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CHAPTER I 
 

INTRODUCTION 
 

1.1 Background 

Grid computing [1] is a form of distributed computing and also a technology for 
high performance computing in which computational and data resources in a wide area 
network are integrated into one large computing environment. It supports formation of a 
Virtual Organization (VO) which consists of individual or multiple organizations. The 
resources owned by individual organizations in a VO are shared and coordinated. As a 
result, grid computing provides aggregated computing power to solve a common 
problem. 

The grid resources are heterogeneous and owned by different organizations 
which have different local management systems and different local resource 
management. Therefore, an effective grid scheduling system or grid resource 
management system is needed to efficiently exploit and utilize the available grid 
resources. 

Grid scheduling can be conducted by cooperation between autonomous local 
schedulers and a grid scheduler in grid middleware [2]. A grid scheduler is responsible 
for selecting a site for each job in order to effectively distribute workload among multiple 
sites in the grid.  

1.2 Problem Statement 

It is a general practice that a grid scheduler does not have control over local 
schedulers on grid sites. Therefore, local schedulers have the freedom to apply their 
local policies. Even though a grid site allows users from other sites to submit their jobs, 
there is no guarantee that the remote jobs will be treated equally to the local jobs.  

In many circumstances, the site’s administrator may wish to speed up local 
jobs by giving higher priority to local jobs than remote jobs. This is not an unlikely 
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speculation since currently grid sites are not enforced by any global policy on resource 
sharing. If this is the case in many grid sites, it may cause undesirable effects to other 
sites in the grid. Although the grid concept permits different local scheduling policies, 
little work has been done on job scheduling in a grid environment where different local 
scheduling policies are employed. 

It is still unclear whether local scheduling policies that give different priority 
levels to local and remote jobs will have any effect on global scheduling in a grid 
environment. If so, how grid scheduling can cope with such effect is yet another 
problem. 

1.3 Objectives 
The general objectives of this thesis are the understanding of the impact of 

local scheduling policies on the performance of grid scheduling and the improvement of 
a grid scheduling algorithm to cope with such effect. To be more specific, the goals of 
this thesis are 

 To evaluate the performance impact on global scheduling in a grid 
environment after applying a priority policy onto local schedulers in favor of local jobs 

 To  propose an adaptive site selection algorithm for a grid scheduler based 
on priority policies of local schedulers in order to reduce the severity of such effect 
without interfering the autonomy of local schedulers. 

 To evaluate the proposed algorithm and compare it to the conventional 
algorithm. 

1.4 Organization of the Thesis 

The contents of the thesis are divided into 6 chapters. The details of all 
chapters are as follows: 

  Chapter 1 provides a general introduction to the research. In the beginning, 
the chapter points out to general practices for applying a priority policy in favor of local 
jobs and the problem. Then, the chapter presents the goal of this research, and outlines 
the contents of the remaining chapters. 
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 Chapter 2 reviews literature related to associated with grid scheduling.  
  Chapter 3 provides the evaluation results of the impact of local priority 

policies. The first part describes the grid scheduling model and concepts used in the 
thesis. The second part explains the configuration of simulation. The performance 
results are shown in the last part. 

  Chapter 4 describes the proposed algorithm and the experimental results 
compared to the results in the previous chapter. 

  Chapter 5 describes the implementation of proposed algorithm in a grid 
portal. 

   Chapter 6 gives the conclusion and suggestion for further research. 
 



CHAPTER II 
 

LITERATURE REVIEW 
 

2.1 Grid 

Grid [1,3] integrates computational and data resources that are geographical 
distributed and owned by different organizations into one large computing environment. 
It supports Virtual Organization (VO) which enables diverse groups of organizations and 
individuals to share resources easier. Consequently, members can collaborate to 
achieve a shared goal. Grid components are defined into layers. Higher-level services 
are built on lower-level services as show in Figure 2.1. 
 

Application

Collection

Resource

Connectivity

Fabric

Application

Transport
Internet

Link  
Figure 2.1: The layered Grid architecture and its relationship to the internet protocol 

architecture [3] 
The first layer, the Grid Fabric layer, provides the unified access to resources 

to reduce to the complexity in accessing heterogeneous resources. The second layer, 
the Grid Connectivity layer, is responsible for defining the core communication and 
authentication protocols required for Grid-specific network transaction. The Grid 
Resource layer, built on the two previous protocols, defines protocols for the secure 
negotiation, initiation, monitoring, control, accounting, and payment of sharing 
operations on individual resources. The forth layer, Collective layer, contains protocols 
and services that are not specific to any single resources like in Resource Layer. 
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Instead it provides protocols and services to communicate to multiple resources. The 
sharing behaviors can be implemented without changing the requirements on shared 
resources because Collective Layer is built on top of Resource and Connectivity layer.  
The last layer, the Application Layer, includes the user applications and well defined 
protocols providing useful services such as resource management, date access and 
resource discovery.  

There are five main necessary components to form a grid: grid resources, grid 
middleware, user-level grid middleware, grid application and portal [4]. There are many 
types of grid resources including computers, clusters, storage devices, databases, and 
special scientific instruments which are geographically distributed.  

Grid Middleware offers the core services for remote process management, co-
allocation of resources, storage access, information (registry) and discovery, security, 
authentication, and Quality of Service (QoS). Globus [5,6], Condor [7], and Unicore [8] 
are examples of grid middleware and now Globus is a de facto standard. 

Next, User-Level Grid Middleware includes grid programming environment and 
tools offering high-level services and brokers. Brokers act as user agents for resources 
management and scheduling application tasks for execution on grid resources.  Grid 
applications are developed using grid-enable languages and utilities. The examples of 
applications are parameter simulation and grand-challenge problem which requires 
massive computing power. Finally, Grid Portals offer Web-enabled application services 
so that users can submit and collect results for their jobs on remote resources through 
web-based services.  

