การระบายสีกราฟปะติด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณทิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2549
ISBN 974-14-2626-7
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

COLORABILITY OF GLUED GRAPHS

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Sciences Program in Mathematics

TSBN 974-14-2626-7
Copyright of Chulalongkorn University

Thesis Title By
Field of Study
Thesis Advisor

COLORABILITY OF GLUED GRAPHS
Mr. Chanon Promsakon
Mathematics
Chariya Uiyyasathian, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

(Associate Professor Wanida Hemakul, Ph.D.)

P. Udank
(Associate Professor Patanee Udomkavanich, Ph.D.)

สถาบันวิทยบริการ

ชานนท์ พรมสกล: การระบายสีกราฟปะติด(COLORABILITY OF GLUED GRAPHS) อ.ที่ปรึกษา : อ.ดร. จริยา อุ่ยยะเสถียร, 60 หน้า ISBN 974-14-2626-7

ให้ G_{1} และ G_{2} เป็นกราฟและให้ H_{1} และ H_{2} เป็นกราฟย่อยเชื่อมโยงที่มีเส้นเชื่อมอย่างน้อยหนึ่ง เส้นของ G_{1} และ G_{2} ตามลำดับ โดยที่ $H_{1} \cong H_{2}$ ด้วยสมสัณฐาน f จะได้ว่า กราฟปะติดของ G_{1}
 และ G_{2} โดยการปะติดจุดยอดและเส้นเชื่อมใน H_{1} และ H_{2} ให้ตรงกับสมสัญฐาน f

เราสนใจการปะติดกราฟระหว่างกราฟชนิดเดียวกัน โดยกราฟที่เราสนใจคือ กราฟป่า กราฟต้นไม้ กราฟสองส่วน กราฟ k ส่วน กราฟมีคอร์ด และกราฟช่วง นอกจากนั้นเราศึกษาสมบัติของกราฟปะติด ในการระบายสีจุดยอดและการระบายสีเส้นเชื่อม เราหาขอบเขตของรงคเลขและรงคเลขของเส้นเชื่อมของ กราฟปะติด พร้อมทั้งให้กราฟที่รับประกันว่าแต่ละขอบเขตดีที่สุด

สถาบันวิทยบริการ

ภาควิषา ...คณิตศาสตร์..
สาขาวิชา ...คณิตศาสตร์...
ปีการศึกษา2549........

ลายมือชื่อนิสิต... Guuml 22ヘกno

\# \# 4772274223 : MAJOR MATHEMATICS
KEYWORDS : GLUED GRAPHS / GRAPH COLORINGS

CHANON PROMSAKON : COLORABILITY OF GLUED GRAPHS. THESIS ADVISOR : CHARIYA UIYYASATHIAN, Ph.D., 60 pp. ISBN 974-14-2626-7

Let G_{1} and G_{2} be any two graphs. Let H_{1} and H_{2} be non-trivial connected subgraphs of G_{1} and G_{2}, respectively, such that $H_{1} \cong H_{2}$ with an isomorphism f, then the glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by $\underset{H_{1} \cong \bigoplus_{f}}{G_{1} \bowtie H_{2}}$, is the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f between H_{1} and H_{2}.

We investigate the results of the graph obtaining by gluing graphs of the same type where the types we are interested in are forests, trees, bipartite graphs, k partite graphs, chordal graphs and interval graphs. Furthermore, we study properties of glued graphs involving in their colorability and edge-colorability. We give bounds of the chromatic numbers and the edge-chromatic numbers of glued graphs and also provide graphs to guarantee that each bound is the best possible.

สถาบันวิทยบริการ

ACKNOWLEDGEMENTS

I am greatly indebted to many person. First, I would like to thank Dr. Chariya Uiyyasathian, my thesis advisor, for her suggestions, her kindness and her patience to read and check my thesis. Next, I would like to thank Associate Professor Dr. Wanida Hemakul and Associate Professor Dr. Patanee Udomkavanich, my thesis commitee, for value suggestions. I also would like to thank all of the teachers. Finally, thank all my friends for their word that "Don't give up".

If I did the wrong thing, I do apologize. It does not happen by intention.

สถาบันวิทยบริการ

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
LIST OF FIGURES viii
I INTRODUCTION 1
1.1 Introduction 1
1.2 Definitions and Basic Properties 1
II GLUED GRAPHS 7
2.1 The Graph Gluing of Bipartite Graphs and k-partite Graphs 7
2.2 The Graph Gluing of Chordal Graphs and Interval Graphs 14
III COLORABILITY OF GLUED GRAPHS 25
3.1 Background 25
3.2 Bounds of the Chormatic Numbers of Glued Graphs 26
IV EDGE-COLORABILITY OF GLUED GRAPHS 43
4.1 Background 43
4.2 Bounds of the Edge-Chromatic Numbers of Glued Graphs 44
V CONCLUSION AND OPEN PROBLEMS 52
5.1 Conclusion 52
5.2 Open Problems 53
REFERENCES 57
APPENDICES 58
VITA 60

List of Figures

1.2.1 The results of graph gluing in different isomorphisms 2
1.2.2 The same resulting graph for any isomorphism 3
1.2.3 A glued graph between simple graphs which is not a simple graph 4
2.1.1 Examples of trees 7
2.1.2 Created cycles 9
2.1.3 The converse of Theorem 2.1.6 does not hold. 10
2.1.4 Examples of bipartite graphs, complete bipartite graphs and 3- partite graphs 12
2.1.5 A glued graph between k-partite graphs which is not k-partite 13
2.2.1 $K_{4} \vee K_{3}$ 15
2.2.2 A glued graph between chordal graphs which is not chordal 15
2.2.3 A glued graph between non-chordal graphs which is chordal 17
2.2.4 An interval graph 18
2.2.5 The interval representation of a path 19
2.2.6 Examples of graphs containing an asteroidal-triple 20
2.2.7 A glued graph of interval graphs which is not an interval graph 21
2.2.8 The graph gluing can destroy an asteroidal-triple. 22
3.2.1 The sharpness of Theorem 3.2.5. 28
3.2.2 Graphs with their glued graphs isomorphic to K_{9} and K_{12}. 32
3.2.3 Graphs with their glued graph isomorphic to $K_{8} . \mathcal{F}$. 39
3.2.4 A glued graph whose chromatic number is larger than its clique จทตึาลงกรณม่าหาวทยาลย 41
4.1.1 A fat triangle 44
4.2.1 A simple glued graph showing the sharpness of Theorem 4.2.2 46
4.2.2 A non-simple glued graph showing the sharpness of Theorem 4.2.2 46
4.2.3 The sharpness of Theorem 4.2.5 47
4.2.4 A line graph 48
4.2.5 The converse of Theorem 4.2.12 does not hold 50
5.2.1 An open problem. 55

CHAPTER I

INTRODUCTION

1.1 Introduction

The glue operator is a mathematically operator defined in [6]. C. Uiyyasathain studies about maximal-clique partitions of different sizes whether or not there exists a clique-inseparable graph with n maximal-clique partitions of n different sizes. So she defines the glue operator to solve the problem. The answer is in the form of glued graphs between the line graphs of complete graphs with n different orders. It makes us see how useful of the glued graphs are and motivates us to study properties of glued graphs.

In Section 1.2, we give definitions, examples and also investigate some basic properties of glued graphs.

In Chapter 2, we analyze the results of the graphs obtaining by gluing graphs of the same type where the types we interested in are forests, trees, bipartite graphs, k-partite graphs, chordal graphs and interval graphs. Moreover, we investigate a condition to obtain a glued graph that is the same type as its original graphs.

The colorability of glued graphs is to be considered in Chapter 3. We find bounds of the chromatic numbers of glued graphs and also prove their sharpness.

Lastly, we consider the edge-colorability of glued graphs in Chapter 4. Bounds of the edge-chromatic numbers of glued graphs are proyided. 6

1.2 Definitions and Basic Properties

In this section, we introduce the graph gluing, and give some properties of glued graphs.

Definition 1.2.1. Let G_{1} and G_{2} be any two graphs. Let H_{1} and H_{2} be nontrivial connected subgraphs of G_{1} and G_{2}, respectively, such that $H_{1} \cong H_{2}$ with an isomorphism f, then the glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, denoted by $\underset{H_{1} \cong_{f} H_{2}}{G_{1}} \downarrow G_{2}$, is the graph that results from combining G_{1} with G_{2} by identifying H_{1} and H_{2} with respect to the isomorphism f between H_{1} and H_{2}. Let H be the copy of H_{1} and H_{2} in the glued graph. We refer H as its clone and refer G_{1} and G_{2} as its original graphs.

The glued graph between G_{1} and G_{2} at the clone H, written $\underset{H}{\oplus} \underset{H}{\oplus} G_{2}$, means that there exist subgraph H_{1} of G_{1} and subgraph H_{2} of G_{2} and isomorphism f between H_{1} and H_{2} such that $\underset{H_{1} \unrhd \overbrace{f} H_{2}}{G_{2}}$ and H is the copy of H_{1} and H_{2} in the resulting graph.

We denote $G_{1} \triangleleft G_{2}$ an arbitrary graph resulting from gluing G_{1} and G_{2} at any isomorphic subgraph $H_{1} \cong H_{2}$ with respect to any of their isomorphism.

Example 1.2.2. Let G_{1} and G_{2} be graphs as shown in Figure 1.2.1.

Figure 1.2.1: The results of graph gluing in different isomorphisms

Let $H_{1}=K_{3}(1,3,4) \subseteq G_{1}$ and $H_{2}=K_{3}(a, b, c) \subseteq G_{2}$. Consider three isomorphisms between H_{1} and H_{2}, f, g and h, as follows:

$$
\begin{aligned}
& f(1)=a, f(3)=b, f(4)=c, \\
& g(1)=b, g(3)=c, g(4)=a \text { and } \\
& h(1)=c, h(3)=a, h(4)=b .
\end{aligned}
$$

We show glued graphs between G_{1} and G_{2} with respect to f, g and h in Figure 1.2.1

Example 1.2.2 shows that different isomorphisms can give the different or the same result. However, in some cases it is possible that all isomorphisms give the same result as shown in the next example.

Example 1.2.3. Let G_{1} and G_{2} be graphs as shown in Figure 1.2.2.

Figure 1.2.2: The same resulting graph for any isomorphism

Let $H_{1}=K_{3}(2,3,4) \subseteq G_{1}$ and $H_{2}=K_{3}(a, b, c) \subseteq G_{2}$. There are six isomorphisms between H_{1} and H_{2}, but all of them give the same result as shown in a Figure 1.2.2 where f be arbitrary isomorphism between H_{1} and H_{2}.

We first observe some basic properties of glued graphs in the following remark.
Remark 1.2.4. 61. The original graphs are subgraphs of theirglued graph.
2. The graph gluing does not create or destroy an edge.
3. A glued graph between disconnected graphs is also disconnected and a glued graph between connected graphs is also connected.
4. If $u \in V\left(G_{1} \backslash H\right)$ and $v \in V\left(G_{2} \backslash H\right)$ where G_{1} and G_{2} are graphs and H is a clone of $G_{1} \underset{H}{\triangleright} G_{2}$, then u and v are not adjacent in $G_{1} \underset{H}{\triangleright} G_{2}$.

A glued graph could be a simple or not simple graph. Clearly the graph gluing of G_{1} and G_{2} is not a simple graph if G_{1} or G_{2} is not a simple graph. If original graphs are simple graphs, it is not necessary that their glued graph is a simple graph. We show in the next example.

Example 1.2.5. Let $G_{1}=C_{4}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ and $G_{2}=C_{4}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ and let $H_{1}=P_{4}\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ and $H_{2}=P_{4}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$. Clearly $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$. Define $f: H_{1} \rightarrow H_{2}$ by $f\left(u_{i}\right)=v_{i}$ for all $i=1,2,3,4$. Then we have non-simple glued graph $\underset{H_{1} \cong f H_{2}}{G_{1} \unrhd G_{2}}$ as shown in Figure 1.2.3.

Figure 1.2.3: A glued graph between simple graphs which is not a simple graph

The following theorem gives a necessary and sufficient condition for glued graphs of simple graphs to be simple.

Theorem 1.2.6. Let G_{1} and G_{2} be simple graphs and let H be the clone of a glued graph $G_{1} \underset{H}{\triangleright} G_{2}$. Then $G_{1} \not \underset{H}{\triangleright} G_{2}$ is a simplegraph if and only if there are no verices u and v in H such that there are edges $e_{1} \in E\left(G_{1} \backslash H\right)$ and $e_{2} \in E\left(G_{2} \backslash H\right)$ whose

Proof. Let G_{1} and G_{2} be simple graphs and let H be the clone of a $\underset{H}{ } G_{1} \underset{H}{\perp}$. Consider $G_{1} \underset{H}{\perp} G_{2}$ a glued graph of G_{1} and G_{2} at a clone H. Clearly, if there are verices u and v in H such that there are edges $e_{1} \in E\left(G_{1} \backslash H\right)$ and $e_{2} \in$ $E\left(G_{2} \backslash H\right)$ whose endpoints are u and v, then $G_{1} \underset{H}{\triangleright} G_{2}$ contains multiple edges whose endpoints are u and v. Hence $G_{1} \underset{H}{\triangleright} G_{2}$ is not a simple graph. Conversely,
assume that $\underset{H}{ } G_{1} \underset{H}{\triangleright} G_{2}$ is not a simple graph. So $G_{1} \underset{H}{\triangleright} G_{2}$ has a loop or multiple edges. If $\underset{H}{\perp} \underset{H}{\triangleright} G_{2}$ has a loop, then that loop must be in G_{1} or G_{2} and also G_{1} or G_{2} is not a simple graph. This is a contradiction. Hence $G_{1} \underset{H}{\triangleright} G_{2}$ contains multiple edges, say e_{1} and e_{2} with endpoints u and v. Since the graph gluing does not create an edge, we have $e_{1} \in E\left(G_{1}\right) \cup E\left(G_{2}\right)$ and $e_{2} \in E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Because G_{1} and G_{2} are simple, so e_{1} and e_{2} are in different graphs. Without loss of generality, assume $e_{1} \in E\left(G_{1} \backslash H\right)$ and $e_{2} \in E\left(G_{2} \backslash H\right)$. This implies that there are verices u and v in H such that there are edges $e_{1} \in E\left(G_{1} \backslash H\right)$ and $e_{2} \in E\left(G_{2} \backslash H\right)$ whose endpoints are u and v.

Next, we give the order and size of glued graphs in terms of those of original graphs.

Proposition 1.2.7. Let G_{1} and G_{2} be graphs and let H be a clone of $\underset{H}{G_{1}} \underset{H}{\triangleright} G_{2}$. Then

$$
\begin{aligned}
& \text { 1. }\left|V\left(G_{1} \underset{H}{\triangleright} G_{2}\right)\right|=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-|V(H)| \text {, and } \\
& \text { 2. }\left|E\left(G_{1} \underset{H}{\triangleright} G_{2}\right)\right|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|-|E(H)| .
\end{aligned}
$$

Proof. Let G_{1} and G_{2} be graphs and let H be a clone of $G_{1} \oplus{ }_{H} G_{2}$. Because vertices and edges in H are counted twice in the glued graph, so $\left|V\left(\underset{H}{\triangleright} G_{1}\right)\right|=\left|V\left(G_{1}\right)\right|+$ $\left|V\left(G_{2}\right)\right|-|V(H)|$ and $\left|E\left(G_{H}^{\perp} G_{2}\right)\right|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|-|E(H)|$.

We next give a trivial upper bound of the maximum degree of any glued graph. Lemma 1.2.8. Let G_{1} and G_{2} be graphs and let H be the clone of a glued graph $G_{1} \stackrel{\perp}{H} G_{2}$. Then

Proof. Let G_{1} and G_{2} be graphs and let H be the clone of a glued graph $G_{1} \underset{H}{\triangleright} G_{2}$. For convenience, let $G=\underset{H}{G_{1}} \underset{H}{\triangleright} G_{2}$. Let v be a vertex with maximum degree of G. If v is not in H, then $\operatorname{deg}_{G}(v)=\max \left\{\Delta\left(G_{1}\right), \Delta\left(G_{2}\right)\right\} \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)$. Suppose that v is in H. So v is in both G_{1} and G_{2}. Because each edge which is incident to v in H is counted twice, so

$$
\operatorname{deg}_{G}(v)=\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)-\operatorname{deg}_{H}(v) .
$$

Since $v \in H$, we get that $\operatorname{deg}_{H}(v) \geq \delta(H)$. Hence

$$
\operatorname{deg}_{G}(v)=\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)-\operatorname{deg}_{H}(v) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)
$$

A trivial upper bound of the maximum degree of any glued graph in Lemma 1.2 .8 is a useful tool to find the chromatic numbers and the edge-chromatic numbers of glued graphs in Chapter 3 and Chapter 4. In the next chapter, we consider results of the graph gluing when original graphs are particular types of graphs.

CHAPTER II

GLUED GRAPHS

Our purpose in this chapter is to study the graph gluing between original graphs which are such as forests, trees, bipartite graphs, chordal graphs and interval graphs. We separate this chapter into two sections. The first section contains the results of a family of bipartite graphs including forests and trees, and k-partite graphs and the other contains the results of chordal graphs and interval graphs.

2.1 The Graph Gluing of Bipartite Graphs and k-partite Graphs

First, we recall definitions and some properties of a forest and a tree.
Definition 2.1.1. A graph with no cycle is acyclic. A forest is an acyclic graph.

To find a result of the graph gluing between trees, we state a well-known characterization of trees in Theorem 2.1.2. Then we give a result of the graph gluing between two trees in Theorem 2.1.3.

Theorem 2.1.2 ([3]). For any n-vertex graph G with $n \geq 1$, the following are equivalent to definitions of a tree with n vertices:
A) G is connected and has no cycles.
B) G is connected and has $n-1$ edges.
C) G has $n-1$ edges and no cycles.
D) For $u, v \in V(G), G$ has exactly one u, v-path.

We next show a result of the graph gluing of two trees in Theorem 2.1.3.
Theorem 2.1.3. Let T_{1} and T_{2} be graphs.
A glued graph $T_{1} \oplus T_{2}$ is a tree if and only if T_{1} and T_{2} are trees.

Proof. Necessity. By contrapositive, suppose that T_{1} or T_{2} is not a tree. Without loss of generality, we may assume that T_{1} is not a tree. Then T_{1} contains a cycle or T_{1} is disconnected.

