

SYSTEMATICS AND BIOGEOGRAPHY OF THE CAMAENID TREE SNAILS Amphidromus atricallosus (Gould, 1843) AND A inversus (Müller, 1774) IN THAILAND AND NEARBY REGIONS

Miss Pongpun Prasankok

จฬาลงกรณ์มหาวิทยาลัย

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Biological Sciences Faculty of Science
Chulalongkorn University
Academic Year 2006
ISBN 974-14-2716-6
Copyright of Chulalongkorn University

Thesis Title

By
Field of Study
Thesis Advisor
Thesis Co-advisor

SYSTEMATICS AND BIOGEOGRAPHY OF THE CAMAENID TREE SNAILS Amphidromus atricallosus (Gould, 1843) AND A inversus (Müller, 1774) IN THAILAND AND NEARBY REGIONS Miss Pongpun Prasankok Biological Science Associate Professor Somsak Panha, Ph.D. Professor Hidetoshi Ota, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral's Degree

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

Thesis Advisor

\qquad

(Tosak Seelanan, Ph.D.)

(Piyoros Tongkerd, Ph.D.)

ผ่องพรรณ ประสารกก: ซิสเต็มแมติกและชีวภูมิศาสตร์ของหอยต้นไม้ Amphidromus atricallosus (Gould, 1843) และ A. inversus (Müller, 1774) ในประเทศไทยและพื้นที่ ใกล้เคียง (SYSTEMATICS AND BIOGEOGRAPHY OF THE CAMAENID TREE SNAILS Amphidromus atricallosus (Gould, 1843) AND A. inversus (Müller, 1774) IN THAILAND AND NEARBY REGIONS) อ. ที่ปรึกษา: รศ. ดร. สมศักดิ์ ปัญหา, อ. ที่ ปรึกษาร่วม: Prof. Dr. Hidetoshi Ota. 129 หน้า. ISBN 974-14-2716-6.

ได้ทำการศึกษาพันธุกรรมระหว่างกลุ่มประชากรในหอยต้นไม้สองชนิดคือ Amphidromus atricallosus (หอยนกขมิ้น) และ A. inversus (หอยชอคโกแลต) ซึ่งเป็นหอยที่มีการกระจายกว้างในภูมิภาค เอเชียตะวันออกเฉียงใต้ โดยเก็บตัวอย่างหอยนกขมิ้น 319 ตัวอย่าง จาก 12 พื้นที่ของไทยและ 1 พื้นที่ของ สิงคโปร์ และหอยชอคโกแลต 144 ตัวอย่าง จาก 9 พื้นที่ของไทย 1 พื้นที่ของมาเลเซียและ 1 พื้นที่ของสิงคโปร์ จากนั้นนำเนื้อเยื่อจากตับและกล้ามเนื้อมาศึกษาด้วยวิธีทางอัลโลไซม์อิเล็กโตรโฟรีซีสเพื่อวิเคราะห์ความผัน แปรในทางภูมิศาสตร์และความถี่ของอัลลีลในหอยแต่ละชนิด ผลการวิเคราะห์อัลโลไซม์ในหอยนกขมิ้น ทั้งหมด 13 ตำแหน่ง พบว่า 11 ตำแหน่งมีความผันแปรทางพันธุกรรมในขณะที่ 1 ตำแหน่งไม่มีความผันแปร ทางพันธุกรรม ในขณะที่หอยชอคโกแลตศึกษาอัลโลไซม์ทั้งหมด 18 ตำแหน่ง พบว่า 5 ตำแหน่ง มีความผัน แปรทางพันธุกรรมในขณะที่ 13 ตำแหน่งไม่มีความผันแปรทางพันธุกรรม ผลการวิเคราะห์ความผันแปรทาง พันธุกรรมในหอยชอคโกแลตพบว่า มีค่า heterozygosity $(0-0.023$, mean $=0.002)$ ที่ต่ำกว่าหอยนกขมิ้น $(0.018$ 0.201, mean $=0.085$) ในทางตรงกันข้าม กลับพบว่าค่า heterogeneity ระหว่างกลุ่มประชากรในหอยชอคโกแลต $(F \mathrm{st}=0.965)$ มีค่าสูงกว่าหอยนกขมิ้น (0.781) นอกจากนี้ยังพบว่ากลุ่มประชากรหอยนกขมิ้นทางภาคใต้ของ ประเทศไทย $(F s t=0.551)$ มีค่า heterogeneity ที่สูงกว่ากลุ่มประชากรภาคตะวันออกของไทย $(F \mathrm{st}=0.144)$ อย่างมีนัยสำคัญ การที่กลุ่มประชากรของหอยชอคโกแลตมีค่า F st สูง ในขณะที่ค่า heterozygosity ต่ำ สามารถ อธิบายได้ว่า หอยชนิดนี้ได้รับผลกระทบที่รุนแรงจากปรากฎการณ์ bottleneck ที่เกิดขึ้นในอดีตร่วมด้วยกับการ แบ่งแยกของสภาพทางภูมิศาสตร์อย่างชัดเจนของแต่ละประชากร สำหรับกลุ่มประชากรหอยนกขมิ้น ในภาค ตะวันออกของประเทศไทย พบว่ามีค่า $F \mathrm{st}$ ต่ำแต่มีค่า heterozygosity สูงแสคงให้เห็นว่าในกลุ่มตัวอย่างนี้มีการ แลกเปลี่ยนยีนระหว่างกันเกิดขึ้นอย่างต่อเนื่อง ในขณะที่กลุ่มประชากรภาคใต้ของประเทศไทยมีค่า $F \mathrm{st}$ และ heterozygosity สูงทั้งนี้อาจเป็นผลเนื่องมาจกกการแบ่งแยกกันของถิ่นที่อยู่อาศัยที่จำเพาะในแต่ละพื้นที่พร้อม กับการเกิดกระบวนการทางวิวัฒนาการ เมื่อวิเคราะห์คาระยะห่างทางพันธุกรรมระหว่างกลุ่มตัวอย่างหอยนก ขมิ้นภาคใต้และภาคตะวันออกของไทยพบว่ามี่ค่าระยะห่างทางพันธุกรรมสูงมาก $[D=0.485-0.946]$ และมีความ แตกต่างของอัลลีลระหว่างกลุ่มประชากรทั้ง 2 ผลการวิจัยดังกล่าวแสดงให้เห็นอย่างเด่นชัคดึงการเกิดขึ้นของ สปีชีสีที่แยกออกจากสปีชีส์เดิมของหอย 2 บริเวณ

สาขาวิชา ..	วิทยาศาสตร์ชีวภาพ	ลายมือชื่อ P. Prasankok
ปีการศึกษา	2549	ลายมือชื่ออาจารย์ที่ปรึกษา.. Sth
		ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

\# \# 4573856523 : MAJOR BIOLOGICAL SCIENCE
KEY WORD: Amphidromus atricallosus / Amphidromus inversus / ALLOZYME / GEOGRAPHIC GENETIC STRUCTURE / TAXONOMY

PONGPUN PRASANKOK: SYSTEMATICS AND BIOGEOGRAPHY OF THE CAMAENID TREE SNAILS Amphidromus atricallosus (Gould, 1843) AND A. inversus (Müller, 1774) IN THAILAND AND NEARBY REGIONS. THESIS ADVISOR: ASSOC. PROF. SOMSAK PANHA, Ph.D. THESIS COADVISOR : PROF. HIDETOSHI OTA, Ph.D. 129 pp. ISBN 974-14-2716-6.

The genetic variation of the two camaenid tree snails, Amphidromus atricallosus and A. inversus which broadly distributed in Southeast Asia was examined. A total of 319 individuals of A. atricallosus were collected from 12 localities in Thailand and one in Singapore, and 144 of A. inversus from 9 localities in Thailand, one in Malaysia and one in Singapore. Tissues from these specimens were subjected to horizontal starch gel electrophoresis. As a result, 13 allozyme loci (including 11 polymorphic) were screened for A. atricallosus and 18 allozyme loci (including five polymorphic) for A. inversus. The degree of heterozygosity was higher in A. atricallosus ($\mathrm{Hexp}=0.018-0.201$, mean $=0.085$) than in A. inversus (H exp $=0-0.023$, mean $=0.002$). In contrast, overall genetic heterogeneity among local samples was higher in A. inversus ($F \mathrm{st}=0.965$) than in A. atricallosus ($F \mathrm{st}=0.781$). Within A. atricallosus, the heterogeneity was distinctly higher among the southern Thailand samples $(F s t=0.551)$ than among the eastern Thailand samples $(F s t=$ $0.144)$. The high F st and low heterozygosity values in A. inversus suggest that this species, chiefly occurring off-shore continental-shelf islands experienced a series of strong bottlenecks and subsequent range extensions. The low Fst and high Hexp values for the eastern Thailand of A. atricallosus suggest the frequent gene flows among populations in this region. The southern Thailand populations indicate relative large values in both F st and Hexp. This may have been involved in an extensive local fragmentation under various selection forces. The southern and eastern samples of A. atricallosus exhibit fixed allele differences at four loci and great genetic distance [$D=0.485-0.946$]. The results strongly suggest the Separated biological species of snail samples between the two regions.

Acknowledgements

I am extremely grateful to my advisor Associate Professor Dr. Somsak Panha and co-advisor Professor Hidetoshi Ota for their continual advice. I would like to thank other committee members; Assistant Professor Dr. Kumthorn Thirakhupt, Professor Dr. Visut Baimai, Dr. Tosak Seelanan and Dr. Piyoros Tongkerd for their consistent interest in my research, and Dr. Mamoru Toda who supported me through teaching, training and all kinds of assistances. I would like to express my sincere gratitude to the staff of Plieu National Park, Khao Ang Rue Nai and Klongsang Wildlife Sanctuary, the Plant Genetic Conservation Project initiated by Her Royal Highness Princess Maha Chakri Sirindhorn, and the Navy Special Warfare Unit of the Royal Thai Navy for their kind assistance and encouragement, which enabled me to pursue the necessary fieldworks. I am also much indebted to Professor Peter K. L. Ng, Dr. Darren Yeo, and the graduate students of the Biological Science Program and Zoological Reference Collection the Raffle Museum, National University of Singapore for kindly arranging our survey trip in Singapore and Malaysia. We also thank Dr. Chirasak Sutcharit, Dr. Bang-on Kongim and Mr. Wachira Srikoom and Ms. Chanidaporn Tumpeesuwan for their kind assistance in collecting the materials used in this study. This research was funded by the Thailand Research Fund (TRF) through Royal Golden Jubilee (RGJ) (PHD/0216/2544). Additional fundings were provided to Somsak Panha by TRF-CNRS Project (BRT-248005) a joint program of the Thailand Research Fund and French CNRS, and by the Chulalongkorn University. This work also was partially supported by Grant to the $21^{\text {st }}$ Century Program at University of the Ryukyus from the Japan Ministry of Education Science Sports and Culture to Professor Hidetoshi Ota and Srinakharinwirot University for a part of support through University Development Commission Program. Finally, I also express my deep gratitude to my parents for their support and encouragement.

Table of Contents

Page
Thai Abstract iv
English Abstract V
Acknowledgements vi
Table of Contents vii
List of Tables viii
List of Figures xiii
CHAPTER I: Introduction 1
CHAPTER II: Literature Review 6
CHAPTER III: Materials and Methods 25
CHAPTER IV: Results 33
CHAPTER V: Discussion 44
References 64
Appendices 75
Appendix I. 76
Appendix II 88
Appendix III 103
Appendix IV 106
 127
Biography 129
จุฬาลงกรณมหาวทยาลย

List of Tables

Table Page
1 Localities and sizes of samples of Amphidromus atricallosus and A. inversus used in this study 29
2 Catalog of the studies taxa, sampling localities and voucher specimen information 30
3 Correspondence of enzymes and presumptive loci with tissues and buffer systems used 31
4 Allele frequencies at polymorphic loci of the Amphidromus atricallosus samples. 37
5 Allele frequencies at polymorphic loci of the Amphidromus inversus samples. 38
6 Matrix of genetic distances between samples of Amphidromus atricallosus from eastern, southern Thailand, 39
7 Matrix of genetic distances between samples of Amphidromus inversus from eastern Thailand, southern Thailand, Malaysia, and Singapore. 40
8 Localities, mean number of alleles per locus (A), percentage of polymorphic loci (P), and expected
heterozygosity (Hexp) in samples of Amphidromus atricallosus and A. inversus. 41
9 Summary of Fst values for 13 samples of Amphidromus atricallosus and 11 samples of A. inversus. 42
10 Average heterozygosity and Fst for the populations of several land snail species estimated on the basis of multi- locus allozyme data 56
11 Chi-square test for deviation from Hardy-Weinberg equilibrium in Soidao 88
12 Chi-square test for deviation from Hardy-Weinberg equilibrium in Makham 89
13 Chi-square test for deviation from Hardy-Weinberg equilibrium in Troknong. 90
14 Chi-square test for deviation from Hardy-Weinberg equilibrium in Makō 91
15 Chi-square test for deviation from Hardy-Weinberg equilibrium in Ranong 92
16 Chi-square test for deviation from Hardy-Weinberg equilibrium in Tachai 93
17 Chi-square test for deviation from Hardy-Weinberg equilibrium in Takhun. 94
18 Chi-square test for deviation from Hardy-Weinberg equilibrium in Klongsang 95
19 Chi-square test for deviation from Hardy-Weinberg equilibrium in Khaosok 96
20 Chi-square test for deviation from Hardy-Weinberg equilibrium equilibrium in Suwankuha. 97
21 Chi-square test for deviation from Hardy-Weinberg equilibrium in Poungchang 98
22 Chi-square test for deviation from Hardy-Weinberg equilibrium in Bangkram 99
23 Chi-square test for deviation from Hardy-Weinberg equilibrium in Singapore Nee Soon 100
สถาบนวทยบริการ
24 Chi-square test for deviation from Hardy-Weinberg
equilibrium in Koh Samui 101
25 Chi-square test for deviation from Hardy-Weinberg equilibrium in Koh Tan 101
26 Significance test using exact probabilities in Soidao 103
27 Significance test using exact probabilities in Makham. 103
28 Significance test using exact probabilities in Troknong. 103
29 Significance test using exact probabilities in Makok. 103
30 Significance test using exact probabilities in Ranong 104
31 Significance test using exact probabilities in Tachai. 104
32 Significance test using exact probabilities in Takhun. 104
33 Significance test using exact probabilities in Klongsang 104
34 Significance test using exact probabilities equilibrium in Khaosok 104
35 Significance test using exact probabilities in Suwankuha 105
36 Significance test using exact probabilities in Poungchang. 105
37 Significance test using exact probabilities in Bangkram. 105
38 Significance test using exact probabilities in Singapore Nee Soon. 105
39 Significance test using exact probabilities in Koh Samui 105
40 Significance test using exact probabilities in Koh Tan 105
41 Shell morphology and measurement of Amphidromusatricallosus106
42 Shell morphology and measurement of Amphidromusinversus121

List of Figures

FigurePage
1 Biology of Amphidromus atricallosus and A. inversus. 8
2 Shell characters of Amphidromus atricallosus. 12
3 The distribution range of Amphidromus atricallosus 17
4 Map of South East Asia showing the distribution range of Amphidromus inversus. 18
5 Shell characteristic of Amphidromus inversus 19
6 Shell characteristic of Amphidromus inversus 20
7 Map of Southeast Asia, showing sampling localities of Amphidromus atricallosus and A. inversus 28
8 Examples demonstrate the activity of enzymes 32
90 Unweighted Pair Group Method of Analysis for the local samples of Amphidromus atricallosus based on Nei’s (1978) genetic distance 43
10 Neighbor-joining tree for the local samples of Amphidromus atricallosus based on Rogers' (1972) distance 57
11 Shell characteristic of Amphidromus atricallosus 58
12 Shell characteristic of Amphidromus atricallosus 59
13 Shell characteristic of Amphidromus atricallosus 60
14 Map of tropical Southeast Asia and illustrating depth contours 61
15 The biogeographic line that has been proposed to separated the Australasian and Oriental regions. 63

CHAPTER I

INTRODUCTION

Amphidromus atricallosus (Gould, 1843) and A. inversus (Müller, 1774) are tree snails of the family Camaenidae which share a number of ecological features, such as the obligately arboreal habits and consumming microflora on trees (Sutcharit and Panha, 2006a). Both species broadly occur in the Indochina-Malay Peninsula region. Amphidromus inversus also reported occurring in Borneo, Sumatra and Sulawesi, where A. atricallosus seems to have narrow range (Pilsbry, 1900; Gude, 1903b, 1914; Laidlaw and Solem, 1961; Solem, 1965; Sutcharit and Panha, 2006a).

The tree snails, Amphidromus atricallosus and A. inversus, occur allopatrically in lowland areas, sea coasts and islands of eastern, southern Thailand to Singapore and Indonesia. The former species is mainly specific to forest on the mainland, whereas the latter species occurs mainly in the forest along sea coasts and islands (Laidlaw and Solem, 1961; Solem, 1965). Results of field observations and published information (Sutcharit and Panha, 2006 a, b) indicating their comparable high population densities in suitable habitats and relatively low fecundity, suggest that the two species perform different demographic traits. The only prominent ecological difference between A. atricallosus and A. inversus recognized so far resides in their habitat preferences. Amphidromus atricallosus prefers rain forest or deciduous forest while A. inversus prefers of coastal localities such as beach forest (Chirasak Sutcharit, 2004).

Within such broad overall ranges, each of the two species occupies discrete patchy areas (Panha, unpublished data: see Fig. 7), and this predicts the presence of complicated geographic genetic structure in each species as in a few other land snails from other regions (Hillis et al., 1987; Woodruff and Solem, 1990). Moreover, because A. atricallosus and A. inversus mostly inhabit, respectively, the continental part and small continental-shelf islands (i.e., islets that are currently isolated from the continent by shallow straits but experienced several periods of dry land connections to the continent during the Pleistocene: Voris, 2000; Sathiamurthy and Voris, 2006) within the Indochina-Malay Peninsula region, they are expected to provide a good opportunity to examine effects of the Quaternary geohistory involving insularization of habitats upon the current geographic genetic structure in terrestrial organisms with low vagility.

Besides these, subspecific classifications of the two Amphidromus species need re-examinations most desirably on the basis of genetic data. Several subspecies are currently recognized for each of these species on the basis of variation in shell (size, shell shape and shell coloration), radula and genitalia as well as geographic isolation (see Laidlaw and Solem [1961] and Sutcharit and Panha [2006a, b] for subspecies recognition of A. atricallosus and A. inversus). However, the validity of these ${ }^{9}$ hypotheses still need verification, because some of the morphological characters used in diagnose them apparently show extensive within-population variation (Solem, 1965) and the general lack of detailed field data have more than caused taxonomists to be indecisive about, which view is more appropriate: multiple species or geographic variation within a single species (Sutcharit and Panha, 2006a).

As from the latest classical classification as most reliable information by Sutcharit and Panha (2006 a, b), Sutcharit et al. (2006) using from shell and radular morphology, anatomy of genitalia to mitochondrial DNA phylogenetic analysis concluded the new classification of A. (A.) atricallosus and A. (A.) inversus of Thailand and nearby areas as follows; 4 subspecies of A. (A.) atricallosus were classified. They are A. (A.) atricallosus atricallosus (Gould, 1843), A. (A.) atricallosus leucoxanthus (von Martens, 1864), A. (A.) perakensis Fulton, 1901 and A. (A.) classiarius (Sutcharit and Panha, 2006a). The four subspecies consist of similar characters such as shell colour. In general, however there are some distinct characters using for examples the white parietal callus appears in leucoxanthus, but exhibits dark brown colour in nominotypical subspecies, and columellar plait very prominent in perakensis, and the only left handed coiling population of isolated classiarius. The mitochondrial sequences analysis show the separation of three analyzed subspecies but still be sister which atricallosus sister to leucoxanthus followed by perakensis (Sutcharit et al., 2006). The most important data is that the remarkable isolation of the locality of the four subspecies from southern Thailand and Myanmar of nominotypical, subspecies leucoxanthus eastern of Thailand, Malaysia and Singapore of subspecies perakensis and an isolated island in Andaman Sea, western Thailand of subspecies classiarius.