2.2 Grid Scheduling Schemes 

Grid scheduling architecture composes of a collection of local schedulers and 
one or more grid schedulers in a grid middleware [9]. Usually, local schedulers are 
batch queuing systems handling submitted jobs by allocating resources from a pool of 
computers, e.g. a dedicated cluster or a cycle-stealing networked computer pool. Local 
schedulers reside in single administrative domains or single sites. Since the grid 
concept promotes site autonomy, local schedulers have the freedom to apply 
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scheduling policies. End users have little knowledge on how the local scheduler 
interprets their requirements.  

A grid scheduler is responsible for selecting a site for each job in order to 
effectively distribute workload among grid sites. One of the simplest algorithms to select 
a site is the greedy approach which iteratively assigns each job to the site that is most 
likely to complete the job earliest without considering the rest of pending, rescheduled 
or submitted jobs. The greedy approach is used by many projects [10]. 

Grid scheduler schemes can be classified into two categories, centralized 
scheme and distributed scheme [2].  In the centralized scheme, all jobs are submitted 
to a single grid scheduler which is responsible for making overall grid scheduling 
decisions and assigning each job to a specific resource. Once a job is submitted to a 
site, the grid scheduler does not have control over local schedulers. 

On the other hand, in the distributed scheme, grid schedulers are in every site. 
All jobs are submitted locally to their grid schedulers. Grid schedulers periodically query 
to each other to collect local information. The job can be transferred to the site with 
lower load [11]. 

The centralized scheme is not very scalable because the grid scheduler must 
maintain a lot of information of all sites. On the other hand, the distributed scheme is the 
most scalable, because all jobs are submitted locally. However, this scheme has a large 
overhead for negotiation. Therefore, the centralized scheme is currently the most 
popular one. 

2.3 Grid Scheduling Modes 

Grid scheduling mode can be classified into two categories, namely on-line 
mode and batch mode [12].  In the on-line mode, a job is mapped onto a machine as 
soon as it arrives at the grid scheduler and considered only once for matching and 
scheduling.  In the batch-mode, jobs are not mapped onto the resources as they arrive. 
Instead, they are collected in a set that is examined for mapping at prescheduled times 
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called mapping events. Knowing the execution of a larger number of jobs enables better 
mapping heuristics. 

The examples of simple heuristics for on-line mode scheduling are the MCT 
(minimum completion time) and MET (minimum execution time) heuristics. MCT assigns 
each job to the machine that gives the minimum completion time if the job is run on that 
machine. The completion time is the time since the job is submitted, waits in the queue 
and finishs execution. Unlike MCT, the MET heuristic considers only execution time but 
not the wait time. MET assigns each job to the machine that provides the minimum 
execution time. The MCT heuristic is commonly used as a benchmark for the on-line 
mode [12].  

The examples of simple heuristics for batch-mode scheduling are Min-Min, 
Max-min and Sufferage [12]. In these three heuristics, the first step is the same. It 
begins with determining the machine providing the earliest completion time for every 
job. Then, the second step varies. In the Min-Min heuristic, the job with the earliest 
expected completion time is assigned to the corresponding machine. On the other 
hand, in Max-Min heuristic, the job having the maximum earliest completion time is 
assigned to the corresponding machine instead. In the Sufferage heuristic, it assigns a 
machine to a task that would “suffer” most in terms of expected completion time if that 
machine is not assigned to that job. The Sufferage value of a task is the difference 
between its second earliest completion time and its first earliest completion time. Finally, 
the process is repeated until every task is assigned to a machine. 

2.4 Prediction of Execution time 

Both on-line and batch mode heuristics assume that job execution times on 
each machine in the grid can be estimated. This assumption is commonly used when 
studying mapping heuristic for grid systems [12]. The examples of techniques used for 
prediction of execution time are instance base learning technique, short term prediction 
technique and test run technique. 
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The instance based learning technique uses a database of experiences to 
maintain and to make predictions [13]. A scheduling job can be an experience or a 
query. When a job finishes executing, it becomes an experience to the database. 

In the short term prediction technique, the scheduler makes initial guess 
execution time of all jobs. When the tasks are complete, the scheduler used the observe 
execution time to adjust the prediction algorithm [14]. The technique is used in Network 
Weather Service ( NWS ) [15] 

The test run technique estimates the execution time of the task by executing 
some sub-tasks on the set of available resources using the grid scheduling policy. The 
measured execution times are used as first approximation of the execution time for the 
remaining sub tasks [16]. 

The impact of accurate prediction of execution time is studied in [17]. The 
results show that more accurate requested execution times can improve system 
performance. Furthermore, users who provide more accurate requested execution times 
also improve the performance, even if other jobs do not provide more accurate 
requested execution times. 

2.5 Cost Functions in Grid Scheduling 

Different grid scheduling algorithms have different effects and characteristics 
due to different cost functions and mechanisms. The cost functions can be classified 
into two categories, namely performance-based cost functions and QoS-based cost 
functions. The goal of performance-based cost functions is to optimize the overall 
performance such as the average completion time, CPU utilization, throughput, average 
slowdown, makespan, cost, budget and deadline.  In QoS-based cost functions, the 
goal is to guarantee some services such as maintaining the desirable network 
bandwidth or predictable execution time of an application. 
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The simplest algorithms that use performance-based cost functions include 
MCT, MET, Min-Min, Max-Min and Sufferage. The cost functions of MCT and MET are 
completion time and execution time respectively.  For Min-Min and Max-Min, the cost 
function is completion time. For Sufferage, the cost functions are completion time and 
sufferage value.  

CMin-Min, CMax-Min and CSufferage algorithms have been proposed to 
optimize both makespan and cost of running [18]. They were adapted from Min-Min, 
Max-Min and Sufferage which optimize only makespan, respectively. The cost function 
is Priority Index, which is a function of execution time, ready time, cost and accumulative 
cost and has a weight for each parameter. 

K-Distributed model and K-Dual Queue Model have been proposed to optimize 
average job slowdown and turnaround time [11]. The distributed grid scheduling 
scheme uses this algorithm. The cost function of this model is the completion time. The 
grid scheduler distributes each job to the first K sites that have the earliest completion 
time. When a job is able to start at any sites, that site informs the grid scheduler at the 
site that originates the job. Then, that grid scheduler contacts the other remaining grid 
schedulers to cancel that job from their respective queue. However, a higher degree of 
“overbooking” results in an increase in the amount of work to be done at each local 
scheduler. Also, the amount of communication and synchronization among the grid 
schedulers increases. 

