

 ผลกระทบของนโยบายการใหลําดับความสําคัญภายในตอประสิทธิภาพการจัดลําดบังานบนกริด

และอัลกอริทึมการจัดลําดับงานแบบปรับตัวไดบนกริด

นางสาว ศิรประภา วิริยะประสิทธิ์

วิทยานพินธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควชิาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวทิยาลัย
ปการศึกษา 2547

ISBN 974-17-6355-7
ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

THE IMPACT OF LOCAL PRIORITY POLICIES ON GRID SCHEDULING PERFORMANCE

AND AN ADAPTIVE POLICY-BASED GRID SCHEDULING ALGORITHM

Miss Siraprapa Wiriyaprasit

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2004
ISBN 974-17-6355-7

Thesis Title The Impact of Local Priority Policies on Grid Scheduling
Performance and an Adaptive Policy-based Grid Scheduling
Algorithm

By Siraprapa Wiriyaprasit
Field of study Computer Engineering
Thesis Advisor Veera Muangsin, Ph.D.

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master’s Degree

 …………………………………..……….Dean of the Faculty of Engineering
 (Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE
 ……………………………………………….Chairman
 (Associate Professor Prabhas Chongstitvatana, Ph.D.)

 …………………………………………....… Thesis Advisor
 (Veera Muangsin, Ph.D.)

 ……………………………………………….Member
 (Assistant Professor Putchong Uthayopas, Ph.D.)

 ……………………………………………….Member
 (Natawut Nupairoj, Ph.D.)

iv

ศิรประภา วริิยะประสิทธิ ์ : ผลกระทบของนโยบายการใหลําดบัความสําคัญภายในตอ
ประสิทธิภาพการจัดลําดับงานบนกริด และอัลกอริทึมการจัดลําดับงานแบบปรับตัวไดบน
กริด. (THE IMPACT OF LOCAL PRIORITY POLICIES ON GRID SCHEDULING
PERFORMANCE AND AN ADAPTIVE POLICY-BASED GRID SCHEDULING
ALGORITHM) อ. ที่ปรึกษา : ดร. วีระ เหมอืงสิน, 72 หนา. ISBN 974-17-6355-7.

วิทยานพินธฉบับนี้ศึกษาปญหาที่เกี่ยวกับการจัดลําดับงานในกรดิ โดยวัดผลกระทบเมื่อ

องคกรบางสวนในกรดิใหลําดับความสําคัญของงานภายในองคกรมากกวาขางนอกองคกร และ
เสนออัลกอริทึมแบบปรับตัวไดเพื่อลดผลกระทบดังกลาว จากผลการทดลอง เมื่อองคกรบางสวน
ใหลําดับความสําคัญของงานภายในองคกรมากกวา จะทาํใหองคกรที่เหลือไดรับผลกระทบคืองาน
ถูกทําใหลาชาออกไป อัลกอรึทึมใหมที่ไดเสนอนําเอานโยบายภายในองคกรในการใหลําดับ
ความสําคัญของงานมาพิจารณาและใชในการปรับการจดัลําดับงานในกริด อัลกอริทึมใหมสามารถ
ลดผลกระทบตอสมรรถนะการทํางานเนือ่งจากการใชนโยบายภายในองคกรในการใหลําดับ
ความสําคัญของงานที่แตกตางกัน และทํางานไดอยางมีประสิทธิภาพภายใตความหลากหลายของ
ปริมาณงานและสัดสวนขององคกรที่ใชนโยบายตางกนั

ภาควิชา วิศวกรรมคอมพิวเตอร ลายมือช่ือนิสิต..
สาขาวิชา วิศวกรรมคอมพิวเตอร ลายมือช่ืออาจารยที่ปรึกษา..
ปการศึกษา 2547 ลายมือช่ืออาจารยที่ปรึกษารวม….……………..…..

v

4670518021 : MAJOR COMPUTER ENGINEERING
KEY WORD: DISTRIBUTED SYSTEM / GRID / SCHEDULING / POLICY

SIRAPRAPA WIRIYAPRASIT : THE IMPACT OF LOCAL PRIORITY POLICIES ON
GRID SCHEDULING PERFORMANCE AND AN ADAPTIVE POLICY-BASED GRID
SCHEDULING ALGORITHM. THESIS ADVISOR : VEERA MUANGSIN, PH.D., 72
pp. ISBN 974-17-6355-7.

 This thesis addresses a problem with job scheduling in a computational grid. It
investigates the performance impact when some sites in the grid apply a priority policy
in favor of local jobs and proposes an adaptive site selection algorithm for grid
scheduler to reduce the severity of this impact. It is demonstrated that when some sites
apply a priority policy in favor of local jobs, other sites will suffer from much longer
completion times. The proposed grid scheduling algorithm takes into account local
scheduling policies and adjusts the global scheduling accordingly. The results show
that the new algorithm can reduce the performance impact due to different local priority
policies and perform effectively under various levels of workload and fractions of sites
with different policies.

Department Computer Engineering Student’s signature..
Field of study Computer Engineering Advisor’s signature..
Academic year 2004 Co-advisor’s signature...

vi

Acknowledgements

I would like to express my gratitude to my supervisor, Dr. Veera
Muangsin, for his instructive and invaluable advice. He always encourages me to find
my own way. Without his guidance, this research would not have been possible. I am
very fortunate to be his student.

I would like to thank Asst. Prof. Dr. Putchong Uthayopas for his expert
and constructive advice.

I would like to thank all members of Scientific Parallel Computer
Engineering Research Unit, Information System Engineering Laboratory and Intelligent
System Laboratory who have provided help and friendship during my Master's degree
study.

Finally, I thank my parents and my brother for their support, patience and
encouragement that helped me to keep going.

Contents
Page

Abstract (Thai)………………………………………………………………………………… iv
Abstract (Eng)…………………………………………………………………………………. v
Acknowledgements………………………………………………………………………….. vi
Contents……………………………………………………………………………………...… vii
List of Tables………………………………………………………………………………..… ix
List of Figures……………………………………………………………………………….… x
Chapter

1. Introduction……………………………………………………………………...… 1
1.1 Background……………..…………………………………………………… 1
1.2 Problem Statement………………………………………………………….. 1
1.3 Objectives………………….………………………………………………… 2
1.4 Organization of the Thesis……………….………………………………… 2

2. Literature Review………………………………………………………………… 4
2.1 Grid……………………………………………...…………………………… 4
2.2 Grid Scheduling Schemes……………………………………………….… 5
2.3 Grid Scheduling Modes…………………………..……………………...… 6
2.4 Prediction of Execution Time…………..……...………………………...… 7
2.5 Cost Functions in Grid Scheduling…..…………………..…………….… 8

 2.6 Resource Manages…………………………………………………………. 10
 2.6.1 Traditional Resource Managers………………….………..………. 10
 2.6.2 Grid-enabled Resource Managers……………...…………….…... 12
 3. The Impact of Local Priority Policies …………………………………………… 14
 3.1 Grid Scheduling Model…………………………………………………….. 14
 3.2 Method of Completion Time Estimation………………………………..… 15
 3.3 Analysis of Real Workload……………...………………………………….. 15
 3.4 Simulation Configuration……………...………………..………………….. 17

viii

Contents (cont.)

Page
 3.5 Performance Evaluation of MCT Algorithm……………..........………..…19
 3.5.1 The Average Completion Times of MCT algorithm …………..... 19
 3.5.2 The Maximum Average Completion Times of MCT Algorithm.....21
 3.5.3 The Standard Deviation of Average Completion Times
 of MCT Algorithm…………………………………………………….21
 3.5.4 The Maximum Gain and Loss of Average Completion Times…..21

 4. The Proposed Algorithm and Performance Evaluation………………………...34
 4.1 The Proposed Adaptive Site Selection Algorithm…………………..…… 34
 4.2 Weight Value Selection………………………………………………..…… 36
 4.3 Performance Evaluation of the Proposed Algorithm………………..…… 36
 4.3.1 The Average Completion Times of the Proposed Algorithm..…… 37
 4.3.2 The Maximum Average Completion Times of the
 Proposed Algorithm..……………………………………………...… 38
 4.3.3 The Standard Deviation of Average Completion Times
 of the Proposed Algorithm…………………………………...…...… 38
 4.3.4 The Maximum Gain and Loss of Average Completion
 Times of the Proposed Algorithm………………………...….…..… 38
 5. Implementation…………………...…………………………………………………. 51
 5.1 Implementation Requirements…………………..………………………… 51
 5.2 Implementation on a Grid Portal….……………..………………………… 51
 5.3 Limitation…………………………….……………..………………………… 53
 6. Conclusion…………………...………………………………….………………..…. 54
 6.1 Summary…………………………….……………..………………………… 54
 6.2 Future Work…………………….……………..…..………………………… 56
 6.3 Final Remark…………………….……………..…...…………………..…… 56
References…………………..……...……………………………………….……………..…. 57
Biography………………….............……………………………………….………..……..…. 61

ix

List of Tables

Page
3.1 Simulation Parameters………………………….……………………………………… 18
3.2 Queue Configuration…………………………………………………………………… 18