จฬาลงกรณมหาวิทยาลัย

Three subspecies of A. (A.) inversus were also classified. They are A. (A.) inversus inversus (Müller, 1774), A. (A.) inversus annamiticus (Crosse and Fischer, 1863) and A. (A.) albulus Sutcharit and Panha, 2006. The three subspecies consist of some specific shell characters such as whitish to creamy spire in inversus but exhibit rose-coloured, with lighter or dark purplish suprasutural band, rosaceous or dark purplish apex in
annamiticus, and possession of whitish shell and the absence of brownish radial streaks or brownish sub-peripheral band as normally present in the three recognized subspecies. The two subspecies of inversus and albulus perform dimorphic shell coiling while annamiticus has only dextral morphology. The habitats of Amphidromus inversus are unique along the sea side or coast on the trees of the beach forest. It may have the sea influence to its life history. The molecular systematic analysis using mitochondrial DNA sequences confirmed the sister relationship of inversus and annamiticus but the albulus has not been included yet (Sutcharit et al., 2006). The locality of each subspecies is also remarkable, inversus found in Singapore, many islands of Indonesia and Borneo; annamiticus found in Vietnam, Cambodia and southern Thailand; albulus was recently classified from an island off coast in the South China Sea of Malaysia. Schilthuizen et al. (2005) has done marked and recaptured on Amphidromus inversus albulus of the population in Kapas Island off the east coast of Malaysia and conclude that population structure alone cannot stabilize the coil dimorphism in Amphidromus.

The above mentioned literatures are mostly complete on both revision of classical taxonomy and analysis on modern systematics to be referred concerning Amphidromus |systematics. However both Amphidromus species are quite complex and very interesting on their genetic structures at the population level. The basic genetic distances will show how the gene flow in each species and each locality do. This will imply to their dispersal or vicariance hypotheses and will finally be an assistant on confirming systematic decision.

Objectives

1. To establish a historical biogeographical hypothesis on two widely distributed Amphidromus species (A. atricallosus and A inversus) by investigating allozyme variation among a number of populations from Thailand, Malaysia and Singapore.
2. To revise the population systematics of the two species on the basis of information regarding reproductive isolation and genetic divergence obtained through allozyme electrophoresis.

Anticipated Benefit

The results will be used to verify and revise the conventional classification, and can be utilized firmly for further biogeographical and evolutionary investigations.

CHAPTER II

LITERATURE REVIEW

Biology of Amphidromus atricallosus and A. inversus

The tree snails, Amphidromus atricallosus and A. inversus belong to the family Camaenidae. The activities of these two species particularly occurring all of their lives on the tree including feeding microflora, mating and laying egg (Fig. 1). These two species found in quite vary habitat characteristics from primary forest to fruit plantations close by the forest. The highly disturbed forests show no snails or even the extinction evidences were discovered, but Amphidromus inversus was proved to be extinct from koh Kang Kao, upper Gulf eastern Thailand (Panha, unpublished data). The active season, in which feeding and reproductive take place in eastern and southern Thailand, starts at the onset of the rain, around mid May to June, respectively, and ends when the dry season starts, in late October (Panha, unpublished data). It aestivates conspicuously during dry periods with a sheet of mucus closing the aperture. During the $4-7$ month dry season, they are inactive and depend on stored food for survival. Predators of these snails can be assumed from the broken shell. Field observation indicated that small mammal, such as birds, rats and squirrels are the common predators ($\mathrm{Fig} 1 \mathrm{D}, \mathrm{H}$).

Land pulmonate snails like Amphidromus perform simultaneous hermaphrodites by cross-fertilization. The frequent field observations of many, simultaneously copulating pair (Panha, unpublished data, see Fig. $1 \mathrm{G})$ suggest that outcrossing is the rule. Courtship and copulation are reciprocal, with both animals acting as male and female at the same time
(Woodruff and Solem, 1990). Sutcharit and Panha (2006a) found A. atricallosus making egg nests using tree leaves including pomelo, banyan and rambutan. The foot is used to hold two leaves facing each other and secrete sticky mucus that traps the lower surface of leaves to form a nest. The edges of the leaves are glued by sticky mucus making a cavity, opened at both ends, in which the snail gradually lays between 100-150 eggs in the nest cavity. Polymorphism in shell coiling has been found in these species (see Fig. 6G-H, 11, 12, 13). The dimorphism of chirality either clockwise (right handed or dextral), or counter-clockwise (left handed or sinistral). The chirality of snail is determined by maternal genotype at a single locus (Murray and Clarke, 1976; Freeman and Lundelius, 1982; Ueshima and Asami, 2003). In many of studies, authors suggest that the different chiral types are unable to mate and so could be reproductively isolated from one other (Gittenberger, 1988; Orr, 1991). In Thailand, both left and right handed coiling are found in the same population of A. atricallosus, even in approximately equal numbers, or with a distinct predominance in one phase (Panha et al., 2001). In comparison, Amphidromus inversus found only right handed coiling in all populations.

Recognition of this species has been based on shape, size, and coloration of the shell (Pilsbry, 1900; Laidlaw and Solem, 1961; Solem, 1965). Basically, A. atricallosus has a moderately large ($40-55 \mathrm{~mm}$.), ovate or conic, solid and highly polished shell. Usually, they have yellow, green-yellow to yellow or white to brown ground color shell with

Fig. 1. Biology of Amphidromus atricallosus (Left) and A. inversus (Right). A-B, E-F. Feeding. C. Egg laying of A. atricallosus from Ban Takhun, Surathani observed in September, 2003. G. Mating pair of A. inversus from Koh Tan, Suratthani observed in August, 2002. D, H. Broken shells of A. atricallosus and A. inversus were found after killing by some small mammals.
or without varices (Fig. 2) and white columella which is generally straight but sometimes folded and twisted. There is black to dark brown or white parietal callus with spiral bands or shaded zones. Shell exhibits chiral dimorphism (see Fig. 2A, B).

The male reproductive system exhibits conical penis. The epiphallus shows large and convoluted structure. The flagellum is a long and folded into single coil near the appendix. Appendix is relatively long and narrows (Sutcharit and Panha, 2006a).

The female reproductive system displays relatively short, slender and cylindrical vagina. Gametolytic sac reveals swollen and connected to long gametolytic duct. There is shortly free, enlarge and compact oviduct which, fuses with prostate gland, locating under oviduct. The albumen gland shows a large with curved lingulate shape (Sutcharit and Panha, 2006a).

Amphidromus atricallosus distributes in the Malay Peninsula and the Southeastern part of Thailand (Fig. 3). Previously, the description of A. atricallosus had been accomplished based on shell morphology. Amphidromus atricallosuss shows extensive variations in size, shape, and shell coloration (see Fig. 11, 12, 13). Such evidences have lead to considerable inconsistency in specific and subspecific classifications for each species among taxonomists (Gould, 1843; Morlet, 1889; Pilsbry, 1900; Fulton, 1900; Laidlaw and Solem, 1961; Solem, 1965; Sutcharit and Panha, 2006a). Amphidromus atricallosus was formerly divided into three species, A. atricallosus (Gould, 1843), A. leucoxanthus (von Marten, 1864), and A. perakensis Fulton, 1901. Of these, A. atricallosus was defined as having a shell with brown or black callus in parietal area
and broad white subsutural zone. Amphidromus leucoxanthus has no dark parietal callus, while A. perakensis has a distinct twisted plait columella (Fig. 2).

Later, Laidlaw and Solem (1961) rendered those species into subspecies of A. atricallosus. Material collected show that variation occur in different combinations in all parts of the range but never indicate of speciation. However, specimens are too few in number.

Solem (1965) examined shell specimens from several sets of collection from Thailand and concluded that, based on shell characters, such as the subsutural white zone, varices, black parietal callus, white parietal callus and pale brown radial streaks, recognized four distinctive color phases in A. atricallosus as atricallosus, leucoxanthus, perakensis forms, and a new color form, characterized by pale brown radial streaks along the growth lines as laidlawi form. Because these forms were recognized almost throughout the range of the species, however he did not recognize these forms as subspecies.

Sutcharit and Panha (2006a), on the basis of shell and anatomical characters data from|some Amphidromus specimens including A. atricallosus and A. inversus followed with Laidlaw and Solem (1961)'s classification. A new subspecies, Amphidromus atricallosus classiarius was recognized. It's distinct from nominotypical species by 35 to 40 mm of shell height (Fig. 2), elongate-conic shape, sinistral, invariably yellow shell, and slightly short penis. They also constructed a key to species and subspecies for A. atricallosus and A. inversus in Indochina-Malay Peninsula region as follows:
1a Shell yellowish, whitish, greenish colour 2
2a Parietal callus white; whorl convex; straight or twisted columella. 3
3a Collumella straight or twisted, monochrome yellow or whiteand one or more varices usually present.......A. a. leucoxanthus
3b Columella always twisted, monochrome yellow and varixabsentA. a. perakensis2b Parietal callus black or brownish; whorl relative flat; columellastraight. Shell conic or elongate-conic.4
4a Parietal callus black. Shell height $40-50 \mathrm{~mm}$, conic and usuallychrially dimorphic, yellow or white, penis long..A. a. atricallosus4b Parietal callus blackisk. Shell height 35 to 40 mm , elongate-conic, always sinistral invariably yellow, and penis slightlyshort...A. a. classiarius
1bShell brown or radial streak.55a Shell with irregular redial streaks, distinct brown spiral band present atlower periphery of the last whorl. Penial appendix absent.6
6a Shell height 50 to 55 mm , usually chirally dimorphic. Spireslightly convex, pale brown or whitishA. i. inversus6b Shell height 40 to 50 mm , usually dextral. Spire pink tobrownish...A. i. annamticus
5b Shell with parietal streak, brown spiral band absent. Long penial appendix present. A. a. leucoxanthus var.laidlawi 2. Amphidromus inversus $ย ป ร ิ ก า ร ~$

จหําจงกรณฝ้หวิทยาล้ย
 Amphidromus inversus displays a moderately large shell (50 mm).

 There is a dull surface with brown streaks and zones or varices. The lip is strong and reflex with white color. The apex has a white, brown or dark purple color (Fig. 5, 6). Dimorphism occurs in this species (Fig. 6G, H). In Thailand, all investigated shell specimens are dextral (right handed coiling) (Fig. 5, 6).

Fig. 2. Shell characters of Amphidromus atricallosus. A. Left handed coiling. B-C. Right handed coiling. Close arrows, open arrow and star indicate parietal callus, varix and twist plate columella.

สถาบันวิทยบริการ
 จุฬาลงกรณ์มหาวิทยาลัย

The male reproductive system contains cylindrical penis which distally folds at penial base. Epiphallus has long with variable coiling. Flagellum is smaller than epiphallus and terminates with folded coiled portion. Appendix is very short or absent.

The female reproductive system contains relatively long and cylindrical vagina about twice the length of penis. Gametolytic duct has a long folded and proximal convoluted to vagina, and terminates with swollen gametolytic sac. There is shortly free, enlarge and compact oviduct which fused with prostate gland locating under oviduct. Albumen gland curves like lingulate shape (Sutcharit and Panha, 2006a).

Amphidromus inversus (Müller, 1774), four subspecies were recognized for populations from Vietnam to Sulawesi of Indonesia (Laidlaw and Solem, 1961)(Fig. 4): the nominotypical subspecies were recorded from Borneo, Sumatra, Java and Singapore performing whitish to creamy spire and several black to dark-brown varices (Fig. 6F-H); the subspecies annamiticus from Cambodia, Vietnam and Thailand exhibits rose-coloured spire with lighter or dark-purplish suprasutural band and rosaceous or dark purplish apex (Fig. 5A-E) (von Möllendorff, 1894), however, morphologically, the easthern populations have no dark border above the sutures of the early whorls (Fig. 5); the subspecies andamensis from Borneo has smaller shell size/with flame-like color pattern; the subspecies koperbergi from the northern Sulawesi (Celebes) has flatsided shell with light brown colour, and the dark zone of last whorl is bright chestnut (Laidlaw and Solem, 1961). These records show very interesting convergence research questions which should be proved in the future.

Recently, On the basis of shell and anatomical character data, a new subspecies A. inversus albulus (Sutcharit and Panha, 2006b) was described from Peninsular Malaysia (Fig. 6G-H). Interestingly, the dimorphic shell coiling was observed in these snail populations.

Allozyme electrophoretic analysis

One of the most widely used procedures for revealing genetic variation in enzyme and other protein is electrophoresis. Protein electrophoresis is the migration of protein under the influence of an electric field. Enzymes that differ in electrophoretic mobility as a result of allelic differences at a single locus are called allozyme that can be separated on the basis of net charge and size. The allozyme variation in the population is an indication of genetic variation, and such genetic variation is very common. Allozyme electrophoretic analysis is a powerful technique which can be used to detect taxonomic and phyletic diversity in a group of organisms exhibiting complicated patterns of morphological variation (Nevo, 1978; Hillis et al., 1987)

Nevo (1978) reviewed electrophoretic patterns in both plant and animal species based on studies published prior to early 1976 and involving 243 species. He suggested that the amounts of genetic polymorphism and heterozygosity varied nonrandomly between loci, population, species, habitats and life zones, and are correlated with ecological heterogeneity. Natural selection, in some form, may often be the major determinant of genetic population structure and differentiation.

Hillis and Patton (1982), who examined two forms electrophoretically and morphologically of Corbicula to determine their
degree of differences, reported that the two color forms differed in morphological evidence, and showed fixed allelic differences at six of 26 genetic loci. They concluded that two color forms actually represented separated species.

Tatarenkov and Johnnesson (1999) investigated the microscale transitions between exposed and sheltered parts of two continuous populations of Littorina fabalis by using allozyme. They found that snails from different microhabitats have almost diagnostic differences in one allozyme locus, and differ in adult size. However, between exposed and sheltered groups showed a mixing of two genetically separated populations. They suggested that the hybridization supported that observation.

Katoh and Foltz (1994) investigated genetic variation in a freshwater snail species complex which formerly referred to as Viviparus georgianus (Lea) in southern Georgia and Florida. They found that 11 populations clustered into three genetic isolations. Canonical discriminant analysis of shell morphological measurements also separated all three species with the little overlaping.
 mitochondrial DNA approach in delimiting reproductive units in nature and quantifying the degrees of gene flows among them, because results of this approach usually reflect variation in nuclear DNA (Tatarenkov, 1995; Kemperman and Degenaars, 1992).

Advantageous properties of allozyme electrophoresis in the context of our objectives are as bellows

1. Usually divergences in allozyme alleles progress largely, neutrally and thus are not much noised from natural selection through locally variable environment. (contra morphological variations that are usually vulnerable to noises from natural selection under divergent local environment)
2. Because results of allozyme electrophoresis reflect nucleic gene variation, they can clearly illustrate gene flows among populations. (contra mitochondrial genes that may reflect past maternal gene flows only)
3. By allozyme electrophoresis, data for variation at a large number of nuclear loci can be obtained relatively easely, and swiftly with low cost.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Fig. 3. The distribution range of Amphidromus atricallosus.

Fig. 4. Map of South East Asia showing the distribution range of Amphidromus inversus.

Fig. 5. Shell characteristic of Amphidromus inversus. A-B. A. i. annamiticus from Koh Kham, Chonburi. C-D. A. i. annamiticus from Koh Lueam, Chonburi. E. A. i. annamiticus from Koh Elar, Chonburi. F. A. i. annamiticus from Koh Pai, Chonburi. G. A. i. annamiticus from Koh Samet, Rayong. H. A. i. annamiticus from Koh Jarn, Chonburi.

Fig. 6. Shell characteristic of Amphidromus inversus. A-B. A. i. inversus from Chaiya, Suratthani. C-D. A. i. inversus from Koh Samui, Suratthani. E. A. i. inversus from Koh Tan, Suratthani. F. A. i. inversus from Singapore Botanic garden, Singapore. G-H. A. i. albulus from Pulau Kapas, Malaysia represent left and right handed coiling.

Analysis

1. Calculation of genetic variability

In order to compare different genes and different populations, it is necessary to have some convenient quantitative measure of genetic variation. Genetic variation can be quantified using the concept of allele frequency. The allele frequency of assigned allele among a group of individuals is simply the proportion of all alleles of the gene that are of the assigned type. The frequency of any assigned allele in a sample is therefore equal to twice the number of homozygotes for the allele (because each homozygote carries two copies of the allele) plus the number of heterozygotes for that allele (because each heterozygote carries tone copies) divided by two times the number of individuals in the sample (because each individual carries two allele of the gene).

In order to quantify the genetic variation of specimen from each locality, the population genetic variability was determined using mean expected heterozygosity $(H \exp)$ that represents the adaptive potential of the species and is an extremely powerful evolutionary force, mean number of alleles per locus (A), and percentage of polymorphic loci (P) which is simply the percentage of loci examined that show evidence of

more than one allele.
 จฬาวาลงกรณ์มหาวิทยาลัย

2. Testing the hypothesis of Hardy-Weinberg equilibrium

To estimate the genetic variability in a population, a method will involve with the Hardy-Weinberg law. Daniel (1988) suggested that the assumptions made so far in developing the model for predicting genotype frequencies can be summarized as follows:

1. The organism in question is diploid.
2. Reproduction is sexual.
3. Generations are nonoverlapping.
4. Mating is random.
5. Population size is very large.
6. Migration is negligible
7. Mutation can be ignored.
8. Natural selection does not affect the gene under consideration.

The expected number of each genotype is obtained by multiplying the Hardy-Weinberg frequencies by the sample size. The goodness of fit between the observed numbers and the expected number can be judged quantitatively by means of the chi-squared value $\left(\chi^{2}\right)$, calculated as follows:

$$
\chi^{2}=\Sigma(\text { observed number }- \text { expected number })^{2}
$$

(expected number)
with the sum taken of all genotypic classes, producing $\chi^{2}=0.005$. The test based on this statistic is called the "chi-square test". Associated with any χ^{2} value is a second number called the degree of freedom for that χ^{2} In general, the number of degree of freedom associated with a χ^{2} equals the number of classes of data minus one. If the probability value for a particular χ^{2} is P, this means that if we were to take 1000 samples of the same size from a population in Hardy-Weinberg equilibrium and a calculation for each, a fraction P would be greater than our observed test value. Typically, if $P<0.05$, the test is considered "significant", which means the null hypothesis is rejected, and the test indicates significant departure from Hardy-Weinberg proportions.

3. Interpopulation analysis

3.1 Genetic distance (D)

The Genetic distance (D) was use to estimated genetic differentiation among populations and to compare local population within a species to estimate the amount of gene flow and genetic drift between populations. These forces along with natural selection lead to the creation of new species. It is sometimes necessary to determine the amount of genetic differentiation taking place during speciation. Various genetic distance measures used for gene frequency data have been described by Nei (1978). D ranges from 0 to infinity with zero indicating that a pair of populations is genetically identical.

3.2 The fixation index (Fst)

The fixation index (Fst) expresses (on a scale of 0 to 1) the amount of variation detected among subpopulations as a fraction of that expected if the same set of genetic markers were randomly distributed (i.e. panmixia). An Fst of zero indicates that there is no heterogeneity of allele frequencies amongst populations.

The fixation index (Fst) was used to estimate genetic differentiation among populations. Although F st has a theoretical minimum of 0 (indicating genetic divergence) and a theoretical maximum of 1 (indicating fixation for alternative alleles in the subpopulations), the observed maximum is usually much less than 1. Wright (1978) suggests the following qualitative guidelines for the interpretation of Fst:

1. The range 0 to 0.05 may be considered as indicating little genetic differentiation.
2. The range 0.05 to 0.15 indicates moderate genetic differentiation.
3. The range $0.15-0.25$ indicates great genetic differentiation.
4. Values of Fst above 0.25 indicate very great genetic differentiation.

However, to quote Wright (1978), who developed the concept of Fst, "Differentiation is by no means negligible if Fst is as small as 0.05 or even less".

In this study, our purposes are: (1) to clarify geographic genetic structures in the two Amphidromus species around the Indochina-Malay Peninsula region; (2) to infer process of formation of such structures; and (3) to revise classifications of these species accordingly.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER III

MATERIALS AND METHODS

1. Sampling

Sampling was carried out in Thailand, Malaysia, and Singapore (Fig. 7). As a result, 319 A. atricallosus were collected from 11 localities in the continental part and two off-shore islets. For A. inversus, 144 specimens were collected from ten off-shore islets and one continental locality (Table 1). The field collected snails were maintained in our laboratory at the Animal Systematic Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, and then stored at $-70^{\circ} \mathrm{C}$ until analysis.

2. Characteristics in shell morphology

For each specimen, states of following shell morphological characters were recorded.

- Color
- Varix
- Shell size

- Color of parietal callus

- Direction of coiling

3. Electrophoresis

Individual snails were thawed and soft parts were removed from the shells. Liver and muscle tissues were removed from each specimen and homogenized. The supernatant was absorbed onto Whatman No. 3
filter paper. Protein extracts from the homogenates were subjected to horizontal starch gel electrophoresis following Murphy et al. (1996) with slight modifications. Voucher shell and several preserved specimens were deposited in the Zoological Collection of the Natural History Museum, Chulalongkorn University (CUMZ: see Table 2). Buffer system reported here was described in Table 3. Electrophoresis was carried out by which time a bromophenol blue marker dye had migrated 100-120 mm anodally. The gels were sliced into seven or eight slabs for staining. Agar overlaying was employed for all enzyme assays.

