C_{2}-COFINITENESS OF THE VERTEX ALGEBRA V_{L}^{+}AND CLASSIFICATION OF IRREDUCIBLE MODULES OF THE VERTEX OPERATOR ALGEBRA $V_{\mathcal{L}}^{+\langle\tau}$

$$
C_{2} \text {-โคไฟไนต์เนสของพีชคณิตเวอร์เท็กซ์ } V_{L}^{+} \text {และ }
$$

การจำแนกมอดูลที่ลดทอนไม่ได้ของพีชคณิตตัวดำเนินการเวอร์เท็กซ์ $V_{\mathcal{L}}^{+\tau\rangle}$

พิเชษฐ์ จิตต์เจนการ : C_{2} - โค่ไฟไนต์เนสของพีชคณิตเวอร์เท็กซ์ V_{L}^{+}และการจำแนกมอดูลที่ลด ทอนไม่ได้ของพีชคณิตตัวดำเนินการเวอร์เท็กซ์ $V_{L}^{+ \text {+> }}\left(C_{2}\right.$ - COFINITENESS OF THE VERTEX ALGEBRA V_{i}^{*} AND CLASSIFICATION OF IRREDUCIBLE MODULES OF THE VERTEX OPERATOR/AyGEBRA $V_{L}^{+\infty}$) อ.ที่ปรึกษาวิทยานิพนธ์หลัก:

ศูนย์วิทยทรัพยากร

ACKNOWLEDGEMENTS

I would like to express my profound gratitude and deep appreciation to Associate Professor Dr. Patanee Udomkayanich and Associate Professor Dr. Gaywalee Yamskulna, my thesis advisor and co-advisor, respectively, for their advice, endless patience and encouragement. Sincere thanks and deep appreciation are also extended to Professor Dr. Yupaporn Kemprasit, the chairman, Associate Professor Dr. Wicharn Lewkeeratiyutkul, Assistant Professor Dr. Sajee Pianskool and Professor Dr. Chawewan Ratanaprasert, committee nembers, for their comments and suggestions. I thank also all teachers who have taught me all along.

I also owe a debt to my fellowship, The University Development Commission, which has supported me Thanks to the scholarship from The Commission on Higher Education, I afforded thegreat opportunity to do this research at Illinois State
 love, encouragement and motivation throughout my graduate study.

Finally, 「would also like to thank the staff at the Department of Mathematics, Chulalongkorn University for their support and all my friends during the pleasant
times I study at Chulalongkorn University. จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I INTRODUCTION 1
1.1 Basic notions 1
1.2 Vertex algebras and some fundamentar properties. 6
1.3 Modules and twisted module 11
CHAPTER II THE VERTEX ALGEBRA V_{L}^{+} 16
CHAPTER III THE C_{2}-COPIATTENESS OF THE VERTEX ALGEBRA V_{L}^{+}4.1 Case I: $\mathcal{\text { L is }}$, a rank one negative definite even lattice $=$25
4.2 Case II: Lis a negative definite even lattice 29
4.3 Case III: L is arank d nondegenerate even lattice 30
CHAPPER IV IRREDUCIBLE MODULES OF THE VERTEX OPERATORALGEBRA $V_{\mathcal{L}}^{+(\tau)}$31
จุ มมนเด้งกรณ์มหาวิทยาลัย
VITA 54

CHAPTER I

Throught this work, all vector spaçes and algebras will be over \mathbb{C} and $\mathbb{Z}_{\geq 0}$ is the set of positive integers

1.1 Basic notions

We shall give some definitions of the notion of vertex algebra, as presented in [21] and [26].

Formal calculus

For a vector space V, we will esfablish the following notations:

$$
\begin{aligned}
& V[z] \\
& V\left[z, z^{-1}\right] \\
& V[[z]]=\left\{\sum_{n=0}^{\infty} v_{n} z^{n} \mid v_{n} \in V, v_{n}=0 \text { for all but fibitgly many } n\right\}, \\
& =\left\{v_{n} z^{n} \mid v_{n} \in V, v_{n}=0 \text { for all but finitely many } n\right\}, \\
& V d\left[z, z^{\sim}\right]=\left\{\sum_{n \in \mathbb{Z}}^{\infty} v_{n} z^{n} \mid v_{n} \in V\right\},
\end{aligned}
$$

- Expanding formal series, we will use the following convention:? ? $(x+y)^{n}=\sum_{i=0}^{\infty}\binom{n}{i} x^{n-i} y^{i}, \quad(x-y)^{n}=\sum_{i=0}^{\infty}\binom{n}{i} x^{n-i}(-y)^{i}$
where $\binom{n}{0}=1,\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}, n \in \mathbb{C}$ and $k \in \mathbb{Z}_{\geq 0}$.

Let us define the formal δ-function at $z=1$ to be the series

In the theory of vertex operator algebras we ofter use three-variable generating functions of the following sort:
There are two basic properties of the δ-function involving such expressions. Proposition 1.1.1.

We also define a formal residue notation: for a positive intege r r

Lattices

$\sigma=$

A lattice L of rank $n \in \mathbb{Z}_{>0}$ is a finite-rank n free abelian group equipped with a symmetric nondegenerate \mathbb{Q}-valued \mathbb{Z}-bilinear form $\langle\cdot, \cdot\rangle: L \times L \rightarrow \mathbb{Q}$. The nondegenerate property is the condition $\langle\alpha, L\rangle=\theta$ implies $\alpha=0$. There are some definitions of a

1. L is even if $\langle\alpha, \alpha\rangle \in 2 \mathbb{Z}$ for $\alpha \in L$.
2. L is integral if $\langle\alpha, \beta\rangle \in \mathbb{Z}$ for $\alpha, \beta \in L$.
3. L is positive definite if $\langle\alpha, \alpha\rangle>0$ for $\alpha \in L-\{0\}$.
4. L is negative definite if $\langle\alpha, \alpha\rangle<0$ for $\alpha \in L-\{0\}$.

A lattice isomorphism φ from L_{1} to L_{2} is an isometry, i.e.

Notice that the even lattice I is also in tegral since

$\langle\alpha, \beta\rangle=\frac{1}{2}(\langle\alpha+\beta, \alpha /+\beta\rangle-\langle\alpha, \alpha\rangle-\langle\beta, \beta\rangle) \in \mathbb{Z}$ for $\alpha, \beta \in L$.

The dual lattice L° of \boldsymbol{L} is deimed to be

$\{\alpha \in(L, \mathbb{C} \mid\langle\alpha, L\rangle \subset \mathbb{Z}\}$

Then L° is a lattice whose rank is equal to the rank of L and has as a base the dual base $\left\{\alpha_{1}^{*}, \ldots, \alpha_{n}^{*}\right\}$ of a given base $\left\{\alpha_{1}^{4}, \int \alpha_{n}\right\}$ of L, defined by

Algebras

An algebra is evector space V equipped with a bilinear map from $V \times V$ to V. The algebra V is said to be associative if it contains an identity element 1 for multiplication and The algebra V is said to be commutative if the commutative law holds:

Given a group G, we define its group algebra to be the associative algebra $\mathbb{C}[G]$ which is formally the set of finite linear combinations of finitely many elements of G
with coefficients in \mathbb{C}. That is the set G is a linear basis of $\mathbb{C}[G]$, and multiplication in $\mathbb{C}[G]$ is defined by linear extension of multiplication in G. The identity element of $\mathbb{C}[G]$ is the identity element of G. Notice that if the group G is abelian, we will write $e^{g}, g \in G$, for the element of $\mathbb{C}[G]$ corresponding to $g \in G$, i.e. $\left\{e^{g} \mid g \in G\right\}$ is a linear basis. In particular,

A Lie algebra is an algebra a whose multiplication (called bracket and denoted by $[\cdot, \cdot])$ satisfes the following axioms

1. $[x, x]=0$ for $x \in \mathfrak{g}, \quad$ (皿 (Skew-symmetry)
(it is equivalent to $[x, y]=[y, x]$ for $x, y \in \mathfrak{g}$)
2. $[[x, y], z]+[[y, z], x]+[[z, x, y]=0$ for $x, y, z \in \mathfrak{g} . \quad$ (Jacobi identity)

The Virasoro algebra is definectas the Lie algebra \mathcal{L} with basis $\left\{L_{n} \mid n \in \mathbb{Z}\right\} \cup\{c\}$ equipped with the bracket relations:

together with thegondition that c is a central element of $\mathcal{L}=$

$$
\begin{aligned}
& \text { We call a Lie algebra } \mathfrak{g} \text { a Heisenberg (Lie) algebra if } \\
& \text { Cent } \mathfrak{g}=\mathfrak{g}^{\prime} \text { and dim Cent } \mathfrak{g}=1
\end{aligned}
$$

where $T^{0}=\mathbb{C}, T^{1}=\mathfrak{g}, T^{2}=\mathfrak{g} \otimes_{\mathbb{C}} \mathfrak{g}, T^{n}=\overbrace{\mathfrak{g} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathfrak{g}}^{n \text { times }}$. Define a bilinear map $T^{m} \times T^{n}$ to T^{m+n} satisfying

$$
\begin{equation*}
\left(x_{1} \otimes \cdots \otimes x_{m}\right)\left(y_{1} \otimes \cdots \otimes y_{n}\right)=x_{1} \otimes \otimes \cdot \otimes x_{m} \otimes y_{1} \otimes \cdots \otimes y_{n} \tag{1.3}
\end{equation*}
$$

for $x_{i}, y_{j} \in \mathfrak{g}$, and then extend this map by bilinearity to give a multiplication map $T(\mathfrak{g}) \times T(\mathfrak{g})$ to $T(\mathfrak{g})$. In hins way, $(17.3) T(\mathfrak{g})$ becomes an associative algebra, called the tensor algebra of g.

The universal enveloping algebra $U(\mathfrak{g})$ is an associative algebra defined by $T(\mathfrak{g}) / I$ where I is the 2 -sided ideal of $T(\mathfrak{g})$ generated by all elements of the form

If \mathfrak{g} is an abelian Lie algebra, i.e. $v x, y]=0$ for $x, y \in \mathfrak{g}$, the universal enveloping algebra $U(\mathfrak{g})$ will be denoted by $S(\mathfrak{g})$, called the symmetric algebra of \mathfrak{g}.

Induced modules

Let B be a subalgebra of an associative algebra A and let wble a B-module. Set $A \otimes_{B} V$ be the-equotient of the vector space $A \otimes_{\mathbb{C}} V$ by the strbspace spanned by the elements

for $a \in A, b \in B$ and $v \in V$. Write $a \otimes v$ to stand for the image of $a \otimes v \in A \otimes_{\mathbb{C}} V$ in $A \otimes_{B} V$. Then in $A \otimes_{B} V$,

$A \otimes_{B} V$ is called the A-module induced by the B-module V. It is sometimes denoted by $\operatorname{Ind}{ }_{B}^{A} V$.

Now we consider induced Lie algebra modules. Given a subalgebra \mathfrak{h} of a Lie algebra \mathfrak{g} and a \mathfrak{h}-module V, the \mathfrak{g}-module induced by V is, by definition the \mathfrak{g} module corresponding to the $U(\mathfrak{g})$-module,

Given a subgroup H of a group G and an H-module D, we define the G-module induced by V to be G-modyle associated with the induced $\mathbb{C}[G]$-module $\mathbb{C} \otimes_{\mathbb{C}[H]} V$. We sometimes write

1.2 Vertex algebras and some fundamental properties

Definition 1.2.1. ([26], p. 8) A vertex algebra V is a vector space equipped with a linear map

and a distinguished vector $1 \in V$ which satisfies the following properties: for $u, v \in V$

1. $u_{n} v=0$ for sufficiently large.
"ศนย์วิทยทรัพยากร
2. $Y(v, z) \mathbf{1} \in V[[z]]$ and $\lim _{z \rightarrow 0} Y(v, z) \mathbf{1}=v$.