x

List of Figures

Page
2.1 The layered Grid architecture and its relationship to the internet

protocol architecture ………………………………………………...........…………… 4
3.1 The grid scheduling model……………………………….. 14
3.2 Comparison the CDF of execution times between CTC workload and

exponential distribution………………... 16
3.3 Comparison the CDF of inter-arrival times between CTC workload and

exponential distribution ………..16
3.4 Average completion time of MCT algorithm under Case 122
3.5 Average completion time of MCT algorithm under Case 223
3.6 Average completion time of MCT algorithm under Case 324
3.7 Maximum average completion time of MCT algorithm under Case 1 25
3.8 Maximum average completion time of MCT algorithm under Case 2 26
3.9 Maximum average completion time of MCT algorithm under Case 3 27
3.10 S.D. of average completion time of MCT algorithm under Case 128
3.11 S.D. of average completion time of MCT algorithm under Case 229
3.12 S.D. of average completion time of MCT algorithm under Case 330
3.13 Maximum gain and loss of completion time of MCT algorithm under Case 1…….31
3.14 Maximum gain and loss of completion time of MCT algorithm under Case 2…….32
3.15 Maximum gain and loss of completion time of MCT algorithm under Case 3…….33
4.1 Weight Assignment Algorithm ……………………………………………………………35
4.2 The relationship between standard deviation of Average Completion
 Time and constant weight values ……………………………………...…………….…36
4.3 Average completion time of before and after applying the proposed
 algorithm under Case 1 …………………………………………………..……………...39
4.4 Average completion time of before and after applying the proposed
 algorithm under Case 2 …………………………………………………..……………...40
4.5 Average completion time of before and after applying the proposed
 algorithm under Case 3 …………………………………………………..……………...41

xi

List of Figures (Cont.)

Page
4.6 Maximum average completion time of before and after applying the
 proposed algorithm under Case 1 ...……………………………………..……………...42
4.7 Maximum average completion time of before and after applying the
 proposed algorithm under Case 2 ...……………………………………..……………...43
4.8 Maximum average completion time of before and after applying the
 proposed algorithm under Case 3 ...……………………………………..……………...44
4.9 S.D. of average completion time of before and after applying the
 proposed algorithm under Case 1 ...……………………………………..……………...45
4.10 S.D. of average completion time of before and after applying the
 proposed algorithm under Case 2 ...……………………………………..……………...46
4.11 S.D. of average completion time of before and after applying the
 proposed algorithm under Case 3 ...……………………………………..……………...47
4.12 Maximum gain and loss of completion time of before and after applying
 the proposed algorithm under Case 1...………………………………………………...48
4.13 Maximum gain and loss of completion time of before and after applying
 the proposed algorithm under Case 2...………………………………………………...49
4.14 Maximum gain and loss of completion time of before and after applying
 the proposed algorithm under Case 3...………………………………………………...50
5.1 Flow chart of job submission through SPACE Grid Portal ……………………………52
5.2 SPACE Grid portal: Run Job page ………...……………………………………………53

CHAPTER I

INTRODUCTION

1.1 Background

Grid computing [1] is a form of distributed computing and also a technology for
high performance computing in which computational and data resources in a wide area
network are integrated into one large computing environment. It supports formation of a
Virtual Organization (VO) which consists of individual or multiple organizations. The
resources owned by individual organizations in a VO are shared and coordinated. As a
result, grid computing provides aggregated computing power to solve a common
problem.

The grid resources are heterogeneous and owned by different organizations
which have different local management systems and different local resource
management. Therefore, an effective grid scheduling system or grid resource
management system is needed to efficiently exploit and utilize the available grid
resources.

Grid scheduling can be conducted by cooperation between autonomous local
schedulers and a grid scheduler in grid middleware [2]. A grid scheduler is responsible
for selecting a site for each job in order to effectively distribute workload among multiple
sites in the grid.

1.2 Problem Statement

It is a general practice that a grid scheduler does not have control over local
schedulers on grid sites. Therefore, local schedulers have the freedom to apply their
local policies. Even though a grid site allows users from other sites to submit their jobs,
there is no guarantee that the remote jobs will be treated equally to the local jobs.

In many circumstances, the site’s administrator may wish to speed up local
jobs by giving higher priority to local jobs than remote jobs. This is not an unlikely

2

speculation since currently grid sites are not enforced by any global policy on resource
sharing. If this is the case in many grid sites, it may cause undesirable effects to other
sites in the grid. Although the grid concept permits different local scheduling policies,
little work has been done on job scheduling in a grid environment where different local
scheduling policies are employed.

It is still unclear whether local scheduling policies that give different priority
levels to local and remote jobs will have any effect on global scheduling in a grid
environment. If so, how grid scheduling can cope with such effect is yet another
problem.

1.3 Objectives
The general objectives of this thesis are the understanding of the impact of

local scheduling policies on the performance of grid scheduling and the improvement of
a grid scheduling algorithm to cope with such effect. To be more specific, the goals of
this thesis are

 To evaluate the performance impact on global scheduling in a grid
environment after applying a priority policy onto local schedulers in favor of local jobs

 To propose an adaptive site selection algorithm for a grid scheduler based
on priority policies of local schedulers in order to reduce the severity of such effect
without interfering the autonomy of local schedulers.

 To evaluate the proposed algorithm and compare it to the conventional
algorithm.

1.4 Organization of the Thesis

The contents of the thesis are divided into 6 chapters. The details of all
chapters are as follows:

 Chapter 1 provides a general introduction to the research. In the beginning,
the chapter points out to general practices for applying a priority policy in favor of local
jobs and the problem. Then, the chapter presents the goal of this research, and outlines
the contents of the remaining chapters.

3

 Chapter 2 reviews literature related to associated with grid scheduling.
 Chapter 3 provides the evaluation results of the impact of local priority

policies. The first part describes the grid scheduling model and concepts used in the
thesis. The second part explains the configuration of simulation. The performance
results are shown in the last part.

 Chapter 4 describes the proposed algorithm and the experimental results
compared to the results in the previous chapter.

 Chapter 5 describes the implementation of proposed algorithm in a grid
portal.

 Chapter 6 gives the conclusion and suggestion for further research.

CHAPTER II

LITERATURE REVIEW

2.1 Grid

Grid [1,3] integrates computational and data resources that are geographical
distributed and owned by different organizations into one large computing environment.
It supports Virtual Organization (VO) which enables diverse groups of organizations and
individuals to share resources easier. Consequently, members can collaborate to
achieve a shared goal. Grid components are defined into layers. Higher-level services
are built on lower-level services as show in Figure 2.1.

Application

Collection

Resource

Connectivity

Fabric

Application

Transport
Internet

Link
Figure 2.1: The layered Grid architecture and its relationship to the internet protocol

architecture [3]
The first layer, the Grid Fabric layer, provides the unified access to resources

to reduce to the complexity in accessing heterogeneous resources. The second layer,
the Grid Connectivity layer, is responsible for defining the core communication and
authentication protocols required for Grid-specific network transaction. The Grid
Resource layer, built on the two previous protocols, defines protocols for the secure
negotiation, initiation, monitoring, control, accounting, and payment of sharing
operations on individual resources. The forth layer, Collective layer, contains protocols
and services that are not specific to any single resources like in Resource Layer.

5

Instead it provides protocols and services to communicate to multiple resources. The
sharing behaviors can be implemented without changing the requirements on shared
resources because Collective Layer is built on top of Resource and Connectivity layer.
The last layer, the Application Layer, includes the user applications and well defined
protocols providing useful services such as resource management, date access and
resource discovery.

There are five main necessary components to form a grid: grid resources, grid
middleware, user-level grid middleware, grid application and portal [4]. There are many
types of grid resources including computers, clusters, storage devices, databases, and
special scientific instruments which are geographically distributed.

Grid Middleware offers the core services for remote process management, co-
allocation of resources, storage access, information (registry) and discovery, security,
authentication, and Quality of Service (QoS). Globus [5,6], Condor [7], and Unicore [8]
are examples of grid middleware and now Globus is a de facto standard.

Next, User-Level Grid Middleware includes grid programming environment and
tools offering high-level services and brokers. Brokers act as user agents for resources
management and scheduling application tasks for execution on grid resources. Grid
applications are developed using grid-enable languages and utilities. The examples of
applications are parameter simulation and grand-challenge problem which requires
massive computing power. Finally, Grid Portals offer Web-enabled application services
so that users can submit and collect results for their jobs on remote resources through
web-based services.

2.2 Grid Scheduling Schemes

Grid scheduling architecture composes of a collection of local schedulers and
one or more grid schedulers in a grid middleware [9]. Usually, local schedulers are
batch queuing systems handling submitted jobs by allocating resources from a pool of
computers, e.g. a dedicated cluster or a cycle-stealing networked computer pool. Local
schedulers reside in single administrative domains or single sites. Since the grid
concept promotes site autonomy, local schedulers have the freedom to apply

6

scheduling policies. End users have little knowledge on how the local scheduler
interprets their requirements.

A grid scheduler is responsible for selecting a site for each job in order to
effectively distribute workload among grid sites. One of the simplest algorithms to select
a site is the greedy approach which iteratively assigns each job to the site that is most
likely to complete the job earliest without considering the rest of pending, rescheduled
or submitted jobs. The greedy approach is used by many projects [10].