In the electrophoresis, migration and staining procedures largely followed those described by Clayton and Tretiak (1972), Boyer et al. (1963), and Ridgway et al. (1970). Enzyme nomenclature and E.C. number follow those proposed by the International Union of Biochemistry. The esterase substrate was alpha-naphthyl acetate and the peptidase substrate was luecyl-glycyl-glycine. Snails from different samples were run on each gel to facilitate comparison. Photographs of gels at various stages of staining were taken, to record the relative mobilities and intensities of all alleles in the adjacent slots, and the absolute position of each band within each samples.

สถาบนวิทยบริการ

Allozyme phenotypes were scored directly from the gel or digital image. Activity zones in the zymograms were interpreted as a product of gene loci. Heterozygote banding patterns corresponded with the subunit compositions of the enzymes. Italicized abbreviations of the enzymes designated the loci. Multiple loci are designated by number, beginning with the locus responsible for the most anodally migrating form of the enzyme. Alleles were labeled alphabetically according to decreasing
mobility (see Fig. 8). The notations for loci encoding peptidase with abbreviations of the substrates have been made.

4. Analysis

The scoring of the loci resulted in a single individual genotype dataset. Data analyses were performed using BIOSYS-1 (Swofford and Selander, 1981). Genetic variability within each population was assessed by calculating mean expected heterozygosity (Hexp), mean number of alleles per locus (A), and percentage of polymorphic loci (P). Genotypic frequency at each polymorphic locus was tested for its agreement with the Hardy-Weinberg expectation by exact probability test ($p \leq 0.05$).

To estimate heterogeneity among local samples in each species, Wright’s (1965) Fst was calculated for each locus. Statistical significance in the difference from zero was then tested for each Fst value following Workman and Niswander (1970). Following Weir and Cockerham (1984), Fst was also applied to analyze population structure using FSTAT (Goudet, 1995). Nei’s (1978) unbiased genetic distance and Rogers’ (1972) genetic distance were calculated for all pairwise comparisons of the samples in order to estimate the extent of differentiations among populations. The Nei (1978) unbiased genetic distance was clustered in to the form of a dendrogram using the Unweighted Pair Group Method of Analysis (UPGMA) of Sneath and Sokal (1973). Rogers'(1972) distance matrix for the A. atricallosus samples was clustered by the neighborjoining (NJ) method (Saitou and Nei, 1987).

Fig. 7. Map of Southeast Asia, showing sampling localities of Amphidromus atricallosus (1-13) and A. inversus (14-24). Numerals correspond to locality numbers used in Table 1. Gray and dark shaded areas enclose portions of mountain range higher than 50 and 500 m asl., respectively. These portions are considered to have been effectively interrupting gene flows among A. atricallosus populations in this region (see text).

Table 1. Localities and sizes of samples of Amphidromus atricallosus and A. inversus used in this study. The sample numbers correspond to those in Fig. 7.

Table 2. Catalog of the studies taxa, sampling localities and voucher specimen information (CUMZ: Chulalongkorn University, Museum of Zoology)

Species	Locality	Catalog No.
Amphidromus atricallosus leucoxanthus	Soidao, Chantaburi	CUMZ 2621
A. atricallosus leucoxanthus	Makham, Chantaburi	CUMZ 2622
A. atricallosus leucoxanthus	Troknong, Chantaburi	CUMZ 2623
A. atricallosus leucoxanthus	Makok, Chantaburi	CUMZ 2624
A. atricallosus at	Ranong	CUMZ 2625
A. atricallosus classiarius	Koh Tachai, Pang Nga	CUMZ 2626
A. atricallosus atricallosus	Takhun, Suratthani	CUMZ 2627
A. atricallosus atricallosus	Klongsang, Suratthani	CUMZ 2628
A. atricallosus atricallosus	Khaosok, Suratthani	CUMZ 2629
A. atricallosus atricallosus	Suwankuha, Pang Nga	CUMZ 2630
A. atricallosus atricallosus	Poungchang, Pang Nga	CUMZ 2631
A. atricallosus atricallosus	Bangkram, Krabi	CUMZ 2632
A. atricallosus perakensis	Singapore Nee Soon	CUMZ 2633
A. inversus inversus	Singapore Botanic garden	CUMZ 2636
A. inversus albutus	Pulau Kapas, Malaysia	CUMZ 2637
A. inversus annamiticus	Koh Jarn, Chonburi	CUMZ 2638
A. inversus annamiticus	Koh Pai, Chonburi	CUMZ 2639
A. inversus annamiticus	KohKham, Chonburi	CUMZ 2640
A. inversus annamiticus	Koh Lueam, Chonburi	CUMZ 2641
A. inversus annamiticus	Koh Elar, Chonburi	CUMZ 2642
A. inversus annamiticus	Koh Tan, Suratthani	CUMZ 2643
A. inversus annamiticus	Chaiya, Suratthani	CUMZ 2644
A. inversus annamiticus	Koh Samui, Suratthani	CUMZ 2645
A. inversus annamiticus	Koh Samet, Rayong	CUMZ 2647

Table 3. Correspondence of enzymes and presumptive loci with tissues and buffer systems used.

* Tissues: L, liver; M, muscle
** Buffer systems: TC8, tris-citrate, pH 8.0 (Clayton and Tretiak, 1972); TBE8.7, tris-borateEDTA, pH 8.7 (Boyer et al., 1963); CAPM6, citrate-aminopropylmorpholine, pH 6.0
(Clayton and Tretiak, 1972); LioH, lithium hydroxide-boric acid, pH 8.1 (Ridgway et al., 1970)

Fig. 8. Examples demonstrate the activity of enzymes. A: peptidase; luecyl-glycyl-glycine, B: phosphoglucomutase. Arrows indicate the origin.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER IV

RESULTS

Thirteen allozyme loci of ten enzyme systems were screened for A. atricallosus, and 18 loci of 11 systems for A. inversus (Table 3). Of these, 11 and five loci were polymorphic, respectively (Tables 4 and 5).

Genetic variation in Amphidromus atricallosus

In A. atricallosus genotype frequencies at the 11 polymorphic loci showed no significantly deviate from the Hardy-Weinberg expectation in all but one from Singapore Nee Soon samples. In the Singapore Nee Soon, 2 individuals exhibit aa, 2 for bb, 6 for bd, and 8 for dd at Aat- 1 (Appendix I), and deviation from the expectation was statistically significant ($\mathrm{p}<0.01$) (Appendix II). This may suggest the presence of sympatric cryptic species or long standing population subdivision within Singapore population. However, the number of available Singapore specimens (18) was not large enough to examine these possibilities. Moreover, allelic frequencies at the other ten polymorphic loci showed no significantly deviate from the expected ranges (see above). We, therefore, continued to treat the Singapore specimens collectively as a single smpexำลงกรณมหาวทยาลย

At four out of the 11 polymorphic loci (Gpi, Me, Mpi and Lgg-2), allelic compositions completely differed between the southern and the eastern Thailand samples. The Singapore Nee Soon sample was distinct from all Thailand samples by invariably having allele "a" at Mpi. Also, this sample showed fixed allelic differences with the eastern Thailand
samples at Hbdh, Me and Pgd, and with the southern Thailand samples at Gpi and Lgg-2. Within the southern Thailand, complete allelic displacements were observed between the Koh Tachai sample and the Bangkram-Ranong samples (at Aat-1), between the Koh Tachai sample and the Klongsang-Suwankuha-Poungchang-Bangkram samples (at $H b d h$), and between the Bangkram sample and the Koh Tachai-Klongsang-Khaosok-Suwankuha-Poungchang samples (at Lgg-2). There were no such complete allelic displacements among the eastern Thailand samples.

Matrices of Nei's (1978) distance (D) and Rogers (1972) distance between samples of A. atricallosus are presented in Table 6. Large D values were obtained between the southern Thailand samples and the Singapore Nee Soon sample ($x+S D=0.841 \pm 0.105$, range $=0.590-0.915$), between the Singapore sample and the eastern Thailand samples ($0.580 \pm 0.018,0.557-0.597$), and between the southern Thailand samples and the eastern Thailand samples $(0.729 \pm 0.148,0.485-0.946)$. The D values between the southern Thailand samples $(0.157 \pm 0.073,0.012-$ 0.306) were distinctly smaller, but, with the exception of the value between the Suwankuha and Poungchang samples (0.012), were still distinctly larger than those between the eastern Thailand samples (0.017 $\pm 0.011,0.005-0.031$).

Distance phenogram of A. atricallosus constructed by UPGMA and NJ methods were similar in topology; the former are present in Fig. 9. The phenogram shows three major groups: ones containing all six samples along southern Thailand, the other containing the four samples in the eastern Thailand and the last containing the one sample from Singapore.

The mean Fst for the whole A. atricallosus was so large (0.781). Among the four eastern Thailand samples and among the eight southern Thailand samples, means of Fst were much smaller, 0.144 and 0.551 , respectively. Nevertheless, Fst values were significantly higher than zero for five polymorphic loci of the former, and for ten polymorphic loci of the latter (Table 9).

The eastern Thailand samples showed moderate P and Hexp values (15.4-38.5 and 0.021-0.098, respectively: Table 8). Likewise, the southern Thailand samples exclusive of those from Koh Tachai and Bangkram displayed moderate to high P and Hexp values (23.1-61.5 and $0.057-0.201$, respectively). In the Koh Tachai sample and the Bangkram sample, both P and Hexp values were much lower, 7.7 and 0.025 for the former, and 7.7 and 0.018 for the latter, respectively (Table 8).

Genetic variation in Amphidromus inversus

In A. inversus, within-sample variations were detected only at $L g g$ 3 of the Koh Samui sample and the Koh Tan sample: no variations were recognized at all in the other samples or at the other loci (Table 5). The P and Hexp values of those samples were 5.6 and 0.023 (Koh Samui), and 5.6 and 0.004 (Koh Tan), respectively (Table 8).

Samples from Pulau Kapas, Malaysia and Singapore Botanic Garden showed fixed allelic differences with all Thailand samples at Lgg1 and $L g g-2$. The Singapore sample was also distinct from the remainder in having allele "a" at Est-4. Fixed allelic difference was also recognized at Pgm-2 between the eastern Thailand samples and the remainder (Table 5).

Between-sample D varied from 0-0.260 (Table 7), with particularly large values between the Singapore sample and the southern Thailand samples ($0.254 \pm 0.005,0.251-0.260$). The values were also relatively large between the former and the eastern Thailand samples (invariably 0.182), and between the Pulau Kapas sample and the southern ($0.185 \pm 0.004,0.182-0.189$) and eastern Thailand samples (invariably 0.118). Pairwise comparisons of the southern Thailand samples and the eastern Thailand samples, and of the Singapore sample and the Pulau Kapas sample yielded moderate D values (0.059+0.002, 0.057-0.062; and invariably 0.057 , respectively). In contrast, the values were so small between the southern Thailand samples (0.002 ± 0.002) and were invariably zero between the eastern Thailand samples.

Amphidromus inversus exhibited a high level of genetic heterogeneity among the samples. Fst values were significantly higher than zero at all five polymorphic loci $(\mathrm{x}=0.965)$, of which four (Est-4, $L g g-1, L g g-2$ and Pgm-2) exhibited particularly high heterogeneity (i.e., fixed allelic differences between several combinations of local samples: see above; also see Tables 5 and 9).
สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

Table 4. Allele frequencies at polymorphic loci of the Amphidromus atricallosus samples. Locality numbers correspond to those in Fig. 7. Notations of alleles are made alphabetically in order of anodal mobilities.

Table 5. Allele frequencies at polymorphic loci of the Amphidromus inversus samples. Locality numbers correspond to those in Fig. 7. Notation of alleles is made alphabetically in order of anodal mobilities.

Locus and alelle	Locality										
	14	15	16	17	18	19	20	21	22	23	24
Est-4											
a											1.000
b	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
Lgg-1											
a										1.000	1.000
b	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Lgg-2											
a										1.000	1.000
b	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Lgg-3											
a								0.278	0.036		
b	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.722	0.964	1.000	1.000
Pgm-2											
a	1.000	1.000	1.000	1.000	1.000	1.000					
b							1.000	1.000	1.000	1.000	1.000

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 6. Matrix of genetic distances between samples of Amphidromus atricallosus from eastern Thailand, southern Thailand, and Singapore. Below diagonal: Nei’s (1978) unbiased genetic distance. Above diagonal: Rogers (1972) genetic distance.

Population	1	2	3	4	5	6	7	8	9	10	11	12	13
1 Soidao	-	0.071	0.084	0.057	0.421	0.612	0.481	0.446	0.559	0.610	0.582	0.537	0.443
2 Makham	0.024	-	0.070	0.035	0.414	0.587	0.460	0.449	0.542	0.584	0.558	0.513	0.474
3 Troknong	0.031	0.015	-	0.040	0.450	0.607	0.495	0.451	0.569	0.578	0.583	0.532	0.473
4 Makok	0.021	0.005	0.005	-	0.427	0.593	0.468	0.439	0.549	0.592	0.567	0.522	0.472
5 Ranong	0.488	0.485	0.547	0.515	-	0.307	0.220	0.249	0.241	0.318	0.293	0.333	0.474
6 Koh Tachai	0.946	0.898	0.936	0.912	0.269	-	0.203	0.219	0.163	0.175	0.140	0.237	0.592
7 Takhun	0.627	0.582	0.647	0.611	0.130	0.164	-	0.152	0.153	0.156	0.140	0.162	0.558
8 Klongsang	0.560	0.554	0.559	0.542	0.177	0.212	0.087	-	0.177	0.182	0.16	0.223	0.585
9 Khaosok	0.775	0.740	0.808	0.764	0.168	0.085	0.061	0.119	-	0.163	0.139	0.289	0.588
10 Suwankuha	0.908	0.859	0.883	0.877	0.251	0.150	0.089	0.133	0.085	-	0.068	0.215	0.600
11 Poungchang	0.855	0.801	0.860	0.829	0.239	0.116	0.076	0.136	0.057	0.012	-	0.230	0.581
12 Bangkram	0.765	0.719	0.750	0.738	0.306	0.268	0.114	0.215	0.254	0.204	0.223	-	0.583
13 Singapore Nee Soon	0.557	0.597	0.574	0.591	0.590	0.903	0.821	0.864	0.889	0.915	0.880	0.864	-

Table 7. Matrix of genetic distances between samples of Amphidromus inversus from eastern Thailand, southern Thailand, Malaysia, and Singapore. Below diagonal: Nei’s (1978) unbiased genetic distance. Above diagonal: Rogers (1972) genetic distance.

Population	14	15	16	17	18	19	20	21	22	23	24
14. Koh Samet	-	0.000	0.000	0.000	0.000	0.000	0.056	0.071	0.058	0.111	0.167
15. Koh Kham	0.000	-	0.000	0.000	0.000	0.000	0.056	0.071	0.058	0.111	0.167
16. Koh Jarn	0.000	0.000	-	0.000	0.000	0.000	0.056	0.071	0.058	0.111	0.167
17. Koh Elar	0.000	0.000	0.000	-	0.000	0.000	0.056	0.071	0.058	0.111	0.167
18. Koh Pai	0.000	0.000	0.000	0.000	-	0.000	0.056	0.071	0.058	0.111	0.167
19. Koh Lueam	0.000	0.000	0.000	0.000	0.000	-	0.056	0.071	0.058	0.111	0.167
20. Chaiya	0.057	0.057	0.057	0.057	0.057	0.057	-	0.015	0.002	0.167	0.222
21. Koh Samui	0.062	0.062	0.062	0.062	0.062	0.062	0.004	-	0.013	0.182	0.238
22. Koh Tan	0.057	0.057	0.057	0.057	0.057	0.057	0.000	0.003	-	0.169	0.224
23. Pulau Kapas	0.118	0.118	0.118	0.118	0.118	0.118	0.182	0.189	0.183	-	0.056
24. Singapore Botanic garden	0.182	0.182	0.182	0.182	0.182	0.182	0.251	0.260	0.252	0.057	-

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

Table 8. Localities, mean number of alleles per locus (A), percentage of polymorphic loci (P), and expected heterozygosity (Hexp) in samples of Amphidromus atricallosus and A. inversus. Standard error of Hexp is indicated in parentheses. The sample numbers correspond to those in Fig. 7.

Species	Sample	A	P	Hexp
A. atricallosus	1. Soidao	1.2	15.4	0.021 (0.014)
	2. Makham	1.4	30.8	0.086 (0.047)
	3. Troknong	1.2	23.1	0.098 (0.052)
	4. Makok		38.5	0.064 (0.038)
	5. Ranong	1.7	61.5	0.201 (0.058)
	6. Koh Tachai	1.1	7.7	0.025 (0.025)
	7. Takhun	1.5	38.5	0.124 (0.051)
	8. Klongsang	1.5	46.2	0.085 (0.041)
	9. Khaosok	1.8	46.2	0.186 (0.067)
	10. Suwankuha	1.2	23.1	0.057 (0.037)
	11. Poungchang	1.5	46.2	0.080 (0.035)
	12. Bangkram	1.1	7.7	0.018 (0.018)
	13. Singapore Nee Soon	1.3	23.1	0.055 (0.042)
A. inversus	14. Koh Samet		0.0	
	15. Koh Kham	1.0	0.0	
	16. Koh Jarn	1.0	0.0	
	17. Koh Elar	1.0	0.0	
	18. KohPai	1.0	0.0	
	19. Koh Lueam 20. Chaiya	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	0
	21. Koh Samui 22. Koh Tan		$\begin{aligned} & 5.6 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 0.023(0.023) \\ & 0.004(0.004) \end{aligned}$
	23. Pulau Kapas	1.0	0.0	
	24.Singapore Botanic garden	1.0	0.0	

Table 9. Summary of Fst values for 13 samples of Amphidromus atricallosus and 11 samples of A. inversus. ${ }^{\text {a }}$: significant at level of $\mathrm{p}<0.01$.

Locus	A. atricallosus	A. inversus
Aat-1	$0.659^{\text {a }}$	-
Est-2	$0.284^{\text {a }}$	-
Est-4	-	$1.000^{\text {a }}$
Gpi	$0.886^{\text {a }}$	- -
Hbdh	$0.754^{\text {a }}$	-
Me	$1.000^{\text {a }}$	
Mpi	$0.941^{\text {a }}$	
Lgg-1	$0.626^{\text {a }}$	$1.000^{\text {a }}$
Lgg-2	$0.940^{\text {a }}$	$1.000^{\text {a }}$
Lgg-3		$0.228^{\text {a }}$
Pgm-1	$0.164^{\text {a }}$	-
Pgm-2	$0.678{ }^{\text {a }}$	$1.000^{\text {a }}$
Pgd	$0.826^{\text {a }}$	-
Mean	0.781	0.965

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Fig. 9. Unweighted Pair Group Method of Analysis for the local samples of Amphidromus atricallosus based on Nei's (1978) genetic distance.

CHAPTER V

DISCUSSION

Geographic genetic structure

The statistical tests for deviation from Hardy-Weinberg equilibrium indicated insignificant in all case except the Singapore Nee Soon sample. We suggested that every sample considered representative of a single deme.

In our investigation, significant departure from Hardy-Weinberg equilibrium was observed at one locus (Aat-1) (see Table 23). Such deviations from panmixia have been frequently observed in Helix aspersa (Guiller et al., 1996) and other simultaneous hermaphrodite land snails like Cepaea spp. (Guiller and Madec, 1993). They are interpreted as a result of sampling in genetically differentiated microlocal demes, rather than a consequence of selective pressures. Thus, a colony would be subdivided into interbreeding neighbourhoods (Shapcott, 1995). Samples formed by an admixture of local population with differing allelic frequencies which possibly come from the same family (intrademe Wahlund effect) could be additional factors explaining deviations from Hardy-Weinberg equilibrium.

In our populations of A. atricallosus and A. inversus, the percentage of polymorphic loci were 7.7% to 61.5%, mean 31.38% and 0% to 5.6%, mean 1.02%, respectively. In the majority of marine mollusks, the percentage of polymorphic loci is between 30% and 50% (Berger, 1983); in the freshwater mussels Anodonta, 11\% to 36\%,
depending on species (Kat, 1983); in the brackish water snails Hydrobia, 13% to 23\% (Davis et al., 1988); in freshwater gastropods, 14% to 62% (Brown and Richardson, 1988; Woodruff et al., 1988). In land snail, Nevo (1978) listed mean estimated of polymorphism which range from 6% to 100% with an average of 31.5%. For example, in Australian camaenids it range from 19% to 71% (Woodruff and Solem, 1990), from 65\% to 80\% in Partula (Johnson et al., 1977), but reaches only about 4\% in Liguus (Hillis et al., 1987). In Cepaea, it is about 60\% (Clarke et al., 1978). Thus, the value of polymorphic loci found in A. inversus is rather low for a polymorphic species, whereas, A. atricallosus was similar to those mollusks.