The Computational Economy model is another model for grid scheduling [4]. It 
is based on a well proven approach for resource management complexity and 
decentralization that is present in real economies. It supports mechanisms and policies 
that help in regulating the supply and demand for resources. Therefore, this model can 
achieve performance and meet the deadline and budget constraints at the same time. 
The cost function for the economic model comprises of resource costs deadlines. 
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QoS guided Min-Min algorithm has been proposed to provide QoS of a network 
bandwidth.  It was adapted from Min-Min by taking the QoS matching into consideration 
while scheduling. It maps the job with high QoS required first, and then maps the rest of 
the requested jobs. 

The compensation-based scheduling scheme is an adaptive grid scheduling 
with a feedback control framework has been introduced to provide predictable 
completion time [16]. The difference between the monitored application performance 
and the desired performance is used as a cost function to perform correction by 
dynamically allocating additional resources. The experiment results show that 
compensation based scheduling was effective in reducing execution time estimation 
misses and total execution times of grid applications. 

A policy model has been proposed to enforce both VO and resource owner 
scheduling policy in a data grid environment [19]. The load of each site, epoch resource 
allocation and burst resource allocation are used as factors in the cost function. There 
are policy enforcement points at both sites and VOs. Site policy enforcement points 
enforce the site policy by preempting the job if policy requirements are no longer met. 
VO policy enforcement points also operate in a similar way as the previous one. 

2.6 Resource Managers 

Resource management system (RMS)1 is central to the operation of a grid [20]. 
It provides basic functions such as accepting requests for resources and assigning 
specific machine resources to a request. Resource managers can be classified into two 
categories: namely traditional resource managers and grid-enabled resource managers. 

2.6.1 Traditional Resource Managers 

                                                  
1 In this thesis, the terms ‘resource management system’, ‘resource manager’ and ‘scheduler’ are used 
interchangeably. 
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A traditional resource manager is used within a set of computational resources 
in a particular domain. The examples of traditional resource managers are as follows.  

PBS (Portable Batch System) [21], the Portable Batch System, is a batch 
scheduler. PBS provides most of known job scheduling policies such as FIFO (first-in-
first-out), SJF (shortest-job-first), Fairshare, etc. PBS allows each site to create its own 
scheduler and allows a job to be launched from a cluster and executed on another 
cluster. In addition, PBS can create logical queues. A job can be automatically routed to 
a specific logical queue based on the predefined condition of each logical queue. Also, 
a job can specify the destination queue itself.  

The Maui scheduler [22] is an external job scheduler used on clusters and 
capable of enforcing complex scheduling policies. Maui uses weights and various 
algorithms to efficiently schedule jobs instead of FIFO order.  The policy can be tuned 
efficiently. In addition, Maui can be used as an external scheduler for other resource 
management systems such as PBS and SGE. Maui makes and enforces its decisions by 
querying and controlling a resource management system. For example, PBS manages 
the job queues and the computational resources. Maui queries PBS to obtain the job 
and the node information. Then, Maui directs PBS to manage jobs in accordance with 
specified Maui‘s policies, priorities, and reservations. The performance gain when Maui 
is used as the external scheduler of PBS is studied in [23]. 

The Sun Grid Engine (SGE) [24] is another batch queuing system. It was 
formerly named Codine before Sun purchased it. The current version of SGE supports 
only the default option which implements first-in-first-out (FIFO).  The concept of queues 
in the SGE package is defined per host basis and SGE does not support logical queues. 

Nimrod [25, 26] uses a simple declarative parametric modeling language to 
automate the execution of parameter sweep applications and uses the concept of 
computational economy.  
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Condor [7] is a resource management system designed to support high 
throughput computing (HTC). Condor discovers the idle resources and allocates those 
resources to the application tasks. When the owner of resource returns to use it, that 
resource will be deallocated. Therefore, Condor always respects the autonomy of the 
system. In addition, Condor provides an extensible resource description language 
called Classified Ads to specify the resource requirements in a more detailed and 
controlled way. 

SQMS (Simple Queue Management System) [27] is a simple resource 
scheduler based on thread and networking technology. SQMS has been developed in at 
Parallel Research Group at Kasetsart University. All logical components are designed to 
be pluggable. Therefore, SQMS are very flexible to support the new types of jobs and 
load balancing policies. 

2.6.2 Grid-Enabled Resource Managers. 

Currently there have been many implementations of Grid-enabled resource 
managers. The examples of grid-enable resource managers are as follow. 

Nimrod/G [28] is an extension of Nimrod to support grid and uses Globus 
middleware services for remote access, resource discovery and scheduling job over 
grid. Nimrod/G still uses the economic model and supports parameter sweep 
applications. Especially, it supports user-defined deadline and budget constraints for 
scheduling. The grid-enabled Nimrod/G broker is implemented as part of a new 
framework called GRACE (Grid Architecture for Computational Economy). 

Condor-G [29] is of the grid-enabled version of Condor. Condor-G address es 
issues of failure, credential expiry, and interjob dependencies that are not supported by 
Nimrod/G 

SCEGrid [30] is the extension of SQMS and functions on top of Globus. It 
simplifies the usage of grid systems by automating the process of resources selection 
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and allocation. Currently, SCEGrid supports only sequential jobs without job 
dependencies. The other features including resource commerce model, smarter load 
balance policy, job work-flow and parallel job support are planed to be supported in the 
future.    



CHAPTER III 
 

THE IMPACT OF LOCAL PRIORITY POLICIES  
 

This chapter presents an evaluation of the performance impact of applying a 
priority policy onto local schedulers in favor of local jobs. 