Grid scheduler schemes can be classified into two categories, centralized
scheme and distributed scheme [2]. In the centralized scheme, all jobs are submitted
to a single grid scheduler which is responsible for making overall grid scheduling
decisions and assigning each job to a specific resource. Once a job is submitted to a
site, the grid scheduler does not have control over local schedulers.

On the other hand, in the distributed scheme, grid schedulers are in every site.
All jobs are submitted locally to their grid schedulers. Grid schedulers periodically query
to each other to collect local information. The job can be transferred to the site with
lower load [11].

The centralized scheme is not very scalable because the grid scheduler must
maintain a lot of information of all sites. On the other hand, the distributed scheme is the
most scalable, because all jobs are submitted locally. However, this scheme has a large
overhead for negotiation. Therefore, the centralized scheme is currently the most
popular one.

2.3 Grid Scheduling Modes

Grid scheduling mode can be classified into two categories, namely on-line
mode and batch mode [12]. In the on-line mode, a job is mapped onto a machine as
soon as it arrives at the grid scheduler and considered only once for matching and
scheduling. In the batch-mode, jobs are not mapped onto the resources as they arrive.
Instead, they are collected in a set that is examined for mapping at prescheduled times

7

called mapping events. Knowing the execution of a larger number of jobs enables better
mapping heuristics.

The examples of simple heuristics for on-line mode scheduling are the MCT
(minimum completion time) and MET (minimum execution time) heuristics. MCT assigns
each job to the machine that gives the minimum completion time if the job is run on that
machine. The completion time is the time since the job is submitted, waits in the queue
and finishs execution. Unlike MCT, the MET heuristic considers only execution time but
not the wait time. MET assigns each job to the machine that provides the minimum
execution time. The MCT heuristic is commonly used as a benchmark for the on-line
mode [12].

The examples of simple heuristics for batch-mode scheduling are Min-Min,
Max-min and Sufferage [12]. In these three heuristics, the first step is the same. It
begins with determining the machine providing the earliest completion time for every
job. Then, the second step varies. In the Min-Min heuristic, the job with the earliest
expected completion time is assigned to the corresponding machine. On the other
hand, in Max-Min heuristic, the job having the maximum earliest completion time is
assigned to the corresponding machine instead. In the Sufferage heuristic, it assigns a
machine to a task that would “suffer” most in terms of expected completion time if that
machine is not assigned to that job. The Sufferage value of a task is the difference
between its second earliest completion time and its first earliest completion time. Finally,
the process is repeated until every task is assigned to a machine.

2.4 Prediction of Execution time

Both on-line and batch mode heuristics assume that job execution times on
each machine in the grid can be estimated. This assumption is commonly used when
studying mapping heuristic for grid systems [12]. The examples of techniques used for
prediction of execution time are instance base learning technique, short term prediction
technique and test run technique.

8

The instance based learning technique uses a database of experiences to
maintain and to make predictions [13]. A scheduling job can be an experience or a
query. When a job finishes executing, it becomes an experience to the database.

In the short term prediction technique, the scheduler makes initial guess
execution time of all jobs. When the tasks are complete, the scheduler used the observe
execution time to adjust the prediction algorithm [14]. The technique is used in Network
Weather Service (NWS) [15]

The test run technique estimates the execution time of the task by executing
some sub-tasks on the set of available resources using the grid scheduling policy. The
measured execution times are used as first approximation of the execution time for the
remaining sub tasks [16].

The impact of accurate prediction of execution time is studied in [17]. The
results show that more accurate requested execution times can improve system
performance. Furthermore, users who provide more accurate requested execution times
also improve the performance, even if other jobs do not provide more accurate
requested execution times.

2.5 Cost Functions in Grid Scheduling

Different grid scheduling algorithms have different effects and characteristics
due to different cost functions and mechanisms. The cost functions can be classified
into two categories, namely performance-based cost functions and QoS-based cost
functions. The goal of performance-based cost functions is to optimize the overall
performance such as the average completion time, CPU utilization, throughput, average
slowdown, makespan, cost, budget and deadline. In QoS-based cost functions, the
goal is to guarantee some services such as maintaining the desirable network
bandwidth or predictable execution time of an application.

9

The simplest algorithms that use performance-based cost functions include
MCT, MET, Min-Min, Max-Min and Sufferage. The cost functions of MCT and MET are
completion time and execution time respectively. For Min-Min and Max-Min, the cost
function is completion time. For Sufferage, the cost functions are completion time and
sufferage value.

CMin-Min, CMax-Min and CSufferage algorithms have been proposed to
optimize both makespan and cost of running [18]. They were adapted from Min-Min,
Max-Min and Sufferage which optimize only makespan, respectively. The cost function
is Priority Index, which is a function of execution time, ready time, cost and accumulative
cost and has a weight for each parameter.

K-Distributed model and K-Dual Queue Model have been proposed to optimize
average job slowdown and turnaround time [11]. The distributed grid scheduling
scheme uses this algorithm. The cost function of this model is the completion time. The
grid scheduler distributes each job to the first K sites that have the earliest completion
time. When a job is able to start at any sites, that site informs the grid scheduler at the
site that originates the job. Then, that grid scheduler contacts the other remaining grid
schedulers to cancel that job from their respective queue. However, a higher degree of
“overbooking” results in an increase in the amount of work to be done at each local
scheduler. Also, the amount of communication and synchronization among the grid
schedulers increases.

The Computational Economy model is another model for grid scheduling [4]. It
is based on a well proven approach for resource management complexity and
decentralization that is present in real economies. It supports mechanisms and policies
that help in regulating the supply and demand for resources. Therefore, this model can
achieve performance and meet the deadline and budget constraints at the same time.
The cost function for the economic model comprises of resource costs deadlines.

10

QoS guided Min-Min algorithm has been proposed to provide QoS of a network
bandwidth. It was adapted from Min-Min by taking the QoS matching into consideration
while scheduling. It maps the job with high QoS required first, and then maps the rest of
the requested jobs.

The compensation-based scheduling scheme is an adaptive grid scheduling
with a feedback control framework has been introduced to provide predictable
completion time [16]. The difference between the monitored application performance
and the desired performance is used as a cost function to perform correction by
dynamically allocating additional resources. The experiment results show that
compensation based scheduling was effective in reducing execution time estimation
misses and total execution times of grid applications.

A policy model has been proposed to enforce both VO and resource owner
scheduling policy in a data grid environment [19]. The load of each site, epoch resource
allocation and burst resource allocation are used as factors in the cost function. There
are policy enforcement points at both sites and VOs. Site policy enforcement points
enforce the site policy by preempting the job if policy requirements are no longer met.
VO policy enforcement points also operate in a similar way as the previous one.

2.6 Resource Managers

Resource management system (RMS)1 is central to the operation of a grid [20].
It provides basic functions such as accepting requests for resources and assigning
specific machine resources to a request. Resource managers can be classified into two
categories: namely traditional resource managers and grid-enabled resource managers.

2.6.1 Traditional Resource Managers

1 In this thesis, the terms ‘resource management system’, ‘resource manager’ and ‘scheduler’ are used
interchangeably.

11

A traditional resource manager is used within a set of computational resources
in a particular domain. The examples of traditional resource managers are as follows.

PBS (Portable Batch System) [21], the Portable Batch System, is a batch
scheduler. PBS provides most of known job scheduling policies such as FIFO (first-in-
first-out), SJF (shortest-job-first), Fairshare, etc. PBS allows each site to create its own
scheduler and allows a job to be launched from a cluster and executed on another
cluster. In addition, PBS can create logical queues. A job can be automatically routed to
a specific logical queue based on the predefined condition of each logical queue. Also,
a job can specify the destination queue itself.

The Maui scheduler [22] is an external job scheduler used on clusters and
capable of enforcing complex scheduling policies. Maui uses weights and various
algorithms to efficiently schedule jobs instead of FIFO order. The policy can be tuned
efficiently. In addition, Maui can be used as an external scheduler for other resource
management systems such as PBS and SGE. Maui makes and enforces its decisions by
querying and controlling a resource management system. For example, PBS manages
the job queues and the computational resources. Maui queries PBS to obtain the job
and the node information. Then, Maui directs PBS to manage jobs in accordance with
specified Maui‘s policies, priorities, and reservations. The performance gain when Maui
is used as the external scheduler of PBS is studied in [23].

The Sun Grid Engine (SGE) [24] is another batch queuing system. It was
formerly named Codine before Sun purchased it. The current version of SGE supports
only the default option which implements first-in-first-out (FIFO). The concept of queues
in the SGE package is defined per host basis and SGE does not support logical queues.

Nimrod [25, 26] uses a simple declarative parametric modeling language to
automate the execution of parameter sweep applications and uses the concept of
computational economy.

12

Condor [7] is a resource management system designed to support high
throughput computing (HTC). Condor discovers the idle resources and allocates those
resources to the application tasks. When the owner of resource returns to use it, that
resource will be deallocated. Therefore, Condor always respects the autonomy of the
system. In addition, Condor provides an extensible resource description language
called Classified Ads to specify the resource requirements in a more detailed and
controlled way.