Heterozygosity in A. aricallosus and A. inversus in this study varied from 0.025 to 0.201 , mean at 0.085 and 0 to 0.023 , mean at 0.003 , respectively. The heterozygosity values in A. atricallosus are similar to the reported by Woodruff and Solem (1990) for camaenids tree snail (0.08-0.24). Comparison to other tree snails, A. atricallosus was relatively higher heterozygosity than Partula (0.1 to 0.17) (Johnson et al., 1977). In other land snails, the heterozygosity values in A. atricallosus are similar to ones given by Nevo (1978) for Theba (0.054 to 0.165), Brown and Richardson (1988) for Cepaea nemoralis (0.134), and by Brown and Richardson (1988) for Bradybaena similaris (0.083). In land slugs, average heterozygosity varies among species $/ 0$ to 0.19 : Foltz et al., 1984), but also among conspecific population from various parts of the range (0.006 to 0.19 , Milax: Foltz et al., 1984; 0.4 to 0.19 , Oncomelania: woodruff et al., 1988). On the other, A. inversus appeared to show relatively lower heterozygosity than the other land snails, as in Samoana, it does not excess 0.002 (Johnson et al., 1986). Furthermore, the tree snail
species Liguus fasciatus from Florida was similar heterozygosity to A. inversus (Hillis et al., 1987)

Allozymic variation among morphotypes and populations of A. inversus is surprisingly low. The level of polymorphic loci per population in A. inversus $(0-0.010)$ is lower than any other gastropod reported (Nevo, 1978), except for several self-fertilizing species (Selander and Kaufman, 1973a, b; McCracken and Selander, 1980). This is surprising because the normally highly polymorphic esterase and peptidases were included in this study. Among other gastropod studies, degree of allozymic variation has been shown to be a strong indicator of the type of breeding system employed by the species. Among outcrossing gastropods, the percent of polymorphic loci and average individual heterozygosity are high, whereas in self-fertilization species, average individual heterozygosity is very low and polymorphic loci are rare or absent (Hillis et al., 1987). This pattern has also been observed in several other groups of hermaphroditic organisms. It has been reported that a complete or near absence of genetic variability within populations may occur in facultative self-fertilizing breeding system, as is known, for example, for Rumina decollata (see Selander and Kaufman, 1973), Partula gibba (see Johnson et al., 1977) and some Arion species (see McCracken and Selander, 1980). Hillis et al. (1987) investigated allozymic variability and heterozygosity difficiency among populations of tree snails genus Liguus fasciatus. The results showed low level of polymorphic loci ($0-0.04$) and the significant deficiencies of heterozygotes in four of five polymorphic populations which indicate typical of self-fertilizing species. Several other pulmonates have been shown to consist of both self-fertilization and outcrossing populations, or individual may be facultatively selffertilizing; furthermore, reproduction following copulation in Philomycus
spp. can be either by self-fertilization or outcrossing (McCracken and Selander, 1980). Although the patterns of allozymic variability observed in this study was highly likely that multiple reproductive modes can be possible in populations of A. inversus. However, results of field observations and published information (woodruff and Solem, 1990), indicated reciprocal mating for A. inversus (Fig. 1G).

Both geographic pattern in the number of fixed allelic differences and topology of the NJ tree (Fig. 10) from the genetic distance matrix indicate that the present samples of A. atricallosus are classified into three groups that correspond to their geographic locations---the eastern Thailand Group (ETG), southern Thailand Group (STG), and Singapore Group (SPG: consisting solely of the Singapore Nee Soon sample). High genetic heterogeneity among these groups was also supported by mean Fst value for the whole sample (0.781), which is much higher than those separately calculated for the ETG (0.144) and STG (0.551).

The ETG samples of A. atricallosus lacked fixed allelic differences and showed low Fst and small genetic distances with each other. These suggest frequent gene flows among the eastern Thailand populations. Absence of prominent geographic barriers among the sampling sites in this region corroborates this assumption.

จฬาลงกรณมหาวิทยาลย

The STG samples of A. atricallosus exhibited fixed allelic differences in a few combinations, mostly involving the Koh Tachai sample. Also, the STG showed a much higher Fst value than the ETG samples. Genetic distances between samples were almost distinctly larger than those between the ETG samples. These suggest less frequent gene flows among samples in this region.

Of the sampling localities of the STG specimens, Koh Tachai is unique in being a small island. This geographic feature may explain the scarcity of gene flows between the Koh Tachai population and other southern Thailand populations of A. atricallosus as implied by the presence of fixed allelic differences between this island sample and a few other STG samples. Also, it may explain the distinctly lower Hexp value (0.025) in the Koh Tachai sample than in the other STG samples but one from Bangkram (0.057-0.186), because the drift usually more effectively lowers genetic diversity in such small and strictly isolated populations as those on small islands through bottleneck (e.g., Gorman and Nevo, 1975). Another possible cause of low genetic diversity in the Koh Tachai population is such a tsunami in the past as that hitting the island after our sampling (on 26 December 2004). This recent tsunami directly wiped out a large proportion of the Koh Tachai population of A. atricallosus by its forceful waves and also perished the majority of host trees by causing high environmental salinity (Panha, 2005).

It looks more difficult to explain substantial geographic genetic heterogeneity, as indicated by a relatively large F st value (0.415) in A. atricallosus from the remaining continental localities in southern Thailand. These localities surround a long north-south chain of granite mountain range, which reaches approximately 1000 m in height (Woodruff, 2003: Fig. 7). Because the habitat of the Amphidromus species usually ranges from 30-500 m in elevation (Panha et al., 2001; Sutcharit and Panha, 2006a), this mountain range should have long been interrupting direct gene flows among A. atricallosus populations on different sides, enhancing independent genetic drift within each habitat patch. Similarly, Chiba (1998) found highly genetic differentiation for

Mpi and $M e$ (0.13 to 0.24) indicating geographical variation in allozyme frequencies. Furthermore, within the area of the southern populations, there are some barriers to dispersal, such as roads, streams and rice field. Further work based on mitochondrial DNA sequence and more rapidly evolving nuclear markers such as microsatellite may resolve this issue.

It is not clear in general how effective such barriers must be to prevent or strongly limit gene flow. Even a small river may be a true barrier for land snail (e.g. Hillis et al., 1987). In addition, sharp geographical differentiation over very short distances appears to be the rule in landsnails (Nevo, 1978). Microgeographical population genetic structure in the colonizing outbreeding landsnail Helix aspersa indicates highly significant genetic differentiation in allele frequencies within and between blocks, more so in small colonies, suggesting either selection in spatially heterogeneous environments or incidents of drift occurring in the demographic history of the populations (Selander and Kaufman, 1975). In another landsnail, Cepaea nemoralis, area effects reflect substantial genetic differentiation (Johnson, 1976). Relatively large genetic variability in each of those samples may reflect varying selection forces operating on the snails.

สถาบนวิทยบริการ

In A. inversus, the Hexp values were extremely low: within-sample variation was observed only at one locus in two samples (Table 5). In contrast, Fst values were extremely high, obviously due to the presence of fixed allelic differences at four of the five polymorphic loci detected (Table 9).

In Table 10, we list values of the average heterozygosity, range of heterozygosity and Fst estimated from multi-locus allozyme data for
populations of various other land snails by previous authors. It is likely from this table that the heterozygosity within population of A. inversus represents some of the lowest value described for land snails. Conversely, Fst values for these two species relatively higher than other land snails so far studies.

Nevo (1978) investigated the correlation between several biological parameters and the genetic variability observed in over 200 species of plant and animal. One might expect that the genetic variability depends on the mode of reproduction. In A. inversus material, there is a considerable deficiency of heterozygosity in most population (Table 5). This pattern has also been found in other hermaphroditic molluscs (Hillis et al., 1987; Kemperman and Degenaars, 1992). However, this factor can be excluded in the present case, because they are outcrossing snail (Woodruff and Solem, 1990).

Considering the mostly insular habitat of A. inversus (Fig. 7), occurrence of bottleneck appears to be responsible for the extremely low genetic variability in each sample (Gorman and Nevo, 1975) as in the case of the Koh Tachai sample of A. atricallosus (see above). However, it is obvious that the occurrence of/independent bottleneck with or without mutations on each island (Slatkin, 1985) alone cannot explain such geographically clearly patterned allelic displacements in A. inversus (Table 5). Depths of straits laying between those islands having A. inversus populations and the continent is shallow enough to have been exposed above the sea during a series of the Pleistocene Glaciations (see Fig. 14; Voris, 2000; Sathiamurthy and Voris, 2006). We, therefore, suspect that the current characteristic geographic genetic structure in A. inversus has been formed through a series of bottlenecks on the islands
during the inter-glacier periods, coupled with substantial range extensions repeated during the glacier periods. However, the number of Koh Jarn sample specimens (4) was too small to examine genetic variability. Thus, this sample remains to be resolved on the basis of additional sampling sizes.

Taxonomic implications

In this study, a number of A. inversus populations including those representing a few of its recognized subspecies, such as A. i. andamensis from Borneo and A. i. koperbergi from northern Sulawesi, have not been examined. We, therefore, discuss taxonomic implications of the present results only for A. atricallosus.

Laidlaw and Solem (1961), in an annotated catalogue of the genus Amphidromus from Southeast Asia, recognized three geographically defined subspecies for A. atricallosus on the basis of a few previous studies (Gould, 1843; Pilsbry, 1900; Fulton, 1901). Of these, the nominotypical subspecies, restricted to southern Thailand and southern Myanmar, was diagnosed as having distinct black or dark-brown parietal callus and straight columella. The subspecies A. a. leucoxanthus was recognized from eastern Thailand and was differentiated from the nominotypical subspecies in possessing a white parietal callus. In contrast, the subspecies A. a. perakensis was recognized from Malaysia and Singapore on the basis of white parietal callus and twist plait columella (see Fig. 13G-H). However, these characters cannot use to describe distinct subspecies A. a. perakensis from other subspecies (see Fig. 11-13). Recently the Koh Tachai population was recently described as the fourth subspecies A. a. classiarius on the basis of relatively small
shell size and brown or black parietal callus (Sutcharit and Panha, 2006a). States of shell characters in our samples of A. atricallosus from the continental part of southern Thailand, eastern Thailand, Singapore, and Koh Tachai largely coincide with those used to define the nominotypical subspecies, and the three other subspecies, leucoxanthus, perakensis and classiarius, respectively, although within-sample variations are also evident to some extent.

Fixed allelic differences at several allozyme loci among the southern Thailand samples, eastern Thailand samples, and Singapore sample (Table 4) strongly suggest the absence of gene flows among populations in the three regions. Furthermore, the distance analysis of allozyme data showed relatively large divergences among these populations (Fig. 10). These results not only support the validity of leucoxanthus and atricallosus, but also suggest their being two full species as in the case of a few other land snails so far studied by similar methods [Woodruff et al., 1988; Emberton, 1995; Manganelli et al., 2001; Sutcharit et al. (inpress)].

Manganelli et al. (2001) examined land snail, Cernuella usticensis based on the analysis of morphological characters and on the genetic study of allozyme pattern. The morphological and genetic studies demonstrated that C. usticensis can be distinguished from all the other Cernuella species. They also reported that genetic distances between Cernuella species ranged from 0.258-0.525.

Hillis and Patton (1982), who examined two forms electrophoretically and morphologically of Corbicula to determine their degree of differences, reported that the two color forms differed in
morphological evidence, and the two forms also have fixed allelic differences at six of 26 genetic loci. They concluded that two color forms actually represent separate species.

Hoagland and Davis (1987) investigated electrophoretic data of allozyme in Succineid snail form Chittenango Falls, New York. They found that Oxyloma decompi gouldi and O. retusa were different species with the distance 0.2. Furthermore, Results of fixed for alternate alleles also confirmed separate species status among Succinea species.

On the basis of allozyme data it is clear that two full species are occured. Sutcharit and Panha (2006a), who examined a several sets of shell morphological and anatomical data, provided key to species and subspecies of Amphidromus including A. atricallosus. They recognized two subspecies, leucoxanthus and atricallosus. Amphidromus atricallosus leucoxanthus was defined as a group of subspecies with white parietal callus, straight or twisted columella, yellow or white monochrome and usually present one or more varices (Fig. 11). On the other hand, A. a. atricallosus described with black parietal callus, $40-50 \mathrm{~mm}$ of shell height, conic and usually chiral dimorphic, yellow or white and long penis (Fig. 12). It seems that atricallosus differs from leucoxanthus by possessing black parietal callus. However, representative shells from allozyme studied individuals of all 7 localities of southern Thailand branching in the divergence of A. a. atricallosus are illustrated in Figure 10. Of three electrophoresed localities from Suwankuha, Poungchang and Bangkram were close genetically to the other; the shells showed distinguishing characteristics (white parietal callus; Fig. 13). Sutcharit and Panha (2006a) diagnosed these populations are uncertain status
subspecies. These polymorphisms may rapidly evolve under strong selection forces from environment.

This time, we failed to access to any A. atricallosus sample from Malaysia (Laidlaw and Solem, 1961). So, further analyses incorporating data for Malaysian samples are needed to verify genetic discontinuity between the nominotypical subspecies and perakensis, which is essential to determine the validity and status of the latter with certainty.

With respect to A. a. classiarius, the validity is not supported well, because the results of our allozyme analyses, while suggesting the absence of gene flows between the Koh Tachai population and a few continental southern Thailand populations (Table 4), located the Koh Tachai population a rather minor branch in the divergence of A. atricallosus in southern Thailand (Fig. 10). Some of the characteristics used to diagnose the subspecies A. a. classiarius by Sutcharit and Panha (2006a), such as the small shell size (Fig. 12F), may have been rapidly evolved under strong selection forces from insular environment with or without prominent bottlenecks (see above). Thus, it seems to be more appropriate to regard the Koh Tachai population as a distinct evolutionary significant unit (Moritz, 1994; Karl and Bowen, 1998) rather than a subspecies. Alternatively, subspecific separations of the Ranong population and a few other populations might be possible if they have appropriate diagnostic features.

From the allozyme study, it was observed that the Koh Tachai population is in the same cluster with southern Thailand samples (Fig. 10). This may be explained through the fact that, the depth of the ocean lying between Tachai island and the mainland is 120 m deep. However,
during Pleistocene the sea level dropped more than 120 m , therefore exposing a land mast connecting Tachai island and the mainland (Fig. 14: Voris, 2000; Sathiamurthy and Voris, 2006). Thereafter, Koh Tachai may be separated from the mainland by the increase in sea level in the Gulf of Thailand and the Andaman Ocean after 15 ka (Somboon, 1988). The sea level reached a maximum height of $4-5 \mathrm{~m}$ above the present mean sea level around 6 ka and became close to the present level around 3.5 ka (Sinsakul, 2000).

Bangkram sample exhibited low heterozygosity of A. atricallosus. It is also very likely that the population had recently experienced strong bottleneck effects. Population of Bangkram provide outstanding example of such low heterozygosity. However, detailed additional field work will be required to understand the genetic variability between Bangkram to Poungchang population. Thus, to test effectively this assumption, additional samplings from Bangkram to Poungchang is necessary.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 9. Average heterozygosity and Fst for the populations of several land snail species estimated on the basis of multi-locus allozyme data.

Species	No. of populations sampled	Average heterozygosity	Range	Fst	Reference
Amphidromus atricallosus	13	0.085	$0.018-0.201$	0.781	Present study
A. inversus	11	0.002	0.0-0.023	0.965	Present study
Bradybaena fruticum	16	0.287	0.138-0.373	0.224	Falniowski et al., 2004
B. similaris		0.083			Brown and Richardson, 1988
B. fruticum		0.144	0.069-0.205		Falniowski et al., 1993
Land slugs			0.0-0.190		Foltz et al., 1984
Theba		12.6.12	0.054-0.165		Nevo, 1978
Cepaea nemoralis		0.134			Johnson, 1976
Cristilabrum sp.	5	0.19	0.15-0.22		Woodruff and Solem, 1990
Liguus fasciatus	-7		0.0-0.016		Hillis et al., 1987
Arianta arbustorum	- 14		0.107-0.236	0.146	Haase and
	0	-	-		Bisenberger, 2003
Mandarina aureola M.ponderosa	23 11		$\begin{aligned} & 0.0-0.11 \\ & 0.040-0.095 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.13 \end{aligned}$	Chiba, 1993 Chiba, 1993

Fig. 10. Neighbor-joining network for the local samples of Amphidromus atricallosus based on Rogers' (1972) distance.

Fig. 11. Shell characteristic of Amphidromus atricallosus. A-B. A. a. leucoxanthus from Soidao, Chantaburi. C-E. A. a. leucoxanthus from Makham, Chantaburi. F-H. A. a. leucoxanthus from Makok, Chantaburi.

Fig. 12. Shell characteristic of Amphidromus atricallosus. A-C. A. a. atricallosus from Takhun, Suratthani. D-E, G-H. A. a. atricallosus from Khaosok, Suratthani. F. A. a. classiarius from Koh Tachai, Pangnga. I, L. A. a. atricallosus from Klongsang, Suratthani. J-K. A. a. atricallosus from Ranong.

Fig. 13. Shell characteristic of Amphidromus atricallosus. A-C. A. atricallosus, an uncertain status from, Suwankuha, Pang Nga. D. A. atricallosus, an uncertain status from, Bangkram, Krabi. E-F. A. atricallosus, an uncertain status from Poungchang, Pang Nga. G-H. A. a. perakensis from Singapore Nee Soon, Singapore.

Fig. 14. Map of tropical Southeast Asia and illustrating depth contours.
A. 120 m and B. present sea level (Sathiamurthy and Voris, 2006).

Amphidromus inversus is recorded in the Indochina-Malay Peninsula region, Borneo, Sumatra and Sulawesi which bounded by different Cenozoic plate tectonic (Hall, 1997). Moreover, this region was fragmented at various times in the past (Voris, 2000). As a result of biogeographical discontinuities, Southeast Asia is the centre of species diversity in plant and mammal (Roos et al., 2004; Hughes et al. 2003). We therefore suspect that the current subspecies of A. inversus may have been isolated as distinct species. However, in order to confirm the distinct species boundary, more samples must be collected from other population within the distributional range of A. inversus.

Regarding the boundary evidence for biogeographic lines, there are various boundaries between the Australia and Oriental region. The most famous among these boundaries is Wallace's Line, which Alfred Wallace himself proposed to separate his Australian and Oriental region flora and fauna (Fig. 15). Australia has very different mammal fauna and somewhat distinctive when compared to mainland Asia and Oriental region. In general, plant and animal occur in the west of Wallace's Line are demonstrated as Oriental entities, while Australian entities occur in the east. Considering the subspecies koperbergi, it occurs in the west of Wallace's Line. We strongly suggest the separated biological species of
ค. จุขvรrus. ลงกรณ์มหาวิทยาลัย

Fig. 15. The biogeographic line that has been proposed to separated the Australasian and Oriental regions.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

Berger, E. M. 1983. Population genetics of marine gastropods and bivalves. In W. D. Russell-Hunter (ed.), The mollusca, pp. 563-595. New York: Academic press.

Boyer, S. H., Fainer, D. C, and Watson, E. J. 1963. Lactate dehydrogenase variation from human blood: evidence for molecular subunit. Science 141: 642-643.

Brown, K. M., and Richardson, T. D. 1988. Genetic polymorphism in gastropods: a comparison of methods and habitat scales. American Malacological Bulletin 6: 9-17.

Chiba, S. 1993. Modern and historical evidenc for natural hybridization between sympatric species in Mandarina (Pulmonata: Camaenidae). Evolution 47: 1539-1556.

Chiba, S. 1998. Genetic variation derived from natural gene flow between sympatric species in land snails (Mandarina). Heredity 80: 617-623.

Chirasak Sutcharit. 2004. Taxonomic revision and phylogenetic analysis of the tree snail Amphidromus Albers and implication for biogeography of Thai species. Doctoral dissertation, Department of Biology, Faculty of Science, Chulalongkorn University

Clarke, B., Arthur, W., Horsley, D. T., and Parkin, D. T. 1978. Genetic variation and natural selection in pulmonate mollusks. In J. Peake (ed.), The pulmonate, pp. 219-270. London: Academic Press.

Clayton, J. W., and Tretiak, D. N. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. Journal of the Fisheries Research Board of Canada 29: 1169-1172.

Daniel, H. 1988. Genetic variation: A primer of population. $2^{\text {nd }}$ ed. Massachusetts: Sinauer Association.

Davis, G. M., Forbes, V., and Lopez, G. 1988. Species status of northeastern American Hydrobia (Gastropoda: Prosobranchia): ecology, morphology and molecular genetics. Proceedings of Academy of Natural Science of Philadelphia 140: 191-264.

Emberton, K. C. 1995. Cryptic, genetically extremely divergent, polytypic, convergent, and polymorphic taxa in Madagascan Tropidophora (Gastropoda: Pomatiasidae). Biological Journal of Linnean Society 55: 183-208.