Case 1. T_{1} contains a cycle : Because $T_{1} \subseteq T_{1} \triangleright T_{2}$, so that cycle is in $T_{1} \triangleleft T_{2}$. Therefore $T_{1} \triangleleft T_{2}$ is not a tree.

Case 2. T_{1} is disconnected: By Remark 1.2.4, $T_{1} \triangleleft T_{2}$ is also disconnected. Hence $T_{1} \triangleleft T_{2}$ is not a tree.

Sufficiency. Let T_{1} and T_{2} be trees and let $T_{1} \underset{H}{\triangleright} T_{2}$ be a glue graph between T_{1} and T_{2} at arbitrary clone H. Since a connected subgraph of a tree is a tree, the clone H is also a tree. By Proposition 1.2.7, we have

$$
\begin{aligned}
\left|E\left(T_{1} \perp T_{2}\right)\right| & \Leftrightarrow\left|E\left(T_{1}\right)\right|+\left|E\left(T_{2}\right)\right|-|E(H)| \\
6 \cdot 6 \mid 1 & =\left|V\left(T_{1}\right)\right|-1+\left|V\left(T_{2}\right)\right|-1-|V(H)|+1 \\
99 \lambda \cap) & =\left|V\left(T_{1}\right)\right|+\left|V\left(T_{2}\right)\right|=|V(H)|-1
\end{aligned}
$$

Since T_{1} and T_{2} is connected, so is $T_{1} \underset{H}{\triangleright} T_{2}$. By Theorem 2.1.2, $T_{1} \underset{H}{\triangleright} T_{2}$ is a tree.
Theorem 2.1.3 can be restated for connected graphs G_{1} and G_{2} as follows:
A glued graph $G_{1} \triangleleft G_{2}$ has a cycle if and only if G_{1} or G_{2} has a cycle.

We next consider all cycles in any glued graph. Since G_{1} and G_{2} are subgraphs of $G_{1} \triangleleft G_{2}$ where G_{1} and G_{2} are graphs, all cycles in G_{1} and G_{2} are in $G_{1} \triangleleft G_{2}$. However, it is possible that $G_{1} \triangleright G_{2}$ contains a new cycle. We illustrate this in the next example.

Example 2.1.4. Let G_{1} and G_{2} be graphs in Figure 2.1.2.

Figure 2.1.2: Created cycles

Let $H_{1}=P_{3}(1,2,4) \subseteq G_{1}$ and $H_{2}=P_{3}(a, c, d) \subseteq G_{2}$. Define $f: H_{1} \rightarrow H_{2}$ be defined by $f(1)=a, f(2)=c$ and $f(4)=d$. Then we get $\underset{H_{1} \cong f H_{2}}{G_{1} ₫ G_{2}}$ showed in Figure 2.1.2 containing $C_{6}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$ but $C_{6}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$ is not a cycle in G_{1} and G_{2}.

In Example 2.1.4, we can see that the graph gluing can create a new cycle. We call such new cycles as created cycles and all cycles in the original graphs as original cycles. Theorem 2.1.6 shows a necessary condition to guarantee the existence of created cycles in any glued graph.

Remark 2.1.5. Let C be a created cycle of $G_{1} \stackrel{\rightharpoonup}{H} G_{2}$ where G_{1} and G_{2} are graphs and H is a clone of $G_{1} \triangleright G_{2}$. There exist non-trivial paths P and B^{\prime} which are subgraphs of C such that $P \subseteq G_{1} \backslash H$ and $P^{\prime} \subseteq G_{2} \backslash H$.

Theorem 2.1.6. Let G_{1} and G_{2} be graphs. If $G_{1} \oplus G_{2}$ contains a created cycle, then both G_{1} and G_{2} are not acyclic.

Proof. Let G_{1} and G_{2} be graphs. Without loss of generality, we may assume that G_{1} and G_{2} are connected. Assume that $G_{1} \bowtie G_{2}$ contains a created cycle, say C.

Suppose for a contradiction that G_{1} is acyclic. So G_{1} is a tree. If G_{2} is acyclic, then G_{2} is a tree. By Theorem 2.1.3, $G_{1} \bowtie G_{2}$ is a tree which is acyclic. This is a contradiction. So that G_{2} contains a cycle. By Remark 2.1.5, There exists a non-trivial path which is a subgraph of $C \cap\left(G_{1} \backslash H\right)$ where H is arbitrary clone of $G_{1} \bowtie G_{2}$. We choose u, v-path P such that $u \neq v$ and $|E(P)|$ is the maximum. Then u and v are vertices in H. Since the clone is connected, there is another u, v-path P^{\prime} in H. Because $P \subseteq G_{1} \backslash H$ but $P^{\prime} \subseteq H$, so $P^{\prime} \neq P$. Then for each vertex in $P \cup P^{\prime}$ has degree two. So $P \cup P^{\prime}$ contains a cycle. But $P \cup P^{\prime} \subseteq G_{1}$, so G_{1} contains a cycle, a contradiction. Therefore both G_{1} and G_{2} are not acyclic.

The converse of theorem 2.1.6 does not hold. We show in Example 2.1.7.
Example 2.1.7. Let G_{1} and G_{2} be graphs as shown in Figure 2.1.3.

Figure 2.1.3: The converse of Theorem 2.1.6 does not hold.

We glue G_{1} and G_{2} at $H_{1}=P_{2}(4,5) \subseteq G_{1}$ and $H_{2}=P_{2}(a, b) \subseteq G_{2}$ by isomorphism f between H_{1} and H_{2} such that $f(4) \Rightarrow a$ and $f(5)=b$. So we get $\underset{H_{1} \cong{ }_{f} H_{2}}{G_{1} \unrhd G_{2}}$ which does not contain any new cycle as shown in Figure 2.1.3.

Now we study a result of the graph gluing between two forests. That result is showed in Corollary 2.1.8.

Corollary 2.1.8. Let G_{1} and G_{2} be graphs.
A glued graph $G_{1} \triangleleft G_{2}$ is a forest if and only if G_{1} and G_{2} are forests.

Proof. Let G_{1} and G_{2} be graphs. Necessity. By contrapositive, suppose that G_{1} or G_{2} is not a forest. Without loss of generality, we may assume that G_{1} is not a forest. So G_{1} contains a cycle. Since $G_{1} \subseteq G_{1} \triangleright G_{2}$, we have that $G_{1} \bowtie G_{2}$ contains that cycle. Hence $G_{1} \triangleleft G_{2}$ is not a forest.

Sufficiency. By contrapositive, suppose $G_{1} \bowtie G_{2}$ is not a forest. So $G_{1} \bowtie G_{2}$ contains a cycle, say C. Then C is an original cycle or a created cycle. If C is an original cycle, then it is done. Suppose C is a created cycle. So by Theorem 2.1.6, both G_{1} and G_{2} are not acyclic. Hence G_{1} and G_{2} are not forests.

Next, we consider created cycles in any glued graph obtained by gluing two cycles at a path.

Corollary 2.1.9. Let C be a created cycle in a glued graph $G_{1} \underset{P}{\oplus} G_{2}$ where G_{1} and G_{2} are cycles and P is a clone. Then C is an even cycle if and only if the lengths of G_{1} and G_{2} have the same parity.

Proof. Let G_{1} and G_{2} be cycles and let C be a created cycle in $G_{1} \underset{P}{\perp} G_{2}$ where P is a clone. So P is a path because all connected subgraphs of any cycle are paths. We have that $|E(C)|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|-2|E(P)|$. If $\left|E\left(G_{1}\right)\right|$ and $\left|E\left(G_{2}\right)\right|$ have the same parity, Then $|E(C)|$ is even and also C is an even cycle. Otherwise, the lengths of G_{1} and G_{2} have the different parity, then $|E(C)|$ is odd and also C is an odd cycle.

The rest of this section, we investigate results of the graph gluing between two bipartite graphs and k-parfite graphs where k is a positive integer such that $k>2$. First, we recall definitions and a property of bipartite graphs.
Definition 2.1.10. A graph G is bipartite if $V(G)$ is the union of two disjoint non-empty independent sets called partite sets of G.

A bipartition of G is a set of partite sets.
A complete bipartite graph is a simple bipartite graph such that two vertices are adjacent if and only if they are in different partite sets. When the partite sets have sizes r and s, the complete bipartite graph is denoted as $K_{r, s}$.

Definition 2.1.11. Let k be an interger such that $k \geq 3$. A graph G is k-partite if $V(G)$ can be expressed as the union of k disjoint non-empty independent sets called partite sets of G. A k-partition of G is a set of partite sets of G.

A bipartite graph A complete bipartite graph

A 3-partite graph

Figure 2.1.4: Examples of bipartite graphs, complete bipartite graphs and 3-partite graphs

Theorem 2.1.12 ([3]). A graph is bipartite if and only if it has no odd cycle.
Theorem 2.1.12 helps us to characterize a result of the graph gluing of bipartite graphs showed in the next theorem.

Theorem 2.1.13. Let B_{1} and B_{2} be graphs.
A glued graph $B_{1} \triangleleft B_{2}$ is a bipartite graph if and only if B_{1} and B_{2} are bipartite.
Proof. Necessity. By contrapositive, suppose that B_{1} or B_{2} is not bipartite. Without loss generality, we may assume that B_{1} is not bipartite. By Theorem 2.1.12, B_{1} contains an odd cycle called C_{\curvearrowleft} Since $B_{1} \subseteq B_{1} \triangleright B_{2}$, we obtain that $B_{1} \triangleleft B_{2}$ contains C. Hence $B_{1} \triangleleft B_{2}$ is not a bipartite graph.

Sufficiency. Assume B_{1} and B_{2} are bipartite. Let $\left\{X_{i}, Y_{i}\right\}$ be a bipartition of B_{i} for all $i=1,2.0$ Consider arbitrary glued graph of B_{1} and B_{2} at a clone H, $B_{1} \underset{H}{\triangleleft} B_{2}{ }^{9}$ Because H is a subgraph of bipartite graphs, so H is bipartite. Let $\left\{X_{H}, Y_{H}\right\}$ be a bipartition of H. Without loss of generality, we may assume that X_{H} is a subset of X_{1} and X_{2}, and Y_{H} is a subset of Y_{1} and Y_{2}. Let $X=X_{1} \cup X_{2}$ and $Y=Y_{1} \cup Y_{2}$. To show that $\{X, Y\}$ is a bipartition of $B_{1} \stackrel{\rightharpoonup}{\triangleleft} B_{2}$, let u and v be vertices in $B_{1} \underset{H}{\triangleright} B_{2}$ such that u is adjacent to v. So both u and v are in B_{1} or B_{2}.

We may assume that u and v are in B_{1}. Because B_{1} is a bipartite graph, so u and v are not in the same partite set in B_{1}. It means that $u \in X_{1}$ and $v \in Y_{1}$ or $u \in Y_{1}$ and $v \in X_{1}$. Assume that $u \in X_{1}$ and $v \in Y_{1}$. So $u \in X$ and $v \in Y$. Clearly, $X \cup Y=V\left(\underset{H}{B_{1} \triangleleft B_{2}}\right)$. Hence X and Y are partite sets of $B_{1} \stackrel{\triangleright}{H} B_{2}$. Therefore $B_{1} \underset{H}{\triangleright} B_{2}$ is a bipartite graph.

In the case of k-partite graphs where $k \geq 3$, it is not necessary that the graph gluing of two k-partite graphs is also k-partite.

Example 2.1.14. Let G_{1} and G_{2} be graphs as the following figure.

Figure 2.1.5: A glued graph between k-partite graphs which is not k-partite

Let $H_{1}=P_{3}(1,3,4) \subseteq G_{1}$ and $H_{2}=P_{3}(a, b, c) \subseteq G_{2}$. Define $f: H_{1} \rightarrow H_{2}$ by $f(1)=a, f(3)=b$ and $f(4)=c$. Clearly, G_{1} and G_{2} are 3-partite while $\underset{H_{1} \cong_{f} H_{2}}{G_{1} \bowtie G_{2}}=K_{4}$ which is not 3-partite.

We next give a condition to obtain a glued graph between two k-partite graphs

Theorem 2.1.15. For an integer $k_{0} \geq 3$, let G_{1} and G_{2} be k-partite graphs and let H be a clone of $G_{1} \stackrel{\perp}{H} G_{2}$. If H is a k-partite graph, then $G_{1} \perp G_{2}$ is also a k-partitecgraph.

Proof. Let G_{1} and G_{2} be k-partite graphs and let $\left\{A_{1}, A_{2} \ldots, A_{k}\right\}$ and $\left\{B_{1}, B_{2} \ldots, B_{k}\right\}$ be partitions of G_{1} and G_{2}, respectively. let H be a clone of $G_{1} \underset{H}{\triangleright} G_{2}$. Assume that H is a k-partite graph. Let $\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$ be a k-partition of H. Because H is a subgraph of G_{1} and G_{2}, without loss of generality, Z_{i} is a subset of
A_{i} and B_{i} for all $i \in\{1,2, \ldots, k\}$. Let $M_{i}=A_{i} \cup B_{i}$ for all $i \in\{1,2, \ldots, k\}$. Clearly, $M_{1} \cup M_{2} \cup \ldots \cup M_{k}=V\left(G_{1} \underset{H}{\oplus} G_{2}\right)$. Next, let i be arbitrary and let $u, v \in M_{i}=A_{i} \cup B_{i}$.

Case 1. $u \in V\left(G_{1} \backslash H\right)$ and $v \in V\left(G_{2} \backslash H\right)$: Then it is clear that u and v are not adjacent.

Case 2. $u, v \in V\left(G_{1}\right)$: Then $u, v \in A_{i}$. Because A_{i} is an independent set of $V\left(G_{1}\right)$, so u and v are not adjacent.

Case 3. $u, v \in V\left(G_{2}\right)$: Similarly to case 2, so u and v are not adjacent.
Hence $\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$ is a k-partition of $G_{1} \underset{H}{\triangleright} G_{2}$ and also $G_{1} \underset{H}{\triangleright} G_{2}$ is a k-partite graph.

Example 2.1.16. To show that the converse of Theorem 2.1.15 does not hold, let G_{1} and G_{2} be two copies of triangles K_{3}. So G_{1} and G_{2} are 3-partite. Let $H_{1}=P_{2}\left(u_{1}, v_{1}\right)$ and $H_{2}=P_{2}\left(u_{2}, v_{2}\right)$ where $u_{i}, v_{i} \in V\left(G_{i}\right)$ for all $i=1,2$. We glue G_{1} and G_{2} at H_{1} and H_{2}. We can see that a clone of glued graph of G_{1} and G_{2} is not a 3-partite graph while $\underset{H_{1} \cong H_{2}}{G_{1}} \downarrow G_{2}$ is isomorphic to $K_{4} \backslash\{e\}$ which is 3-partite. \square

2.2 The Graph Gluing of Chordal Graphs and Interval Graphs

Unlike the previous section, glued graphs in this section are not necessary to be the same type as their original graphs. So we investigate conditions to obtain the property that glued graphs are the same type as their original graphs.

Definition 2.2.1. A chord of a cycle C is an edge not in C whose endpoints lie in C. A chordless cycle in G is a cycle of length at least 4 in G that has no chord (that is, the cycle is an induced subgraph). A graph G is chordal if it is simple and has no chordless cycle.

Example 2.2.2. Trees are chordal, because trees are acyclic. For all n, K_{n} is chordal.

Remark 2.2.3. For all induced subgraphs of any chordal graph are chordal.

Definition 2.2.4. The join of simple graphs G_{1} and G_{2}, written $G_{1} \vee G_{2}$, is the graph obtained from the disjoint union between G_{1} and G_{2} by adding all edges in $\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$.

Figure 2.2.1: $K_{4} \vee K_{3}$

If both original graphs of a glued graph are chordal, it is not necessary that their glued graph is chordal. We show this in Example 2.2.5.

Example 2.2.5. Let G_{1} and G_{2} be graphs as shown in Figure 2.2.2.

Figure 2.2.2: A glued graph between chordal graphs which is not chordal
Let $H_{1}=P_{3}(1,3,4) \subseteq G_{1}$ and $H_{2} \cap \neq P_{3}(a, b, c) \subseteq G_{2}$. Define $f: H_{1} \rightarrow H_{2}$ by $f(1)=a, f(3)=b$ and $f(4)=c$. So we get $\underset{H_{1} \cong f H_{2}}{G_{1} \unrhd G_{2}} \cong C_{4} \vee K_{1}$. Because $\underset{H_{1} \cong H_{2}}{G_{1} \bowtie G_{2}}$ contains $C_{4}\left(v_{1}, v_{2}, v_{4}, v_{5}\right)$ as an induced subgraph, so $\underset{H_{1} \cong H_{f}}{G_{1} \unrhd G_{2}}$ is not chordal.

We observe that if all cycles in a glued graph of two chordal graphs are original cycles, then the glued graph is chordal. Then we use Theorem 2.1.6 to get a condition to guarantee that a glued graph has no created cycles.

Theorem 2.2.6. For any graphs G_{1} and G_{2}, if G_{1} is acyclic and G_{2} is chordal, then the glued graph $G_{1} \bowtie G_{2}$ is chordal.

Proof. Let G_{1} and G_{2} be graphs. Assume that G_{1} is acyclic and G_{2} is chordal. By Theorem 2.1.6, $G_{1} \bowtie G_{2}$ does not contain a created cycle. So all cycles in $G_{1} \triangleleft G_{2}$ are in G_{2}. Thus they are not chordless. Hence $G_{1} \triangleright G_{2}$ is chordal.

In [2], Chartrand and Lesniak give a characterization of chordal graphs. We restate and prove it in terms of glued graphs in Theorem 2.2.7.

Theorem 2.2.7 ([2]). A graph G is a chordal graph if and only if G is a glued graph of two chordal graphs at a clone which is a complete graph(can be a vertex).