SQMS (Simple Queue Management System) [27] is a simple resource
scheduler based on thread and networking technology. SQMS has been developed in at
Parallel Research Group at Kasetsart University. All logical components are designed to
be pluggable. Therefore, SQMS are very flexible to support the new types of jobs and
load balancing policies.

2.6.2 Grid-Enabled Resource Managers.

Currently there have been many implementations of Grid-enabled resource
managers. The examples of grid-enable resource managers are as follow.

Nimrod/G [28] is an extension of Nimrod to support grid and uses Globus
middleware services for remote access, resource discovery and scheduling job over
grid. Nimrod/G still uses the economic model and supports parameter sweep
applications. Especially, it supports user-defined deadline and budget constraints for
scheduling. The grid-enabled Nimrod/G broker is implemented as part of a new
framework called GRACE (Grid Architecture for Computational Economy).

Condor-G [29] is of the grid-enabled version of Condor. Condor-G address es
issues of failure, credential expiry, and interjob dependencies that are not supported by
Nimrod/G

SCEGrid [30] is the extension of SQMS and functions on top of Globus. It
simplifies the usage of grid systems by automating the process of resources selection

13

and allocation. Currently, SCEGrid supports only sequential jobs without job
dependencies. The other features including resource commerce model, smarter load
balance policy, job work-flow and parallel job support are planed to be supported in the
future.

CHAPTER III

THE IMPACT OF LOCAL PRIORITY POLICIES

This chapter presents an evaluation of the performance impact of applying a
priority policy onto local schedulers in favor of local jobs.

3.1 Grid Scheduling Model

Figure 3.1: The grid scheduling model

The grid scheduling model under investigation is the centralized on-line model,
which is a widely accepted model at present. The evaluated scheduling model is
depicted in Figure 3.1. A grid scheduling system is divided into two levels, namely a
grid scheduler and local schedulers. Every job is first submitted to the grid scheduler.
Then, the grid scheduler contacts a group of local schedulers, called candidates, to
query the predicted completion times if the job was run on those sites. The minimum
completion time (MCT) approach is used by the grid scheduler. Therefore, the grid
scheduler actually submits the job to the local scheduler that returns the shortest
predicted completion time. If the grid scheduler assigns a job to the local scheduler on
the same site where the job is originated, the job is called a local job. If it is submitted to
other sites, it becomes a remote job.

For simplicity, the grid in our study consists of a number of clusters, each of
which employs a local batch scheduler using a First-Come-First-Serve (FCFS)
scheduling algorithm. All jobs are sequential and computational intensive programs, of

15

which the time for data I/O is negligible, compared to computation time. Each site offers
dedicated and space-shared resources and runs jobs in an exclusive fashion.

The grid sites employ two different priority-based scheduling policies. The first
policy is to treat local jobs and remote jobs equally. This can be implemented by putting
local and remote jobs in the same queue (single-queue model). The other policy is the
local-job-first policy which gives a higher priority to local jobs. This can be implemented
by using two separate queues (dual-queue model), one for local jobs and the other for
remote jobs. The local-job queue (LQ) is given a higher priority than the remote-job
queue (RQ). Therefore, a remote job can be dispatched only when all jobs in the local
queue have been dispatched.

3.2 Method of Completion Time Estimation

The estimated completion time (or estimated response time) of a job on a site
can be calculated by summing up the estimated execution time and the estimated wait
time of the job on that site.

The estimated execution time of a job on a machine can be calculated by
dividing the workload with the machine speed. To estimate the wait time, the method of
start time prediction describe in [13] is used. The start time is the time when the job was
selected to execute. Therefore, the relative start time value is the wait time. The start
time is calculated by performing a simulation of the scheduling algorithm and policy,
which results in estimated start times for each of the jobs waiting in the queue(s). This
simulation is performed by using predictions of the estimated execution times of jobs.

3.3 Analysis of Real Workload

In order to provide the simulation with a realistic workload, a workload trace on
a real machine is studied. The Feitelson’s parallel workloads archive [31] is a great
source of real workload traces, especially on parallel machines. One of the traces that
are most frequently used in literature is the CTC SP2 log. This log contains records
between June 1996 to May 1997 on the 512-node IBM SP2 located at the Cornell Theory

16

Center (CTC). Therefore, the characteristics and distribution of this workload trace are
studied and used as that basis for the workload model for the empirical study in this
thesis.

The cumulative distribution function (CFD) is the probability that the variable
takes a value less than or equal to a particular value [32]. CDF is a good way of
examining a probability distribution of the workload because it does not depend on the
quantization interval.

0

0.2

0.4

0.6

0.8

1

0

13
40

00

26
80

00

40
20

00

53
60

00

67
00

00

80
40

00

93
80

00

10
72

00
0

12
06

00
0

13
40

00
0

14
74

00
0

16
08

00
0

17
42

00
0

18
76

00
0

Execution Time (secs)

CD
F CTC

EXPO

Figure 3.2 Comparison the CDF of execution times between CTC workload and

exponential distribution

0

0.2

0.4

0.6

0.8

1

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

30
00

0

35
00

0

40
00

0

45
00

0

50
00

0

55
00

0

60
00

0

65
00

0

70
00

0

Inter-Arrival Time (secs)

CD
F CTC

EXPO

Figure 3.3 Comparison the CDF of inter-arrival times between CTC workload and

exponential distribution

17

The distribution of the CTC workload fits closely the Hyper Erlang distribution of
Common Order, which is a generalization of the exponential, the hyper exponential, and
the Erlang distribution [33]. The exponential distribution is a similar distribution but
much simpler and more widely used. Therefore, it is used instead of the Hyper-Erlang
distribution for synthetic workload generation in the following simulation study.

For simplicity, all parallel jobs in the trace are converted to sequential jobs by
multiplying the number of allocated processors by the average CPU time used. From the
archive, the average execution time and average inter-arrival time are 90,083 seconds
and 379 seconds respectively. These two values are used in modeling the exponential
distribution. The comparison of CDF of the inter-arrival times and execution times
between CTC workload and the corresponding exponential distribution are shown in
Figure 3.2 and Figure 3.3, respectively. The exponential distribution is generated by
using the average execution time and average inter-arrival time of CTC workload.

In addition, the utilization of CTC workload is only 55% [31]. This is inadequate
to put enough pressure onto the system in order to observe any significant effects.
Therefore, the distribution of the synthetic workload will be tuned up to increase the
utilization.

3.4 Simulation Configuration

The simulation model was implemented on a java-based discrete-event grid
simulation toolkit called GridSim [34]. The simulated grid environment consists of 5 sites
(A, B, C, D, and E). Each site has one cluster with four computing nodes. The size and
complexity of the evaluated system is limit because each simulation experiment takes
quite a long time.

The grid scheduler uses the MCT approach described in section 3.1.
Simulation parameters and queue configurations are summarized in Table 3.1 and Table
3.2 respectively.

18

Table 3.1: Simulation Parameters
Parameter Case Site A Site B Site C Site D Site E

1 500 500 500 500 500
2 700 600 500 400 300 Machine Speed (MIPS)
3 300 400 500 600 700
1 880 880 880 880 880
2 1232 1056 880 704 528 Number of jobs
3 528 704 880 1056 1232
1 450 450 450 450 450
2 321 375 450 563 750 Inter-arrival time of jobs: Heavy load (H)

(Exponential Dist. , Second) 3 750 563 450 375 321
1 525 525 525 525 525
2 375 438 525 656 875 Inter-arrival time of jobs: Medium load (M)

(Exponential Dist. , Second) 3 875 656 525 438 375
1 600 600 600 600 600
2 429 500 600 750 1000 Inter-arrival time of jobs: Light load (L)

(Exponential Dist. , Second) 3 1000 750 600 500 429
Job Sizes

(Exponential Dist., Million Instructions) ALL 106

Table 3.2: Queue Configurations
Identifier Site(s) using dual queues Site(s) using single queue

Q0 - A, B, C, D, E
Q1 A B, C, D, E
Q2 A, B C, D, E
Q3 A, B, C D, E
Q4 A, B, C, D E
Q5 A, B, C, D, E -

The speed of machines in each site are categorized into three cases with the
mean of 500 million instructions per second (MIPS). In case 1, the machine speeds of all
sites are 500 MIPS. However, in case 2 and case 3, the machine speeds of all sites are
different to represent heterogeneity. In case 2, the machine speeds of site A, B, C, D
and E are sorted by descending that are 700, 600, 500, 400 and 300 respectively in
order to analyze the performance impact when the sites with high speed machines start
to use dual-queue model. On the other hand, in case 3, the machine speeds are sorted
by ascending in order to analyze the performance impact when the sites with low speed
machines start to use dual-queue model.

From the total of 4,400 jobs, only 4,000 jobs in the middle are used for
performance evaluation. The number of jobs which are originated at each site is

19

designed to correspond to machine speed. As a result, the site with high speed
machines will generate more jobs. Job sizes are also determined randomly with an
exponential distribution with the mean of 106 million instructions.