Falniowski, A., Kozik, A., Szarowska, M., Rapala-Kozik, M. and Turyna, I. 1993. Morphological and allozymic polymorphism and differences among local populations in Bradybaena fruticum (O. F. Müller, 1777) (Gastropoda: Stylommatophora: Helicoidea). Malacologia 35: 371388.

Foltz, D. W., Ochman, H., and Selander, R. K. 1984. Genetic diversity and breeding systems in terrestrial slugs of the families Limacidae Arionidae. Malacologia 25: 593-605.

Freeman, G., and Lundelius, J. W. 1982. The developmental genetics of dextrality and sinistrality in the gastropod Lymnaea peregra. Wilhelm Roux's Archive Development Biology. 191: 69-83.

Fulton, H. 1901. Descriptions of new species of Xesta, Amphidromus and Cyclostoma from Madagascar and Perak. Journal of Malacology 8: 103-104.

Gettenberger, E. 1988. Simpatric speciation in snails: a largely neglected model. Evolution 42: 826-828.

Gorman, G. C., and Nevo, E. 1975. Evolutionary genetics of insular Adriatic lizards. Evolution 29: 52-71.

Goudet, J. 1995. Fstat version 1.2: a computer program to calculate Fstatistics. Journal of Heredity 86: 485-486.

Gould, A. A. 1844. Description of land mollusks from the province of Tavoy, in British Burmah. Boston Journal of Natural History 1843: 137-141.

Gude, G. K. 1903. A classified list of the helicoids land shells of Asia (Part VI). Journal of Malacology 10: 45-62. \& \& Qef

Gude, G. K. 1914. Mollusca II (Trochomorphidae-Janellidae). In A. E Shipley; and G. A. K Marshall (eds.), The Fauna of British India, Including Ceylon and Burma, pp. 1-520. London: Taylor and Francis Press.

Guiller, A., Coutellec-Vreto, M. A., and Madec, L. 1996. Genetic relationships among suspected contact zone populations of Helix aspersa (Gastropod; Pulmonata) in Algeria. Heredity 77: 113-129.

Guiller, A., and Madec, L. 1993. A contribution to the study of morphological and biochemical differentiation in French and Iberian populations of Cepaea nemoralis. Biochemical Systematics and Ecology 3: 323-339.

Haase, M. and Bisenberger, A. 2003. Allozyme differentiation in the land snail Arianta arbustorum (Stylommatophora, Helicidae): historical inferences. Journal of Zoological Systematics and Evolutionary Research 41: 175-185.

Hall, R. 1997. Cenzoic tactinic reconstructions of SE Asia. Geological Society of London Special Pub1ication 126: 11-23.

Hillis, D. M., and Patton, J. C. 1982. Morphological and electrophoretic evidence for two species of Corbicula (Bivalvia: Corbiculidae) in North America. American Midland Naturalist 108: 74-80.

Hillis, D. M., Rosenfeld, D. S., and Sanchez, M. 1987. Allozymic variability 6 and heterozygote deficiency within and among morphologically polymorphic populations of Liguus fasciatus (Mollusca: Pulmonata: Bulimulidae). American Malacological Bulletin 5: 153-157.

Hoagland, K. E., Davis, G. M. 1987. The succineid snail fauna of Chittenango falls, New York: taxonomic status with comparisons to
other relevant taxa. Proceedings of Academy of Natural Science of Philadelphia 139: 465-526.

Hughes, J. B., Round, P. D., and Woodruff, D. S. 2003. The IndochineseSundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. Journal Biogeography 30: 569-580.

Johnson, M. S. 1976. Allozymes and area effects in Cepea nemoralis on the western Berkshire Downs. Heredity 36: 105-121.

Johnson, M. S., Clarke, B., and Murray, J. 1977. Genetic variation and reproductive isolation in Partula. Evolution 31: 116-126.

Johnson, M. S., Murray, J, and Clarke, B. 1986. High genetic similarity and low heterozygosities in land snails of the genus Samoana from the Society Island. Malacologia 27: 97-106.

Karl, S. A., Bowen, B. W. 1998. Evolutionary significant units versus geopolitical taxonomy: molecular systematics of an endangered sea turtle (genus Chelonia). Conservation Biology 13: 990-999.

สถาบนวิทยบรการ

Kat, P. W. 1983. Genetic and morphological divergence among nominal species of North American Anodonta/ (Bivalvia: ℓ Unionidae) Malacologia 23: 361-374.

Katoh, M., and Foltz, D. W. 1994. Genetic subdivision and morphological variation in a freshwater snail species complex formerly referred to as Viviparus georgianus (Lea). Biological Journal of Linnean Society 53: 73-90.

Kemperman, T. C. M., and Degenaars, G. H. 1992. Allozyme frequencies in Albinaria (Gastropoda: Pulmonata: Clausiliidae) from the Ionian Islands of Kephallinia and Ithaka. Malacologia 34: 33-61.

Laidlaw, F. F., Solem, A. 1961. The land snail genus Amphidromus, a synoptic catalogue. Chicago: Chicago Natural History Museum Press.

McCracken, G. F., and Selander, R. K. 1980. Self-fertilization and monogenic strains in natural populations of terrestrial slugs. Proceedings of the National Academy of Sciences of the USA 77: 684-688.

Manganelli, G., Oliverio, M., Sparacio, I., and Giusti, F. 2001. Morphological and molecular analysis of the status and relationships of the land snail 'Cernuella' usticensis (Calcara, 1842) (Stylommatophora: Helicoidea). Journal of Molluscan Studies 67: 447-462.

Morlet, L. 1889. catalogue des coquilles recueillies, par M. Pavie dans le Cambode et le Royaume de Siam, et description d' especes nouvelles (1). Journal de Conchyliologie 37: 121-199.

Moritz, C. 1994. Defining "evolutionary significant units" for conservation. Trend in Ecology and Evolution 9: 373-375.

Müller, O. F. 1774. Vermium terrestrium et fluviatilium, seu animalium infusoriorum, helmintiocorum, et testaceorum, non marinorum, succincta historia, 2. Heineck and Faber, Hauniae et Lipsiae.

Murphy, R. W., Sites, Jr. J. W., Buth, D. G., and Haufler, C. H. 1996. Protein: Isozyme electrophoresis. In D.M. Hillis; C. Moritz; and B. K. Mable (eds.), Molecular Systematics, pp. 51-120. Massachusetts: Sinauer Association.

Murray, J., and Clarke, B. 1976. Supergenes in polymorphic land snails. I. Partula suturalis. Heredity 37: 271-282.

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small sample number of individuals. Genetics 89: 583-590.

Nevo, E. 1978. Genetic variation in natural populations: patterns and theory. Theoretical Population Biology 13: 121-177.

Orr, H. A. 1991. Is single-gene speciation possible? Evolution 45: 764769.

Panha, S. 2005. A survey of the impacts of the Southeast Asian tsunami on some terrestrial invertebrates including molluscs. Unitas

Panha, S., Sutcharit, C., Tongkerd, P., and Burch, J. B. 2001. Morphogeography of an endemic tree snail genus Amphidromus of Thailand (Pulmonata: Camaenidae). Of Sea Shore 24: 106-113.

Pilsbry, H. A. 1900. Manual of Conchology. Ser 2. Philadelphia: The Academy of Natural Science of Philadelphia.

Ridgway, G. J., Sherbrune, S. W., and Lewis, R. D. 1970. Polymorphisms in the esterase of Atlantic herring. Transaction of American Fishery Society 99: 147-151.

Rogers, J. S. 1972. Measures of genetic similarity and genetic distance. Studies in Genetics VII, University of Texas Publication 7213: 145153.

Roos, M. C., Keßler, P. J. A., Gradstein, R., and Baas, P. 2004. Species diversity and endemism of five major Malesian islands: diversity-area relationships. Journal of Biogeography 31: 1893-1908.

Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.

Sathiamurthy, E., and Voris, H. K. 2006. Maps of holocene sea level transgression and submerged lakes on the Sunda shelf. The Natural History Journal of Chulalongkorn University 2: 1-43.

Selander, R. K., and Kaufman, D. W. 1973. Self-fertilization and genetic population structure in a colonizing land snail. Proceedings of the National Academy of Sciences of the USA 70: 1186-1190.

Selander, R. K., and Kaufman, D. W. 1975. Genetic structure of populations of the brown snail Helix aspersa I. microgeographic variation. Evolution 29: 385-401.

Shapcott, A. 1995. The spatial genetic structure in natural populations of the Australian temperate rainforest tree Atherosperma moschatum (Labill.) (Monimiaceae). Heredity 74: 28-38.

Sinsakul, S. 2000. Late Quaternary geology of the lower central plain, Thailand. Journal of Asian Earth Sciences 18: 415-426.

Slatkin, M. 1985. Gene flow in natural populations. Annual Review of Ecology and Systematics 16: 393-430.

Sneath, P. H. A., and Sokal, R. R. 1973. Numerical Taxonomy. San Francisco: W. H. Freeman.

Solem, A. 1965. Land snails of the genus Amphidromus from Thailand (Mollusca: Pulmonata: Camaenidae). Proceeding of the United States National Mueum 117: 615-627.

Somboon, J. R. P. 1988. Paleontological study of the recent marine sediments in the lower central plain, Thailand. Journal of Southeast Asian Earth Sciences 2: 201-210.

Sutcharit, C., and Panha, S. 2006a. Taxonomic review of the tree snail Amphidromus Albers, 1850 (Pulmonata: Camaenidae) in Thailand and adjacent areas: Subgenus Amphidromus. Journal of Molluscan Studies: 72: 1-30.

Sutcharit, C., and Panha, S. 2006b. A new subspecies of Amphidromus (A.) inversus (Müller, 1774) from Peninsular Malaysia. Journal of Conchology 39: 79-83.

Sutcharit, C., Asami, T., and Panha, S. Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus. Journal of Evolutionary Biology: inpress.

Swofford, D. L., and Selander, R. B. 1981. BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. Journal of Heredity 72: 281-283.

Tatarenkov, A. 1995. Genetic divergence between sibling species Littorina mariae Sacchi and Rastelli and L. obtusata (L.) (Mollusa: Gastropoda) from the White Sea. Ophelia 40: 207-218.

Tatarenkov. A., and Johnnesson, K. 1999. Micro-and macrogeographic allozyme variation in Littorina fabalis; do sheltered and exposed forms hybridize? Biological Journal of the Linnean Society 67: 199212.

Von Möllendorff, O. 1894. On a collection of land-shells from the Samui islands, gulf of Siam. Proceeding of Zoological Society of London

Voris, H. K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27: 1153-1167.

Weir, B. S., and Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.

Woodruff, D. S. 2003. Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai-Malay Peninsula. Journal of Biogeography 30: 551-567.

Woodruff, D. S., and Solem, A. 1990. Allozyme variation in the Australian Camaenid land snail Cristilabrum primum: A prolegomenon for a Molecular phylogeny of an extraordinary radiation in an isolated habitat. The Veliger 33: 129-139.

Woodruff, D. S., Staub, K. C., Upatham, E. S., Viyanant, V., and Yuan, H. C. 1988. Genetic variation in Oncomelania hupensis: Schistosoma japonicum transmitting snails in China and the Philippines are distinct species. Malacologia 29: 347-361.

Workman, P. L., and Niswander, J. D. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. American Journal of Human Genetics 22: 24-49.

Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420.

Wright, S. 1978. Evolution and genetics of populations: Variability within and among natural populations. Vol 4. Chicago: University of Chịcago press.

APPENDIX I

Genotype data set of Amphidromus atricallosus

	Aat-1	Aat-2	Est-2	Gpi	Hbdh	Mdh-2	Me	Mpi	Lgg-1	Lgg-2	Pgm-1	Pgm-2	Pgd
Soidao (SD)													
SD-1	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-10	BB	AA	AB	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-11	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-12	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-13	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-14	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-2	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-3	BB	AA	AA	DD	EE	AA	0	BB	CC	CC	AA	BC	AA
SD-4	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
SD-5	BB	AA	AA	DD	EE		AA	BB	CC	CC	AA	CC	AA
SD-6	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-7	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-8	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
SD-9	BB	AA	AB	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA

Troknong (TN)

TN-1	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	BC	AA
TN-10	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	BB	BC	AA
TN-11	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
TN-12	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AB	BB	AA
TN-13	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
TN-14	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	CC	AA
TN-15	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
TN-16	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	CC	AA
TN-2	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AB	BB	AA
TN-3	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AB	BB	AA
TN-4	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	BB	AA
TN-5	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	BC	AA
TN-7	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
TN $-9 ~$	BB	AB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC
AA	DD	EE	AA	AA	BB	DD	CC	BB	BB	AA			

Makok (MK)

MK-1	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-10	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-11	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-12	BB	AA	AA	BD	EE	AA	AA	BB	CD	CC	AA	BC	AA
MK-13	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	0	BB	AA
MK-14	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	BC	AA
MK-15	BB	AA	AA	BD	EE	AA	AA	BB	CD	CC	AA	BC	AA
MK-16	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-17	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
MK-18	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-19	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-2	BB	AA	AA	BD	EE	AA	AA	BB	CD	CC	AA	BB	AA
MK-20	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-21	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	0	BB	AA
MK-22	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-23	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
MK-24	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	0	BB	AA
MK-25	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-26	BD	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-27	BB	AA	AA	QDD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-28	BB	${ }^{\text {AA }}$	AB	DD	EE 0	AA	AA	BB	CD	CC	AA	BC	AA
MK-29	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-3	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-30	BB	AA	AA	DD	EE σ	AA	AA	BB	CC	CC	AA	BB	AA
MK-31	CB	AA	A		EE	9AA	AA	BB	Cce	CC	AA	BC	AA
MK-32	BB	AA	AA	BD	EE	CAA	AA	BB	CO	CC	AA	BC	AA
MK-33 9	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-34	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-35	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	BC	AA
MK-36	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-37	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
MK-38	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-39	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-4	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
MK-40	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-41	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-42	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BC	AA
MK-43	BD	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	CC	

MK-44	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-5	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
MK-6	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
MK-7	BB	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	BB	AA
MK-8	BD	AA	AA	DD	EE	AA	AA	BB	CC	CC	AA	CC	AA
MK-9	BB	AA	AA	DD	EE	AA	AA	BB	CD	CC	AA	BB	AA

Ranong (HS)

HS-1	BB	AA	AA	AC	BD	AA	CC	CC	CC	BB	AA	BC	BB
HS-10	BB	AA	AA	AA	DD	AA	CC	CC	BC	BB	AA	CD	AA
HS-11	BB	AA	AA	AC	BB	AA	CC	CD	CC	BB	AA	CD	AB
HS-12	BB	AA	AA	AA	BD	AA	CC	CC	CC	BB	AA	CC	AA
HS-13	BB	AA	AA	CC	BB	AA	CC	CC	BC	BB	AA	CD	AA
HS-14	BB	AA	AA	AA	DD	AA	CC	CD	CC	BB	AA	BC	AA
HS-15	BB	AA	AA	AC	DD	AA	CC	CC	CC	BB	AA	CC	AA
HS-16	BB	AA	AA	AC	BD	AA	CC	CC	BC	BB	AA	CC	AB
HS-17	BB	AA	AA	AC	DD	AA	CC	CC	BC	BB	AA	CD	AA
HS-18	BB	AA	AA	AA	DD	AA	CC	CC	BC	BB	AA	CC	AA
HS-19	BB	AA	AA	AA	DD	AA	CC	CD	BC	BB	AA	BC	AB
HS-2	BB	AA	AA	AC	BD	AA	CC	CD	CC	BB	AA	CD	AA
HS-20	BB	AA	AA	AA	BD	AA	CC	CD	BC	BB	AA	CC	AB
HS-21	AB	AA	AA	AA	DD	AA	CC	CC	BC	AB	AA	CC	AB
HS-22	BB	AA	AA	AC	BD	AA	CC	CC	CC	BB	AA	CC	AB
HS-23	BB	AA	AA	AA	BD	AA	CC	CD	BC	BB	AA	CD	AA
HS-3	BB	AA	AA	AA	DD	AA	CC	CD	BC	BB	AA	CC	AB
HS-4	AB	AA	AA	AC	0	AA	CC	CC	CC	BB	AA	BC	AA
HS-5	BB	AA	AA	AC	BB	AA	CC	CC	CC	BB	AA	CD	AA
HS-6	BB	AA	AA	AC	BD	AA	CC	CC	CC	BB	AA	CC	AB
HS-7	BB	AA	AA	AC	BD	AA	CC	CC	CC	BB	0	DD	AA
HS-8	BB	AA	AA	CC	BD	AA	CC	CD	CC	BB	AA	CC	AA
HS-9	BB	AA	AA	AC	DD	AA	CC	CD	BC	BB	AA	BC	AB

Koh Tachai (TC)

Takhun (TK)

TK-1	BC	AA	AA	CC	BD	AA	CC	CC	CC	BB	0	DD	AA
TK-10	CC	AA	AA	CC	BD	AA	CC	CC	BC	BB	AA	DD	AA
TK-11	BC	AA	AA	CC	BD	AA	CC	CC	BB	BB	AA	DD	AA

TK-12	BC	AA	AA	CC	0	AA	CC	CC	CC	BB	AA	DD	AA
TK-13	BC	AA	AA	CC	BB	AA	CC	CC	CC	BB	0	DD	AA
TK-14	BB	AA	AA	CC	BD	AA	CC	CC	BC	BB	AA	DD	AA
TK-2	BC	AA	AA	CC	BD	AA	CC	CC	CC	AB	0	DD	AA
TK-3	BB	AA	AA	CC	BB	AA	CC	CC	CC	AB	AA	DD	AA
TK-4	BB	AA	AA	CC	BB	AA	CC	CC	CC	AB	AA	DD	AA
TK-5	BB	AA	AB	CC	BB	AA	CC	CC	CC	BB	AA	DD	AA
TK-6	AB	AA	AA	CC	BB	AA	CC	CC	CC	AA	0	DD	AA
TK-7	BB	AA	AA	CC	BD	AA	CC	CC	CC	AB	0	DD	AA
TK-8	BB	AA	AA	CC	BB	AA	CC	CC	CC	AA	0	DD	AA
TK-9	BB	AA	AA	CC	BB	AA	CC	CC	BC	BB	AA	DD	AA

Klongs	PP)													
PP-1	BB	AA	AA	CC		BE	AA	CC	CC	BC	BB	AA	DD	AA
PP-10	BB	AA	AA	CC		E	AA	CC	CC	BC	BB	AA	DD	AA
PP-11	BB	AA	AB	CC		BE	AA	CC	CC	BB	BB	AA	DD	AA
PP-12	BB	AA	AA	AC		E	AA	CC	CC	BC	BB	AA	DD	AA
PP-13	BB	AA	AB	CC		E	AA	CC	CC	BB	BB	AA	DD	AA
PP-14	BC	AA	AA	C		BE	AA	CC	CC	BC	BB	AA	DD	AA
PP-15	BC	AA	AA			E	AA	CC	CC	BC	BB	AA	DD	AA
PP-16	BB	AA	AA	CC		EE	AA	CC	CC	BC	BB	AA	DD	AA
PP-17	BB	AA	AA	AC		E	AA	CC	CC	BC	BB	AA	DD	AA
PP-18	BB	AA	AA	CC		E	AA	CC	CC	BC	BB	AA	DD	AA
PP-19	BB	AA	AA	CC		E	AA	CC	CC	CC	BB	AA	DD	AA
PP-2	BB	AA	AA	CC		E	AA	CC	CC	BC	BB	AA	DD	AA
PP-20	BB	AA	AA	CC		E	AA	CC	CC	BC	BB	AA	DD	0
PP-21	BB	AA	AA	AC			AA	CC	CC	BC	BB	AA	DD	AA
PP-22	BB	AA	AA	CC		E	AA	CC	CC	AB	BB	AA	DD	AA
PP-23	BB	AA	AA	CC		EE	AA	CC	CC	BB	BB	AA	DD	AA
PP-24	BB	AA	AA	CC			AA	CC	CC	BC	BB	AA	DD	AA
PP-25	BB	AA	AA	CC	E	EE	AA	CC	CC	BB	BB	AA	DD	AA
PP-26	BB	AA	AA	CC		EE	AA	CC	CC	BC	BB	AA	DD	AA
PP-27	BB	AA	AA			E	AA	CC	CC	CC	BB	AA	DD	AA
PP-28	BB	AA	AB	CC		E	AA	CC	CC	BC	BB	AA	DD	AA
PP-29	BB	AA	AA	CC		EE	AA	CC	CC	BB	BB	AA	DD	AA
PP-3	BB	AA	AA	CC		E	AA	CC	CC	BB	BB	AA	DD	AA
PP-30	BB	AA	AB	CC		E	AA	CC	CC	BB	BB	AA	DD	AA
PP-31	BB	AA	AB	CC		E	AA	CC	CC	BB	BB	AA	DD	AA
PP-32	BB	AA	AA	CC		E	AA	CC	CC	BC	BB	AA	DD	AA
PP-33	BB	AA	AA	- CC		EE	AA	CC	CC	BC	BB	AA	DD	AA
PP-34	BB	AA	AA	C6			- AA	CC	CC	BC	BB	AB	DD	AA
PP-35	BB	AA	AA	CC			AA	CC	CC	BB	BB	AA	DD	AA
PP-36	BB	AA	AA	CC		E	AA	CC	CC	CC	BB	AA	DD	AA
PP-37	BB	AA	AB	CC		E	\sim AA	CC	CC	BC	BB	AA	DD	AA
$\begin{aligned} & \text { PP-38 } \\ & \text { PP-39 } \end{aligned}$	BB BB	$\begin{aligned} & \mathrm{AA} \\ & \mathrm{AA} \end{aligned}$	AB AB	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$			$\begin{aligned} & \text { OAA } \\ & \text { AA } \end{aligned}$	$\begin{aligned} & \mathrm{CC} \\ & \mathrm{CC} \end{aligned}$	$\begin{gathered} \mathrm{CC} \\ \mathrm{CC} \end{gathered}$	BC BC	BB BB	$\begin{array}{r} \mathrm{AA} \\ \mathrm{AA} \end{array}$	DD DD	AA
PP-4	BB	AA	AA	CC		BE	AA	CC	CC	BC	BB	AA	DD	AA
PP-40	BB	AA	AB	CC		BE	AA	CC	CC	BC	BB	AA	DD	AA
PP-41	BB	AA	AB	CC		EE	AA	CC	CC	BC	BB	AA	DD	0
PP-42	BB	AA	AB	CC		BE	AA	CC	CC	BC	BB	AA	DD	AA
PP-5	BB	AA	AA	CC		BE	AA	CC	CC	BB	BB	AA	DD	AA
PP-6	BB	AA	AA	CC		BE	AA	CC	CC	BC	BB	AA	DD	AA
PP-7	BB	AA	AA	CC		E	AA	CC	CC	BC	BB	AA	DD	AA
PP-8	BB	AA	BB	CC		E	AA	CC	CC	BB	BB	AA	DD	AA
PP-9	BB	AA	AB	CC		EE	AA	CC	CC	BB	BB	AB	DD	AA

