za~'. Then 2’ = x for every x € ran aNY
and Ta = x for all x € ran a\ Y. Let a be a fixed element of Y. Define §: X — X
by

x t X \ran«o

e
€ t a xr € ran anNy
t € ran a\Y

Then Y C {2’ |z €rananNY}U{a} CY and for z € X,

(za)a =za ifza€ranany
rafa = (xa)fa =

(za)a =za  if za € ran a Y.
Hence 3 € T(X,Y) and o= afa. ]
We also have the following corollary which characterizes when T(X,Y) is a

regular semigroup.

Corollary 2.4. The semigroup T(X,Y) is regular if and only if either X =Y or
Y| =1.

Proof. Suppose that Y C X and [Y| > 1. Let a,b € Y and « be as in the proof
of Corollary 2.2. Then Ya = {a} C Y, so a € T(X,Y). Since b € rtan aNY
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and ba™'NY = (X \Y)NY = @, by Theorem 2.3, « is not a regular element of

T(X,Y).

If Y = X, then T(X,Y) = T(X) which is regular. Next, assume that Y = {c}.
Then ca = cforalla € T(X,Y). To show that T(X,Y) is regular, let « € T(X,Y).
For each x € ran a \ {c}, choose an element 2/ € za™'.

x €ran a \ {c}. Let ¢ = c and define § € T'(X) by

Then 2'a = z for all

T SO LN 47 o

- c

xr € ran «
Then Y3 = {c}p = {¢} = {c} = YV and for z € X, zafa = (za)'a = za. This
proves that if [Y'| = 1, then 7/(X,Y) is a regular semigroup, as required. O

The following result which is obtained from Theorem 2.1 and Theorem 2.3

shows that any nonregular element of 7'(X,Y") cannot be regular in T(X,Y).

Corollary 2.5. Reg (T(X,Y)) C Reg (T(X,Y))U(T(X,Y)\T(X,Y)),

or equivalently,

T(X,¥)\Reg (T(X,Y)) CT(X,Y) N\ Reg (T(X,Y)).

Proof. Let a € Reg (T'(X,Y)) and assume that o € T(X,Y). Then ran a N
Y = Ya by Theorem 2.3 and ran o« C Y. These imply that ran @ = Ya, so
a € Reg (T'(X,Y)) by Theorem 2.1. O

Next, the cardinalities of the regular elements in the semigroups 7'(X,Y") and

T(X,Y) are investigated when X is finite. First, we note that if |X| = n and
Y| = m then

T(X)| =n",

|T(Xv Y)‘ =m",

IT(X,Y)| =m™ xn™™,
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Theorem 2.6. If | X| =n and |Y| =m, then

|Reg (T(X,Y))| = Zm: (T) rLS (m, r)rn .

r=1
Proof. Let @ # Y’ C Y and |Y’| = r. Then the number of maps from Y onto
Y’ is r1S(m,r). Consequently, the number of maps a from X onto Y’ such that

Ya=Y"is rlS(m,r)r"~™. Hence
Ha e T(X,Y) |ran a =Y" = Ya}| = rIS(m,r)r" ™.
But we have from Theorem 2.1((i) < (ii)) that
{aeT(X,)Y)|ran a=Y'=Ya} ={a € Reg (T(X,Y)) |rtan a = Y'},

SO

Ha € Reg (T(X,Y)) | ran o= Y'}| = r!S(m, r)r" ™.

This implies that for 1 < r < m,
[{a € Reg (T'(X,Y)) | fran a] =1} = (m) r1S(m,r)r* ™.
r
Therefore it follows that

IReg (T(X,Y))| = Em: (T) rlS(m, )™,

=l

as desired. [

Theorem 2.7. If | X| =n and |Y|=m, then

|Reg (T(X,Y))| = Z <T:> riS(m,r)(n —m+r)" "

Proof. Let @ # Y C Y and |Y'| = 1. Then the number of maps from Y onto Y’
is r1S(m,r). Therefore it follows that the number of maps o : X — X such that
Ya=Y andran aNY =Y is rlS(m,r)(n — m + )"~ since [(X\Y)UY'| =
| X\Y|+|Y'| =n—m+r. Hence

Ha € T(X,Y) |ran anY =Y’ =Ya}| =r!S(m,r)(n —m +r)"™,
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We have from Theorem 2.3((i) < (ii)) that
{aeT(X,Y)|rtananY =Y =Ya} ={a € Reg (T(X,Y)) [ran aNY =Y"}
which implies that
{a € Reg (T(X,Y)) |[tan aNY =Y’} = r!S(m,r)(n — m + 7)™,
Consequently, for 1 < r < m,
Ha € Reg (T(X,Y)) | tan anNY| =7} = (T) rIS(m,r)(n —m+r)""",

whence
m

Reg (T(X. V)| =3 (T)T!S(m, r)(n =m + )"

G

[
Example 2.8. Since S(n,r) ' d Z < > r—1i)", wehave S(3,1) = 1,5(3,2)
T
—3and 5(3,3) = 1.

(1) Let | X| =4 and |Y| = 3. By Theorem 2.6 and Theorem 2.7, we have respec-
tively that

Reg (T(X,Y))| = > (3>T!S(3,r)r

=it

= BxUUx1x1)+Bx2'x3x%x2)+(1x3'x1x3)

= 3+ 36+ 18 = 57,
3

_ 3
Reg (T(X,Y))| = Z; <T>T!S(3,r)(1—|—r)
= (3 A1 x 2) +(3:x2Lx 3:6:3) +(1 x3! x 1 x 4)
= 6+54+ 24 =84
Hence

IT(X,Y) N~ Reg (T'(X,Y))] = 3* — 57 =81 — 57 = 24,
IT(X,Y) N Reg (T(X,Y))] = (3* x 4') — 84 = 108 — 84 = 24,
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and so by Corollary 2.5, T(X,Y) \ Reg (T(X,Y)) = T(X,Y) ~ Reg (T(X,Y)).
Since |T(X,Y) ~\ T(X,Y)| = 108 — 81 = 27, we deduce that |Reg (T(X,Y)) U
(T(X,Y)NT(X,Y))| = 57+ 27 = 84 = |Reg (T(X,Y))], so by Corollary 2.5,
we have that Reg (T(X,Y)) = Reg (T(X,Y)) U (T(X,Y) \ T(X,Y)). Therefore
every element in T(X,Y) \ T(X,Y) is regular in T(X,Y).

(2) Assume that |X| =5 and |Y| = 3. Then

Reg (T(X,Y))| = (i) rlS(3,r)r?

=il

= (BxUxIx1%)+Bx2 x3x2%) 4+ (1x3 x1x3?

= 3 +724 54 = 129,

(X,Y))] _Z( )r's (3,7)(2 + 1)

= Bx1x1x3)+(3x2 x3x4%)+(1x3 x1x5?

N

[Reg (

= 27+ 288 + 150 = 465.
Hence

IT(X,Y) ~ Reg (T(X,Y))] = 3" ~129
— 243 — 129 = 114,
IT(X,Y) N Reg (T(X,Y))| = (3% x 5%) — 465
= 675 — 465 = 210,
IT(X,Y)NT(X,Y)| = 675 — 243 = 432,
[Reg (T(X,Y)) U(T(X,Y)NT(X,Y))| =129 + (675 — 243)

=129+4-432 = 361.

It follows from Corollary 2.5 that T(X,Y) \ Reg (T(X,Y)) € T(X,Y) \ Reg
(T(X,Y)) and Reg (T(X,Y)) € Reg (T(X,Y)) U (T(X,Y) ~ T(X,Y)). Since
Reg (T(X,Y)) C Reg (T(X,Y)), we deduce that there is an element of T(X,Y) \
T(X,Y) which is not regular in T(X,Y).
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From Example 2.8(1), it is natural to ask whether it is true that for a set

Xand @ #Y C X, if [ X \Y| = 1, then Reg (T(X,Y)) = Reg (T(X,Y)) U
(T(X,Y) N T(X,Y)). Also, does the converse hold if Y # X and |Y| > 1?
The later question is motivated by Example 2.8(2). The following theorem shows
that these are true in general. Note that by Corollary 2.2 and Corollary 2.4, if
X =Y or [Y| =1, then both T(X,Y) and T(X,Y) are regular which implies that

Reg (T(X,Y)) = Reg (T(X,Y)) U (T(X, V) x T(X,Y)).

Theorem 2.9. If | X \Y| =1, then Reg (T(X,Y)) = Reg (T(X,Y))U(T(X,Y)~
T(X,Y)), and the converse holds if Y C X and |Y| > 1.