จุหาสงกรณ์มหาวิทยาลัย

$$
\begin{gathered}
z_{0}^{-1} \delta\left(\frac{z_{1}-z_{2}}{z_{0}}\right) Y\left(u, z_{1}\right) Y\left(v, z_{2}\right)-z_{0}^{-1} \delta\left(\frac{z_{2}-z_{1}}{-z_{0}}\right) Y\left(v, z_{2}\right) Y\left(u, z_{1}\right) \\
=z_{2}^{-1} \delta\left(\frac{z_{1}-z_{0}}{z_{2}}\right) Y\left(Y\left(u, z_{0}\right) v, z_{2}\right)
\end{gathered}
$$

We denote the vertex algebra just defined by $(V, Y, \mathbf{1})$ or, briefly, by V.

Definition 1.2.2. A \mathbb{Z}-graded vertex algebra is a vertex algebra

$$
V=\bigoplus_{n \in \mathbb{Z}} V_{n} ; \text { for } v \in V_{n}, n=\mathrm{wt} v
$$

equipped with a conformal vector $\omega \in V_{2}$ whieh satisfies the following relations:

- $[L(m), L(n)]=(m-n) 亡(m)+n=+\frac{1}{12} \frac{\left.m^{3}-m\right) \delta_{m+n, 0} c_{V}}{}$ for $m, n \in \mathbb{Z}$, where $c_{V} \in \mathbb{C}$ (the central charge) and

$$
Y(\omega, z)=\sum(m \in \mathbb{Z}
$$

- $L(0) v=n v=(\mathrm{wt} v) v$ for $n \in \mathbb{Z}$ and $v \in V_{n}$;
- $Y(L(-1) v, z)=\frac{d}{d z} Y(v, z)$.

We shall refer to the \mathbb{Z}-vertex algebra τ as $(V, Y, \mathbf{1}, \omega$) if necessary.

Definition 1.2.3. A vertex operator algebra is a \mathbb{Z}-graded vertex algebra, $(V, Y, 1, \omega)$,

which satisfies din $V_{n}<\infty$ for $n \in \mathbb{Z}$ and $V_{n}=0$ for n sufficiently negative.
For $l, m, n \in \mathbb{Z}$ and $u, v \in V$, the component form of the Jacobi identity by equating the coefficientof $z_{0}^{-l-1} z_{1}^{-m-1} z_{2}^{-n-1}$ gives

In Borcherds's Identity, let $l=0$ and $m=0$, we have two formulas as follows:

Proposition 1.2.4. Let $u, v \in V$ and $m, n \in \mathbb{Z}$.

1. $\left[u_{m}, v_{n}\right]=\sum_{i \geq 0}\binom{m}{i}\left(u_{i} v\right)_{m+n-i}$.
2. $\left(u_{m} v\right)_{n}=\sum_{i \geq 0}(-1)^{i}\binom{m}{i}\left(u_{m-i} v_{n+h}(-1)^{m} v_{m+n-i} u_{i}\right)$.

From [26], taking $\operatorname{Res}_{z_{0}}$ of the Jacobi identity we obtain the commutator formula:

Applying $u=\omega$ and taking Bes z_{1} and Res $z_{1} z_{1}$ to the commutator formula (1.7), and using (1.1) we have

For homogeneous vectors u, थर्णV, using (T.9), we have

Taking Res z^{n} of both sides, we obtain $=z \sum_{n \in \mathbb{Z}}(-n-1) v_{n} u z^{-n-2}+($ wt $v) \sum_{n \in \mathbb{Z}} v_{n} u z^{-n-1}$.

that is, v_{n} is a homogeneous operator that maps $V_{\mathrm{wt} u}$ to $V_{\mathrm{wt} u+\mathrm{wt} v-n-1}$ for all $n \in \mathbb{Z}$.

Notice that for $n \in \mathbb{Z}_{\geq 0}$, from the property

$$
L(-1) \mathbf{1}=L(n) \mathbf{1}=0
$$

so that the vacuum vector is homogeneous of weight 0 .
Definition 1.2.5. ([26], p. 99). A vertex (operatgr) subalgebra of a vertex (operator) algebra V is a vector subspace O of such that $1 \in U,(\omega \in U)$ and such that U is itself a vertex (operator) algebraa

The two notions of the direct sand and the tensor product of finitely many vertex (operator) algebras canbe foupd 11 [26], pages 111-116, as follows:

Let $\left(V_{1}, Y_{1}, 1\right), \ldots\left(V_{r}, Y_{r}, 1\right)$ be vertex algebras. Let $V=V_{1} \oplus \cdots \oplus V_{r}$. Define the linear map Y
z) from V to End $V\left[\left[z, z^{-1} 1\right]\right.$ by

for $v^{(i)} \in V_{i}, 1 \leq i \leq p$ and the vacuan vector is $\mathbf{1}=1 \oplus \cdots \oplus \mathbf{1}$.
Suppose that for each $i=12 V_{i}$ is a vertex operator algebra with a conformal vector $\omega^{(i)}$ of the same central charge. Endow V with the natural \mathbb{Z}-grading $V=$

Then the vertex agebra $V_{1} \oplus \cdots \oplus V_{r}$ is a vertex operator algebra of the same central charge, with the conformal vector

The vertex algebra $V=V_{1} \otimes \cdots \otimes V_{r}$ is constructed on the tensor product of vector spaces V_{1}, \ldots, V_{r} where the linear map Y is defined by

$$
Y\left(\left(v^{(1)} \otimes \cdots \otimes v^{(r)}\right), z\right)=Y\left(v^{(1)}, z\right) \otimes \cdots \otimes Y\left(v^{(r)}, z\right)
$$

for $v^{(i)} \in V_{i}, 1 \leq i \leq r$ and the vacuum vector is $\mathbf{1}=\mathbf{1} \otimes \cdots \otimes \mathbf{1}$.
Now suppose that each V_{i} is a vertex operator algebra with a conformal vector $\omega^{(i)}$ of the central charge c_{i} for $i=1$. 1.1 . Then $V=V_{1} \otimes \cdots \otimes V_{r}$ is \mathbb{Z}-graded as $V=\coprod_{n \in \mathbb{Z}} V_{(n)}$, where

Then the vertex algebra $\mathrm{N} / \mathrm{V} / . . \otimes V_{r}$ is a vertex operator algebra of the central charge $c_{1}+\cdots \neq c_{r}$, with the oonformat yector

where $Y(\omega, z)=\sum_{n \in \mathbb{Z}} L(n) z 7^{n-2}, L(n)^{2}=L^{(1)}(n) \otimes 1 \otimes \cdots \otimes 1+\cdots+1 \otimes \cdots \otimes 1 \otimes$ $L^{(r)}(n), \quad \omega_{n+1}^{(i)}=L^{(i)}(n)$ for $n \in \mathbb{Z}$,

Definition 1.2.6. Let $\left(V_{1}, Y_{1}, 1\right)$ and $\left(Y_{2}, Y_{2}, 1\right)$ be vertex algebras. A vertex algebra homomorphism $f: V_{1} \rightarrow V_{2}$ is defined to be a linear map such that
 or equivalently, $f\left(u_{n} v\right)=f(u)_{n} f(v)$ for $u, v \in V_{1}, n \in \mathbb{Z}$, and such that $f(\mathbf{1})=\mathbf{1}$.
If V_{1} and V_{2} are \mathbb{Z}-graded vertex algebras (vertex operator algebras), a homomorphism f from 2 to V_{2} is required in addition to satisfy the condition $?$ $f\left(\omega^{1}\right)=\omega^{2}$,
Q where ω^{1} and ω^{2} are the conformal vectors for V_{1} and V_{2} respectively.

Remark 1.2.7. From preserving of the conformal vector of a homomorphism f,

$$
f L^{1}(n)=L^{2}(n) f \text { for } n \in \mathbb{Z}
$$

$\left(L^{1}(n)=\omega_{n+1}^{1}, L^{2}(n)=\omega_{n+1}^{2}\right), f$ is automatically grading-preserving. Furthermore, since

$$
L^{i}(2) L^{i}(-2) \mathbf{1}=\frac{1}{2} C y_{i} 1 \text { for } i=1,2,
$$

V_{1} and V_{2} must have the same central

The notions of isomorphism, endomomhism and automorphism are defined in the obvious ways.

We denote by Aut(V) the gronp of all automorphisms of V. For a subgroup $G<\operatorname{Aut}(V)$ the fixed point set $V^{G} \leqslant\{a \in V \quad g(a)=a, g \in G\}$ has a canonical vertex operator algebra structure.

1.3 Modules and twisted modules

Definition 1.3.1. ([13]). Let be a vertex algebra, a weak V-module M is a vector space equipped with a linear map

1. $u_{n} w=0$ for n sufficiently large.
2. $Y\left(\frac{1}{2}, z\right)=\mathrm{id}$

We denote the weak V-module M by $\left(M, Y_{M}\right)$.

Definition 1.3.2. Let V be a \mathbb{Z}-graded vertex algebra. An admissible V-module is a weak V-module, $\left(M, Y_{M}\right)$,

Set $Y_{M}(\omega, z)$

the Virasoro algebra on M with central charge c_{1} and the following relations hold on M : for $m, n \in \mathbb{Z}$ and $\nu \in V(\operatorname{see}[13,26])$

$$
\begin{align*}
& {\left[L(-1), Y_{M}(v, z)\right]=Y_{M}(L(-1) v, z)=\frac{d}{d z} Y_{M}(v, z),} \tag{1.10}\\
& {[L(m), L(n)] \Rightarrow(n-n) L(m+n)+\frac{1}{12}\left(m^{3}-m\right) \delta_{m+n, 0} c_{V},} \tag{1.11}\\
& {\left[L(0), Y_{M}(v, z)\right] \triangleq 2 Y_{M}(L(-1) v, z)+Y_{M}(L(0) v, z) .} \tag{1.12}
\end{align*}
$$

An irreducible weak (admissible) y-module is a weak V-module that has no weak (admissible)
 direct sum of finitely many irreducible weak (admissible) V-modules.
Proposition1.3.3. ([26, p, 130) Let W be aweakV-module, and let $\langle T\rangle$ be a weak V-submodule of W generated by a subset T of W. Then

Corollary 1.3.4. If W is an irreducible weak V-module then

$$
W=\operatorname{Span}_{\mathbb{C}}\left\{v_{n} w \mid v \in V, n \in \mathbb{Z}\right\}
$$

Here, w is a non-zero element in W.

Definition 1.3.5. Let V be a vertex algebra. Let M_{1} and M_{2} be V-modules. A V-homomorphism from M_{1} to M_{2} is a linear map φ such that or equivalently, $\varphi\left(v_{n} w\right)=v_{n} \varphi(w)$ for $v \in V, w \in M_{1}, n \in \mathbb{Z}$.