Khaosok (KS)

KS-10	CC	AA	AB	CC	DD	AA	CC	CC	BB	BB	AA	DD	AA
KS-11	AB	AA	AB	CC	DD	AA	CC	CC	BC	BB	AA	DD	AA
KS-12	BC	AA	BB	CC	DD	AA	CC	CC	BB	BB	0	DD	AA
KS-13	BC	AA	AB	CC	DD	AA	CC	CC	BC	BB	AA	DD	AA
KS-14	CC	AA	AB	CC	BB	AA	CC	CC	BC	BB	AA	DD	BB
KS-15	AC	AA	AA	CC	BB	AA	CC	CC	BC	BB	0	AD	AA
KS-16	BC	AA	AA	CC	BD	AA	CC	CC	CC	BB	AA	DD	AA
KS-17	CC	AA	BB	CC	BD	AA	CC	CC	BC	BB	AA	DD	AB
KS-18	BC	AA	AB	CC	DD	AA	CC	CC	BC	BB	AA	DD	AA
KS-19	CC	AA	AB	CC	DD	AA	CC	CC	AC	BB	AA	BD	AA
KS-2	AC	AA	AB	CC	BB	AA	CC	CC	CC	BB	AA	DD	AA
KS-20	CC	AA	AB	CC	DD	AA	CC	CC	CC	BB	AA	AD	AA
KS-21	BB	AA	AB	CC	BD	AA	CC	CC	BC	BB	AA	AA	AA
KS-22	CC	AA	AA	CC	DD	AA	CC	CC	BC	BB	AA	DD	AA
KS-23	BC	AA	BB	CC	BD	AA	CC	CC	BC	BB	AA	DD	AA
KS-24	BB	AA	AA	CC	BD	AA	CC	CC	CC	BB	AA	DD	AA
KS-25	BC	AA	AB	CC	BD	AA	CC	CC	AC	BB	0	AD	AA
KS-26	CC	AA	AB	CC	BD	AA	CC	CC	BC	BB	0	DD	AA
KS-27	BC	AA	AB	CC	BD	AA	CC	CC	BC	BB	AA	DD	AA
KS-28	CC	AA	AA		BB	AA	CC	CC	CC	BB	0	DD	AA
KS-29	BC	AA	AA		DD	AA	CC	CC	BB	BB	0	AA	AA
KS-3	AC	AA	AB		BD	AA	CC	CC	BC	BB	AA	AD	AA
KS-30	CC	AA	BB	CC	BD	AA	CC	CC	BC	BB	AA	DD	AA
KS-31	CC	AA	BB	CC	BB	AA	CC	CC	CC	BB	AA	DD	AA
KS-32	BC	AA	AB	CC	DD	AA	CC	CC	BC	BB	AA	DD	AA
KS-33	AC	AA	AA	CC	DD	AA	0	CC	CC	BB	AA	AD	AA
KS-4	BC	AA	BB	CC	DD	AA	CC	CC	BC	BB	AA	DD	AA
KS-5	CC	AA	AB	CC	BD	AA	CC	CC	BB	BB	AA	DD	AA
KS-6	CC	AA	BB	CC	BB	AA	CC	CC	BC	BB	AA	AC	AA
KS-7	CC	AA	AB	CC	BD	AA	CC	CC	BC	BB	AA	DD	AA
KS-8	BC	AA	AA	CC	BB	AA	CC	CC	CC	BB	0	AD	AA
KS-9	CC	AA	AB	CC	DD	AA	CC	CC	BC	BB	AA	AD	AA

Suwankuha (SW)

SW-31	BB	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
SW-4	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	CD	AA
SW-5	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
SW-6	BB	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
SW-7	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AB	DD	AA
SW-8	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
SW-9	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AB	DD	AA

Poung	(PC)												
PC-1	CC	AA	AA	CC	BB	AA	CC	CC	BC	BB	0	DD	AA
PC-10	CC	AA	AA	CC	BC	AA	CC	CC	BB	BB	0	DD	AA
PC-11	CC	AA	AA	CC	BC	AA	CC	CC	CC	BB	AA	DD	AA
PC-12	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
PC-13	BC	AA	AA	CC	BB	AA	CC	CC	0	BB	AA	DD	AA
PC-14	CC	AA	AA	CC	BB		C	CD	BB	BB	AA	DD	AA
PC-15	CC	AA	AA	CC	BC	AA	CC	CC	BB	BB	AA	DD	AA
PC-16	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
PC-17	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
PC-18	BC	AA	AA		BB	AA	CC	CC	BC	BB	AA	DD	AA
PC-19	BC	AA	A		BB	AA	CC	CC	BC	BB	AA	DD	AA
PC-2	CC	AA	AA		BC	AA	CC	CC	BB	BB	AA	DD	AA
PC-3	CC	AA	AA		BC	AA	CC	CC	BB	BB	AA	CD	AA
PC-4	CC	AA	AA	CC	BC	AA	CC	CC	BC	BB	0	DD	AA
PC-5	CC	AA	AA	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
PC-6	CC	AA	AB	CC	BB	AA	CC	CC	BB	BB	AA	DD	AA
PC-7	CC	AA	AA	CC	BC	AA	CC	CD	BB	BB	AA	DD	AA
PC-8	CC	AA	AA	CC	BB	AA	CC	CC	0	BB	AA	DD	AA
PC-9	CC	AA	AA	CC	BB	AA	CC	CC	CC	BB	AA	DD	AA

Bangkram (BK)													
BK-1	BB	AA	AA	CC	BB	AA	CC	CC	AA	AA	AA	DD	AA
BK-2	BB	AA	AA	CC	BB	AA	CC	CC	AA	AA	AA	DD	AA
BK-3	BB	AA	AA	CC	BB	AA	CC	CC	AB	AA	AA	DD	AA
BK-4	BB	AA	AA	CC	BB	AA	CC	CC	AA	AA	AA	DD	AA
BK-5	BB	AA	AA	CC	BB	AA	CC	CC	AA	AA	AA	DD	AA
BK-6	BB	AA	AA	CC	BB	AA	CC	CC	AA	AA	AA	DD	AA
BK-7	BB	AA	AA	CC	BB	AA	CC	CC	AA	AA	AA	DD	AA
BK-8	BB	AA	AA	CC	BB	AA	CC	CC	AB	AA	AA	DD	AA

Genotype data sets of Amphidromus inversus

	Aat-1	Est-1	Est-2	Est-3	Est-4	Gpi	Hbdh	Mdh-1	Mdh-2	Me	Mpi	Lgg-1	Lgg-2	Lgg-3	Pgm-1	Pgm-2	Pgd	Sod
Chaiya (CY)																		
CY1	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY10	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY11	AA	AA	AA	AA	BB	AA		AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY12	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY13	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY14	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY15	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY16	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY17	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY18	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	0	AA
CY19	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY20	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	0	AA
CY21	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY22	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY23	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY3	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY5	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY6	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY7	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY8	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
CY9	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
Koh Elar (KE)																		
KE1	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KE2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KE3	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA

KE4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KE5	AA	AA	AA	AA	BB	AA	AA	AA	AA	0	AA	BB	BB	BB	AA	AA	AA	AA
KE6	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KE7	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KE8	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
Koh Jarn (KJA)																		
KJA1	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KJA2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KJA3	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KJA4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
Koh Kham (KK)																		
KK1	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK10	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK3	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK5	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK6	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK7	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK8	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KK9	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
Koh Luarm (KL)																		
KL1	AA	AA	AA	AA	BB					AA	AA	BB	BB	BB	AA	AA	AA	AA
KL10	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	0	AA	AA	AA
KL11	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL12	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	0	AA	AA	AA
KL13	AA	AA	AA	AA		AA	AA	AA	AA		AA	BB	BB	BB	0	AA	AA	AA
KL14	AA	AA	AA	AA	BB	AA	AA	AA	AA	0	AA	BB	BB	BB	0	0	AA	AA
KL15	AA	AA	AA	AA	BB	AA	AA	AA	AA	0	AA	BB	BB	BB	0	AA	AA	AA

KL16	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL17	AA	AA	AA	AA	BB	AA	AA	AA	A	0	AA	BB	BB	BB	0	AA	0	AA
KL18	AA	AA	AA	AA	BB	AA	AA	AA	AA	0	AA	BB	BB	BB	AA	AA	AA	AA
KL19	AA	AA	AA	AA	BB	AA	AA	AA	AA	0	AA	BB	BB	BB	0	AA	AA	AA
KL2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL3	AA	AA	AA	AA	BB	AA	A	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL5	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL6	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL7	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL8	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KL9	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	0	AA	AA	AA
Koh Pai (KP)																		
KP1	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP10	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP11	AA	AA	AA	AA	BB	AA	AA	AA	AA	0	AA	BB	BB	BB	AA	AA	0	AA
KP12	AA	AA	AA	AA	BB	AA	AA	AA	AA	0	AA	BB	BB	BB	0	AA	AA	AA
KP13	AA	AA	AA	AA	BB	AA	AA	AA	AA		AA	BB	BB	BB	0	AA	AA	AA
KP2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP3	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP5	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP6	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP7	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP8	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KP9	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
Pulau Kapas (KPM)																		
KPM1	AA	AA	AA	AA	BB	AA	AA	AA		AA	AA	AA	AA	BB	AA	AA	AA	AA
KPM10	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM12	AA	AA	AA	${ }^{\text {AA }}$	BB	AA	BB	0	AA	AA	AA							

KPM13	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM14	AA	AA	AA	AA	BB	AA	BB	0	AA	AA	AA							
KPM17	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM19	AA	AA	AA	AA	BB	AA	BB	0	AA	AA	AA							
KPM29	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM38	AA	AA	AA	AA	BB	AA	BB	0	AA	AA	AA							
KPM42	AA	AA	AA	AA	BB	AA	BB	0	AA	AA	AA							
KPM44	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM45	AA	AA	AA	AA	BB	AA	BB	0	AA	AA	AA							
KPM48	AA	AA	AA	AA	BB	AA	BB	0	AA	AA	AA							
KPM50	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM54	AA	AA	AA	AA	BB	AA	BB	0	AA	AA	AA							
KPM57	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM63	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM71	AA	AA	AA	AA	BB	AA	BB	AA	AA	AA	AA							
KPM9	AA	AA	AA	AA	BB	AA	BB	0	AA	AA	AA							
Koh Samet (KSM)																		
KSM1	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KSM2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KSM3	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KSM4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KSM5	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KSM6	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KSM7	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	AA	AA	AA
KSM8	AA	AA	AA	AA	BB	AA	9^{AA}		AA	AA	AA	$\frac{\mathrm{BB}}{8}$	BB	BB	AA	AA	AA	AA
Koh Samui (KSS)																		
	AA														AA	BB	AA	AA
KSS11	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	AB	AA	BB	AA	AA
KSS12	AA	AA	AA	9A	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA

KSS13	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	AB	AA	BB	AA	AA
KSS14	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KSS15	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	AB	AA	BB	AA	AA
KSS16	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	AB	AA	BB	AA	AA
KSS17	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KSS18	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	AB	AA	BB	AA	AA
KSS2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	AB	AA	BB	AA	AA
KSS3	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KSS4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KSS5	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KSS6	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KSS7	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KSS8	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KSS9	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	AA	AA	BB	AA	AA
Koh Tan (KT)																		
KT1	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT10	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT11	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT12	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT13	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT14	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT2	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT3	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT4	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	AB	AA	BB	AA	AA
KT5	AA	AA	AA	AA	BB	AA	AA	AA		AA		BB	BB	BB	AA	BB	AA	AA
KT6	AA	AA	AA	AA	BB	AA	AA	AA		AA	AA	BB	BB	BB	AA	BB	AA	AA
KT7	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT8	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	AA	BB	AA	AA
KT9	AA	AA	AA	AA	BB	AA	AA	AA	AA	AA	AA	BB	BB	BB	0	BB	AA	AA

Singapore Botanic Garden (SIN)

SIN1	AA	AA	AA
SIN2	AA	AA	AA
SIN3	AA	AA	AA
SIN4	AA	AA	AA
SIN5	AA	AA	AA
SIN6	AA	AA	AA
SIN7	AA	AA	AA
SIN8	AA	AA	AA

	AA	BB	0	AA	AA									
AA														
A	AA	BB	0	AA	AA									
AA														
A	AA	BB	AA	AA	AA									
AA														
A	AA	BB	AA	AA	AA									
AA														
A	AA	BB	0	AA	AA									
AA														
A	AA	BB	AA	AA	0									
AA														
AA	BB	0	AA	0	AA									

APPENDIX II

Table 11. Chi-square test for deviation from Hardy-Weinberg equilibrium in Soidao.

Table 12. Chi-square test for deviation from Hardy-Weinberg equilibrium in Makham.

Locus	Class	Observed frequency	Expected frequency	$\begin{gathered} \text { Chi- } \\ \text { square } \\ \hline \end{gathered}$	DF	P
Aat-1						
	B-B	36	36.007			
	B-D	1	0.986			
	D-D	0	0.007			
				0.007	1	0.934
Gpi						
	B-B	1	0.432			
	B-D	6	7.135			
	D-D	30	29.432			
				0.936	1	0.333
Hbdh						
	B-B	0	0.007			
	B-C	0	0.243			
	B-E		0.743			
	C-C	2	2.189			
	C-E	14	13.378			
	E-E	20	20.439			
				0.393	3	0.942
Pgm-2						
	B-B	11	11.358			
	B-C		18.284			
	C-C	7	7.358			
				0.057	1	0.812

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

Table 13. Chi-square test for deviation from Hardy-Weinberg equilibrium in Troknong.

Table 14. Chi-square test for deviation from Hardy-Weinberg equilibrium in Makok.

Table 15. Chi-square test for deviation from Hardy-Weinberg equilibrium in Ranong.

Table 16. Chi-square test for deviation from Hardy-Weinberg equilibrium in Tachai.

Locus	Class	Observed frequency	Expected frequency	Chi- square	DF	P
Lgg-1						
	A-A	13	12.800			
	A-B	6	6.400			
	B-B	1	0.800	0.078	1	0.780
	0					
		กรถ				

Table 17. Chi-square test for deviation from Hardy-Weinberg equilibrium in Takhun.

Table 18. Chi-square test for deviation from Hardy-Weinberg equilibrium in Klongsang.

Locus	Class	Observed frequency	Expected frequency	$\begin{gathered} \hline \text { Chi- } \\ \text { square } \end{gathered}$	DF	P
Aat-1						
	B-B	40	40.024			
	B-C	2	1.952			
	C-C	0	0.024			
				0.025	1	0.874
Est-2						
	A-A	29	29.167			
	A-B	12	11.667			
	B-B	1	1.167			
				0.034	1	0.853
Gpi						
	A-A	0	0.054			
	A-C	3	2.893			
	C-C	39	39.054			
Hbdh						
	B-B	0	0.381			
	B-E	8	7.238			
	E-E	34	Y 34.381			
				0.465	1	0.495
Lgg-1						
	A-A	0	0.006			
	A-B	1	0.607			
		0	0.381			
	B-B	12 -	15.482			
	$\stackrel{\left.\begin{array}{c} \mathrm{D}-\mathrm{D} \\ \mathrm{~B}-\mathrm{C} \\ \mathrm{C}-\mathrm{C} \end{array}\right)}{ }$	$\begin{array}{r} 12 \\ 26 \\ 3 \end{array}$	$/ \begin{gathered} 19.429 \\ 6.095 \end{gathered}$			
Pgm-1	? 6	956	$\mathfrak{d} 9 ?$	5.219	$\frac{9_{3}}{6}$	0.156
	AA	40	40.024			
	AB	2	1.952			
	BB	0	0.024			
				0.025	1	0.874

Table 19. Chi-square test for deviation from Hardy-Weinberg equilibrium in Khaosok.

Locus	Class	Observed frequency	Expected frequency	Chi- square	DF	P
Aat-1						
	A-A	0	0.189			
	A-B	1	1.212			
	A-C	4	3.409			
	B-B	2	1.939			
	B-C	11	10.909			
	C-C	15	15.341			
				0.339	3	0.953
Est-2						
	A-A	9	9.280			
	A-B	17	16.439			
	B-B		7.280			
				0.038	1	0.845
Hbdh						
	B-B	8	5.939			
	B-D	12	16.121			
	D-D	13	10.939			
				2.157	1	0.142
Lgg-1						
	A-A	0	2.030			
	A-B	$0 \sim$	2. 0.788			
	A-C	2	\% 1.152			
	B-B	4	5.121			
	B-C	18	y 14.970			
	C-C		10.939			
				2.646	3	0.449
Pgm-2						
	A-A	3	1.485			
	A-B	0	0.212			
	A-C	1	0.212			
	A-D	7 -	10.606			
	$\begin{aligned} & \mathrm{B}-\mathrm{B} \\ & \mathrm{~B}-\mathrm{C} \end{aligned}$	$\left[\begin{array}{l} 0 \\ 0 \end{array}\right.$	$\left\lvert\, \begin{aligned} & 0.008 \\ & 0.015 \end{aligned}\right.$			
	B-D	1	, 0.758			
	$\begin{aligned} & \text { C-C } \\ & \text { C-D } \\ & \text { D-D } \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 21 \end{gathered}$	$\begin{aligned} & 0.008 \\ & 0.758 \\ & 18.939 \end{aligned}$			
				7.000	6	0.321
Pgd						
	A-A	31	31.008			
	A-B	1	0.984			
	B-B	0	0.008			
				0.008	1	0.928

Table 20. Chi-square test for deviation from Hardy-Weinberg equilibrium equilibrium in Suwankuha.

Table 21. Chi-square test for deviation from Hardy-Weinberg equilibrium in Poungchang.

Locus	Class	Observed frequency	Expected frequency	$\begin{gathered} \text { Chi- } \\ \text { square } \end{gathered}$	DF	P
Aat-1						
	B-B	0	0.118			
	B-C	3	2.763			
	C-C	16	16.118			
				0.140	1	0.709
Est-2						
	A-A	18	18.013			
	A-B	1	- 0.974			
	B-B	0	0.013			
				0.014	1	0.906
Hbdh						
	B-B	12	12.645			
	B-C	7	5.711			
	C-C		0.645	0.969	1	0.325
Mpi						
	C-C	17	17.053			
	C-D	2	1.895			
	D-D	0	3.0 .053			
				0.059	1	0.809
Lgg-1						
	B-B	11	9.941			
	B-C	4	6.118	1		
	$\mathrm{C}-\mathrm{C}$	2	0.941			
		9962	1e19	2.037		0.154
Pgm-2		0	0.013			
$\begin{aligned} & 9 \\ & 9 \end{aligned}$				0.014	1	0.906

Table 22. Chi-square test for deviation from Hardy-Weinberg equilibrium in Bangkram.