Consider the speed of the machines, the number of nodes and the job sizes,
the system will have 100% utilization if the inter-arrival time of jobs entering the grid
scheduler is equal to or less than 100 seconds. As a result, three levels of inter-arrival
time : 90, 105 and 120 are chosen to represent heavy load, medium load and light load,
respectively. The utilization levels for these three inter-arrival times are 85%, 100% and
100% respectively. As a result, the inter-arrival times of jobs at each site are determined
randomly with an exponential distribution with the mean of 450, 525 and 600,
respectively. For case 2 and case 3 where the number of jobs at each site are not equal,
the inter-arrival of each site will be adjusted according to the number of jobs of that site.

The number of sites using dual queues varies from 0 to 5 sites, as shown in
Table 3.2. For example, in configuration Q0, all sites use the single-queue model. On the
other hand, in configuration Q5, all sites use the dual-queue model. Each experiment
was performed 10 times with different seeds for the random number generator and the
average values are reported.

3.5 Performance Evaluation of MCT Algorithm

The performance metrics to be considered are the average completion time
(Figure 3.4-3.6), the maximum of average completion times of site A to E (Figure 3.7-
3.9), the standard deviation of average completion times of site A to E (Figure 3.10-3.12)
and the maximum gain and loss of average completion times of site A to E (Figure 3.13-
3.15). The performance plots of individual sites are labeled as A, B, C, D and E and the
performance of all sites is labeled as ALL.

3.5.1 The Average Completion Times of MCT Algorithm

The relationship between average completion times and queue configurations
is depicted in Figure 3.4-3.6. The results show that the average completion time of all

20

sites changed very little compared to the completion times of individual sites, which are
significantly affected. Four characteristics can be concluded as follows.

Firstly, the sites that employ the dual-queue model have better average
completion times than single-queue sites. For example, in configuration Q2, site A and
B use the dual queues while site C, D and E use the single queue. Under Q2 in heavy
load of case 1 (Figure 3.4a), the average completion time of site A and B are 14,308 and
15,027 seconds respectively. On the other hand, the average completion time of site C,
D and E are 27,572, 27,989 and 27,187 seconds respectively.

Secondly, switching from the single queue to dual queues reduces the average
completion time of the site but increases the average completion times of all other sites
in the grid, especially the remaining single-queue sites. For example, in Figure 3.4a,
when site C switches to use dual queues (from Q2 to Q3), its average completion time
reduces from 27,572 to 14,718 seconds; in other words, 47% reduction. However, the
average completion times of all other sites increase.

Thirdly, as the fraction of dual-queue sites increases, the difference between
average completion time of single-queue and dual-queue sites gets larger. Therefore,
the last site that remains using the single queue mode will suffer most. The effect is more
severe when the workload is heavier. For example, in Figure 3.4a, the average
completion time of site E in Q4 is 52899.34 seconds, which is 133% greater than the
total average completion time.

Finally, in a particular queue configuration, the completion times of sites in
single-queue mode are nearly equal in all cases and workloads. On the other hand, sites
in dual-queue mode, the average completion times likely correspond to their machine
speeds. This is obviously seen in medium load and light load. Therefore, the average
completion times of dual-queue sites in Case 1 are nearly equal as shown in Figure 3.4b
and Figure 3.4c. The average completion times of dual-queue sites in Case 2 are sort
by ascending as shown in Figure 3.5b and Figure 3.5c. Lastly, in Case 3, the average
completion time are sorted by descending as shown in Figure 3.6b and Figure 3.5c

21

3.5.2 The Maximum Average Completion Times of MCT Algorithm

The relationship between queue configuration and maximum average
completion time of all sites is depicted in Figure 3.7-3.9. Label H, M and L represent
heavy load, medium load and light load respectively. The maximum points usually come
from the single-queue sites except in configuration Q5 where all sites use dual queues.
The figures obviously show that the maximum average completion time increases as the
fraction of dual-queue sites increases from Q0 to Q4. Therefore, the users in single-
queue sites will suffer most from this policy.

In addition, when all sites use dual-queue model (Q5), the maximum average
completion time is not always reduced from those of Q4. For example, in heavy load of
all cases (Figure 3.7a, 3.8a and 3.9a), the maximum average completion time of Q5 is
less than that one of Q4. However, in light load of case3 (Figure 3.9c), the maximum
average completion times of Q5 is increased.

3.5.3 The Standard Deviation of Average Completion Times of MCT Algorithm

The standard deviations of average completion times in each queue
configuration are depicted in Figure 3.10-3.12. The result can be interpreted in the same
manner as the figures of the maximum average completion time. First, the standard
deviation increases as the fraction of dual-queue site increases. Also, when all sites use
dual-queue model, the standard deviation of the average completion time is not always
less than that of Q4.

3.5.4 The Maximum Gain and Loss of Average Completion Times

The maximum gain and loss of average completion times in a queue
configuration are depicted in Figure 3.13-3.15. The maximum gain in a queue
configuration is the maximum percentage increment in average completion time from
the average completion time of each site in Q0. On the other hand, the maximum loss in
a queue configuration is the maximum percentage decrement in average completion
time from the average completion time of each site in Q0. Therefore, the plot of both

22

maximum gain and maximum loss shows the performance boundary of all sites in a
queue configuration.

An important characteristic obtained from the graphs is that the peak
performance loss is always greater than the peak performance gain. For example, in
Figure 3.13b, the maximum gain of all queue configurations is 16.5% which is in Q1, and
the maximum loss of all queue configurations is 43.5% which is in Q4.

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

c. Light Load

0
500

1000
1500
2000
2500
3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

Figure 3.4: Average completion time of MCT algorithm under Case 1

23

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

c. Light Load

0
500

1000
1500
2000
2500
3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

Figure 3.5: Average completion time of MCT algorithm under Case 2

24

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

c. Light Load

0
500

1000
1500
2000
2500
3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

Av
g.

 C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

Figure 3.6: Average completion time of MCT algorithm under Case 3

25

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

H

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

M

c. Light Load

2000

2100

2200

2300

2400

2500

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

L

Figure 3.7: Maximum average completion time of MCT algorithm under Case 1

26

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

H

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

M

c. Light Load

2000

2200

2400

2600

2800

3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

L

Figure 3.8: Maximum average completion time of MCT algorithm under Case 2

27

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

H

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

M

c. Light Load

2000

2200

2400

2600

2800

3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

L

Figure 3.9: Maximum average completion time of MCT algorithm under Case 3

28

a. Heavy Load

0

5000

10000

15000

20000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S.
D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

H

b. Medium Load

0

200

400

600

800

1000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

M

c. Light Load

0

10

20

30

40

50

60

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

L

Figure 3.10: S.D. of average completion time of MCT algorithm under Case 1

29

a. Heavy Load

0

5000

10000

15000

20000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

H

b. Medium Load

0
200
400
600
800

1000
1200
1400

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

M

c. Light Load

0
50

100
150
200
250
300
350
400

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

L

Figure 3.11: S.D. of average completion time of MCT algorithm under Case 2

30

a. Heavy Load

0

5000

10000

15000

20000

25000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

H

b. Medium Load

0

200

400

600

800

1000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

M

c. Light Load

0
50

100
150
200
250
300
350

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S.
D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

L

Figure 3.12: S.D. of average completion time of MCT algorithm under Case 3

31

a. Heavy Load

-200

-150

-100

-50

0

50

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

H : GAIN

H : LOSS

b. Medium Load

-50

-40

-30

-20

-10

0

10

20

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

M : GAIN

M : LOSS

c. Light Load

-8

-6

-4

-2

0

2

4

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

L : GAIN

L : LOSS

Figure3.13: Maximum gain and loss of completion time of MCT algorithm under Case 1

32

a. Heavy Load

-120
-100
-80
-60
-40
-20

0
20
40
60

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

H : GAIN

H : LOSS

b. Medium Load

-80

-60

-40

-20

0

20

40

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

M : GAIN

M : LOSS

c. Light Load

-40

-30

-20

-10

0

10

20

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

L : GAIN

L : LOSS

Figure3.14: Maximum gain and loss of completion time of MCT algorithm under Case 2

33

a. Heavy Load

-250

-200

-150

-100

-50

0

50

100

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

H : GAIN

H : LOSS

b. Medium Load

-50

-40

-30

-20

-10

0

10

20

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

M : GAIN

M : LOSS

c. Light Load

-30

-25

-20

-15

-10

-5

0

5

10

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

L : GAIN

L : LOSS

Figure3.15: Maximum gain and loss of completion time of MCT algorithm under Case 3

CHAPTER IV

THE PROPOSED ALGORITHM AND PERFORMANCE EVALUATION

In this chapter, a new algorithm for grid scheduling is proposed to overcome
the performance impact that was identified in the previous chapter.

4.1 The Proposed Adaptive Site Selection Algorithm

At present, global policy enforcement mechanism in a grid environment has not
been put into practice. Under the constraint that a grid scheduler cannot control local
schedulers but only acts as a broker, it must be able to react to the behavior and
performance of individual local schedulers.

As seen in the previous chapter, the local-job-first policy causes the completion
times of remote jobs to be longer than predicted. A grid scheduler should be able to
take into account the local policy before submitting jobs to local schedulers.