Let g be an automorphism of q/ertex operator algebra $V=\coprod_{n \in \mathbb{Z}} V_{n}$. Then $g\left(V_{n}\right)=$ V_{n} for $n \in \mathbb{Z}$ and V is a direct sum of the eigenspaces of g :

 notation in using $W\{z\}$ to denote the space of W-valued formal series in arbitrary real powers of z for a vector space $W, 2.232$

Definition 1.3.6. ([14]). A weak g-twisted V-module is a vector space equipped with

which satisfies the following conditions for all $0 \leq r \leq T-1, u \in V^{r}, v \in V, w \in M$, ตูนยยวยยทรพยากร

4. (the twisted Jacobi identity)

$$
\begin{align*}
z_{0}^{-1} \delta\left(\frac{z_{1}-z_{2}}{z_{0}}\right) & Y_{M}\left(u, z_{1}\right) Y_{M}\left(v, z_{2}\right)-z_{0}^{-1} \delta\left(\frac{z_{2}-z_{1}}{-z_{0}}\right) Y_{M}\left(v, z_{2}\right) Y_{M}\left(u, z_{1}\right) \tag{1.13}\\
& =z_{2}^{-1}\left(\frac{z_{1}-z_{0}}{z_{2}}\right) H_{1} \delta\left(z_{1}-z_{0}\right) Y_{M}\left(Y\left(u, z_{0}\right) v, z_{2}\right) . \tag{1.14}
\end{align*}
$$

Definition 1.3.7. ([14]). An admissible g twisted V-module is a weak g-twisted V-module M which carries a $\frac{1}{7} \mathbb{L}$ - -grading

such that $u_{m} M_{n} \subset M_{\mathrm{wt} u-m}+n$ for homogeneous $u \in V$ and $m, n \in \mathbb{Q}$.
If $g=\mathrm{id}_{V}$, these definitions reduce to the untwisted version used in [13].

Remark 1.3.8. ([20,21]). One canprove that the twisted Jacobi identity as in (1.13) is equivalent to the following associativity formula:

$$
\left[Y_{M}\left(u, z_{1}\right), Y_{M}\left(v, z_{2}\right)\right]=\operatorname{Res}_{z_{0}} z_{2}^{-1}\left(\frac{z_{1}-z_{0}}{z_{2}}\right)^{-r / T} \delta\left(\frac{z_{1}-z_{0}}{z_{2}}\right) Y_{M}\left(Y\left(u, z_{0}\right) v, z_{2}\right)
$$ where $\psi_{\|} \in M$ and $k \in \mathbb{Z}_{\geq 0}$ such that $z^{k+\pi / T} Y_{M}(u, z) w$ involves only positive power

$$
\text { Equating the coefficients of } z_{1}^{\text {of } z}
$$

A g-twisted weak (admissible) V-submodule of a g-twisted weak (admissible) module M is a subspace N of M such that $v_{n} N \subset N$ holds for all $v \in V$ and $n \in \mathbb{Q}$. If M has no g-twisted weak (admissible) V-submodule except $\{0\}$ and M, M is called an irreducible g-twisted weak (admissible) V -module.

A g-twisted weak(admissible) -module 1 s completely reducible if it can be rewritten as a direct sum of finitely many irreducible g-twisted weak(admissible) V-modules.
 reducible. ible.

CHAPTER II

 THE VERTEX ALGEBRA V_{L}^{+}The vertex algebras V_{L}^{+}are one of $\begin{aligned} & \text { the } \\ & \text { mest important classes of vertex algebras }\end{aligned}$ along with those vertex algebras associated with lattices, affine Lie algebras and Virasoro algebras. They were originally introduced in the Frenkel-Lepowsky-Meurman construction of the moonshine module vertex algebra (see [21]). The representation theory of V_{L}^{+}is well underswood when L is a positive definite even lattice. In fact, for such case, the classification of all irreducible weak V_{L}^{+}-modules, and the study of the complete reducibility property of tweal V_{L}^{+}-modules was done by Abe, Dong, Jiang, and Nagatomo (see $1,2,4,9,18\}$) ふん.

When L is a rank one negative definite even lattice, the classification of irreducible admissible V_{L}^{+}-modules wascompleted by Jordan in [23]. Later, in [30, 31], Yamskulna classified all irreducible admissible V_{L}^{+}-modules and showed thecomplete reducibility
 arbitrary rank, and when L is a non-degenerate even lattide that is neither positive definite nor negative definite.

In this chapter, we grye the construction of V_{L}^{+}Let L be an even lattice of rank d. Set $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ and extend $\langle\cdot, \cdot\rangle$ tofa \mathbb{C}-bilinear form on \mathfrak{h}. Viewing \mathfrak{h} as an abelian Diealgebra. Let 9 6)
be the corresponding affine Lie algebra with the following commutator relations:

$$
\begin{equation*}
\left[\beta \otimes t^{m}, \gamma \otimes t^{n}\right]=\langle\beta, \gamma\rangle m \delta_{m+n, 0} c \text { and }[c, \widehat{\mathfrak{h}}]=0 \tag{2.1}
\end{equation*}
$$

where $\beta, \gamma \in \mathfrak{h}$ and $m, n \in \mathbb{Z}$
Set

From [21], the subalgebra $\widehat{h}_{4}=\widehat{h}^{+} \oplus \widehat{\mathfrak{h}}^{-} \varnothing \mathbb{C}$ of $\hat{\mathfrak{h}}$ has a structure of Heisenberg (Lie) algebra in the sense that its commatator subalgebra coincides with its center, which is one-dimensional.

Here for convenience, we write $\beta(m):=\beta \otimes t^{m}$ for $\beta \in \mathfrak{h}$ and $m \in \mathbb{Z}$.
Consider $\mathfrak{h} \otimes \mathbb{C}[t] \oplus \mathbb{C} c$ aspa subalgebra of \mathfrak{h}. Let \mathbb{C} be a $\mathfrak{h} \otimes \mathbb{C}[t] \oplus \mathbb{C} c$-module which $\mathfrak{h} \otimes \mathbb{C}[t]$ acts trivially on \mathbb{C}, and $\mathbb{\epsilon}$ acts as a multiplication by 1 . From (1.4), we consider the induced $\hat{\mathfrak{h}}$-module as follows:

Then there exists a linear map $Y: M(1) \rightarrow \operatorname{End}(M(1))\left[\left[z, z^{-1}\right]\right]$ such that $M(1)$ becomes a simple \mathbb{Z}-graded vertex algebra with the vacuum vector $\mathbf{1}$ and the Virasoro element $\omega=\frac{1}{2} \sum_{i=1}^{d} \beta_{i}(-1)^{2} \mathbf{1}$ (see [21]), Here $\left\{\beta_{1}, \ldots, \beta_{d}\right\}$ is an orthonormal basis of \mathfrak{h}.

Next, we let \hat{L} be a canonieal central extension of L by the cyclic group of order 2, we have an exact sequence:

with the commutator map $c_{0} \cdot L \neq L \Longrightarrow\langle \pm 1\rangle, c_{0}(\alpha, \beta)=(-1)^{\langle\alpha, \beta\rangle}$.
Remark 2.0.9. The conmutator map c_{0} is an alternating \mathbb{Z}-bilinear form (alternating means that $c_{0}(\alpha, \alpha)=1$ fo $\left.\alpha \in I\right)$ and it characterizes the central extension uniquely up to equivalence (see Proposition $5.2,3$ in [21]).

Let

be a section of \hat{L}, that is, $-\frac{20}{}=1$ such that $e_{0}=1$ as identity element of \hat{L}.
Define the zabilinear map $\epsilon: L \times L \rightarrow\langle \pm 1\rangle$ determined by

where $\left\{q_{1}, \ldots, \alpha_{d}\right\}$ is a \mathbb{Z}-base of L. Then is the corresponding bimpltiplicative

for $\alpha, \beta, \gamma \in L$ (see [21], pp. 104-107).

Remark 2.0.10. Viewing \hat{L} as $L \times\langle \pm 1\rangle, \hat{L}$ under operator $\left(\alpha,(-1)^{s}\right)\left(\beta,(-1)^{t}\right)=$ $\left(\alpha+\beta,(-1)^{s+t} \epsilon(\alpha, \beta)\right)$ for $\alpha, \beta \in \mathcal{L}$ and $\delta, t \in \mathbb{Z}$, is a group which $\langle \pm 1\rangle \subset Z(\hat{L})$. In particular, $\left.\quad e_{\alpha} e_{\beta}=(\alpha, 1)(\beta, 1)=(\alpha)+\beta, \sqrt{\prime}(\alpha, \beta)\right)=\epsilon(\alpha, \beta) e_{\alpha+\beta}$ for $\alpha, \beta \in L$.

Consider \mathbb{C} as a $\langle \pm 1\rangle$-medule which $(-1)=1=-1$. Denote by $\mathbb{C}\{L\}$ the induced \hat{L}-module

For $a, b \in \hat{L}$, we write $\iota(a):=a \otimes \mathbb{1} \in \mathbb{C}\{I\}$ and the action of \hat{L} on $\mathbb{C}\{L\}$ is

Recall $(2.2), \mathbb{C}\{L\}$ is viewed as a vector space, by the linear isomorphism

In particular, $e_{\alpha} \cdot e_{\alpha} \cdot e^{0}=\epsilon(\alpha, 0) e^{0}=e^{0}$
Consider the dual lattice L^{α} of L. There is an \hat{L}°-module structure on $\mathbb{C}\left\{L^{\circ}\right\}:=$ $\mathbb{C}\left[\hat{L}^{\circ}\right] \otimes_{\mathbb{C}}[\langle-1\rangle] \mathbb{C} \simeq \mathbb{C}\left[L^{\circ}\right]=\oplus_{\lambda \in L^{\circ}} \mathbb{C} \bigotimes^{*}$ such that the action of \hat{L}° is defined as (2.4).

$$
L^{\circ}=\cup_{i \in L^{\circ} / L}\left(L+\lambda_{i}\right)
$$

the coset decomposition such that $\lambda_{0}=0$, and we define

$$
\mathbb{C}\left[L+\lambda_{i}\right]=\bigoplus_{\alpha \in L} \mathbb{C} e^{\alpha+\lambda_{i}}
$$

Then $\mathbb{C}\left[L+\lambda_{i}\right]$ is an \hat{L}-module under the following action:

Let z be a formal variable The agtion of $L, h, z^{h}(h \in \mathfrak{h})$ will act naturally on $V_{L+\lambda}$ by:

For homogeneous $v=\alpha_{1}\left(-n_{1}\right) \cdots a_{k}\left(-n_{k}\right) \otimes e^{m \alpha} \in V_{L}\left(=V_{L+\lambda_{0}}\right)$, let

 operation which reorders the operaters so that $\alpha(n)(\alpha \in \mathfrak{h}, n<0)$ and $e_{\text {maa }}$ to be

Remark 2.0.11. Notice that for $v=\alpha_{1}\left(-n_{1}\right) \cdots \alpha_{k}\left(-n_{k}\right) \otimes e^{m \alpha}$, we have that $\mathrm{wt} v=$ $n_{1}+\cdots+n_{k}+\frac{1}{2}\langle m \alpha, m \alpha\rangle$.

Proposition 2.0.12. ([5, 7, 21]).

1. The space V_{L} is a simple \mathbb{Z}-graded vertex algebra with a Virasoro element $\omega=\frac{1}{2} \sum_{i=1}^{d} h_{i}(-1)^{2} \otimes e^{0}$. Here $\left\{h_{i} \mid 1 \leq i \leq d\right\}$ is an orthonormal basis of \mathfrak{h}. Moreover, $M(1)$ is a \mathbb{Z}-graded verter sub-algebra of V_{L}.
2. $\left\{V_{L+\lambda_{i}} \mid i \in L^{\circ} / L\right\}$ is the set of all inequivalent irreducible V_{L}-modules.