Table 23. Chi-square test for deviation from Hardy-Weinberg equilibrium in Singapore Nee Soon.

Table 24. Chi-square test for deviation from Hardy-Weinberg equilibrium in Koh Samui.

Locus	Class	Observed frequency	Expected frequency	Chi- square	DF	P
Lgg-3						
	A-A	2	1.389			
	A-B	6	7.222			
	B-B	10	9.389		0.516	1

Table 25. Chi-square test for deviation from Hardy-Weinberg equilibrium in Koh Tan.

Chi-square test for deviation from Hardy-Weinberg equilibrium

Population: Koh Samet
*** No polymorphic loci ***

Chi-square test for deviation from Hardy-Weinberg equilibrium

Population: Koh Ela
*** No polymorphic loci ***

Chi-square test for deviation from Hardy-Weinberg equilibrium

Population: Koh Jarn
*** No polymorphic loci ***

Chi-square test for deviation from Hardy-Weinberg equilibrium

Population: Koh Kharm

*** No polymorphic loci ***

Chi-square test for deviation from Hardy-Weinberg equilibrium

Population: Koh Luarm
*** No polymorphic loci ${ }^{* * *}$

Chi-square test for deviation from Hardy-Weinberg equilibrium

Population: Koh Pai
*** No polymorphic loci ***

Chi-square test for deviation from Hardy-Weinberg equilibrium
Population: Chaiya
*** No polymorphic loci
Chi-square test for deviation from Hardy-Weinberg equilibrium
Population: Puala Kapas Malaysia
*** No polymorphic loci $* * *$
Chi-square test for deviation from Hardy-Weinberg equilibrium
Population: Singapore botanic garden
*** No polymorphic loci ${ }^{* * *}$

APPENDIX III

Table 26. Significance test using exact probabilities in Soidao.

Locus	R1	R2	R3	P
Est-2	12	2	0	1.000
Pgm-2	12	2	0	1.000

Table 27. Significance test using exact probabilities in Makham.

Locus	R1	R2	R3	P
Aat-1	36	1	0	1.000
Gpi	30	6	1	0.344
Hbdh	20	15	2	1.000
Pgm-2	11	19	7	1.000

Table 28. Significance test using exact probabilities in Troknong.

Locus	R1	R2	R3	P
Lgg-1	8	7	1	1.000
Pgm-1	11	3	2	0.104
Pgm-2	7	5	4	0.292

Table 29. Significance test using exact probabilities in Makok.

Locus	R1	\square	R2	\square	R3		P
Aat-1	41		3		0		1.000
Est-2	43				0		1.000
Gpi	40		4		0		1.000
Lgg-1	36		8		0		1.000
Pgm-2	15	0	21		8		1.000

Table 30. Significance test using exact probabilities in Ranong.

Locus	R1	R2	R3	P
Aat-1	21	2	0	1.000
Gpi	9	12	2	0.662
Hbdh	9	10	3	1.000
Mpi	14	9	0	0.544
Lgg-1	12	11	0	0.279
Lgg-2	22	1	0	1.000
Pgm-2	10	12	1	0.619
Pgd	13	9	1	1.000

Table 31. Significance test using exact probabilities in Tachai.

Locus	R1	R2	R3	P
Lgg-1	13	6	1	1.000

Table 32. Significance test using exact probabilities in Takhun.

Locus	R1	R2	R3	P
Aat-1	7	6	1	1.000
Est-2	13	1	0	1.000
Hbdh	7	6	0	1.000
Lgg-1	10	3	1	0.326
Lgg-2	8	4	2	0.258

Table 33. Significance test using exact probabilities in Klongsang.

Table 34. Significance test using exact probabilities equilibrium in Khaosok.

Locus	R1	R2	R3	P
Aat-1	15	15	3	1.000
Est-2	9	17	7	1.000
Hbdh	13	12	8	0.160
Lgg-1	9	20	4	0.286
Pgm-2	21	8	4	0.060
Pgd	31	1	0	1.000

Table 35. Significance test using exact probabilities in Suwankuha.

Locus	R1	R2	R3	P
Aat-1	17	11	3	0.650
Pgm-1	19	8	1	1.000
Pgm-2	30	1	0	1.000

Table 36. Significance test using exact probabilities in Poungchang.

Locus	R1	R2	R3	P
Aat-1	16	3	0	1.000
Est-2	18	1	0	1.000
Hbdh	12	7	0	1.000
Mpi	17	2	0	1.000
Lgg-1	11	4	2	0.177
Pgm-2	18	1	0	1.000

Table 37. Significance test using exact probabilities in Bangkram.

Locus	R1	R2	R3	P	
Lgg-1	6	2	2	0	1.000

Table 38. Significance test using exact probabilities in Singapore Nee Soon.

Locus	R1	R 2	R 3	P
Aat-1	8	6	4	0.315
Hbdh	16	2	0	1.000
Lgg-1	17	1	0	1.000

Table 39. Significance test using exact probabilities in Koh Samui.

Table 40. Significance test using exact probabilities in Koh Tan.

Locus	R1	R2	R3	P
Lgg-3	13	1	0	1.000

APPENDIX IV

Table 41. Shell morphology and measurement of Amphidromus atricallosus

No./Locality	SH	S W	AW	A / J	Shell color	Coiling	Twist columella	Parietal callus color	Varix	Remark	
Soidao					$1=$						
1	50.34	30.47	28.77	A	Y	R	-	WHITE	1		
2	47.16	29.14	26.51	A	Y	R	1	WHITE	1		
3	53.04	28.62	27.96	A	W	R	-	WHITE	1		
4	48.72	28.87	26.91	A	W	R	-	WHITE	1		
5	46.52	26.68	25.15	A	Y	R	-	WHITE	1		
6	49.86	28.06	26.51	A	Y	$\xrightarrow{ }$ R	-	WHITE	1		
7	51.84	30.67	27.9	A	25	R	1	WHITE	1		
8	43.82	24.96	22.73	J	W	R	-	WHITE	-		
9	45.3	28.37	25.64	A	W	R	-	WHITE	1		
10	46.44	28.75	26.26	A	Y	R	-	WHITE	1		
11	36.86	23.38	20.29	J	Y	R	-	WHITE	-		
12			1	J	Y	L	(1)			broken shell	
13	46.54	24.63	24.19	SA	B	L	-	WHITE	1		
14	24.54	19.35	15.35	J	\bigcirc	${ }_{\sim} \mathrm{R}^{2}$		WHITE	-		
			06			-					
Makham					\cdots			0			
1	46.16	25.07	22.35	A	Y 9	OL	$9 \cap D \\| \cap$	WHITE	1		
2	46.43	26.41	23.71	A	6 YO	R	1/ -	6) WHITE	-		
3	45.12	23.95	21.61	A	Y	R	-	WHITE	-		

4	41.15	25.04	21.95	A	Y	R	-	WHITE	-	
5	46.82	23.6	21.53	A	Y	R	1	WHITE	-	
6	42.38	24.94	21.02	A	Y	R	-	WHITE	-	
7	44.73	26.45	23.33	A	Y	R	-	WHITE	-	
8	47.24	26.06	21.5	A	Y	R	-	WHITE	-	
9	43.26	24.95	21.36	A	Y	L	-	WHITE	-	
10	43.75	25.53	20.68	A	Y	R	-	WHITE	-	
11	43.47	24.93	18.91	A	Y	R	-	WHITE	-	
12	44.85	23.8	20.83	J	Y	R	-	WHITE	-	
13	37.63	22.2	19.57	J	Y	R	-	WHITE	-	
14	48.42	27.49	22.47	A	${ }^{\text {Y }}$	R	-	WHITE	-	
15	46.53	27.34	21.19	A	Y	L	-	WHITE	-	
16	43.89	25.76	21.26	A	(56) Y	R	-	WHITE	-	
17	44.72	25	22.02	A	Y	R	-	WHITE	-	
18	45.57	24.33	22.83	A	Y	L	-	WHITE	-	
19	40.77	25.26	21.48	A	Y	R	-	WHITE	-	
20	44	24.99	21.34	A	Y	R	-	WHITE	-	
21	34.73	21.64	19.02	J	Y	R	-	WHITE	-	
22	33.23	20.87	16.54	J	Y	R	-	WHITE	-	
23	40.29	22.13	17.8	9	\bigcirc	R ص	-	WHITE	-	
24	35.55	21.85	17.7	9 J 9	Y	${ }^{\text {R }}$	-	WHITE	-	
25	42.11	24.74	21.14	A	${ }^{\circ} \mathrm{Y}$	R	-	WHITE	-	
26	35.33	22.82	18.13	J	Y	R		WHITE	-	
27	37.29	22.13	19.45	J	Y	R	-	6 WHITE	-	
28	34.47	20.58	18.71	J	Y	L	-	WHITE	-	

29	30.31	19.97	16.38	J	Y	L	-	WHITE	-	
30	28.01	20.17	15.78	J	Y	R	-	WHITE	-	
31	28.23	18.73	16.01	J	B	R	-	WHITE	-	
32	17.07	13.43	10.64	J	B	R	-	WHITE	-	
33	46.94	24.81	21.91	A	B	R	-	WHITE	-	
34	46.62	26.04	23.17	A	B	R	-	WHITE	/	
35	43.35	25.68	22.83	A	B	R	-	WHITE	-	
					$\square=$					
Troknong			-		1					
1	42.23	23.1	19.02	A	Y	R	-	WHITE	1	
2	42.6	24.38	20.65	A	${ }_{4} \mathrm{Y}$	R	-	WHITE	1	
3	41.53	22.55	21.35	SA	Y	R	-	WHITE	1	
4	42.44	23.66	20.3	A	- Y	R	-	WHITE	1	
5	36.65	20.97	19.32	J	Y	R	-	WHITE	1	broken apex
6	37.1	22.23	20.09	J	Y	R	-	WHITE	1	
7	33	22.77	18.85	J	Y	R	-	WHITE	/	
8	35.49	21.76	19.03	J	Y	R	-	WHITE	1	
9	38.5	24.12	21.41	J	Y	R	-	WHITE	-	
10	32.76	20.68	18.96	J	Y	R	-	WHITE	-	
11	29.96	19.85	17.12	J	ค	$\mathrm{R} \frown$	-	WHITE	1	
12	41.28	23.82	20.3	${ }^{\text {SA }} 9$	Y	${ }^{9} \mathrm{R}$	$\bigcirc-5$	WHITE	1	
13	30.87	20.32	18.15	J	${ }^{\circ} \mathrm{Y}$	R	- -	WHITE	1	
14	37.25	22.01	19.9	J	Y	R		WHITE	1	
15	41.5	9 25	20.4	A	Y	R	-	6 WHITE	1	
16	35.44	21.21	18.75	J	Y	R	-	WHITE	1	

13	46.47	23.79	22.89	A	W	R	1	WHITE	1	
14	48.12	24.38	22.42	A	W	R	1	WHITE	1	
15	47.5	23.61	22.66	A	W	R	/	WHITE	1	
16	32.73	22.04	19.69	J	Y	R	-	WHITE	-	
17	48.11	23.97	22.51	A	Y	L	/	WHITE	1	
18	36.19	22.95	20.35	J	W	R	-	WHITE	-	
19	34.42	23.06	20.13	J	W	R	-	WHITE	-	
20	37.15	22.56	19.37	J	W	L	-	WHITE	-	
21	44.88	24.28	22.37	A	Y	L	-	WHITE	1	
22	46.47	24.77	22.85	A	Y	L	-	WHITE	1	
23	46.4	25.63	23.06	A	${ }^{\text {Y }}$	R	-	WHITE	1	
24	46.46	23.73	21.41	A	Y	R	-	WHITE	-	
25	34.97	21.66	19.47	J	W W	R	-	WHITE	-	
26	30.12	19.81	17.07	J	Y	L	-	WHITE	-	
27	44.95	25.02	21.81	A	W	L	-	WHITE	1	
28	42.4	22.26	21.4	A	W	L	51	WHITE	1	
29	35.45	21.91	19.09	J	W	L	-	WHITE	1	
30	45.02	25.61	22.65	A	W	L	-	WHITE	1	
31	44.37	24.18	21.99	A	Y	R	1	WHITE	1	
32	37.31	23.1	21.44	9	W	R ص		WHITE	-	
33	35.96	22.78	20.77	9 J 9	W	${ }^{9} \mathrm{R}$	-5	WHITE	-	
34	36.09	23.18	20.54	J	W	R	-	WHITE	-	
35	27.91	19.49	16.7	J	Y	R	-0,	WHITE	-	
36	31.61	021.03	16.47	J	W	L	-	WHITE	-	
37	20.04	18.83	14.27	J	W	L	-	WHITE	-	

38	45.06	24.93	21.95	A	W	L	-	WHITE	1	
39	21.94	18.31	16.97	J	W	L	-	WHITE	-	
40	48.19	26.73	20.16	A	Y	L	-	WHITE	1	
41	30.92	20.94	16.02	J	W	R	-	WHITE	1	
42	48.4	28.6	23.86	A	W	R	-	WHITE	1	
43	49.54	26	22.36	A	Y	L	-	WHITE	/	
44	44	24.11	20.76	A	Y	L	-	WHITE	1	
					Y					
Ranong			\bigcirc		(6)					
1	45.59	26.46	25.09	A	Y	R	-	BROWN	1	
2	40.13	22.09	19.89	J	${ }_{4} \mathrm{Y}$	R	-	BROWN	1	
3	41.62	22.09	18.55	J	Y	R	-	BROWN	1	
4	38.19	21.23	17.59	J	-2	R	-	BROWN	-	
5	44.13	27.53	26.32	A	Y	R	-	BROWN	1	broken shell
6	39	21.61	18.34	J	W	R	-	BROWN	1	
7	47.07	26.41	19.04	A	Y	R	-	BROWN	1	
8	45.44	25.3	23.01	A	Y	R	-	BROWN	1	
9	47.65	25.56	24.89	A	Y	R	-	BROWN	1	
10	43.77	24.68	21.85	A	Y	R	-	BROWN	1	
11	35.6	21.23	19.11	9	ค	$\mathrm{R} \sim$	-	BROWN	-	
12	28.53	18.13	$\bigcirc 15.79$	9 J 9	Y	${ }^{9} \mathrm{R}$	$8-5$	BROWN	-	
13	41.17	23.35	18.88	J	- W	R	11.0	BROWN	-	
14	42.54	25.1	21.16	A	W	R		BROWN	1	
15	33.55	021.2	19.02	J	W	R	-	QBROWN	1	
16	30.39	20.82	18.12	J	Y	R	-	BROWN	1	

17	45.02	27.33	24.11	A	Y	R	-	BROWN	1	
18	27.99	18.84	16.2	J	W	R	-	BROWN	1	
19	46.45	25.5	23.49	A	W	R	\square	BROWN	1	
20	35.05	19.86	18.95	J	W	R	-	BROWN	-	
21	29.19	18.97	16.71	J	Y	R	-	BROWN	-	
22	34.25	20.78	16.54	J	W	R	-	BROWN	1	
23	32.62	20.09	18.34	J	Y	R	-	BROWN	-	
24	34.22	20.5	18.23	J	Y	L	-	BROWN	-	
			-		3 (C)					
Koh Tachai					minaid					
1	35.83	18.12	16.71	A	4	L	-	BROWN	1	
2	34.45	18.63	17.16	A	Y	L	-	BROWN	1	broken apex
3	40.01	19.61	17.95	A	- 6	L	-	BROWN	1	
4	38.6	20.75	17.47	A	Y	L	-	BROWN	1	
5	35.84	18.26	17.15	A	Y	L	-	BROWN	1	
6	35.2	17.9	16.31	A	Y	L	-	BROWN	1	
7	38.32	20.09	18.33	A	Y	L	-	BROWN	1	
8	36.65	18.3	17.33	A	Y	L	-	BROWN	1	
9	35.86	18.29	17.1	A	Y	L	-	BROWN	1	
10	35.75	18.5	16.73	A	\bigcirc	L ص	-	BROWN	1	
11	35.8	18.21	16.34	9 A 9	Y	${ }^{9} \mathrm{~L}$	$3-5$	BROWN	1	
12	34.35	18.39	16.15	A	O Y	L	- -	BROWN	1	
13	39.8	20.31	18.29	A	Y	L		BROWN	1	
14	37.76	18.82	16.72	A	Y	L	-	BBROWN	1	
15	24.44	15.9	13.18	J	Y	L	-	BROWN	1	

16	25.82	16.56	14.47	J	Y	L	-	BROWN	1	
17	25.16	16.05	13.64	J	Y	L	-	BROWN	1	
18	24.27	15.85	13.27	J	Y	L	-	BROWN	1	
19	25.11	15.78	13.57	J	Y	L	-	BROWN	1	
20	21.36	14.81	12.08	J	Y	L	-	BROWN	1	
21	21.01	15.08	12.6	J	Y	L	-	BROWN	1	
22	27.71	17.02	14.58	J	Y	L	-	BROWN	1	
23	22.71	14.91	12.99	J	Y	L	-	BROWN	1	
24	22.13	14.76	12.67	J	Y	L	-	BROWN	1	
					wianis					
Takhun					4×3					
1	42.37	24.09	21.9	A	Y	R	-	BROWN	-	
2	40	24.26	22.12	A	5. W	R	-	BROWN	-	
3	38.06	21.28	18.77	A	Y	R	-	BROWN	1	
4	36.62	24.29	19.05	A	Y	L	-	BROWN	-	
5	37.89	23.69	20.27	A	Y	L	-	BROWN	1	
6	40.16	24.33	21.3	A	Y	R	-	BROWN	1	
7	41.88	24.5	22.25	A	Y	R	-	BROWN	1	
8	31.75	21.53	17.81	A	Y	R	-	BROWN	1	
9	43.6	21.27	24.25	A	ค Y	L ص	-	BROWN	1	
10	38.16	24.45	-21.3	9 A 9	Y	${ }^{9} \mathrm{~L}$	-	BROWN	1	
11	42.95	23.27	21.25	A	Y	R	- -	BROWN	-	
12	47.67	24.15	22.41	A	Y	R		BROWN	-	
13	41.6	023.04	21.09	A	Y	L	-	BROWN	-	
14	43.58	24.23	21.75	A	Y	R	-	BROWN	1	

				c		-				
Klongsang				A		C				
1	42.67	23.47	21.39	A	Y	L	\square	BROWN	-	
2	37.08	25.41	20.19	A	Y	L	\square	BROWN	1	
3	34.48	19.44	19.2	A	Y	L	-	BROWN	-	
4	34.99	22.62	19.63	A	Y	L	-	BROWN	-	
5	39.55	22.19	20.09	J	Y	L	-	BROWN	1	
6	39.23	24.01	19.97	A	Y	L	-	BROWN	1	
7	44.45	25.03	21.25	SA	Y	L	-	BROWN	-	
8	40.66	21.89	19.96	SA	Y	L	-	BROWN	-	
9	37.7	22.48	20.56	A	${ }_{4} \mathrm{Y}$	L	-	BROWN	-	
10	42.77	24.17	20.07	A	Y	L	-	BROWN	1	
11	38.31	22.12	19.29	A	E, W	L	-	BROWN	1	
12	42.27	24.83	21.73	A	W	L	-	BROWN	-	
13	37.99	22.86	19.38	A	Y	L	-	BROWN	-	
14	38.08	24.5	21.79	A	Y	L	-	BROWN	1	
15	45.64	26.07	22.69	A	Y	L	-	BROWN	1	
16	36.33	21.64	20.12	A	Y	L	-	BROWN	-	
17	37.75	23.05	20.37	A	W	L	-	BROWN	-	
18	39.97	23.46	19.56	A	Q	L ص		BROWN	-	
19	39.63	23.02	21.79	9 A 9	Y/	${ }^{9} \mathrm{~L}$	$3-5$	BROWN	-	
20	39.14	24.34	20.51	A	${ }^{\text {Y }}$	L	- -	BROWN	-	
21	34.8	23.31	19.21	A	Y	L	-	BROWN	-	
22	35.72	-22.38	21.17	A	Y	L	-	Q BROWN	-	
23	37.43	21.78	19.54	A	Y	R	-	BROWN	/	