Proof. Necessity. Let G be a chordal graph. If G is a complete graph, then $G=\underset{G \cong_{I} G}{\unlhd} G$ where I is the identity isomorphism. Assume that G is a non-complete chordal graph. Let S be any minimum vertex-cut of G. Let A be the vertex set of one component of $G \backslash S$ and let $B=V(G) \backslash(S \cup A)$. Define the subgraphs G_{1} and G_{2} of G by $G_{1}=G[A \cup S]$ and $G_{2}=G[B \cup S]$. We can see that both G_{1} and G_{2} are induced subgraphs of G. Since G is chordal, both G_{1} and G_{2} are chordal graphs. We can see that $G={ }_{G[S]}^{G_{1}} \cong_{I} G[S]$. It remains to show that $G[S]$ is a complete graph. If $|S|=1$, then $G[S]$ is a complete graph. So we may assume that $|S| \geq 2$. Since S is minimum, each $x \in S$ is adjacent to some vertex of each component of $G \backslash S$. Therefore, for each pair $x, y \in S$, there exist paths $x, a_{1}, a_{2}, \ldots, a_{r}, y$ and $x, b_{1}, b_{2}, \ldots, b_{t}, y$ where each $a_{i} \in A$ and $b_{i} \in B$, such that these paths are chosen to be of minimum length. Thus, $C: x, a_{1}, a_{2}, \ldots, a_{r}, y, b_{t}, b_{t-1}, \ldots, b_{1}, x$ is a cycle of length at least 4 , implying that C has a chord. However, $a_{i} b_{j} \notin E(G)$, since S is a vertex-cut and $a_{i} a_{j} \notin E(G)$ and $b_{i} b_{j} \notin E(G)$ by the minimality of r and t. Thus $x y \in E(G)$. Therefore $G[S]$ is a complete graph.

Sufficiency. Let G_{1} and G_{2} be graphs and let $G_{1} \perp{ }_{-}^{\perp} G_{2}$ be a glued graph between G_{1} and G_{2} af a clone H. Assume that G_{1} cand G_{2} are chordal and H is a clique. Let C bea cycle of length at least 4 in $G_{1} \underset{H}{\perp} G_{2}$. If C is an original cycle, it is done. Suppose that C is a created cycle. By Remark 2.1.5, There exists a non-trivial path which is a subgraph of $C \cap\left(G_{1} \backslash H\right)$. We choose u, v-path P such that $u \neq v$ and $|E(P)|$ is the maximum. This implies that u and v are in H. Since H is a clique, there is an edge e incident to u and v in H. If e is in C, then $E(C)=E(P) \cup\{e\}$
and also C is an original cycle, a contradiction. So $e \notin E(C)$. Hence e is a chord of C. Therefore $G_{1} \underset{H}{\triangleright} G_{2}$ is a chordal graph.

Theorem 2.2.7 does not mean that if a glued graph is chordal, then its original graphs are chordal. We illustrate this in the next example.

Example 2.2.8. Let G_{1} and G_{2} be graphs as shown in Figure 2.2.3.

Figure 2.2.3: A glued graph between non-chordal graphs which is chordal

We observe that both G_{1} and G_{2} are not chordal. Let $f: H_{1} \rightarrow H_{2}$ be the isomorphism defined by $f\left(u_{i}\right)=v_{i}$ for all $i \in\{1,2,3,4,5,6\}$. Then the graph $\underset{H_{1}}{G_{1} \nsubseteq H_{2}} \underset{H_{2}}{ }$
 is chordal, by Theorem 2.2.7, we can find chordal graphs G_{3} and G_{4}, subgraphs H_{3} and H_{4} of G_{3} and G_{4}, respectively, which are cliques, and an isomorphism $g: H_{3} \rightarrow H_{4}$ such that $\underset{H_{1} \cong H_{2}}{G_{1} \bowtie G_{2}} \underset{H_{3} \simeq g H_{4}}{G_{3} \unlhd G_{4}}$.

For example, $G_{3}=\binom{G_{1} \not \overbrace{1} G_{2}}{H_{1} \cong_{f} H_{2}}\left[\left\{w_{2}, w_{3}, w_{4}, w_{5}, w_{7}\right\}\right]$ and $G_{4}=\left(\underset{H_{1} \unrhd G_{2}}{G_{1} H_{2}}\right)\left[\left\{w_{1}, w_{4}, w_{5}, w_{6}, w_{8}\right\}\right], H_{3}=P_{2}\left(w_{4}, w_{5}\right)=H_{4}$ with the identity isomorphism g between H_{3} and H_{4}.

We can see in the previous example that the graph gluing of non-chordal graphs can be chordal. The next lemma gives a condition to make sure that a result of the graph gluing of non-chordal graphs is not chordal.
 an induced subgraph of both G_{1} and G_{2} and $G_{1} \underset{H}{\perp} G_{2}$ is chordal, then G_{1} and G_{2} are chordal.

Proof. Let G_{1} and G_{2} be graphs. Then $G_{1} \underset{H}{\perp} G_{2}$ is a glued graph between G_{1} and G_{2} at a clone H. Assume that H is an induced subgraph of both G_{1} and G_{2} and $G_{1} \underset{H}{\triangleright} G_{2}$ is chordal. Suppose for a contradiction that G_{1} is not chordal. So G_{1} contains a chordless cycle C of length at least four. Then C is a cycle in $G_{1} \underset{H}{\triangleleft} G_{2}$. Because $G_{1} \underset{H}{\triangleright} G_{2}$ is chordal, so C has a chord e which have endpoints u and v. So $u, v \in V\left(G_{1}\right)$. Because C is a chordless cycle in G_{1}, so $e \in E\left(G_{2}\right) \backslash E\left(G_{1}\right)$ and $u, v \in V\left(G_{2}\right)$. Thus $u, v \in V(H)$ but $e \notin E(H)$. Hence H is not an induced subgraph, a contradiction. Therefore G_{1} and G_{2} are chordal graphs.

The converse of Lemma 2.2.9 is not true illustrated by graphs G_{1} and G_{2} in Example 2.2.5. In the rest of this section, we investigate results of the graph gluing between two interval graphs.

Definition 2.2.10. An interval representation of a graph is a family of intervals assigned to the vertices so that vertices are adjacent if and only if the corresponding intervals intersect. A graph having such a representation is an interval graph.

Figure 2.2.4: An interval graph

Remark 2.2.11. An induced subgraph of an interval graph is an interval graph.
Lemma 2.2.12 and Theorem 2.2.13 are well-known results about the relation between interval graphs and chordal graphs.

Lemma 2.2.12. [Folklore] For any integer n such that $n \geq 4, C_{n}$ is not an interval graph.

Proof. Let n be an integer such that $n \geq 4$. Suppose that C_{n} is an interval graph. Let $P=C_{n} \backslash\{v\}$ where v is a vertex in C_{n}. So P is an induced subgraph of C_{n}. Hence P is also an interval graph. Because P is a path, so P has an interval representation similarly as Figure 2.2 .5 where a and b are endpoints of P.

Figure 2.2.5: The interval representation of a path

To add vertex v, v have to intersect a and b but not intersect the other vertices. It is impossible. Hence C_{n} is not an interval graph.

Theorem 2.2.13. [Eolklore] Let G be a graph. If G is an interval graph, then G is a chordal graph.

Proof. Let G be a graph. Suppose that G is not chordal. So G contains a chordless cycle of length at least four, say C By Lemma 2.2.12, C is not an interval graph. Because C is an induced subgraph of G, so G is not an interval graph.

Next, we introduce a definition and some theorems about intervabgraphs.
Definition 2.2.14. Three vertices u, v, w form an asteroidal-triple if for each pair of them there is a path connecting that two vertices but not contain a neighborhood of the third vertex. For a graph G, we denote $\mathcal{A}(G)$ for the set of all asteroidal-triples in G.

Remark 2.2.15. Let u, v, w be vertices of a graph G. If u, v, w form an asteroidaltriple in G, then any pair of $\{u, v, w\}$ are not adjacent.

Example 2.2.16. Let G_{1}^{*} and G_{2}^{*} be graphs as shown in Figure 2.2.6.

Figure 2.2.6: Examples of graphs containing an asteroidal-triple

We can see that u_{4}, u_{5}, u_{6} is the only asteroidal-triple in G_{1}^{*} and v_{4}, v_{5}, v_{6} is the only asteroidal-triple in G_{2}^{*}.
Theorem 2.2.17 ([4]). A graph G is an interval graph if and only if it is chordal and has no asteroidal-triple.

In Example 2.2.16, G_{1} and G_{2} are not interval graphs but they are chordal.
A glued graph between two interval graphs may or may not be an interval graph. We show this in Example 2.2.18 and Example 2.2.19.

Example 2.2.18. Let G_{1} and G_{2} be complete graphs and $G_{1} \triangleleft G_{2}$ be arbitrary glued graph between G_{1} and G_{2} with at least 3 vertices. We will show that $G_{1} \triangleleft G_{2}$ is an interval graph. Clearly, $G_{1} ゅ G_{2}$ is chordal. Itremains to prove that $G_{1} \triangleleft G_{2}$ has no asteroidal-triples, Let u, v and w be distinct vertices in $G_{1} \oplus G_{2}$. By the pigeonhole principle, there are at least two vertices of $\{u, v, w\}$ such that are in the same graph. Without loss of generality, we may assume that u and v are in G_{1}. Since G_{1} is a complete graph, vertex u is adjacent to v. By Remark 2.2.15, u, v, w does not form an asteroidal-triple. Therefore $G_{1} \triangleleft G_{2}$ is an interval grap ${ }_{\square}$. Example 2.2.19. Let G_{1} and G_{2} be graphs as shown in Figure 2.2.7. We can see interval representations of G_{1} and G_{2} showed in Figure 2.2.7. So G_{1} and G_{2} are interval graphs.

Figure 2.2.7: A glued graph of interval graphs which is not an interval graph

As in Example 2.2.5, $\underset{H}{G_{1} \triangleright G_{2}}$ is not chordal. Hence $G_{1} \underset{H}{\triangleright} G_{2}$ is not an interval graph.

The graph gluing can create an asteroidal-triple or destroy an asteroidal-triple in the original graphs. We show this in Example 2.2.20 and Example 2.2.21

Example 2.2.20. Let $G_{1}=P_{5}\left(u_{1}, u_{2}, \ldots, u_{5}\right)$ and $G_{2}=P_{5}\left(v_{1}, v_{2}, \ldots, v_{5}\right)$ and let $H_{1}=P_{3}\left(u_{1}, u_{2}, u_{3}\right)$ and $H_{2}=P_{3}\left(v_{1}, v_{2}, v_{3}\right)$. We next define $f: H_{1} \rightarrow H_{2}$ by $f\left(u_{i}\right)=v_{i}$ for all $i=1,2,3$. So $\underset{H_{1} \nsubseteq H_{2}}{G_{1} \bowtie G_{2}}$ is a graph isomorphic to G_{2}^{*} in Figure 2.2.6. Hence $\underset{H_{1} \cong f H_{2}}{G_{1} \unrhd G_{2}}$ contains an asteroidal-triple. Thus $\underset{H_{1} \cong f H_{2}}{G_{1} \unrhd G_{2}}$ is not an interval graph.
Example 2.2.21. Let $G_{1}, G_{2}, \overparen{H}_{1}$ and H_{2} be graphs as shown in Figure 2.2.8. Note that $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2, \sigma}$ We can see that u_{3}, u_{14} and u_{10} form an asteroidal-triple in G_{1} and v_{3}, v_{7} and v_{10} form an asteroidal-tripte in G_{2}. Define isomorphism $f: H_{1} \rightarrow H_{2}$ by $f\left(u_{i}\right)=v_{i}$ for all $i=1,2, \ldots, 14$. Then we get $\underset{\substack{ \\H_{1} \equiv f H_{2}}}{G_{1} \bowtie G_{2}}$ as shown in Figure 2.2.8.

We can see that $\underset{H_{1} \equiv f H_{2}}{G_{1} \bowtie G_{2}}$ does not contain any asteroidal-triple.
Next, we give a condition to show that all asteroidal-triples in original graphs are still asteroidal-triples in their glued graph.

Lemma 2.2.22. Let G_{1} and G_{2} be graphs and H be a clone of $G_{1} \underset{H}{\oplus} G_{2}$. If H is an induced subgraph of G_{2}, then $\mathcal{A}\left(G_{1}\right) \subseteq \mathcal{A}\left(\underset{H}{ }\left(G_{1} \triangleright G_{2}\right)\right.$.

Proof. Let G_{1} and G_{2} be graphs and H be a clone of $G_{1} \underset{H}{\triangleright} G_{2}$. Assume that $\mathcal{A}\left(G_{1}\right) \backslash \mathcal{A}\left(G_{1} \underset{H}{\oplus} G_{2}\right) \neq \phi$. Let T be an asteroidal triple formed by vertices u, v, w in $\mathcal{A}\left(G_{1}\right) \backslash \mathcal{A}\left(G_{1} \underset{H}{\triangleright} G_{2}\right)$. Because $T \notin \mathcal{A}\left(G_{1} \underset{H}{\triangleright} G_{2}\right)$, there are two vertices in $\{u, v, w\}$ such that any path connecting that two vertices in $G_{1} \underset{H}{\perp} G_{2}$ contains a neighborhood of the third vertex. Without loss of generality, we may assume that such two vertices are u and v. Since $T \in \mathcal{A}\left(G_{1}\right)$, there is a u, v-path $P=P_{n}\left(a_{1}=\right.$ $\left.u, a_{2}, \ldots, a_{n}=v\right)$ in G_{1} that avoids the neighborhood of w. So P is a path in $G_{1} \underset{H}{\triangleright} G_{2}$. Then there exists $i \in\{1,2, \ldots, n\}$ such that a_{i} is adjacent to w by edge e in $G_{1} \underset{H}{\triangleright} G_{2}$. Hence $e \in E\left(G_{2}\right) \backslash E\left(G_{1}\right)$ and also $a_{i}, w \in V\left(G_{2}\right)$. Since $a_{i}, w \in V\left(G_{1}\right)$, we can conclude that $a_{i}, w \in V(H)$. Since $e \notin E\left(G_{1}\right)$, we have that $e \notin E(H)$. Hence H is not an induced subgraph of G_{2}.

By applying Lemma 2.2.22, we have a condition to make sure that a result of the graph gluing between non-interval graphs is not an interval graph.

Theorem 2.2.23. Let G_{1} and G_{2} be graphs and H be a clone of $G_{1} \underset{H}{\oplus} G_{2}$. If H is an induced subgraph of both G_{1} and G_{2} and $\underset{H}{G_{1}} \underset{H}{\oplus} G_{2}$ is an interval graph, then G_{1} and G_{2} are interval graphs.

Proof. Let G_{1} and G_{2} be graphs and H be a clone of $G_{1} \underset{H}{\triangleright} G_{2}$. Assume that H is an induced subgraph of both G_{1} and G_{2} and $G_{1} \underset{H}{\triangleright} G_{2}$ is an interval graph. Suppose for a contradiction that G_{1} is not an interval graph. By Theorem 2.2.17, G_{1} is not

Case 1. G_{1} is not chordal; By Lemma 2.2.9, we get that $G_{1} \underset{H}{\oplus} G_{2}$ is not chorda. By Lemma 2.2.13, $G_{1} \perp_{H} G_{2}$ is not an interval graph.

Case 2. $\mathcal{A}\left(G_{1}\right) \neq \phi ;$ By Lemma 2.2.22, we have that $\phi \neq \mathcal{A}\left(G_{1}\right) \subseteq \mathcal{A}\left(G_{1} \underset{H}{\triangleright} G_{2}\right)$. So $G_{1} \underset{H}{\triangleright} G_{2}$ contains an asteroidal-triple.

By two cases, we have $G_{1} \underset{H}{\triangleright} G_{2}$ is not an interval graph, a contradiction. Hence G_{1} and G_{2} are interval graphs.

Example 2.2.19 shows that the converse of Theorem 2.2.23 is not true.

Example 2.2.24. Let T_{1} and T_{2} be trees. Because a connected subgraph of any tree is an induced subgraph, by Theorem 2.2.23, we have that if T_{1} or T_{2} is not an interval graph, then $T_{1} \triangleleft T_{2}$ is not an interval graph.

We have seen that the glued graphs of chordal graphs, interval graphs and k partite graphs where $k \geq 3$ do not necessary remain the same type as their original graphs. We find conditions to obtain that the glued graphs of chordal graphs are chordal and find a condition to get that the glued graphs between k-partite graphs are also k-partite graphs where $k \geq 3$. It remains an open problem to find other conditions to obtain such property. In the next chapter we consider the colorability of glued graphs.

CHAPTER III

COLORABILITY OF GLUED GRAPHS

In this chapter, we find bounds of the chromatic numbers of glued graphs and show their sharpness. A graph gluing could sometime give a resulting graph with multiple edges. As we focus on graph colorings, we will consider multiple edges as a single edge of any glued graph in this chapter.

3.1 Background

First of all, we recall the definition of the chromatic number of any graph.
Definition 3.1.1. A k-coloring of a graph G is a labeling $f: V(G) \rightarrow S$, where $|S|=k$. The labels are colors; the vertices of one color form a color class. A k coloring is proper if adjacent vertices have different labels. A graph is k-colorable if it has a proper k-coloring. The chromatic number of $\operatorname{graph} G, \chi(G)$, is the least k such that G is k-colorable.

Example 3.1.2. Let G be a nontrivial bipartite graph with a bipartition $\{X, Y\}$.
Since G is nontrivial, $\chi(G) \geq 2$. Define $\gamma: V(G) \rightarrow\{1,2\}$ by

Since X and Y are independent sets, we have that γ is proper. So $\chi(G) \leq 2$. Hence $\chi(G)=2$.
Conversely, Let G be a graph such that $\chi(G)=2$. Let $\gamma: V(G) \rightarrow\{1,2\}$ be a proper 2-coloring of G. Define sets $X, Y \subseteq V(G)$ by

$$
X=\{v \in V(G) \mid \gamma(v)=1\} \text { and } Y=\{v \in V(G) \mid \gamma(v)=2\}
$$

Then $X \cap Y=\phi$ and $X \cup Y=V(G)$. If u and v are in X, then $\gamma(u)=1=\gamma(v)$. Since γ is proper, u and v are not adjacent. If u and v are in Y, similarly u and v are not adjacent. So X and Y are independent sets. Hence G is a bipartite graph.

Definition 3.1.3. The clique number of a graph G, written $\omega(G)$, is the maximum size of a set of pairwise adjacent vertices(clique) in G.

Remark 3.1.4. For any graph G, we have $\chi(G) \geq \omega(G)$, because vertices of a clique require distinct colors.

Next we state theorems about the chromatic number of any graph that we use to find bounds of the chromatic numbers of glued graphs. Proposition 3.1.5 reveals that the chromatic numbers of graphs are at most their maximum degree plus one and Brooks proved that there are only complete graphs and odd cycles whose chromatic numbers are exactly one more than their maximum degrees showed in Theorem 3.1.6.

