การจำลองเชิงความร้อนของการทำงานของเบ้ารับน้ำเหล็กระหว่างการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า

นายศิริพงษ์ ชื่นกลิ่น

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเครื่องกล ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

A THERMAL MODELING OF LADLE OPERATION DURING STEELMAKING IN ELETRICAL ARC FURNANCE

Mr. Siripong Cheanklin

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Mechanical Engineering

Department of Mechanical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2009

Copyright of Chulalongkorn University

หัวข้อวิทยานิพนธ์
 การจำลองเขิงความร้อนของการทำงานของเบ้ารับน้ำเหล็กระหว่างกา
 ผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า
 โดย
 นาย ศิริพงษ์ ขึ้นกลิ่น
 สาขาวิชา
 วิศวกรรมเครื่องกล
 อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก
 รองศาสตราจารย์ ดร. พงษ์ธร จรัญญากรณ์
 อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม
 ผู้ช่วยศาสตราจารย์ ดร. อิทธิพล เดี่ยววณิชย์

คณบดีคณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติไห้นับวิทยานิพนธ์จบับ นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

(รองศาสตราจารย์ คร.บุญสม เลิศหิรัญวงศ์)

คณะกรรมการส<mark>อบวิทยานิพน</mark>ธ์

2 oh อีกา ประธานกรรมการ

(ผู้ช่วยศาสตราจารย์ มิ่งศักดิ์ ตั้งตระกูล)

๑٧-๐๗/๗ฦ/๗ อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(รองศาสตราจารย์ คราพงษ์ธร จรัญญากรณ์)

*ในปี 2*_____อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม

(ผู้ช่วยศาสตราจารย์ คร. อิทธิพล เดี่ยววณิชย์)

CULUU nerruner

(ผู้ช่วยศาสตราจารย์ ดร. สมพงษ์ พุทธิวิสุทธิศักดิ์)

/ เอเมเมต์ วักรอรายแห่ กรรมการภายนอกมหาวิทยาลัย (ผู้ช่วยศาสตราจารย์ คร. ไชยณรงค์ จักรธรานนท์)

ศีริพงษ์ ขึ้นกลิ่น: การจำลองเชิงความร้อนของการทำงานของเบ้ารับน้ำเหล็กระหว่างการ ผลิตเหล็กกล้ำด้วยเตาหลอมอาร์คไฟฟ้า (A THERMAL MODELING OF LADLE OPERATION DURING STEELMAKING WITH ELECTRICAL ARC FURNACE) ที่ปรึกษาวิทยานิพนธ์หลัก: 3ศ.ศร. พงษ์ธร จรัญญากรณ์,
 ด.ที่ปรึกษาวิทยานิพนธ์ร่วม; แศ.ดร. อิทธิพล เดี่ยววณิชย์, 212 หน้า.

ในกระบวนการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า การควบคุมอุณหภูมิน้ำ เหล็กในระหว่างกระบวนการผลิตมีความสำคัญที่สุด ในทางปฏิบัติโดยทั่วไปในปัจจุบัน โรงงาน ควบคุมโดยการเผื่ออุณหภูมิเทน้ำเหล็กจากเตาหลอม และ อุณหภูมิในการอุ่นเบ้ารับน้ำเหล็ก ซึ่ง มักจะเผื่อในทางสูงเนื่องจากชาตช้อมูลเกี่ยวกับการสูญเสียความร้อนในชั้นตอนต่างในระหว่างการ ผลิต จึงทำให้เกิดการสิ้นเปลืองพลังงานโดยไม่จำเป็น

<mark>วัตถุประสงค์ของวิทยานิพนธ์ฉบับนี้ จึงเป็นการศึกษาสภาวะทางความร้อนของ</mark> เบ้ารับน้ำเหล็กขนา<mark>ด</mark> 25 ตัน ในระหว่างรอบการทำงานของเบ้ารับน้ำเหล็ก ด้วยการประยุกต์ใช้ ้โปรแกรมสำเร็จเพิ่งพาณิชย์ จำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็ก ใน 4 ขั้นตอนที่สำคัญ ้ได้แก่ ขั้นตอ<mark>นการอุ่นเบ้ารับน้ำเหล็ก, ขั้นตอนการรอการถ่ายน้ำเหล็ก, ขั้นตอนการถ่ายน้ำเหล็ก</mark> ู่และขั้นตอนการร<mark>อ</mark>การอุ่นเป้ารับน้<mark>ำเหล็ก การกำหนดเงื่อนไขขอบเขตการจ</mark>ำลองใช้ข้อมูลจากการ ตรวจวัดภาคสนาม และข้อมูลเชิงสถิติของการผลิตของโรงงานที่ทำการศึกษา

ผลการศึกษาแสดงให้เห็นว่า ในระหว่างรอบการทำงานที่ t - 5 ความร้อนสะสม ภายในเบ้ารับน้ำเหล็กจะสูงขึ้น ส่งผลให้การสูญเสียความร้อนจากน้ำเหล็กไปยังเบ้าลดลง จึง สามารถลดจุณหภูมิน้ำเหล็กที่เทจากเตาหลอมลงจาก 1700°C เหลือ 1690°C โดยจุณหภูมิน้ำ เหล็กเมื่อสิ้นสุดการถ่ายน้ำเหล็กยังสูงพอตามเงื่อนไขในการผลิต เป็นผลให้สามารถลดการใช้ ไฟฟ้าในการหลอมได้ 7 kWh/ton ซึ่งสำหรับโรงงานที่ศึกษา จะสามารถประหยัดได้ค่าใช้จ่ายด้าน พลังงานไฟฟ้าได้ 2.5 ล้านบาท/ปี

ภาควิชา วิศวกรรมเครื่องกล 🍼 ปีการศึกษา 2552

ลายมือชื่อนิสิต 🦱 สีโพวร์ สาขาวิชา <u>วิสวกรรมเครื่องกล</u> ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก ดายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม (

##4970600021 : MAJOR MECHANICAL ENGINEERING

KEYWORDS : STEELMAKING PROCESS/ LADLE PREHEATING / HOLDING PERIOD TEEMING / CONTINUOUS CASTING / ENERGY CONSERVATION / NUMERICAL SIMULATION

SIRIPONG CHEANKLIN : A THERMAL MODELING OF LADLE OPERATION DURING STEELMAKING WITH ELETRICAL ARC FURNANCE. THESIS ADVISOR : PONGTORN CHARUNYAKORN, Ph.D. THESIS CO-ADVISOR : ITTIPON DIEWWANIT, Ph.D., 212 pp.

In steelmaking process with Electrical Arc Furnace (EAF), the ladles play the important role by received the molten steel tapping from EAF and teerning out at Continuous Casting station. Because of controlling molten steel temperature throughout process is very significant owing to the tight limit of molten steel temperature in tundish. Consequently, good understanding of heat transfer and thermal condition of molten steel and ladle is essential for proper control molten steel temperature and reduced energy consumptions of steelmaking process.

In this study, transient heat transfer during cyclic steelmaking process in a 25-ton ladle is numerically investigated. By using commercial software, the transient heat transfer simulations are performed by 4-step consist of preheating ladle, holding, teeming and cool down period. The simulation time of each period determined by statistical data analysis of steelmaking operations. The model validation and parameter adjustment are made by comparing modeling results with experimental data taken from field experiments in a steel factory.

The main results of this study related to the thermal condition of ladle during heat 1 - 5. The higher temperature distribution of ladle after 4 heat is reduced heat transfer form molten steel so decrease tapping temperature form 1700°C to 1690°C for saving electrical energy is possible. Refer to the calculating the specific electrical energy demand of the EAF equation by Iron and Steel Institute (2001), reduced 10 °C of tapping temperature will save electrical energy consumption7 kWh/ton which be valued 2.5 million baht/year for the researched steel factory.

Department : Mechanical Engineering Student's Signature Advisor's Signature Field of Study : Mechanical Engineering Academic Year : 2009 Co-advisor's Signature

กิตติกรรมประกาศ

ผู้วิจัยขอกราบขอบพระคุณ รองศาสตราจารย์ ดร. พงษ์ธร จรัญญากรณ์ อาจารย์ ที่ปรึกษาวิทยานิพนธ์ และ ผู้ช่วยศาสตราจารย์ อิทธิพล เดี่ยววณิชย์ ที่ปรึกษาวิทยานิพนธ์ร่วม ที่ ให้โอกาสสำคัญในการทำงานวิจัยฉบับนี้ รวมถึงการให้ความกรุณาถ่ายทอดความรู้คำแนะนำ ประสบการณ์ต่างๆ ที่มีคุณค่ายิ่ง อันเป็นแรงผลักดันให้ข้าพเจ้าทำวิทยานิพนธ์ฉบับนี้สำเร็จลุล่วง ขอกราบขอบพระคุณ ผู้ช่วยศาสตราจารย์ มิ่งศักดิ์ ตั้งตระกูล ที่ให้เกียรติเป็น ประธานกรรมการสอบวิทยานิพนธ์ ผู้ช่วยศาสตราจารย์ ดร. สมพงษ์ พุทธิวิสุทธิศักดิ์ และผู้ช่วย ศาสตราจารย์ ดร. ไชยณรงค์ จักรธรานนท์ ที่ให้เกียรติเป็นกรรมการสอบวิทยานิพนธ์ครั้งนี้ รวมทั้ง อาจารย์ทุกท่านสละเวลาให้คำแนะนำ คำปรึกษา และถ่ายทอดความรู้ตลอดระยะเวลาในการ ทำงานวิจัยชิ้นนี้จนกระทั่งวิทยานิพนธ์ฉบับนี้มีความสมบูรณ์

ขอขอบคุณ บริษัทสยาม สตีล ซินดิเกต จำกัด มหาชน ที่เอื้อเฟื้อข้อมูล อุปกรณ์ และสถานที่ในการดำเนินงานวิจัย ขอขอบพระคุณคุณบุญล้ำ ศรีพิชัย ผู้อำนวยการโรงงาน คุณ พิษณุ เจริญสมศักดิ์ ผู้จัดการโรงงาน คุณวันชัย มนูญพาณิชย์ ผู้จัดการส่วนโรงหลอม คุณธเนส วงศ์ประยูร วิศวกรโรงหลอม ทีมวิศกรและทีมช่างเทคนิคของบริษัทที่ช่วยให้ความรู้ คำแนะนำ ต่างๆ

ขอขอบคุณ สถาบันเหล็กและเหล็กกล้าแห่งประเทศไทย ที่ให้ทุนสนับสนุน งานวิจัยฉบับนี้ ผอ. วิกรม วัชรคุปต์ ผู้อำนวยการสถาบัน คุณหิน นววงศ์และผู้ช่วยศาสตราจารย์ ดร.อิทธิพล เดี่ยววณิชย์ ที่ปรึกษาสถาบัน คุณณัฐพล รัตนมาลี หัวหน้าแผนกวิจัยและพัฒนา คุณ ทศพล เฉตรไธสง นักวิจัย คุณอณัติ จิตรานุเคราะห์ และคุณพลพร จาติเสถียร ผู้ช่วยนักวิจัย พี่ๆ เพื่อนๆ ที่คอยแนะนำและคำปรึกษา และที่สำคัญอย่างยิ่ง คุณจักราวุธ จรูญศารทูล เพื่อนนักวิจัยผู้ ร่วมทำการทดลอง และคอยช่วยเหลือในการทำวิจัย

ขอขอบคุณ ทีมงานจากจุฬาลงกรณ์มหาวิทยาลัย คุณแมนพงษ์ ตั้งตระกูล คุณ อภิสิทธิ์ บุญเกิด และคุณตรงจิตต์ ชวหา ที่คอยให้คำปรึกษา คำแนะนำ อำนวยความสะดวกใน งานวิจัยครั้งนี้

สุดท้ายนี้ ข้าพเจ้าขอกราบขอบพระคุณบิดามารดา และครอบครัว ที่คอยให้ สับสนุน และให้กำลังใจแก่ผู้วิจัยมาโดยตลอดจนสำเร็จการศึกษา อันคุณประโยชน์ที่ได้รับจาก วิทยานิพนธ์ฉบับนี้ ขอมอบแด่ครอบครัว ครูอาจารย์ และผู้มีพระคุณทุกท่าน

	é
สาร	ហរារា

หน้า	
บทคัดย่อภาษาไทยง	
บทคัดย่อภาษาอังกฤษ	
กิตติกรรมประกาศ	
สารบัญช	
สารบัญตาราง	
สารบัญภาพ	
คำอธิบายสัญลักษณ์และคำย่อป	
าเทที่ 1 ๆ เทบ้า 1	
1.1 ความเป็นมาแล <mark>ะ</mark> ควา <mark>มสำคัญของปัญหา</mark> 1	
1.2 วัตถุประสงค์ของก <mark>าร</mark> วิจัย	
1.3 ขอบเขตของการวิจัย	
1.4 แนวทางการศึกษาวิจัย	
1.5 ประโยชน์ที่คาดว่าจะได้รับ	
1.6 การนำเสนอผลงานวิจัย	
บทที่ 2 ข้อมูลจากการศึกษาค้นคว้า	
2.1 กระบวน <mark>การ</mark> การผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า	
2.1.1 เตาหลอมอาร์คไฟฟ้า7	
2.1.2 เป้ารับน้ำเหล็ก	
2.1.3 วัฏจักรการทำงานของเบ้ารับน้ำเหล็ก	
2.1.4 อ่างรับน้ำเหล็ก	
2.1.5 กระบวนการหล่อแบบต่อเนื่อง	
2.1.6 คุณสมบัติน้ำเหล็ก	
2.1.7 คุณสมบัติสแลก	

2.1.8 ผลิตภัณฑ์
2.1.9 การควบคุมอุณหภูมิน้ำเ <mark>หล็กในระหว่า</mark> งกระบวนการผลิต
2.2 การศึกษางานวิจัยที่ผ่า <mark>นมา</mark>
2.2.1 ผลการศึกษ <mark>าการถ่ายเทค</mark> วามร้อนของเ <mark>บ้ารับน้ำเหล</mark> ็กในขั้นตอนการอุ่น 26
2.2.2 ผลการศึ <mark>กษาที่แสดงการ</mark> ทำนา <mark>ยอุณหภูมิน้ำเหล็กในระหว่างการผลิต</mark>
2.2.3 ผลการ <mark>ศึกษาการถ่ายเทค</mark> วามร้อนระหว่างน้ำเหล็ก
และเป้ารับน้ำเหล็กในระหว่างกระบวนการผลิต
2.2.4 ผลการศึกษาสภาวะทางความร้อนของเบ้ารับน้ำในระหว่างกระบวนการผลิต. 49
2.3 ทฤษฎีที่เกี่ยวข้อง
2.3.1 การนำความร้อน
2.3.2 การพา <mark>ความร้อ</mark> น
2.3.3 การแผ่รังสีความร้อน
บทที่ 3 ข้อมูลเชิงสถ <mark>ิติของก</mark> ารผลิต <mark>และข้อมูลจากการตรวจวัดภาค</mark> สนาม
3.1 ข้อมูลการผลิตใน <mark>ส่</mark> วนของ <mark>เตาหลอมอาร์คไฟฟ้า</mark>
3.1.1 พลังงานไฟฟ้าที่ใช้ใ <mark>นการหลอมเศษเหล็ก</mark>
3.1.2 ปริมาณการพ <mark>่นก้าซออกซิเจน ปริมาณการเติมธ</mark> าตุคาร์บอน
ในการหลอมเศษเหล็ก
3.1.3 ระยะเวลาที่ใช้ในการหลอม (tap to tap time)
3.1.4 อุณ <mark>ห</mark> ภูมิน้ำเหล็กที่ทำการเท
3.2 ข้อมูลวัตถุดิบ ผลิตภัณฑ์ และ สแลก
3.3 ระยะเวลาของเบ้ารับน้ำเหล็กในแต่ละสถานีการผลิต
3.3.1 ขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก
3.3.2 ขั้นตอนการรอการเทน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า
3.3.3 ขั้นตอนการเทน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า
3.3.4 ขั้นตอนการรอการถ่ายน้ำเหล็ก71
3.3.5 ขั้นตอนการถ่ายน้ำเหล็ก
3.3.6 ขั้นตอนการเทสแลก73

3.3.7 ขั้นตอนการรอการอุ่น	73
3.4 อุณหภูมิน้ำเหล็กในแต่ละขั้นต <mark>อนการผล</mark> ิต	75
3.5 ข้อมูลการแจกแจกอุณห <mark>ภูมิภายในเบ้ารับน้ำเหล็กใน</mark> ระหว่างทำการอุ่น	75
3.5.1 เบ้ารับน้ำเห <mark>ล็กที่ใช้ในการตรวจวัดภาคสนาม</mark>	75
3.5.2 การตรวจวัดภาคสนามของอุ่นเป้ารับน้ <mark>ำเหล็ก</mark>	78
3.5.3 ผลการตรวจวัดภาคสนาม	78
3.5.4 พิจ <mark>ารณาเฉพาะการจำลองก</mark> ารอุ่นเ <mark>บ้ารับน้ำเหล็ก</mark>	
ที่ท <mark>ำการก่อขึ้นใหม่ (การอุ</mark> ่นครั้งแรก)	81
3.5.5 พิจารณ <mark>าเฉพาะการเย็นตัวของเบ้</mark> ารับน้ำเหล็กในกรณีวางตั้ง	83
3.6 ข้อมูลอุณหภูมิผิวนอกเป้ารับน้ำเหล็กในระหว่างกระบวนการผลิตเหล็กกล้า	85
3.6.1 ผลการ <mark>ตร</mark> วจว <mark>ัด</mark> ภา <mark>ค</mark> สนาม	85
3.7 ข้อมูลอุณ <mark>ห</mark> ภูมิน้ำเหล <mark>็กในระหว่างการรอ</mark> การถ่าย <mark>น้ำเหล็ก</mark>	89
3.7.1 ผลการต <mark>ร</mark> วจว <mark>ัด</mark> ภาคสนา <mark>ม</mark>	89
3.8 ข้อมูลอุณหภูมิผิว <mark>ห</mark> น้าสแล <mark>กที่ปกคลุมน้ำเหล็ก</mark>	90
3.8.1 ผลการตรวจวัดภาค <mark>สนาม</mark>	90
3.9 ข้อมูลอุณหภูมิผิวด้านในเบ้ารับน้ำเห <mark>ล็ก</mark>	92
3.9.1 ผลการตรวจวัดภาคสนาม	92
บทที่ 4 โปรแกรมที่ใช้ในการศึกษาวิจัย	93
4.1 การทำงา <mark>น</mark> ของโปรแกรมสำเร็จเชิงพาณิชย์	94
4.1.1 MeshCAST	94
4.1.2 PreCAST	94
4.1.3 DataCAST/ProCAST	99
4.1.4 ViewCAST	100
4.2 การตรวจสอบการทำงานของโปรแกรม (validation)	101
4.2.1 แบบจำลองที่ใช้ในการศึกษา	101
4.2.2 กรณีที่ 1 อุณหภูมิผิวคงที่ (Constant Surface Temperature)	102
4.2.3 กรณีที่ 2 อัตราการถ่ายเทความร้อนคงที่ (Constant Surface Heat Flux).	104
4.2.4 กรณีที่ 3 การพาความร้อนที่ผิวหน้า (Surface Convection)	106