Therefore, this work proposes a new adaptive site selection algorithm. In this
algorithm, the grid scheduler will select the site that gives the minimum of completion
time multiplied by a weight value (Eq.1)

{ } _ iWiTcki1
miniWiTcifisiteselected ×
≤≤

=×= (Eq.1)

where k, Tci and Wi denote the number of sites, completion time of site
i and weight associated with site i, respectively.

The weight is assigned by the grid scheduler and can be different for each site
and each job. The purpose of the weight value is to add or reduce the possibility that the
grid scheduler will select a target site according to some criteria. Several approaches
for weight assignment are possible.

Our approach focuses on reducing the undesirable effects on single-queue
sites. Therefore, the grid scheduler uses local priority policy as a criteria for site
selection by making it more difficult to submit a job to another site which uses different

35

priority policy. Another criteria is the fractions of sites that use the same policy. The
criteria are converted into weight values.

The weight assignment can be divided into two cases by using computing
power, which is the summation of the machine speeds.

 In the first case, the computing power of single-queue sites is greater than or
equal to the computing power of dual-queue sites. The weight of all sites is “1”. As a
result, in this case, this algorithm has the same behavior as the MCT algorithm. This
allows some sites to switch to use the local-job-first policy in order to reduce their
completion times without causing too much trouble. The rational is that single-queue
sites dominate the system and double-queue sites will have little effect.

In the second case, the computing power of single-queue sites is less than that
of dual-queue sites. The weight of a site is “1” if the site uses the same policy as the job-
owner site. Otherwise, its weight is set to a value greater than 1. As a result, the jobs are
more likely to go to the site using the same policy. Jobs are sent to a remote site using a
different policy only when the predicted completion time at that remote site is really
attractive.

Figure 4.1 Weight Assignment Algorithm

The logic of weight assignment can be described by the algorithm in Figure 4.1
which is based on the following definition. Function CP (Group) will evaluate the
computing power of the specified group. Wi is response for the weight of site i. Pi is the
policy of site i. Po is the policy of the job-owner site.

If CP (single-queue sites) > CP (dual-queue sites) {
 Wi = 1 for all i
} else {
 Wi = 1 if Pi = Po
 Wi = a ; a > 1 if Pi ≠ Po

}

36

4.2 Weight Value Selection

The value of weight (Wi = a) can vary from one site to another, and can even
change over time. For simplicity and the scope of empirical study, the value of weight
when it is greater than 1 will be set to a constant that is generally good. Standard
deviation of average completion time can be used to identify the constant.

0

50

100

150

200

250

300

350

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8

weight values

S.
D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

Figure 4.2: The relationship between standard deviation of Average Completion Time
and constant weight values

The relationship between standard deviation of average completion times and
the constant weight value of the medium load under case 1 are shown in Figure 4.2. The
value “1.3” is chosen as a constant for the algorithm for every case and workload. It is
one of the good values that make the standard deviation of average completion time
reduce in this case. However, this weight value can be set to other constant values
rather than 1.3. If this value is high, the probability that grid scheduler will send jobs
across policy groups is reduced. If this value is low, the probability is increased.

4.3 Performance Evaluation of the Proposed Algorithm

Because the fraction of policy groups and the computing power of each site
are used by the proposed algorithm to adjust the weight as described in section 4.1, the
algorithm takes effect differently in each case. In Case 1, the algorithm takes effect on

37

Q3 and Q4. In Case 2, the algorithm will take effect sooner that is Q2, Q3 and Q4.
Finally, In Case 3, the algorithm will take effect only in Q4.

The performance metrics to be considered are the same as metrics presented
in the section 3.5. First, the average completion time when the proposed algorithm is
applied are depicted in Figure 4.3-4.5. Second, the maximum of average completion
time are depicted in Figure 4.6-4.8. Third, the standard deviation of average completion
time of before and after applying the proposed algorithm are depicted in Figure 4.9-
4.11. Finally, the maximum gain and loss of average completion times are depicted in
Figure 4.12-4.14. Label H (NEW), M (NEW) and L(NEW) represent heavy load, medium
load and light load respectively for the proposed algorithm. Label H (MCT), M (MCT)
and L (MCT) represent heavy load, medium load and light load respectively for the MCT
algorithm.

4.3.1 The Average Completion Times of the Proposed Algorithm

The relationship between average completion times and queue configurations
is depicted in Figure 4.3-4.5.

The results show that the average completion time of individual sites are less
significantly affected. The average completion times of single-queue sites in the queue
configurations affected by the proposed algorithm are reduced. For example, in Q3 of
Figure3.4a (MCT algorithm), the average completion time of site A, B and C which are
dual-queue sites 14,283, 15,196 and 14,718 seconds respectively, and the average
completion time of site D and E which single-queue site are 33,775 and 33,371 seconds
respectively. When the proposed algorithm applied, the average completion time of site
A, B, C are increased to 21,657, 21,652 and 23,038 respectively and the average
completion time of sites D and E are reduced to 26,203 and 26,119 respectively

Only one characteristic before applying the proposed algorithm still remain.
Sites in dual-queue mode, the average completion times likely correspond to their
machine speed in medium load and light load of all cases.

38

4.3.2 The Maximum Average Completion Times of the Proposed Algorithm

The relationship between queue configuration and maximum average
completion time of all sites is depicted in Figure 4.6-4.8.

For Case 1 and Case 2 (Figure 4.6, 4.7), the proposed algorithm always
performs better than the MCT algorithm. For example, in Q4 of Figure 4.6a and Figure
4.7a, the maximum of average completion times is reduced by 44% and 35%
respectively. However, in Q4 of Case 3 (Figure 4.8), the maximum average completion
times is 45% and 14% better for heavy load and medium load but only 5% worse for
light load. Therefore, the maximum completion times are generally reduced by the
proposed algorithm.

4.3.3 The Standard Deviation of Average Completion Times of the Proposed Algorithm

The standard deviations of average completion times in each queue
configuration are depicted in Figure 4.9-4.11. All of them are also improved by proposed
algorithm in the same manner as the maximum completion time except the Q4 of Figure
4.11 which increases 20 seconds.

4.3.4 The Maximum Gain and Loss of Average Completion Times of the Proposed
Algorithm

The maximum gain and loss of average completion times in a queue
configuration are depicted in Figure 4.12-4.14. Compared to the results obtained from
the MCT algorithm, the gap between the maximum gain and the loss is reduced in most
cases and workloads. For example, in Q4 of Figure 4.12a, the maximum gain is
reduced from 37% to 12%, and the maximum loss is reduced from 142% to 36%.
However, in Q4 of Figure 4.14a, only the maximum loss is increased from 11% to 14%.

In summary, the new algorithm allows some sites to exploit the local-job-first
policy and get some performance gain while other sites experience some performance
loss. When the fraction of the policy groups reaches a threshold, the adaptive algorithm

39

tries to reduce the performance loss, with the reduction of the performance gain as a
tradeoff.

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

Av
g.

C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

c. Light Load

0
500

1000
1500
2000
2500
3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

.C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

Figure 4.3: Average completion time of before and after applying the proposed
algorithm under Case 1

40

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

c. Light Load

0
500

1000
1500
2000
2500
3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

Figure 4.4: Average completion time of before and after applying the proposed
algorithm under Case 2

41

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

Av
g.

 C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

c. Light Load

0
500

1000
1500
2000
2500
3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

Av
g.

 C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

A

B

C

D

E

ALL

Figure 4.5: Average completion time of before and after applying the proposed
algorithm under Case 3

42

a. Heavy Load

0
10000
20000
30000
40000
50000
60000
70000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

.C
om

pl
et

io
n

Ti
m

e
(s

ec
s) H (NEW)

H (MCT)

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s) M (NEW)

M (MCT)

c. Light Load

2000

2100

2200

2300

2400

2500

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s) L (NEW)

L (MCT)

Figure 4.6: Maximum average completion time of before and after applying the
proposed algorithm under Case 1

43

a. Heavy Load

0

10000

20000

30000

40000

50000

60000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s) H (NEW)

H (MCT)

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s) M (NEW)

M (MCT)

c. Light Load

2000

2200

2400

2600

2800

3000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s) L (NEW)

L (MCT)

Figure 4.7: Maximum average completion time of before and after applying the
proposed algorithm under Case 2

44

a. Heavy Load

0

10000
20000

30000
40000

50000

60000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s) H (NEW)

H (MCT)

b. Medium Load

0
1000
2000
3000
4000
5000
6000
7000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s) M (NEW)

M (MCT)

c. Light Load

2000

2200

2400

2600

2800

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

M
ax

 A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s) L (NEW)

L (MCT)

Figure 4.8: Maximum average completion time of before and after applying the
proposed algorithm under Case 3

45

a. Heavy Load

0

5000

10000

15000

20000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)
H (NEW)

H (MCT)

b. Medium Load

0

200

400

600

800

1000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

M (NEW)

M (MCT)

c. Light Load

0

10

20

30

40

50

60

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

L (NEW)

L (MCT)

Figure 4.9: S.D. of average completion time of before and after applying the proposed
algorithm under Case 1

46

a. Heavy Load

0

5000

10000

15000

20000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)
H (NEW)