3.1 Grid Scheduling Model 

 
Figure 3.1: The grid scheduling model 

The grid scheduling model under investigation is the centralized on-line model, 
which is a widely accepted model at present. The evaluated scheduling model is 
depicted in Figure 3.1. A grid scheduling system is divided into two levels, namely a 
grid scheduler and local schedulers. Every job is first submitted to the grid scheduler. 
Then, the grid scheduler contacts a group of local schedulers, called candidates, to 
query the predicted completion times if the job was run on those sites. The minimum 
completion time (MCT) approach is used by the grid scheduler. Therefore, the grid 
scheduler actually submits the job to the local scheduler that returns the shortest 
predicted completion time. If the grid scheduler assigns a job to the local scheduler on 
the same site where the job is originated, the job is called a local job. If it is submitted to 
other sites, it becomes a remote job.   

For simplicity, the grid in our study consists of a number of clusters, each of 
which employs a local batch scheduler using a First-Come-First-Serve (FCFS) 
scheduling algorithm. All jobs are sequential and computational intensive programs, of 
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which the time for data I/O is negligible, compared to computation time. Each site offers 
dedicated and space-shared resources and runs jobs in an exclusive fashion.  

The grid sites employ two different priority-based scheduling policies. The first 
policy is to treat local jobs and remote jobs equally. This can be implemented by putting 
local and remote jobs in the same queue (single-queue model). The other policy is the 
local-job-first policy which gives a higher priority to local jobs. This can be implemented 
by using two separate queues (dual-queue model), one for local jobs and the other for 
remote jobs.  The local-job queue (LQ) is given a higher priority than the remote-job 
queue (RQ). Therefore, a remote job can be dispatched only when all jobs in the local 
queue have been dispatched.  

3.2 Method of Completion Time Estimation 

The estimated completion time  (or estimated response time) of a job on a site 
can be calculated by summing up the estimated execution time and the estimated wait 
time of the job on that site. 

The estimated execution time of a job on a machine can be calculated by 
dividing the workload with the machine speed. To estimate the wait time, the method of 
start time prediction describe in [13] is used. The start time is the time when the job was 
selected to execute. Therefore, the relative start time value is the wait time. The start 
time is calculated by performing a simulation of the scheduling algorithm and policy, 
which results in estimated start times for each of the jobs waiting in the queue(s). This 
simulation is performed by using predictions of the estimated execution times of jobs. 

3.3 Analysis of Real Workload 

In order to provide the simulation with a realistic workload, a workload trace on 
a real machine is studied. The Feitelson’s parallel workloads archive [31] is a great 
source of real workload traces, especially on parallel machines. One of the traces that 
are most frequently used in literature is the CTC SP2 log. This log contains records 
between June 1996 to May 1997 on the 512-node IBM SP2 located at the Cornell Theory 
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Center (CTC). Therefore, the characteristics and distribution of this workload trace are 
studied and used as that basis for the workload model for the empirical study in this 
thesis.  

The cumulative distribution function (CFD) is the probability that the variable 
takes a value less than or equal to a particular value [32]. CDF is a good way of 
examining a probability distribution of the workload because it does not depend on the 
quantization interval.   
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Figure 3.2 Comparison the CDF of execution times between CTC workload and 
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The distribution of the CTC workload fits closely the Hyper Erlang distribution of 
Common Order, which is a generalization of the exponential, the hyper exponential, and 
the Erlang distribution [33].  The exponential distribution is a similar distribution but 
much simpler and more widely used. Therefore, it is used instead of the Hyper-Erlang 
distribution for synthetic workload generation in the following simulation study. 

For simplicity, all parallel jobs in the trace are converted to sequential jobs by 
multiplying the number of allocated processors by the average CPU time used. From the 
archive, the average execution time and average inter-arrival time are 90,083 seconds 
and 379 seconds respectively. These two values are used in modeling the exponential 
distribution. The comparison of CDF of the inter-arrival times and execution times 
between CTC workload and the corresponding exponential distribution are shown in 
Figure 3.2 and Figure 3.3, respectively. The exponential distribution is generated by 
using the average execution time and average inter-arrival time of CTC workload. 

In addition, the utilization of CTC workload is only 55% [31]. This is inadequate 
to put enough pressure onto the system in order to observe any significant effects. 
Therefore, the distribution of the synthetic workload will be tuned up to increase the 
utilization.  

3.4 Simulation Configuration 

The simulation model was implemented on a java-based discrete-event grid 
simulation toolkit called GridSim [34].  The simulated grid environment consists of 5 sites 
(A, B, C, D, and E). Each site has one cluster with four computing nodes. The size and 
complexity of the evaluated system is limit because each simulation experiment takes 
quite a long time.  

The grid scheduler uses the MCT approach described in section 3.1. 
Simulation parameters and queue configurations are summarized in Table 3.1 and Table 
3.2 respectively. 
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Table 3.1:  Simulation Parameters 
Parameter Case Site A Site B Site C Site D Site E 

1 500 500 500 500 500 
2 700 600 500 400 300 Machine Speed ( MIPS ) 
3 300 400 500 600 700 
1 880 880 880 880 880 
2 1232 1056 880 704 528 Number of jobs 
3 528 704 880 1056 1232 
1 450 450 450 450 450 
2 321 375 450 563 750 Inter-arrival time of jobs: Heavy load (H) 

( Exponential Dist. , Second ) 3 750 563 450 375 321 
1 525 525 525 525 525 
2 375 438 525 656 875 Inter-arrival time of jobs: Medium load (M) 

( Exponential Dist. , Second ) 3 875 656 525 438 375 
1 600 600 600 600 600 
2 429 500 600 750 1000 Inter-arrival time of jobs: Light load (L) 

( Exponential Dist. , Second ) 3 1000 750 600 500 429 
Job Sizes  

( Exponential Dist., Million Instructions ) ALL 106   

Table 3.2:  Queue Configurations 
Identifier Site(s) using dual queues Site(s) using single queue 

Q0    -   A, B, C, D, E 
Q1   A   B, C, D, E 
Q2   A, B   C, D, E 
Q3   A, B, C   D, E 
Q4   A, B, C, D   E 
Q5   A, B, C, D, E   - 

The speed of machines in each site are categorized into three cases with the 
mean of 500 million instructions per second (MIPS). In case 1, the machine speeds of all 
sites are 500 MIPS. However, in case 2 and case 3, the machine speeds of all sites are 
different to represent heterogeneity. In case 2, the machine speeds of site A, B, C, D 
and E are sorted by descending that are 700, 600, 500, 400 and 300 respectively in 
order to analyze the performance impact when the sites with high speed machines start 
to use dual-queue model. On the other hand, in case 3, the machine speeds are sorted 
by ascending in order to analyze the performance impact when the sites with low speed 
machines start to use dual-queue model. 