4.3 สรุปผลการตรวจสอบการทำงานของโปรแกรม (validation)	108
4.4 การหาขนาดตารางที่เหมาะสมในการคำนวณ (mesh sizing)	108
4.5 สรุปผลการเลือกขนา <mark>ดตา</mark> ราง	113
4.6 การเลือกขั้นระย <mark>ะเวลามากที่สุด</mark> (maximu <mark>m time step</mark>)	113
4.7 สรุปผลการเลื <mark>อกขั้นระยะเวลา</mark> มากที่สุด	115
4.8 ข้อจำกัดของโปรแกรมสำเร็จเชิงพาณิชย์	115
4.9 ที่มาและ <mark>ความจำเป็นของโปรแกร</mark> ม	116
4.10 การออกแบบโปรแกรม	117
4.10.1 จ ้ านวนผ <mark>ิวในการคำนวณ</mark>	117
4.10.2 ขั้นตอนการทำงานของโปรแกรม	123
4.11 การทดสอ <mark>บก</mark> ารคำนวณของโป <mark>รแกรม</mark>	123
4.12 แบบจำลองที่ใช้ใน <mark>ก</mark> ารศึกษา	124
บทที่ 5 ผลการศึกษาวิจัย และอภิปรายผลการศึกษาวิจัย	128
5.1 การศึกษาการถ่า <mark>ยเทคว<mark>ามร้อนในระหว่างข</mark>ั้นตอนการอุ่นเบ้ารับน้ำเหล็ก</mark>	128
5.2 การศึกษาการถ่ายเท <mark>ความร้อนในระหว่างขั้นตอนการ</mark> พักเบ้ารับน้ำเหล็ก	139
5.3 การศึกษาการถ่ายเทความร้อนในระหว่างขั้นตอนการรอการถ่ายน้ำเหล็ก	147
5.4 การศึกษาก <mark>ารถ่ายเทความร้อนในระหว่างขั้นตอนการถ่ายน้ำเหล็ก</mark>	154
5.5 การศึกษาการถ่ายเทความร้อนในวงจรการทำงานของเบ้ารับน้ำเหล็ก	161
บทที่ 6 สรุปผลการศึกษาวิจัย และข้อเสนอแนะ	171
6.1 สรุปการศึกษาวิจัย	171
6.2 ปัญหาของงานวิจัย	171
6.2 ข้อเสนอแนะของงานวิจัยในอนาคต	172
รายการอ้างอิง	173
ภาคผนวก	176
ภาคผนวก ก ระเบียบวิธีไฟในต์เอลิเมนต์	177
ภาคผนวก ข ข้อมูลการตรวจวัด	180

ภาคผนวก ค โปรแกรมคำนวณสมการเชิงเส้นหลายตัวแปร	. 199
ภาคผนวก ง การคำนวณพลังงาน <mark>ความร้อน</mark> สะสมภายในเบ้ารับน้ำเหล็ก	. 209
ประวัติผู้เขียนวิทยานิพนธ์	. 212

สารบัญตาราง

ตารางที่ 1-1 เปรียบเทียบการใช้พลังง <mark>านในการหลอ</mark> มเศษเหล็กระหว่างผู้ประกอบการไทย	
และต่างประเทศ (สถาบันวิจ <mark>ัยพลังงาน จุฬาลงกรณ์มหาวิทย</mark> าลัย, 2006)	
ตารางที่ 2-1 คุณสมบัติข <mark>องวัสดุทนไฟชนิ</mark> ด SK38 (บริษัท สยาม รีแฟรกตอรี อินดัสทรี) 15	
ตารางที่ 2-2 รายละเอ <mark>ียดแบบจำลอง</mark> ที่ทำก <mark>าร</mark> ศึกษ <mark>า, Pan et al. (2003)</mark>	
ตารางที่ 2-3 อุณหภูม <mark>ิน้ำเหล็กและการ</mark> สูญเสียอุณหภูมิน้ำเหล็กขั้นตอนต่างๆ,	
Zimmer et al. (2008)	
ตารางที่ 2-4 สมการผลเฉลยการนำความร้ <mark>อน</mark> หนึ่งมิติที่ขึ้นกับเวลา	
ด้วยวิธี semi-infinite solid	
ตารางที่ 3-1 ส่ว <mark>นประกอบเฉลี่ยทางเคมีของเหล็กกล้าที่ทำการผล</mark> ิต	
ตารางที่ 3-2 ระยะเว <mark>ลาการทำงานขอ</mark> งเ <mark>บ้ารับน้ำเหล็กในแต่ละรอบกา</mark> รผลิต	
ตารางที่ 3-3 อุณห <mark>ภู</mark> มิน้ <mark>ำเหล็กเฉลี่ยในระหว่างกระ</mark> บวนก <mark>ารผลิต</mark>	
ตารางที่ 3-4 อุณหภูมิ <mark>ในตำแหน่งต่างๆ ของผิวหน้าสแลก</mark> 91	
ตารางที่ 3-5 อุณหภูมิใน <mark>ตำ</mark> แหน่งต่ <mark>างๆ ของผิวข้างด้านในเบ้ารับ</mark> น้ำเหล็ก	
ตารางที่ 4-1 ข้อมูลแบบจำลอง <mark>ที่ใช้ในการสอบเทียบโปรแก</mark> รมสำเร็จเชิงพาณิชย์ 101	
ตารางที่ 4-2 คุณสมบัติทางคว <mark>ามร้อนของวัตถุที่ใช้ในการส</mark> อบเทียบ	
โปรแกรมสำเร็จเชิงพาณิชย์	
ตารางที่ 4-3 คุณสมบัติทางความร้อนของวัตถุที่ใช้ในการหาค่าตาราง	
ที่เหมาะสม (mesh sizing)111	
ตารางที่ 4-4 ข้อ <mark>มูล</mark> การแบ่งขั้นน้ำเหล็กในการจำลอง	
ตารางที่ 4-5 พื้นที่ของแต่ละผิวในแต่ละขั้นของการคำนวณ	
ตารางที่ 4-6 จำนวน node และ element ในแต่ละขั้นของการคำนวณ 125	
ตารางที่ 5-1 คุณสมบัติทางความร้อนของอิฐทนไฟที่ใช้ในการคำนวณ 129	
ตารางที่ 5-2 คุณสมบัติทางความร้อนของเปลือกเหล็กที่ใช้ในการคำนวณ 130	
ตารางที่ 5-3 อัตราการถ่ายเทความร้อนของผิวด้านในเบ้ารับน้ำเหล็กในแต่ละส่วน 141	
ตารางที่ 5-4 คุณสมบัติทางความร้อนของน้ำเหล็กที่ใช้ในการคำนวณ 148	
ตารางที่ 5-5 การยุบรวมขั้นถ่ายน้ำเหล็กในการจำลอง จาก 20 เป็น 10 ขั้น	

ตารางที่ 5-6 การถ่ายเทความร้อนขอ <mark>งผิวด้านใน</mark> เบ้ารับน้ำเหล็กในแต่แบบจำลอง	
แยกเป็นแต่ละพื้นผ <mark>ิว</mark>	156
ตารางที่ 5-7 ระยะเวล <mark>าการถ่ายน้ำเหล็กในแต่ละขั้นของแบบจ</mark> ำลอง	157
ตารางที่ 5-8 ผลประหยัดของการลดอุณหภูมิเทน้ำเหล็กลง 10 [°] C	161

สารบัญภาพ

รูปที่ 1-1 ปริมาณการใช้งานเหล็กโภคภัณฑ์และปริมาณเหล็กที่ผลิต
จากการหลอมเศษเหล็ก <mark>ของประเทศไทยในแ</mark> ต่ละปี
(สถาบันเหล็กและเ <mark>หล็กกล้าแห่งประเทศไทย, 25</mark> 52)
รูปที่ 2-1 ปริมาณการผล <mark>ิตเหล็กดิบขอ</mark> งโลก (อัตรา <mark>ส่วนร้อยละ)</mark>
ด้วยกระบวน <mark>การ เตาหลอมอ</mark> าร์คไฟฟ้า เต <mark>าหลอมแบบเบสิ</mark> กออกซิเจน
(Basic O <mark>xygen Furnace, B</mark> OF) และเ <mark>ตาหลอมแบบโอเพน</mark> ฮาร์ท
(Basic <mark>Open Hearth, BOH)</mark>
รูปที่ 2-2 แผนผัง <mark>ส่วนประกอบของเตาห</mark> ลอ <mark>มอ</mark> าร์ค ไฟฟ้า ชนิดไฟฟ้ากระแสสลับ 11
รูปที่ 2-3 เตาหล [ื] อมอาร์คไฟฟ้าของโรงงานที่ทำการศึกษา
รูปที่ 2-4 การเท <mark>น้ำเห</mark> ล็ก <mark>จากเตาหล</mark> ่อมอาร์คไฟฟ้าไปยังเบ้ารับน้ำเหล็ก
รูปที่ 2-5 เบ้ารับน้ำเ <mark>หล็ก ความจุ</mark> 25 ตัน
รูปที่ 2-6 วงจรกา <mark>ร</mark> ทำงา <mark>นของเ</mark> บ้ารับน้ำเหล็ก
รูปที่ 2-7 การก่อเบ้ารั <mark>บน้ำเห</mark> ล็ก
รูปที่ 2-8 การอุ่นเบ้ารับน้ <mark>ำเ</mark> หล็กเพื่อไล่ความชื้น โดยใช้เศษไม้เป็นเชื้อเพลิง
รูปที่ 2-9 การอุ่นเบ้ารับน้ำเหล็ก
รูปที่ 2-10 เบ้ารับน้ำเหล็กขณ <mark>ะรอการเทน้ำเหล็กจากเตาห</mark> ลอมอาร์คไฟฟ้า
รูปที่ 2-11 เบ้ารับน้ <mark>ำเหล็กขณะทำการถ่ายน้ำเหล็กไปยังอ่างรับน้ำเหล</mark> ็ก
รูปที่ 2-12 เบ้ารับน้ำเหล็กในขณะทำการเทสแลก
รูปที่ 2-13 เบ้ารับ <mark>น้ำเหล็กที่ทำการก่อขึ้นใหม่</mark> 20
รูปที่ 2-14 เบ้ารับน้ำเหล็กที่ผ่านการใช้งานมา 46 รอบ
รูปที่ 2-15 กระบวนการหล่อแบบต่อเนื่อง
รูปที่ 2-16 เหล็กทรงยาว (billet) จากกระบวนการผลิต
รูปที่ 2-17 แผงผังแสดงที่ตำแหน่งที่ติดตั้งเทอร์โมคัปเปิลของเบ้ารับน้ำเหล็กที่ใช้
ในการทดลอง, Mohanty และ Satayayut (1992)
รูปที่ 2-18 แผนผังแสดงเบ้ารับน้ำเหล็กขณะทำการอุ่น,
Mohanty ແຄະ Satayayut (1992)
รูปที่ 2-19 การเปลี่ยนแปลงอุณหภูมิต่อเวลาของอิฐทนไฟระหว่างผลการทดลอง
และผลจากแบบจำลองคณิตศาสตร์,Mohanty และ Satayayut (1992)

รูปที่ 2-20 ตำแหน่งการติดตั้งเทอร์โมคัปเปิลในการทดลองการอุ่น ถังถ่ายน้ำเหล็ก,
สมศักดิ์ คงโชติ (1993)
รูปที่ 2-21 อุณหภูมิภายในเบ้ารั <mark>บน้ำเหล็กภายหลังจากกา</mark> รอุ่นเปรียบเทียบผล
จากการตรวจวั <mark>ด และผลที่ได้จากการคำนวณ, Gupta</mark> และ Chandra (2004) 31
รูปที่ 2-22 อุณหภูมิภ <mark>ายในเบ้ารับน้ำเห</mark> ล็กภ <mark>ายหลังจากปล่อยให้เย็น</mark>
เปรียบเท <mark>ียบผลจากการตรวจวัด และผลที่ได้จากการคำนวณ</mark> ,
Gupta และ Chandra (2004) 31
รูปที่ 2-23 เปรียบเทียบอุณหภูมิของน้ำเหล <mark>็กในเบ้ารับน้ำเหล็ก ระหว่างก</mark> ารทำนาย
ด้วยแบบจำลอง และจากการวัดอุณหภูมิ, Gupta และ Chandra (2004) 32
รูปที่ 2-24 เปรีย <mark>บเที</mark> ยบอ <mark>ุณ</mark> หภูมิของน้ำเหล็กในอ่างรับน้ำเหล็ก ระหว่างการทำนาย
ด้วยแบบจำลอง และจากการวัดอุณหภูมิ, Gupta และ Chandra (2004)
รูปที่ 2-25 แบบจ <mark>ำลองทางคณิตศาสตร์ 2 มิติ ที่ใช้ในการศึกษา,</mark>
Chakrabo <mark>rty ແລະ</mark> Sahai (1992)
รูปที่ 2-26 การแจกแจงอุ <mark>ณ</mark> หภูมิน้ำเหล็ก กรณีไม่มีการถ่ายความร้อนจากผิว
ด้านบนของน้ำเหล็กที่ <mark>ระยะเวลาการรอ</mark> a) 5 นาที b) 10นาที c) 15 นาที
d) 20 นาที, Chakraborty และ Sahai (1992)
รูปที่ 2-27 การแจกแจงอุณหภูมิน้ำเหล็ก กรณีมีการถ่ายความร้อนจากผิวด้านบน
ของน้ำเหล็กที่ระยะเวลาการรอ a) 5 นาที b) 10นาที c) 15 นาที d) 20 นาที,
Chakraborty และ Sahai (1992)
รูปที่ 2-28 การแจกแจงอุณหภูมิน้ำเหล็ก กรณีไม่มีการถ่ายความร้อนจากผิวด้านบน
ของน้ำเหล็กที่ระยะเวลาการถ่ายน้ำเหล็ก a) 5 นาที b) 20นาที c) 30 นาที,
Chakraborty และ Sahai (1992) 36
รูปที่ 2-29 การเปลี่ยนแปลงอุณหภูมิถ่ายน้ำเหล็กตลอดช่วงการถ่ายน้ำเหล็ก
กรณีไม่มีการถ่ายความร้อนจากผิว, Chakraborty และ Sahai (1992)
รูปที่ 2-30 การแจกแจงอุณหภูมิน้ำเหล็ก กรณีมีการถ่ายความร้อนจากผิวด้านบน
ของน้ำเหล็กที่ระยะเวลาการถ่ายน้ำเหล็ก a) 5 นาที b) 20นาที c) 30 นาที,
Chakraborty และ Sahai (1992)

รูปที่ 2-31 การเปลี่ยนแปลงอุณหภูมิถ่ายน้ำเหล็กตลอดช่วงการถ่ายน้ำเหล็ก
กรณีมีการถ่ายความร้อนจาก <mark>ผิว, Ch</mark> akraborty และ Sahai (1992)
รูปที่ 2-32 แผนผังของเบ้ารับ <mark>น้ำเหล็กที่ใช้ในการศึกษา, Xi</mark> a และ Ahokainen (2001) 38
รูปที่ 2-33 โดเมนของแบ <mark>บจำลองทางคณิตศาสตร์ที่ใช้ในการศึก</mark> ษา,
Xia ແລະ Ahokainen (200 ¹)
รูปที่ 2-34 การเปลี่ย <mark>นแปลงอุณหภูมิถ่ายน้ำเหล็กในช่วงรอการเทน้ำเหล็ก</mark> ,
Xia แล <mark>ะ A</mark> hokainen (2001) 40
รูปที่ 2-35 ผลของอุณหภูมิเริ่มต้นของเบ้ารั <mark>บน้ำเหล็ก ต่อ</mark> thermal stratification,
Xia ແລະ Ahokainen (2001) 41
รูปที่ 2-36 ผลขอ <mark>งอุ</mark> ณหภูมิเริ่มต้นของเบ้ารับน้ำเหล็กต่อการเปลี่ยนแปลงอุณหภูมิ
เฉลี่ยขอ <mark>งน้ำเหล็ก</mark> , Xia และ Ahokainen (2001)
รูปที่ 2-37 การสูญ <mark>เ</mark> สีย <mark>คว</mark> ามร้อนเฉลี่ยของน้ำเหล็กตลอดระยะเวลาการรอ,
Xia และ <mark>Ah</mark> oka <mark>i</mark> nen (2001)
รูปที่ 2-38 ความแตกต่า <mark>งข</mark> องอัตรา <mark>การสูญเสียความร้อนที่ผิวหน้</mark> าน้ำเหล็กต่อการ
เปลี่ยนแปลงอุณหภูม <mark>ิน้ำเหล็ก, Xia และ Aho</mark> kainen (2001)
รูปที่ 2-39 การเปลี่ยนแปลงของอุณหภูมิภายในเบ้ารับน้ำเหล็กในระหว่างรอ,
Xia ແລະ Ahokainen (2001)43
รูปที่ 2-40 แผนผังเบ้ารับน้ำเหล็กขนาด 107 ตันที่ทำการศึกษา, Pan et al. (2003)
รูปที่ 2-41 แนวทางการศึกษาโ <mark>ดยใช้แบบจำลองทางคณิตศาสตร์และกา</mark> รสอบเทียบ,
Pan et al. (2003)
รูปที่ 2-42 เปรียบเทียบอุณหภูมิผิวด้านในเบ้ารับน้ำเหล็ก ระหว่างการทำนายด้วย
แบบจำลอง และจากการวัดอุณหภูมิ, Pan et al. (2003)
รูปที่ 2-43 โดเมนของแบบจำลองทางคณิตศาสตร์ที่ใช้ในการศึกษา, Pan et al. (2003) 46

รูบท ∠-43 เตเมนของแบบจาลองทางคณตศาสตร้ทไข้ไนการศึกษา, Pan et al. (2003) 46

รูปที่ 2-44 ผลของตัวแปร 1) อุณหภูมิด้านในเบ้ารับน้ำเหล็กก่อนทำการรับน้ำเหล็ก ความหนาของสแลกที่อยู่ปุกคลุมด้านบนของเบ้ารับน้ำเหล็ก 3) ระยะเวลาที่เป้ารับน้ำเหล็กบรรจุน้ำเหล็กในระหว่างรอการถ่ายลงอ่างรับน้ำเหล็ก 4) อัตราการถ่<mark>ายน้ำเหล็กออกจากเบ้ารับน้ำเหล็ก (te</mark>eming rate) ต่อการเปล<mark>ี่ยนแปลงอุณหภู</mark>มิถ่า<mark>ยน้ำเหล็กในขณะช่วงทำก</mark>ารถ่ายน้ำเหล็ก, รูปที่ 2-45 สภาวะที<mark>่การถ่ายเทความร้อนเป็นฟังก์ชันของเวลา</mark> รูปที่ 2-46 เปรีย[ุ]บเทียบผลการทดลองวัดอุณหภูมิภายในเบ้ารับน้ำเหล็ก รูปที่ 2-48 อุณหภ<mark>ูมิภายในเบ้ารับน้ำเหล็กที่ในแต่</mark>ละกระบวนการ,Zimmer et al. (2006)... 52 รูปที่ 2-49 การเปลี่ยน<mark>แ</mark>ปล<mark>งอ</mark>ุณหภูมิต่<mark>อเวลา เปรี</mark>ยบเทียบร<mark>ะหว่างเบ้ารับน้ำเหล็กที่</mark> ก่อขึ้นใหม่กับเ<mark>บ้</mark>ารับน้ำเหล็กที่ผ่านการใช้งานแล้ว. รูปที่ 2-50 การแจกแจงอุณหภู<mark>มิในชั้นต่างๆ ของเบ้ารับน้ำเห</mark>ล็ก,Zimmer et al. (2006) 53 รูปที่ 2-51 การแจกแจงอุณหภูมิที่เวลาใดๆ ของของแข็งมีลักษณะกึ่งต่อเนื่อง (semi-infinite solid) สำหรับเงื่อนไขที่ผิว 3 กรณี:กรณีที่ 1อุณหภูมิผิวคงที่, กรณีที่ 2 อัตราการถ่ายเทความร้อนคงที่ และ กรณีที่ 3 การพาความร้อนที่ ผิวหน้า, Incropera และ (DeWitt 2001)......55