Proof. Assume that X \'Y = {c} and let o € T(X,Y) \ T(X,Y) be given. Then
YaCYand Xa €Y. But X = YU{c}, so caw = e. Hence ran aNY = (Y U{c})a

NY = (YaU{c})NY = YanY = Ya. By Theorem 2.3, a € Reg (T(X,Y)). Hence
Reg (T(X,Y)U(T(X,Y)NT(X,Y)) € Reg (T(X,Y)). The reverse inclusion is
obtained from Corollary 2.5.

Conversely, let Y € X and [Y| > 1 and assume that | X N Y| > 1. Let
a,b € X \'Y be distinct and ¢ and d be distinct elements of Y. Define o : X — X
by
a b X~{a,b}
cb 4 |

o =

Since Y C X \ {a,b}, Yar= {d} C Y and ran o = {c,b,d} € Y, we have that
a € T(X,Y)NT(X,Y). Also, rtan a NY = {¢,d} # {d} = Ya. By Theorem 2.3,

a ¢ Reg (T(X,Y)).

Hence the proof is complete. O]

Remark 2.10. Let X be infinite. We shall give some remarks relating to the

cardinalities of Reg (T'(X,Y)) and Reg (T'(X,Y")). First, we note that if |Y| = 1,
then |Reg (T'(X,Y))| = |T(X,Y)| = 1. The following three facts are provided.

(i) If [Y| > 1, then |Reg (T'(X,Y))| > 2XI. To see this, let a and b be distinct
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elements of Y. For any A € P(X ~\ {a,b}) (the power set of X \ {a,b}), define
as: X — X by

AuUu{a} X~ (AU{a})
a b

ap =

Then ran ay = {a,b} = ({a,b})as = Yay for every A € P(X ~\ {a,b}), so
{aa | A€ P(X ~{a,b})} C Reg (T(X,Y)) by Theorem 2.1. Since for distinct
A, B € P(X ~{a,b}),as # ap, it follows that |P(X \ {a,b})| < |Reg (T(X,Y))|.
However, |X| = |X \{a,b}|, so |P(X)| = |P(X \ {a,b})|. Therefore it follows
that

Reg(T(X, V)] = |P(X)] = 2%

(ii) If Y| = |X]|, then |Reg (T'(X,Y))| = |T'(X)|. To prove this, assume that
Y| = |X|. Then |T(Y)| = |T(X)] through a map o — ¢ 'ap where p : X — Y is
a bijection. For a € T(Y'), define a map @’ : X — X by /|y = aand (X \Y)d' C
ran . Hence for every a@ € T(Y), o' € T(X,Y) and ran o/ = ran o = Y/, so
o € Reg (T'(X,Y)) for all @« € T(Y) by Theorem 2.1. Moreover, a — « is an
injective map from 7'(Y') into Reg (7'(X,Y)), so

IT(X)| = [Reg (T(X, Y) = Ko Ta e TOOF = T(Y)| = [T(X)],

and the required result is obtained.

(i) [Reg (T(X,Y))| = [T(X)[. A [Y] = |X], then by (ii), [Reg (T(X,Y))| =
IT(X)|. Since Reg, (T(X,Y)) € Reg (T(X,Y)) € T(X,Y) C T(X), we have
that |Reg (T(X,Y))| = |T(X)| when |Y| = |X|.-Next, assume that |Y] < |X|.
Then | X| = | X \Y]| + [Y| = |X Y| since X is infinite and |Y| < |X|, and
hence |T(X \Y)| = |T(X)|. For « € T(X \Y), define a map @ : X — X
by @|x.y = @ and Ya C Y. Thus for every a € T(X \Y), @ € T(X,Y) and
rana N Y = (rana U Ya)NY = Ya. It follows from Theorem 2.3 that

{@|aeT(X\NY)} CReg (T(X,Y)). Since a — @ is an injective map from



T(X \Y) into Reg (T'(X,Y)), we have

T(X)] = [Reg (T(X,Y))| = {a |« e T(X NY)} = [T(X N Y)| = [T(X)],

and thus [Reg (T(X,Y))| = |T(X)].

AONUUINBUINT )
ANRINTUNINEAE
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CHAPTER I11

REGULAR ELEMENTS OF SEMIGROUPS OF LINEAR
TRANSFORMATIONS

In this chapter, we consider the subsemigroups Lp(V,W) and Lg(V,W) of
Lr(V) analogous to the subsemigroups 7'(X,Y) and T(X,Y) of T(X), respec-
tively. Also, the subsemigroup Kpz(V, W) of Lp(V) is considered. The regular
elements of these three semigroups are characterized. Such results for Lg(V, W)
and Kp(V,W) are then applied to determine the regular elements of the matrix
semigroups C,,(F, k) and R,(F, k), respectively.

First, we recall the semigroups Ly(V, W), Lp(V,W), Kp(V,W), C,(F,k) and
R, (F, k), where W is a subspace of a vector space V over a field F', n,k € N and

k < n, as follows:

Lp(V,W)={a € Lp(V) | ran a C W},

Lr(V,W) ={a€ Lp(V) | Wa C W},

Kp(V,W)={a € Lp(V) | W Ckera},

Cn(F k) ={A e M,(F)|A;=0forallije{l,...,n}and j > k},
R,(F.k)={A¢€ M, (F)|A;;=0foralli,je{l,...,n} and i > k}.

In other words, C,,(F, k) consists of all matrices in M, (F') of the form

ayy - ap 0 - 0

Uy -+ g 0 -+ 0

Upi - G O - 0



and R, (F, k) consists of all matrices in M, (F") of the form

a1; Q12 Q1n

ar1 Qg2 Qkn
0 0 0
0 0 0
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Observe that R, (F,n) = M, (F) = C,(F,n).
Throughout this chapter, let W be a subspace of a vector space V over a field
F,neNand k€ {l,...,n}.

Theorem 3.1. For o € Lp(V.W), a0 € Reg (Lp(V,W)) if and only if ran a =
Wa.

Proof. If @« = afa for some 3 € Lp(V, W), then Wa C Va =Vafa = (Vaf)a C
Wa, so ran o = Wa.

For the converse, assume that ran a = Wa. Let By be a basis of ker a, By a basis
of ran o and B3 a basis of V' containing By. Since ran av= Wa, for each element
u € Ba, there is an element u’ € W such that w'a = u. Then B; U {v' | u € By} is
a basis of V. Define § € Lr(V') on the basis B3 of V' by

U 83\82

u 0

6=

ueBs
Then ran § = ({v' | u € By}) C W, so 8 € Lp(V,W). Since Biafa = {0} = By«
and v'afa = ufa = v« for all u € Bs, we have that o= afa. Hence « is a

regular element of Ly (V, W), as desired. O

Corollary 3.2. The semigroup Lp(V, W) is reqular if and only if either W =V
or W = {0}.
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Proof. Assume that {0} C W C V. Let B; be a basis of W and B a basis of V
containing B;. Let w € B; and define aw € Lr(V) by

Bl B\Bl
o =
0 w

Then ran @ = (w) € W and Wa = (By) a = {0}, thus ran o # Wa. Hence
a € Lr(V,W) and by Theorem 3.1, @ is not a regular element of Ly(V,W).
Since Lp(V,V) = Lp(V) and Lp(V,{0}) = {0}, the converse holds. O

Theorem 3.3. Fora € Lp(V,W), a € Reg (Lp(V,W)) if and only if ran aNW =
Wa.

Proof. Since Wa C W, we have Wa C ran a N W. Assume that a = afa for
some 3 € Lp(V,W). If v € ran a "W, then v € W and v = ua for some u € V

which imply that
v =ua = uafa =vfa c Wha C Wa.

Hence ran aN'W = Wa.

Conversely, assume that ran a N W = Wa. Let B; be a basis of ran a N W,
By C ran o ~ B; and B; € W ~ B; such that B; U By, and B; U B3 are bases
of ran a and W, respectively. Then B; U By U B3 is a basis of ran o + W. Let
By C V ~ (By UBy UB;3) be such that B; U By U B3 U By is a basis of V. Since
B, C ran a N W = Wa, for each u € By, there is an element u' € W such that

1

w'o = u. Since By C ran «, for each v € By, there is an element v € va™" such

that Tar=w. Define 3 € Li(V) on the basis B; W By U B3 U By by

u v B3UB4

/ [r—
u- v 0 u€B;
vEBg

It follows that W3 = (B1UB3) 8 = ({v/ |u € By}) C W, s0 3 € Lp(V,W). Let
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By be a basis of ker . Then ByU{w' |u € B;}U{T | v € By} is a basis of V. Since

Boafa = {0} = Boa, v'afa = ufa = u'a for all u € By,

vafa = vfa = va for all v € B,
we have a = afBa, so a € Reg (Lp(V,W)), as desired. ]

Corollary 3.4. The semigroup Lp(V, W) is reqular if and only if either W =V
or W = {0}.