H (MCT)

b. Medium Load

0
200
400
600
800

1000
1200
1400

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

M (NEW)

M (MCT)

c. Light Load

0
50

100
150
200
250
300
350
400

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

L (NEW)

L (MCT)

Figure 4.10: S.D. of average completion time of before and after applying the proposed
algorithm under Case 2

47

a. Heavy Load

0

5000

10000

15000

20000

25000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)
H (NEW)

H (MCT)

b. Medium Load

0

200

400

600

800

1000

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

M (NEW)

M (MCT)

c. Light Load

0
50

100
150
200
250
300
350

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

S
.D

. o
f A

vg
. C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

L (NEW)

L (MCT)

Figure 4.11: S.D. of average completion time of before and after applying the proposed
algorithm under Case 3

48

a. Heavy Load

-160
-140
-120
-100
-80
-60
-40
-20

0
20
40
60

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)
H : GAIN (NEW)
H : LOSS (NEW)
H : GAIN (MCT)
H : LOSS (MCT)

b. Medium Load

-50

-40

-30

-20

-10

0

10

20

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

M : GAIN (NEW)
M : LOSS (NEW)
M : GAIN (MCT)
M : LOSS (MCT)

c. Light Load

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

L : GAIN (NEW)
L : LOSS (NEW)
L : GAIN (MCT)
L : LOSS (MCT)

Figure 4.12: Maximum gain and loss of completion time of before and after applying the
proposed algorithm under Case 1

49

a. Heavy Load

-120

-100
-80

-60
-40

-20
0

20
40

60

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)
H : GAIN (NEW)
H : LOSS (NEW)
H : GAIN (MCT)
H : LOSS (MCT)

b. Medium Load

-80

-60

-40

-20

0

20

40

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

M : GAIN (NEW)
M : LOSS (NEW)
M : GAIN (MCT)
M : LOSS (MCT)

c. Light Load

-35
-30
-25
-20
-15
-10
-5
0
5

10
15

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

L : GAIN (NEW)
L : LOSS (NEW)
L : GAIN (MCT)
L : LOSS (MCT)

Figure 4.13: Maximum gain and loss of completion time of before and after applying the
proposed algorithm under Case 2

50

a. Heavy Load

-250

-200

-150

-100

-50

0

50

100

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)
H : GAIN (NEW)
H : LOSS (NEW)
H : GAIN (MCT)
H : LOSS (MCT)

b. Medium Load

-50

-40

-30

-20

-10

0

10

20

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

M : GAIN (NEW)
M : LOSS (NEW)
M : GAIN (MCT)
M : LOSS (MCT)

c. Light Load

-30

-25

-20

-15

-10

-5

0

5

10

Q0 Q1 Q2 Q3 Q4 Q5

Queue Configuration

P
er

fo
rm

an
ce

 G
ai

n/
Lo

ss
 (%

)

L : GAIN (NEW)
L : LOSS (NEW)
L : GAIN (MCT)
L : LOSS (MCT)

Figure 4.14: Maximum gain and loss of completion time of before and after applying the

proposed algorithm under Case 3

CHAPTER V

IMPLEMENTATON

This chapter presents the requirements and methods for implementing the
proposed grid scheduling algorithm. A simple implementation on a grid portal
demonstrates the feasibility of a real implementation.

5.1 Implementation Requirements

The proposed algorithm can be implemented into existing grid schedulers.
However, there are some requirements to be met including:

 When queried by the grid scheduler, a local scheduler must provide
information for the grid scheduler to determine whether the local scheduler uses the
local-job-first policy.

 When queried by the grid scheduler, a local scheduler must provide
information for the grid scheduler to determine how long it will take to complete a job if
the job is submitted to that site.

 The grid scheduler must be able to handle heterogeneity regarding to
machine speeds and execution time estimations.

These requirements can be met in several ways. If adding extra capabilities to
local schedulers is possible, then it is preferable to make the local scheduler be able to
answer the queries from the grid scheduler. However, sometimes it is hard to do so and
it is left to the grid scheduler to figure out needed information from the data that is
usually provided by unmodified local schedulers. For example, most available
schedulers such as PBS and the like have a command to show the list of jobs in the
queue(s) and their status including expected execution times. Grid Information Services
(GIS) or Monitoring and Directory Service (MDS) of Globus can also be used for grid
sites to report their local scheduling policies. The estimated execution time must be
adjusted accordingly to the performance of different sites.

5.2 Implementation on a Grid Portal

52

SPACE Grid Portal [35] is a web interface to the grid to provide an easy-to-use
interface so that user can work on a grid system more easily and to maintain basic
functions Grid have already serviced. It was developed to support Computational
Chemistry research works at Department of Chemistry, Faculty of Science,
Chulalongkorn University. Globus is installed on each cluster in the grid. All local
schedulers are PBS/Maui. Other software includes GridPort[36] and MyProxy[37]. The
main applications to be run on the grid is Gaussian98 [38] and AutoDock [39].

Figure 5.1: Flow chart of job submission through SPACE Grid Portal

The grid scheduling algorithm has been implemented in SPACE Grid Portal as
Perl script files. Therefore, the grid scheduler accepts only jobs submitted at SPACE
grid portal. The mechanism of submitting a job to SPACE Grid Portal is shown in Figure
5.1. First, a user submits a job to SPACE grid portal through the web interface. The
execution time of the job must be estimated and specified by the user. Second, the job
description is passed to the grid scheduler. The grid scheduler queries the queue status
of each site and calculates the completion time of the job on each site. Finally, the grid
scheduler will select the suitable site by using the proposed algorithm.

Query Query

Grid Scheduler
 Submit job user SPACE

 Grid
 Portal

Site A

Site B

Site C

Query
 SUBMIT

53

The example of submission page for Gaussian application is shown in Figure
5.2. When the user chooses the hostname “AUTO”, the proposed algorithm will be used
to select a suitable site automatically.

5.3 Limitation
 In the current implementation, the estimation of execution time specified by

a user is not adjusted with respect to machine speeds since the execution time is
estimated by the user. Therefore, the performance of the algorithm depends on the
accuracy of the estimated completion time.

 All cluster information must be specified to configuration files. The cluster
information includes the number of nodes on a cluster and type of policy.

Figure 5.2: SPACE Grid portal: Run Job page

CHAPTER VI

CONCLUSION

6.1 Summary

In a computational grid, the local schedulers which reside in grid sites
cooperate with but are not controlled by a grid scheduler. As a result, the local
schedulers have the freedom to apply their own scheduling policies. Some sites may
apply a policy in favor of local jobs by giving a higher priority to local jobs than remote
jobs.

This thesis has evaluated the performance impact on global grid scheduling
when some sites apply this kind of policy and to propose a new adaptive site selection
algorithm to cope with such effects.

Two different priority-based algorithms are employed at grid sites. The first
policy is to treat remote jobs and local jobs equally. This can be implemented by putting
local jobs and remote jobs in the same queue (single-queue model). The other policy,
local-job-first policy, gives higher priority on local jobs than remote jobs in order to
speed up the local jobs. This can be implemented by using two separate queues (dual-
queue model).

Minimum completion time (MCT) approach is used as a benchmark for grid
scheduling algorithms. The simulation results demonstrate three important
characteristics. Firstly, dual-queue sites always have better average completion time
than single-queue sites. Therefore, switching from the single-queue model to dual-
queue model reduces the average completion time of the site but increases the average
completion times of all other sites, especially the remaining single-queue sites.
Secondly, as the fraction of dual-queue site increases, the difference between average
completion time of single-queue sites and dual-queue sites increase. This difference is
greater when the workload is heavier. Therefore, the last site that remains using the
single-queue will suffer most. Finally, the average completion times among dual-queue

55

sites correspond to their machine speeds. The sites that have higher speed will have
better average completion times. However, the average completion times among single-
queue sites are not affected by the machine speed. Therefore, the completion times of
all single-queue sites are nearly equal.

In order to reduce the performance impact on single-queues site, a new
adaptive site selection algorithm for grid scheduling has been proposed. In its general
form, the algorithm applies a weight factor onto the cost function associated to each site
in order to adjust the probability of assigning a job to the site. In this algorithm, the grid
scheduler examines the local priority policies, fractions of sites that use the same
policies and computing powers of all sites before submitting the jobs. The proposed
algorithm allows some sites to exploit the local-job-first policy and get some
performance gain while other sites experience tolerable performance loss. When the
fraction of the dual-queue sites reaches a threshold, the proposed algorithm reduces
the probability of submitting a job to the site that uses a different policy. Therefore, jobs
are more likely go to the sites using the same policy.

The results of the proposed algorithm show that when the fraction of the dual-
queue sites exceeds a threshold, the difference between the average completion times
of single-queue sites and dual-queue sites is reduced. The average completion times of
single-queue sites are significantly reduced, whereas the average completion times of
dual-queue sites are slightly increased. Therefore, the proposed algorithm reduces the
performance loss on single-queue sites with little reduction in performance gain as a
tradeoff. This promotes more fairness in grid scheduling. In addition, the proposed
algorithm can effectively work on various fractions of dual-queue sites and load
conditions, especially when the load is heavier.