From the total of 4,400 jobs, only 4,000 jobs in the middle are used for 
performance evaluation.  The number of jobs which are originated at each site is 
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designed to correspond to machine speed. As a result, the site with high speed 
machines will generate more jobs. Job sizes are also determined randomly with an 
exponential distribution with the mean of 106 million instructions.   

Consider the speed of the machines, the number of nodes and the job sizes, 
the system will have 100% utilization if the inter-arrival time of jobs entering the grid 
scheduler is equal to or less than 100 seconds. As a result, three levels of inter-arrival 
time : 90, 105 and 120 are chosen to represent heavy load, medium load and light load, 
respectively. The utilization levels for these three inter-arrival times are 85%, 100% and 
100% respectively. As a result, the inter-arrival times of jobs at each site are determined 
randomly with an exponential distribution with the mean of 450, 525 and 600, 
respectively. For case 2 and case 3 where the number of jobs at each site are not equal, 
the inter-arrival of each site will be adjusted according to the number of jobs of that site.  

The number of sites using dual queues varies from 0 to 5 sites, as shown in 
Table 3.2. For example, in configuration Q0, all sites use the single-queue model. On the 
other hand, in configuration Q5, all sites use the dual-queue model. Each experiment 
was performed 10 times with different seeds for the random number generator and the 
average values are reported. 

3.5 Performance Evaluation of MCT Algorithm 

The performance metrics to be considered are the average completion time 
(Figure 3.4-3.6), the maximum of average completion times of site A to E (Figure 3.7-
3.9), the standard deviation of average completion times of site A to E (Figure 3.10-3.12) 
and the maximum gain and loss of average completion times of site A to E (Figure 3.13-
3.15). The performance plots of individual sites are labeled as A, B, C, D and E and the 
performance of all sites is labeled as ALL. 

3.5.1 The Average Completion Times of MCT Algorithm 

The relationship between average completion times and queue configurations 
is depicted in Figure 3.4-3.6. The results show that the average completion time of all 
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sites changed very little compared to the completion times of individual sites, which are 
significantly affected. Four characteristics can be concluded as follows.  

Firstly, the sites that employ the dual-queue model have better average 
completion times than single-queue sites.  For example, in configuration Q2, site A and 
B use the dual queues while site C, D and E use the single queue. Under Q2 in heavy 
load of case 1 (Figure 3.4a), the average completion time of site A and B are 14,308 and 
15,027 seconds respectively. On the other hand, the average completion time of site C, 
D and E are 27,572, 27,989 and 27,187 seconds respectively.   

Secondly, switching from the single queue to dual queues reduces the average 
completion time of the site but increases the average completion times of all other sites 
in the grid, especially the remaining single-queue sites. For example, in Figure 3.4a, 
when site C switches to use dual queues (from Q2 to Q3), its average completion time 
reduces from 27,572 to 14,718 seconds; in other words, 47% reduction. However, the 
average completion times of all other sites increase. 

Thirdly, as the fraction of dual-queue sites increases, the difference between 
average completion time of single-queue and dual-queue sites gets larger. Therefore, 
the last site that remains using the single queue mode will suffer most. The effect is more 
severe when the workload is heavier. For example, in Figure 3.4a, the average 
completion time of site E in Q4 is 52899.34 seconds, which is 133% greater than the 
total average completion time.  

Finally, in a particular queue configuration, the completion times of sites in 
single-queue mode are nearly equal in all cases and workloads. On the other hand, sites 
in dual-queue mode, the average completion times likely correspond to their machine 
speeds. This is obviously seen in medium load and light load. Therefore, the average 
completion times of dual-queue sites in Case 1 are nearly equal as shown in Figure 3.4b 
and Figure 3.4c.   The average completion times of dual-queue sites in Case 2 are sort 
by ascending as shown in Figure 3.5b and Figure 3.5c. Lastly, in Case 3, the average 
completion time are sorted by descending as shown in Figure 3.6b and Figure 3.5c 
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3.5.2 The Maximum Average Completion Times of MCT Algorithm 

The relationship between queue configuration and maximum average 
completion time of all sites is depicted in Figure 3.7-3.9. Label H, M and L represent 
heavy load, medium load and light load respectively. The maximum points usually come 
from the single-queue sites except in configuration Q5 where all sites use dual queues. 
The figures obviously show that the maximum average completion time increases as the 
fraction of dual-queue sites increases from Q0 to Q4. Therefore, the users in single-
queue sites will suffer most from this policy. 

In addition, when all sites use dual-queue model (Q5), the maximum average 
completion time is not always reduced from those of Q4. For example, in heavy load of 
all cases (Figure 3.7a, 3.8a and 3.9a), the maximum average completion time of Q5 is 
less than that one of Q4. However, in light load of case3 (Figure 3.9c), the maximum 
average completion times of Q5 is increased. 

3.5.3 The Standard Deviation of Average Completion Times of MCT Algorithm 

The standard deviations of average completion times in each queue 
configuration are depicted in Figure 3.10-3.12. The result can be interpreted in the same 
manner as the figures of the maximum average completion time. First, the standard 
deviation increases as the fraction of dual-queue site increases.  Also, when all sites use 
dual-queue model, the standard deviation of the average completion time is not always 
less than that of Q4. 