รูปที่ 3-6 ถ้วยรับสแลก	69
รูปที่ 3-7 การแจกแจงความถี่ (<mark>histogram) ระยะเวลาทำก</mark> ารอุ่นในระหว่างรอบการทำงา	น 7(
รูปที่ 3-8 การแจกแจงความถี่ (histogram) ระยะเวลาเฉลี่ยในการรอการเทน้ำเหล็ก รูปที่ 3-9 การแจกแจงความถี่ (histogram) ระยะเวลารอการเทน้ำเหล็ก	70
(Holding Time)	71
รูปที่ 3-10 การแจกแจงความถี่ (histogram) กรณีทำการหล่อแบบ 2 ช่อง (stand)	72
รูปที่ 3-11 การแจ <mark>กแจงความถี่</mark> (histogram) กรณี <mark>ทำการหล่อแบบ 3 ช่</mark> อง (stand)	73
รูปที่ 3-12 การแจกแจงความถี่ (histogram) ระยะเวลาในขั้นตอนการรอการอุ่นเบ้า	
รับน้ำ <mark>เหล็</mark> ก	74
รูปที่ 3-13 แผนผังต <mark>ำแหน่งที่ติดตั้งเทอร์โมคัปเป</mark> ิลภายในเบ้ารับน้ำเหล็ก	76
รูปที่ 3-14 เบ้ารับน้ำเห <mark>ล็ก</mark> ที่ท <mark>ำการฝังเทอร์โมคัปเปิ</mark> ลไว้ภ <mark>ายใน</mark>	77
รูปที่ 3-15 เทอร์โมคัป <mark>เป</mark> ิล <mark>ชนิ</mark> ด R ที่ <mark>ฝังในเบ้ารับน้ำเห</mark> ล็ก	77
รูปที่ 3-16 เทอร์โมคัปเปิ <mark>ล ช</mark> นิด <mark>K แบบตะเกียบ</mark>	77
รูปที่ 3-17 เทอร์โมมิเตอร์แบบอ <mark>ินฟราเวด ยี่ห้อ Fluke</mark> รุ่น 561 HVAC Pro	78
รูปที่ 3-18 อุณหภูมิภายในเป้ <mark>ารับน้ำเหล็กที่เปลี่ยนแปลงตามเ</mark> วลา ที่ตำแหน่งผนังข้าง	
ตลอดช่ <mark>วงการทดลอง</mark>	79
รูปที่ 3-19 อุณหภูมิภายในเบ้ารับน้ำเหล็กที่เปลี่ยนแปลงตามเวลา ที่ตำแหน่งผนังก้น	
ตลอด <mark>ช่</mark> วงการทดลอง	80
รูปที่ 3-20 เปรีย <mark>บเที</mark> ยบอุณหภูมิภายในเบ้ารับน้ำเหล็กที่ระยะเดียวกัน ระหว่างผนังข้าง	
และผนังกัน	80
รูปที่ 3-21 อุณหภูมิภายในเบ้ารับน้ำเหล็กที่เปลี่ยนแปลงตามเวลา	
ที่ตำแหน่งผนังข้างในช่วงทำการอุ่นครั้งที่ 1	8´
รูปที่ 3-22 การแจงแจงอุณหภูมิภายในเบ้ารับน้ำเหล็ก ที่ตำแหน่งผนังข้าง	
ในช่วงทำการอุ่นครั้งที่ 1	82

ີ ພ	อูปที่ 3-23 อัตราการเปลี่ยนแปลงอุณหภูมิภายในเบ้ารับน้ำเหล็กที่ระยะต่างๆ	
	ที่เวลาใดๆ เทียบกับเวล <mark>า ในช่วงทำการ</mark> อุ่นค [ุ] รั้งที่ 1	83
ក្នុង	อูปที่ 3-24 อุณหภูมิภายในเบ้ <mark>ารับน้ำเหล็กที่เปลี่ยนแปลงต</mark> ามเวลาที่ตำแหน่งผนังข้าง	
	ในช่วงการเย็น <mark>ตัวของเบ้ารับน้ำเหล็กในกรณีวางตั้ง</mark>	84
្រី	รูปที่ 3-25 การแจงแจ <mark>งอุณหภูมิภายใ</mark> นเบ้ารั <mark>บ</mark> น้ำเห <mark>ล็ก ที่ตำแหน่งผนังข้าง</mark>	
	ในช่วงก <mark>ารเย็นตัว ของเบ้ารั</mark> บน้ำเหล็กใน <mark>กรณีวางตั้ง</mark>	84
า	รูปที่ 3-26 กล้อง <mark>ถ่ายภาพรังสีอินฟาเวด ย</mark> ี่ห้อ Electrophysics รุ่นHotshot XL	
	ช่วงก <mark>ารวัด -20</mark> ถึง 500 °C	85
រ	อปที่ 3-27 ภาพถ่ายรังสีอินฟาเร <mark>ดของเบ้ารับน้ำเหล็กระหว่างรอบการ</mark> ทำงานที่ 1 ถึง 4	86
រ	อปที่ 3-28 ตำแห <mark>น่งข</mark> องเป <mark>ลือกนอก</mark> เบ้ารับ <mark>น้ำเห</mark> ล็กที่นำข้อมูลมาวิเคราะห์	86
រ	ภูปที่ 3-29 การเปลี่ <mark>ยนแปลง</mark> ของอุณหภูมิเทียบกับเวลาของผนังเบ้ารับน้ำเหล็ก	
	ในระห <mark>ว่างรอบการ</mark> ทำงานที่ 1 ถึง 4	87
5	ลูปที่ 3-30 ภาพถ่ายรั <mark>งส</mark> ีอิน <mark>ฟ</mark> าเรดของเบ้ารับน้ำเหล็กระหว่างการเย็นตัวแบบตั้ง	88
ີ ພ	งูปที่ 3-31 การเปลี่ยนแป <mark>ลงของอุณหภูมิเทียบกับเวลาของผนังเบ้ารับน้ำเหล็ก</mark>	
	ในระหว่างการเย็นตัวแบ <mark>บตั้ง</mark>	88
วิ	_ว ปที่ 3-32 การเปลี่ยนแปลงอุณหภูมิน้ำเหล็กในระหว่างการรอการถ่ายน้ำเหล็ก	89
រ	งูปที่ 3-33 กล้องถ่าย <mark>ภาพรังสีอินฟาเรด ยี่ห้อ FLIR รุ่น P640 ช่วงการวัด -40</mark> ถึง 2000 °C.	90
ີ ພ	อุปที่ 3-34 ภาพถ่ายรังสีอินฟาเรด และภาพถ่ายของผิวสแลก	
	ขณะเ <mark>คลื่อนย้ายมาถึงสถานีหล่อแบบต่อเนื่อง</mark>	91
រ	ูงปที่ 3-35 ภาพถ่ายรังสีอินฟาเรด และภาพถ่ายของผิวข้างด้านในเบ้ารับน้ำเหล็ก	
	ภายหลังจากการถ่ายน้ำเหล็ก	92
រ	งูปที่ 4-1 โปรแกรมสำเร็จเชิงพาณิชย์ที่ใช้ในการศึกษา	93
វិ	ถูปที่ 4-2 หน้าต่าง MeshCAST	94
រ	ถูปที่ 4-3 หน้าต่าง PreCAST	95
ភ្ន	รูปที่ 4-4 หน้าต่างการกำหนดคุณสมบัติทางความร้อนของวัสดุ	96
ទ	ูงปที่ 4-5 การกำหนดอินเทอร์เฟสแบบ Equivalence	97
ទី	รูปที่ 4-6 การกำหนดอินเทอร์เฟสแบบ Coincident	97

รูปที่ 4-7 การกำหนดอินเทอร์เฟสแบบ Non-coincident	. 98
รูปที่ 4-8 หน้าต่างในการกำหนดเงื่อนไขขอบเขต	. 99
รูปที่ 4-9 หน้าจอควบคุม	100
รูปที่ 4-10 หน้าต่าง view case	100
รูปที่ 4-11 แบบจำลอ <mark>งที่ใช้ในการตรว</mark> จสอบ <mark>ก</mark> ารทำง <mark>านของโปรแกรม</mark>	101
รูปที่ 4-12 การเปลี่ <mark>ยนแปลงของอุณหภูมิตามเวลาที่ตำแหน่งต่างๆ</mark>	
กรณีที <mark>่ 1 อุณหภูมิผิวคงที่</mark>	103
รูปที่ 4-13 การแจ <mark>กแจงอุณหภูมิภายในแบบจ</mark> ำลอ <mark>งที่ระยะเวลาต่างๆ</mark>	
กรณีที่ 1 อุ <mark>ณหภูมิผิวคงที่</mark>	104
รูปที่ 4-14 การเป <mark>ลี่ยนแปล</mark> งข <mark>องอุณ</mark> หภูมิ <mark>ที่ตำแห</mark> น่งต่ <mark>างๆ กับเวลา</mark>	
กรณีที่ 2 <mark>อัตราการถ่ายเทความร้อน</mark> คงที่	105
รูปที่ 4-15 การแจ <mark>ก</mark> แจง <mark>อุณหภูมิภายในแบบจำลองที่ระยะเวลาต่างๆ</mark>	
กรณีที่ 2 <mark>อัต</mark> รา <mark>กา</mark> รถ่ายเท <mark>ความร้อนค</mark> งที่	106
รูปที่ 4-16 การเปลี่ยนแป <mark>ล</mark> งของอุณหภูมิที่ตำแหน่งต่างๆ กับเวลา	
กรณีที่ 3 การพาความร้อนที่ผิวหน้า	107
รูปที่ 4-17 การแจกแจงอุณหภูม <mark>ิภายในแบบจำลองที่ระยะเวล</mark> าต่างๆ	
กรณีที่ 3 การพาความร้อนที่ผิวหน้า	108
รูปที่ 4-18 แบบจำล <mark>องที่ใช้ในการหาค่าตารางที่เหมาะสม</mark>	109
รูปที่ 4-19 แบบจำลอง กรณีตารางมีขนาด 10 mm	110
รูปที่ 4-20 ความสัมพันธ์ระหว่างขนาดตาราง ต่อจำนวน node และ element	110
รูปที่ 4-21 เปรียบเทียบผลการคำนวณการเปลี่ยนแปลงอุณหภูมิ เมื่อเปลี่ยนขนาดตาราง	112
รูปที่ 4-22 ความสัมพันธ์ระหว่างขนาดตาราง ต่อผลการคำนวณ	
และระยะเวลาที่ใช้ในการคำนวณ	113
รูปที่ 4-23 เปรียบเทียบผลการคำนวณการเปลี่ยนแปลงอุณหภูมิ	
เมื่อเปลี่ยนขั้นระยะเวลา	114
รูปที่ 4-24 ความสัมพันธ์ระหว่างขั้นระยะเวลา ต่อผลการคำนวณ	
และระยะเวลาที่ใช้ในการคำนวณ	114

รูปที่ 4-25 ขั้นตอนการทำงานที่เลือกใช้ในการจำลองการถ่ายเทความร้อน
ของเบ้ารับน้ำเหล็กในระหว <mark>่างการถ่ายน้ำเห</mark> ล็ก (teeming period) 116
รูปที่ 4-26 การแบ่งการลดระ <mark>ดับของน้ำเหล็กออก</mark> เป็น <mark>22 ข</mark> ั้น 119
รูปที่ 4-27 ความสัมพันธ์ข <mark>องค่าตัวประก</mark> อบการม <mark>องเห็น</mark>
รูปที่ 4-28 การหาค่าตัวประกอบการมองเห็น
รูปที่ 4-29 หน้าต่าง <mark>การใช้งานโปรแกร</mark> มที่เขียนขึ้น
รูปที่ 4-30 แบบ <mark>จำลองที่ใช้ในการศึกษา</mark>
รูปที่ 4-31 แบบจ <mark>ำลองที่ใช้ในช่วงการอุ่นเบ้ารั</mark> บน้ <mark>ำเหล็ก และช่วงการพักเบ้ารับน้ำเหล็ก 126</mark>
รูปที่ 4-32 แบบ <mark>จำลองในช่วงการถ่ายน้ำเหล็ก และขั้นตอนในการจำลอง</mark>
รูปที่ 5-1 การถ่า <mark>ยเท</mark> ความร้อนของเบ้ารับ <mark>น้ำเหล</mark> ็กในระหว่างการอุ่น
รูปที่ 5-2 ความสัมพั <mark>นธ์ระหว่างค่าสภาพการเปล่งรังสีของแก๊สเผาใหม</mark> ้กับอุณหภูมิแก๊ส 131
รูปที่ 5-3 อุณหภูมิ <mark>ของก๊าซเผาไหม้ที่ใช้ในการจำลองการถ่ายเทค</mark> วามร้อนในระหว่าง
ทำการอุ่นเบ <mark>้า</mark> รับน้ <mark>ำ</mark> เหล็กที่ก่อใหม่
รูปที่ 5-4 อุณหภูมิของก๊า <mark>ซ</mark> เผาไหม้ที่ใช้ในการจำลองการถ่ายเทความร้อนในระหว่าง
ทำการอุ่น
รูปที่ 5-5 ความสัมพันธ์ระหว่า <mark>งสัมประสิทธิ์การพาความร้อน</mark> กับอุณหภูมิแก๊ส
รูปที่ 5-6 ผลการจำ <mark>ลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กที่เวลา</mark> ต่างๆ ขณะ
ทำการอุ่น
รูปที่ 5-7 การเปลี่ยนแปลงอุณหภูมิ ณ จุดต่างๆในผนังข้าง เทียบกับเวลา ขณะทำการอุ่น
เปรียบเทียบกับผลการทดลอง137
รูปที่ 5-8 การแจกแจงอุณหภูมิภายในผนังเบ้าจากการจำลองที่ระยะเวลาต่างๆ
ขณะทำการอุ่นเปรียบเทียบกับผลการทดลอง
รูปที่ 5-9 ความสัมพันธ์ของการอัตราการถ่ายเทความร้อนเข้าสู่ผิวด้านใน
กับระยะเวลาที่ใช้ในการอุ่น 138
รูปที่ 5-10 ความสัมพันธ์ระหว่างอุณหภูมิพื้นผิวกับอัตราการถ่ายเทความร้อน
จากการเปล่งรังสีของพื้นผิวภายในแต่ละส่วน กับระยะเวลาที่ใช้ในการอุ่น 140
รูปที่ 5-11 อุณหภูมิอากาศภายในเบ้าที่ใช้ในการจำลองการพักเบ้ารับน้ำเหล็ก

L a	ปที่ 5-12 ผลการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กที่เวลาต่างๆ	
	ขณะทำการพัก	144
رمع	ปที่ 5-13 การเปลี่ยนแปลงอุณ <mark>หภูมิ ณ จุดต่างๆในผนังข้าง</mark> เทียบกับเวลา	
	ขณะทำการพั <mark>ก</mark>	145
L of	ปที่ 5-14 การแจกแจงอุณหภูมิภายในแบบจำลอง <mark>ที่ระยะเวลาต่าง</mark> ๆ ขณะทำการพัก.	145
4	ปที่ 5-15 ผลการจ <mark>ำลองการถ่ายเทคว</mark> ามร้อนของ <mark>ผนังเบ้ารับน้ำเหล็กที่</mark> เวลาต่างๆ	
	ขณะ <mark>ทำการรอการถ่าย</mark> น้ำเหล็ก	151
5	ปที่ 5-16 การเป <mark>ลี่ยนแปลงอุณหภูมิ ณ</mark> จุ <mark>ดต่า</mark> งๆในผนังข้าง เทียบกับเวลา	
	ขณ <mark>ะทำการรอการถ่ายน้ำเหล็ก</mark>	152
L of	ปที่ 5-17 การแ <mark>จกแจงอุณ</mark> หภูมิภายในแบบจำลองที่ระยะเวลาต่างๆ	
	ขณะทำก <mark>าร</mark> รอก <mark>า</mark> รถ่ <mark>ายน้ำเหล็ก</mark>	152
ر م	ปที่ 5-18 การเปลี่ยนแ <mark>ป</mark> ลงอุณหภูมิน้ำเหล็กเทียบกับเวล <mark>า</mark>	
	ขณะทำกา <mark>ร</mark> รอก <mark>า</mark> รถ่ายน้ำเหล็ก	153
L L	ปที่ 5-19 ความสัมพันธ์ <mark>ข</mark> องการอัตราการถ่ายเทความร้อนเข้าสู่ผิวด้านในเบ้า	
	กับระยะเวลาที่ใช้ใน <mark>การรอการถ่ายน้ำเห</mark> ล็ก	153
5	ปที่ 5-20 ผลการจำลองการถ่า <mark>ยเทความร้อนของผนังเบ้า</mark> รับน้ำเหล็กที่เวลาต่างๆ	
	ขณะทำการถ่ายน้ำเหล็ก	158
5	ปที่ 5-21 การเปลี่ยนแปลงอุณหภูมิ ณ จุดต่างๆในผนังข้าง เทียบกับเวลา	
-	ขณะทำการถ่ายน้ำเหล็ก	159
ູ	ปที่ 5-22 การแจกแจงอุณหภูมิภายในแบบจำลองที่ระยะเวลาต่างๆ	
-	ขณะทำการถ่ายน้ำเหล็ก	159
ູ	ปที่ 5-23 การเปลี่ยนแปลงอุณหภูมิน้ำเหล็กเทียบกับเวลา	
1	ขณะทำการถ่ายน้ำเหล็ก	160
5	ปที่ 5-24 รายละเอียดการจำลองการถ่ายเทความร้อนในวัฦจักรการทำงาน	
q	ของเป้ารับน้ำเหล็ก ในแต่ละขั้นตอน	162

น

รูปที่ 5 - 25 ก	าารเปลี่ยนแปลงอุณหภูมิของเบ้ารับน้ำเหล็กตลอดรอบการทำงานที่ 1 ถึง 5 165
รูปที่ 5-26 ก	าารแจกแจงอุณหภูมิภายใ <mark>นผนังเบ้าจากกา</mark> รจำลองที่ระยะเวลาต่างๆ
ß	ตลอดรอบการทำงา <mark>นที่ 1 ถึง 5 167</mark>
รูปที่ 5-27 ห	พลังงานสะสม <mark>ภายในเบ้ารับน้ำเหล็กเปรียบเทียบกับ</mark> อุณหภูมิภายในเบ้ารับน้ำเหล็ก
จึ	ี่กี่ตำแหน่ <mark>ง 5 mm ที่ระยะเว</mark> ลาต่างๆ ตลอ <mark>ดรอบการทำงา</mark> นที่ 1 ถึง 5 167
รูปที่ 5-28 เ	ปรียบเท <mark>ียบการเปลี่ยนแป</mark> ลงอุณหภูม <mark>ิน้ำเหล็กระหว่างขั้นตอนการร</mark> อ
	การถ่ายน้ำเหล็ก และการถ่ายน้ำเหล็ก ระหว่าง 1) Heat 1 tap 1700 deg C:
Į	เบ้ารับ <mark>น้ำเหล็กในรอบการท</mark> ่ำงา <mark>นที่</mark> 1 รั <mark>บน้ำเหล็กอุณหภูมิ 17</mark> 00 ° C และ
	2) Heat <mark>5 ta</mark> p 170 <mark>0 deg C:เบ้ารับน้ำเหล็กในรอบการทำงานที่</mark> 5
វិ	รับน้ำเหล็กอุณหภูมิ 1700 [°] C 168
รูปที่ 5-29 เ	ปรียบเท <mark>ียบการเปลี่ยนแปลงอุณหภู</mark> มิน้ำเหล็กระหว่างขั้นตอนการรอ
ſ	าารถ่ายน้ำเหล็ก และการถ่ายน้ำเหล็ก ระหว่าง1) Heat 1 tap 1700 deg C:
l	.บ้ารับน้ำเ <mark>ห</mark> ล็กใ <mark>น</mark> รอบกา <mark>รทำงานที่ 1 รับน้ำเหล็กอุณหภูมิ</mark> 1700 ° C
2	2) Heat 5 tap 1700 deg C: เบ้ารับน้ำเหล็กในรอบการทำงานที่ 5
ł	ภับน้ำเหล็กอุณหภูมิ 1700 ^⁰ C และ 3) Heat 5 tap 1690 deg C:
l	.บ้ารับน้ำเหล็กในร <mark>อบการทำงานที่ 5 รับน้ำเหล็กอุ</mark> ณหภูมิ 1690 ° C 169