Proposition 3.1.5 ([3]). Let G be a graph. $\chi(G) \leq \Delta(G)+1$.
Theorem 3.1.6 ([3]). (Brooks[1941]) If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

3.2 Bounds of the Chromatic Numbers of Glued Graphs

 In this section, we investigate bounds of the chromatic numbers of glued graphs and also show their sharpness. First, we give a trivial lower bound of the chromatic
Remark 3.2.1. Because G_{1} and G_{2} are subgraphs of $G_{1} \oplus G_{2}$, we have $\chi\left(G_{1}\right) \leq$ $\chi\left(G_{1} \triangleright G_{2}\right)$ and $\chi\left(G_{2}\right) \leq \chi\left(G_{1} \triangleright G_{2}\right)$. Hence we get a lower bound of the chromatic number of $G_{1} \triangleleft G_{2}$ that

$$
\chi\left(G_{1} \triangleright G_{2}\right) \geq \max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\} .
$$

We apply Theorem 2.1.12 and Example 3.1.2 to prove the next proposition.
Proposition 3.2.2. Let G_{1} and G_{2} be nontrivial graphs. Then $\chi\left(G_{1} \oplus G_{2}\right) \geq 3$ if and only if $\chi\left(G_{1}\right) \geq 3$ or $\chi\left(G_{2}\right) \geq 3$.

Proof. Let G_{1} and G_{2} be nontrivial graphs. By contrapositive, the statement in the proposition is equivalent to $\chi\left(G_{1} \bowtie G_{2}\right) \leq 2$ if and only if $\chi\left(G_{1}\right) \leq 2$ and $\chi\left(G_{2}\right) \leq 2$. Because the chromatic number of any nontrivial graph is at least two, we can prove this proposition by proving the statement $\chi\left(G_{1}\right)=2=\chi\left(G_{2}\right)$ if and only if $\chi\left(G_{1} \triangleright G_{2}\right)=2$ instead.

Necessity. Assume that $\chi\left(G_{1}\right)=2=\chi\left(G_{2}\right)$. By example 3.1.2, G_{1} and G_{2} are bipartite. So $G_{1} \bowtie G_{2}$ is also bipartite by Theorem 2.1.12. Hence $\chi\left(G_{1} \bowtie G_{2}\right)=2$.

Sufficiency. Assume that $\chi\left(G_{1} \oplus G_{2}\right)=2$. By example 3.1.2, $G_{1} \bowtie G_{2}$ is bipartite. So G_{1} and G_{2} are bipartite by Theorem 2.1.12. Hence $\chi\left(G_{1}\right)=2=$ $\chi\left(G_{2}\right)$.

Applying Proposition 3.2.2, we get a necessary condition to have that the chromatic numbers of glued graphs are equal to three. This necessary condition is showed in Proposition 3.2.3.

Proposition 3.2.3. Let G_{1} and G_{2} be nontrivial graphs. If $\chi\left(G_{1} \triangleleft G_{2}\right)=3$, then $\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}=3$.

Proof. Let G_{1} and G_{2} be nontrivial graphs. Assume that $\chi\left(G_{1} \bowtie G_{2}\right)=3$. By Lemma 3.2.2, we have $\chi\left(G_{1}\right) \geq 3$ or $\chi\left(G_{2}\right) \geq 3$. Let $\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}=\chi\left(G_{1}\right)$. Then $\chi\left(G_{1}\right) \geq 3$. Because $G_{1} \subseteq G_{1} \oplus G_{2}$, so $3 \leq \chi\left(G_{1}\right) \leq \chi\left(G_{1} \triangleright G_{2}\right)=3$. Hence $\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}=\chi\left(G_{1}\right)=3$.

The converse of the proposition 3.2 .3 is not true. We show this in Example 2.1.14, which contains $\chi\left(G_{1}\right)=3=\chi\left(G_{2}\right)$ but $\chi\binom{G_{1} \bowtie G_{1} \overbrace{f} H_{2}}{H_{1}}=4$.

Remark 3.2.4. By Proposition 3.2.2 and Proposition 3.2.3, we get that if $\chi\left(G_{1} \triangleright G_{2}\right) \leq 3$, than $\chi\left(G_{1} \triangleright G_{2}\right)=\max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}$.

Because $\Delta\left(\underset{H}{G_{1}} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)\left(\right.$ in Theorem 1.2.8) where G_{1} and G_{2} are graphs and H is the clone of a glued graph $\underset{H}{G_{1}} \underset{H}{\triangleright} G_{2}$, so an upper bound in Theorem 3.2.5 follows immediately by using Proposition 3.1.5 and Theorem 3.1.6.

Theorem 3.2.5. Let G_{1} and G_{2} be nontrivial connected graphs and let H be a clone of $G_{1} \underset{H}{\oplus} G_{2}$. Then

$$
\chi\left(\underset{H}{G_{1} \triangleright G_{2}}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)+1
$$

Furthermore, if $G_{1} \underset{H}{\triangleright} G_{2}$ is not a complete graph or an odd cycle, then

$$
\chi\left(\underset{H}{\left.G_{1} \perp G_{2}\right)} \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)\right.
$$

Proof. Let G_{1} and G_{2} be nontrivial connected graphs and let H be a clone of $G_{1} \underset{H}{\triangleright} G_{2}$. If $G_{1} \underset{H}{\triangleright} G_{2}$ is a complete graph or an odd cycle, by Proposition 3.1.5, $\chi\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1} \underset{H}{\oplus} G_{2}\right)+1 \leq \Delta\left(\overline{G_{1}}\right)+\Delta\left(G_{2}\right)-\delta(H)+1$. Otherwise, by Brooks' theorem(Theorem 3.1.6), $\chi\left(\underset{H}{\oplus} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)$.

Example 3.2.6. To show the sharpness of theorem 3.2.5, let G_{1} and G_{2} be graphs as shown in Figure 3.2.1.

$$
G_{1} \quad G_{2}
$$

Figure 3.2.1: The sharpness of Theorem 3.2.5.

We glue G_{1} and G_{2} at $H_{1}=P_{2}(1,2) \subseteq G_{1}$ and $H_{2} \xlongequal{\sigma} \xlongequal{\circ}(a, b) \subseteq G_{2}$. So $G_{1} \perp G_{H_{1}} \cong H_{2}$ is isomorphic to $K_{4} \backslash\{e\}$ where $e \in E\left(K_{4}\right)$ which is not a complete graph or an odd cycle. Consider $\chi\left(\underset{H_{1} \cong H_{2}}{G_{1} \oplus G_{2}}\right)=3=2+2-1=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)$ where $H \cong H_{1} \cong H_{2}$.

This upper bound is too large for some graphs as shown in example 3.2.7.

Example 3.2.7. Let n be a positive integer. Define graphs G_{1} and G_{2} be two copies of $K_{n, 1}$. So $\Delta\left(G_{1}\right)=n=\Delta\left(G_{2}\right)$. Let $u_{1}, u_{2} \in V\left(G_{1}\right)$ and $v_{1}, v_{2} \in V\left(G_{2}\right)$ be such that u_{1} and v_{1} are vertices with maximum degree of G_{1} and G_{2}, respectively. We glue G_{1} and G_{2} at $H_{1}=P_{2}\left(u_{1}, u_{2}\right)$ and $H_{2}=P_{2}\left(v_{1}, v_{2}\right)$ with isomorphism f defined by $f\left(u_{1}\right)=v_{1}$ and $f\left(u_{2}\right)=v_{2}$. So by Theorem 3.2.5, $\chi\left(\underset{H_{1} \unrhd G_{f}}{G_{1} \boxtimes G_{2}}\right) \leq$ $n+n-1=2 n-1$. We know that G_{1} and G_{2} are trees. So $\underset{H_{1} \cong f H_{2}}{G_{1} ₫ G_{2}}$ is also a tree and $\chi\binom{G_{1} \bowtie G_{2}}{H_{1} \cong_{f} H_{2}}=2$. If $n \rightarrow \infty$, this bound is too large.

Theorem 3.2.5 shows an upper bound of the chromatic numbers of glued graphs in terms of the maximum degrees of its original graphs. In the next theorem, we introduce another upper bound of the chromatic numbers of glued graphs which is in terms of the chromatic numbers of its original graphs.

Theorem 3.2.8. Let G_{1} and G_{2} be graphs. Then

$$
\chi\left(G_{1} \triangleright G_{2}\right) \leq \chi\left(G_{1}\right) \chi\left(G_{2}\right) .
$$

Proof. Let G_{1} and G_{2} be graphs and let $G_{1} \underset{H}{\oplus} G_{2}$ be a glued graph of G_{1} and G_{2} at an arbitrary clone H. Assume $\chi\left(G_{1}\right)=p$ and $\chi\left(G_{2}\right)=q$. Let $\gamma_{1}: V\left(G_{1}\right) \rightarrow$ $\{1,2, \ldots, p\}$ and $\left.\gamma_{2}: V\left(G_{2}\right) \xrightarrow{\mu}, 2, \ldots, q\right\}$ be proper colorings of G_{1} and G_{2}, respectively. Define $\beta: V\left(G_{1}\right) \cup V\left(G_{2}\right) \rightarrow\{1,2, \ldots, p\} \times\{1,2, \ldots, q\}$ by for all $v_{i} \in V\left(G_{1}\right) \cup V\left(G_{2}\right)$,

$$
\beta\left(v_{i}\right)=\left\{\begin{array}{lll}
\left(\gamma_{1}\left(v_{i}\right), 1\right) & \text { if } \quad v_{i} \in V\left(G_{1} \backslash H\right), \\
\left(\gamma_{1}\left(v_{i}\right), \gamma_{2}\left(v_{i}\right)\right) & \text { if } & v_{i} \in V(H), \\
\left.\left(1, \gamma_{2}\left(v_{i}\right)\right)\right) & \text { if } & v_{i} \in V\left(G_{2} \backslash H\right) .
\end{array}\right.
$$

To show that β is proper, let v_{i} and v_{j} be vertices in $G_{1} \triangleleft G_{2}$ such that $\beta\left(v_{i}\right)=$ $\beta\left(v_{j}\right)$. We will show that v_{i} and v_{j} arechot adjacent.

Case 1. $v_{i} \in V\left(G_{1} \backslash H\right)$ and $v_{j} \in V\left(G_{2} \backslash H\right)$: Then clearly, v_{i} and v_{j} are not adjacent in $G_{1} \underset{H}{\triangleright} G_{2}$.

Case 2. Both v_{i} and v_{j} are in $V\left(G_{1} \backslash H\right)\left(\right.$ or $V\left(G_{2} \backslash H\right)$): So $\beta\left(v_{i}\right)=$ $\left(\gamma_{1}\left(v_{i}\right), 1\right)=\left(\gamma_{1}\left(v_{j}\right), 1\right)=\beta\left(v_{j}\right)$ and then $\gamma_{1}\left(v_{i}\right)=\gamma_{1}\left(v_{j}\right)$. Hence v_{i} and v_{j} are not adjacent in $G_{1} \underset{H}{\oplus} G_{2}$ because γ_{1} is proper.

Case $3 v_{i}$ is in $V(H)$ but v_{j} is in $V\left(G_{1} \backslash H\right)\left(\right.$ or $V\left(G_{2} \backslash H\right)$): So $\beta\left(v_{i}\right)=$ $\left(\gamma_{1}\left(v_{i}\right), \gamma_{2}\left(v_{i}\right)\right)=\left(\gamma_{1}\left(v_{j}\right), 1\right)=\beta\left(v_{j}\right)\left(\right.$ or $\beta\left(v_{i}\right)=\left(\gamma_{1}\left(v_{i}\right), \gamma_{2}\left(v_{i}\right)\right)=\left(1, \gamma_{2}\left(v_{j}\right)\right)=$ $\beta\left(v_{j}\right)$). Then $\gamma_{1}\left(v_{i}\right)=\gamma_{1}\left(v_{j}\right)$ (or $\left.\gamma_{2}\left(v_{i}\right)=\gamma_{2}\left(v_{j}\right)\right)$. Because both γ_{1} and γ_{2} are proper, So v_{i} and v_{j} are not adjacent in $G_{1} \underset{H}{\perp} G_{2}$.

Therefore β is proper and hence $\chi\left(G_{1} \underset{H}{\oplus} G_{2}\right) \leq \chi\left(G_{1}\right) \chi\left(G_{2}\right)$.
We show the sharpness of Theorem 3.2.8 by proving the next theorem.
Theorem 3.2.9. Let p and q be integers such that $p, q \geq 2$ but $p q \neq 4$. Then there exist G_{1} and G_{2} with a glue graph $\frac{G_{1} \perp G_{2}}{}$ where H is a clone such that $\chi\left(G_{1}\right)=p, \chi\left(G_{2}\right)=q$ and $\chi\left(\frac{G_{1} \triangleright G_{2}}{H}\right)=p q=\chi\left(G_{1}\right) \chi\left(G_{2}\right)$.

Proof. Let p and q be integers such that $p, q \geq 2$ but $p q \neq 4$.
Case 1. $p=q$: Let G_{1} be a graph such that $V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{p q}\right\}$ and u_{i} and u_{j} are adjacent if and only if $i \not \equiv j(\bmod p)$. Any $i \in\{1,2,3, \ldots, p q\}$, there are q numbers which are equivalent to $i \bmod p$. So there are $p q-q$ vertices which are adjacent to v_{i}. Hence G_{1} is $(p q-q)$-regular. Next, let $\gamma_{1}: V\left(G_{1}\right) \rightarrow\{1,2,3, \ldots, p\}$ be a coloring of G_{1} defined by for all $u_{i} \in V\left(G_{1}\right)$

$$
\gamma_{1}\left(u_{i}\right)=l \text { where } l \equiv i(\bmod p) \text { and } l \in\{1,2, \ldots, p\} .
$$

To show γ_{1} is proper, let u_{i} and u_{j} be vertices in G_{1} such that u_{i} and u_{j} are adjacent. Then $i \not \equiv j(\bmod p)$. Assume $i \equiv l(\bmod p)$ and $j \equiv k(\bmod p)$ where $l, k \in\{1,2, \ldots, p\}$. So $\gamma_{1}\left(u_{i}\right)=l \equiv i \not \equiv j \equiv k=\gamma_{1}\left(u_{j}\right)$. Hence γ_{1} is proper and also $\chi\left(G_{1}\right) \leq p$. We can see that the set of vertex $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ forms a p-clique. So $\chi\left(G_{1}\right) \geq p$. Hence $\chi\left(G_{1}\right) \geq p$. \frown

We next define graph G_{2} by $V\left(G_{2}\right) \neq\left\{v_{1}, v_{2}, \ldots \widetilde{\sigma}_{v_{q}}\right\}$ and \widetilde{v}_{i} and v_{j} are adjacent if and only if $i=j+1$ or $i \equiv j(\bmod p)$. Any $i \in\{1,2,3, \ldots, p q\}$, there are $q-1$ numbers in $\{1,2,3, \ldots, i-1, i+1, \ldots, p q\}$ which are equivalent to $m o d p$. So there are at least $q-1$ vertices which are adjacent to v_{i}. Since vertices v_{i-1} and v_{i+1} are adjacent to v_{i}, we obtain that $\operatorname{deg}\left(v_{i}\right)=q-1+2=q+1$. Hence $\Delta\left(G_{2}\right)=(q+1)$. Let $\gamma_{2}: V\left(G_{2}\right) \rightarrow\{1,2,3, \ldots, q\}$ be a coloring of G_{2}. For each $i \in\{1,2, \ldots, p q\}$, we write $i=a p+b$ where $a, b \in \mathbb{Z}, a \geq 0$ and $0<b \leq p$, defined $\gamma_{2}\left(v_{i}\right)$ by

$$
\gamma_{2}\left(v_{i}\right)=l \text { where } l \equiv a+b \quad(\bmod q) \text { and } l \in\{1,2, \ldots, q\} .
$$

To show that γ_{2} is proper, let $v_{i}, v_{j} \in V\left(G_{2}\right)$ be such that v_{i} and v_{j} are adjacent. Then $i=j+1$ or $i \equiv j(\bmod p)$. Let $j=a p+b$ where $a, b \in \mathbb{Z}, a \geq 0$ and $0<b \leq p$. So $\gamma_{2}\left(v_{j}\right) \equiv a+b(\bmod q)$.

Case 1.1. $i=j+1=a p+b+1$: If $b<p$, then $b+1 \leq p$, consequently, $\gamma_{2}\left(v_{i}\right) \equiv a+b+1(\bmod q) \not \equiv a+b(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)$. Assume that $b=p$, then $i=a p+p+1=p(a+1)+1$ and $\gamma_{2}\left(v_{i}\right) \equiv a+2(\bmod q)$. Because $p q \neq 4$, so $p \neq 2$. Hence $\gamma_{2}\left(v_{i}\right) \equiv a+2(\bmod q) \not \equiv a+p(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)$.

Case 1.2. $i \equiv j(\bmod p)$: Without loss of generality, we assume $i>j$. Then $i=j+n p=a p+b+n p=p(a+n)+b$ where $n \in \mathbb{N}$. Since $1 \leq i \leq p q$, we get that $1 \leq n \leq q-1$. Hence $\gamma_{2}\left(v_{i}\right) \equiv a+n+b(\bmod q) \not \equiv a+b(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)$.

Therefore, by both cases, we have $\gamma_{2}\left(v_{i}\right) \neq \gamma_{2}\left(v_{j}\right)$. So γ_{2} is proper and hence $\chi\left(G_{2}\right) \leq q$. Since the set of vertex $\left\{v_{1}, v_{1+p}, v_{1+2 p}, \ldots, v_{1+(q-1) p}\right\}$ forms a q-clique, we have $\chi\left(G_{2}\right) \geq q$. Hence $\chi\left(G_{2}\right)=q$.

Now consider $H_{1}=P_{p q}\left(u_{1}, u_{2}, \ldots, u_{p q}\right) \subseteq G_{1}$ and $H_{2}=P_{p q}\left(v_{1}, v_{2}, \ldots, v_{p q}\right) \subseteq$ G_{2}. We next define $f: H_{1} \rightarrow H_{2}$ by $f\left(u_{i}\right)=v_{i}$ for all $i \in\{1,2,3, \ldots, p q\}$. Then we obtain the glued graph of G_{1} and G_{2} at H_{1} and H_{2} with respect to f, written as $\underset{H_{1} \cong_{f} H_{2}}{G_{1}} \downarrow G_{2}$. Let $G=G_{1} \not \mathcal{H}_{H_{1} \cong_{f} H_{2}}^{\perp}$ and $V(G)=\left\{w_{i}: i=1,2, \ldots, p q\right.$ where w_{i} corresponds to u_{i} and $\left.v_{i}\right\}$. Let $w_{i}, w_{j} \in V(G)$. If $i \equiv j(\bmod p)$, then w_{i} and w_{j} are adjacent in G_{2}. Otherwise, w_{i} and w_{j} are adjacent in G_{1}. It follows that w_{i} and w_{j} are adjacent in G because $G_{1}, G_{2} \subseteq G$. Therefore $G=K_{p q}$ and also $\chi(G)=\chi\binom{G_{1} \bowtie G_{2}}{H_{1} \bigoplus_{f} H_{2}}=p q=\chi\left(G_{1}\right) \chi\left(G_{2}\right)$.