Next, define a linear isomorphish $\theta: V_{D}+\lambda_{i} \rightarrow V_{L-\lambda_{i}}$ by

$$
\theta\left(\alpha_{1}\left(-n_{1}\right) \alpha_{2}\left(-n_{2}\right) \cdot q_{k}\left(-\eta_{k}\right) e^{\alpha+\lambda_{i}}\right)=(-1)^{k} \alpha_{1}\left(-n_{1}\right) \cdots \alpha_{k}\left(-n_{k}\right) e^{-\alpha-\lambda_{i}}
$$

if $2 \lambda_{i} \notin L$ and
$\theta\left(\alpha_{1}\left(-n_{1}\right) \alpha_{2}\left(-n_{2}\right) \cdots \alpha_{k}\left(-n_{k}\right) e^{\left.\alpha+\lambda_{i}\right)} \neq(-1)^{k} c_{2 \lambda_{i}} \epsilon\left(\beta, 2 \lambda_{i}\right) \alpha_{1}\left(-n_{1}\right) \cdots \alpha_{k}\left(-n_{k}\right) e^{-\alpha-\lambda_{i}}\right.$
if $2 \lambda_{i} \in L$. Here $c_{2 \lambda_{i}}$ is a squareroot of $\in\left(2 \lambda_{i}, 2 \lambda_{i}\right)$. Then θ is a linear automorphism of $V_{L^{\circ}}$. Moreover, θ is an automorphism of V_{L} and $M(1)$.

For any stable θ-subspace t of $V_{t}, a \pm 1$ eigenspace of U for θ is denoted by $U^{ \pm}$. We have

Let $\mathfrak{h}[-1]=\mathfrak{h} \otimes t^{\frac{1}{2}} \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} c$ be the twisted affine Lie algebra with the commutator relation

$$
\left[\beta \otimes t^{m}, \gamma \otimes t^{n}\right]=\langle\beta, \gamma\rangle m \delta_{m+n, 0} c \text { and }[c, \mathfrak{h}[-1]]=0
$$

where $\beta, \gamma \in \mathfrak{h}$ and $m, n \in \mathbb{Z}+\frac{1}{2}$. Next we let $M(1)(\theta)=S\left(\mathfrak{h} \otimes t^{-\frac{1}{2}} \mathbb{C}\left[t^{-1}\right]\right)$ be the unique irreducible $\mathfrak{h}[-1]$-module such that c acts as 1 , and when $n>0, \beta \otimes t^{n}$ acts on 1 as zero.

By abusing the notation, we use θ to denote an automorphism of \hat{L} defined by $\theta\left(e_{\alpha}\right)=e_{-\alpha}$ and $\theta(\kappa)=\kappa$. We set $K=\left\{a^{-1} \overline{\theta(a)+a \in \hat{L}\}}\right.$. Also, we let χ be a central character of \hat{L} / K such that $\chi(k)=-1$ and we let $T \chi$ be the irreducible \hat{L} / K-module with central character χ. We define

We define an action of θ on $V_{L}^{-1 x}$ in the following way:

$$
\theta\left(\beta_{1}\left(-n_{1}\right) \beta_{2}\left(-n_{2}\right) \cdot \beta_{k}\left(-n_{k}\right) t\right)=(-1)^{k} \beta_{1}\left(-n_{1}\right) \cdots \beta_{k}\left(-n_{k}\right) t
$$

Here, $\beta_{i} \in \mathfrak{h}, n_{i} \in \frac{1}{2}+\mathbb{Z}_{\neq 0}$ and tGN^{T} We denote by $V_{L}^{T_{x}, \pm}$ the ± 1-eigenspace of $V_{L}^{T_{\chi}}$ for θ.

Proposition 2.0.14. ([15]). Let χ be a central character of $\hat{H} / \frac{1}{5}$ such that $\chi(\iota(\kappa))=$ -1 and let T_{χ} be the irreducible \hat{L} / K-module with central character χ. Then $V_{L}^{T_{\chi}, \pm}$ are irreducible weak V_{L}^{+}-modules.
Remark, 2.0.15. From Propositon 7.4.8 in [21] page 167, there are exactly $|R / 2 L|$ central characters, $\chi: \hat{R} / K \rightarrow \mathbb{C}^{*}$, of \hat{L} / K such that $\chi(\kappa)=-1$, where $R=\{\alpha \in$ $L \mid\langle\alpha, \mathscr{L}\rangle \subset 2 \mathbb{Z}\}$.
จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

THE C_{2}-COFINITENESS OF THE VERTEX ALGEBRA V_{L}^{+}

 AND TTS WEAIK MODULESFor the rest of this section, we assume that V is a \mathbb{Z}-graded vertex algebra. We will work on the vertex algebra V_{L} when L is a non-degenerate even lattice.

Definition 3.0.16. ([331). For a vertex algebra V, we define

V is said to satisfy the cofiniteness C_{2}-condition if $V / C_{2}(V)$ is finite dimensional.

The C_{2}-condition was first appeared in $[33]$ when Zhu used this condition, as well as other assumptions, to show the modular invariance of certain trace functions. Since its introduction the C_{2}-condition has proven to be a powertool in the study of theory of vertex algebras. In particular, it has played an impontant role in the study of structure of modules of vertex algebras which satisfy it (cf. $[6,12,22,24,27,28]$).

4. $V / C_{2}(V)$ is a commutative associative algebra under $(-1)^{s t}$-product.

Definition 3.0.18. Let M be a weak V-module. We define

$$
\widetilde{C}_{2}(M)=\operatorname{Span}_{\mathbb{C}}\left\{u_{-2} w \mid u \in V, w \in M\right\} .
$$

The space M is called C_{2}-cofinite if $M, \widetilde{C}_{2}(M)$ has a finite dimension.

The following is the key proposition.
Proposition 3.0.19. Let W be an irreducible weak V-module. If $V=C_{2}(V)$, then $W=\widetilde{C}_{2}(W)$.

Proof. We first-show that $a_{n} v \in \widetilde{G}_{2}(W)$ for all $a \in V, w \in W$ and $n \in \mathbb{Z}$. Clearly, this statement is true when $n=-2$. Since $V=C_{2}(V)$, one may write $a_{n} w$ as

$$
a_{n} w=\sum_{j=1}^{l}\left(u_{-2}^{j} v^{j}\right)_{n} w=\sum_{j=1}^{l} \sum_{i \geq 0}^{l}(-1)^{2}(-2)\left(u_{-2-i}^{j} v_{n+i}^{j}-v_{-2+n-i}^{j} u_{i}^{j}\right) w .
$$

Here $u^{j}, v^{j} \in V$. By usipg ardinctionon n, we gan show that $a_{n} w \in \widetilde{C}_{2}(W)$ for all $a \in V, w \in W$ and $n \geq-1$.

Next, by using the facts that W is irreducible and $a_{n} w \in \widetilde{C}_{2}(W)$ for all $a \in V, w \in$ W, and $n \in \mathbb{Z}$ We can conclude immediately that $W=\widetilde{C}_{2}(W)$.

Corollary 3.0.20. Assume that $V=C_{2}(V)$. If a weak $V 1+m o d u l e ~ M$ is completely reducible, then $M=\widetilde{C}_{2}(M)$.
Proposition 3.0.21. Let V^{\prime} be a \mathbb{Z}-graded vertex algebra and let V be a \mathbb{Z}-graded vertex subalgebra of V^{\prime} such that $V=C_{2}(V)$. If V^{\prime} is completely reducible as a weak Q W-modute, then V_{0}^{\prime} is G_{2}-cofinite. In particutan, $V^{\prime}=\sigma_{2}\left(V_{0}^{t}\right) \cap$

Proof. By Corollary 3.0.20, we can conclude that $V^{\prime}=\widetilde{C}_{2}\left(V^{\prime}\right)$. Since $\widetilde{C}_{2}\left(V^{\prime}\right)$ is a subset of $C_{2}\left(V^{\prime}\right)$, we then have that $V^{\prime}=C_{2}\left(V^{\prime}\right)$.

Proposition 3.0.22. Let V^{1}, \ldots, V^{n} be \mathbb{Z}-graded vertex algebras. Assume that $V^{j}=$ $C_{2}\left(V^{j}\right)$ for some $j \in\{1, \ldots, n\}$. Then $V^{1} \otimes \cdots \otimes V^{n}$ satisfies the C_{2}-condition. In particular, $\left.V^{1} \otimes \cdots \otimes V^{n}=C_{2}\left(V^{1} \otimes 1\right) \otimes V^{n}\right)$.

Proof. The statements follow from the fact that

When L is a positive definite evenlattice, it was shown by Abe, Buhl and Dong, and Yamskulna that the verte algebras V, and their irreducible weak modules satisfy the C_{2} condition (cf. 3,29$]$). In this(section, we will extend their results to the case when L is a negative definite even lattice and when L is a non-degenerate even lattice that is neither positive definite nor negative definite.

3.1 Case I: L is a rank one negative definite even lattice

For the rest of this subsection, we assume that $L=\mathbb{Z} \alpha$ is a rankone negative definite even lattice such that $\langle\alpha, a\rangle=-2 k$. Here k is a positive integen.
$\begin{aligned} & \text { Let } m \in \mathbb{Z}_{>0} \text {. } \text { For convenience, we set } \\ & E^{m}=e^{m \alpha}+e^{-m \alpha}, \quad F^{m}=e^{m \alpha}-e^{-m \alpha}, \quad \text { and }\end{aligned}$
 Clearly, $V_{L}^{+}=M(1)^{+} \oplus \bigoplus_{m=1} V_{L}^{+}(m)$.
 singular vector of weight greater than zero. In particular, $M(1)^{+}$is generated by ω and J where $J=\frac{1}{4 k^{2}} \alpha(-1)^{4} \mathbf{1}+\frac{1}{k} \alpha(-3) \alpha(-1) \mathbf{1}-\frac{3}{4 k} \alpha(-2)^{2} \mathbf{1}$.
2. The vertex algebra $M(1)^{+}$is spanned by

$$
L\left(-m_{1}\right) \cdots L\left(-m_{s}\right) J_{-n_{1}} \cdots J_{-n_{t}} \mathbf{1}
$$

where $m_{1} \geq \cdots \geq m_{s} \geq 2, n_{1} \geq$
3. $V_{L}^{+}(m)$ is spanned by $L\left(-n_{1}\right) L\left(-n_{2}\right) \cdot L\left(-n_{r}\right) \otimes E^{m}$ where $n_{r} \geq \cdots \geq n_{2} \geq$

$$
n_{1} \geq 1
$$

Next, for $m>0$, we set

$H(m)=\bigoplus_{1} V_{2}^{-}(m, n)$

where $V_{L}^{+}(m, n)$ is the weight nsubspace of $V_{L}^{+}(m)$. Clearly, $V_{L}^{+}\left(m,-k m^{2}+6\right)$ has the following basis elements:
$\underline{\text { Basis of } V_{L}^{+}\left(m,-k m^{2}+6\right)}$

Furthermore, the following elements form bases of $V_{L}^{+}\left(m,-k m^{2}+5\right)$ and $V_{L}^{+}\left(m,-k m^{2}+\right.$ 3), respectively:

Basis of $V_{L}^{4}\left(m,-k m^{2}+5\right)$ respectively:

$f_{7}=\alpha(-1)^{5} F^{m}$
$\underline{\text { Basis of } V_{L}^{+}\left(m,-k m^{2}+3\right)}$

$$
h_{1}=\alpha(-3) F^{m}, \quad h_{2}=\alpha(-2) \alpha(-1) E^{m}, \quad h_{3}=\alpha(-1)^{3} F^{m} .
$$

Lemma 3.1.2. The set $\left\{L(-1) f_{i}, L(-3) h_{j},\left(\alpha(-1)^{4} \mathbf{1}\right)_{-3} E^{m} \mid 1 \leq i \leq 7,1 \leq j \leq\right.$ $3\}$ is a basis of $V_{L}^{+}\left(m,-k m^{2}+6\right)$.