Proof. Assume that {0} # W C V. Let By be a basis of W and B a basis of V
containing B;. Then By # @ # B ~ B;. Let w € By and u € B ~ By. Define
a € Lp(V) by

u B~ {u}

w 0 .

Then Wa = (By)a C (B~ {u})a = {0}, so a € Lp(V,W). Since ran a N W =

(w) # {0} = Wa, by Theorem 3.3, we deduce that « is not a regular element of
Lr(V,W). Hence Lp(V,W) is not a regular semigroup.
Since Ly(V,V) = Lp(V) = Lg(V, {0}), the converse holds. O

Theorem 3.5. Fora € Kp(V,W),a € Reg (Kp(V,W)) if and only if ran a N W
= {0}.

Proof. Assume that a = afa for some § € Kp(V,W). If v € ran aNW then v €
W and v = ua for some u € V', and hence v = ua = uafa = vfa € Wha = {0}.
This shows that ran a N W = {0}.

Conversely, assume that ran a« N W = {0}. Let By be a basis of kera, By a
basis of ran & and By a basis of W. Since ran a NW = {0}, we have that B, UBj3 is
a basis of ran o+ W. Let B4 be a basis of V' containing By U B3. For each element
u € By, let ' € V' be such that v'a = w. Then B; U {u' | u € By} is a basis of V.
Define g € Lp(V) by

uw By~ By

u 0

0=

ueBs
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Since By C By \ By, it follows that W3 = (B3) 8 = {0}, so 8 € Kp(V,W).
Moreover, Biafa = {0} = Byja and v'afa = ufa = v'a for all u € By. Hence we

have oo = affar, so v is a regular element of Kp(V, W). ]

Corollary 3.6. The semigroup Kr(V,W) is reqular if and only if either W =V
or W = {0}.

Proof. Assume that {0} € W C V. Let By,B,w,u and a € Lp(V) be as in
Corollary 3.4. Since Wa = {0}, we have a € Kp(V,W). Also, rananNW =
(wy N W = (w) # {0}. By Theorem 3.5, a is not a regular element of Kg(V, W).

The converse holds since Kp(V, V) = {0} and Kg(V,{0}) = Lp(V). O

To characterize the regular elements of C, (F, k) and R, (F, k) by Theorem 3.1
and Theorem 3.5, respectively, some lemmas are needed.

Let V* and V** be the dual space and the double dual space of V', respectively.
For A C V, the annihilator of A is denoted by A°, that is,

A’ ={feV*] f(v) =0 forall v e A}
and let A% = (A°)°, that is,
A® = {T e V* | T(f) =0 forall f e A°}.
For (z1,...,2,) € I, define hy, . 4.y F" — F by

h(azl 77777 :Cn)(th .. ,tn) = tll'l -+ —f—tnl’n for all (tl, .o B ,tn) c .

(Fn)* = {h(m ..... Tn) | ($17' .- axn) € Fn} (I)

([5], page 149). For x € F", define T}, : (F")* — F by
T.(f) = f(z) for all x € F™.

Then
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(F™y* ={T, |z € F"} and
T, # T, for all distinct z,y € F" (II)
([5], page 147). If U is a subspace of F™, then
U = (T, |ueU) (111)
([5], page 148-149). Note that if A; and A, are subsets of F™ such that A; C A,
then A D AY and A{® C A%.

Lemma 3.7. Let (a11, ... a1n)s -, (Gm1y - ooy @mn), (b1, ..., by) be elements of F™.
Then the following two conditions are equivalent.

(1) (bh' .. >bn) € <(CL11, i ../aln), S .,(aml,. N ,amn)).
(ii) For every (xy1,...,@,) € F", apnxy + -+ + ama, =0 for alli € {1,...,m},
then byxy + - - - + byx, = 0.

Proof. Let Uy = ((a11,-++,@1n)s -+ s (@mds - - - Q) and Uy = (b1, ..., by,)).
Assume that (i) holds. Then U, C U; which implies that U O UP. Let
(x1,...,x,) € F™ be such that a2z + -+ apr, =0foralli e {1,...,m}. Then

.....

It follows that h(z, . .y € U7. But U € UY, 80 by, py(b1, ..., b,) = 0, that is,

bixy + - - - + byx, = 0. Hence (ii) holds.
To show that (ii) implies (i), assume that (ii) holds. Then we have that for every

(1,...,%0) € F™" Rz, 2y € <{(a11,...,aln),...,(aml,...,amn)}>0 implies that

Hence by (I1I),
{T, 'z c'U} 20C U ={T5 | = €'1}.

By (II), we deduce that Uy C Uy, so (i) holds. O

For a matrix A € M, (F), define g4 : F™* — F™ by

Xga=XA forall X € F".
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Clearly, ga € Lp(F") for all A € M,,(F). Let {ey,...,e,} be the standard basis of

F™ over F. Therefore we have

eiga = (An,..., Ayp) forallie{l,...,n} and A € M, (F). (IV)
Lemma 3.8. The mapping ¢ : M,(F) — Lp(F") defined by Ap = ga for all
A € M,(F) is an isomorphism from M, (F) onto Lr(F™).

Proof. 1t is clear that ¢ is a homomorphism. It follows from (IV) that ¢ is 1-1. If
a € Lp(F™), then define A € M, (F) by

(Aﬂ,...,Ain) = e, for all ¢ & {1,,n}

Then by (IV), e;g4 = e;a for all i € {1,...,n}, and thus Ay = g4 = o. Hence the

lemma is proved. O

Lemma 3.9. Let Uy and U, be subspaces of F" spanned by {ei,...,ex} and
{€ks1,...,en}, respectively. Then

(i) Lp(F™,Uy)={9a| A€ C.(Fk)} and

(i) Ke(F",U) = {ga | A € Ri(ER)}.

Proof. We have from the definitions of U; and U, that
U= {(x1,...,2x,0,...,0) | z1,... .8, € F}

and

{(0,...,0)} if k = n,

{00,...,0, 1y oy @) | Tpyry ..o 2 € F}if k<.

(i) For'A € M, (F),

ga € LF(Fn, Ul) & ran ga cU
< (Aj, .., Ap) €Uy forallie{l,...,n} from (IV)
< A;j=0 foralli,je{l,...,n} with j > k
s Ae C(F k).
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Hence by Lemma 3.8, (i) holds.
(ii) If £ = n, then Kp(F",Uy) = Lp(F") and R, (F, k) = M,(F), so (ii) holds
by Lemma 3.8. Next, assume that & < n. Then for A € M, (F),

ga € Kp(F™,Uy) < Uy C ker gy
< Usga = {(0,...,0)}
< ega=(0,...,0) forallie {k+1,...,n}
& (A Ain) = (0,.07,0)
forallie{k+1,...,n} from (IV)

& AcR,(F k).
Hence (ii) holds by Lemma 3.8. O

Theorem 3.10. For A € C,(F, k), A is reqular in C,,(F, k) if and only if for any
T1,...,Tp € F,
Apxy + -+ Agx =0 foralli € {1, ...k}

(1)
= Ajpxy +--+Agap =0 foralli e {k+1,...,n},

that is, for any (x4, ..., xx) € FF,

Ay o Al | 0 Apring - Agnipl| [ 0

A o Agil| |7k 0 A o Ang Ty, 0

Proof. Let U be the subspace of F" spanned by {ej, ..., ex}. Then by Lemma 3.8
and Lemma 3.9(i), C,,(F, k) = Lp(F™,U) through the mapping A+ g4.
Let A € O, (F, k). Since A;; = 0 for all i,5 € {1,...,n} withy >k, by (IV),
we have
ran g4 = (A1, ..., A16,0,...,0), .., (Anty ooy Apg, 0,...,0))

(2)
UgA: <(A11,...,Alk,(),...,O),...,(Akl,...,Akk,O,...,O)).
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Hence

A € Reg (C(F,k)) < ga € Reg (Lp(F™,U))
& ran g4 = Ugy from Theorem 3.1
< (A, .., Ay, 0,...,0)
€ (A, A1y 0,...,0), o (A, - ooy Agr, 0,...,0))
foralli € {k+1,...,n} from (2)
& (Ag, o Ag) € (A AR, . (A, Agg)) in FP
foralli € {k+1,...,n}

& (1) holds from Lemma 3.7.

Therefore the theorem is proved. O]

The following two corollaries are direct consequences of Theorem 3.10.

Corollary 3.11. If A € C,(F, k) is of the form

A e 0 -.. 0
akl P akk O PR O
0 0 0 0|’
0 0 0 0

then A is reqular in C,,(F, k).