Case 2. $p<q$: Define G_{1}, G_{2} and γ_{1} similarly as case 1 . Then $\chi\left(G_{1}\right)=p$. We next define $\gamma_{2}: V\left(G_{2}\right) \rightarrow\{1,2, \ldots q\}$ as follows: For each by for $i \in\{1,2, \ldots, p q\}$, we write $i=a p+b$ where $a, b \in \mathbb{Z}, a \geq 0$ and $0<b \leq p$,

$$
Q_{2} \gamma_{2}\left(v_{i}\right)=l \text { where } l=2+a+b \quad(\bmod q) \text { and } l \in\{1,2, \curvearrowleft, q\} .
$$

To show that γ_{2} is proper, let $v_{i}, v_{j} \in V\left(G_{2}\right)$ be such that v_{i} and v_{j} are adjacent. Then $i=j+1$ or $i \equiv j(\bmod p)$. Let $j=a p+b$ where $a, b \in \mathbb{Z}, a \geq 0$ and $0<b \leq p$. So $\gamma_{2}\left(v_{j}\right) \equiv 2+a-b(\bmod q)$.

Case 2.1. $i=j+1=a p+b+1$: If $b<p$, then $b+1 \leq p$ and also $\gamma_{2}\left(v_{i}\right) \equiv 2+a-b-1(\bmod q) \not \equiv 2+a-b(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)$. If $b=p, i=$
$a p+p+1=p(a+1)+1$ and $\gamma_{2}\left(v_{i}\right) \equiv 2+a(\bmod q)$. Because $p<q$, so $\gamma_{2}\left(v_{i}\right) \equiv 2+a(\bmod q) \not \equiv 2+a-p(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)$.

Case 2.2. $i \equiv j(\bmod p)$: We assume $i>j$. So $i=j+n p=a p+b+n p=$ $p(a+n)+b$ where $n \in \mathbb{N}$. Since $1 \leq i \leq p q$, we get that $1 \leq n \leq q-1$. So $\gamma_{2}\left(v_{i}\right) \equiv 2+a+n-b(\bmod q) \not \equiv 2+a-b(\bmod q) \equiv \gamma_{2}\left(v_{j}\right)$.

Hence, by both cases, γ_{2} is proper and also $\chi\left(G_{2}\right) \leq q$. We can see that the set of vertex $\left\{v_{1}, v_{1+p}, v_{1+2 p}, \ldots, v_{1+(q-1) p}\right\}$ forms a q-clique. So $\chi\left(G_{2}\right) \geq q$. Hence $\chi\left(G_{2}\right)=q$.

We define H_{1}, H_{2} and f similarly to case 1. So $\underset{H_{1} \cong_{f} H_{2}}{G_{1} \bowtie G_{2}}=K_{p q}$ and hence $\chi\binom{G_{1} \bowtie G_{2}}{H_{1} \cong_{f} H_{2}}=p q$.

Example 3.2.10. An example of graphs constracted in the Theorem 3.2.9 is illustrated here. For $n=9$ and $p=3=q$, we have that G_{1} and G_{2} are graphs in Figure 3.2.2

Figure 3.2.2: Graphs with their glued graphs isomorphic to K_{9} and K_{12}.

We glue G_{1} and G_{2} at the clones $H_{1}=P_{9}\left(u_{1}, u_{2}, \ldots, u_{9}\right)$ and $H_{2}=P_{9}\left(v_{1}, v_{2}, \ldots, v_{9}\right)$ with the isomorphism $f: H_{1} \rightarrow H_{2}$ defined by $f\left(u_{i}\right)=v_{i}$ for all $i=1,2, \ldots, 9$. Then $\underset{H_{1} \cong f H_{2}}{G_{1} \bowtie G_{2}}=K_{9}$. So $\chi\left(\underset{H_{1}}{G_{1} \unrhd G_{f} H_{2}}\right)=\chi\left(K_{9}\right)=9=3 \times 3=\chi\left(G_{1}\right) \chi\left(G_{2}\right)$.

For $p=3$ and $q=4$, we have that G_{3} and G_{4} are graphs in Figure 3.2.2. Let $H_{3}=P_{12}\left(u_{1}, u_{2}, \ldots, u_{12}\right)$ and $H_{4}=P_{12}\left(v_{1}, v_{2}, \ldots, v_{12}\right)$. Define $g: H_{3} \rightarrow H_{4}$ by $g\left(u_{i}\right)=v_{i}$ for all $i=1,2, \ldots, 12$. Then $\underset{H_{3} \cong_{g} H_{4}}{G_{3} \bowtie G_{4}}=K_{12}$. So $\chi\left(\underset{H_{3} \cong_{g} H_{4}}{\left(G_{3} \bowtie G_{4}\right.}\right)=$ $\chi\left(K_{12}\right)=12=3 \times 4=\chi\left(G_{3}\right) \chi\left(G_{4}\right)$.

The chromatic numbers of graphs defined in Theorem 3.2.9 also satisfy the condition in Theorem 3.2.5 namely $\chi\left(G_{1} \underset{H}{\triangleright} G_{2}\right)=\chi\left(K_{p q}\right)=p q=p q-q+q+1-$ $2+1=\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)+1$ where $H \cong H_{1} \cong H_{2}$ is a clone of $G_{1} \underset{H}{\oplus} G_{2}$.

Graphs G_{1} and G_{2} in Theorem 3.2.9 such that $G_{1} \underset{H}{\triangleright} G_{2}=K_{n}$ satisfy $n=$ $\chi\left(G_{1}\right) \chi\left(G_{2}\right)$. Does there exist graphs G_{1} and G_{2} such that $G_{1} \underset{H}{\perp} G_{2}=K_{n}$ but $n \neq \chi\left(G_{1}\right) \chi\left(G_{2}\right)$? Lemma 3.2.11 and Lemma 3.2.12 answer this question.

Lemma 3.2.11. Let G_{1} and G_{2} be graphs such that $\chi\left(G_{1}\right)=p$ and $\chi\left(G_{2}\right)=q$. If $G_{1} \underset{H}{\triangleright} G_{2}=K_{n}$ at some clone H, then $p q \geq n$.

Proof. Let G_{1} and G_{2} be graphs such that $\chi\left(G_{1}\right)=p$ and $\chi\left(G_{2}\right)=q$. Assume that $G_{1} \underset{H}{\triangleright} G_{2}=K_{n}$ at a clone H. If there are $u \in V\left(G_{1} \backslash H\right)$ and $v \in V\left(G_{2} \backslash H\right)$, then u and v are not adjacent in $G_{1} \stackrel{\oplus}{H} G_{2}=K_{n}$, a contradiction. So $V\left(G_{1}\right)=V(H)$ or $V\left(G_{2}\right)=V(H)$. Without loss of generality, we may assume that $V\left(G_{1}\right)=V(H)$. So $V\left(\underset{H}{G_{1}} \stackrel{\perp}{2}\right)=V\left(G_{2}\right)$ and also $n=\left|V\left(G_{1} \stackrel{\rightharpoonup}{H} G_{2}\right)\right|=\left|V\left(G_{2}\right)\right|$. Let $\left\lceil\frac{n}{q}\right\rceil=d$. Since $\chi\left(G_{2}\right)=q$, by the pigeonhole principle, there exist at least $\left\lceil\frac{n}{q}\right\rceil=d$ vertices in G_{2} which are labeled as the same color, say $v_{1}, v_{2}, \ldots v_{d}$. So edge $v_{i} v_{j} \notin E\left(G_{2}\right)$ for all $i, j=1,2, \ldots, d$. Then $v_{i} v_{j} \in E\left(G_{1}\right)$ for all $i, j=1,2, \ldots, d_{0}$ So G_{1} contains K_{d} and also $p=\chi\left(G_{1}\right) \geq d=\left[\frac{n}{q}\right] \geq \frac{n}{q}$. Hence $p q \geq n \cdot / \mathrm{C}$?
Lemma 3.2.12. Let $n \in \mathbb{N}$ be such that $n \geq 5$. For any integer p and q such that $p, q \leq n$ and $p q \geq n$, there exist graphs G_{1} and G_{2} such that $\chi\left(G_{1}\right)=p, \chi\left(G_{2}\right)=q$ and $G_{1} \underset{H}{\triangleright} G_{2}=K_{n}$ at some clone H. Moreover, for any two graph A_{1} and A_{2}, if $A_{1} \underset{B}{\triangleright} A_{2}=K_{n}$ where B is a clone, then $\max \left\{\chi\left(A_{1}\right), \chi\left(A_{2}\right)\right\} \geq\lceil\sqrt{n}\rceil$.

Proof. Let $n \in \mathbb{N}$ be such that $n \geq 5$ and let p and q be integers such that $p, q \leq n$ and $p q \geq n$. If $p q=n$, by Theorem 3.2.9, we get G_{1} and G_{2} such that $G_{1} \underset{H}{\triangleright} G_{2}=K_{p q}=K_{n}$ at some clone $H, \chi\left(G_{1}\right)=p$ and $\chi\left(G_{2}\right)=q$. It is done. Suppose that $p q>n$. Assume that $p \leq q$. By Theorem 3.2.9, we get G_{1} and G_{2} such that $G_{1} \underset{H}{\triangleright} G_{2}=K_{p q}$ where H is a clone, $\chi\left(G_{1}\right)=p$ and $\chi\left(G_{2}\right)=q$ with proper colorings γ_{1} and γ_{2} of G_{1} and G_{2}, respectively. Below are properties of G_{1} and G_{2} defined in Theorem 3.2.9.
$V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{p q}\right\}, u_{i}$ is adjacent to u_{j} if and only if $i \not \equiv j(\bmod p)$, $\gamma_{1}\left(u_{i}\right)=l$ where $l \equiv i(\bmod p)$ and $l \in\{1,2, \ldots, p\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p q}\right\}$, v_{i} and v_{j} are adjacent if and only if $i=j+1$ or $i \equiv j(\bmod p)$. If $p<q$, then for each $i=a p+b \in\{1,2, \ldots, p q\}$ where $a, b \in \mathbb{Z}, a \geq 0$ and $0<b \leq p$, define $\gamma_{2}\left(v_{i}\right)=l$ where $l \equiv 2+a-b(\bmod q)$ and $l \in\{1,2, \ldots, q\}$. If $p=q$, then for each $i=a p+b \in\{1,2, \ldots, p q\}$ where $a, b \in \mathbb{Z}, a \geq 0$ and $0<b \leq p$, define $\gamma_{2}\left(v_{i}\right)=l$ where $l \equiv a+b(\bmod q)$ and $l \in\{1,2, \ldots, q\}$.

Then we constuct G_{1}^{*} and G_{2}^{*} as follows: Construct G_{1}^{*} by deleting vertices $u_{n+1}, u_{n+2}, \ldots, u_{p q}$ in G_{1}. Since G_{1}^{*} is an induced subgraph of G_{1}, we get $\chi\left(G_{1}^{*}\right) \leq p$. Because $p \leq n$, so G_{1}^{*} contains a p-clique which is $K_{p}\left(u_{1}, u_{2}, \ldots, u_{p}\right)$. So $\chi\left(G_{1}^{*}\right) \geq p$. Hence $\chi\left(G_{1}^{*}\right)=p$.

We next construct G_{2}^{*} by deleting vertices $v_{n+1}, v_{n+2}, \ldots, v_{p q}$ in G_{2}. Since G_{2}^{*} is an induced subgraph of G_{2}, we get $\chi\left(G_{2}^{*}\right) \leq q$. If $n \geq 1+(q-1) p$, then $K_{q}\left(v_{1}, v_{1+p}, \ldots, v_{1+(q-1) p}\right)$ is in G_{2}^{*} and also $\chi\left(G_{2}^{*}\right) \geq q$. Hence $\chi\left(G_{2}^{*}\right)=q$ and γ_{2} is still a proper coloring of G_{2}^{*}. If $n<1+(q-1) p$, we will construct a q-clique. Since $\chi\left(G_{2}^{*}\right) \leq q \leq n$, there exists a proper q-coloring $f: V\left(G_{2}^{*}\right) \rightarrow\{1,2, \ldots, q\}$ of G_{2}^{*} such thatforoany $j \in\{1,2, . d, q\}$, there is $v \in V\left(G_{2}^{*}\right)$ such that $f(v)=j$. Without loss of generality, we may assume that $f\left(v_{i}\right)=i$ for all $i \in\{1,2, \ldots, q\}$. Let $G_{2}^{* *}$ be graph constructed from G_{2}^{*} by adding edges between v_{i} and v_{j} where $i, j \in\{1,2, \ldots, q\}$ and $i \neq j$. Let $E=\left\{v_{i} v_{j}\right.$ for all $i, j=1,2, \ldots, q$ and $\left.i \neq j\right\}$. Hence $G_{2}^{* *}$ contains a q-clique $K_{q}\left(v_{1}, v_{2}, \ldots, v_{q}\right)$ and then $\chi\left(G_{2}^{* *}\right) \geq q$. It is easy to see that f is still proper in $G_{2}^{* *}$. Then $\chi\left(G_{2}^{* *}\right) \leq q$. Hence $\chi\left(G_{2}^{* *}\right)=q$.

Let $H_{1}=P_{n}\left(u_{1}, u_{2}, \ldots, u_{n}\right) \subseteq G_{1}^{*}$ and $H_{2}=P_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right) \subseteq G_{2}^{*}$. Define $g: H_{1} \rightarrow H_{2}$ by $g\left(u_{i}\right)=v_{i}$ for all $i \in\{1,2,3, \ldots, n\}$. We obtain the glued graph
 $w_{j} \in V\binom{G_{1}^{*} \rrbracket G_{2}^{*}}{H_{1} \cong_{g} H_{2}}$. If $i \equiv j(\bmod p)$, then edge $w_{i} w_{j} \in E\left(G_{2}^{*}\right) \subseteq E\binom{G_{1}^{*} \oplus G_{1}^{*}}{H_{1} \cong_{g} H_{2}}$.
 $\underset{H_{1} \cong_{g} H_{2}}{G_{1}^{*} \unrhd G_{2}^{*}}=K_{n}$. In the case of $G_{2}^{* *}$, we know that $E \subseteq E\left(G_{1}^{*}\right)$. Let H_{1}^{*} and H_{2}^{*} be graphs such that $V\left(H_{i}^{*}\right)=V\left(H_{i}\right)$ and $E\left(H_{i}^{*}\right)=E\left(H_{i}\right) \cup E$ for all $i=1,2$ where $H_{1}=P_{n}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $H_{2}=P_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. Clearly, $H_{1}^{*} \subseteq G_{1}^{*}$ and $H_{2}^{*} \subseteq G_{2}^{* *}$. Hence $\underset{H_{1}^{*} \cong{ }_{g} H_{2}^{*}}{G_{2}^{*} \oplus G_{2}^{* *}}=K_{n}$.

To prove the last statement, let A_{1} and A_{2} be graphs such that $A_{1} \underset{B}{\triangleright} A_{2}=K_{n}$ where B is a clone. Assume that $\chi\left(A_{1}\right) \geq \bar{\chi}\left(A_{2}\right)$. By Lemma 3.2.11, we get that $\chi\left(A_{1}\right) \chi\left(A_{2}\right) \geq n$. Then $\chi\left(A_{1}\right)^{2} \geq \chi\left(A_{1}\right) \chi\left(A_{2}\right) \geq n$. So $\max \left\{\chi\left(A_{1}\right), \chi\left(A_{2}\right)\right\}=$ $\chi\left(A_{1}\right) \geq\lceil\sqrt{n}\rceil$.

Graphs G_{1} and G_{2} in theorem 3.2.9 have a property that $\chi\left(\underset{H}{\left.G_{1} \underset{H}{\triangleright} G_{2}\right)=}\right.$ $\chi\left(G_{1}\right) \chi\left(G_{2}\right)=\omega\left(G_{1} \stackrel{\rightharpoonup}{\triangleleft} G_{2}\right)$. Do there exist graphs G_{1} and G_{2} such that $\chi\left(G_{1}\right) \chi\left(G_{2}\right)$ $=\chi\left(\underset{H}{G_{1} \stackrel{\triangleright}{H}}\right) \neq \omega\left(G_{1} \stackrel{\triangleright}{H} G_{2}\right)$? Since the chromatic number of a graph is always at least the clique number of such graph, we look for G_{1}, G_{2} and H such that $\chi\left(G_{1}\right) \chi\left(G_{2}\right)=\chi\left(G_{1} \stackrel{H}{\perp} G_{2}\right)>\omega\left(G_{1} \perp G_{2}\right)$. Before we answer such question, we next provide a graph with the property that its chromatic number is strictly more than its clique number. Such graph is constructed by joining two specified graphs.

Recall that the join of simple graphs G_{1} and $G_{2}, G_{1} \vee G_{2}$, is the graph that

$$
\begin{aligned}
& V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right) \text { and } \\
& E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\} .
\end{aligned}
$$

Theorem 3.2.13. Let G_{1} and G_{2} be graphs. Then $\chi\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.
Proof. Let G_{1} and G_{2} be graphs. Let f and g be proper colorings of G_{1} and G_{2}, respectively. Define $\alpha \dot{q} V\left(G_{1}\right) \cup V\left(G_{2}\right) \rightarrow\left\{1,2,0 \chi\left(G_{1}\right)+\chi\left(G_{2}\right)\right\}$ by for all $v \in V\left(G_{1}\right) \cup V\left(G_{2}\right)$

$$
\alpha(v)= \begin{cases}f(v) & \text { if } v \in V\left(G_{1}\right) \\ \chi\left(G_{1}\right)+g(v) & \text { if } v \in V\left(G_{2}\right) .\end{cases}
$$

It is easy to see that α is proper. So $\chi\left(G_{1} \vee G_{2}\right) \leq \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$. Suppose for a contradiction that $\chi\left(G_{1} \vee G_{2}\right)<\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$. There exist $u \in V\left(G_{1}\right)$ and
$v \in V\left(G_{2}\right)$ such that $\alpha(u)=\alpha(v)$. So u and v are not adjacent in $G_{1} \vee G_{2}$. This contradicts to the definition of the join graphs. Hence $\chi\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+$ $\chi\left(G_{2}\right)$.