 The work also suggests that a preferable situation is when a site may
temporarily switch to the single-queue model when needs arise and not too many sites
in the grid work in that mode. In the other words, the fraction of dual-queue sites should
be limited within a threshold of the proposed algorithm.

56

The proposed grid algorithm has been implemented into the SPACE grid portal
to demonstrate a real implementation. This grid scheduler accepts Gaussian and
Autodock jobs submitted at the portal.

6.2 Future Work

There are many possible extensions to the study in this thesis, as follow.
 Introducing a new weight assignment method

In weight assignment in the proposed algorithm, the weight is either 1 or a
constant value greater than 1. The new weight assignment may introduce more dynamic
weight assignment by increasing or decreasing the weight value assigned each
individual site according to the performance of the site at that time.

 Evaluate on more realistic grid environments
 Evaluation and analysis of policy-based grid scheduling algorithms in larger and
more heterogeneous grid environments.

6.3 Final Remark

The work in this thesis has been published in [40].

References

1. Foster, I. and Kesselman, C. The Grid: Blueprint for a Future Computing

Infrastructure. Morgan Kaufmann, 1999.
2. Shan, H. and Oliker, L. Job Superscheduler Architecture and Performance in

Computational Grid Environments. Proceedings of Supercomputing, 2003.
3. Foster, I., Kesselman, C., and Tuecke, S. The Anatomy of the Grid - Enabling

Scalable Virtual Organizations. Lecture Notes in Computer Science Publisher
2150 (2001).

4. Baker, M., Buyya, R. and Laforenza, D. The Grid: International Efforts in Global
Computing. Proceedings of Advances in Infrastructure for Electronic Business,
Science,and Education on the Internet (SSGRR 2000), 2000.

5. Foster, I. and Kesselman, C. Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputer Applications and High Performance
Computing 11 (1997): 115-128.

6. Foster, I. and Kesselman, C. The Globus Project: A Status Report. Proceedings of
the Seventh Heterogeneous Computing Workshop, 1998.
7. Raman, R., and Solomon, M. Matchmaking: Distributed Resource Management for

High Throughput Computing. Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed Computing, 1998.

8. Romberg, M. The UNICORE Grid Infrastructure. Scientific Programming : Special
Issue on Grid Computing 10 (2002): 149-158.

9. Czajkowski, K., Foster, I., Karonix , N., Kesselman, C., and Martin , S. A Resource
Management Architecture for Metacomputing Systems. In Proceeding of
IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel Processing,
1998.

10. Huedo, E., Montero, R. S. and Llorente, I. M. An Experimental Framework for
Executing Applications in Dynamic Grid environments. ICASE Technical Report,
2002.

58

11. Subramani, V., Kettimuthu, R., Srinivasan, S. and Sadayappan, P. Distributed Job

Scheduling on Computational Grids using Multiple Simultaneous Requests.
Proceedings of the 11th IEEE Symposium on High Performance Distributed
Computing (HPDC 2002), 2002.

12. Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D. A. and Freund, R. F. Dynamic
Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous
Computing Systems. Proceedings of Heterogeneous Computing Workshop,
1999.

13. Smith, W. and Wong, P. Resource Selection Using Execution and Queue Wait Time
Predictions. NAS Technical Report Number: NAS-02-003, 2003.

14. He, X., Sun, X. H. and Laszewski, G. A QoS Guided Scheduling Algorithm for Grid
Computing. Proceedings of the International Workshop on Grid and Cooperative
Computing (GCC02), 2003.

15. Wolski R., Spring, N. and Hayes, J. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future
generation Computing Systems 15 (1999): 757-768.

16. Teo, Y. M., Wang, X. and Gozali, J. P. A Compensation-based Scheduling Scheme
for Grid Computing, Proceedings of the 7th International Conference on High
Performance Computing and Grid in Asia Pacific Region (HPC Asia 2004), IEEE
Computer Society Press, 2004.

17. Chiang, H., Dusseau-Arpaci, A., and Vernon, M. K. The Impact of More Accurate
Requested Runtimes on Production Job Scheduling Performance, Proceedings
of the 8th Workshop on Job Scheduling Strategies for Parallel Processing, 2002.

18. Phatanapherom, S. Model and implementation of efficient grid resource scheduler.
Master’s Thesis, Department of Computer Engineering, Kasetsart University,
2003.

19. Dumitrescu, C., Foster, I. and Wilde, M. Policy-based Resource Allocation for Virtual
Organizations. iVDGL/GriPhyN Technical Report, 2003.

59

20. Krauter, K., Buyya, R. and Maheswaran, A. M. A Taxonomy and Survey of Grid

Resource Management Systems. Software Practice and Experience 32 (2002):
135-164.

21. Veridian Systems. Portable Batch System [Online]. (n.d.). Available from:
http://www.openpbs.com [2004, September]

22. Cluster Resources. Maui scheduler [Online]. (n.d.). Available from:
http://www.supercluster.org/maui/ [2004, September]

23. Brett Bode, D. M. H., Ricky, K., Lei, Z. and Jackson, D. The Portable Batch
Scheduler and the Maui Scheduler on Linux Clusters, Proceedings of Usenix
Conference, 2000.

24. Sun Microsystem. Sun Grid Engine [Online]. (n.d.). Available from:
http://gridengine.sunsource.net [2004, September]

25. Buyya, R., Murshed, M. and Abramson, D. A Deadline and Budget Constrained
Cost-Time Optimization Algorithm for Scheduling Task Farming Applications on
Global Grids, Proceedings of the 2002 International Conference on Parallel and
Distributed Processing Techniques and Applications, 2002.

26. Abramson, D., Giddy, J. and Kotler, L. High Performance Parametric Modeling with
Nimrod/G: Killer Application for the Global Grid?, Proceedings of International
Parallel and Distributed Processing Symposium (IPDPS), 2000.

27. Sriprayoonskul, S. and Uthayopas, P. SQMS: A Batch Scheduling System for Large
PC Cluster, Proceedings of the 5th Annual National Symposium on
Computational Science and Engineering, 2001.

28. Buyya, R., Abramson, D. and Giddy, J. Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid,
Proceedings of the 4th International Conference on High Performance
Computing in Asia-Pacific Region (HPC Asia 2000), 2000.

29. Frey, J., Tannenbaum, T., Livny, M. and Foster, I. Condor-G: A Computation
Management Agent for Multi-Institutional Grids, Proceedings of the 10th IEEE
International Symposium on High Performance Distributed Computing (HPDC-
10'01), 2001.

60

30. Phatanapherom, S. and Uthayopas, P. On The Building of a Job Scheduler System

for Globus Grid Environment, Proceedings of APAN Conference, 2002.
31. Feitelson, D. The parallel workload achieve [Online]. (n.d.). Available from:

http://www.cs.huji.ac.il/labs/parallel/workload/ [2004, September]
32. NIST/SEMATECH e-Handbook of Statistical Methods [Online]. (n.d.). Available from:

http://www.itl.nist.gov/div898/handbook/ [2004, September]
33. Jann, J., Pattnaik, P., Franke, H., Wang, F., Skovira, J. and Riodan, J. Modeling of

workload in MPPs. Job Scheduling Strategies for Parallel Processing (1997): 95-
116.

34. Buyya, R. and Murshed, M. Using the GridSim Toolkits for Enabling Grid Computing
Education. Journal of Concurrency and Computation 14 (2002).

35. SPACE Research Unit. SPACE Grid Portal [Online]. (n.d.). Available from:
http://space.cp.eng.chula.ac.th/portal/index.thml [2004, September]

36. Thomas, M., Mock, S., Boisseau, J., Dahan, M., Mueller, K. and Sutton, D. The
GridPort Toolkit Architecture for Building Grid Portals. Proceedings of the 10th
IEEE International. Symposium on High Perferformance Distributed Computing,
2001

37. Novotny, J., Tuecke, S. and Welch, V. An Online Credential Repository for the Grid:
MyProxy. Proceeding of the 10th IEEE Symposium on High Performance
Distributed Computing, 2001.

38. Gaussian Official Site [Online]. (n.d.). Available from: http://www.gaussian.com/
[2004, September]

39. AutoDock [Online]. (n.d.). Available from:
http://www.scripps.edu/mb/olson/doc/autodock/ [2004, September]

40. Wiriyaprasit, S. and Muangsin, V. The Impact of Local Priority Policies on Grid
Scheduling Performance and an Adaptive Policy-based Grid Scheduling
Algorithm, Proceedings of the 7th International Conference on High Performance
Computing and Grid in Asia Pacific Region (HPC Asia 2004), IEEE Computer
Society Press, 2004

61

Biography

Siraprapa Wiriyaprasit was born in Bangkok, Thailand on February 10, 1981.
She received the B.Eng. degree from Chulalongkorn University in 2002. Then, she
worked at the Stock Exchange of Thailand for one year. After that, she continued her
study in the master program at the department of computer engineering, Chulalongkorn
University.

 Her research interests include distributed and parallel computing, especially
Grid computing.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	Chapter II Literature Review
	Chapter III The Impact of Local Priority Policies
	Chapter IV The Proposed Algorithm and Performance Evaluation
	Chapter VI Conclusion
	References
	Vita