We note here that if S consists of all matrices A € M, (F) of the form given in
Corollary 3.11, then S is a subsemigroup of M,(F) contained in C,(F,k) and
S = M(F). This implies that S is a regular subsemigroup of C,,(F, k).
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Corollary 3.12. Let k <n and A € C,(F, k) be of the form

0 0 0 0

0 0 0 0
41,1 apy1x O 0
a’nl a/nk; 0 0

Then A is reqular in C,(F, k) if and only if A is a zero matriz.

Also, as a consequence of Theorem 3.12, C,(F, k) is a regular semigroup only

in the case that k = n, or equivalently, C,,(F, k) = M, (F).

Corollary 3.13. The semigroup C,(F,k) is a reqular semigroup if and only if
k=n.

Proof. Assume that k < n. Define A € M, (F) by

0 0 0
0
A——
0 0 0
10 0

Then A € C,(F, k). Since k < n, by Corollary 3.12, A is not regular in C,(F, k).
Since Cy,(Fyn) = M,(F), the converse holds. O

Theorem 3.14. For A € R, (F, k), A is reqular in R,(F, k) if and only if for any
Ti,...,Tp € F,
Ajjoy + -+ Agjzp =0 for allj € {1,... k}

(1)
= Ay + -+ Ao, =0 forallj e {k+1,...,n},
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that is, for any (zy,...,x) € FF¥,

All ce Alk
[xl xk} ST Z[O O}
Ap A,
Al,k+1 e Aln
:>[x1 :ck} 3 IR :[0 0}-
Appa - Agn

Proof. This is true if k = n since R, (F,n) = M, (F). Assume that k < n and U
is a subspace of F" spanned by {éj1,...,€,}. By Lemma 3.8 and Lemma 3.9(ii),
R,(F,k) =2 Kp(F™,U) by A — ga. Note that

U - {(O, ,O,xk+1,. . .,xn> ‘ xk+1,...7xn € F} (2)

Let A€ R,(F,k). Then A;; =0 for all 4,5 € {1....,n} with i > k and

A € Reg (Ru(F k) € ga € Reg (Kp(F™,U))
< vran g4 N U ={(0,...,0)} from Theorem 3.5,

Thus to prove the theorem, it suffices to show that ran g4 N U = {(0,...,0)}
if and only if (1) holds. First, assume that ran g4 N U = {(0,...,0)} and let
Z1,...,2, € F be such that Ayjz; + - - + Agjep =0 for all j € {1,...,k}. Then

(x1,..., 2k, 0,...,0)ga
= (z1,...,25,0,...,0)A
= (Apz + -+ Ay, o0, Ay + oot Agpy)
= (0,. 05004 s e A ApppaTr, o, Ay + ot Agnay)

cran g4 NU ={(0,...,0)} from (2).

This implies that Az + -+ Agjap, =0forall j e {k+1,...,n}.
Conversely, assume that (1) holds. Let (y1,...,y,) € ran g4 N U. Then
y; = 0 for all j € {1,...,k} by (2) and (y1,...,yn) = (a1,...,a,)ga for some
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(ai,...,a,) € F". It follows that Aj;a; + - - + Agjar = y; for all j € {1,...,n}.
Then Ayja1+-- -+ Agjar, =0forall j € {1,...,k}. By (1), Ayja1+-- -+ Agjap =0
for all j € {k+1,...,n}. Thus (y1,...,y,) = (0,...,0). This shows that
ran g4 NU = {(0,...,0)}.

Therefore the proof is complete. O

From Theorem 3.14, we clearly have the next two corollaries.

Corollary 3.15. If A € R,(F, k) is of the form

SV b
ol £ 7o a0\ N0
of £ —a ORANON
ff 2402808 Y, 0

then A is reqular in R, (F, k).

Corollary 3.16. Let k <n and A € R, (F,k) be of the form

0 oo
0 -+ 0 agrt1r -+ Qn
(NP ) R | DR |
0 cee 0 0 e 0

Then A is regular in R, (F,k) if and only if A is a zero matriz.

Corollary 3.17. The semigroup R,(F,k) is a reqular semigroup if and only if

k=n.
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Proof. If k < n, then by Corollary 3.16,

0 0 1
0 0 0
A=
0
0 0 0
is a nonregular element of R, (F, k).
If k =n, then R,(F,k) = M,(F). Therefore the converse holds. O

Remark 3.18. In our presentation, we applied Theorem 3.1 and Theorem 3.5

to obtain Theorem 3.10 and Theorem 3.14, respectively. In fact, Theorem 3.10

implies Theorem 3.14 and the converse is also true. It follows from the following

facts:

(i) If the semigroups S; and Sy are anti-isomorphic, that is, there is a bijection
¢ : S1 — Sy such that (zy)p = (yo)(xyp) for all x,y € S, it is clearly that
Reg (S2) = (Reg (S1)) ¢

(ii) The mapping A — A’, the transpose of A, from C,(F, k) [R,(F, k)] into
R, (F, k) [CL(F, k)] is clearly an anti-isomorphism.

Example 3.19. Counsider the matrices A and B over R defined by

1 10

0
1 10
3210
A= 10 0 0| and B=
0-0-0-0
0 20
0“0 0 0

If we consider A-€ C5(R;2), then Aisnot aregular element of C3(R;2) by Theorem
3.10 since A11(1)+Aja(—1) = 0= Ao1(1) + Ago(—1) and Asi(1) + Aza(=1) = —2 #
0. Consider B as an element of Cy(R,3) and R4(R,2). By Corollary 3.11, B €
Reg (C4(R,3)). To show that B € Reg (R4(R,2)) by Theorem 3.14, let 21,29 € R
be such that Biiz1 + Bojxa = 0 = Biaxy + Basxos. Then 329 = 0 = 21 + 229 which

implies that Tl = Ty = 0, SO Blgl’l + B23.1‘2 =0= Bl4$1 + BQ4I2.



CHAPTER IV

THE BO-PROPERTY OF SEMIGROUPS OF
TRANSFORMATIONS OF SETS

The BQ-property of the semigroups of 7(X,Y) and T'(X,Y) are considered
in this chapter. The characterizations of T'(X,Y) and T(X,Y) to have the BO-
property will provide some examples of BO-semigroups which are not regular.

Recall that the semigroups 7/(X,Y) and T(X,Y), where Y is a nonempty

subset of a set X, are defined as follows:
T(X,)Y)={aeT(X)|ran a C Y},
TX.Y)={acT(X) | YaCY}.

Throughout this chapter, let X be a nonempty set and @ #Y C X.

We first show that the semigroup 7'(X,Y’) always has the BQ-property.

Lemma 4.1. If B is a bi-ideal of a regular semigroup S, then B has the BQ-

property.

Proof. Since B_is a bi-ideal of S, we have BSB C B. Let A be a bi-deal of B.
Then ABA C A. To show that A is a quasi-ideal of B, let' x € ABN BA. Since S

is regular, x = zyx for some y € S. These imply that
x=uxyr € ABSBA C ABA C A.

Hence ABN BA C A. This proves that every bi-ideal of B is a quasi-ideal of B.
Hence B has the BQ-property. O

Lemma 4.2. The semigroup T(X,Y) is a left ideal of T(X).
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Proof. Since ran (fa) C ran « for all o, 5 € T(X), it follows that T(X)T(X,Y) C
T(X,Y). Hence T'(X,Y) is a left ideal of T'(X). O
Theorem 4.3. The semigroup T(X,Y) always has the BQ-property.

Proof. Since T'(X,Y) is a left ideal of T'(X) by Lemma 4.2, T'(X,Y) is a bi-ideal
of T(X). But since T(X) is a regular semigroup, by Lemma 4.1, T(X,Y") has the

BQ-property. O

To characterize when T/(X, Y) is a BQ-semigroup, Proposition 1.2, Proposition

1.5, Proposition 1.9 and Corollary 2.4 and the following three lemmas are needed.
Lemma 4.4. Let S be a semigroup. If @ # A C Reg (S), then (A), = (A),.

Proof. We know that (A), C (A),. Let z € (A),. By Proposition 1.2(i), x = sa =
bt for some s,t € S* and a,b € A. Since a € Reg (S), a = ad’a for some ' € S.
Then

T = sa = sad'a = bta'a € ASA C (A),
by Proposition 1.2(ii). Hence we have (A), = (A),, as desired. O

Lemma 4.5. Let S be a semigroup, @ # A C S and B C Reg (S). If (A)y = (A4),,
then (AU B), = (AU B),.

Proof. We first show that S*AN BS! and S'BN AS" are subsets of (AU B);. Let
x € SYAN BS'. Then z = sa = bt for some s,t € S', a € A and b € B. Since
b € Reg (), b = bb'b for some b’ €S. It follows that

x=bt = b'bt = bb'sa € BSAC (AUB)S(AUB) € (AU B),.