Proof. The table 1 deseribes expressions of $E(-1) \mathcal{F}_{i}(i=1, \ldots, 7), L(-3) h_{j} \quad(j=$ $1,2,3)$, and $\left(\alpha(-1)^{4} 1\right){ }_{-3} E^{m}$ in terms $\frac{1}{q^{f}} g_{l}(l-1, \ldots, 11)$. We will denote this table by a 11×11 matrix 4 . Sinee der $A=-6144 m^{2} k^{2}\left(m^{2} k+1\right)$, and m, k are positive integers, we can conclude that A is invertible. Moreover, $L(-1) f_{i}(i=1, \ldots, 7)$, $L(-3) h_{j} \quad(j=1,2,3)$ and $\left.(\alpha(-1))^{4} 1\right)={ }_{3} m$ form a basis of $V_{L}^{+}\left(m,-k m^{2}+6\right)$.

จหาลงกรณม゙หาวิทยาลย

Proposition 3.1.3. For $m \in \mathbb{Z}_{>0}$, we have $V_{L}^{+}\left(m,-k m^{2}+2 n\right)$ is a subset of $C_{2}\left(V_{L}^{+}\right)$
when $n \geq 3$.

Proof. By Proposition 3.0.17 and Lemma 3.1.2, we can conclude immediately that $V_{L}^{+}\left(m,-k m^{2}+6\right)$ is contained in $C_{2}\left(V_{L}^{+}\right)$.

Next, we will show that $V_{L}^{+}\left(m,-k m^{2}+2 n\right)$ is a subset of $C_{2}\left(V_{L}^{+}\right)$for $n \geq 4$. Since $(L(-2))^{3} E^{m} \in C_{2}\left(V_{L}^{+}\right)$, it implies that for 3

By Proposition 3.1.1, we can conclude further that $V_{L}^{+}\left(m,-k m^{2}+2 n\right)$ is a subset of $C_{2}\left(V_{L}^{+}\right)$when $n \geq$

Theorem 3.1.4. For $m \in Z>0$, $V_{t}^{+}(m)$ is a subset of $\mathrm{C}_{2}\left(V_{L}^{+}\right)$. Proof. First, we set exp $\left(\sum_{2}^{\infty} \frac{x_{n}}{n} \hat{v}^{n}\right)=\left(\sum^{\infty} p_{j}\left(x_{1}, x_{2}, \ldots\right) z^{3}\right.$. Since
$E_{-2 k n} \alpha(-1) F^{n} \Rightarrow p_{4 n k-1}(\alpha) \alpha((-1)) \otimes e^{\alpha(n+1)}-p_{4 n k-1}(-\alpha) \alpha(-1) \otimes e^{-\alpha(n+1)}$
$+2 k\left(\frac{A}{\text { pank } \alpha}(\alpha) \otimes e^{\alpha(n+1)}+p_{4 n k}(-\alpha) \otimes e^{-\alpha(n+1)}\right)-2 k E^{n-1}$,
and for $n \geq 2, V_{L}^{+}\left(n+1,-k(n+1)^{2}+4 n k\right)$ is contained in $C_{2}\left(V_{L}^{+}\right)$(cf. Proposition 3.1.3), it follows that $E^{n-1} \in C_{2}\left(V_{L}^{+}\right)$for $n \geq 2$. By Propositiot 3$) 1.1$ we can conclude further that

Theorem 3.1.5. V_{E}^{B} satisfies the C_{2}-cofiniteness condition. In particular,

$$
\text { ค) } 2
$$

Proof. We will show that $V_{L}^{+}=C_{2}\left(V_{L}^{+}\right)$. It is enough to show that $M(1)^{+}$is contained $M(1)^{+}$is a subset of $C_{2}\left(V_{L}^{+}\right)$. Consequently, $V_{L}^{+}=C_{2}\left(V_{L}^{+}\right)$.

Corollary 3.1.6. Every irreducible weak V_{L}^{+}-module satisfies the C_{2}-condition.

Proof. This follows immediately from Proposition 3.0.19 and Theorem 3.1.5.

3.2 Case II: L is a negative definite even lattice

For the rest of this subsection, we assume that L is a rank d negative definite even lattice.

Theorem 3.2.1. The vertex algebra V_{L}^{+}is C_{2}-cofinite.

Proof. We will show that $V_{L}^{+}=G_{2}\left(V_{L}^{+}\right)$. We will follow the proof in [3] very closely. Let K be a direct sum offd orthogonal rank one negative definite even lattice L_{1}, \ldots, L_{d}. We write $L=\bigcup_{i \in L / K}\left(R^{3}+\lambda_{i}\right)$ as a direct sum of its coset decompositon with respect to K. Then $V_{L}=\bigoplus 1 V_{K}+x_{i}$

Since

$\sigma V_{\mathcal{I}_{1}}^{+} \otimes \cdots \otimes V_{L_{d}}^{+}=C_{2}\left(V_{L_{1}}^{+} \otimes \cdots \otimes V_{L_{d}}^{+}\right)$. Since $V_{L_{1}}^{\epsilon_{4}} \otimes \cdots \otimes V_{L_{d}}^{t_{d}}$ is an irreducible weak $V_{L_{1}}^{+} \otimes \cdots \otimes V_{L_{d}}^{+}$-module, it follows from Proposition 3.0.21 that $V_{K}^{+}=C_{2}\left(V_{K}^{+}\right)$. Since V_{L}^{+}is completely reducible as a weak

Corollary 3.2.2. Every irreducible weak V_{L}^{+}-module satisfies the C_{2}-condition.

3.3 Case III: L is a rank d non-degenerate even lattice that is neither positive definite nor negative definite

Theorem 3.3.1. Assume that L is a mon-degenerate even lattice of a finite rank that is neither positive definite norsegative definite. Then the vertex algebra V_{L}^{+} and its irreducible weak modutes satisfy the C_{2}-condition. In particular, we have $V_{L}^{+}=C_{2}\left(V_{L}^{+}\right)$and-M=工्C2(M) fory all irreducible weak V_{L}^{+}module.

Proof. The proof is very similay to the proof of Theorem 3.2.1. In fact, we can obtain the above results by using the fact that L has a rank one-negative definite even sublattice, and follow the proof in Theorem 3.2.1 step by step.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

CHAPTER IV IRREDUCIBLE MODULES OF THE VERTEX OPERATOR ALGEBRA $V_{\mathcal{L}}^{+\langle\tau\rangle}$

Let V be a simple vertex operator algebra and let G be a finite automorphism group of V. In [19], it was shown that any irreducible (admissible) g-twisted V module is a completely reducible $V^{G}=$ module for the case $g \in Z(G)$ where V^{G} is the G-invariant vertex operator subalgebria of V

Remark 4.0.2. From [15], for g an automorphism of finite order T of V and an admissible g-twisted V-module M - $\bigoplus M_{n}$, we write

We define a (graction on M such that g acts on $\bigoplus_{n \in \mathbb{Z}} M_{n-\frac{T}{T}}$ bithe scalar $e^{\frac{2 \pi i}{T} r}$.
With this action $\frac{7 e t}{} u \in V^{r}$ and $w \in \bigoplus_{n \in \mathbb{Z}} M_{n+\frac{j}{T}}$ be homogenfoous elements. For $n \in$ $\frac{r}{T}+\mathbb{Z}, u_{n}(w)$ has weight wt $u+\mathrm{wt} w-n-1 \in \operatorname{wt} w-\frac{r}{T}+\mathbb{Z}$. Then $u_{n}(w) \in \bigoplus_{n \in \mathbb{Z}} M_{n-\frac{r}{T}+\frac{j}{T}}$
 Proposition 4.0.3. (15]). Let V be a simple vertex operator algebra and M an,
irreducibte g-twisted module where g 'is an automorphism of finite order T of V. Then, in the decomposition $M=M^{0}+M^{1}+\cdots+M^{T-1}, M^{0}, \ldots, M^{T-1}$ under g-action on M are nonzero and non-isomorphic irreducible $V^{\langle g\rangle}$-modules.

For $g \in G$, let $\left(M, Y_{M}\right)$ be an irreducible g-twisted V-module. For $h \in G$, we set

$$
\left(M, Y_{M}\right) \circ h=\left(M \circ h, Y_{M \circ h}\right) .
$$

Here, $M \circ h=M$ as vector spaces and $Y_{M \circ h}(v, z)=Y_{M}(h(0), z)$ for $v \in V$.

Note that $M \circ h$ is an irreducible $h^{-1} g$-twisted V-module. It was shown in [19] that $M \circ h$ is an irreducible g-twisted M-module if and only if $h \in C_{G}(g)$. Here $C_{G}(g)$ denotes the centralizer of g in C. If $g=1$ then $M \circ h$ is an irreducible V-module. Set

$$
G_{M}=\left\{h \in G \left\lvert\, M \circ \frac{\tilde{\bar{\Omega}} M}{\sim} M\right. \text { as } g \text {-twisted } V \text {-modules }\right\} .
$$

It was proved in [17] that $g \in G_{M}$ and G_{M} is a subgroup of $C_{G}(g)$.

Proposition 4.0.4. (19,32$]$).

1. Assume that $g \in Z(G)$ Lee Me be an irreducible g-twisted V-module. If G_{M} is a cyclic group, say $\langle h\rangle$, thenthe eigenspaces of M with respect to the action of h are irreducible V^{G}-modules.
2. Suppose ${ }^{\text {is }}$ a cyclic group of prime order p. Let M bean irreducible g^{i}-twisted
V-module where $1 \leq i \leq p-1$. Hence the eigenspaces M are irreducible $V^{G}-$ V-module where $1 \leq i \leq p-1$. Hence the eigenspacesof M are irreducible V^{G} modules. In particular, if $G_{M}=\{1\}$, then M is an irreducible V^{G}-module.

In this chapter we work on a simple vertex operator algebra V_{L}^{+}, L is positive

with a symmetric nondegenerate \mathbb{Q}-valued \mathbb{Z}-bilinear form $\langle\cdot, \cdot\rangle$ and having $\left\langle\alpha_{1}, \alpha_{1}\right\rangle=$ $\left\langle\alpha_{2}, \alpha_{2}\right\rangle=2 k$.