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

คำอธิบายสัญลักษณ์และคำย่อ

สัญลักษณ์	คำอธิบาย หน	
В	Basicity	
BOF	Basic Oxygen Furnace	
BOH	Basic Open Hearth	
CCM	Continues Casting Machine	
con	กร <mark>ะบวนการผลิตแ</mark> บบต่อ <mark>เนื่</mark> อง ค่ <mark>าเท่ากับ 1</mark>	
	ก <mark>ระบวนการผลิตแบบไม่ต่อเนื่อง ค่าเท่ากับ -1</mark>	
\mathcal{C}_p	<mark>ค่าความร้อนจำเพาะ</mark>	kJ/kg-K
EAF	Electric Arc Furnace	
F	ตัวประกอ <mark>บการมอ</mark> งเห็น	
G_A	<mark>น้ำหนักน้ำเห</mark> ล็กที่เทได้	ton
G_{DRI}	น้ำ <mark>หนักของเห</mark> ล็กพรุน	ton
G_E	<mark>น้ำหนักของ</mark> วัสดุทุกช <mark>นิดที่นำมาห</mark> ลอม	ton
G_{HBI}	น้ำ <mark>ห</mark> นักข <mark>อ</mark> งเหล็กพรุนอัดก้อน	ton
G_{HM}	น้ำหนั <mark>ก</mark> ของน้ำเหล็กหลอมเหลว	ton
G_Z	น้ำหนักของตั <mark>วทำตะกรันฟู (sla</mark> g formers)	ton
Gr_L	Grashof Number	
\overline{h}	ค่าสัมประสิทธิ์การพาความร้อนเฉลี่ย	
k	สัมประสิทธิ์การนำความร้อน	W/m.K
M_G	ค่าจำเพาะการใช้การใช้แก๊สเชื้อเพลิง	m ³ /ton
M_L	ค่าจำเพาะการพ่นแก๊สออกซิเจน	m ³ /ton
M_N	ค่าจำเพาะการใช้แก๊สออกซิเจนในการสันดาปภายหลัง	m ³ /ton
NuL	ค่า Nusselt number	
Pr	ค่า Prandtl number	
q	อัตราการถ่ายเทความร้อนต่อพื้นที่	MJ/m ²
Q	ความร้อน	MJ
Ra	ค่ำ Rayleigh number	
t	ระยะเวลา	S

สัญลักษณ์	คำอธิบาย	หน่วย	
t_N	t_N ระยะเวลาในการหยุดจ่ายไฟของเตาหลอม		
	(power-off time)		
t_s	ระยะเวลาในการจ่ายไฟของเตาหลอม	min	
	(power-on time)		
Т	อุณหภูมิ	°C	
T_a	อุณหภูมิบรรยากาศ	°C	
T_A	<mark>อุณหภูมิน้ำเหล็กที่เท</mark> จากเตาหล <mark>อม</mark>	°C	
W_R	พลังงานไฟฟ้าที่ต้องใช้ในการหลอมต่อน้ำเหล็กตัน	kWh/ton	
α	Thermal diffusivity	m/s ²	
β	coefficient of volume expansion	K ⁻¹	
ε	<mark>ค่าส</mark> ภา <mark>พ</mark> การเปล่งรังสี		
ρ	้ควา <mark>มหนาแ</mark> น่น	kg/m ³	
σ	ค่า <mark>ค</mark> งที่ <mark>สเ</mark> ตฟาน-โบลต์ซมันน์	W/m ² .K ⁴	

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญของปัญหา

การอนุรักษ์พลังงานในปัจจุบันนับว่าเป็นเรื่องที่สำคัญเป็นอย่างมากของสังคม เนื่องจากปัญหาราคาต้นทุนพลังงานที่เพิ่มสูงขึ้นในปัจจุบัน ไม่ว่าจะเป็นราคาน้ำมัน หรือราคา ไฟฟ้า ดังนั้นการอนุรักษ์พลังงานจึงมีบทบาทสำคัญในการลดต้นทุน นอกจากนี้การตื่นตัวในเรื่อง ปัญหาสิ่งแวดล้อมของโลก เช่น ปัญหาโลกร้อน (global warming) ก็ยิ่งผลักดันให้การอนุรักษ์ พลังงานเป็นสิ่งสำคัญที่ทุกภาคส่วนของสังคมต้องหันมาให้ความสนใจ

ในส่วนของภา<mark>คการผล</mark>ิต อุตสาหกรรมเหล็กนับเป็นอุตสาหกรรมที่มีความสำคัญ ต่อโครงสร้างอุต<mark>สาหกรรมในประเทศไท</mark>ยเป็นอย่า<mark>งมากเนื่องจากเป็น อุต</mark>สาหกรรมขั้นพื้นฐาน (ต้น ้น้ำ) ที่อุตสาหกรรมอื่นๆ จำเป็นต้องพึ่งพาผลิตภัณฑ์เหล็กที่ได้ไปใช้ประโยชน์ต่อ ไม่ว่าจะเป็น อุตสาหกรรมกา<mark>รผ</mark>ลิตชิ้นส่วนยานยนตร์ <mark>อุตสา</mark>หกรรมการผลิตชิ้นส่วนเครื่องจักรกล อุตสาหกรรม การก่อสร้าง ดังนั้นจ<mark>ะเ</mark>ห็นไ<mark>ด้ว่าก</mark>ารใช้ง<mark>านอย่า</mark>งแพร่หลายของผลิตภัณฑ์เหล็กนี้เองทำให้ในแต่ละปี ้ปริมาณการใช้งา<mark>นผลิต</mark>ภัณฑ์เหล็กซึ่ง<mark>เปลี่ยนแปลงไปตามสภาวะ</mark>เศรษฐกิจในประเทศ มีแนวโน้มที่ ้สูงขึ้น ในรูปที่ 1-1 แ<mark>ส</mark>ดงใ<mark>ห้</mark>เห็นว่าในปี พ.ศ. 2551 ประเทศไทยมีปริมาณการใช้เหล็กโภคภัณฑ์ ้ทั้งสิ้น 7.6 ล้านตัน ในจ<mark>ำน</mark>วนนี้เป็<mark>นผลผลิตจากการนำเศษเหล็ก</mark>กลับมาหลอมใหม่ด้วยเตาหลอม อาร์คไฟฟ้าถึง 68.4% คิดเป็นปริมาณทั้งสิ้น 5.2 ล้านตัน ซึ่งต้องใช้พลังงานในการผลิตมากกว่า 6 ล้านเมกะวัตต์-ชั่วโมง จึงนับได้ว่าเป็นอุตสาหกรรมที่ใช้พลังงานสูงมากเป็นอันดับต้นๆ แต่จาก ผลการศึกษาที่ผ่านมาพบว่าผู้ประกอบการของประเทศไทยยังมีความสามารถในการผลิตต่ำกว่า เมื่อเทียบกับต่างประเทศ ปัจจัยหนึ่งอาจจะดูได้จากการใช้พลังงานไฟฟ้าในการหลอมเหล็กจาก เศษเหล็ก ผลการศึกษาโครงการศึกษาเกณฑ์การใช้พลังงานในอุตสาหกรรมเหล็ก (SEC) (สถาบันวิจัยพลังงาน จุฬาลงกรณ์มหาวิทยาลัย, 2006) ประเมินว่าประเทศไทยที่มีการใช้พลังงาน ไฟฟ้าประมาณ 419 กิโลวัตต์-ชั่วโมง/ตันน้ำเหล็ก ซึ่งสูงมากเมื่อเทียบกับประเทศที่พัฒนาแล้ว เช่น ประเทศสหรัฐอเมริกาที่ใช้พลังงานไฟฟ้าในการผลิตเพียง 316 กิโลวัตต์-ชั่วโมง/ตันน้ำเหล็ก (ตารางที่ 1-1) ดังนั้นจะเห็นได้ว่าการใช้พลังงานของอุตสาหกรรมเหล็กในประเทศไทยยังมี ความสามารถในการประหยัดพลังงานลงได้อีก ประโยชน์ที่ได้นอกจากการใช้พลังงานต่อหน่วย การผลิตจะน้อยลงแล้ว ยังทำให้เป็นการเพิ่มความสามารถในการแข่งขันของอุตสาหกรรมเหล็ก ของประเทศไทยด้วย

۹

หมายเหตุ ข้อมูลปริมาณเหล็กที่ผลิตจากการหลอมเศษเหล็กเริ่มเก็บตั้งแต่ปี 2546

รูปที่ 1<mark>-1 ปริมาณการใช้งานเหล็กโภคภัณฑ์และปริมาณเหล็กที่ผลิต</mark> จากการหลอมเศษเหล็ก ของประเทศไทยในแต่ละปี (<mark>สถาบันเหล็กและเหล็กกล้า</mark>แห่งประเทศไทย, 2552)

ตารางที่ 1-1	เปรียบเทียบก	าารใช้พลังงานในการเ	<i>เ</i> ลอมเศษเหล็กระหว	่างผู้ประกอบการไทยและ
	ต่างประเทศ	(สถาบันวิจัยพลังงาน	จุฬาลงกรณ์มหาวิท	ยาลัย, 2006)

การหลอมเหล็กกล้า (EAF)	ไทย	สหรัฐอเมริกา
พลังงานไฟฟ้าเฉ <mark>ลี่ย</mark> ที่ใช้ในการหลอม	419	316
จากเศษเหล็กเป็นน้ำเหล็กใน EAF	0	
(kWh/ton LS)	1975919	เากร
ปริมาณ ออกซิเจนในการหลอมเศษ	35	44.6
เหล็กใน EAF (Nm³/ton LS)	1 0	0.7
ปริมาณ แท่งอิเลกโทรด ในการหลอม	2.5	1.55
เศษเหล็กใน EAF (kg/ton LS)	9 1 1 1 1 1	10 6
Yield การหลอมเศษเหล็ก (%)	90.7	92

กระบวนการในการหลอมเศษเหล็กเพื่อนำกลับมาใช้ใหม่ ทั่วไปนั้นเริ่มจาก การ นำเศษเหล็กที่รับซื้อมาไปทำการหลอมให้เป็นน้ำเหล็กด้วยเตาหลอมอาร์คไฟฟ้า (EAF: Electric Arc Furnace) หลังจากนั้นจึงทำการเทน้ำเหล็กที่ได้ไปยังเบ้ารับน้ำเหล็ก (ladle) น้ำเหล็กที่เทจาก เตาหลอมจะมีอุณหภูมิประมาณ 1700°C จากนั้นจึงนำไปเทลงยังอ่างรับน้ำเหล็ก (tundish) ซึ่ง อุณหภูมิน้ำเหล็กที่เหมาะสมในการเทไปยังอ่างรับน้ำเหล็ก ประมาณ 1650°C

ในส่วนของเบ้ารับน้ำเหล็กนั้นเองก่อนที่จะนำไปทำการรับน้ำเหล็กในแต่ละรอบ นั้นจำเป็นต้องทำการอุ่น (preheat) ด้วยการพ่นเปลวไฟจากหัวเผา (burner) เข้าไปยังเบ้ารับน้ำ เหล็ก เพื่อให้ความร้อนแก่เบ้ารับน้ำเหล็กจนมีอุณหภูมิสูงขึ้น ซึ่งจะเป็นการป้องกันเบ้ารับน้ำเหล็ก จากความเสียหายอันเนื่องมาจากการเปลี่ยนแปลงอุณหภูมิอย่างกะทันหัน (thermal shock) และ เป็นการลดการสูญเสียความร้อนของน้ำเหล็กไปยังเบ้ารับน้ำเหล็ก

จากการสังเกตขั้นตอนการทำงานในโรงงานพบว่า การใช้พลังงานในการผลิต เป็นไปในลักษณะเผื่อในทางที่มาก ไม่ว่าจะเป็นระยะเวลาการอุ่นเบ้ารับน้ำเหล็ก รวมถึงอุณหภูมิ น้ำเหล็กที่เทจากเตาหลอมอาร์คไฟฟ้าที่สูง เพื่อที่ว่าเมื่อไปถึงขั้นตอนการหล่อแบบต่อเนื่องแล้ว อุณหภูมิน้ำเหล็กจะยังสูงพอที่จะสามารถทำการหล่อได้ ซึ่งอุณหภูมิของน้ำเหล็กในขั้นตอนการ หล่อแบบต่อเนื่องนี้เองเป็นตัวแปรสำคัญที่จำเป็นต้องควบคุม เพื่อให้การผลิตเหล็กกล้ามีคุณภาพ ดังนั้นในกรณีที่น้ำเหล็กในเข้ารับน้ำเหล็กมีอุณหภูมิสูงเกินไป จึงจำเป็นที่จะต้องปล่อยให้เย็นตัวลง ก่อน แล้วจึงเทลงยังอ่างรับน้ำเหล็ก ซึ่งการทำงานในลักษณะนี้เป็นการสิ้นเปลืองพลังงานงานโดย ไม่จำเป็น ซึ่งทั้งหมดนี้มาสาเหตุจากการขาดข้อมูลเกี่ยวกับสภาวะทางความร้อนของเข้ารับน้ำ เหล็ก

ดังนั้นจะเห็นได้ว่าการศึกษาเรื่องการสภาวะทางความร้อนของเบ้ารับน้ำเหล็กจึง มีความสำคัญ ที่ผ่านมาในต่างประเทศได้มีการศึกษาไปในหลากหลายแนวทางไม่ว่าจะเป็น การ ใช้แบบจำลองทางคณิตศาสตร์จำลองการถ่ายเทความร้อนในเบ้ารับน้ำเหล็กขนาดเล็ก (Ruz et al., 1999), การสร้างแบบจำลองทางคณิตศาสตร์ของการกระจายตัวของอุณหภูมิที่กระจายในชั้น วัสดุทนไฟ (refractory) (Volkova and Janke, 2003), การทำนายอุณหภูมิของน้ำเหล็กเพื่อจะ ควบคุมอุณหภูมิน้ำเหล็กที่จะทำการเทลงยังเบ้ารับน้ำเหล็กด้วยการใช้แบบจำลองทาง คณิตศาสตร์ และวิธีทางสถิติ (Gupta and Chandra, 2004) ส่วนในประเทศไทยที่ผ่านมามีเพียง การศึกษาในขณะที่ทำการอุ่นเบ้ารับน้ำเหล็ก ด้วยการทดลองและ แบบจำลองทางคณิตศาสตร์ เท่านั้น (Mohanty และ Satayayut, 1992) ทำให้ยังขาดข้อมูลเกี่ยวกับอัตราการถ่ายเทพลังงาน ของเบ้ารับน้ำเหล็กในภาพรวมของกระบวนการผลิต ซึ่งผลการศึกษาของงานวิจัยนี้จะมีประโยชน์ ในการช่วยกำหนดระยะเวลาที่เหมาะสมของการอุ่นเบ้ารับน้ำเหล็ก และนอกจากนี้ความรู้ที่ได้ยัง สามารถไปใช้ในการกำหนดระดับอุณหภูมิการเทน้ำเหล็กจากเตาหลอมไฟฟ้าที่เหมาะสมเพื่อลด การเผื่ออุณหภูมิน้ำเหล็กที่เทในเตาหลอมไฟฟ้าโดยไม่จำเป็น ซึ่งจะเป็นการช่วยประหยัดต้นทุน ด้านพลังงานของอุตสาหกรรมการผลิตเหล็ก

1.2 วัตถุประสงค์ของการวิจัย

งานวิจัยนี้เป็นการศึกษาสภาวะทางความร้อน ของเบ้ารับน้ำเหล็กขนาด 25 ตัน ระหว่างขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก, การรอการเทน้ำเหล็ก, การเทน้ำเหล็กสำหรับการหล่อ แบบต่อเนื่อง, และระหว่างการรอการอุ่นเบ้ารับน้ำเหล็ก โดยการคำนวณอัตราการถ่ายเทความ ร้อนจากข้อมูลการวัดอุณหภูมิของเบ้ารับน้ำเหล็กในแต่ละขั้นตอน และข้อมูลจากการใช้โปรแกรม จำลองเชิงความร้อนทำนายอุณหภูมิของเบ้ารับน้ำเหล็ก

1.3 ขอบเขตของการวิจัย

1) ศึกษาการถ่ายเทความร้อนของเบ้ารับน้ำเหล็ก ขนาด 25 ตัน ใน กระบวนการผลิตเหล็ก ในระหว่างขั้นตอนต่างๆดังต่อไปนี้

- การอุ่นเบ้ารับน้ำเหล็ก
- การรอการเทน้ำเหล็กไปยังอ่างรับน้ำเหล็ก
- การเทน้ำเหล็กสำหรับการหล่อแบบต่อเนื่อง
- การรอการอุ่นเบ้ารับน้ำเหล็ก
- 2) ไม่คิดการสูญเสียเนื้อวัสดุทนไฟ (refractory)

 พิจารณาในส่วนของการถ่ายเทความร้อนในหนึ่งมิติตามทิศทางตั้งฉาก กับผนังของเป้า โดยไม่พิจารณาถึงปฏิกิริยาเคมีของน้ำเหล็ก

1.4 แนวทางการศึกษาวิจัย

<u>ส่วนการเก็บข้อมูลภาคสนาม</u>

ทำการศึกษากระบวนการทำงานของเบ้ารับน้ำเหล็ก และประเมินอัตราการ ถ่ายเทความร้อนของเบ้ารับน้ำเหล็กที่ขั้นตอนต่างๆ ของกระบวนการผลิตเหล็กกล้าด้วยเตาหลอม อาร์คไฟฟ้าด้วยข้อมูลต่างๆ ดังนี้

 ข้อมูลการแจกแจงอุณหภูมิภายในเบ้ารับน้ำเหล็กในระหว่างการอุ่น และ ปล่อยให้เย็น จากการศึกษาเรื่องการปรับปรุงประสิทธิภาพของฝาและอุปกรณ์อุ่นเบ้ารับน้ำเหล็ก โดยการใช้หัวเผาแบบรีเจนเนอเรทีฟ, จักราวุธ จรูญศารทูล (2553)

เอกสารบันทึกข้อมูลการผลิตของโรงงาน

 ตัวแปรอื่นๆที่เหมาะสมในการคำนวณอัตราการถ่ายเทความร้อน เช่น อุณหภูมิภายในผนังเบ้ารับน้ำเหล็ก, อุณหภูมิผิวนอกของเบ้ารับน้ำเหล็ก ฯลฯ

<u>ส่วนการจำลองด้วยโปรแกรมสำเร็จเชิงพาณิชย์</u>

ผลที่ได้จากการเก็บข้อมูลภาคสนาม นำมาการปรับปรุงการกำหนดค่าตัวแปร ต่างๆ ของโปรแกรมสำเร็จเชิงพาณิชย์ ให้เกิดความแม่นยำในการทำนายอุณหภูมิของเบ้ารับน้ำ เหล็กเพิ่มมากขึ้น เพื่อใช้ในการจำลองอุณหภูมิเบ้ารับน้ำเหล็ก และคำนวณอัตราการถ่ายเทความ ร้อนที่เกิดขึ้น

1.5 ประโยชน์ที<mark>่คาดว่าจะได้รับ</mark>

การศึกษาเชิงวิชาการ ได้รับข้อมูลเกี่ยวกับ สภาวะทางความร้อนของเบ้ารับน้ำ เหล็กในขั้นตอนต่างๆ ของกระบวนการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้าผล

ผลการศึกษาเชิงประยุกต์ นำความรู้ที่ได้ไปใช้ในการกำหนดอุณหภูมิที่เหมาะสม ในของการเทน้ำเหล็กจากเตาหลอมไฟฟ้า, คำนวณระยะเวลาที่เหมาะสมในการอุ่นเบ้ารับน้ำเหล็ก ยืดอายุการใช้งานของวัสดุทนไฟ และสามารถจัดกระบวนการที่เหมาะสมของการทำงานของโรง หลอม เพื่อประโยชน์ในการประหยัดพลังงาน และเพิ่มอัตราการผลิต