This shows that STANBS! C (AUB);. It can be shown similarly that STBNAS! C
(AU B)y. Consequently,
(AUB),=S'(AUuB)N(AUB)S!
= (S'AUS'B)n (AS' U BSY)
= (STANASHU(S'"ANBSYHY U (S'BN ASY) U (S'Bn BSY)
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= (A),U(S'"AnBSYHU(S'Bn ASY) U (B),
= (AU (STANBSYH U (S'BN ASY U (B),
from the assumption and Lemma 4.4
C(A)WU(AUB),U(AUB),U(B),
= (AU B),.

But (AU B), C (AU B),, so (AU B), = (AU B),. O

Lemma 4.6. If | X| = 3 and |Y| = 2, then for alloa, B € T(X,Y), (o, B) = (a2, B),
in T(X,Y).

Proof. For convenience, let X, denote the constant map whose domain and range

are X and {a}, respectively.
Assume that X = {a;b, ¢} and Y = {a, b}. Clearly,

_ S —¢c a0 G a b ¢ a b c
T(X7 Y) - {1X7Xa7Xba ) ) 3 ;
a a b a a c b b a b b c
a b ¢ a—b—=c a b c a b c a b c }
a b a ’ a b b ’ b a a 7 b a b ’ b a ¢ '

By Theorem 2.3((i)< (ii)),

T(X,Y) ~ Reg (T(X,Y)) = {

S IS
IS >
> O
>
ot o
IS o
——

a-b _c a b ¢
A= and 7 =
a ‘a b bbb a

Note that A> = X, = 9\ and * = X, = M. To show that («, 3), = («, 3), for
all a, 8 € T(X,Y), by Lemma 4.5, it suffices to show that (A\), = (\),, () = (0),
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and (A, 1), = (A, n),. By direct multiplication, we have

TX, V)N ={\ X, LAT(X,Y) = {\ Xo, X, 0}, AT (X, V)N = {X,.},
T(X,Y)n = {n, X}, nT(X,Y) = {n, Xo, Xo, A}, 1T (X, V)1 = { X},
)‘T(Xv Yn ={Xs}, nT(Xv YA = {X.}.

Hence

(Ao = AT(X, Y)AU{A} = {Xo, A} =T(X,Y)ANNT(X,Y) = (\),,
(ms = nT(X, Y )pUdny ={X, n} = T(X, V)0 nT(X,Y) = (1),
(A )y = {A T YN ) U {X 0}
= NT( X, V)ANUN (X, Y)nunT(X, Y)AUT(X,Y)nU{\n}
= {Xa, Xp, \, 0},
(A g = T(X, V)0 0 {0} T(X,Y)
= (T(X, V) AUT(X, Y ) 0 (A\T(X,Y)UnT(X,Y))

= {)‘7Xa77]7Xb} 73 (/\777>b

O

Theorem 4.7. The semigroup T(X,Y) has the BO-property if and only if one of
the following statements holds.

i) Y=X.

(i) |Y]=1.

(iii) | X| < 3.

Proof. Assume that (i), (ii) and (iii) are false. Then X \Y # @&,[Y| > 1 and
| X| > 3.

Case 1: |Y|=2. Let Y = {a,b}. Since | X| >3, [ X \NY|>1 Letce X \Y.
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Then X ~ {a,b,c} # @. Define a, 3,7 € T(X,Y) by

a b ¢ X~{abc} c x
o = 5 ﬁ: ;
b b a c a
zeX~{c}
a b X~ {a,b}
b b c ’
Then
aafd =b=aya, baf =b=bya, caf =a=cya
and

(X ~ {a,b, B ={at = (X {a.b,chya £(X ~ {a,b,c})a,
so a # aff = ya € (a), by Proposition 1.2(i). If af € («),, then by Proposition
1.2(ii), af = ana for some n € T(X,Y). Hence we have

a = caf = cana = (an)a.
This implies that an = ¢ which is contrary to @ € Y and ¢ € X Y. Thus
(@) # (), s0 by Proposition 1.9, T(X,Y) does not have the BQ-property.

Case 2 : |Y| > 2. Let a,b, ¢ be distinct elements of Y. Let o, 3,y € T(X,Y) be
defined by

a Y ~{a} X\Y 5 a bz

a - ) - )
b a c b a x
zeX~{a,b}
a Y~{a} =
e a
reX\Y
Then
aaf = a = ava # aa, (¥ ~{a})af = {b} = (¥ ~ {a})ya

and

(X ~\Y)af ={c} = (X \Y)a.
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Thus o # af = ya € (a),. If af € (a), then aff = ana for some n € T(X,Y).

Therefore we have that for every z € X \'Y,
¢ =zaf = rana = (cn)a

which implies that cn € X\Y. It is a contradiction since ¢ € Y. Hence (o), # (o)q,
and so by Proposition 1.9, T(X,Y) does not have the BQ-property.

If Y = X or |[Y] =1, then T(X,Y) is regular by Corollary 2.4 which implies
by Proposition 1.5 that T'(X,Y) has the BO-property. If | X| = 3 and |Y]| = 2,
then by Lemma 4.6 and Proposition 1.9, T'(X,Y) has the BQ-property.

Hence the theorem is proved. O

Two direct consequences of Proposition 1.5, Corollary 2.4, Theorem 4.7 and

the proof of Lemma 4.6 are as follows :

Corollary 4.8. If | X| # 3, then the following statements are equivalent.
(i) T(X,Y) is a BQ-semigroup.
i) Y=Xor|Y|=1.

(iii) T(X,Y) is a regular semigroup.

Corollary 4.9. The semigroup T(X,Y) is a nonreqular BQ-semigroup if and only
if | X| = 3 and |Y| = 2. Hence for-each set X with | X| = 3, there are exactly 3 semi-
groups T(X,Y) which are nonregqular BQ-semigroups, and each of such T(X,Y)

contains 12 elements.

Remark 4.10. (i) From Corollary 2.2 and Theorem 4.3, we have that for |Y| > 1
and Y C X, T(X,Y) is a BQ-semigroup but not a regular semigroup.

(i) By Lemma 4.2, T'(X, Y) is-a left ideal of T'(X). But for av-€ T'(X,Y) and
BeET(X,Y), Xap CYBCY,soT(X,Y)is an ideal of T(X,Y)." We have that
Ix € T(X,)Y)NT(X,Y) if Y # X. Hence if Y # X, then T(X,Y) is neither
left nor right simple. Therefore we deduce from Corollary 4.9 that if | X| = 3 and
Y| = 2, then T(X,Y) is an example of BQ-semigroup which is neither regular nor
left [right] simple (see Proposition 1.5 and Proposition 1.6).



CHAPTER V

THE BO-PROPERTY OF SEMIGROUPS OF LINEAR
TRANSFORMATIONS

In this chapter, the semigroups Lp(V, W), Lp(V,W) and Kp(V, W) are stud-
ied. We have similarly to 7'(X,Y) that Lgp(V, W) always has the BQ-property.
Moreover, Kp(V, W) has also the BQ-property. However, the characterization of
Lr(V,W) to have the BQ-property also depends on the field F.

Throughout this chapter, let V' be a vector space over a field F and W a
subspace of V. Recall that

Le(V,W) ={a € Lp(V) | ran « C W},
Le(V,W)={a € Lp(V)|Wa C W},
Kr(V,W)y={a € Lp(V) | W C ker a}.

By the same proof given for Lemma 4.2, we have
Lemma 5.1. The semigroup Lp(V,W) is a left ideal of Lp(V).
Lemma 5.2. The semigroup Kg(V,W) is a right-ideal of Lp(V).

Proof. Since W C ker v C keraf forall @ € Kp(V,W) and 5 € Lp(V), it follows
that Kp(V,W)Lr(V) C Kp(V,W). Hence Kr(V,W) is a right ideal of Lp(V). O

Hence Lemma 4.1, Lemma 5.1 and Lemma 5.2 yield the following results.
Theorem 5.3. The semigroup Lp(V,W) always has the BQ-property.

Theorem 5.4. The semigroup Kr(V,W) always has the BQ-property.
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Let n € N, {ey,...,e,} be the standard basis of F™ over F', U; and U, subspaces
of I spanned by {ei,...,er} and {eg11,...,e,}, respectively. By Lemma 3.8 and

Lemma 3.9, we have
Co(Fi k)= Lp(F",Uy) and R, (F, k)= Kp(F", Us)
where for £k € N and k£ < n,

Co(F.k)={Ae M, (F)|A; =0foralld je{l,...,n}and j > k},
R, (F.k)={Ae M, (F)|A;;=0foralli,je{l,...,n} and i > k}.

From these facts, Theorem 5.3 and Theorem 5.4, we obtain the following corollary.

Corollary 5.5. For n,k € N with k < n, the semigroups C,,(F,k) and R, (F,k)
have the BQ-property.