Example 3.2.14. Let $W=C_{5} \vee K_{1}$. So $\chi(W)=\chi\left(C_{5}\right)+\chi\left(K_{1}\right)=3+1=4$ and also $\chi\left(W \vee K_{n}\right)=4+n$ for all $n \in \mathbb{N}$. Because $\omega(W)=3$, so $\omega\left(W \vee K_{n}\right)=$ $n+3<n+4=\chi\left(W \vee K_{n}\right)$.

Now, we give graphs G_{1} and G_{2} with the property $\chi\left(G_{1}\right) \chi\left(G_{2}\right)=\chi\left(G_{1} \underset{H}{\triangleright} G_{2}\right)>$ $\omega\left(G_{1} \underset{H}{\triangleright} G_{2}\right)$ where H is a clone in the next theorem.

Theorem 3.2.15. For all $p, q \geq 3$, there exist graphs G_{1}, G_{2} and $\underset{H}{G_{1}} \underset{H}{\triangleright} G_{2}$ at some clone H such that $\chi\left(G_{1}\right)=p, \chi\left(G_{2}\right)=q$ and $p q=\chi\left(G_{1}\right) \chi\left(G_{2}\right)=\chi\left(G_{1} \underset{H}{\triangleright} G_{2}\right)>$ $\omega\left(G_{1} \underset{H}{\triangleright} G_{2}\right)$.

Proof. Let p and q be integers such that $p, q \geq 3$.
Case 1. $p=q$: By Lemma 3.2.12, we have graphs G_{1} and G_{2} such that $G_{1} \underset{H}{\triangleleft} G_{2}=K_{p q-1}$ at some clone H and $\chi\left(G_{1}\right)=p=q=\chi\left(G_{2}\right)$. Following from the proof of Lemma 3.2.12, since $p q-1>1+(q-1) p$, we obtain that γ_{1} and γ_{2} are proper colorings of G_{1} and G_{2}, respectively. Below are properties of G_{1} and G_{2} defined in Lemma 3.2.12.
$V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{p q-1}\right\}, u_{i}$ is adjacent to u_{j} if and only if $i \not \equiv j(\bmod p)$, $\gamma_{1}\left(u_{i}\right)=l$ where $l \equiv i(\bmod p)$ and $l \in\{1,2, \ldots, p\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p q-1}\right\}$, v_{i} and v_{j} are adjacent if and only if $i=j+1$ or $i \equiv j(\bmod p)$. For each $i=a p+b \in\{1,2, \ldots, p q-1\}$ where $a, b \in \mathbb{Z}, a \geq 0$ and $0<b \leq p$, define $\gamma_{2}\left(v_{i}\right)=l$ where $l \Rightarrow a+b(\bmod q)$ and $l \in\{1,2, . d, q\}$

Let G_{1}^{*} be a graph such that $V\left(G_{1}^{*}\right)=V\left(G_{1}\right) \cup\left\{u_{p q}, u_{p q+1}, u_{p q+2}\right\}$ and $E\left(G_{1}^{*}\right)=E\left(G_{1}\right) \cup\left\{u_{p q} q_{i}, u_{p q+1} u_{i}\right.$ where $i=3,4,5, \ldots,, p q-2$ and $\left.i \neq 0(\bmod p)\right\} \cup$ $\left\{u_{p q+2} u_{i}\right.$ where $i=3,4,5, \ldots, p q-2$ and $\left.i \not \equiv p-1(\bmod p)\right\} \cup\left\{u_{p q} u_{1}, u_{p q} u_{p q-1}\right\} \cup$ $\left\{u_{p q+1} u_{1}, u_{p q+1} u_{2}\right\} \cup\left\{u_{p q+2} u_{i}\right.$ where $\left.i=1, p q, p q+1\right\}$.

Clearly, $G_{1} \subseteq G_{1}^{*}$. So $\chi\left(G_{1}^{*}\right) \geq \chi\left(G_{1}\right)=p$. Define $f_{1}: V\left(G_{1}^{*}\right) \rightarrow\{1,2, \ldots, p\}$
by for all $u_{i} \in V\left(G_{1}^{*}\right)$

$$
f_{1}\left(u_{i}\right)= \begin{cases}\gamma_{1}\left(u_{i}\right) & \text { if } i=1,2, \ldots, p q-1 \\ p & \text { if } i=p q, p q+1 \\ p-1 & \text { if } i=p q+2\end{cases}
$$

It is easy to check that f_{1} is proper. So $\chi\left(G_{1}^{*}\right) \leq p$. Hence $\chi\left(G_{1}^{*}\right)=p$.
Next, let G_{2}^{*} be a graph such that $V\left(G_{2}^{*}\right)=V\left(G_{2}\right) \cup\left\{v_{p q}, v_{p q+1}, v_{p q+2}\right\}$ and $E\left(G_{2}^{*}\right)=E\left(G_{2}\right) \cup\left\{v_{p q} v_{i}, v_{p q+1} v_{i}\right.$ where $i=3,4,5, \ldots, p q-2$ and $\left.i \equiv 0(\bmod p)\right\} \cup$ $\left\{v_{p q+2} v_{i}\right.$ where $i=3,4,5, \ldots, p q-2$ and $\left.i \equiv p-1(\bmod p)\right\} \cup\left\{v_{p q} v_{1}\right\} \cup\left\{v_{p q+2} v_{i}\right.$ where $i=p q, p q+1\}$.

Clearly, $G_{2} \subseteq G_{2}^{*}$. So $\chi\left(G_{2}^{*}\right) \geq q$. Define $f_{2}: V\left(G_{2}^{*}\right) \rightarrow\{1,2, \ldots, q\}$ by for all $v_{i} \in V\left(G_{2}^{*}\right)$

$$
f_{2}\left(v_{i}\right)= \begin{cases}\gamma_{2}\left(v_{i}\right) & \text { if } i=1,2, \ldots, p q-1 \\ q-1 & \text { if } i=p q, p q+1 \\ q-2 & \text { if } i=p q+2\end{cases}
$$

To show that f_{2} is proper, it suffices to show that for all $s \in\{3,4, \ldots, p q-2\}$ and $t \in\{p q, p q+2\}$, if v_{s} is adjacent to v_{t}, then $f_{2}\left(v_{s}\right) \neq f_{2}\left(v_{t}\right)$. Let $s \in\{3,4, \ldots, p q-2\}$ and $t \in\{p q, p q+2\}$ such that v_{s} is adjacent to v_{t}.

Case 1.1. $t=p q+2$: So $s \equiv p-1(\bmod p)$. Then $s \geq p-1$ and also $1 \leq s=k p+(p-1) \leq p q-2$ for some $k \in \mathbb{N} \cup\{0\}$. Then $0 \leq k \leq q-2$. So $-2<-1 \leq k-1 \leq q-3<q-2$. Hence $f_{2}\left(v_{s}\right) \equiv k+p-1(\bmod q) \equiv k+q-1$ $(\bmod q) \equiv k-1(\bmod q) \not \equiv q-2(\bmod q)_{0}=q-2=f_{2}\left(v_{p q+2}\right)=f_{2}\left(v_{t}\right)$. Therefore $f_{2}\left(v_{s}\right) \neq f_{2}\left(v_{t}\right)$.

Case 1.2 $t=p q$: We get that $s \cong 0(\bmod p)$. So $s=k p=(k-1) p+p \leq p q-2$ for some $k \in \mathbb{N}$. Then $1 \leq k \leq q G 1$. So $-1<0 \leq k-1 \leq q-2<q-1$. Hence $f_{2}\left(v_{s}\right) \equiv k-1+p(\bmod q) \equiv k-1+q(\bmod q) \equiv k-1(\bmod q) \not \equiv q-1$ $(\bmod q)=q-1=f_{2}\left(v_{p q}\right)=f_{2}\left(v_{t}\right)$. Therefore $f_{2}\left(v_{s}\right) \neq f_{2}\left(v_{t}\right)$.

By both cases, we can conclude that f_{2} is proper. So $\chi\left(G_{2}^{*}\right) \leq q$. Hence $\chi\left(G_{2}^{*}\right)=q$.

Let $H_{1}=P_{p q+2}\left(u_{p q+1}, u_{p q+2}, u_{p q}, u_{1}, u_{2}, \ldots, u_{p q-1}\right)$ and $H_{2}=P_{p q+2}\left(v_{p q+1}, v_{p q+2}\right.$ $\left., v_{p q}, v_{1}, v_{2}, \ldots, v_{p q-1}\right)$. Clearly, $H_{1} \subseteq G_{1}^{*}$ and $H_{2} \subseteq G_{2}^{*}$. Define $f: H_{1} \rightarrow H_{2}$ by $f\left(u_{i}\right)=v_{i}$ for all $i \in\{1,2,3, \ldots, p q+2\}$. We obtain a glued graph of G_{1}^{*} and G_{2}^{*} at H_{1} and H_{2} with respect to f , denoted by $\underset{H_{1} \cong_{f} H_{2}}{G_{1}^{*} \oplus G_{2}^{*} \text {. Let } V\binom{G_{1}^{*} \bowtie G_{2}^{*}}{H_{1} \cong_{f} H_{2}}=}$ $\left\{w_{i}: i=1,2, \ldots, p q+2\right.$ where w_{i} corresponds to u_{i} and $\left.v_{i}\right\}$. It is easy to check that $\underset{\substack{1 \\ H_{1} \cong \\ G_{f} H_{2}}}{*} G_{2}^{*}=W \vee K_{p q-4}\left(w_{3}, w_{4}, \ldots, w_{p q-2}\right)$ where $W=C_{5}\left(w_{2}, w_{p q+1}, w_{p q+2}, w_{p q}, w_{p q-1}\right) \vee$ $K_{1}\left(w_{1}\right)$. By Example 3.2.14, we obtain that $\chi\left(\underset{H_{1}}{G_{1} \not \cong_{f} H_{2}} \stackrel{G_{2}}{*}\right)=4+p q-4=p q>$ $p q-1=3+p q-4=\omega\binom{G_{1}^{*} \unrhd G_{2}^{*}}{H_{1} \cong H_{2}}$.
Case 2. $p<q$: By Lemma 3.2.12, we get graphs G_{1} and G_{2} such that $G_{1} \triangleleft G_{2}=$ $K_{p q-1}$ and $\chi\left(G_{1}\right)=p=\chi\left(G_{2}\right)$. Following from the proof of Lemma 3.2.12, since $p q-1>1+(q-1) p$, we have that γ_{1} and γ_{2} are proper colorings of G_{1} and G_{2}, respectively. Below are properties of \bar{G}_{1} and G_{2}.
$V\left(G_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{p q-1}\right\}, u_{i}$ is adjacent to u_{j} if and only if $i \not \equiv j(\bmod p)$, $\gamma_{1}\left(u_{i}\right)=l$ where $l \equiv i(\bmod p)$ and $l \in\{1,2, \ldots, p\}$ and $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{p q-1}\right\}$, v_{i} and v_{j} are adjacent if and only if $i=j+1$ or $i \equiv j(\bmod p)$. For each $i=a p+b \in\{1,2, \ldots, p q-1\}$ where $a, b \in \mathbb{Z}, a \geq 0$ and $0<b \leq p$, define $\gamma_{2}\left(v_{i}\right)=l$ where $l \equiv 2+a-b(\bmod q)$ and $l \in\{1,2, \ldots, q\}$.

Define G_{1}^{*}, G_{2}^{*} and f_{1} similarly to case 1 . So $\chi\left(G_{1}^{*}\right)=p$. Next, let f_{2} be a coloring of G_{2}^{*} defined by

$$
f_{2}\left(v_{i}\right)= \begin{cases}\gamma_{2}\left(v_{i}\right) & \text { if } i=1,2, \ldots, p q-1 \\ q-p+1 & \text { if } i=p q, p q+1 \\ q-p+2 & \text { if } i=p q+2\end{cases}
$$

Note that $f_{2}\left(v_{1}\right) \equiv 2+0-1(\bmod q)=1 \neq q-p+1=f_{2}\left(v_{p q}\right)$ because $1=$ $0(p)+1$ and $p \neq q$. To show that \hat{f}_{2} is proper, it suffice to prove that for all $s \in\{3,4, \ldots, p q-2\}$ and $t \in\{p q, p q+2\}$, if v_{s} and v_{t} are adjacent, then $f_{2}\left(v_{s}\right) \neq$ $f_{2}\left(v_{t}\right)$. Let $s \in\{3,4, \ldots, p q-2\}$ and $t \in\{p q, p q+2\}$. Assume that v_{s} and v_{t} are adjacent.

Case 2.1. $t=p q:$ So $s \equiv 0(\bmod p)$ and hence $s=k p=(k-1) p+p$ for some $k \in \mathbb{N}$. Since $s \leq p q-2$, we obtain that $1 \leq k \leq q-1$. Because $1-p<2-p \leq 2+(k-1)-p=1+k-p \leq q-p<q-p+1$, so $f_{2}\left(v_{s}\right) \equiv 2+(k-1)-p$
$(\bmod q)=1+k-p \not \equiv q-p+1(\bmod q)=q-p+1=f_{2}\left(v_{p q}\right)=f_{2}\left(v_{t}\right)$. Hence $f_{2}\left(v_{s}\right) \neq f_{2}\left(v_{t}\right)$.

Case 2.2. $t=p q+2$: Then $s \equiv p-1(\bmod p)$. So $s \geq p-1$ and then $s=k p+p-1$ for some $k \in \mathbb{N}^{0}$. Since $s \leq p q-2$, we obtain that $0 \leq k \leq q-2$. Because $2-p<3-p \leq 2+k-p+1=3+k-p \leq q-p+1<q-p+2$, so $f_{2}\left(v_{s}\right) \equiv 2+k-p+1(\bmod q)=3+k-p \not \equiv q-p+2(\bmod q)=q-p+2=$ $f_{2}\left(v_{p q+2}\right)=f_{2}\left(v_{t}\right)$. Hence $f_{2}\left(v_{s}\right) \neq f_{2}\left(v_{t}\right)$.

By both cases, we can conclude that f_{2} is proper and also $\chi\left(G_{2}^{*}\right) \leq q$. Because G_{2} is a subgraph of G_{2}^{*}, so $\chi\left(G_{2}^{*} \geq \chi\left(G_{2}\right)=q\right.$. Hence $\chi\left(G_{2}^{*}\right)=q$.

We define graphs H_{1}, H_{2} and the isomorphism f similarly to case 1 . So we have $\underset{H_{1} \cong_{f H_{2}}}{G_{1}^{*} ₫ G_{2}^{*}}=W \vee K_{p q-4}\left(w_{3}, w_{4}, \ldots, w_{p q-2}\right)$ where $W=C_{5}\left(w_{2}, w_{p q+1}, w_{p q+2}, w_{p q}, w_{p q-1}\right) \vee$ $K_{1}\left(w_{1}\right)$. and also $\chi\binom{G_{1}^{*} \searrow G_{2}^{*}}{H_{1} \cong H_{2} H_{2}}=4+p q-4=p q>p q-1=3+p q-4=$ $\omega\binom{G_{1}^{*} \bowtie G_{1} \unrhd G_{2}^{*}}{H_{1} \cong_{f}}$.

In the next example, we illustrate an example of graphs in Theorem 3.2.15. We construct graphs G_{1}^{*} and G_{2}^{*} such that $9=\chi\left(G_{1}^{*}\right) \chi\left(G_{2}^{*}\right)=\chi\left(G_{1}^{*} \underset{H}{\oplus} G_{2}^{*}\right)>$ $\omega\left(G_{1}^{*} \underset{H}{\triangleright} G_{2}^{*}\right)=8$ where H is the clone of a glued graph between G_{1}^{*} and G_{2}^{*}.

Example 3.2.16. We illustrate an example of graphs in Theorem 3.2.15 here. Let $p=3=q$. First, we construct graphs G_{1} and G_{2} such that their glued graph at some clone H is isomorphic to K_{8} by using Lemma 3.2.12. That graphs G_{1} and G_{2} are showed in Figure 3.2.3.

Figure 3.2.3: Graphs with their glued graph isomorphic to K_{8}.

Moreover, we obtain proper colorings, γ_{1} and γ_{2}, of G_{1} and G_{2}, respectively, defined by

$$
\gamma_{1}\left(v_{i}\right)=\left\{\begin{array}{ll}
1 & \text { if } i=1,4,7, \\
2 & \text { if } i=2,5,8, \\
3 & \text { if } i=3,6
\end{array} \quad \gamma_{2}\left(v_{i}\right)= \begin{cases}1 & \text { if } i=1,6,8 \\
2 & \text { if } i=2,4 \\
3 & \text { if } i=3,5,7\end{cases}\right.
$$

Next, we add vertices $\left\{u_{9}, u_{10}, u_{11}\right\}$ into $V\left(G_{1}\right)$ and edges $\left\{u_{9} u_{i}, u_{10} u_{i}, u_{11} u_{j}\right.$ where $i, j=3,4,5, \ldots, 7$ and $i \not \equiv 0(\bmod 3)$ and $j \not \equiv 2(\bmod 3)\} \cup\left\{u_{9} u_{1}, u_{9} u_{8}, u_{10} u_{1}\right.$, $\left.u_{10} u_{2}, u_{11} u_{1}, u_{11} u_{9}, u_{11} u_{10}\right\}$ into $E\left(G_{1}\right)$ to obtain G_{1}^{*}. We also add vertices $\left\{v_{9}, v_{10}, v_{11}\right\}$ into $V\left(G_{2}\right)$ and edges $\left\{v_{9} v_{k}, v_{10} v_{k}, v_{11} v_{l}\right.$ where $k, l=3,4,5, \ldots, 7, k \equiv 0(\bmod 3)$ and $l \equiv 2(\bmod 3)\} \cup\left\{v_{9} v_{1}, v_{11} v_{9}, v_{11} v_{10}\right\}$ into $E\left(G_{2}\right)$ to obtain G_{2}^{*}. Figure 3.2.4 shows G_{1}^{*} and G_{2}^{*}.