1.6 การนำเสนอผลงา<mark>นวิ</mark>จัย

ในระหว่างการศึกษาวิทยานิพนธ์เรื่อง การจำลองเชิงความร้อนของการทำงาน ของเบ้ารับน้ำเหล็กระหว่างการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า ได้มีการนำเสนอบางส่วน ของผลการศึกษาในงานสัมมนาเชิงวิชาการต่างๆ ทั้งใน และนอกประเทศดังนี้

 การประชุมวิชาการเครือข่ายพลังงานแห่งประเทศไทยครั้งที่ 5 (5th Conference on Energy Network of Thailand, E-NETT) จัดโดยเครือข่ายพลังงานแห่งประเทศ ไทย ระหว่างวันที่ 29 เมษายน – 1 พฤษภาคม 2552 ณ มหาวิทยาลัยนเรศวร จังหวัดพิษณุโลก นำเสนอผลงานในหัวข้อวิจัยเรื่อง การจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในระหว่าง การอุ่นเบ้ารับน้ำเหล็กเพื่อการประหยัดพลังงาน (A Thermal Modeling of Ladle Preheat to Obtain Energy Consumption)

 งานสัมมนาเชิงวิชาการ 2009 SEAISI Conference and Exhibition จัด โดย สถาบันเหล็กและเหล็กกล้าแห่งเอเชียตะวันออกเฉียงใต้ (South East Asia Iron and Steel Institute, SEAISI) ระหว่างวันที่ 18 – 21 พฤษภาคม 2552 ณ โรงแรมแชงกรีลา เมือง กัวลาลัมเปอร์ ประเทศมาเลเซีย นำเสนอผลงานในหัวข้อวิจัยเรื่อง A Thermal Modeling of Steelmaking Ladle During the Preheating and Holding Periods for Energy Conservation

งานสัมมนาเชิงวิชาการ World Renewable Energy Congress 2009 –
 Asia, The 3rd International Conference on "Sustainable Energy and Environment (SEE 2009)" จัดโดย มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ระหว่างวันที่ 19 – 22 พฤษภาคม
 2552 ณ ศูนย์แสดงสินค้าไบเทค กรุงเทพมหานคร ประเทศไทย นำเสนอผลงานในหัวข้อวิจัยเรื่อง
 A Thermal Modeling of Ladle for Energy Conservation in Steelmaking Process

 งานสัมมนาเชิงวิชาการ Asian Conference on Thermal Analysis and Applications, ASTA 2009 จัดโดยศูนย์เทคโนโลยีโลหะและวัสดุแห่งชาติ ระหว่างวันที่ 17 – 18 อันวาคม 2552 ณ โรงแรมพูลแมน บางกอก คิง พาวเวอร์ กรุงเทพมหานคร ประเทศไทย นำเสนอ ผลงานในหัวข้อวิจัยเรื่อง A Thermal Modeling of Steelmaking Ladle in Cycling Process

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 2 ข้อมูลจากการศึกษาค้นคว้า

2.1 กระบวนการการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า

กระบวนการหลอมเศษเหล็กด้วยเตาหลอมอาร์คไฟฟ้า นับเป็นส่วนหนึ่งของ อุตสาหกรรมการผลิตเหล็กขั้นกลาง กล่าวคือการนำเศษเหล็ก (scrap) มาทำการหลอมปรับปรุง คุณสมบัติ และส่วนผสมทางเคมีให้ได้เป็นเหล็กกล้า โดยใช้ร่วมกับเครื่องมือหล่อแบบต่อเนื่อง (Continues Casting Machine, CCM) จะได้ผลิตภัณฑ์กึ่งสำเร็จได้แก่ เหล็กทรงยาว (billet) เหล็ก ทรงแบน (slab) และเหล็กทรงใหญ่ (bloom) โดยเหล็กทรงยาวที่ได้จะเป็นวัตถุดิบในการผลิต เหล็กเส้น เหล็กลวดและเหล็กโครงสร้างรูปพรรณ ส่วนเหล็กทรงแบน และ เหล็กทรงใหญ่ นั้นจะ เป็นวัตถุดิบในการผลิตเหล็กแผ่นรีดร้อน และเหล็กโครงสร้างรูปพรรณขนาดใหญ่ตามลำดับ

อนึ่งสำหรับประเทศไทยการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า ซึ่งใช้เศษ เหล็กเป็นวัตถุดิบในการผลิต ส่วนใหญ่จะเป็นการผลิตเพื่อให้ได้เหล็กเส้นและเหล็กลวด เพื่อใช้ใน อุตสาหกรรมก่อสร้างต่อไป

ส่วนประกอบที่สำคัญในการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้าได้แก่ 1) เตา หลอมอาร์คไฟฟ้า (EAF) 2) เบ้ารับน้ำเหล็ก (ladle) 3) อ่างรับน้ำเหล็ก (tundish) และ 4) เครื่องจักรทำการหล่อแบบต่อเนื่อง โดยรายละเอียดของแต่ละส่วนจะได้กล่าวต่อไปดังนี้

2.1.1 เตาหลอมอาร์<mark>คไฟฟ้า</mark>

เตาหลอมอาร์คไฟฟ้า เป็นเครื่องจักรที่ใช้พลังงานไฟฟ้าในการหลอมเศษเหล็กให้ เปลี่ยนสภาพเป็นน้ำเหล็ก ซึ่งเริ่มมีความนิยมใช้งานอย่างแพร่หลายมากขึ้นในช่วง 20 ปีมานี้ (รูปที่ 2-1) ส่วนหนึ่งสืบเนื่องมาจาก ความนิยมใช้เตาหลอมแบบเบสิกออกซิเจน (Basic Oxygen Furnace, BOF) แทนที่การผลิตเหล็กด้วยเตาหลอมแบบโอเพนฮาร์ท (Basic Open Hearth, BOH) ซึ่งใช้เศษเหล็กในการผลิตเหล็กกล้าในปริมาณที่น้อยลง ส่งผลให้ราคาเศษเหล็กปรับตัว ลดลง ประกอบกับความต้องการใช้งานเหล็กที่เพิ่มมากขึ้น ทำให้การใช้งานเตาหลอมอาร์คไฟฟ้า เป็นแนวทางหนึ่งในการผลิตเหล็กกล้าจากเศษเหล็ก โดยสถาบันเหล็กและเหล็กกล้าสากล (International Iron and Steel Institute) คาดการณ์ว่าในปี ค.ศ. 2010 ร้อยละ 50 ของเหล็กที่มี การผลิตในประเทศอเมริกา และ ร้อยละ 40 ของเหล็กที่ผลิตในทวีปยุโรป และประเทศญี่ปุ่นมา จากการผลิตด้วยหลอมอาร์คไฟฟ้า

รูปที่ 2-1 ปริมาณการผลิตเหล็กดิบของโลก (อัตราส่วนร้อยละ) ด้วยกระบวนการ เตาหลอมอาร์คไฟฟ้า เตาหลอมแบบเบสิกออกซิเจน (Basic Oxygen Furnace, BOF) และเตาหลอมแบบโอเพนฮาร์ท (Basic Open Hearth, BOH)

<u>พลังงานไฟฟ้าที่ใช้ในเต<mark>า</mark>อาร์คไฟฟ้า</u>

Iron and Steel Institute (2000) ได้แสดงแบบจำลองปริมาณพลังงานไฟฟ้าของ เตาหลอมอาร์คไฟฟ้า (EAF) ที่จำเป็นต้องใช้ในการหลอมเหล็ก จากการคำนวณทางสถิติ และการ ประเมินแบบถดถอยหลายตัวแปร (multivariate regression evaluation) ของข้อมูลการผลิต ซึ่ง ได้แก่ ปริมาณเศษเหล็กวัตถุดิบ ปริมาณน้ำเหล็กที่เทได้ ปริมาณการใช้ออกซิเจน ปริมาณการใช้ เชื้อเพลิงในการเผาไหม้ อุณหภูมิน้ำเหล็กที่ทำการเท ระยะเวลาที่ใช้ในการหลอมแต่ละเตา ฯลฯ ของเตาหลอมอาร์คไฟฟ้าจำนวนทั้งสิ้น 35 โรงงาน ครอบคลุมทั้งชนิดที่ใช้ไฟฟ้ากระแสตรงและ ไฟฟ้ากระแสสลับ มีและไม่มีการสันดาปภายหลัง (post-combustion) ซึ่งแสดงในสมการที่ 2.1

$$\frac{W_R}{kWh/t} = 300 + 900 \left[\frac{G_E}{G_A} - 1 \right] + 80 \frac{G_{DRI} + G_{HBI}}{G_A} - 300 \frac{G_{HM}}{G_A} + 1600 \frac{G_Z}{G_A} + 0.7 \left[\frac{T_A}{\circ C} - 1600 \right] + 0.85 \frac{t_S + t_N}{min} - 8 \frac{M_G}{m^3/t} - 4.3 \frac{M_L}{m^3/t} - 2.8 \frac{M_N}{m^3/t} - 15 con$$
(2.1)
โดย
 W_R แทน พลังงานไฟฟ้าที่ต้องใช้ในการหลอมต่อน้ำเหล็กตัน
(kWh/ton)
 G_A แทน น้ำหนักน้ำเหล็กที่เทได้ (ton)
 G_E แทน น้ำหนักวัตถุดิบทุกชนิดที่นำมาหลอม(ton)

		ซึ่ง $G_A < G_E$
<i>G</i> _{DRI}	แทน	น้ำหนักของเหล็กพรุน (ton)
G_{HBI}	แทน	น้ำหนักของเหล็กพรุนอัดก้อน (ton)
G_{HM}	แทน	น้ำหนักของน้ำเหล็กหลอมเหลว (ton)
G_Z	แทน	<mark>น้ำหนักของตัวท</mark> ำตะกรันฟู (slag formers) (ton)
T_A	แทน	อ <mark>ุณหภูมิน้ำเหล็กที่เท</mark> จากเตาหลอม ([°] C)
t _s	แทน	ระยะเวลา <mark>ในการจ่ายไฟข</mark> องเตาหลอม
		(power-on time) (min)
t _N	แทน	ระยะเวลาในการหยุดจ่ายไฟของเตาหลอม
		(power-off time) (min)
		ซึ่ง $t_N \leq 30 min$
M _G	แทน	<mark>ค่าจำเพ</mark> าะการใช้การใช้แก๊สเชื้อเพลิง(m³/ton)
M _L	แทน	<mark>ค่าจำเพาะการพ่นแก๊สออก</mark> ซิเจน (m ³ /ton)
M _N	แทน	<mark>ค่าจำเพ</mark> าะก <mark>ารใช้แก๊</mark> สออกซิเจนในการสันดาป
		<mark>ภายหลัง</mark> (m ³ /ton)
con	แทน	<mark>กระบวนการผลิตแบบต่อเนื่</mark> อง ค่าเท่ากับ 1
		กระบวนการผลิตแบบไม่ต่อเนื่อง ค่าเท่ากับ -1

เมื่อพิจารณาสมการในแง่ของความเป็นไปได้ในการลดพลังงานไฟฟ้าที่ใช้ของเตา หลอมอาร์คไฟฟ้า พบว่าพจน์ทางซ้ายมือซึ่งแสดงถึงปริมาณพลังงานไฟฟ้าที่ต้องใช้ในการหลอม ต่อตันน้ำเหล็ก ซึ่งเปลี่ยนแปลงตามค่าตัวแปรในพจน์ต่างๆ ทางด้านขวาของสมการ ซึ่งสามารถ แบ่งออกเป็นส่วนๆ ดังนี้

> พจน์ที่มีตัวแปรน้ำหนักเศษเหล็กที่นำมาหลอม (พจน์ที่ 2) น้ำหนักของ เหล็กพรุน และน้ำหนักของเหล็กพรุนอัดก้อน (พจน์ที่ 3) ซึ่งพลังงาน ไฟฟ้าที่ใช้ในการหลอมจะเพิ่มขึ้นตามการเพิ่มขึ้นของค่าของตัวแปร ดังกล่าว แต่อย่างไรก็ดีการลดพลังงานไฟฟ้าที่ใช้ในการหลอมด้วยการ ลดค่าตัวแปรเป็นไปได้ยากในการปฏิบัติเนื่องจากส่งผลถึงปริมาณ ผลิตภัณฑ์ที่ได้ที่ลดลง

> พจน์ที่มีตัวแปรน้ำหนักของโลหะหลอมเหลว (พจน์ที่ 4) การใช้น้ำเหล็ก หลอมเหลวเป็นวัตถุดิบในการผลิตเหล็กนั้นจะเป็นการลดการใช้พลังงาน ไฟฟ้าของเตาหลอม

- พจน์ที่มีตัวแปรน้ำหนักของตัวทำตะกรันฟู (พจน์ที่ 5) น้ำหนักของตัวทำ ตะกรันฟูที่เพิ่มขึ้นจะส่งผลให้การใช้พลังงานไฟฟ้า เพิ่มมากขึ้น แต่ อย่างไรก็ดี เนื่องจากตัวทำตะกรันฟูซึ่งมีหน้าที่ทำให้น้ำเหล็กที่ได้มีความ สะอาด ดังนั้นการลดปริมาณตัวทำตะกรันฟูเพื่อประหยัดพลังงาน จึงไม่ใช่ทางเลือกที่เหมาะสม
- 4) พจน์ที่มีตัวแปรอุณหภูมิน้ำเหล็กที่เทจากเตาหลอม (พจน์ที่ 6) จากความ จริงที่ว่าอุณหภูมิน้ำเหล็กที่เพิ่มสูงขึ้นทำให้ต้องใช้พลังงานไฟฟ้าในการ หลอมเพิ่มขึ้น ซึ่งสมการแสดงให้เห็นว่า ทุกๆอุณหภูมิน้ำเหล็กที่เพิ่ม 1°C จากอุณหภูมิ 1600°C จะใช้พลังงานไฟฟ้าเพิ่มขึ้น 0.7 kWh/ton ดังนั้น การกำหนดอุณหภูมิเทน้ำเหล็กให้เหมาะสมกับสภาวะการทำงาน โดย ไม่ให้อุณหภูมิน้ำเหล็กสูงเกินกว่าความจำเป็น (ไม่เผื่อ) จึงเป็นวิธีที่หนึ่งที่ เหมาะสมในการลดพลังงานไฟฟ้า
- 5) พจน์ที่มีตัวแปรระยะเวลาที่ใช้ในการหลอม (พจน์ที่ 7) ซึ่งแยกเป็น ระยะเวลาที่จ่ายไฟ และระยะเวลาที่หยุดจ่ายไฟ หรือรวมกันก็คือ ระยะเวลา tap to tap time จากสมการแสดงให้เห็นว่าปริมาณพลังงาน ไฟฟ้าที่ใช้จะเพิ่มขึ้นตามระยะเวลาในการหลอมที่เพิ่มขึ้น ดังนั้นการลด ระยะเวลา tap to tap time จะเป็นวิธีหนึ่งในการประหยัดพลังงานไฟฟ้า
- พจน์ที่มีตัวแปรการใช้แก๊สช่วยในการให้ความร้อนแทนไฟฟ้า ไม่ว่าจะ เป็นการใช้แก๊สเซื้อเพลิง (พจน์ที่ 7) การพ่นแก๊สออกซิเจนเพื่อให้เกิด ความร้อนจากปฏิกิริยาเคมี (พจน์ที่ 8) หรือการมีการสันดาปภายหลัง (post-combustion) (พจน์ที่ 9) จะช่วยลดพลังงานไฟฟ้าในการหลอม ลงได้
 -) พจน์ที่มีตัวแปรกระบวนการผลิต (พจน์ที่ 9) กระบวนการผลิต แบบต่อเนื่อง เช่น การป้อนเศษเหล็กเข้าเตาแบบต่อเนื่อง (Consteel) จะ ใช้พลังงานไฟฟ้าน้อยกว่ากระบวนการผลิตแบบไม่ต่อเนื่องที่มีการป้อน เศษเหล็กเข้าเตาเป็นรอบๆ

จุฬาลงกรณ์มหาวิทยาลัย

<u>เตาหลอมอาร์คไฟฟ้าของโรงงานที่ได้ทำการศึกษา</u>

เตาหลอมอาร์คไฟฟ้าของโรงงานที่ได้ทำการศึกษา เป็นเตาหลอมขนาด 25 ตัน ใช้ ้ไฟฟ้ากระแสสลับ 3 เฟส ในการหลอมเศษเหล็ก ซึ่งไฟฟ้ากระแสสลับ แต่ละเฟสจะถกป้อนให้แก่ แท่งอีเลคโทรดที่ทำจากคาร์บอน (carbon electrodes) แต่ละแท่ง โดยด้านบนของเตาหลอม ้สามารถเลื่อนเปิดได้เพื่อใส่เศษเหล็ก ซึ่งในการหลอมแต่ละรอบ (heat) จะมีการใส่เศษเหล็ก 3-4 ครั้ง หลังจากใส่เศษเหล็กในแต่ละครั้งฝาด้านบนของเตาหลอมจะเลื่อนปิด จากนั้นจึงทำการยื่น แท่งอีเลคโทรดลงไปเพื่อทำการหลอม โดยในกระบวนการหลอมเศษเหล็กนั้นใช้พลังงานที่สำคัญ ในสองรปแบบ คือ พ<mark>ลังงานจากไฟฟ้า</mark>ประมาณร้อย<mark>ละ 60 และพลังงานอีกประมาณร้อยละ 40 ที่</mark> เกิดขึ้นจากปฏิกิริยาทางเคมี ระหว่างการรวมตัวกันของก๊าซออกซิเจนที่พ่นเข้าไปในน้ำเหล็ก กับ ธาตคาร์บอนในน้ำเหล็ก เกิดเป็นก๊าซคาร์บอนไดออกไซด์ ซึ่งการปรับส่วนผสมของน้ำเหล็กโดย การเติมสารต่างๆ เช่น ซิลิกอน แมกนิเซียม วานาเดียม หรือ ไนโอเบียม เพื่อให้ได้คุณสมบัติน้ำ ้เหล็กตามต้องการจะทำในขั้นตอนนี้ สุดท้ายเมื่อการหลอมเสร็จสิ้นเตาหลอมจะทำการเอียงเพื่อเท ้น้ำเหล็กออกทา<mark>ง</mark>ปากกา (pouring spout) ไปยังเบ้ารับน้ำเหล็กที่รอรับอยู่ด้านล่าง โดยน้ำเหล็กที่ ทำการเทจากเตาห<mark>ล</mark>อมอ<mark>าร์คไฟฟ้ามีอุณหภูมิประมาณ 1700 [°]C</mark> รูปที่ 2-2 แสดงภาพแผนผัง ้ส่วนประกอบของ<mark>เตาหล</mark>อม<mark>อาร์คไฟฟ้า ชนิดไฟฟ้ากระแสส</mark>ลับ รูปที่ 2-3 แสดงภาพเตาหลอมอาร์ค ้ไฟฟ้าของโรงงาน แล<mark>ะ</mark>รูปที่ 2-4 แส<mark>ดงภาพขณะเทน้ำเหล็กจากเตา</mark>หลอมอาร์คไฟฟ้าไปยังเบ้ารับ น้ำเหล็ก

et.al. (2000)

รูป<mark>ที่</mark> 2-3<mark> เตาหลอมอาร์คไฟฟ้าของโรงงานที่ทำการศึกษา</mark>

รูปที่ 2-4 การเทน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้าไปยังเบ้ารับน้ำเหล็ก