To prove the main theorem, the following lemma is also needed. Lemma 4.5

and Theorem 3.3 are used in the course of its proof.

Lemma 5.6. If ' = Zo,dimpzV = 2 and dimpW = 1, then for all o, €
ZF(‘/a W),(Oé,ﬁ)b = (a’ﬁ)q in ZF(M W)

Proof. Let {w} be a basis of W and {w,u} a basis of V. Since F' = Z, it follows
that W = {0,w} and V. = {0, w, u, u+w}. Clearly, both {u,u+w} and {w, u+w}
are also bases of V. Thus (w) N (u) = (w) N (u+w) = (u) N (u+w) = {0}. All
the elements of Ly(V, W) defined on the basis {wsu} of V can be given as follows:

Lr(V,W) = {0 1y,

)

EY)

Le(V,W) ~ Reg (EF(V,W)):{ oo }

0 w

u w.ou w u wou
0

By Theorem 3.3,
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wou
Let A = . Note that A\? = 0. To prove the lemma, by Lemma 4.5, it suffices
0 w

to show that (\), = (A\),. By direct multiplication, we have
Lp(V,W)A ={0,A}, ALp(V,W) ={0,A}, ALp(V, W)X = {0}.
Consequently,
(N = AZp(V, WA UM} = {0, 0} = Tp(V, A 0 ALp(V, W) = (V).
[

Theorem 5.7. The semigroup Lp(V, W) has the BO-property if and only if one
of the following statements holds.

i) W=V.

(i) W ={0}.

(i) F = Zo,dimp V =2 and dimp W = 1.

Proof. Assume that (i), (ii) and (iii) are false. Then (1) {0} # W C V and (2)

F # Zs,dimpV > 2 or dimp W > 1. Let By be a basis of W and B a basis of V
containing B;. Then B; # @ and B \. By # @.

Case 1 : F # 7. Leta€ F~{0,1},w € B; and u € B \ B;. Define o, 3,7 €
Lp(V,W) by

ju B {u} _fw B~ {w} u B~ {u}
N w 0 A aw 0 14 au 0 .
Then we have
af o wo B Hu} e
aw 0

Since a # 1, we have af # a. By Proposition 1.2(i), af € («),. Suppose that
af € (a),. By Proposition 1.2(ii), a8 = ana for some n € Lg(V,W). Then

aw = uaf = uana = (wn)a.
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But
wn €W and Wa = (B;)a C (B~ {u})a = {0},

so aw = 0 which is contrary to a # 0. Thus (a), # (a)s, so Lr(V, W) does not

have the BO-property by Proposition 1.9.

Case 2 : dimp W > 1. Then |B;| > 1. Let wy,wy € By be such that w; # ws and
u € B~ By. Define a, 3,7 € Lp(V, W) by

w; u B~ A{w,u} wy B~Hw, } u B~ A{u}
a= 0= Y=
Wy Wy 0 wy 0 U 0

Then we have

w B~{u
af = {u) = ya # a,
w1 0

so a3 € (a),. If af € (a)y, then a = ana for some n € Lp(V,W). Thus
wy; = uaf = uana = (win)a.
Since wyn € W = (By), we have
win = awy +v for some a € F and v € (By ~ {w}).

But B; \ {w;} C B ~Awy,u}, so va = 0. Consequently, w; = (aw; + v)a = aws
which is contrary to the independence of w; and ws,. By Proposition 1.9, Ly (V, W)
does not have the BQ-property.

Case 3 : dimg V > 2 and dimp W =1, Then |B;| =1 and |B \ B;| > 1. Let
B, = {w} and wu;,uy; € B < B; be such that u; # uy. Let o, 3,7 € Lp(V,W) be
defined by

uy ug B~ {ug,us} w B~ A{w} uy B~ {u}
o = ) 6 - y V= :
w o Uy 0 w 0 Uy 0

Then we have
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so af € (a),. Suppose that af € (a),. It follows that aff = ana for some
n € Lp(V,W). Thus

w = waf =uane = (wn)o.

But
wn € W = (w) and wa =0,

so w = (wn)a = 0, a contradiction. Hence (a), # (), so Lp(V, W) does not have
the BOQ-property, as before.

For the converse, if (i) or (ii) holds, then Ly(V,W) = Lp(V) which has the
BO-property by Proposition 1.5. If (iii) holds, then Lz (V, W) has the BQ-property

by Proposition 1.9 and Lemma 5.6. O]

The following corollaries follow directly from Proposition 1.5, Corollary 3.4,

Theorem 5.7 and the proof of Lemma 5.6.

Corollary 5.8. If F' # Z,, dimpV # 2 or dimpW +# 1, then the following
statements are equivalent.

(i) Lr(V,W) is a BQ-semigroup.

(i) W=V orW ={0}.

(iii) Lp(V,W) is a regular semigroup:

Corollary 5.9. The semigroup Lp(V,W) is a nonregular BQ-semigroup if and
only if F' = Zo,dimpV = 2 and dimp W = 1. Hence if F' = Zsy and dimp V = 2,
there are exactly 8 semigroups Lp(V, W) which are nonreqular BQ-semigroups,

and each of such Lp(V,W) contains 8 elements.

Remark 5.10. (i) By Corollary 3.2, Corollary 3.6, Theorem 5.3 and Theorem 5.4,
we have that if {0} # W C V, then Lp(V,W) and Kp(V, W) are BQ-semigroups
which are not regular.

(ii) By Corollary 3.13, Corollary 3.17 and Corollary 5.5, we have that if k < n,
then C,,(F, k) and R, (F, k) are BQ-semigroups which are not regular.
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(iii) We also have that Lp(V,W) is an ideal of Lz(V, W) (see Remark 4.10).
Consequently, if {0} # W C V, then Lp(V,W) is neither left nor right 0-simple.
Hence if F' = Zy,dimpV = 2 and dimp W = 1, then Lp(V, W) is a BQ-semigroup

which is neither regular nor left [right] O-simple.

AONUUINBUINT )
ANRINITUINENAY



CHAPTER VI

THE BO-PROPERTY OF RINGS OF LINEAR
TRANSFORMATIONS

We consider the rings (Lp(V, W), +, o), (Lp(V, W), +,0) and (Kz(V, W), +,0)
in this chapter. We characterize when they have the BO-property.

It is shown that for a ring (R, +, ), if (R, -) is a BQ-semigroup, then (R, +, )
is a BQ-ring. However, the converse is not true in general. It is shown by the ring
(Lp(V,W),+,0) for some V, W and F.

Throughout this chapter, V is a vector space over a field F' and W is a subspace
of V.

Since for nonempty subsets A, B of a ring (R, +, -), we have that

in the semigroup (R, ), AB ={ab|a € A and b € B},

k
in the ring (R, +,-), AB = {Zaibl- a; €A b€ Band k € N} ,
=1

the following lemma is immediately obtained.

Lemma 6.1. Let (R, 4,) be'a ring and A C R. “Then :

(i) If A is a bi-ideal [quasi-ideal] of the ring (R,+,-), then A is a _bi-ideal [quasi-
ideal] of the semigroup (R;-).

(ii) If A 4s a bi-ideal [quasi-ideal] of the semigroup (R,-) and A is a subring of the
ring (R,+,-), then A is a bi-ideal [quasi-ideal] of the ring (R,+, ).

Note that this fact is also true for left ideals, right ideals and ideals.

The following result is obtained directly from Lemma 6.1.
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Lemma 6.2. Let (R,+,-) be a ring. If (R,-) is a BQ-semigroup, then (R,+,-) is
a BQ-ring.

Theorem 6.3. The ring (Lp(V,W),+,0) always has the BQ-property.
Proof. This follows directly from Theorem 5.3 and Lemma 6.2. [
Theorem 6.4. The ring (Kp(V,W),+,0) always has the BQ-property.
Proof. 1t follows from Theorem 5.4 and Lemma 6.2. O

From Theorem 5.7, we have that the semigroup (Lp(V,W),0) has the BO-
property if and only if (i) W = V., (ii) W = {0} or (iii) F' = Z,, dimp W =
1 and dimpV = 2. By Lemma 6.2, if one of (i), (ii) and (iii) hold, then the
ring (Lp(V, W), +,0) has the BQ-property. Our main result of this chapter is to
show that the ring (Lp(V; W), +,0) has the BQ-property if and only if one of the
following statements holds.

i) W=V.
(i) W = {0}.
(ili) F' = Z, for some prime p and dimp W = 1.

(iv) F = Z, for some prime p and dimp (V/W) = 1.

Hence we deduce that the converse of Lemma 6.2 need not be generally true.

Lemma 6.5. If B is a bi-ideal of a semigroup [ring] A, then (BAN AB) N Reg
(4)C B.