3.5.4 The Maximum Gain and Loss of Average Completion Times 

The maximum gain and loss of average completion times in a queue 
configuration are depicted in Figure 3.13-3.15. The maximum gain in a queue 
configuration is the maximum percentage increment in average completion time from 
the average completion time of each site in Q0. On the other hand, the maximum loss in 
a queue configuration is the maximum percentage decrement in average completion 
time from the average completion time of each site in Q0. Therefore, the plot of both 
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maximum gain and maximum loss shows the performance boundary of all sites in a 
queue configuration. 

An important characteristic obtained from the graphs is that the peak 
performance loss is always greater than the peak performance gain. For example, in 
Figure 3.13b, the maximum gain of all queue configurations is 16.5% which is in Q1, and 
the maximum loss of all queue configurations is 43.5% which is in Q4. 
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Figure 3.4: Average completion time of MCT algorithm under Case 1 
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Figure 3.5: Average completion time of MCT algorithm under Case 2 
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Figure 3.6: Average completion time of MCT algorithm under Case 3 
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Figure 3.7: Maximum average completion time of MCT algorithm under Case 1 
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Figure 3.8: Maximum average completion time of MCT algorithm under Case 2 
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Figure 3.9: Maximum average completion time of MCT algorithm under Case 3 
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Figure 3.10: S.D. of average completion time of MCT algorithm under Case 1 
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Figure 3.11: S.D. of average completion time of MCT algorithm under Case 2 
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Figure 3.12: S.D. of average completion time of MCT algorithm under Case 3 
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Figure3.13: Maximum gain and loss of completion time of MCT algorithm under Case 1 
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Figure3.14: Maximum gain and loss of completion time of MCT algorithm under Case 2 
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Figure3.15: Maximum gain and loss of completion time of MCT algorithm under Case 3 
 



CHAPTER IV 
 

THE PROPOSED ALGORITHM AND PERFORMANCE EVALUATION 
 

In this chapter, a new algorithm for grid scheduling is proposed to overcome 
the performance impact that was identified in the previous chapter. 

4.1 The Proposed Adaptive Site Selection Algorithm 

At present, global policy enforcement mechanism in a grid environment has not 
been put into practice. Under the constraint that a grid scheduler cannot control local 
schedulers but only acts as a broker, it must be able to react to the behavior and 
performance of individual local schedulers. 

As seen in the previous chapter, the local-job-first policy causes the completion 
times of remote jobs to be longer than predicted. A grid scheduler should be able to 
take into account the local policy before submitting jobs to local schedulers.  

Therefore, this work proposes a new adaptive site selection algorithm. In this 
algorithm, the grid scheduler will select the site that gives the minimum of completion 
time multiplied by a weight value (Eq.1)   

{ }    _ iWiTcki1
miniWiTcifisiteselected ×
≤≤

=×=   (Eq.1) 

where k, Tci and Wi denote the number of sites, completion time of site 
i and weight associated with site i, respectively. 

The weight is assigned by the grid scheduler and can be different for each site 
and each job. The purpose of the weight value is to add or reduce the possibility that the 
grid scheduler will select a target site according to some criteria. Several approaches 
for weight assignment are possible. 

Our approach focuses on reducing the undesirable effects on single-queue 
sites. Therefore, the grid scheduler uses local priority policy as a criteria for site 
selection by making it more difficult to submit a job to another site which uses different 
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priority policy.  Another criteria is the fractions of sites that use the same policy. The 
criteria are converted into weight values. 

The weight assignment can be divided into two cases by using computing 
power, which is the summation of the machine speeds.  

 In the first case, the computing power of single-queue sites is greater than or 
equal to the computing power of dual-queue sites. The weight of all sites is “1”. As a 
result, in this case, this algorithm has the same behavior as the MCT algorithm. This 
allows some sites to switch to use the local-job-first policy in order to reduce their 
completion times without causing too much trouble. The rational is that single-queue 
sites dominate the system and double-queue sites will have little effect. 

In the second case, the computing power of single-queue sites is less than that 
of dual-queue sites. The weight of a site is “1” if the site uses the same policy as the job-
owner site. Otherwise, its weight is set to a value greater than 1. As a result, the jobs are 
more likely to go to the site using the same policy. Jobs are sent to a remote site using a 
different policy only when the predicted completion time at that remote site is really 
attractive.  

 

 

 

 

Figure 4.1 Weight Assignment Algorithm 

The logic of weight assignment can be described by the algorithm in Figure 4.1 
which is based on the following definition.  Function CP (Group) will evaluate the 
computing power of the specified group. Wi is response for the weight of site i. Pi is the 
policy of site i. Po is the policy of the job-owner site. 

If  CP ( single-queue sites ) > CP (dual-queue sites) { 
 Wi = 1 for all i 
} else { 
 Wi = 1 if   Pi = Po 
 Wi = a ; a > 1  if Pi ≠ Po 

} 
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4.2 Weight Value Selection  

The value of weight (Wi = a) can vary from one site to another, and can even 
change over time. For simplicity and the scope of empirical study, the value of weight 
when it is greater than 1 will be set to a constant that is generally good. Standard 
deviation of average completion time can be used to identify the constant. 
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Figure 4.2: The relationship between standard deviation of Average Completion Time 
and constant weight values 

The relationship between standard deviation of average completion times and 
the constant weight value of the medium load under case 1 are shown in Figure 4.2. The 
value “1.3” is chosen as a constant for the algorithm for every case and workload. It is 
one of the good values that make the standard deviation of average completion time 
reduce in this case.  However, this weight value can be set to other constant values 
rather than 1.3.  If this value is high, the probability that grid scheduler will send jobs 
across policy groups is reduced. If this value is low, the probability is increased.  

4.3 Performance Evaluation of the Proposed Algorithm 

Because the fraction of policy groups and the computing power of each site 
are used by the proposed algorithm to adjust the weight as described in section 4.1, the 
algorithm takes effect differently in each case.  In Case 1, the algorithm takes effect on 
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Q3 and Q4. In Case 2, the algorithm will take effect sooner that is Q2, Q3 and Q4. 
Finally, In Case 3, the algorithm will take effect only in Q4.    