Let $\tau: \mathcal{L} \rightarrow \mathcal{L}$ be a map from \mathcal{L} into itself that sends

$$
\alpha_{1} \mapsto-\alpha_{2} \text { and } \alpha_{2} \mapsto \alpha_{1} .
$$

Remark 4.0.5. Notice that $V_{\mathcal{L}}^{+}$is spanned by the vectors of the form

$$
\begin{aligned}
& \alpha_{1}\left(-m_{1}\right) \cdots \alpha_{1}\left(-m_{k}\right) \alpha_{2}\left(-n_{1}\right) \cdot \cdot \alpha_{2}\left(-n_{l}\right) \otimes\left(e^{i \alpha_{1}+j \alpha_{2}}+e^{-i \alpha_{1}-j \alpha_{2}}\right) \quad \text { and } \\
& \alpha_{1}\left(-m_{1}\right) \cdots \alpha_{1}\left(-m_{r}\right) \alpha_{2}\left(-n_{1}\right) \cdot \cdot \alpha_{2}\left(-n_{s}\right) \otimes\left(e^{i \alpha_{1}+j \alpha_{2}}-e^{-i \alpha_{1}-j \alpha_{2}}\right)
\end{aligned}
$$

where $k \geq 0, l \geq 0, r \geq 0, s \geq 0, i, j \in \mathbb{Z}, k+$ tis even and $r+s$ is odd.
Here, the conformal vector $\omega=\frac{1}{2}\left(h_{1}(-1)^{2} \otimes 1+h_{2}(-1)^{2} \otimes 1\right)$ where $h_{i}=\frac{1}{\sqrt{2 k}} \alpha_{i}$ $\left(=\frac{1}{\sqrt{2 k}} \otimes \alpha_{i} \in \mathbb{C} \otimes\right.$

Define $\tau: V_{\mathcal{L}}^{+} \rightarrow V_{\mathcal{L}}$ by the following $\overline{\text { actions: }} \alpha(-n) \leftrightarrow \tau(\alpha)(-n)$ and $e^{\alpha} \mapsto e^{\tau(\alpha)}$.
Proposition 4.0.6. T is an automorphism of $V_{\mathcal{L}}^{+}$of order 2.
Proof. Clearly τ is a linear isomorphism which $\gamma(\mathbf{1})=1, \tau(\omega)=\omega$ and ,(2.7), $\tau(Y(u, z) v)=Y(\tau(u), z) \tau(v)$ for $u, \mathcal{v}^{-} V_{\mathcal{L}}^{+}$Then τ is an automorphism of $V_{\mathcal{L}}^{+}$. Since, for $k \geq 0, l \geq 0, i \geqq 0, j$

 จุหงลงครณ์มหาวิทยาลัย

$$
\begin{align*}
& \tau^{2}\left(\alpha_{1}\left(-m_{1}\right) \cdots \alpha_{1}\left(-m_{k}\right) \alpha_{2}\left(-n_{1}\right) \cdots \alpha_{2}\left(-n_{l}\right) \otimes\left(e^{i \alpha_{1}+j \alpha_{2}}+e^{-i \alpha_{1}-j \alpha_{2}}\right)\right) \\
= & \alpha_{1}\left(-m_{1}\right) \cdots \alpha_{1}\left(-m_{k}\right) \alpha_{2}\left(-n_{1}\right) \cdots \alpha_{2}\left(-n_{l}\right) \otimes\left(e^{-i \alpha_{1}-j \alpha_{2}}+e^{i \alpha_{1}+j \alpha_{2}}\right) . \tag{4.1}
\end{align*}
$$

If $k+l$ is odd, it implies that

$$
\begin{align*}
& \quad \tau^{2}\left(\alpha_{1}\left(-m_{1}\right) \cdots \alpha_{1}\left(-m_{k}\right) \alpha_{2}\left(-n_{1}\right) \cdots \alpha_{2}\left(-n_{l}\right) \otimes\left(e^{i \alpha_{1}+j \alpha_{2}}-e^{-i \alpha_{1}-j \alpha_{2}}\right)\right) \\
& =-\alpha_{1}\left(-m_{1}\right) \cdots \alpha_{1}\left(-m_{k}\right) \alpha_{2}\left(-n_{1}\right) \cdot \alpha_{2}\left(-n_{l}\right) \otimes\left(e^{-i \alpha_{1}-j \alpha_{2}}-e^{i \alpha_{1}+j \alpha_{2}}\right) \\
& \left.=\alpha_{1}\left(-m_{1}\right) \cdots \alpha_{1}\left(-m_{k}\right) \alpha_{2}\left(-n_{1}\right) \cdots \alpha_{2}-n_{l}\right) \otimes\left(e^{i \alpha_{1}+j \alpha_{2}}-e^{-i \alpha_{1}-j \alpha_{2}}\right) . \tag{4.2}\\
& \text { From Remark 4.0.5, (4.1) and }(4.2), \text { ve can conctude that the order of } \tau \text { is } 2 .
\end{align*}
$$

Next, we will find the vertex operator subalgebra $V_{c}^{+(\tau)}$. For convenience, we set

Since $\tau\left(E^{i, j}\right)=E^{j,-i}$ and $\tau\left(F^{i, j}\right)=F^{j,-i}$, we have

$\tau\left(v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}+v_{\hat{p}_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}}\right)=v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}+v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}}$,
 $\tau\left(v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}+v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}}\right) \leqslant-\left(v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}+v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}}\right)$,

If k is even and l is odd, then

$$
\begin{aligned}
& \tau\left(v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}+v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}}\right)=-\left(v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}-v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}}\right), \\
& \tau\left(v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}-v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}}\right)=v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}+v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}} .
\end{aligned}
$$

We note that $E^{-i,-j}=E^{i, j}$ and $F^{-i,-j}=-F^{i, j}$.

Set S^{+}to be

It is clear that $\forall v \in S^{+}, \tau(v)=\exists v$ and $\forall v \in S^{-}, \tau(v)=-v$. We have the decomposition $V_{\mathcal{L}}^{+}=S \oplus S^{-}$Therefore we have the $\langle\tau\rangle$-invariant vertex operator subalgebra

Since $V_{\mathcal{L}}^{+}$is a simple vertex operator algebra, $V_{\mathcal{L}}^{+(\tau)}$ is also simple (see [16]). Now we have $\langle\tau\rangle=\{1, \tau\}$ is a cyclic group, from Proposition 4.0.4(1), we have $V_{\mathcal{L}}^{+(\tau)}$ and S^{-} are two eigenspaces with respect to τ. Then of them become two irreducible $V_{\mathcal{L}}^{+\langle \rangle}$modules;

Theorem 4.1.1. ([4]). Let L be a positive definite even lattice. Then any irreducible admissible V_{L}^{+}-module is isomorphic to one of irreducible modules

$$
\begin{aligned}
& V_{L}^{+}, V_{L}^{-}, V_{L+\lambda} \text { for } \lambda \in L^{\circ} \text { with } 2 \lambda \notin L, \\
& V_{L+\lambda}^{+}, V_{L+\lambda}^{-} \text {for } \lambda \in L^{\circ} \text { with } 2 \lambda \in L \text { and }
\end{aligned}
$$

$V_{L}^{T_{\chi},+}, V_{L}^{T_{\chi},-}$ for any irreducible $\hat{L} \backslash K$-module T_{χ} with central character χ.

For the case $V_{\mathcal{L}}^{+}$, it was considered by apove Next, we will find all λ satisfied in
Theorem 4.1.1. Recalithat $\left.\mathcal{L}^{\circ}=\left\{\beta \in \mathbb{C} \otimes_{\mathbb{Z}} \mathcal{E} \mid \beta, \mathcal{L}\right) \subset \mathbb{Z}\right\}$.
Case $\left\langle\alpha_{1}, \alpha_{2}\right\rangle=0$. We have

Case $\left\langle\alpha_{1}, \alpha_{2}\right\rangle \in \mathbb{Z}-\{0, \pm 2 k\}$. We have

$$
\begin{align*}
\odot \mathcal{C} \cdot & \left.=\left\{\beta \in \mathbb{C} \otimes_{\mathbb{Z}} \mathcal{C} \beta, \mathcal{L}\right\rangle \subset \mathbb{Z}\right\} \tag{4.9}\\
& =\left\{\left[\frac{\left\langle\alpha_{1}, \alpha_{2}\right\rangle}{\left\langle\alpha_{1}, \alpha_{2}\right\rangle^{2}-4 k^{2}} j-\frac{2 k}{\left\langle\alpha_{1}, \alpha_{2}\right\rangle^{2}-4 k^{2}} i\right] \alpha_{1}\right.
\end{align*}
$$

(4.12)
where $\epsilon_{\alpha_{1}(j, i)+\alpha_{2}(i, j)}=\left[\frac{\left\langle\alpha_{1}, \alpha_{2}\right\rangle}{\left\langle\alpha_{1}, \alpha_{2}\right\rangle^{2}-4 k^{2}} j-\frac{2 k}{\left\langle\alpha_{1}, \alpha_{2}\right\rangle^{2}-4 k^{2}} i\right] \alpha_{1}+\left[\frac{\left\langle\alpha_{1}, \alpha_{2}\right\rangle}{\left\langle\alpha_{1}, \alpha_{2}\right\rangle^{2}-4 k^{2}} i-\frac{2 k}{\left\langle\alpha_{1}, \alpha_{2}\right\rangle^{2}-4 k^{2}} j\right] \alpha_{2}$.

Proposition 4.1.2. $V_{\mathcal{L}}^{+}=S^{+} \oplus S$ and $V_{\mathcal{L}}=U^{+i} \oplus U^{-i}$ where $S^{ \pm}=\left\{v \in V_{\mathcal{L}}^{+} \mid \tau(v)= \pm v\right.$, and $y^{+}, \Rightarrow\left\{v \in V_{\mathcal{L}}^{-} \mid \tau(v)= \pm i v\right\}$.

Proof. Recall that $V_{\mathcal{L}}$ is spanned by the vectors of the form

where $s \geq 0, r \geq 0, k \geqslant 0, l \geq 0, m, n \in \mathbb{Z}, s+r$ is even and $k+l$ is odd. Set U^{+i} to be

$\left(v_{m_{1}, \ldots, m_{p m}} n_{1}, v_{q}, v_{n t}, \ldots, n_{q} ; m_{1}, \ldots, m_{p}\right) \otimes\left(F^{m, n}+i F^{n,-m}\right)$

$\left(v_{m_{1}}^{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}}, i v_{n_{1}, \ldots, n_{l} ; m_{1}}, m_{k}\right) \otimes\left(E^{m, n}-E^{n,-m}\right)$,

It is clear that $\forall v \in U^{+i}, \quad \tau(v)=i v$ and $\forall v \in U^{-i}, \quad \tau(v)=-i v$. Moreover, $V_{\mathcal{L}}^{-}=U^{+i} \oplus U^{-i}$.

Remark 4.1.3. If $2 \epsilon_{\alpha_{1}(j, i)+\alpha_{2}(i, j)} \in \mathcal{L}$, we have $i=j=0$, that is, $V_{\mathcal{L}+\epsilon_{\alpha_{1}(0,0)+\alpha_{2}(0,0)}^{+}}=$ $V_{\mathcal{L}}^{+}=S^{+} \oplus S^{-}$, it was done. For $2 \nu_{i, j-i}, 2 \lambda_{i, j} \in \mathcal{L}$, we have $i, j \in\{0, k\}$.

Proposition 4.1.4. If $2 \lambda_{i, j} \in \mathcal{L}$ for $\left.i,\right\} \in\{0, k\}$, we have

Proof. Recall that $V_{\mathcal{L}+\lambda_{i},}$ is spanhed by the vectors of the form

$v_{m_{1}, \ldots, m_{r} ; n_{1}, \ldots, n_{s}} \otimes\left(e^{\lambda_{i, j}+m \alpha_{1}+n \alpha_{2}}-e^{-\lambda_{i, j}-m \alpha_{1}-n \alpha_{2}}\right)$.
$V_{\mathcal{L}+\lambda_{i, j}}^{-}$is spanned by the yectors, of the form

where $k \geq 0, l \geq 0, r \geq 0, s \geq 0 m \in \mathbb{Z}, k+l$ is even and $r+s$ is odd. Let
$\widetilde{E}^{i, j, m, n}=e^{\lambda_{i, j}+m \alpha_{1}+n \alpha_{2}}+e^{-\lambda_{i, j}-m \alpha_{1}-n \alpha_{2}}$ and
$\widetilde{E}^{i, j, m, n}, \widetilde{F}^{-i,-j,-\bar{m} ;-n}=-\widetilde{F}^{i, j, m, n}$. Set $S_{\lambda_{i, j}}^{+}$to be
$\operatorname{Span}_{\mathbb{C}}\left\{\quad v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}} \widetilde{E}^{i, j, m, n}+v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}} \widetilde{E}^{j,-i, n,-m}\right.$,

$$
\left.v_{m_{1}, \ldots, m_{k+1} ; n_{1}, \ldots, n_{l}} \widetilde{F}^{i, j, m, n} \not-v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k+1}} \widetilde{F}^{j,-i, n,-m} \quad: k, l \in_{0} \mathbb{N}_{0}\right\}
$$

$$
\left(v_{m_{1}, \ldots, m_{p} ; \hbar_{1}, \ldots, n_{q}}+v_{n_{1}, \ldots, n_{q} ; m_{1}, \ldots, m_{p}}\right) \otimes\left(\widetilde{F}^{i, j, m, n}-i \widetilde{F}^{j,-i, n,-m}\right)
$$

ศูนย่วิทยยทรัพยาฉร

Proposition 4.1.5. If $2 \lambda_{i, j}, 2 \nu_{i, j-i}, 2 \epsilon_{\alpha_{1}\left(j^{\prime}, i^{\prime}\right)+\alpha_{2}\left(i^{\prime}, j^{\prime}\right)} \notin \mathcal{L}$ for i, j as in (4.5) and i^{\prime}, j^{\prime} as in (4.12), we have $V_{\mathcal{L}+\lambda_{i, j}}, V_{\mathcal{L}+\nu_{i, j-i}}, V_{\mathcal{L}+\epsilon_{\alpha_{1}\left(j^{\prime}, i^{\prime}\right)+\alpha_{2}\left(i^{\prime}, j^{\prime}\right)}}$ are simple $V_{\mathcal{L}}^{+\langle\tau\rangle}$-modules.