Proof. Let x € (BANAB)NReg (A). Then x = xyx for some y € A. This implies
that
x =uzyr € BAyAB C BAB C B.

]

Lemma 6.6. If {0} # W C V and the ring (Lp(V,W),+,0) has the BQ-property,

then F' = Z, for some prime p.
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Proof. Let By be a basis of W and B a basis of V' containing B;. By assumption,
B, # @ and BN\ By # &. Let w € By and u € B\ B;.

Assume that F' # Z, for any prime p. This implies that Z1p C F. Let
a € F\Zlp. Define o, 3,7y € Lp(V,W) by

u BN A{u} | w BxA{w} v Bx{u}
a w 0 = aw 0 L au 0 |
Then
(Iﬁ;: u B \6{u} ::VOfGliZF(LC[@U FMZF(V:LV)Q g;(a)q
aw

Suppose that a3 € (). Since (), = Za +aLp(V, W)a, we have af = na+ ala
for some n € Z and \ € Lp(V, W). Consequently,

aw = u(af) = u(na + ala)
= nw + (wA)a
= nw+0 since wA € W and Wa = {0}

= nw.

But w # 0, so a = nlp € Z1p which is a contradiction. Hence a3 ¢ (a),. This
proves that (Lz(V, W), +,0) does not have the BO-property.

Therefore the lemma is proved. ]

Lemma 6.7. Assume that dimpW = 1 and W. = (w) and o € Kp(V,W)\

Reg (Ly(V,W)). Then the following statements hold.

(i) we keranran o.

(i) Let By be a basis of ker o containing w, By a basis of ran o containing w
and for each v € By, let v € va™t. If ay, a9 € Lp(V) are defined on the basis

BiU{v' |veBy} of V by

B, w B, w v

o) = and o9 = ;
0 w 0 0

(%
vEBa~{w} veEBa~{w}
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then

B, w v

= = a1 + Qg, (1)

0 w
vEBa~{w}

a, € Le(V,W)NKp(V,W) and oy € Kp(V,W)N (aLp(V,W)a). (2)

Proof. First, we note that W = Fw.

(i) Since o € Kp(V,W), w € kera. Sinece a ¢ Reg (Lg(V,W)), by Theorem
3.3, rtan aNW # Wa = {0}. But ran aNW is a subspace of W and dimp W = 1,
soran a N W =W = Fw. Thus w € ran a.

(i) Clearly, (1) holds, oy € Lp(V, W) N Kp(V,W) and ay € Kp(V,W). To
prove (2), it remains to show that ay € aLz(V,1W)a. Let B3 be a basis of V
containing By. Define 8 € Ly (V, W) by

w v Bg\\BQ

ﬁ -
@ St 0
vEBa~{w}
Then
Biafa. = {0} = Bias, w'afa =wla={0}=w'ay,
for every v € Box{w}, v'afa =vfa =v'a=v=1v'ay,
so we deduce that as = afBa € aLg(V,W)a. O

Lemma 6.8. Assume that I = 7Z; and dimpW = 1. If B is a bi-ideal of
(Lp(V,W),+,0) and B C K(V, W), then

BLp(V,W) C B+ BKp(V,W).

Proof. Let w € W~{0}. Then W = Z,w. Since Waf C W3 = {0} for all
a € Lp(V,W) and 8 € Kpg(V,W), we have that Kz(V,W) is a left ideal of
(Lp(V,W),+,0). Hence by Lemma 5.2, Kr(V, W) is an ideal of (Lp(V, W), +,0).
Since BKp(V,W) C B + BKp(V,W), it remains to show that B(Lp(V, W)~
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Kp(V,W)) C B+ BKp(V,W). Let « € B and € Lp(V, W)~ Kp(V,W). Then
wf € W~{0}, so wf = kw for some k € Z,~{0}.
Case 1 : a € Reg (Lp(V,W)). Then a € aLy(V,W)a and thus

af € BLp(V,W)B(Lp(V,W)NKp(V.W))
C BLp(V,W)Ke(V, W)(Le(V, W)~Kr(V,W)) since B C Kp(V,W)
C BKp(V,W) since K p(V, W) is an ideal of Lp(V, W)
and Lp(V, W) C Lp(V, W)
C B+ BEKp(V,W).

Case 2 : a ¢ Reg (Lp(V,W)). Since @ € B C Kp(V,W), we have a €
Kr(V,W)~Reg (Lr(V,W)). Define By, By, Bs, a1, ay and § as in the assump-
tion and the proof of Lemma 6.7(ii). Then

o= Q)+ g, O] € LF(V, W) n KF(‘/, W)

and

g € Ke(V, W) N (aLp(V,W)a).

Then we deduce that as € BfF(V, W)B C B,so ay =a—ay € B. Thus kay € B.
Let 5" € Lr(V) be defined by

w v

0

veBs{w}

Then ' € Kp(V,W). But since

Bi(kay + au) = {0} = Bi(af),
w'(kay + @) = kw = wB = w'af

and for all v € Box{w}, v'(kay + @) = Va8 = v = vf = v'af,

it follows that a8 = kag + axf’ € B+ BKp(V,W).

Therefore the lemma is proved. O
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Lemma 6.9. If F = Z, and dimp W = 1, then the ring (Lp(V,W),+,0) has the
BQ-property.

Proof. Let w € W~{0}. Then W = Z,w. Let B be a bi-ideal of (Lp(V, W), +,0).
Then BLp(V,W)B C B. To show that B is a quasi-ideal of (Lz(V,W),+,0),
let « € BLp(V,W)N Lp(V,W)B. If a € Reg (Lr(V,W)), then by Lemma 6.5,
a€ B.

Next, assume that o ¢ Reg (Lp(V,W)). Then ran a N W # Wa. Since
Wa CW and dimp W = 1, it follows that Wa = W or Wa = {0}. If Wa = W,
then

Wa=WanW Cran aNW =ran aNWa = Wa,

so we have ran « N W = Wa, a contradiction. Thus Wa = {0}. Hence a €
Kr(V,W)~Reg (Lp(V,W)). Let By,By, @y and as be as in the assumption of
Lemma 6.7(ii). Then by Lemma 6.7(ii),

a=a;+ay, a € Lp(V,W)N Ke(V,W)
and
as € Kp(V,W) N (aLp(V,W)a).
Since o € BLp(V, W)\ Lp(V,W)B and 1y € Lp(V, W), it follows that

s € aLp(V,W)a C BLp(V,W)Lp(V,W)Lp(V,W)B 0
1
C B\ C BL(V, W) Lp(V,WV)B.

Hence we have oy = a — ay € BLp(V,W) N Lp(V,W)B. We claim that a; € B.

Case 1 : There is a § € B such that wf # 0. Since W3 C W = Z,w, we have
wf = kw for some k € Z,~{0}. We have that

0 w

vEBa~{w}
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Then
B, w

0 kw 0

veEBa~{w}

But ay € BLp(V, W), thus ay8 € BLp(V,W)B C B. Since kZ, = Z,, it follows

aff =

that

B, w

o1 € Z@ C B.
0 kw 0

vEBa~{w}
Case 2 : wf = 0 for all € B. Then B € Kp(V,W) and hence B is a bi-
ideal of the ring (Kp(V,W),+,0). By Theorem 6.4, (Kp(V,W),+,0) is a BO-
ring. It follows that B is a quasi-ideal of the ring (Kp(V,W),+,0) and thus
BEKp(V,W)N Kp(V,W)B C B. Since Lp(V) is regular, a3 € oy Lp(V)a;. But
a; € Le(VW)N Kp(V,W) and Lp(V,W) and Kp(V, W) are a left ideal and a
right ideal of Lx(V), respectively and oy € BLy(V, W) N Lr(V,W)B, so we have

oy € a1 Lp(V)ay € BLe(V, W)Lp(V)Lp(V,W) C BLp(V,W), (2)
oy € a1 Lp(V)ag € Kp(V,W)Lp(V)Lp(V,W)B C Kp(V,W)B. (3)

Since B C Kp(V, W), by Lemma 6.8, BLp(V,W) C B + BKr(V,W). From (2),
we have oy =y + A for some v € B and A € BKp(V,W). Thus

A =roq -y
€ Kp(V,W)B+B by (3)
C Lp(V,W)B since 1y € Lp(V;W).

Therefore we have A € BKp(V, W) N Le(V,W)B. Since Lp(V).is regular, A €
ALp(V)X. Thus

A€ ALp(V)A
C BEp(V,W)Lp(V)Lp(V,W)B
C Kp(V,W)B since Kp(V, W) is a right ideal of (Lp(V),+,0).
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Consequently, A € BKp(V,W)N Kg(V,W)B C B since Kp(V,W) C Lg(V,W).
Thus oy =vy+Xe€ B+ B CB.