2.1.2 เบ้ารับน้ำเหล็ก

เบ้ารับน้ำเหล็ก เป็นอุปกรณ์ที่มีลักษณะคล้ายถ้วยทรงกระบอกมีหน้าที่ในการ เคลื่อนย้ายน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า (EAF) ไปยังบริเวณที่ทำการหล่อแบบต่อเนื่อง ใน ปริมาณ 25 ถึง 300 ตัน ในแต่ละรอบการทำงาน (ขึ้นอยู่กับความสามารถในการผลิตของโรงงาน) โดยรับน้ำเหล็กเข้ามาทางปากเบ้า และปล่อยน้ำเหล็กออกไปยังอ่างรับน้ำเหล็ก (tundish) ทางช่อง เปิด (nozzle) ทางด้านล่างของเบ้ารับน้ำเหล็ก ซึ่งในกรณีที่ทำการเคลื่อนย้ายน้ำเหล็กปล่องทาง ด้านล่างนี้จะถูกปิดไว้โดยประตูเลื่อน (slide gate)

การที่ต้องทำหน้าที่เคลื่อนย้ายน้ำเหล็กที่มีอุณหภูมิสูงถึงประมาณ 1700 C ทำให้ เบ้ารับน้ำเหล็กต้องมีความต้านทานความร้อน และมีคุณสมบัติเป็นฉนวนเพื่อที่จะลดการสูญเสีย ความร้อนของน้ำเหล็ก ซึ่งเบ้ารับน้ำเหล็กโดยทั่วไปก็จะประกอบด้วยส่วนของผิวด้านนอกที่ทำมา จากเหล็ก (steel shell) ถัดเข้าไปจะเป็นชั้นปลอดภัย (safety lining) และชั้นด้านในสุดซึ่งสัมผัส กับน้ำเหล็กซึ่งเรียกว่าชั้นทำงาน (working lining) โดยในสองชั้นนี้ใช้วัสดุทนไฟ (refractory) เป็น วัสดุในการก่อ นอกจากนี้ในบางโรงงานบริเวณของเบ้าส่วนที่ต้องสัมผัสกับสแลก จะมีการก่อด้วย วัสดุทนไฟที่มีส่วนผสมของแมกนีเซียม ที่มีความทนทานมากกว่าในบริเวณที่สัมผัสกับสแลก โดย จะเรียกชั้นนี้ว่าชั้นสแล<mark>ก (slag lining)</mark>

รูปที่ 2-5 แสดงแผนภาพเบ้ารับน้ำเหล็กของโรงงานผลิตเหล็กที่ทำการศึกษา เบ้า รับน้ำเหล็กนี้จะเป็นภาชนะรูปทรงกระบอก เส้นผ่านศูนย์กลางจากขอบนอก ด้านปากขนาด 2.17 เมตร และด้านก้นเบ้าขนาด 1.93 เมตร ความสูงตามแนวตั้งฉาก 2.5 เมตร ในส่วนของ ชั้นการ ทำงานก่อด้วยวัสดุทนไฟชนิด SK38 ซึ่งมีส่วนผสมของ alumina 85% คุณสมบัติแสดงในตารางที่ 2-1 ทางด้านข้างของเบ้าหนา 150 มิลลิเมตร ด้านก้นเบ้าหนา 180 มิลลิเมตร ถัดออกมาชั้น ปลอดภัยซึ่งก่อด้วยวัสดุทนไฟชนิดเดียวกัน ด้านข้างของเบ้าหนา 64 มิลลิเมตร ด้านก้นเบ้าหนา 152 มิลลิเมตร ส่วนผนังด้านนอกสุดเป็นเหล็กหนา 20 มิลลิเมตร ที่ก้นเบ้าหนา 25 มิลลิเมตร น้ำหนักเบ้าเปล่าประมาณ 15 ตัน รับน้ำเหล็กได้ประมาณครั้งละ 20-25 ตัน

ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

Classification	High-Alumina Brick, 80% Alumina	
Basic properties	Refractoriness Orton cone	38
	Bulk Density (kg/m ³)	2750
	Apparent Porosity (%)	18.5
	Cold Crushing Strength (kg/cm ²)	750
	Modulus of Rupture (kg/cm ²)	125
	Permanent Linear Change After Heating at 1600 °C (%)	1.0
Composition	Alumina (Al ₂ O ₃) (%)	80.0
	Silica (SiO ₂) (%)	14.5
	Iron Oxide (Fe ₂ O ₃) (%)	1.6
	Titania (TiO ₂) (%)	2.9
Thermal expansion	400 °C (%)	0.33
	80 <mark>0 °C (%)</mark>	0.51
	1000 °C (%)	0.69
	120 <mark>0</mark> °C (%)	0.87
	1400 °C (%)	1.05
Conductivity	400 °C (W/m.K)	2.20
	600 °C (W/m.K)	2.09
	800 °C (W/m.K)	2.03
	1000 °C (W/m.K)	2.00

ตารางที่ 2-1 คุณสมบัติของวัสดุทนไฟชนิด SK38 (บริษัท สยาม รีแฟรกตอรี อินดัสทรี)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

2.1.3 วัฏจักรการทำงานของเบ้ารับน้ำเหล็ก

วัฏจักรการทำงานของเบ้ารับน้ำเหล็ก (รูปที่ 2-6) ของโรงงานที่ได้ทำการศึกษานั้น เริ่มจากการก่อเบ้ารับน้ำเหล็ก หากการใช้งานของเบ้ารับน้ำเหล็กเป็นไปโดยปกติ การก่อเบ้ารับน้ำ เหล็กก็จะเป็นเพียงการก่อวัสดุทนไฟในชั้นทำงาน (working lining) ขึ้นมาใหม่แทนวัสดุของเดิมที่ ้เสียหายจากการใช้งาน รูปที่ 2-7 หลังจากนั้นเป้ารับน้ำเหล็กที่ก่อขึ้นใหม่ (green ladle) จะถูกเผา ้เพื่อไล่ความชื้นที่อยู่ภายในโ<mark>ดยการใช้เศษไม้เป็นเชื้อเพล</mark>ิงใส่เข้าไปภายในเบ้าแล้วจุดไฟเผา _{รู}ปที่ 2-8 แล้วจึงทำการอุ่น (preheat) ด้วยหัวเผาที่ใช้น้ำมันดีเซลเป็นเชื้อเพลิง โดยการพ่นเปลวไฟจาก หัวเผาเข้าไปตรงกลางของ เบ้ารับน้ำเหล็ก แก๊สร้อนจากการเผาไหม้ เมื่อปะทะกับก้นของเบ้ารับ ้น้ำเหล็ก ก็จะแผ่ออกและไหลย้อนไปตามผนังออกมาที่ปากของ เบ้ารับน้ำเหล็ก และถูกพ่นทิ้ง ้ออกไปจากขอบป<mark>ากเบ้ารับน้ำเหล็ก ซึ่งก</mark>ารอุ่นเ<mark>บ้ารับน้ำเหล็กนี้เป็นกระบวนการมีความสำคัญมาก</mark> ้เนื่องจากหากเบ้า<mark>รับน้</mark>ำเหล็<mark>กอุณหภูมิไม่สูงพ</mark>อเมื่<mark>อนำไปรับน้ำเหล็กจะทำให้เบ้ารับน้ำเหล็กแตกได้</mark> ซึ่งจะเป็นอันตรายต่อ<mark>กา</mark>รทำงาน<mark>เป็นอย่างมาก นอกจากนั้นการอุ่น</mark>เบ้ารับน้ำเหล็กยังเป็นการช่วย ลดการสูญเสียค<mark>วา</mark>มร้อ<mark>นของน้ำที่บ</mark>รรจ<mark>ุอยู่ภายในเบ้ารับน้ำเหล็กด้วย ระ</mark>ยะเวลาการอุ่นโดยเฉลี่ย ของเบ้ารับน้ำเหล็ก<mark>ที่ก่อใหม่ของโรงงานที่ทำการศึกษาอยู่ที่ 2 ชั่วโม</mark>ง รูปที่ 2-9 แสดงลักษณะการ ้อุ่นเบ้ารับน้ำเหล็<mark>ก</mark> หลั<mark>งจ</mark>าก<mark>น</mark>ั้นเมื่อเต<mark>าหลอมอาร์คไฟฟ้าพร้อมที่</mark>จะทำการเทน้ำเหล็ก เบ้ารับน้ำ เหล็กจะเคลื่อนที่ไปท<mark>ำ</mark>การรับน้ำเหล็ก (taping) รูปที่ 2-10 เมื่อรับน้ำเหล็กแล้ว เบ้ารับน้ำเหล็กจะ ้เคลื่อนที่ต่อไปยังบริเวณ<mark>ที่</mark>ทำการหล่อแบบต่อเนื่อง เนื่องจากลักษณะการหล่อจำเป็นต้องทำอย่าง ้ต่อเนื่อง (continuous casting) <mark>ทำให้ในช่วงแรกเบ้ารับน้ำ</mark>เหล็กต้องรอ (holding period) เบ้ารับ ้น้ำเหล็กใบก่อนหน้าถ่ายน้ำเ<mark>หล็ก (teeming)</mark> ลงไปยังอ่างรับน้ำเหล็กให้หมดก่อน แล้วจึงเข้าทำ การถ่ายน้ำเหล็กต่อทันที รูปที่ 2-11 แสดงขั้นตอนที่เบ้ารับน้ำเหล็กกำลังทำการถ่ายน้ำเหล็กไปยัง ้อ่างรับน้ำเหล็ก หลังจากนั้นเบ้ารับน้ำเหล็กที่ทำการเทน้ำเหล็กแล้วจึงจะเคลื่อนที่ไปทำการเท สแลกทิ้งออกทางด้านปากเบ้ารับน้ำเหล็ก รูปที่ 2-12 หลังจากนั้นพนักงานของทางโรงงานจะทำ การเช็คการทำงานของประตูเลื่อน (slide gate) เป่าช่องเปิด (nozzle) แล้วจึงนำเบ้ารับน้ำเหล็ก กลับไปอุ่นอีกครั้งเพื่อรอการรับน้ำเหล็กรอบใหม่ เมื่อใช้งานเบ้ารับน้ำเหล็กไปจนครบ 23 - 25 ครั้ง จะทำการนำเบ้ารับน้ำเหล็กออกมารื้อวัสดุทนไฟบริเวณที่สัมผัสกับสแลก (slag) ออกไปแล้วก่อ ขึ้นมาใหม่ (ซ่อมเล็ก) และเมื่อใช้งานจนครบ 46 - 50 ครั้งก็จะทำการรื้อวัสดุทนไฟในส่วนของชั้น ทำงานออกทั้งหมดแล้วก่อขึ้นใหม่ (ซ่อมใหญ่) รูปที่ 2-13 แสดงภาพเบ้ารับน้ำเหล็กที่ก่อขึ้นใหม่ และรูปที่ 2-14 แสดงเบ้ารับน้ำเหล็กที่ผ่านการใช้งานมาแล้ว 46 ครั้ง

ร<mark>ูปที่ 2-</mark>6 วัฏจัก<mark>รการ</mark>ทำงานของเบ้ารับน้ำเหล็ก

รูปที่ 2-8 <mark>การอุ่นเบ้ารับน้ำเหล็กเพื่อ</mark>ไล่ความชื้น โดยใช้เศษไม้เป็นเชื้อเพลิง

รูปที่ 2-9 การอุ่นเบ้ารับน้ำเหล็ก

รูปที<mark>่ 2</mark>-10 เป้ารับน้ำเหล็กขณะรอการเทน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า

รูปที่ 2-11 เบ้ารับน้ำเหล็กขณะทำการถ่ายน้ำเหล็กไปยังอ่างรับน้ำเหล็ก

<mark>รูปที่ 2-12</mark> เบ้ารั<mark>บน้ำเห</mark>ล็กในขณะทำการเทสแลก

รูปที่ 2-13 เบ้ารับน้ำเหล็กที่ทำการก่อขึ้นใหม่

รูปที่ 2-<mark>14 เบ้ารับน้ำเหล็ก</mark>ที่ผ่านการใช้งานมา 46 รอบ

2.1.4 อ่า<mark>งร</mark>ับน้ำเหล็ก

อ่างรับน้ำเหล็ก (tundish) เป็นภาชนะรูปทรงคล้ายอ่าง โดยด้านบนจะมีช่องเปิด สำหรับรับน้ำเหล็กที่ไหลลงมาจากเบ้ารับน้ำเหล็ก และด้านล่างจะมีช่องเปิด 2-3 ช่อง (stand) เพื่อให้น้ำเหล็กไหลลงไปยังแบบหล่อ (mold) ซึ่งในการผลิตเหล็กกล้าด้วยกระบวนการหล่อ แบบต่อเนื่องอ่างรับน้ำเหล็กมีหน้าที่สำคัญได้แก่ 1) เป็นภาชนะสำหรับสะสม (reservoir) น้ำเหล็ก ให้สามารถทำการผลิตแบบต่อเนื่องได้ในระหว่างขั้นตอนการเปลี่ยนการเทน้ำเหล็กจากเบ้ารับน้ำ เหล็กที่เทเสร็จสิ้นแล้ว ไปยังเบ้ารับน้ำเหล็กใบต่อไปที่รอการเท 2) ควบคุมแรงดันที่เกิดจากระดับ น้ำเหล็ก (hydrostatic head) ให้คงที่เพื่อให้การไหลของน้ำเหล็กไปยังแบบหล่อเป็นไปในลักษณะ ต่อเนื่อง (steady state) และ 3) ทิศทางการไหลของน้ำเหล็กในอ่างรับน้ำเหล็ก ช่วยป้องกันการ ไหลของสิ่งเจือปนลงไปยังแบบหล่อ

อนึ่งอ่างรับน้ำเหล็กของโรงงานที่ทำการศึกษา สามารถทำการรับน้ำเหล็กที่ถ่าย จากเบ้ารับน้ำเหล็ก ได้สูงสุด 8 เตา หลังจากนั้นจึงจำเป็นต้องทำการเปลี่ยนอ่างรับน้ำเหล็กใบใหม่

2.1.5 กระบวนการหล่อแบบต่อเนื่อง

กระบวนการหล่อแบบต่อเนื่อง รูปที่ 2-15 เป็นกระบวนการผลิตเหล็กกล้าที่มีการ ใช้งานอย่างแพร่หลาย ซึ่งจากการรายงานของ Sminov (2000) พบว่าการผลิตเหล็กกล้าร้อยละ 95 ของประเทศสหรัฐอเมริกา ญี่ปุ่น และประเทศในทวีปยุโรปใช้กระบวนการนี้ในการผลิต เนื่องจากมีข้อดีหลายประการ ได้แก่ ต้นทุนการผลิตที่ต่ำ, ปริมาณผลผลิตต่อวัตถุดิบที่สูง (high yield), มีความยืดหยุ่นในการผลิต และความสามารถในการควบคุมผลผลิตเหล็กที่ได้ให้มี คุณภาพสูง

รูปที่ 2-15 กระบวนการหล่อแบบต่อเนื่อง

ในการหล่อแบบต่อเนื่องนั้นน้ำเหล็กหลอมเหลวจะถูกปล่อยออกทางช่องเปิด (nozzle) ทางด้านล่างของเบ้ารับน้ำเหล็กปล่อย ไปยังอ่างรับน้ำเหล็ก (tundish) แล้วจึงไหลผ่าน ช่องเปิดของอ่างรับน้ำเหล็กต่อลงไปยังแบบหล่อ (mold) ของเครื่องจักรทำการหล่อแบบต่อเนื่อง ด้านล่าง ซึ่งแบบหล่อจะเป็นตัวกำหนดถึงขนาดหน้าตัดของผลิตภัณฑ์ที่ได้ว่าจะเป็น เหล็กทรงยาว (billet) เหล็กทรงแบน (slab) หรือเหล็กทรงใหญ่ (bloom) หลังจากนั้นน้ำเหล็กก็จะเคลื่อนที่ผ่าน ลูกกลิ้ง (rolling) ซึ่งมีการสเปรย์น้ำเพื่อระบายความร้อนเพื่อให้เกิดการแข็งตัวจากบริเวณผิวด้าน นอกเข้าไปยังด้านใน ระยะตั้งแต่น้ำเหล็กไหลผ่านแบบหล่อจนกระทั่งแข็งตัวถึงแกนกลางนี้เรียกว่า metallurgical length

2.1.6 คุณสมบัติน้ำเหล็ก

คุณสมบัติของน้ำเหล็กที่ได้จากกระบวนการผลิตนั้น ส่วนหนึ่งขึ้นอยู่กับคุณภาพ เศษเหล็กที่ใช้เป็นวัตถุดิบ นอกจากนี้เองในระหว่างกระบวนการหลอมเศษเหล็กด้วยเตาหลอม อาร์คไฟฟ้า โรงงานจะมีการสุ่มตัวอย่างน้ำเหล็กที่ได้เพื่อวัดค่าส่วนประกอบทางเคมีของธาตุที่ สำคัญได้แก่ คาร์บอน (C) ซิลิกอน (Si) แมงกานีส (Mn) ฟอสฟอรัส (P) และ กำมะถัน (S) หลังจากนั้นจึงทำการปรับส่วนผสมของน้ำเหล็กให้ตรงกับความต้องการของการผลิต ยกตัวอย่าง เช่น หากปริมาณธาตุคาร์บอนที่วัดได้จากการสุ่มมีค่ามากก็จะทำการพ่นก๊าซออกซิเจนเพื่อกำจัด ธาตุคาร์บอนส่วนเกินในน้ำเหล็ก (รวมตัวเกิดเป็นคาร์บอนไดออกไซด์) ในทางกลับกันหากปริมาณ คาร์บอนในน้ำเหล็กมีค่าน้อย ก็จะทำการเติมธาตุคาร์บอนลงไปในน้ำเหล็ก

2.1.7 คุณสมบัติสแลก

สแลกเป็นออกไซด์หลอมเหลวของธาตุที่ผสมอยู่ในน้ำเหล็ก ซึ่งเกิดระหว่าง กระบวนการหลอมเศษเหล็ก ธาตุที่อยู่ในเศษเหล็กจะทำปฏิกิริยากับออกซิเจนที่พ่นเข้าไป เกิดเป็น ออกไซด์หลอมเหลว ซึ่งจะลอยอยู่ผิวหน้าของน้ำเหล็กเนื่องจากสแลกหลอมเหลวมีความหนาแน่น ต่ำกว่าน้ำเหล็ก นอกจากนี้สแลกยังมาจากการเติม slag former (เช่น CaO หรือ/และ MgO) ลงไป ระหว่างกระบวนการหลอมเหล็ก ซึ่ง slag former ที่เติมลงไปนี้จะทำหน้าที่ปรับคุณสมบัติของส แลกให้เหมาะสมต่อการกำจัดธาตุที่ไม่ต้องการให้มีอยู่ในน้ำเหล็ก ในการปรับคุณสมบัติของสแลก นั้นจะควบคุม basicity ของสแลกเป็นสำคัญ ซึ่ง basicity นั้นเป็นอัตราส่วนระหว่าง basic oxide (ออกไซด์หลอมเหลวที่เป็นไอออนบวกและไอออนลบ เช่น CaO เมื่อหลอมเหลวจะแตกตัวเป็น Ca²⁺ และ O²) ต่อ acid oxide (ออกไซด์หลอมเหลวที่เกิดเป็น complex ion เช่น SiO₂ เมื่อ หลอมเหลวจะกลายเป็น SiO₄⁴⁻) โดยมากใช้ค่า B แทนซึ่ง

$$B = \frac{CaO\left[\%W\right]}{SiO_2\left[\%W\right]} \tag{2.2}$$

ทั่วไปค่า B จะอยู่ในช่วง 1.5 – 2.0 สำหรับกระบวนการหลอมเหล็กด้วยเตาอาร์ค ไฟฟ้า นอกจากหน้าที่หลักในการปรับคุณสมบัติของสแลกให้เหมาะสมต่อการกำจัดธาตุที่ไม่ ต้องการแล้วนั้น สแลกยังมีประโยชน์ในด้านการเป็นฉนวนกันการสูญเสียความร้อนจากการอาร์คที่ ปลายแท่งอิเล็กโทรด และความร้อนของน้ำเหล็ก (ทำได้โดยการทำให้สแลกมีปริมาตรมากขึ้นจาก เทคนิค slag foaming) อย่างไรก็ตามสแลกที่เกิดขึ้นจะเป็นตัวทำความเสียหายให้แก่วัสดุทนไฟที่บุ อยู่ภายในเตาหลอมอาร์คไฟฟ้า หรือ ภายในเบ้ารับน้ำเหล็ก