The performance metrics to be considered are the same as metrics presented 
in the section 3.5. First, the average completion time when the proposed algorithm is 
applied are depicted in Figure 4.3-4.5. Second, the maximum of average completion 
time are depicted in Figure 4.6-4.8.  Third, the standard deviation of average completion 
time of before and after applying the proposed algorithm are depicted in Figure 4.9-
4.11. Finally, the maximum gain and loss of average completion times are depicted in 
Figure 4.12-4.14. Label H (NEW), M (NEW) and L(NEW) represent heavy load, medium 
load and light load respectively for the proposed algorithm. Label H (MCT), M (MCT) 
and L (MCT) represent heavy load, medium load and light load respectively for the MCT 
algorithm. 

4.3.1 The Average Completion Times of the Proposed Algorithm 

The relationship between average completion times and queue configurations 
is depicted in Figure 4.3-4.5.  

The results show that the average completion time of individual sites are less 
significantly affected. The average completion times of single-queue sites in the queue 
configurations affected by the proposed algorithm are reduced. For example, in Q3 of 
Figure3.4a (MCT algorithm), the average completion time of site A, B and C which are 
dual-queue sites 14,283, 15,196 and 14,718 seconds respectively, and the average 
completion time of site D and E which single-queue site are 33,775 and 33,371 seconds 
respectively.  When the proposed algorithm applied, the average completion time of site 
A, B, C are increased to 21,657, 21,652 and  23,038 respectively and the average 
completion time of sites D and E are reduced to 26,203 and 26,119 respectively  

Only one characteristic before applying the proposed algorithm still remain. 
Sites in dual-queue mode, the average completion times likely correspond to their 
machine speed in medium load and light load of all cases. 



                                                                                                                 
                                                                                                              

38

 

4.3.2 The Maximum Average Completion Times of the Proposed Algorithm 

The relationship between queue configuration and maximum average 
completion time of all sites is depicted in Figure 4.6-4.8.  

For Case 1 and Case 2 (Figure 4.6, 4.7), the proposed algorithm always 
performs better than the MCT algorithm. For example, in Q4 of Figure 4.6a and Figure 
4.7a, the maximum of average completion times is reduced by 44% and 35% 
respectively. However, in Q4 of Case 3 (Figure 4.8), the maximum average completion 
times  is 45% and 14% better for heavy load and medium load but only 5% worse for 
light load. Therefore, the maximum completion times are generally reduced by the 
proposed algorithm. 

4.3.3 The Standard Deviation of Average Completion Times of the Proposed Algorithm 

The standard deviations of average completion times in each queue 
configuration are depicted in Figure 4.9-4.11. All of them are also improved by proposed 
algorithm in the same manner as the maximum completion time except the Q4 of Figure 
4.11 which increases 20 seconds. 

4.3.4 The Maximum Gain and Loss of Average Completion Times of the Proposed 
Algorithm 

The maximum gain and loss of average completion times in a queue 
configuration are depicted in Figure 4.12-4.14. Compared to the results obtained from 
the MCT algorithm, the gap between the maximum gain and the loss is reduced in most 
cases and workloads.  For example, in Q4 of Figure 4.12a, the maximum gain is 
reduced from 37% to 12%, and the maximum loss is reduced from 142% to 36%. 
However, in Q4 of Figure 4.14a, only the maximum loss is increased from 11% to 14%. 

In summary, the new algorithm allows some sites to exploit the local-job-first 
policy and get some performance gain while other sites experience some performance 
loss. When the fraction of the policy groups reaches a threshold, the adaptive algorithm 
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tries to reduce the performance loss, with the reduction of the performance gain as a 
tradeoff. 
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Figure 4.3: Average completion time of before and after applying the proposed 
algorithm under Case 1 
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Figure 4.4: Average completion time of before and after applying the proposed 
algorithm under Case 2 
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Figure 4.5: Average completion time of before and after applying the proposed 
algorithm under Case 3 
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Figure 4.6: Maximum average completion time of before and after applying the 
proposed algorithm under Case 1 
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Figure 4.7: Maximum average completion time of before and after applying the 
proposed algorithm under Case 2 
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Figure 4.8: Maximum average completion time of before and after applying the 
proposed algorithm under Case 3 
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Figure 4.9: S.D. of average completion time of before and after applying the proposed 
algorithm under Case 1 
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Figure 4.10: S.D. of average completion time of before and after applying the proposed 
algorithm under Case 2 
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Figure 4.11: S.D. of average completion time of before and after applying the proposed 
algorithm under Case 3 
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Figure 4.12: Maximum gain and loss of completion time of before and after applying the 
proposed algorithm under Case 1 
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Figure 4.13: Maximum gain and loss of completion time of before and after applying the 
proposed algorithm under Case 2 
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b. Medium Load 
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Figure 4.14: Maximum gain and loss of completion time of before and after applying the 

proposed algorithm under Case 3 



CHAPTER V 
 

IMPLEMENTATON 
 

This chapter presents the requirements and methods for implementing the 
proposed grid scheduling algorithm. A simple implementation on a grid portal 
demonstrates the feasibility of a real implementation. 

5.1 Implementation Requirements 

The proposed algorithm can be implemented into existing grid schedulers. 
However, there are some requirements to be met including: 

  When queried by the grid scheduler, a local scheduler must provide 
information for the grid scheduler to determine whether the local scheduler uses the 
local-job-first policy. 

    When queried by the grid scheduler, a local scheduler must provide 
information for the grid scheduler to determine how long it will take to complete a job if 
the job is submitted to that site. 

 The grid scheduler must be able to handle heterogeneity regarding to 
machine speeds and execution time estimations. 

These requirements can be met in several ways. If adding extra capabilities to 
local schedulers is possible, then it is preferable to make the local scheduler be able to 
answer the queries from the grid scheduler. However, sometimes it is hard to do so and 
it is left to the grid scheduler to figure out needed information from the data that is 
usually provided by unmodified local schedulers. For example, most available 
schedulers such as PBS and the like have a command to show the list of jobs in the 
queue(s) and their status including expected execution times. Grid Information Services 
(GIS) or Monitoring and Directory Service (MDS) of Globus can also be used for grid 
sites to report their local scheduling policies. The estimated execution time must be 
adjusted accordingly to the performance of different sites. 
 