Hence &« = a3 +ay € B+ B C B by (1). This shows that BLy(V,W) N
Ly(V,W)B C B, as required.

Therefore the proof is completed. O

Lemma 6.10. Assume that V. = W + (u) where u € VW and o € Lp(V, W)~

Reg (Lp(V,W)). Then the following statements hold.

(i) wa € WWa.

(i) ker a CW.

(iii) Let By be a basis of ker e, By a basis of Wa and for each w € Ba, let
w' € waT'NW, then ByU{w' | w € By} is a basis of W, Bo U{ua} is a basis
of ran o and By U {u} U{w' | w € By} is a basis of V.

(iv) If aq, 0 € Lp(V) are defined on the basis By U {u} U {w | w € By} of V' by

B, v o B, u u
o = and Qg = ,
0 0 w 0 wa O
wEB2 wEB2
then
By w W
o = = o1 + Qo,
0 wa w
weBo

ay € aLp(V,W)a and ay € Lp(V,W) N Kp(V,W).

Proof. First, we note that by assumption, V. = W U (W + (F~{0})u).
(i) Since a ¢ Reg (Lp(V,W)), by Theorem 3.3, ran a N Wo# Wa. Since
V =W+ (u), it follows that ran o = Va = Wa U (W + (F\{0})u) a. Hence

Wa#ran anNW = (WaU (W + (Fx{0})u) a) N W
= (WaU(Wa+ (FN{0}ua)) NW
= WaU((Wa+ (F~\{0})ua) NW) since Wa C W
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which implies that wa + a(ua) € W\Wa for some w € W and a € F~{0}.
Consequently, a(ua) € W~\Wa and thus ua € WWa.
(ii) If w € W and a € F~{0}, then by (i),

(w+av)a = wa+a(ua) € WWa.

But V=W U (W + (F~{0})u), so we have keraw C V.
(iii) is clearly seen from (i) and (ii). Note that ker a = ker(oy,,, ).

(iv) It is clear that

o= = 0 + Q.
0 wa w
weBo
Since W = (B; U {w’ | w € Bs}), by the definition of ay, we have as € Lrp(V, V)N
Kp(V,W).
We note that ByU{ua} € WanW C W. Next, to show that a1 € aLp(V, W)a,
let B; be a basis of W containing By U {ua}. This implies that B3 U {u} is a basis

of V. Define § € Lp(V) by

w (Bg\Bz) U {UO./}

w’ 0

wEB2

Then ran 3 C W, so B € Ly(V,W). Since

Blaﬁa = {O} = BlOél,
uafo = (ua) fa = 0o = 0.= uay,

wabo = wha=wa=w = way forall w & By,
we have a; = afa € aLp(V,W)a, as desired. ]

Lemma 6.11. If F = Z, and dimp(V/W) = 1, then the ring (Lp(V,W),+,0)

has the BQ-property.
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Proof. Let B be a bi-ideal of (Lp(V, W), +,0). Then BLp(V,W)B C B. To show
that B is a quasi-ideal of (Lp(V,W),+,0), let « € BLp(V,W) N Lp(V,W)B. If
a € Reg (Lp(V,W)), then by Lemma 6.5, a € B.

Next, assume that o ¢ Reg (Lg(V,W)). Since dimg(V/W) = 1, we have
V =W + (u) for some u € V~W. By Lemma 6.10(i), uaw € W~Wa. Define

B1, B2, a1 and ay be as in the assumption of Lemma 6.10(iii) and (iv). Then
a=a;+ay, o) €aLlp(V,W)a and ay € Lp(V,W)NKp(V,W).

Thus

a1 € aLp(V,W)a C BLyp(V,W)Lp(V,W)Lp(V,W)B
C B C BLp(V,W)NLp(V,W)B

which implies that
ay=a—a; € BLe(V,W)N Lp(V,W)B. (1)

Since oy € B, to show that o € B, it suffices to show that a, € B. Since
ay € Lp(V,W)B by (1), we have that

g = Z%ﬁk for some v, € Lp(V,W) and f € B.
k=1

Without loss of generality, assume that uyy, ..., uy, € VW and uypmi1, ..., uyn
€ W. Then for i € {1,...,m},

vy; = w; + lu for some w; € W and [; € Z,~{0}. (2)
Since (B, +) is an abelian group, we have
> g € B. (3)
i=1

Let By be a basis of V' containing uc. For each ¢ € {1,...,m}, let

ua Byn{ual
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and for each j € {m+1,...,n}, let

ua Byn{ua}
Hj =
uy; 0

Then \;, p1; € Lp(V,W) for alli € {1,...,m} and j € {m +1,...,n}. From (1),

we have
Oég/\z‘ﬁz‘, Oégujﬁj & BZF(‘/, W)—[_/F(V,W)B - B (4)

foralli e {1,...,m}and j € {m+1,...,n}. By (3) and (4),

Zlﬂz —i—Zag)\z@—i- Z asp;B; € B. (5)

=l

We also have that

uf = Zl uﬂz +Z UOéz zﬂz"" Z Ucrp lujﬁj

j=m+1

= Zl (uf;) +Z (uwa) \i B + Z (ua)p;B;  since uag = ua

j=m+1

= Zl (uf;) +szﬁl+ Z uy;)

j=m+1
m

= S (hu+ w)Bi + Z (u;)B

i=1 Jj=m+1

= Z(U%)ﬁi—i- Z (u;) 5 from (2)

j=m+1

_ U(Z YilBe) = Uy = ua since g = Z%ﬁk- (6)
k=1

k=1
Case 1: 0 € Reg (Lp(V,W)). "Then ran §NW = W6. Since uf) = ua € ran 0NW

by (6) and Lemma 6.10(i), there is an element z € W such that 26 = ua. Define
n € Lp(V,W) on the basis By of V by

ua Byn{ual

z 0
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Since
B, u w ua Byn{ual
agnb =

0 wa O z 0
L weBo
B, v

= 0
0 =z
L weB2
B, v By, u u

= 4 = a27
0 z60 0 0 uwa O
L weBo weBg

it follows that ap = aonfl € BLr(V, W)Lp(V,W)B € B by (1) and (5).

Case 2 : 0 ¢ Reg (Lp(V, W)). By Lemma 6.10(iv), there are 8, € 0L (V, W), 6,
€ Lp(V,W) N Kp(V,W) with ufy = ufl such that 6 = 6; + 5. Since § € B, we
have #; € B which implies that ¢, =60 — ¢, € B. But

(Bl U {"LU/ ‘ w € BQ}) (92 - W92
= {0} since 0, € Kp(V, W)

= (BiU{w' | w € By})as by the definition of ay

and ufly = uf = wuay by (6), so we deduce that as = 6, € B.

Hence the lemma is proved. O

Theorem 6.12. The ring (Lp(V, W), +,0) has the BQ-property if and only if one
of the following statements holds.

i) W=V.

(i) W ={0}.

(ili) F =Z, for some prime p and dimp W = 1.

(iv) F' =Z, for some prime p and dimp (V/W) = 1.

Proof. Assume that (i), (ii), (iii) and (iv) are false. Then {0} # W C V and (1)
F # Z, for all prime p or (2) dimp W > 1 and dimp(V/W) > 1. Let B be a basis
of W and B a basis of V' containing B;. Then B; # @ and B\B; # @.
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Case 1 : F # Z, for all prime p. By Lemma 6.6, the ring (Lp(V,W),+,0) does
not have the BOQ-property.

Case 2 : dimp W > 1 and dimp(V/W) > 1. Then |By| > 1 and |[B\By| > 1.
Let wy,ws € By and uy,us € BN\B; be such that w; # wy and u; # uy. Let
a, 3,7 € Lp(V,W) be defined by
Uy U2 U Wy 40U Ug U
a= 8= Y=

w1 Wa 0 Wi 0 (51
veEB~{ui,uz} vEB~{w2} veB~{uz}

Then we have

Ug U
aff = =70 #a,

wq
veEB~{ua}

so a8 € aLp(V,W) N Lp(V,W)a C {a), by Proposition 1.3. Suppose that a3 €
(a)y. By Proposition 1.4, a3 = aa +ana for some n € Lp(V,W) and a € F. Thus

wy = ugaf = ug(aa + ana) = aluser) + (usc)na = aws + (wan)a.

But wen € W and Wa = {0}, so (wsn)a = 0. Hence w; = awy which is contrary
to the independence of w; and w,. Hence (a), # (), so the ring (Lp(V, W), +,0)
does not have the BO-property.

For the converse;if (i) or (ii) holds, then Lz(V, W) = Lx(V) which has the BO-
property. If (iii) or (iv) holds, then the ring (Lz(V, W), +,0) has the BQ-property
by Lemma 6.9 and Lemma 6:11, respectively.

Hence the theorem is proved. O
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