ในการกำจัดธาตุที่ไม่ต้องการในน้ำเหล็กนั้น จะทำการกำจัดฟอสฟอรัสในน้ำ เหล็กก่อน ซึ่ง condition ที่เหมาะสมต่อการกำจัดฟอสฟอรัสนั้นคือ ค่า B สูง และ ปริมาณ FeO ในสแลกสูง หลังจากนั้นจะทำการกำจัดกำมะถันในน้ำเหล็ก โดยการเทสแลกออกจากเตาอาร์ค ไฟฟ้าก่อนเพื่อทำให้สแลกมีปริมาณของ FeO น้อยที่สุด ด้วยเหตุนี้สแลกในเตาอาร์คไฟฟ้าจึงมี ปริมาณของ FeO สูง ส่วนสแลกในเบ้ารับน้ำเหล็กจะแทบไม่มี FeO อยู่เลย

สแลกที่เป็นเศษวัสดุที่เหลือจากการหลอมเศษเหล็กนั้นสามารถนำไปใช้ประโยชน์ ได้อีก เช่น ผสมกับยางมะตอย เพื่อทำถนน นอกจากนี้ในประเทศญี่ปุ่นยังมีการศึกษาถึงการใช้ สแลกเพื่อเป็นวัสดุในการปลูกสาหร่ายทะเล

2.1.8 ผลิตภัณฑ์

ผลิตภัณฑ์ที่ได้จากของกระบวนการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้าของ ทางโรงงานที่ทำการศึกษาได้แก่ เหล็กทรงยาว (billet) (รูปที่ 2-16) ชนิด SB40 หน้าตัดสี่เหลี่ยม จัตุรัสความกว้าง 100×100 มิลลิเมตร ความยาว 3.11 เมตร ซึ่งจะเป็นวัตถุดิบในการผลิตเหล็กข้อ อ้อยต่อไป

รูปที่ 2-16 เหล็กทรงยาว (billet) จากกระบวนการผลิต

2.1.9 การควบคุมอุณหภูมิน้ำเหล็กในระหว่างกระบวนการผลิต

กระบวนการการผลิตเหล็กกล้า การควบคุมอุณหภูมิน้ำเหล็กในระหว่างทำการ หล่อแบบต่อเนื่องจะมีความสำคัญเป็นอย่างมากเนื่องจากหากอุณหภูมิต่ำเกินไปก็จะเกิดการอุด ตัดที่แบบหล่อได้ หรือหากอุณหภูมิสูงเกินไปก็จะไม่สามารถทำให้เหล็กที่ทำการหล่อออกมาเป็น เส้น โดยอุณหภูมิที่เหมาะสมในการทำการหล่อแบบต่อเนื่องจะอยู่ที่ประมาณ 1550 °C ซึ่งปัจจัย หนึ่งที่สำคัญในการกำหนดอุณหภูมินี้ได้แก่ อุณหภูมิน้ำเหล็กที่ทำการเทจากเตาหลอมอาร์คไฟฟ้า ซึ่ง อุณหภูมิน้ำเหล็กที่เทจากเตาหลอมจำเป็น ต้องสูงกว่าอุณหภูมิที่ทำการหล่อแบบต่อเนื่อง เพื่อ ชดเซยการสูญเสียพลังงานความร้อนของน้ำเหล็กในระหว่างการเคลื่อนย้ายน้ำเหล็ก, การรอการ หล่อแบบแบบต่อเนื่อง และในระหว่างการหล่อแบบต่อเนื่อง ดังนั้นจึงเป็นเรื่องสำคัญอย่างยิ่งที่จะ ทำนายการสูญเสียพลังงานความร้อนนี้ เพื่อให้สามารถกำหนดอุณหภูมิน้ำเหล็กที่ทำการเทจาก เตาหลอมอาร์คไฟฟ้า ได้อย่างเหมาะสม เพราะถ้าหากอุณหภูมิน้ำเหล็กที่เทต่ำเกินไปก็จะทำให้ เกิดขั้นเหล็กที่แข็งตัวในเบ้ารับน้ำเหล็ก หรือถ้าหากอุณหภูมิน้ำเหล็กสูงเกินไปก็จะไม่สามารถทำ การหล่อแบบต่อเนื่องได้ทันที จำเป็นต้องทำการรอให้น้ำเหล็กเย็นตัวลง ซึ่งก็จะเป็นการสูญเสียทั้ง พลังงานในการหลอมน้ำเหล็กโดยไม่จำเป็น และยังเป็นการเสียเวลาในขั้นตอนการผลิต ทำให้ อัตราการผลิตลดลง

อนึ่งสำหรับกระบวนการผลิตที่มีเตาอุ่นน้ำเหล็ก (ladle furnace) อุณหภูมิน้ำ เหล็กที่ทำการเทจากเตาหลอมอาร์คไฟฟ้าสามารถกำหนดให้มีอุณหภูมิต่ำกว่ากระบวนการผลิตที่ ไม่มีเตาอุ่นน้ำเหล็ก เนื่องจากสามารถให้ความร้อนเพิ่มเติมแก่น้ำเหล็กที่เตาอุ่นน้ำเหล็กได้ อย่างไร ก็ตามทำนายการสูญเสียพลังงานความร้อนในระหว่างขั้นตอนการเคลื่อนย้ายน้ำเหล็กจากเตาอุ่น น้ำเหล็กไปยัง ขั้นตอนการหล่อแบบต่อเนื่องก็ยังมีความสำคัญ เนื่องจากสามารถใช้กำหนด อุณหภูมิน้ำเหล็กก่อนที่ออกที่เตาอุ่นน้ำเหล็กได้อย่างเหมาะสม

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

2.2 การศึกษางานวิจัยที่ผ่านมา

ที่ผ่านมาได้มีการศึกษาการถ่ายเทความร้อนในกระบวนการผลิตเหล็กกล้าใน หลายแง่มุม ไม่ว่าจะเป็นการศึกษาการถ่ายเทพลังงานความร้อนทั้งในส่วนของน้ำเหล็กและเบ้ารับ น้ำเหล็ก ในระหว่างขั้นตอนต่างๆ ของกระบวนการผลิตตั้งแต่ ขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก ขั้นตอนการรับน้ำเหล็ก ขั้นตอนการรอการหล่อแบบต่อเนื่อง และขั้นตอนการชุ่นเบ้ารับน้ำเหล็ก ขั้นตอนการรับน้ำเหล็ก ขั้นตอนการรอการหล่อแบบต่อเนื่อง และขั้นตอนการหล่อแบบต่อเนื่อง รวมถึงปัจจัยต่างๆ ที่ส่งผลถึงการถ่ายเทความร้อนน้ำเหล็กและเบ้ารับน้ำเหล็ก แต่อย่างไรก็ดี วัตถุประสงค์โดยรวม ได้แก่ การที่จะพยายามทำการควบคุมเชิงความร้อนในระหว่างกระบวนการ ผลิต เพื่อให้สามารถกำหนดตัวแปรต่างๆ ของกระบวนการผลิต เช่น ระยะเวลาการอุ่นเบ้ารับน้ำ เหล็ก อุณหภูมิน้ำเหล็กที่ทำการเทจากเตาหลอมอาร์คไฟฟ้า ระยะเวลาในการรอการหล่อ แบบต่อเนื่อง ความหนาของสแลก เพื่อให้การผลิตเหล็กกล้าที่ได้นั้นมีคุณภาพ เพิ่มอัตราการผลิต และประหยัดพลังงาน ซึ่งแนวทางในการศึกษาวิจัยที่ผ่านมานั้นมีทั้งในส่วนที่ใช้การทดลอง การ เก็บข้อมูลการปฏิบัติงานในโรงงานจริง การใช้วิธีทางสถิติ การจำลองด้วยแบบจำลองทาง คณิตศาสตร์ทำการคำนวณในคอมพิวเตอร์ หรือใช้หลายวิธีที่กล่าวมาข้างต้นควบคู่กันไป

อนึ่งในส่วนของการสรุปงานวิจัยที่ผ่านมา เพื่อความสอดคล้องของเนื้อหา จึงได้ ทำการจัดหมวดตามผ<mark>ลการศึกษาวิจัย ดังนี้</mark>

2.2.1 ผลการศึ<mark>กษ</mark>าการถ่<mark>ายเทความร้อนของเบ้ารับน้ำเหล็กในขั้นตอนการอุ่น</mark>

Mohanty และ Satayayut (1992) ศึกษาการสร้างแบบจำลองพลวัต (dynamic model) ทางความร้อนของเบ้ารับน้ำเหล็กในระหว่างการอุ่น เปรียบเทียบกับผลการวัดอุณหภูมิ ณ ที่ตำแหน่งต่างๆที่ฝังเทอร์โมคัปเปิลไว้ในชั้นอิฐทนไฟ (รูปที่ 2-17) เพื่อวัตถุประสงค์ในการทำนาย ระยะเวลาที่เหมาะสมในการอุ่น โดยใช้สมการการนำความร้อนในหนึ่งมิติที่เปลี่ยนไปตามเวลา (one-dimensional transient heat conduction equation) ที่ตำแหน่งผนังข้างเบ้ารับน้ำเหล็ก, ผนังก้นเบ้ารับน้ำเหล็ก และฝาอุ่นเบ้ารับน้ำเหล็ก (รูปที่ 2-18)

$$\frac{\partial T_{i,j}}{\partial t} = \alpha_{i,j} \frac{\partial^2 T_{i,j}}{\partial x^2} \qquad t > 0, 0 < x < L_i$$
(2.3)

โดยมีสมมุติฐานดังนี้

- 1) การถ่ายเทความร้อนของทุกพื้นผิวเป็นการนำความร้อนในหนึ่งมิติ
- การนำความร้อนที่ผิวข้างเบ้ารับน้ำเหล็ก ซึ่งมีลักษณะเป็นผนังโค้ง (cylindrical wall) ใช้การคำนวณในลักษณะของผิวเรียบเนื่องมาจาก อัตราส่วนของของรัศมีต่อความหนาของเบ้ารับน้ำเหล็กมีค่ามากกว่า 10

- การถ่ายเทความร้อนจากก๊าซเผาไหม้ไปยังผนังด้านในเบ้ารับน้ำเหล็ก พิจารณาเฉพาะการถ่ายเทความร้อนที่เกิดจากกระบวนการแผ่รังสี เท่านั้น
- อัตราการถ่ายเทความร้อนจากการแผ่รังสีของก๊าซเผาไหม้ไปยังผนังด้าน ในเบ้ารับน้ำเหล็กมีค่าสม่ำเสมอทั่วกันทุกบริเวณ เนื่องมากจากการผสม ที่ดีและการไหลแบบปั่นป่วนของก๊าซเผาไหม้

การจำลองมีเงื่อนไขเริ่มต้น ให้อุณหภูมิของเบ้ารับน้ำเหล็กที่ตำแหน่งใดๆ มีค่า เท่ากับอุณหภูมิบรรยากาศ

$$T = T_a$$
 $t = 0, 0 \le x \le L_i$ (2.4)

ประกอบกับ กำหนดให้บริเวณผิวด้านในเบ้ารับน้ำเหล็กได้รับการถ่ายเทความ ร้อนจากการแผ่รังสีความร้อนของแก๊สที่เกิดจากการเผาไหม้ เป็นเงื่อนไขในการจำลองการถ่ายเท ความร้อน

$$-k_{i,j}\frac{\partial T_{i,j}}{\partial x} = \sigma F(T_{Fl}^{4} - T_{in,i}^{4}) \quad t > 0, x = 0$$
(2.5)

กำหนดค่าตัวประกอบการมองเห็น (View factor, F) ซึ่งเป็นตัวแปรที่ขึ้นกับสภาพ การเปล่งรังสีของแก๊สเผาใหม้เป็นฟังก์ชันของอุณหภูมิแก๊สเผาใหม้ ด้วยวิธีของ Wimpress (1978)

$$F = -0.00404 + 1.06182\varepsilon - 0.1839\varepsilon^2$$
(2.6)

$$\varepsilon = 0.362 - 2.92 \times 10^{-4} T_{Fl} + 6.77 \times 10^{-8} T_{Fl}^{2} +$$
(2.7)

$$[0.34 - 2.05 \times 10^{-4} T_{Fl} - 1.21 \times 10^{-7} T_{Fl}^{2}]PL +$$

$$[-8.09 \times 10^{-2} + 5.91 \times 10^{-5} T_{Fl} + 3.84 \times 10^{-7} T_{Fl}^{2}](PL)^{2}$$

$$P = 0.2780238 - 0.00193EA + 6.7 \times 10^{-5} (EA)^{2}$$
(2.8)

$$L = 3.6 V_{T,in} / A_{T,in}$$
(2.9)

$$EA = [(A/F) - (A/F)_{st}]/(A/F) \times 100$$
(2.10)

ซึ่งอุณหภูมิก๊าซเผาไหม้ ประเมินมาจากการคำนวณสมดุลพลังงาน ที่เกิดการการ เผาไหม้ของเชื้อเพลิง และพลังงานที่สูญเสียไปกับไอเสียและกำหนดให้การสูญเสียความร้อนที่ผิว ด้านนอกของเบ้ารับน้ำเหล็ก เกิดจากการพาความร้อนและการแผ่รังสีความร้อน ของผิวด้านนอก ไปยังบรรยากาศรอบข้าง

$$-k_{i,j}\frac{\partial T_{i,j}}{\partial x} = q_{co,i} + q_{ro,i} \qquad t > 0, x = 0$$
(2.11)

โดย

$$q_{ro,i} = h_{r,i}(T_{out,i} - T_a)$$
 $i = w, r, b$ (2.12)

ซึ่งสัมประสิทธิ์<mark>การแผ่รังสีความร้อนหาจ</mark>ากวิธีการของ Perry และ Green (1984)

$$h_{r,i} = 0.9755\varepsilon_s \left[\left(\frac{1.8(T_{out,i} - 273) + 492}{100} \right)^4 - \left(\frac{1.8(T_a - 273) + 492}{100} \right)^4 \right]$$
(2.13)

และ

$$q_{co,i} = h_{c,i}(T_{out,i} - T_a)$$
 $i = w, r, b$ (2.14)

ซึ่งสัมประสิทธิ์การพาความร้อนหาจากค่า Nusselt number ของการพาความร้อนธรรมชาติ

$$Nu = h_{r,i}C/k \tag{2.15}$$

ซึ่ง *C* ได้แก่ equivalent length ได้แก่ความสูงของเบ้ารับน้ำเหล็ก (*h*) รัศมีฝาอุ่น (*a*) และรัศมีกันเบ้ารับน้ำเหล็ก (*b*) ซึ่งใช้ในการหาค่า *h_{c,w} h_{c,r}* และ *h_{c,b}* ตามลำดับ

ฐปที่ 2-18 แผนผังแสดงเบ้ารับน้ำเหล็กขณะทำการอุ่น, Mohanty และ Satayayut (1992)

ผลการศึกษาที่สำคัญพบว่า เมื่อเปรียบเทียบการเปลี่ยนแปลงอุณหภูมิของอิฐทน ไฟต่อเวลา ดังแสดงในรูปที่ 2-19 ค่าที่ได้จากการจำลองมีการเปลี่ยนแปลงไปในแนวโน้มเดียวกับ ค่าที่ได้จากการทดลอง แสดงว่าแบบจำลองที่สร้างขึ้นสามารถใช้การได้ นอกจากนี้เมื่อระยะเวลา ทำการอุ่นเพิ่มมากขึ้นค่าความแตกต่างระหว่างผลที่ได้การจำลอง กับผลที่ได้จากการทดลองจะมี ค่าลดลง ซึ่งความแตกต่างนี้อาจเกิดเนื่องมาจาก 1) สมมติฐานที่ไม่คิดถึงการพาความร้อนจาก ผลิตภัณฑ์จากการเผาไหม้ไปยังชั้นอิฐทนไฟ และ 2) การถ่ายเทความร้อนของแบบจำลองเป็นการ นำความร้อนใน 1 มิติ

รูปที่ 2-19 การเปลี่ยนแปลงอุณหภูมิต่อเวลาของอิฐทนไฟระหว่างผลการทดลอง และผลจาก แบบจำลองคณิตศาสตร์,Mohanty และ Satayayut (1992)

สมศักดิ์ คงโชติ (1993) การศึกษาปรากฏการณ์การถ่ายเทความร้อนในระหว่าง การอุ่นเบ้ารับน้ำเหล็ก ด้วยการทดลองอุ่นเบ้ารับน้ำเหล็กที่ติดตั้งเทอร์โมคับเปิล (thermocouple) ไว้ภายใน (รูปที่ 2-20) และสร้างแบบจำลองทางคณิตศาสตร์จำลองการถ่ายเทความร้อน (finite different implicit scheme) ของเบ้ารับน้ำเหล็กในรูปแบบการเผาไหม้ในเตาเผารูปทรงกระบอก โดยพิจารณาการถ่ายเทความร้อนของแก๊สร้อนที่ไหลย้อนกลับจากก้นเบ้ามายังปากโดยเน้นไปที่ ผลการแผ่รังสีของแก๊สร้อนไปยังผนังของเบ้ารับน้ำเหล็ก ซึ่งผลการเปรียบเทียบระหว่างผลการ แบบจำลองกับจากผลการทดลอง พบว่าค่าอุณหภูมิที่ได้ในบริเวณก้นถึงกลางเบ้ามีความใกล้เคียง กัน และต่างกันประมาณ 10% ในบริเวณกลางเบ้าถึงปากเบ้า

รูปที่ 2-20 ตำแหน่งการติดตั้งเทอร์โมคัปเปิลในการทดลองการอุ่น ถังถ่ายน้ำเหล็ก, สมศักดิ์ คงโชติ (1993)

อนึ่ง เมื่อพิจารณาผลการศึกษาของ Mohanty และ Satayayut และ สมศักดิ์ คง โชติ ชี้ไปในทางเดียวกันว่าการแผ่รังสีความร้อนของก๊าซที่เกิดจากการเผาไหม้ที่มีอุณหภูมิสูง เป็น กระบวนการที่มีอิทธิพลหลักในการถ่ายเทความร้อนเข้าสู่เบ้ารับน้ำเหล็กในระหว่างทำการอุ่น

2.2.2 ผลการศึกษาที่แสดงการทำนายอุณหภูมิน้ำเหล็กในระหว่างการผลิต

Gupta และ Chandra (2004) ศึกษาการสร้างแบบจำลองทางคณิตศาสตร์ใน การทำนายอุณหภูมิน้ำเหล็กเพื่อใช้ในการควบคุมอุณหภูมิในกระบวนการหล่อแบบต่อเนื่อง โดย เป็นการคำนวณการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในหนึ่งมิติ (one dimensional heat transfer) แยกระหว่างบริเวณผนังด้านข้าง และผนังก้น หลังจากนั้นจึงนำผลที่ได้มาใช้ในการ ทำนายอุณหภูมิน้ำเหล็ก โดยใช้วิธี lumped mass analysis ในการคำนวณการสูญเสียความร้อน ของน้ำเหล็ก อนึ่งการสอบเทียบแบบจำลองทำโดยเปรียบเทียบอุณหภูมิผนังด้านในเบ้ารับน้ำเหล็ก หลังการอุ่น และหลังการปล่อยให้เย็นตัวลงโดยใช้ไพโรมิเตอร์ กับผลที่ได้จากการคำนวณ รูปที่ 221 และรูปที่ 2-22 ซึ่งผลการทำนายอุณหภูมิน้ำเหล็กในเบ้ารับน้ำเหล็กเปรียบเทียบกับผลการ ตรวจวัดของโรงงานแสดงในรูปที่ 2-23 ซึ่งเมื่อใช้ประกอบกับการวิเคราะห์ทางสถิติของข้อมูลการ ผลิตของทางโรงงาน