5.2 Implementation on a Grid Portal 
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SPACE Grid Portal [35] is a web interface to the grid to provide an easy-to-use 
interface so that user can work on a grid system more easily and to maintain basic 
functions Grid have already serviced.  It was developed to support Computational 
Chemistry research works at Department of Chemistry, Faculty of Science, 
Chulalongkorn University. Globus is installed on each cluster in the grid. All local 
schedulers are PBS/Maui. Other software includes GridPort[36] and MyProxy[37]. The 
main applications to be run on the grid is Gaussian98 [38] and AutoDock [39].   

 

 

 

 

 
 
 

 
Figure 5.1: Flow chart of job submission through SPACE Grid Portal 

The grid scheduling algorithm has been implemented in SPACE Grid Portal as 
Perl script files. Therefore, the grid scheduler accepts only jobs submitted at SPACE 
grid portal. The mechanism of submitting a job to SPACE Grid Portal is shown in Figure 
5.1. First, a user submits a job to SPACE grid portal through the web interface. The 
execution time of the job must be estimated and specified by the user.  Second, the job 
description is passed to the grid scheduler. The grid scheduler queries the queue status 
of each site and calculates the completion time of the job on each site. Finally, the grid 
scheduler will select the suitable site by using the proposed algorithm.  
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The example of submission page for Gaussian application is shown in Figure 
5.2. When the user chooses the hostname “AUTO”, the proposed algorithm will be used 
to select a suitable site automatically.  

5.3 Limitation 
   In the current implementation, the estimation of execution time specified by 

a user is not adjusted with respect to machine speeds since the execution time is 
estimated by the user. Therefore, the performance of the algorithm depends on the 
accuracy of the estimated completion time. 

  All cluster information must be specified to configuration files. The cluster 
information includes the number of nodes on a cluster and type of policy. 

 

 
Figure 5.2: SPACE Grid portal: Run Job page 



CHAPTER VI 
 

CONCLUSION 
 

6.1 Summary 

In a computational grid, the local schedulers which reside in grid sites 
cooperate with but are not controlled by a grid scheduler. As a result, the local 
schedulers have the freedom to apply their own scheduling policies. Some sites may 
apply a policy in favor of local jobs by giving a higher priority to local jobs than remote 
jobs.   

This thesis has evaluated the performance impact on global grid scheduling 
when some sites apply this kind of policy and to propose a new adaptive site selection 
algorithm to cope with such effects.  

Two different priority-based algorithms are employed at grid sites. The first 
policy is to treat remote jobs and local jobs equally. This can be implemented by putting 
local jobs and remote jobs in the same queue (single-queue model). The other policy, 
local-job-first policy, gives higher priority on local jobs than remote jobs in order to 
speed up the local jobs. This can be implemented by using two separate queues (dual-
queue model).  

Minimum completion time (MCT) approach is used as a benchmark for grid 
scheduling algorithms. The simulation results demonstrate three important 
characteristics. Firstly, dual-queue sites always have better average completion time 
than single-queue sites. Therefore, switching from the single-queue model to dual-
queue model reduces the average completion time of the site but increases the average 
completion times of all other sites, especially the remaining single-queue sites. 
Secondly, as the fraction of dual-queue site increases, the difference between average 
completion time of single-queue sites and dual-queue sites increase. This difference is 
greater when the workload is heavier. Therefore, the last site that remains using the 
single-queue will suffer most. Finally, the average completion times among dual-queue 
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sites correspond to their machine speeds. The sites that have higher speed will have 
better average completion times. However, the average completion times among single-
queue sites are not affected by the machine speed. Therefore, the completion times of 
all single-queue sites are nearly equal. 

In order to reduce the performance impact on single-queues site, a new 
adaptive site selection algorithm for grid scheduling has been proposed. In its general 
form, the algorithm applies a weight factor onto the cost function associated to each site 
in order to adjust the probability of assigning a job to the site. In this algorithm, the grid 
scheduler examines the local priority policies, fractions of sites that use the same 
policies and computing powers of all sites before submitting the jobs. The proposed 
algorithm allows some sites to exploit the local-job-first policy and get some 
performance gain while other sites experience tolerable performance loss. When the 
fraction of the dual-queue sites reaches a threshold, the proposed algorithm reduces 
the probability of submitting a job to the site that uses a different policy. Therefore, jobs 
are more likely go to the sites using the same policy.  

The results of the proposed algorithm show that when the fraction of the dual-
queue sites exceeds a threshold, the difference between the average completion times 
of single-queue sites and dual-queue sites is reduced. The average completion times of 
single-queue sites are significantly reduced, whereas the average completion times of 
dual-queue sites are slightly increased.  Therefore, the proposed algorithm reduces the 
performance loss on single-queue sites with little reduction in performance gain as a 
tradeoff. This promotes more fairness in grid scheduling.   In addition, the proposed 
algorithm can effectively work on various fractions of dual-queue sites and load 
conditions, especially when the load is heavier. 

 The work also suggests that a preferable situation is when a site may 
temporarily switch to the single-queue model when needs arise and not too many sites 
in the grid work in that mode. In the other words, the fraction of dual-queue sites should 
be limited within a threshold of the proposed algorithm. 
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The proposed grid algorithm has been implemented into the SPACE grid portal 
to demonstrate a real implementation. This grid scheduler accepts Gaussian and 
Autodock jobs submitted at the portal.  
 
6.2  Future Work 

There are many possible extensions to the study in this thesis, as follow. 
  Introducing a new weight assignment method 

In weight assignment in the proposed algorithm, the weight is either 1 or a 
constant value greater than 1. The new weight assignment may introduce more dynamic 
weight assignment by increasing or decreasing the weight value assigned each 
individual site according to the performance of the site at that time. 

  Evaluate on more realistic grid environments 
 Evaluation and analysis of policy-based grid scheduling algorithms in larger and 
more heterogeneous grid environments. 
 
6.3 Final Remark 

The work in this thesis has been published in [40]. 
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