We next define proper colorings $f_{1}: V\left(G_{1}^{*}\right) \rightarrow\{1,2,3\}$ and $f_{2}: V\left(G_{2}^{*}\right) \rightarrow$ $\{1,2,3\}$ of G_{1}^{*} and G_{2}^{*}, respectively, by for all $u_{i} \in V\left(G_{1}^{*}\right)$ and for all $v_{i} \in V\left(G_{2}^{*}\right)$.

$$
f_{1}\left(u_{i}\right)= \begin{cases}\gamma\left(v_{i}\right) & \text { if } i=1,2, \ldots, 8 \\ 3 & \text { if } i=9,10, \\ 2 & \text { if } i=11\end{cases}
$$

We glue G_{1}^{*} and G_{2}^{*} at $H_{1}=P_{11}\left(u_{10}, u_{11}, u_{9}, u_{1}, u_{2}, \ldots, u_{8}\right) \subseteq G_{1}^{*}$ and $H_{2}=$ $P_{11}\left(v_{10}, v_{11}, v_{9}, v_{1}, v_{2}, \ldots, v_{8}\right) \subseteq G_{2}^{*}$ by isomorphism g defined by $g\left(u_{i}\right)=v_{i}$ for all $i=1,2, \ldots, 11$. Then we obtain that $\underset{1}{G_{1}^{*} \unrhd G_{2}^{*}} \begin{aligned} & H_{1} H_{2}\end{aligned}$ as shown in Figure 3.2.4. We observe that $\underset{H_{1} \cong H_{2}}{G_{1}^{*} \unrhd G_{2}^{*}}=K_{5}\left(w_{3}, w_{4}, \ldots, w_{7}\right) \vee W$ where $W=C_{5}\left(w_{2}, w_{8}, w_{9}, w_{11}, w_{10}\right) \vee$ $K_{1}\left(w_{1}\right)$. So $\chi\left(\begin{array}{c}G_{1}^{*} \perp G_{2}^{*} \\ H_{1} \subseteq H_{2} \\ G_{1}^{*} \neq H_{2}^{*}\end{array}\right)=5+4=9=\chi\left(G_{1}^{*}\right) \chi\left(G_{2}^{*}\right)$. Moreover, $\chi\left(G_{1}^{*}\right) \chi\left(G_{2}^{*}\right)=9>$ $5+3=8=\omega(\underset{1}{G_{1}^{*} \downarrow G_{1} \overbrace{g} H_{2}})$.

Though the upper bound in Theorem 3.2.8 is sharp, under a specified circumstance we can reduce it down.

Theorem 3.2.17. Let G_{1} and G_{2} be graphs and H be the clone of a glued graph $\underset{H}{G_{1}} \underset{H}{\triangleright} G_{2}$. If H is an induced subgraph of both G_{1} and G_{2}, then $\chi\left(G_{1} \underset{H}{\oplus} G_{2}\right) \leq$ $\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

Figure 3.2.4: A glued graph whose chromatic number is largee than its clique number

Proof. Let G_{1} and G_{2} be graphs and H be a clone of $G_{1} \underset{H}{\triangleright} G_{2}$. Assume H is an induced subgraph of both G_{1} and G_{2}. There are proper colorings $f: V\left(G_{1}\right) \rightarrow S_{1}$ and $g: V\left(G_{2}\right) \rightarrow S_{2}$ of G_{1} and G_{2}, respectively where S_{1} and S_{2} are sets such that $\left|S_{1}\right|=\chi^{\prime}\left(G_{1}\right),\left|S_{2}\right|=\chi^{\prime}\left(G_{2}\right)$ and $S_{1} \cap S_{2}=\phi$.
Define $\alpha: V\left(\underset{H}{G_{1}} \underset{H}{\oplus} G_{2}\right) \rightarrow S_{1} \cup S_{2}$ by for each $u \in V\left(G_{1} \underset{H}{\triangleright} G_{2}\right)$,

$$
\alpha(u)= \begin{cases}f(u) & \text { if } u \in V\left(G_{1}\right) \\ g(u) & \text { if } v \in V\left(G_{2} \backslash H\right)\end{cases}
$$

To show that α is proper, let u and v be vertices in $G_{1} \underset{H}{\triangleright} G_{2}$ such that u and v are adjacent by an edge e in $G_{1} \underset{H}{\triangleright} G_{2}$.

Case 1. $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2} \backslash H\right)$: So $\alpha(u)=f(u) \neq g(u)=\alpha(v)$ because $S_{1} \cap S_{2}=\phi$.

Case 2. u and v are in G_{1} : If u is not adjacent to v in G_{1}, then $e \in$ $E\left(G_{2}\right) \backslash E\left(G_{1}\right)$ and also $u, v \in V\left(G_{2}\right)$. Hence $u, v \in V(H)$ but $e \notin E(H)$. Therefore H is not an induced subgraph, a contradiction. So u is adjacent to v in G_{1} and $\alpha(u)=f(u) \neq f(v)=\alpha(v)$.

Case 3. u and v are in $G_{2} \backslash H$: Similarly to case $1, u$ is adjacent to v in G_{2} and $\alpha(u)=g(u) \neq g(v)=\alpha(v)$.

By all cases, we can conclude that α is proper. Hence $\chi\left(G_{1} \underset{H}{\oplus} G_{2}\right) \leq \chi\left(G_{1}\right)+$ $\chi\left(G_{2}\right)$.

Example 2.1.14 reveals that the converse of Theorem 3.2.17 is not true.
We investigate the chromatic numbers of glued graphs and obtain two upper bounds along with their sharpness. In next chapter, wwe consider the edge-chromatic
numbers of glued graphs.

CHAPTER IV

EDGE-COLORABILITY OF GLUED GRAPHS

Similarly to the previous chapter, we find bounds of the edge-chromatic numbers of glued graphs. Graphs in this chapter are not necessary simple. We separate this chapter into two sections. In the first section, we give background of the edgechromatic numbers of any graphs. We next find bounds of the edge-chromatic numbers of glued graphs in the other section.

4.1 Background

First, we recall the definition and some bounds of the edge-chromatic number of any graph.

Definition 4.1.1. A k-edge-coloring of a graph G is a labeling $f: E(G) \rightarrow S$, where $|S|=k$. The labels are colors; the edges of one color form a color class. A k-edge-coloring is proper if incident edges have different labels; that is, if each color class is a matching. A graph is k-edge-colorable if it has a proper k-edgecoloring. The edge-chromatic number $\chi^{\prime}(G)$ of a loopless graph G is the least k such that G is k-edge-colorable. \qquad
Remark 4.1.2. Let G be a graph. Clearly, $\chi^{\prime}(G) \nexists \Delta(G)$. Because no edge in G is incident to more than $2 \Delta(G)-1$ other edges, so $2 \Delta(G)-1 \geq \chi^{\prime}(G) \geq \Delta(G)$.

In [1], there is a theorem showing the edge-chromatic number of complete graphs. We state such theorem without prove here.

Theorem 4.1.3. The edge-chromatic number of a complete graph K_{n} is

$$
\chi^{\prime}\left(K_{n}\right)= \begin{cases}n-1 & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd }\end{cases}
$$

Vizing and Gupta([3]) can prove that $\Delta(G)+1$ colors suffice when G is a simple graph. We show that in the next theorem.

Theorem 4.1.4 ([3]). (Vizing [1964, 1965], Gupta [1966])
If G is a simple graph, then $\chi^{\prime}(G) \leq \Delta(G)+1$.
By Theorem 4.1.4 and Remark 4.1.2, we can conclude that for a simple graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$. We can see the sharpness of that bounds in Theorem 4.1.3. In non-simple graphs, their edge-chromatic numbers can be more than their maximum degrees because of their multiple edges. Shannon showed an upper bound of the edge-chromatic number for any graph in Theorem 4.1.5.

Theorem 4.1.5 ([3]). (Shannon [1949])
If G is a graph, then $\chi^{\prime}(G) \leq \frac{3}{2} \Delta(G)$.
Example 4.1.6. We introduce a graph G such that $\chi^{\prime}(G)=\frac{3}{2} \Delta(G)$. The fat triangles, loopless triangles with multiple edges, are graphs similar to Figure 4.1.1.

Figure 4.1.1: A fat triangle

The edges are pairwisely intersecting and hence require distinct colors. Thus the edge-chromatic number of a fat triangle G is $\frac{3}{2} \Delta(G)$.

4.2 Bounds of the Edge-Chromatic Numbers of Glued Graphs

This section, we investigate bounds of the edge-chromatic numbers of glued graphs including non-simple glued graphs. We also study the line graphs of glued graphs in order to obtain a bound of the chromatic number of any glued graph. We begin
this section by giving a trivial lower bound of the edge-chromatic number of any glued graph.

Remark 4.2.1. Let G_{1} and G_{2} be graphs. Because G_{1} and G_{2} are subgraphs of $G_{1} \triangleright G_{2}$, we have that $\chi^{\prime}\left(G_{1}\right), \chi^{\prime}\left(G_{2}\right) \leq \chi^{\prime}\left(G_{1} \triangleright G_{2}\right)$. Hence

$$
\chi^{\prime}\left(G_{1} \triangleright G_{2}\right) \geq \max \left\{\chi^{\prime}\left(G_{1}\right), \chi^{\prime}\left(G_{2}\right)\right\} .
$$

By applying Theorem 4.1.4, Theorem 4.1.5 and Lemma 1.2.8, we obtain upper bounds of the edge-chromatic numbers of glued graphs as the following theorem.

Theorem 4.2.2. Let G_{1} and G_{2} be graphs and let $G_{1} \underset{H}{\triangleright} G_{2}$ be a glued graph of G_{1} and G_{2} at a clone H. Then

$$
\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \frac{3}{2}\left(\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)\right) .
$$

In particular, if $G_{1} \underset{H}{\triangleright} G_{2}$ is a simple graph, then

$$
\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)+1 .
$$

Proof. Let G_{1} and G_{2} be graphs and let $G_{1} \triangleright G_{2}$ be a glued graph of G_{1} and G_{2} at a clone H. Following from Theorem 4.1.5 and Lemma 1.2.8, we have that $\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \frac{3}{2}\left(\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)\right)$. If $G_{1} \oplus G_{H}$ is a simple graph, by Theorem 4.1.4 and Lemma 1.2.8, we have that $\chi^{\prime}\left(\underset{H}{G_{1}} \underset{\underset{H}{D}}{ } G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-$ $\delta(H)+1$.

We show the sharpness of Theorem 4.2.2 in Example 4.2.3 and Example 4.2.4. Example 4.2.3. Det G_{1} and G_{2} be graphs in Figure 4.2.1. d

Let $H_{1}=C_{9}\left(u_{1}, u_{2}, \ldots, u_{9}\right)$ and $\overrightarrow{H_{2}}=C_{9}\left(v_{1}, v_{2}, \ldots, v_{9}\right)$. We glue G_{1} and G_{2} at H_{1} and H_{2} by isomorphism f defined by $f\left(u_{i}\right)=v_{i}$ for all $i=1,2, \ldots, 9$. So we have $\underset{H_{1} \cong}{G_{1} \bowtie H_{2}} \stackrel{\text { which }}{ }$ is isomorphic to K_{9}. Hence $\chi^{\prime}\left(\underset{H_{1}}{G_{1} \unrhd G_{f} H_{2}} \underset{H_{1}}{\searrow}\right)=9=6+4-2+1=$ $\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)+1$.

Figure 4.2.1: A simple glued graph showing the sharpness of Theorem 4.2.2

The next example, we reveal the sharpness of Theorem 4.2.2 when the glued graph is a non-simple graph.

Example 4.2.4. Let G_{1} and G_{2} be graphs as shown in Figures 4.2.2.

Figure 4.2.2: A non-simple glued graph showing the sharpness of Theorem 4.2.2

Clearly, $\Delta\left(G_{1}\right)=4=\Delta\left(G_{2}\right)$. We glue G_{1} and G_{2} at edge sets $\{a, b, c\}$ and $\{1,2,3\}$ with isomorphism f such that $f(a)=1, f(b)=2$ and $f(c)=3$. Then we have $\underset{H_{1} \cong H_{2}}{G_{1} ₫ G_{2}}$ as shown in Figure 4.2.2. Because $\underset{H_{1} \cong \cong_{f} H_{2}}{G_{1}} G_{2}$ is a fat triangle, so $\chi^{\prime}\left(\begin{array}{l}G_{1} \unrhd G_{1} G_{f} H_{2}\end{array}\right)=\frac{3}{2}(6)=9$. Hence $\chi^{\prime}\binom{G_{1} \unrhd G_{2} G_{2}}{H_{1} \cong_{f} H_{2}}=9=\frac{3}{2}(4+4-2)=\frac{3}{2}\left(\Delta\left(G_{1}\right)+\right.$

For any graphs G_{1} and G_{2}, we can prove that $\chi^{\prime}\left(G_{1} \triangleright G_{2}\right) \leq \chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)$ in Theorem 4.2.5. After that, we show the sharpness of this upper bound in Example 4.2.6.

Theorem 4.2.5. For any graph G_{1} and G_{2},

$$
\chi^{\prime}\left(G_{1} \triangleright G_{2}\right) \leq \chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right) .
$$

Proof. Let G_{1} and G_{2} be graphs and let $G_{1} \underset{H}{\oplus} G_{2}$ be a glued graph of G_{1} and G_{2} at arbitrary clone H. There are proper edge-colorings $f: E\left(G_{1}\right) \rightarrow S_{1}$ and $g: E\left(G_{2}\right) \rightarrow S_{2}$ of G_{1} and G_{2}, respectively, where S_{1} and S_{2} are sets such that $\left|S_{1}\right|=\chi^{\prime}\left(G_{1}\right),\left|S_{2}\right|=\chi^{\prime}\left(G_{2}\right)$ and $S_{1} \cap S_{2}=\phi$. Define $\alpha: E\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \rightarrow S_{1} \cup S_{2}$ by for all $e \in E\left(G_{1} \underset{H}{\triangleright} G_{2}\right)$

$$
\alpha(e)= \begin{cases}f(e) & \text { if } e \in E\left(G_{1}\right) \\ g(e) & \text { if } e \in E\left(G_{2} \backslash H\right)\end{cases}
$$

To prove that α is proper, let e_{1} and \vec{e}_{2} be edges in $G_{1} \underset{H}{\triangleright} G_{2}$ such that e_{1} and e_{2} are incident in $\underset{H}{G_{1}} \underset{H}{\triangleright} G_{2}$.

Case 1. $e_{1} \in E\left(G_{1}\right)$ and $e_{2} \in E\left(G_{2} \backslash H\right)$: Because $S_{1} \cap S_{2}=\phi$, so $\alpha\left(e_{1}\right) \neq \alpha\left(e_{2}\right)$.
Case 2. e_{1} and e_{2} are edges in G_{1} : Then e_{1} and e_{2} are incident in G_{1} and also $\alpha\left(e_{1}\right)=f\left(e_{1}\right) \neq f\left(e_{2}\right)=\alpha\left(e_{2}\right)$.

Case 3. e_{1} and e_{2} are edges in $G_{2} \backslash H$: Similarly to case 2., we have $\alpha\left(e_{1}\right)=$ $g\left(e_{1}\right) \neq g\left(e_{2}\right)=\alpha\left(e_{2}\right)$.

By all cases, we have that α is proper and hence $\chi^{\prime}\left(G_{1} \triangleright G_{2}\right) \leq \chi^{\prime}\left(G_{1}\right)+$ $\chi^{\prime}\left(G_{2}\right)$.

Example 4.2.6. Let G_{1} and G_{2} be graphs as shown in Figure 4.2.3.

Since $\Delta\left(G_{1}\right)=6$, we have that $\chi\left(G_{1}\right) \geq 6$. In Figure 4.2.3, labels are colors. We can see that the edge-coloring of G_{1} in Figure 4.2.3 is proper and $G_{1} \cong G_{2}$. So $\chi\left(G_{1}\right), \chi\left(G_{2}\right) \leq 6$. Hence $\chi^{\prime}\left(G_{1}\right)=6=\chi^{\prime}\left(G_{2}\right)$. We glue G_{1} and G_{2} with the
isomorphism f defined by $f(a)=m, f(b)=n, f(c)=o, f(d)=p, f(e)=q$ and $f(h)=r$. So we have $\underset{H_{1} \cong \bigoplus_{f} H_{2}}{G_{1}}$ as in Figure 4.2.3. Because a fat triangle
 Next, let g be an edge-coloring of $G_{H_{1} \unrhd \bigoplus_{f} H_{2}}$ as in Figure 4.2.3. Clearly, g is proper. So $\chi^{\prime}\binom{G_{1} \unrhd G_{2}}{H_{1} \cong_{f} H_{2}} \leq 12$. Hence $\chi^{\prime}\binom{G_{1} \unrhd G_{2}}{H_{1} \cong_{f} H_{2}}=12$. Consider $\chi^{\prime}\binom{G_{1} \bowtie G_{2}}{H_{1} \cong H_{2}}=12=$ $6+6=\chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)$. Hence the upper bound of the edge-chromatic number in Theorem 4.2.5 is sharp.

Because of $\chi^{\prime}(G)=\chi(L(G))([2])$, it is our motivation to study the line graphs of glued graphs.

Definition 4.2.7. Let G be a connected graph. The line graph $L(G)$ of \mathbf{G} is the graph generated from G by $V(L(G))=E(G)$ and for any two vertices $e, f \in V(L(G))$, vertex e and vertex f are adjacent in $L(G)$ if and only if edge e and edge f share a common vertex in G. If H is the line graph of G, we call G the root graph of H.

Remark 4.2.8. For any subgraph H of a graph $G, L(H) \subseteq L(G)$.
All graphs have their line graphs, but not all graphs are line graphs. For example, there is no graph G such that $L(G)=K_{1,3}$. So the $K_{1,3}$ is not a line graph. The next two theorems are characterization of the line graphs.

Theorem 4.2.9 ([3]). (Krausz [1943])
For a simple graph G, there is a solution to $L(H)=G$ if and only if G decomposes into complete subgraphs, with each vertex of G appearing in at most two in the list.

Theorem 4.2.10 ([3]). (Beineke [1968])
A simple graph G is the line graph of simple graph if and only if G does not have any of the nine graphs below as an induced subgraph.

Lemma 4.2.11 shows the relationship between $L\left(G_{1}\right) \triangleleft L\left(G_{2}\right)$ and $L\left(G_{1} \bowtie G_{2}\right)$ where G_{1} and G_{2} are graphs. This result helps us to find a condition to obtain a smaller upper bound of the chromatic numbers of glued graphs showed in Theorem 4.2.12.