5	39.36	22.55	19.15	A	W	L	-	BROWN	/	
6	42.9	22.59	22.25	A	Y	L	-	BROWN	1	
7	40.45	22.39	20.74	A	Y	L	-	BROWN	1	
8	36.73	20.45	17.45	J	Y	L	-	BROWN	1	
9	42.84	24.24	21.67	A	Y	L	-	BROWN	-	
10	40.28	21.3	20.9	A	Y	L	-	BROWN	1	
11	43.26	24.71	22.55	A	Y	L	-	BROWN	-	
12	38.67	22.18	19.54	A	Y	L	-	BROWN	1	
13	44.37	23.67	22.95	A	Y	L	-	BROWN	-	
14	42.86	22.55	21.03	A	Y	L	-	BROWN	/	
15	43.75	24.5	22.68	A	Y	L	-	BROWN	-	
16	44.66	24.67	22.96	A	Y	L	-	BROWN	1	
17	40.38	24.04	20.56	A	- 5	L	-	BROWN	-	
18	38.85	21.08	17.96	J	Y	L	-	BROWN	-	
19	37.76	20.25	14.66	J	Y	R	-	BROWN	1	
20	44.35	23.85	22.27	A	Y	R	-	BROWN	/	
21	45.77	25.37	24.68	A	Y	R	-	BROWN	1	
22	46.79	23.99	22.33	A	Y	R	-	BROWN	/	
23	47.93	27.33	22.46	A	W	R	-	BROWN	1	
24	43.59	23.61	21.06	A	\bigcirc	$\mathrm{R} \Omega$	-	BROWN	-	
25	49.32	24.84	22.91	9 A 9	Y	${ }^{9} \mathrm{R}$	-5	BROWN	/	
26	50.67	25.91	25.51	A	${ }^{\circ} \mathrm{Y}$	R	- 0	BROWN	/	
27	46.88	25.49	23.64	A	W	R		BROWN	/	
28	45.4	-25.38	21.44	A	W	R	-	BROWN	/	
29	40.52	22.5	20.91	A	W	R	-	BROWN	-	

30	36.31	21.24	19.49	J	Y	R	-	BROWN	1	
31	32.22	19.98	17.12	J	Y	R	-	BROWN	1	
32	42.99	21.9	22.11	A	W	R	-	BROWN	-	
33	41.99	24.13	23.05	A	W	R	-	BROWN	-	
Suwankuha										
1	52.05	26.38	22.94	A	Y	L	-	WHITE	-	
2	49.84	25.07	20.1	A	Y	L	-	WHITE	-	
3	35.47	21.13	18.97	J	Y	L	-	WHITE	-	
4	45.54	23.32	21.13	A	Y	L	-	WHITE	-	
5	38.33	22.59	17.78	A	Y	L	-	WHITE	-	
6	46.6	22.31	20.67	A	Y	R	-	WHITE	-	
7	47.38	25.48	19.75	A	Y	L	-	WHITE	-	
8	47.8	24.33	21.14	A	W W	L	-	WHITE	-	
9	46.57	23.17	21.56	A	Y	L	-	WHITE	-	
10	47.81	23.22	19.74	A	Y	L	$-$	WHITE	-	
11	44.91	23.37	18	A	Y	L	-	WHITE	-	
12	43.64	24.54	20.17	SA	Y	L	-	WHITE	-	
13	46.35	24.06	21.13	A	Y	L	-	WHITE	-	
14	48.32	24.34	21.13	A	Y	L	-	WHITE	-	
15	46.96	24.03	19.79	A	\bigcirc	$L \sim$	-	WHITE	-	
16	49.54	26.77	20.09	9 A 9	Y/	${ }^{9} \mathrm{~L}$		WHITE	-	
17	46.42	27.66	25.5	A	${ }^{\circ} \mathrm{Y}$	L	-	WHITE	-	
18	51.5	28.75	27.31	A	Y	L	-	WHITE	-	
19	41.79	02.21	20.84	A	Y	L	-	WHITE	-	
20	53.31	28.39	25.79	A	Y	L	-	WHITE	-	

21	46.1	27.72	23	A	Y	L	-	WHITE	-	
22	44.97	23.64	19.9	J	Y	L	-	WHITE	-	
23	43.82	26.06	22.91	A	= Y	L	-	WHITE	-	
24	48.04	26.07	22.6	A	Y	L	-	WHITE	-	
25	37.59	22.39	19.26	J	Y	L	-	WHITE	-	
26	47.01	25.25	20.95	A	Y	L	-	WHITE	-	
27	46.77	26.13	21.5	A	Y	L	-	WHITE	-	
28	44.7	24.69	21.76	A	Y	L	-	WHITE	-	
29	43.64	25.39	21.96	A	Y	L	-	WHITE	-	
30	37.22	22.7	19.18	J	Y	L	-	WHITE	-	
31	28.87	18.66	15.82	J	Y	L	-	WHITE	-	
					-1and	-				
Poungchang					Siscisf	$\square 8$				
1	38.14	22.17	17.12	A	y	L	-	WHITE	1	
2	37.68	19.66	19.03	A	y	L	-	WHITE	1	
3	38.98	22.17	21.33	A	y	L	-	WHITE	-	
4	37.01	21.22	18.72	A	y	L	$-$	WHITE	1	
5	34.34	18.4	17.49	A	y	R	-	WHITE	-	
6	35.42	20.55	18.29	A	y	L	-	WHITE	-	
7	36.36	20.34	18.63	A	- y	L ص	-	WHITE	-	
8	36.88	20.15	18.06	9 A 9	y	${ }^{9} \mathrm{~L}$	$\bigcirc-5$	WHITE	-	
9	39.52	19.7	18.6	A	0 y	R	1 - 0	WHITE	-	
10	37.49	19.23	18.8	A	y	L	- -	WHITE	-	
11	39.24	19.48	18.14	A	y	L	-	WHITE	-	
12	18.33	14.06	10.78	J	y	L	-	WHITE	-	

13	16.92	12.89	10.47	J	y	L	-	WHITE	-	
14	20.68	15.79	12.83	J	y	L	-	WHITE	-	
15	17.11	13.31	10.91	J	y	R	-	WHITE	1	
16	16.58	12.86	10.01	J	y	L	-	WHITE	-	
17	16.67	12.23	10.41	J	y	R	-	WHITE	-	
18	17.74	13.34	10.76	J	y	L	-	WHITE	-	
19	14.03	10.84	8.63	J	y	L	-	WHITE	-	
20	13.93	11.86	8.58	J	y	L	-	WHITE	-	
			-			\square	-			
Bangkram					nizind					
1	41.79	24.34	22.35	A	${ }^{4} \mathrm{Y}$	L	-	WHITE	1	
2	40.39	23.31	21.36	J	- Y	R	-	WHITE	1	
3	31.53	18.62	17.97	J	-	R	-	WHITE	-	
4	40.55	22.34	21.17	J	Y	L	-	WHITE	1	
5	39.41	22.11	20.39	J	Y	R	-	WHITE	1	
6	41.02	22.7	20.63	J	Y	L	3	WHITE	1	
7	42.41	22.92	22.03	J	Y	R	-	WHITE	-	
8	39.12	22.4	20.42	J	Y	R	-	WHITE	-	
Singapore Nee Soon										
1	45.24	27.06	23.96	A	\bigcirc	$\mathrm{R} \frown$	-	WHITE	-	
2	42.39	26.51	23.61	9 A 9	Y	+ ${ }^{9}$ L	$3-5$	WHITE	-	
3	40.15	23.23	21.26	SA	${ }^{\circ} \mathrm{Y}$	L	- -	WHITE	-	
4	44.08	26.87	24.77	A	Y	R		WHITE	-	
5	44.83	27.13	24.29	A	Y	R	-	WHITE	-	
6	42.44	25.23	23.01	A	Y	R	-	WHITE	-	

7	41.41	24.69	20.89	A	Y	R	-	WHITE	-	
8	48.25	26.15	23.32	A	Y	R	-	WHITE	-	
9	43.62	25.51	22.97	A	Y	R	-	WHITE	-	
10	33.52	20.72	18.21	J	Y	L	-	WHITE	-	
11	26.2	18.25	15.68	J	Y	R	-	WHITE	-	
12	30.66	20.37	18.14	J	Y	R	-	WHITE	-	
13	32.04	21.67	18.29	J	Y	L	-	WHITE	-	
14	27.42	19.06	15.28	J	Y	R	-	WHITE	-	
15	17.62	14.7	10.96	J	Y	R	-	WHITE	-	
16	17.84	14.86	11.52	J	Y	R	-	WHITE	-	
17	18.11	15.09	11.02	J	Y	L	-	WHITE	-	
18	19.25	15.67	12.49	J	Y	L	-	WHITE	-	

SH: Shell height
SW: Shell width
AW: Aperture width
Shell color: W, white, B, brown, Y, yellow
A: Adult
J: Juvenile
SA: Subadult

Table 42. Shell morphology and measurement of Amphidromus inversus

No/Locality	SH	SW	AW	A/J	Shell color	Coiling	Remark
Singapore botanic garden			-		\square		
1	39.84	25.01	19.72	SA	B	R	
2	41.87	23.62	21.52	SA	B	R	
3	48.25	25.97	25.12	A	B	R	
4	42.94	26.78	23.08	A	B	R	
5	42.82	23.68	22.32	SA	B	R	
6	41.1	24.22	20.23	SA	B	R	
7	33.05	20.82	16.72	J	B	R	
8	18.68	14.84	11.27	J	B	R	
9	12.14	10.69	6.82	J	\triangle B	R	
10	13.89	11.77	7.64	J	B	R	
				4/4			
Koh Tan		O)		v		-	
1	22.05	37.96	19.86	J	B	R	broken apex, pink apex
2	23.76	43.84	20.75	J	B	R	pink apex
3	22.21	36.87	18.57	J	B	R	pink apex
4	23.16	42.78	19.98	A	B	R	pink apex
5	22.5	36.21	$\bigcirc 19.87$	J	B	R	pink apex
6	19.97	30.75	- 17.76	9J/	9 B	R	pink apex
7	18.87	26.77	14.66	J	$\square^{\text {b }}$	R	pink apex
8	21.59	33.33	18.2	-J	B	R	己 pink apex
9	$\bigcirc 24.92$	43.37	20.66	A	$1 \mathrm{~B}^{1}$	R	Q pink apex
10	21.62	36.15	20.27	J	B	R	pink apex

11	20.65	31.67	17.39	J	B	R	pink apex
12	22.36	37.96	20.33	J	B	R	pink apex
13	22.85	40.71	19.57	A	B	R	pink apex
14	21.47	38.41	18.67	A	B	R	pink apex
15	21.3	31.22	17.3	J	B	R	pink apex
16	22.15	40.98	22.2	J	B	R	pink apex
17	20.55	29.93	16.93	J	B	R	pink apex
18	23.82	40.03	21.14	J	B	R	pink apex
19	22.36	37.19	20.41	J	B	R	pink apex
20	22.24	38.83	20.06	J	B	R	
21	20.76	34.53	17.21	SA	B	R	broken apex and aperture, pink apex
22	24.87	42.96	21.57	A	B	R	broken apex
23	22.26	40.85	20.23	J	B	R	pink apex
24	23.29	42.59	20.45	A	B	R	pink apex
25	22.5	36.23	19.36	J	B	R	pink apex
26	24.39	44.15	19.81	A	B	R	pink apex
		-				9	
Koh Samui		U				J	
1	42.18	21.61	18.77	A	B	R	pink apex
2	37.12	21.11	18.28	SA	B	R	pink apex
3	37.88	20.26	${ }^{1} 17.61$	SA	B	R	pink apex
4	40.97	20.73	18.59	A	- $\mathrm{B}^{\text {B }}$	R	pink apex
5	41.49	22.55	18.85	A	B°	R	pink apex
6	40.34	21.53	17.77	${ }^{\circ} \mathrm{A}$	B	R	- pink apex
7	- 42.82	20.2	19.1	A	B ${ }^{\text {B }}$	R	Q pink apex
8	43.76	21.69	19.47	A	B	R	pink apex

9	40.74	21.47	17.65	A	B	R	pink apex
10	44.79	21.58	19.39	A	B	R	pink apex
11	40.58	21.82	18.86	A	B	R	pink apex
12	48.43	24.33	20.4	A	B	R	broken apex, pink apex
13	44.52	21.69	20.24	A	B	R	broken apex, pink apex
14	42.16	21.41	18.94	A	B	R	pink apex
15	43.89	21.87	19.18	A	B	R	broken apex, pink apex
16	41.56	20.55	18.4	A	B	R	pink apex
17	39.53	20.4	18.29	A	B	R	pink apex
18	42.55	22.08	20.28	A	B	R	pink apex
19	40.35	20.92	18.61	A	B	R	pink apex
20	42.56	21.37	19.29	SA	B	R	broken apex
21	44.86	22.83	19.47	A	B	R	pink apex
22	42.53	22.16	19.63	A	B	R	pink apex
23	44.59	22.56	19.48	A	B	R	pink apex
24	40.13	20.06	17.74	A	B	R	pink apex
25	47.48	23.02	20.43	A	B	R	pink apex
26	49.07	24.1	20.12	A	B	R	pink apex
27	41.29	20.94	18.17	A	B	R	pink apex
28	48.55	23.38	20.08	A	B	R	pink apex
29	38.71	20.2	${ }^{1} 17.46$	A	B	R	pink apex
30	37.81	20.64	17.65	${ }^{\text {A }}$	9 B	R	pink apex
31	38.79	20.9	18.68	A	B	R	broken apex, pink apex
32	44.02	21.77	17.6	${ }^{\circ} \mathrm{A}$	B	R	pink apex
33	- 38.8	20.85	19.12	J	B	R	Q pink apex
		.	-	J	- B		-

Chaiya					\square		
1	46.64	24.27	21.01	A	B	R	pink apex
2	42.99	23.64	19.84	A	B	R	pink apex
3	43.64	23.39	- 19.8	A	B	R	pink apex
4	48.81	24.31	21.26	A	B	R	pink apex
5	45.77	22.71	20.23	A	B	R	pink apex
6	50.49	25.14	22.73	A	B	R	pink apex
7	45.51	24.97	21.36	A	B	R	pink apex
8	42.29	22.78	19.14	A	B	R	pink apex
9	43.15	22.46	20.11	A	B	R	pink apex
10	45.18	22.45	20.16	A	B	R	pink apex
11	43.96	22.37	19.48	A	B	R	pink apex
12	39.59	22.04	17.86	A	B	R	pink apex
13	48.74	24.07	20.14	A	B	R	broken apex, pink apex
14	46.42	22.95	20.52	A	B	R	pink apex
15	49.34	24.69	21.39	A	B	ค R	pink apex
16	42.68	22.9	19	A	B	R	pink apex
17	43.39	22.42	19.03	A	B	R	pink apex
18	41.86	22.08	18.89	A	B	R	pink apex
19	43.58	22.19	20.14	A	B	R	pink apex
20	46.69	23.42	${ }^{\circ} 20.38$	A	B	R	pink apex
21	44.3	23.96	20.7	A	9 B	R	pink apex
22	49.81	25.61	21.55	A	$\mathrm{B}^{\text {d }}$	R	pink apex
23	44.09	23.11	19.51	${ }^{\circ} \mathrm{A}$	B	R	pink apex
24	045.55	22.8	19.6	A	1 B	R	N pink apex
25	43.18	21.91	18.84	A	B	R	pink apex

26	40.55	22.26	18.7	A	B	R	pink apex
27	47.07	23.73	21.33	A	B	R	pink apex
28	47.75	23.81	21.34	A	B	R	pink apex
29	42.49	21.9	19.03	A	B	R	pink apex
30	48.96	23.66	21.15	A	B	R	pink apex
31	43.89	22.22	19.72	A	B	R	pink apex
32	45.88	22.93	21.3	A	B	R	pink apex
33	49.97	24.53	21.83	A	B	R	pink apex
34	49.36	24.5	22.15	A	B	R	pink apex
35	47.55	23.55	21.01	A	B	R	pink apex
36	49.57	23.95	22.63	A	B	R	pink apex
			r	dinla			
Pulau Kapas, Malaysia			-	2,am			
1	41.16	23.17	20.1	A	W	R	
2	37.15	22.33	19.37	A	W	R	
3	30.97	21.43	17.22	A	W	L	
4	34.39	20.39	16.93	A	W	L	
5	36.85	21.84	19.13	A	W	L	
6	37.19	20.89	18.52	A	W	L	
7	33.26	19.29	16.33	A	W	L	
8	40.56	22.5	${ }^{-16.27}$	A	W	L	
9	34.4	21.34	- 18.75	A	9 W	L	
10	40.5	22.17	19.64	A	W^{0}	L	
11	35.67	20.45	17.65	${ }^{\circ} \mathrm{A}$	W	R	U
12	- 32.7	20.25	17.87	A	W ${ }^{\text {W }}$	L	0
13	34.01	19.38	16.07	A	W	L	

14	37.25	22.41	19.37	A	W	L	
15	36.86	21.18	18.76	A	W	L	
16	28.72	18.58	14.57	A	W	R	
17	33.33	18.93	16.05	SA	W	L	
18	37.24	21.86	18.95	A	W	L	
19	34.33	21.04	17.28	A	W	R	

SH: Shell height
SW: Shell width
AW: Aperture width
A: Adult
J: Juvenile
SA: Subadult
Shell color: W, white, B, brown
Coiling: L, left handed coiling, R , right handed coiling

APPENDIX V

The studies specimens deposited in the Chulalongkorn University, Museum of Zoology (CUMZ)

CUMZ	Species	Date	Locality	Specimen		Remark
				D	S	
2621	Amphidromus atricallosus leucoxanthus	22/08/2004	Soidao, Chantaburi	12	1	Shell, wet, -30 C
2622	A. atricallosus leucoxanthus	30/09/2003	Makham, Chantaburi	30	6	Shell, wet, -30 C
2623	A. atricallosus leucoxanthus	22/08/2004	Troknong, Chantaburi	27		Shell, wet, -30 C
2624	A. atricallosus leucoxanthus	04/09/2003	Makok, Chantaburi	22	21	Shell, wet, -30 C
2625	A. atricallosus atricallosus	17/09/2003	Ranong (hot spring)	23	1	Shell, wet, -30 C
2626	A. atricallosus classiarius	21/12/2003	Koh Tachai, Pang Nga		14	Shell, wet, -30 C
2627	A. atricallosus atricallosus	13/09/2003	Takhun, Suratthani	7	5	Shell, wet, -30 C
2628	A. atricallosus atricallosus	04/10/2003	Klongsang, Suratthani	20	22	Shell, wet, -30 C
2629	A. atricallosus atricallosus	22/09/2003	Khaosok, Suratthani	15	18	Shell, wet, -30 C
2630	A. atricallosus atricallosus	11/05/2003	Suwankuha, Pang Nga	1	33	Shell, wet, $-30^{\circ} \mathrm{C}$
2631	A. atricallosus atricallosus	21/12/2003	Poungchang, Pang Nga	4	17	Shell, wet, -30 C
2632	A. atricallosus atricallosus	15/05/2004	Bangkram, Krabi	5	3	Shell, wet, -30 C
2633	A. atricallosus perakensis	04/03/2004	Nee Soon, Singapore	8	3	Shell, wet, -30 C
2636	A. inversus inversus	14/03/2004	Botanic garden, Singapore	5		Shell, wet, -30 C
2637	A. inversus inversus	08/03/2004	Pulau Kapas, Malaysia	2	7	Shell, wet, -30 C
2638	A. inversus annamiticus	27/02/2003	Koh Jarn, Chonburi	13		Shell, wet, -30 C
2639	A. inversus annamiticus	28/02/2003	Koh Pai, Chonburi ๑९.	15		Shell, wet, -30 C
2640	A. inversus annamiticus	26/02/2003	Koh Kham, Chonburi ¢	17		Shell, wet, -30 C
2641	A. inversus annamiticus	26/02/2003	Kok Lueam, Chonburi	23		Shell, wet, -30 C

| CUMZ | Species | Date | Locality | Specimen | | Remark |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | D | S | |
| 2642 | A. inversus annamiticus | $30 / 05 / 2003$ | Koh Elar, Chonburi | 15 | | Shell, wet, $-30^{\circ} \mathrm{C}$ |
| 2643 | A. inversus annamiticus | $30 / 05 / 2003$ | Koh Tan, Suratthani | 18 | | Shell, wet, $-30^{\circ} \mathrm{C}$ |
| 2644 | A. inversus annamiticus | $26 / 08 / 2002$ | Chaiya, Suratthani | 30 | | Shell, wet, $-30^{\circ} \mathrm{C}$ |
| 2645 | A. inversus annamiticus | $26 / 02 / 2003$ | Koh Samui, Suratthani | 23 | | Shell, wet, $-30^{\circ} \mathrm{C}$ |
| 2647 | A. inversus annamiticus | $26 / 08 / 2003$ | Koh Samet, Rayong | 16 | | Shell, wet, $-30^{\circ} \mathrm{C}$ |

BIOGRAPHY

Miss Pongpun Prasankok was born on the $11^{\text {st }}$ of November 1977. She graduated both Bachelor and Master Degree of Science from Department of Biology, Faculty of Science, Chulalongkorn University in 1998 and 2001, respectively. In 2002, she was awarded the Royal Golden Jubilee (RGJ) Ph.D. Program scholarship of the Thailand Research Fund (TRF) for her Ph.D. study in Biological Science Ph.D. Program at Faculty of Science, Chulalongkorn University.

สถาบันวิทยบริการ