Proof. Recall that $V_{\mathcal{L}+\lambda_{i, j}}$ is spanned by the vectors of the form

$$
v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}} \otimes e^{\lambda_{i, j}+m \alpha_{1}+n \alpha_{2}}
$$

where $k, l \in \mathbb{N}_{0}, m, n \in \mathbb{Z}$. We define the map f from $V_{\mathcal{L}+\lambda_{j,-i}}$ onto $V_{\mathcal{L}+\lambda_{i, j}} \circ \tau$ by this action:

and then extend by lineapity. clearly f is well-defined and bijective. Moreover, f satisfies the following condition:

 $\{1\}, V_{\mathcal{L}+\lambda_{i, j}}$ is an irreducible $V_{\mathcal{E}}$

1. When $\left\langle\alpha_{1}, \overrightarrow{\alpha_{2}}\right\rangle \in 2 \mathbb{Z}$, we have
$\mathcal{L}=\{x \in \mathcal{L} \mid\langle x, \mathcal{L}\rangle \subset 2 \mathbb{Z}\}$.
Since $\mathcal{L} / 2 \mathcal{L}$ is an abelian group isomorphic to $\mathbb{Z} / 2 \mathbb{Z}, \mathcal{L} / 2 \mathcal{L}$ has tw irreducible
modules T_{1}, T_{2} such that $x+2 \mathcal{L}$ acts as multiplication by 1 and -1 , respectively.

2. When $\left\langle\alpha_{1}, \alpha_{2}\right\rangle \in 2 \mathbb{Z}+1$, we have

$$
2 \mathcal{L}=\{x \in \mathcal{L} \mid\langle x, \mathcal{L}\rangle \subset 2 \mathbb{Z}\} .
$$

Then $2 \mathcal{L} / 2 \mathcal{L}$ has only one irreducible module T, which $V_{\mathcal{L}}^{T}=M_{\mathbb{Z}+\frac{1}{2}}(1) \otimes T \simeq$ $S\left(\hat{\mathfrak{h}}_{\mathbb{Z}+\frac{1}{2}}\right) \otimes T$.

Proposition 4.1.7. For $i=1,2$,
where $S_{T_{i}}^{ \pm}=\left\{v \in V_{\mathcal{L}}^{T_{i}+} \mid \tau(v)=A v\right\}$ and $v_{T_{i}}^{ \pm i}=\left\{v \in V_{\mathcal{L}}^{T_{i}} \mid \tau(v)= \pm i v\right\}$.
Proof. Recall that $V_{L}^{T_{i},}$ is spamed by the vectors of the form: $v_{m_{1}, \ldots, m_{k} ; n_{1}, \ldots, n_{l}} \otimes t$, and $V_{\mathcal{L}}^{T_{i},-}$ is spanned by the vectors of the form: $v_{m_{1}, ., m_{s} ; n_{1}, \ldots, r_{r}} \otimes t$, where $k \geq 0, l \geq$ $0, s \geq 0, r \geq 0, k+l$ is even, $s+r$ is odd, $m_{i}, n_{j} \in \frac{1}{2}+\mathbb{Z}_{\geq 0}$, and $t \in T_{i}$. Set

$$
S_{T_{i}}^{+}=\operatorname{Span}_{\mathbb{C}}\{
$$

$$
v_{m_{1}} \ldots, m_{k_{k}}, n_{1}, n_{1} \otimes t \mathcal{J} v_{n_{1}, \ldots}, n_{1}, n_{1}, \ldots m_{k_{1}} \otimes t
$$

$\left.v_{m_{1}, \ldots, m_{k}+n_{1}, \ldots, n_{l+1}} \otimes t=v_{n_{1}, \ldots, n_{l+1} ; m_{1}, \ldots m_{k+1}} \otimes t \quad \mid k, l \in 2 \mathbb{N}_{0}, t \in T_{i}\right\}$,

Dong, Li and Mason have shown in [12] that if V is a simple vertex operator

Here the vertex operator algebra $V_{\mathcal{L}}^{+}$has at least one simple τ-twisted $V_{\mathcal{L}}^{+}$-module.

4.2 An irreducible $\tau \circ \theta$-twisted $M(1)$-module

There is a construction of ν-twisted $M(1)$-module (see [10]), under assumption that ν is an isometry. To get τ or $\tau \circ \theta$ having that property, we will assume that $\left\langle\alpha_{1}, \alpha_{2}\right\rangle=0$.

Consider $\tau \circ \theta$,
we have $\tau \circ \theta$ induce an automorphism on $M(1)$ of order 4 . Decompose $M(1)$ with respect to $\tau \circ \theta$:

M(1) $=M^{+1}(\phi) M^{-} \oplus M^{+i} \oplus M^{-i}$
where $M^{ \pm}=\left\{\beta \in M(1) \quad(\tau \circ \theta) \beta(f= \pm \beta\}, M^{ \pm i}=\{\beta \in M(1) \mid(\tau \circ \theta) \beta= \pm i \beta\}\right.$ which

$$
\begin{equation*}
M^{+}=\operatorname{spanc}\left\{\quad v_{m_{1}}, m_{k} ; n_{1}, \ldots, n_{l} 1+v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k}} \mathbf{1}\right. \text {, } \tag{4.14}
\end{equation*}
$$

ค $M^{+i}=\operatorname{Spanc}_{\mathbb{C}}\left\{\left(v_{\left.m_{1}, \ldots, m_{k}+n_{1}, \ldots, n_{1}-i v_{n_{1}}, \ldots, n_{l}, m_{1}, \ldots, m_{k+1}\right) 1} \mid k, l \in 2 \mathbb{N}, t \in T_{i}\right.\right.$, (4.20)

$$
\begin{equation*}
M^{-i}=\operatorname{Span}_{\mathbb{C}}\left\{\left(v_{m_{1}, \ldots, m_{k+1} ; n_{1}, \ldots, n_{l}}+i v_{n_{1}, \ldots, n_{l} ; m_{1}, \ldots, m_{k+1}}\right) \mathbf{1} \mid k, l \in 2 \mathbb{N}_{0}, t \in T_{i}\right\} . \tag{4.21}
\end{equation*}
$$

Next, consider a primitive 4 -th root of unity $\omega_{4}=e^{\frac{2 \pi i}{4}}=i$ in \mathbb{C}. For $n \in \mathbb{Z}$, set

of $\hat{\mathfrak{h}}[\tau \circ \theta]$ is a Heisenberg algebra. Form the induced $\hat{\mathfrak{h}}[\tau \circ \theta]$-module

$$
\begin{equation*}
M(1)[\tau \circ \theta]=U(\hat{\mathfrak{h}}[\tau \circ \theta]) \otimes_{U(\hat{\mathfrak{h}}[\tau \circ \theta]+\nmid \oplus \mathfrak{h}(0) \oplus \mathbb{C}} \mathbb{C} \simeq S\left(\hat{\mathfrak{h}}[\tau \circ \theta]^{-}\right) \text {(linearly) } \tag{4.22}
\end{equation*}
$$

where $\hat{\mathfrak{h}}[\tau \circ \theta]^{+}$acts trivially on C. and coget, as 1. We will use the notation $\alpha^{\tau \circ \theta}(n)$ $\left(\alpha \in \mathfrak{h}_{(4 n)}, n \in \frac{1}{4} \mathbb{Z}\right)$ for the action of $\alpha \otimes t^{n} \in$ h $\left.\tau \circ \theta\right]$ on $M(1)[\tau \circ \theta]$.

Set

where $\partial^{(n)}=\frac{1}{n!}\left(\frac{d}{d z}\right)^{n}$ and define $\mathrm{K}^{\tau 0 \theta}(v, z)=W\left(e^{\Delta_{z}} v, z\right)$. Here, Δ_{z} is a certain formal operator involving the formal variable z, and defined as follows: For an orthonormal basis of \mathfrak{h}, namely $\left\{\beta_{1}=\frac{1}{\sqrt{2 k}} \alpha_{1}, \beta_{2}=\frac{1}{\sqrt{2 k}} \alpha_{2}\right\}$, we set

$$
\begin{aligned}
\Delta_{z}= & \sum_{m a} \sum_{l=0}^{3} \sum_{j=1}^{2} c_{m n l}\left((\tau \circ \theta)^{-l} \beta_{j}\right)(m) \beta_{j}(n) z^{-m-n} \\
= & \sum_{m, n \geq 0} \sum_{l=0}^{3} c_{m n l} \frac{1}{2 k}\left[\left((\tau \circ \theta)^{-l} \alpha_{1}\right)(m) \alpha_{1}(n)+\left((\tau \circ \theta)-\alpha_{2}\right)(m) \alpha_{2}(n)\right] z^{-m-n} \\
= & \sum_{m, n \geq 0} c_{m n 0} \frac{1}{2 k}\left[\left((\tau \circ \theta)^{-0} \alpha_{1}\right)(m) \alpha_{1}(n)+\left((\tau \circ \theta)^{-0} \alpha_{2}\right)(m) \alpha_{2}(n)\right] z^{-m-n}+\cdots \\
& +c_{m n 3} \frac{1}{2 k}\left[\left((\tau \circ \theta)^{-3} \alpha_{1}\right)(m) \alpha_{1}(n)+\left((\tau \circ \theta)^{-3} \alpha_{2}\right)(m) \alpha_{2}(n)\right] z^{-m-n} \\
5 & \sum_{m, n \geq 0} \frac{1}{2 k}\left[c_{m n 0}\left[\alpha_{1}(m) \alpha_{1}(n)+\alpha_{2}(m) \alpha_{2}(n)\right]\right. \\
& \left.+c_{m n 1}-\alpha_{2}(m) \alpha_{1}(n)+\alpha_{1}(m) \alpha_{2}(n)\right]
\end{aligned}
$$

$$
\text { ค) }+c_{m n 3}\left[\alpha_{2}(m) \alpha_{1}(n)-\alpha_{1}(m) \alpha_{2}(n)\right] z^{-m-n} 9 \cap ?
$$

where constants $c_{m n l} \in \mathbb{C}$ for $m, n \in \mathbb{Z}_{\geq 0}, l=0,1,2,3$ are defined by the formulas

It has been established in 110, 25] that $\left(M(1)[\sim \theta], Y^{\tau 0 \theta}\right)$ is the irreducible $\tau \circ \theta$ twisted $M(1)$-module.