Lemma 4.2.11. Let G_{1} and G_{2} be graphs. $L\left(G_{1}\right) \triangleleft L\left(G_{2}\right) \subseteq L\left(G_{1} \triangleleft G_{2}\right)$.
Proof. Since G_{1} and G_{2} are subgraphs of $G_{1} \uplus G_{2}$, we have that $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are subgraphs of $L\left(G_{1} \triangleleft G_{2}\right)$. So $L\left(G_{1}\right) \cup L\left(G_{2}\right) \subseteq L\left(G_{1} \triangleright G_{2}\right)$. Because for each vertex and edge in $L\left(G_{1}\right) \triangleleft L\left(G_{2}\right)$ are in $L\left(G_{1}\right) \mathscr{\oplus}\left(G_{2}\right)$ which is a subgraph of $L\left(G_{1} \triangleright G_{2}\right)$, so $L\left(G_{1}\right) \triangleleft L\left(G_{2}\right) \subseteq L\left(G_{1} \oplus G_{2}\right)$.

Theorem 3.2.17 gives a condition to reduce an upper bound of the chromatic numbers of glued graphs into the sum of the chromatic numbers of its original graphs. This is another condition to get a smaller upper bound of the chromatic numbers of glued graphs.

Theorem 4.2.12. Let G_{1} and G_{2} be graphs. If G_{1} and G_{2} are line graphs, then $\chi\left(G_{1} \triangleright G_{2}\right) \leq \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

Proof. Let G_{1} and G_{2} be graphs. Assume that G_{1} and G_{2} are line graphs. So there are graphs G_{1}^{*} and G_{2}^{*} such that $L\left(G_{1}^{*}\right)=G_{1}$ and $L\left(G_{2}^{*}\right)=G_{2}$. By lemma 4.2.11, we have that $L\left(G_{1}^{*}\right) \triangleleft L\left(G_{2}^{*}\right) \subseteq L\left(G_{1}^{*} \triangleleft G_{2}^{*}\right)$. So $\chi\left(L\left(G_{1}^{*}\right) \triangleleft L\left(G_{2}^{*}\right)\right) \leq \chi\left(L\left(G_{1}^{*} \triangleright G_{2}^{*}\right)\right)$. Hence

$$
\begin{aligned}
\chi\left(G_{1} \triangleright G_{2}\right) & =\chi\left(L\left(G_{1}^{*}\right) \triangleleft L\left(G_{2}^{*}\right)\right) \\
& \leq \chi\left(L\left(G_{1}^{*} \triangleright G_{2}^{*}\right)\right) \\
& =\chi^{\prime}\left(G_{1}^{*} \triangleright G_{2}^{*}\right) \\
& \leq \chi^{\prime}\left(G_{1}^{*}\right)+\chi^{\prime}\left(G_{2}^{*}\right) \quad \text { by Theorem 4.2.5 } \\
& =\chi\left(L\left(G_{1}^{*}\right)\right)+\chi\left(L\left(G_{2}^{*}\right)\right) \\
& =\chi\left(G_{1}\right)+\chi\left(G_{2}\right) .
\end{aligned}
$$

The next example, we show that the converse of Theorem 4.2.12 does not hold.
Example 4.2.13. Let G_{1} and G_{2} be graphs as shown in Figure 4.2.5.

Figure 4.2.5: The converse of Theorem 4.2.12 does not hold

Because $\omega\left(G_{1}\right)=2$ and $\omega\left(G_{2}\right)=3$ where $\omega(G)$ is the maximum size of a clique of G, so $\chi\left(G_{1}\right) \geq 2$ and $\chi\left(G_{2}\right) \geq 3$. Next define colorings $g_{1}: V\left(G_{1}\right) \rightarrow\{1,2\}$ and $g_{2}: V\left(G_{2}\right) \rightarrow\{1,2,3\}$ of G_{1} and G_{2}, respectively, as follows:

$$
g_{1}\left(u_{i}\right)= \begin{cases}1 & \text { if } i=1,3,5 \\ 2 & \text { if } i=2,4,6\end{cases}
$$

$$
g_{2}\left(v_{i}\right)= \begin{cases}1 & \text { if } i=1,4,6 \\ 2 & \text { if } i=2,5, \\ 3 & \text { if } i=3 .\end{cases}
$$

We obvious that g_{1} and g_{2} are proper. So $\chi\left(G_{1}\right) \leq 2$ and $\chi\left(G_{2}\right) \leq 3$. Hence $\chi\left(G_{1}\right)=2$ and $\chi\left(G_{2}\right)=3$. We can see that both G_{1} and G_{2} contain a copy of $K_{1,3}\left(\right.$ vertices $u_{2}, u_{3}, u_{4}, u_{6}$ in G_{1} and vertices $v_{2}, v_{3}, v_{4}, v_{6}$ in $\left.G_{2}\right)$ which is one of the nine graphs in Theorem 4.2.10. By Theorem 4.2.10, both G_{1} and G_{2} are not line graphs. Let $H_{1}=P_{5}\left(u_{1}, u_{2}, \ldots, u_{5}\right) \subseteq G_{1}$ and $H_{1}=P_{5}\left(v_{1}, v_{2}, \ldots, v_{5}\right) \subseteq G_{2}$. Define $f: H_{1} \rightarrow H_{2}$ by $f\left(u_{i}\right)=v_{i}$ for all $i=1,2, \ldots, 5$. So we have $G_{H_{1}} \triangle \triangleright G_{f} H_{2}$ as shown in Figure 4.2.5. Labels of vertices in Figure 4.2.5 are colors. We can see

We have obtained a lower bound and upper bounds of the edge-chromatic numbers of glued graphs. Together with the result about the line graphs of glued graphs, we find a condition to get a smaller upper bound of the chromatic numbers of glued graphs.

สถาบันวิทยบริการ

CHAPTER V

CONCLUSION AND OPEN PROBLEMS

5.1 Conclusion

We have introduced the glue operation and investigated properties of glued graphs emphasizing to their colorability. As follows, there are results in this thesis:

Let G_{1} and G_{2} be graphs.

Characterization:

1. A glued graph $G_{1} \triangleleft G_{2}$ is a tree if and only if G_{1} and G_{2} are trees.
2. A glued graph $G_{1} \triangleleft G_{2}$ is a forest if and only G_{1} and G_{2} are forests.
3. A glued graph $G_{1} \triangleleft G_{2}$ is a bipartite graph if and only if G_{1} and G_{2} are bipartite.
4. Let H be a clone of $G_{1} \stackrel{\rightharpoonup}{H} G_{2}$. If G_{1}, G_{2} and H are k-partite graphs, then $G_{1} \underset{H}{\triangleright} G_{2}$ is also a k-partite graph.
5. If G_{1} is acyclic and G_{2} is chordal, then $G_{1} \triangleleft G_{2}$ is chordal.
6. Let H be the clone of a glued graph $G_{1} \underset{H}{\otimes} G_{2}$. If H is an induced subgraph of both G_{1} and G_{2} and $G_{1} \underset{H}{\perp} G_{2}$ is chordal, then G_{1} and G_{2} are chordal graphs.
7. Let H be theclone of a glued graph $G_{1} \underset{H}{\perp} G_{2}$. If H is an induced subgraph of both G_{1} and G_{2} and $G_{1} \underset{H}{\triangleright} G_{2}$ is an interval graph, then G_{1} and G_{2} are interval graphs.
8. $L\left(G_{1}\right) \triangleleft L\left(G_{2}\right) \subseteq L\left(G_{1} \oplus G_{2}\right)$.

The chromatic numbers of glued graphs:

1. $\chi\left(G_{1} \triangleright G_{2}\right) \geq \max \left\{\chi\left(G_{1}\right), \chi\left(G_{2}\right)\right\}$.
2. Let H be the clone of a glued graph $G_{1} \underset{H}{\triangleright} G_{2}$. Then $\chi\left(\underset{H}{G_{1}} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1}\right)+$ $\Delta\left(G_{2}\right)-\delta(H)+1$. In particular, if $G_{1} \underset{H}{\triangleright} G_{2}$ is not a complete graph or an odd cycle, then $\chi\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)$.
3. $\chi\left(G_{1} \bowtie G_{2}\right) \leq \chi\left(G_{1}\right) \chi\left(G_{2}\right)$.
4. For all positive integer n which is not prime, K_{n} is a glued graph such that the product of the chromatic numbers of the original graphs is n. Hence the bound $\chi\left(G_{1} \triangleright G_{2}\right) \leq \chi\left(G_{1}\right) \chi\left(G_{2}\right)$ is sharp
5. Let H be a clone of $G_{1} \underset{H}{\triangleright} G_{2}$. If H is an induced subgraph of both G_{1} and G_{2}, then $\chi\left(G_{1} \underset{H}{\otimes} G_{2}\right) \leq \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.
6. If G_{1} and G_{2} are line graphs, then $\chi\left(G_{1} \triangleright G_{2}\right) \leq \chi\left(G_{1}\right)+\chi\left(G_{2}\right)$.

The edge-chromatic numbers of glued graphs:

1. $\chi^{\prime}\left(G_{1} \oplus G_{2}\right) \geq \max \left\{\chi^{\prime}\left(G_{1}\right), \chi^{\prime}\left(G_{2}\right)\right\}$.
2. $\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \frac{3}{2}\left(\Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)\right)$. In particular, if $G_{1} \underset{H}{\triangleright} G_{2}$ is a simple graph, then $\chi^{\prime}\left(G_{1} \underset{H}{\triangleright} G_{2}\right) \leq \Delta\left(G_{1}\right)+\Delta\left(G_{2}\right)-\delta(H)+1$ where H is a clone of a glued graph between G_{1} and G_{2}.
3. $\chi^{\prime}\left(G_{1} \triangleright G_{2}\right) \leq \chi^{\prime}\left(G_{1}\right)+\chi^{\prime}\left(G_{2}\right)$. 9 \&

5.2 Open Problems
 This thesis brings some open problems for future work as follows:

1. In Section 2.2, we show that a glued graph between two interval graphs may not be an interval graph while a glued graph between two non-interval graphs may be an interval graph. Moreover, we give a condition to make sure that a glued graph of two non-interval graphs is not an interval graph in Theorem
2.2.23. An open problem is to investigate conditions to obtain that a glued graph between two interval graphs is an interval graph.
2. By Theorem 3.2.8, we have that the chromatic number of any glued graph is at most the product of the chromatic numbers of its original graphs. Since the chromatic number of any graph is at least its clique number, we get that $\omega\left(G_{1} \triangleright G_{2}\right) \leq \chi\left(G_{1} \triangleright G_{2}\right) \leq \chi\left(G_{1}\right) \chi\left(G_{2}\right)$ where G_{1} and G_{2} are graphs. What is a relation of $\omega\left(G_{1}\right) \omega\left(G_{2}\right)$ and above parameters? Whether or not $\omega\left(G_{1} \bowtie G_{2}\right) \geq \omega\left(G_{1}\right) \omega\left(G_{2}\right)$? Analyze the relation between the clique numbers and the chromatic numbers of glued graphs.

We had investigated the following two statements. Let G_{1}^{*} and G_{2}^{*} be graphs.

- If $\omega\left(G_{1}^{*}\right)<\chi\left(G_{1}^{*}\right)$ and $\omega\left(G_{2}^{*}\right)<\chi\left(G_{2}^{*}\right)$, then $\omega\left(G_{1}^{*} \triangleright G_{2}^{*}\right)<\chi\left(G_{1}^{*} \triangleright G_{2}^{*}\right)$.
- If $\omega\left(G_{1}^{*}\right)=\chi\left(G_{1}^{*}\right)$ and $\omega\left(G_{2}^{*}\right)=\chi\left(G_{2}^{*}\right)$, then $\omega\left(G_{1}^{*} \oplus G_{2}^{*}\right)=\chi\left(G_{1}^{*} \oplus G_{2}^{*}\right)$.

We found that these two statements do not hold showed in the following example. Let G_{1}, G_{2}, G_{3} and G_{4} be graphs as shown in Figure 5.2.1.

We can see that $\chi\left(G_{1}\right)=4>3=\omega\left(G_{1}\right)$. It is easy to see that $G_{1} \cong G_{2}$. So $\chi\left(G_{2}\right)=4>3=\omega\left(G_{2}\right), \chi\left(G_{3}\right)=3=\omega\left(G_{3}\right)$, and $\chi\left(G_{4}\right)=3=\omega\left(G_{4}\right)$. Let $H_{1} \subseteq G_{1}$ and $H_{2} \subseteq G_{2}$ be as in Figure 5.2.1 and let $H_{3}=P_{4}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \subseteq$ G_{3} and $H_{4}=P_{4}\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \subseteq G_{3}$ Define isomorphism $f: H_{1} \rightarrow H_{2}$ by $f\left(u_{i}\right)=v_{i}$ for all $i=2,3,4,5,6,7$ and isomorphism $g: H_{3} \rightarrow H_{4}$ by $g\left(a_{i}\right)=b_{i}$ for all $i=1,2,3,4$. Wecget $\frac{G_{3} \boxplus G_{4}}{H_{3} \cong H_{4}}=G_{1}$ and $\frac{G_{1} \bowtie G_{2}}{H_{1} \cong f H_{2}}$ as in Figure 5.2.1.

 while $\omega\left(G_{3}\right)=\chi\left(G_{3}\right)$ and $\omega\left(G_{4}\right)=\chi\left(G_{4}\right)$ but $\omega\left(\underset{H_{3} \cong H_{4}}{G_{3} \bowtie G_{4}}\right)<\chi\left(\underset{H_{3} \cong H_{4}}{G_{3} \bowtie G_{4}}\right)$.
Hence an open problem is to find a condition to make the two statements hold.
3. The total chromatic number of any graph is introduced in [5]. Let G be any

61 Figure 5.2.1: An open problem. $\widetilde{\delta}$ จุฬาลงกรณ์มหาวิทยาลัย
graph. The total chromatic number $\chi^{\prime \prime}(G)$ is the smallest number of colors needed to color all the elements of $V(G) \cup E(G)$ in such a way that no two adjacent or incident elements receive the same color. Bounds of the total chromatic number of any graph is showed in [5]. This motivates a future work to investigate bounds of the total chromatic numbers of glued graphs.

จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] Berge, C. Graphs and hypergraphs, North-holland Publishing company, 1973.
[2] Chartrand, G. and Lesniak, L. Graphs \& digraphs, Chapman \& Hall., 1996.
[3] Douglas, B. W. Introduction to graph theory, Prentice-Hall Inc., 2001.
[4] Lekkerkerker, C.G. and Boland, J.C. Representation of a finite graph by a set of intervals on the real line. Fund. math., 51,(1962): 45-64
[5] Tommy, R. J. and Bjarne, T. Graph coloring problems, A Wileyinterscience Publication., 1995.
[6] Uiyyasathain, C. Maximal-Clique Partition, PhD Thesis, University of Colorado at Denver, 2003.

Definitions and Notations

A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and relations that associates with each edge two vertices(not necessarily distinct) called its endpoints. A loop is an edge whose endpoints are equal. Multiple edges are edges having the same pair of endpoints. A simple graph is a graph having no loops or multiple edges. A non-simple graph is a graph which is not simple. In a simple graph, when u and v are the end points of an edge e, denoted by $e=u v$ (or $e=v u$), they are adjacent and are neighbors. We write $u \leftrightarrow v$ for " u is adjacent to v ". Also we denote $u \nleftarrow v$ for " u is not adjacent to v ". Let e_{1} and e_{2} be edges of a graph G. We say e_{1} and e_{2} are incident if e_{1} and e_{2} share a common vertex.

Graph G having at least one edge is called non-trivial. For each vertex v in a loopless graph G, the degree of vertex v in G, denoted by $\operatorname{deg}_{G}(v)$, is the number of incident edges. The maximum degree of a graph G is denoted by $\Delta(G)$ while the minimum degree of graphs G is denoted by $\delta(G)$. For a graph G, if $\Delta(G)=\delta(G)$, then we call that G is regular. The order of a graph G is the number of vertices in G. An n-vertex graph is a graph of order n. The size of graph G is the number of edges in G.

A subgraph H of a graph G is a graph such that $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$ and the assignment of endpoints to edges in H is the same as in G. We then write $H \subseteq G$ and say that " G contains H ". Given a subset $V^{\prime} \subseteq V(G)$. We call V^{\prime} as an induced subgraph of G, denoted by $G\left[V^{\prime}\right]$, if V^{\prime} is a subgraph in which vertices of V^{\prime} are adjacent in $G\left[V^{\prime}\right]$ whenever they are adjacent in G.

For $S \subseteq V(G)$ and $M^{\circ} \subseteq E(G)$, we write $G \backslash S$ for the subgraph of G obtained by deleting the set of vertices S. We write $G \backslash M$ for the subgraph of G obtained by deleting the set of edges M. Let H be a subgraph of a graph G. We write $G \backslash H$ for the subgraph of G obtained by deleting the set of vertices $V(H)$ and the set of edges $E(H)$.

A path is a simple graph P of the form $V(P)=\left\{x_{0}, x_{1}, \ldots, x_{l}\right\}, E(P)=$ $\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{l-1} x_{l}\right\}$ where l is a positive integer. A u, v-path is a path whose vertices of degree 1 are u and v. We called u and v as its endpoints. A cycle is a
graph such that two vertices are adjacent if and only if they appear consecutively along the circle. The length of a cycle or path is its number of edges. An odd cycle is a cycle of an odd length while an even cycle is a cycle of an even length. A complete graph or a clique is a graph that every pair of vertices are adjacent. The unlabeled path, cycle and complete graph with n vertices are denoted as P_{n}, C_{n} and K_{n}, respectively. The labeled path, cycle and complete graph on the vertex set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ are denoted as $P_{n}\left(u_{1}, u_{2}, \ldots, u_{n}\right), C_{n}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and $K_{n}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$.

A graph G is connected if it has a u, v-path whenever $u, v \in V(G)$. Otherwise, G is disconnected. The components of a graph G are its maximum connected subgraphs. A vertex-cut of a graph G is a set $S \subseteq V(G)$ such that removing vertices in S from $V(G)$ increases the number of components.

สถาบันวิทยบริการ

VITA

Mr. Chanon Promsakon was born on December 28, 1982 in Lopburi, Thailand. He graduated with a Bachelor of Science Degree in Mathematics from Thammasat University in 2004.