We define a linear map $\tau \theta \theta$ on $M(1)[\tau \circ \theta]$ by the following action:

where $(\tau \circ \theta) x=i x,(\tau \circ \theta) y=-i y$ for $x \in h_{(1)}$ and $y \in h_{(3)}$. JWe now decompose $M(1)[\tau \circ \theta]$ into $\overrightarrow{T s}$ eigenspaces with respect to $\tau \circ \theta$.

$$
M(1)[\tau \circ \theta]=M(1)[\tau \circ \theta]^{+} \oplus M(1)[\tau \circ \theta] \circ \oplus M(1)[\tau \circ \theta]^{+i} \oplus M(1)[\tau \circ \theta]^{-i}
$$

$$
\text { where } \left.M(1)[\tau \circ \theta]^{ \pm}=\{v \in M(1)[\tau \circ \theta] \mid(\sigma \circ \theta) v=t v\}, \quad\right]
$$

$$
\varrho_{M(1)[\tau \circ \theta]^{ \pm i}}=\{v \in M(1)[\tau \circ \theta] \mid(\tau \circ \theta) v= \pm i v\}
$$

1. $M(1)[\tau \circ \theta]^{+}$is spanned by vectors having forms:

$$
x\left(-n_{1}\right) \cdots x\left(-n_{s}\right) y\left(-m_{1}\right) \cdots y\left(-m_{r}\right)
$$

where $(s, r) \in \bigcup_{i=0}^{3}[i] \times[i]$.
2. $M(1)[\tau \circ \theta]^{-}$is spanned by vectors having forms:

where $(s, r) \notin[0] \times[3] \cup / 1] \times[\theta] \cup[2] \times[1] \cup[3] \times[2]$.
4. $M(1)[\tau \circ \theta]^{-i}$ is spanned by vectors having forms:

Notice that from Proposition 4.0.3, we have $M^{ \pm}, M^{ \pm i}, M(1)[\tau \theta]^{ \pm}, M(1)[\tau \circ \theta]^{ \pm i}$ are eight simple $M+$ modules, M^{+}defined as (4.14).

4.3 Irreducible τ-twisted $M(1)^{+}$-modules

 A linear automorphism map θ on $M(1)[\tau \circ \theta]$ is defined as (4.22), by the following action:

$$
\begin{aligned}
& (\theta x)\left(-n_{1}\right) \cdots(\theta x)\left(-n_{s}\right)(\theta y)\left(-m_{1}\right) \cdots(\theta y)\left(-m_{r}\right) \\
& =(-1)^{s+r} x\left(-n_{1}\right) \cdots x\left(-n_{s}\right) y\left(-m_{1}\right) \cdots y\left(-m_{r}\right) .
\end{aligned}
$$

Clearly, $\theta Y^{\tau \circ \theta}(v, z) \theta^{-1}=Y^{\tau \circ \theta}(\theta v, z)$ for $v \in M(1)$, the action of θ on $M(1)[\tau \circ \theta]$ gives an automorphism on $M(1)[\tau \circ \theta]$. Then we now decompose $M(1)[\tau \circ \theta]$ into its we have

Next, to show that $M(1)[\tau \phi \theta]^{-\theta}$ and $M(1)[\tau \rho \theta]^{-\theta}$ are τ-twisted $M(1)^{+}$-modules, it suffices to prove that they satisfy twisfed Jacobi identity.

Remark 4.3.1. From (4.13)-(4.21) , we have

$$
\begin{aligned}
M(1)= & M_{\tau \circ \theta}^{0}+M_{\tau \circ \theta}^{1}+M_{\text {fortan }}^{2} M_{r \circ \theta}^{3}, M_{\tau \circ \theta}^{n}=\left\{u \in M(1) \mid(\tau \circ \theta) u=i^{n} u\right\} \\
& \text { where } M_{\tau \circ \theta}^{0}=M_{\tau \rho \theta}^{+}=M^{+i}, M_{\tau \circ \theta}^{2}=M^{-}, M_{\tau \circ \theta}^{3}=M^{-i}, \quad \text { and }
\end{aligned}
$$

$$
\begin{aligned}
M(1)= & M_{\tau}^{0}+M_{\tau}^{1}+M_{\tau}^{2}+M_{\tau}^{3}, M_{\tau}^{n}=\left\{u \in M(1) \mid \tau u=i^{n} u\right\} \\
& \text { where } M_{\tau}^{0}=M^{+}, M_{\tau}^{1}=M^{-i}, M_{\tau}^{2}=M^{-}, M_{\tau}^{3}=
\end{aligned}
$$

We observe that $M(1)^{+}=M_{\tau}^{0}+M_{\tau}^{2}$ which $M_{\tau}^{0}=M_{\tau \circ \theta}^{0}$ and $M_{\tau}^{2}=M_{\tau \circ \theta}^{2}$. Recall twisted Jacobi identity (1.13): For $u \in V^{r} \quad\left(=M_{\text {foo }}^{r}\right), r=0,1,2,3$,

$$
\begin{gathered}
z_{0}^{-1} \delta\left(\frac{z_{1} \ominus_{2}}{z_{0}}\right) Y_{M}\left(u, z_{1}\right) Y_{M}\left(v, z_{2}\right)=-z_{0}^{-} \delta\left(\frac{z_{2}-z_{1}}{-z_{0}}\right) Y_{M}\left(v, z_{2}\right) Y_{M}\left(u, z_{1}\right) \\
= \\
=z_{2}^{-1}\left(\frac{z_{1}-z_{0}}{z_{2}}\right)^{\frac{--}{T}} \delta\left(\frac{z_{1}-z_{0}}{z_{2}}\right) Y_{M}\left(Y\left(u, z_{0}\right) v, z_{2}\right) .
\end{gathered}
$$

$v \in M(1)$. We have $M(1)[\tau \circ \theta] \circ \theta \cong M(1)[\tau \circ \theta]$ as $\tau \circ \theta$-twisted $M(1)$-modules. Since $\langle\theta\rangle$ is an automorphism of $M(1)$ of order 2, by applying Proposition 4.0.3 or 4.0.4, we have $M(1)[\tau \circ \theta]^{+\theta}$ and $M(1)[\tau \circ \theta]^{-\theta}$ are two irreducible τ-twisted $M(1)^{+}{ }_{-}$ modules.

In the future, we will use these results to construct irreducible τ-twisted $V_{\mathcal{L}}^{+}$modules.
 จุหาลงกรณ์มหาวิทยาลัย

REFERENCES

[1] T. Abe, Rationality of the vertex operator algebra V_{L}^{+}for a positive definite even lattice L, Math. Z. 249 (2005) no. 2, 455-484.
[2] T. Abe, The charge conjugation orbifold $\nu_{Z d}^{+}$is rational when $\langle\alpha, \alpha\rangle / 2$ is prime, Int. Math. Res. Notices 12 (2002), 647-665.
[3] T. Abe, G. Buht, and C. Dong, Rationality, regularity, and C_{2}-cofiniteness, Trans. Amer. Math. Soc. 356 (20日4) 3391-3402.
[4] T. Abe and C. Dong, Qlassification of irreducible modules for the vertex operator algebra V_{L}^{+}: General case J/Algebra 273 (2004) no. 2, 657-685.
[5] R. Borcherds, Vertex algebras Kac-Moody algebras and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986) 3068-30శ1.
[6] G. Buhl, A spanning set for VOA modules, J. Algebra 254 (2002) no. 1, 125-151.
[7] C. Dong, Vertex algebras associated with even lattices, J. Algebra 160 (1993), 245-265.
[8] C. Dong and R. Griess, Rank one fattice type vertex operator algebras and their automorphism groups, J. Algebra 208 (1998) no. 1, 262-275.
[9] C. Dong and C. riang. Rationality of vertex operator algebras, math.QA/0607679.
[10] C. Dong and J. Lepowsky, The algebraic structure of relative twisted vertex operators, 1 Pure Appl. Algebra 110 (1996), 259-295.
[11] C. Dong, H. S. Li and G. Mason, Compact automorphism groups of vertex operator algebras, Int. Math. Res. Notices 18 (1996), 913=921.
[12] C. Dong, H.-S. Li and G. Mason, Modular invariance of twace functions in orbifold theory, Comm. Math. Phys. 214 (2000), 1-56.
[13] CDong, H.S. Liand G.Mason, Regularity of rational vertex operator algebras,
Adv. Math. 132 (1997) no. $1.148-166$.
[14] C. Dong, H.-S. Li and G. Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998) no. 3, 571-600. - 15$]^{\circ}$ C. Dong and Z. Lin, Induced modules for vertex operator algebras, Comim. Math.
[16] C. Dong and G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997), 305-321.
[17] C. Dong and G. Mason, On the operator content of nilpotent orbifold theory, hep-th/941209.
[18] C. Dong and K. Nagatomo, Representations of Vertex operator algebra V_{L}^{+}for a rank one lattice L, Comm. Math Phys. 202 (1999), 169-195.
[19] C. Dong and G. Yamskulna, Vertex operator algebras, generalized doubles and dual pairs, Math. Z. 241 (2002)
[20] I.B. Frenkel, Y. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Memoirs Amer. Math. Soc. 104, 1993.
[21] I.B. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Math. Vor. 134. Academic Press, Boston, 1988.
[22] M. Gaberdiel and A. Neitzke, Rationality, quasi rationality and finite W algebras, Comm. Math Phys. 238 (2003), 305-331.
[23] L. Jordan, Classification of irreducible V_{L}^{+}-modules for a negative definite rank one even lattice L, Ph. D. Dissertation, University of California at Santa Cruz, 2006.
[24] M. Karel and H.-S. Li, Certaingenerating subspaces for vertex operator algebras, J. Algebra 217 (1999), 393-421.
[25] J. Lepowsky, Calculus of wisted vertex operators, Proc. Natl. Acad. Sci. USA 82 (1985), 8295-8299.
[26] J. Lepowsky and H.-S. Li, Introduction to Vertex Operator Algebras and Their Representations, Progress in Math. 227, Birkhäuser, Bosfon, 2003.
[27] M. Miyamote, A theory of tensor products for vertex opewator algebra satisfying C_{2}-cofiniceness, math.QA/0309350.
[28] M. Miyamoto Modular invariance of vertex operator algebras satisfying $C_{2^{-}}$ cofiniteness, Duke Math. J. 122 (2004) no. 1, 51-91.
[29] G.-Yamskulna, C2-cofiniteness of vertex operator algebrar V_{L}^{+}when L is a rank one lattice. Comm. Algebra. 32 (2004), 927-954.
[30] G. Υ Yamskulna, Classification of irreducible modules of the vertex algebra V_{L}^{+} when L is a nondegenerate even lattice of an arbitrary rank, J. Algebra 320 even lattice of arbitrary rank, J. Algebra 321 (2009), 1005-1015.
[32] G. Yamskulna, The relationship between skew group algebras and orbifold theory, J. Algebra 256 (2002), 502-517.
[33] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.

APPENDIX

The calculation of Table 1.
Recall that $\left.\omega=-\frac{1}{4 k} \alpha(-1)^{2} \mathbf{1},\langle\alpha, \alpha\rangle\right\rangle+2 k, \alpha(0) F^{m}=-2 k m E^{m}, \alpha(0) E^{m}=$ $-2 k m F^{m}$ and

VITA

Mr. Phichet Jitjankarn was born on August 7, 1980 in Nakhonsithammarat, Thailand. He graduated with a Bachelor of Science Degree in Mathematics (First Class Honours) from Prince of Songkla University in 2001 and graduated with a Master's degree of Science Degree in Mathematics from Chulalongkorn University in 2003. He has received a scholarship from the University Development Commission since 2005. For his Dectoral desyee, he has studied Mathematics at the Department of Mathematics, Faculty of Science, Chulalongkorn University.