รูปที่ 2-<mark>21 อุณหภูมิ</mark>ภายในเ<u>บ้ารับน้ำเหล็กภายหลังจากการอุ่</u>นเปรียบเทียบผล จากการตร<mark>ว</mark>จวัด และผลที่ได้จากการคำนวณ, Gupta และ Chandra (2004)

รูปที่ 2-23 เปรียบเทียบอุณหภูมิของน้ำเหล็กในเบ้ารับน้ำเหล็ก ระหว่างการทำนาย ด้วยแบบจำลอง และจากการวัดอุณหภูมิ, Gupta และ Chandra (2004)

พบว่า 1) มีความสอดคล้องกันของอุณหภูมิของน้ำเหล็กในอ่างรับน้ำเหล็ก (tundish) ระหว่างการทำนายด้วยแบบจำลอง และจากการวัดอุณหภูมิ รูปที่ 2-24 2) ในการอุ่น เบ้ารับน้ำเหล็กที่ก่อใหม่พบว่าพลังงานส่วนใหญ่สูญเสียไปกับไอเสีย และ3) การสูญเสียความร้อน ของน้ำเหล็กในระหว่างที่บรรจุอยู่ในเบ้ารับน้ำเหล็กส่วนใหญ่ประมาณร้อยละ 55 – 60 เกิดจาก การนำความร้อนผ่านผนังข้างเบ้ารับน้ำเหล็ก, อีกร้อยละ 15 – 20 จากการนำความร้อนผ่านผนัง ก้น และ สุดท้ายอีกร้อยละ 25 – 30 เป็นการสูญเสียผ่านชั้นสแลก

2.2.3 ผลการศึกษาการถ่ายเทความร้อนระหว่างน้ำเหล็กและเบ้ารับน้ำเหล็กใน ระหว่างกระบวนการผลิต

Chakraborty และ Sahai (1992) ได้ทำการศึกษาผลการสูญเสียความร้อนของ น้ำเหล็กที่เกิดจากสแลกที่ปกคลุมอยู่ด้านบนเหล็ก โดยใช้แบบจำลองทางคณิตศาสตร์ สองมิติ รูป 2-25 จำลองลักษณะการถ่ายเทความร้อน และการไหลของน้ำเหล็กภายในเบ้ารับน้ำเหล็ก เส้น ผ่านศูนย์กลาง 3.35 เมตร สูง 4 เมตร ในขณะทำการรอและ ระหว่างการถ่ายน้ำเหล็กลงไปยังอ่าง รับน้ำเหล็ก โดยแบบจำลองปรับเปลี่ยนค่าการสูญเสียความร้อนที่ผิวด้านบนของน้ำเหล็กในสอง ลักษณะได้แก่ 1) กรณีสมมุติให้ไม่มีการถ่ายความร้อนจากผิวด้านบนของน้ำเหล็กเนื่องจากสแลก ที่ปกคลุมด้านบนมีความหนามากจนกระทั้งมีคุณสมบัติเป็นฉนวน และ 2) กรณีสมมุติให้มีอัตรา การสูญเสียพลังงานความร้อนจากผิวด้านบนน้ำเหล็กมีค่า 100 kW/m² เนื่องมาจากความบางของ ขั้นสแลกที่ปกคลุมด้านบน โดยกำหนดให้ น้ำเหล็กภายในที่เวลาเริ่มต้นทำการคำนวณมีความเร็ว เท่ากับศูนย์ และมีอุณหภูมิเท่ากันทั่วทั้งเบ้าที่ 1853 K นอกจากนั้นยังกำหนดให้การสูญเสียความ ร้อนของน้ำเหล็กไปยังผนังเบ้ารับน้ำเหล็กผ่านการนำความร้อนเกิดขึ้นที่อัตรา 12.5 kW/m² ในการ จำลองทั้งสองกรณีทั้งในช่วงก่อน และระหว่างการถ่ายน้ำเหล็ก

ผลของการศึกษาที่สำคัญแสดงให้เห็นว่า การแจกแจงอุณหภูมิน้ำเหล็กขณะรอ การถ่ายน้ำเหล็ก (holding time) กรณีสมมุติให้ไม่การถ่ายเทความร้อนที่ผิวหน้าของน้ำเหล็ก เมื่อ ระยะเวลาการรอนานขึ้น พบว่า thermal stratification ของน้ำเหล็กเพิ่มมากขึ้น รูปที่ 2-26 แตกต่างจากกรณีที่มีการสูญเสียความร้อนที่ผิวหน้าน้ำเหล็ก ซึ่งอุณหภูมิน้ำเหล็กจะมีการแจกแจง ตัวที่สม่ำเสมอกว่า รูปที่ 2-27

รูปที่ 2-26 การแจกแจงอุณหภูมิน้ำเหล็ก กรณีไม่มีการถ่ายความร้อนจากผิวด้านบนของน้ำเหล็กที่ ระยะเวลาการรอ a) 5 นาที b) 10นาที c) 15 นาที d) 20 นาที, Chakraborty และ Sahai (1992)

Chakraborty และ Sahai (1992)

ในส่วนของอุณหภูมิน้ำเหล็กขณะทำการถ่ายนั้น พบว่ากรณีสมมุติให้ไม่การ ถ่ายเทความร้อนที่ผิวหน้าของน้ำเหล็ก รูปที่ 2-28 อุณหภูมิน้ำเหล็กจะลดลงเพียง 5 ถึง 10 [°]C ตลอดระยะเวลาการถ่ายน้ำเหล็ก 47 นาที รูปที่ 2-29 ซึ่งน้อยกว่ากรณีที่มีการสูญเสียความร้อนที่ ผิวหน้าน้ำเหล็ก รูปที่ 2-30 ซึ่งอุณหภูมิน้ำเหล็กลดลงถึง 45 องศาเมื่อระยะเวลาการถ่ายน้ำเหล็ก ผ่านไป 47 นาที รูปที่ 2-31

รูปที่ 2-28 การแจกแจงอุณหภูม<mark>ิน้ำเหล็ก กรณีไม่มีการถ่าย</mark>ความร้อนจากผิวด้านบนของน้ำเหล็กที่ ระยะเวลาการถ่ายน้ำเหล็ก a) 5 นาที b) 20นาที c) 30 นาที, Chakraborty และ Sahai (1992)

รูปที่ 2-30 การแจกแจงอุณหภูมิน้ำเหล็ก กรณีมีการถ่ายความร้อนจากผิวด้านบนของน้ำเหล็กที่ ระยะเวลาการถ่ายน้ำเหล็ก a) 5 นาที b) 20นาที c) 30 นาที, Chakraborty และ Sahai (1992)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 2-31 การเปลี่ยนแปลงอุณหภูมิถ่ายน้ำเหล็กตลอดช่วงการถ่ายน้ำเหล็ก กรณีมีการถ่ายความ ร้อนจากผิว, Chakraborty และ Sahai (1992)

ดังนั้นจึงสรุปได้ว่าอัตราการสูญเสียความร้อนผ่านชั้นสแลกที่ปกคลุมผิวหน้าของ น้ำเหล็ก ส่งผลถึงการแจกแจงอุณหภูมิน้ำเหล็กภายในเบ้ารับน้ำเหล็ก และการลดลงของอุณหภูมิ น้ำเหล็กในขณะทำการถ่ายน้ำเหล็ก

Xia และ Ahokainen (2001) ศึกษาผลของอุณหภูมิเบื้องต้นของเบ้ารับน้ำเหล็ก และการสูญเสียความร้อนที่ผิวหน้าน้ำเหล็ก ต่อการเปลี่ยนแปลงอุณหภูมิน้ำเหล็ก และการถ่ายเท ความร้อนของเบ้ารับน้ำเหล็ก ในขณะทำการรอการถ่ายน้ำเหล็ก ของเบ้ารับน้ำเหล็กขนาดความจุ 105 ตัน รูปที่ 2-32 โดยใช้แบบจำลองทางคณิตศาสตร์ 2 มิติ รูปที่ 2-33

รูปที่ 2-33 โดเมนของแบบจำลองทางคณิตศาสตร์ที่ใช้ในการศึกษา, Xia และ Ahokainen (2001)

โดยกำหนดเงื่อนไขเริ่มต้นของอุณหภูมิน้ำเหล็กภายในเบ้าเท่ากับ 1948K โดยมี สมมุติฐานว่าอุณหภูมิน้ำเหล็กภายในเบ้าที่เวลาเริ่มต้นมีการกระจายตัวอย่างสม่ำเสมอทั่วกัน และ กำหนดเงื่อนไขเริ่มต้นของอุณหภูมิผนังข้างและผนังก้นเบ้ารับน้ำเหล็ก ในการจำลอง 2 ค่า (1073 และ 1423K) โดยมีสมมุติฐานว่าทั้งผนังข้างและผนังก้นเบ้าอุณหภูมิน้ำเหล็กที่เวลาเริ่มต้นมีการ กระจายตัวอย่างสม่ำเสมอทั่วกัน

นอกจากนี้ในการจำลองยังกำหนดเงื่อนไขขอบเขตของการสูญเสียความร้อน ที่ บริเวณผิวหน้าน้ำเหล็ก 2 ค่า ได้แก่ 1) มีการสูญเสียความร้อนเท่ากับ 10⁴ W/m² แทนกรณีสแลกมี ความหนาน้อย และ 2) มีการสูญเสียความร้อนเท่ากับ 3000 W/m² แทนกรณีสแลกมีความหนา มาก

ผลของการศึกษาที่สำคัญพบว่า 1) มีการลดลงอุณหภูมิน้ำเหล็กในขณะทำการรอ การถ่ายน้ำเหล็ก เนื่องจากการสูญเสียความร้อนให้กับเบ้ารับน้ำเหล็ก บรรยากาศรอบข้าง โดย พบว่าอุณหภูมิน้ำเหล็กที่บริเวณก้นเบ้ารับน้ำเหล็กมีการลดลงเร็วกว่าอุณหภูมิน้ำเหล็กบริเวณก้น เบ้ารับน้ำเหล็ก รูปที่ 2-34

Xia และ Ahokainen (2001)

2) อุณหภูมิเริ่มต้นของเบ้ารับน้ำเหล็กก่อนการรับน้ำเหล็กมีผลต่อthermal stratification ของน้ำเหล็ก โดยอุณหภูมิเริ่มต้นที่มีค่าน้อยจะส่งผลให้ thermal stratification มีค่า มาก และจะเพิ่มขึ้นตามระยะเวลา (thermal stratification แสดงด้วยผลต่างของอุณหภูมิน้ำเหล็ก ที่บริเวณปากเบ้า และบริเวณก้นเบ้า) รูปที่ 2-35 นอกจากนี้เมื่อพิจารณาการเปลี่ยนแปลงอุณหภูมิ เฉลี่ยของน้ำเหล็ก พบว่ากรณีที่อุณหภูมิเริ่มต้นของเบ้ารับน้ำเหล็กที่มีค่าน้อย ตลอดระยะเวลา (thermal stratification แสดงด้วยผลต่างของอุณหภูมิน้ำเหล็ก ที่บริเวณปากเบ้า และบริเวณก้นเบ้า) รูปที่ 2-35 นอกจากนี้เมื่อพิจารณาการเปลี่ยนแปลงอุณหภูมิ เฉลี่ยของน้ำ เหล็กที่มีค่ามาก อุณหภูมิเฉลี่ยของน้ำ เหล็กมีการลดลงน้อยกว่ากรณีที่อุณหภูมิเริ่มต้นของเบ้ารับน้ำเหล็กที่มีค่าน้อย ตลอดระยะเวลา การรอ รูปที่ 2-36 เนื่องจากการสูญเสียความร้อนเฉลี่ยของน้ำเหล็กที่มีค่าน้อย ตลอดระยะเวลา การรอ รูปที่ 2-37 3) ความแตกต่างการสูญเสียความร้อน ที่บริเวณผิวหน้าน้ำเหล็ก ส่งผลต่อการ เปลี่ยนแปลงอุณหภูมิน้ำเหล็กที่บริเวณปากเบ้า มากกว่าที่บริเวณก้นเบ้า รูปที่ 2-38 4) การ เพิ่มขึ้นของอุณหภูมิผิวข้าง และผิวกันเบ้ารับน้ำเหล็กในขณะทำการรอมีความแตกต่างกัน และ ความแตกต่างเพิ่มขึ้น รูปที่ 2-39

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

ฐปที่ 2-3<mark>5 ผลของอุณหภูมิเริ่ม</mark>ต้นของเบ้ารับน้ำเหล็ก ต่อ thermal stratification,

Xia และ Ahokainen (2001)

รูปที่ 2-36 ผลของอุณหภูมิเริ่มต้นของเบ้ารับน้ำเหล็กต่อการเปลี่ยนแปลงอุณหภูมิ เฉลี่ยของน้ำเหล็ก, Xia และ Ahokainen (2001)

รูปที่ <mark>2-37 การสูญเสียความร้อนเฉลี่ยของน้ำเหล็กตลอดระ</mark>ยะเวลาการรอ,

Xia และ Ahokainen (2001)

รูปที่ 2-38 ความแตกต่างของอัตราการสูญเสียความร้อนที่ผิวหน้าน้ำเหล็กต่อการ เปลี่ยนแปลงอุณหภูมิน้ำเหล็ก, Xia และ Ahokainen (2001)

รูปที่ 2-39 การเปลี่ยนแปลงของอุณหภูมิภายในเบ้ารับน้ำเหล็กในระหว่างรอ, Xia และ Ahokainen (2001)

Pan et al. (2003) การศึกษาผลของตัวแปรที่ส่งผลต่ออุณหภูมิน้ำเหล็กในขณะ ทำการรอ (holding period) แล<mark>ะขณะทำการถ่</mark>ายน้ำเหล็กจากเบ้ารับน้ำเหล็กไปยังอ่างรับน้ำเหล็ก (teeming period) ของเ<mark>บ้ารับน้ำเหล็ก ขนาด</mark> 107 ตั<mark>น ที่ก่อด้วยอิฐ</mark>ทนไฟสองชนิด ได้แก่ ชนิดที่ ผนังเบ้ารับน้ำเหล็กก่<mark>อ</mark>ด้วย<mark>อ</mark>ิฐทนไฟชนิดอะลูมินา รูปที่ 2-40 a และชนิดที่ก่อด้วยอิฐทนไฟชนิด spinal mass รูปที่ 2-<mark>40</mark> b ด้วย<mark>การใช้วิธีการสร้า</mark>งแบบ<mark>จำ</mark>ลองทางคณิตศาสตร์ 3 ขั้นตอน ต่อเนื่องกันเพื่อจำลองก<mark>ารทำงาน รูปที่ 2-41 โดยในขั้นต</mark>อนแรกใช้ โปรแกรม TEMPSIM เพื่อ ทำนายอัตราการถ่ายเทความร้อ<mark>นด้วยการนำความร้อ</mark>นต่อพื้นที่ผ่านผนังเบ้ารับน้ำเหล็ก โดยใช้ สมมุติฐานว่าการนำความร้อน เกิดขึ้นในทิศทางผ่านผนังเบ้ารับน้ำเหล็กตามแนวรัศมี ทิศทางผ่าน ้ผนังกันเบ้ารับน้ำเหล็ก และทิศทางผ่านชั้นสแลกด้านบนตามแนวแกน โดยสอบเทียบแบบจำลอง (validation) จากการวัดอุณหภูมิผิวด้านในเบ้ารับน้ำเหล็กโดยการใช้ไพโรมิเตอร์ (pyrometer) รูป ู้ที่ 2-42 แสดงผล<mark>กา</mark>รวัดอุณหภูมิผิวด้านในเบ้ารับน้ำเหล็ก เทียบกับค่า<mark>อุ</mark>ณหภูมิที่ได้จากการจำลอง ที่เวลาต่างๆ ในส่วนขั้นตอนที่สอง และสามนั้น การศึกษาได้ใช้โปรแกรม PHONICS ในการสร้าง แบบจำลอง โดยในขั้นตอนที่สองทำการสร้างแบบจำลองสองมิติเพื่อจำลองการไหลภายในเบ้ารับ น้ำเหล็กที่เกิดจากการพาความร้อนที่เกิดขึ้นเองโดยธรรมชาติ (natural convection flow) และผล ของปรากฏการณ์ที่เกิดจากความแตกต่างของชั้นของอุณหภูมิ (thermal stratification phenomena) ในระหว่างการบรรจุน้ำเหล็กก่อนที่จะทำการถ่ายไปยังอ่างรับน้ำเหล็ก โดยสอบ ้เทียบแบบจำลองด้วยการวัดค่าความแตกต่างของชั้นอุณหภูมิน้ำเหล็ก (thermal stratification) จากการวัดอุณหภูมิผิวด้านในเบ้ารับน้ำเหล็กโดยการจุ่มเทอร์โมคัปเปิลที่ระดับความลึกต่างๆ และ ในขั้นตอนที่สามใช้แบบจำลองสามมิติเพื่อจำลองการไหลของน้ำเหล็ก และการถ่ายเทความร้อน

ในขั้นตอนการถ่ายน้ำเหล็กออกไปยังอ่างรับน้ำเหล็ก และสอบเทียบแบบจำลองด้วยการใช้อุปกรณ์ ติดตามการลดระดับของน้ำเหล็ก ด้วยวิธีการวัดคลื่นวิทยุที่สะท้อนกลับมา วัดระดับน้ำเหล็กในเบ้า รับน้ำเหล็กที่เวลาต่างๆ ซึ่งในการศึกษาใช้การจำลองในขั้นตอนทั้งสาม แบบต่อเนื่องกัน กล่าวคือ เริ่มจากการใช้แบบจำลองหนึ่งมิติในขั้นตอนแรกเพื่อให้ได้เงื่อนไขขอบเขตทางความร้อน (thermal boundary condition) สำหรับใช้กำหนดในการจำลองแบบสองมิติ และสามมิติ และใช้ แบบจำลองสองมิติในขั้นตอนที่ สองเพื่อจำลองการพาความร้อนที่เกิดขึ้นเองตามธรรมชาติ (natural convection) เพื่อให้ได้เงื่อนไขเบื้องต้น ของความเร็วและอุณหภูมิน้ำเหล็กสำหรับทำการ จำลองในแบบจำลองสามมิติในขั้นตอนที่สาม รูปที่ 2-43 แสดงแบบจำลองที่ใช้ในการศึกษาทั้ง สามขั้นตอน

(a) Alumina ladle

(b) Spinel ladle

รูปที่ 2-40 แผนผังเบ้ารับน้ำเหล็กขนาด 107 ตันที่ทำการศึกษา, Pan et al. (2003)

รูปที่ 2-42 เปรียบเทียบอุณหภูมิผิวด้านในเบ้ารับน้ำเหล็ก ระหว่างการท<mark>ำน</mark>าย<mark>ด้วยแบบจำลอง และจากการวัดอุณหภูมิ, Pan et al. (2003)</mark>

รูปที่ 2-43 โดเมนของแบบจำลองทางคณิตศาสตร์ที่ใช้ในการศึกษา, Pan et al. (2003)

ตัวแปรสำคัญที่ส่งผลถึงอุณหภูมิน้ำเหล็กขณะทำการถ่ายน้ำเหล็กจากเบ้ารับน้ำ เหล็ก ที่สนใจในการศึกษาได้แก่ 1) อุณหภูมิด้านในเบ้ารับน้ำเหล็กก่อนทำการรับน้ำเหล็ก 2) ความหนาของสแลกที่อยู่ปกคลุมด้านบนของเบ้ารับน้ำเหล็ก 3) ระยะเวลาที่เบ้ารับน้ำเหล็กบรรจุ น้ำเหล็กในระหว่างรอการถ่ายลงอ่างรับน้ำเหล็ก (holding time) 4) อัตราการถ่ายน้ำเหล็กออก จากเบ้ารับน้ำเหล็ก (teeming rate) โดยออกแบบการจำลองของการเปลี่ยนตัวแปร ตารางที่ 2-2

Simulation case no.ª		Hot-face temp. (°C)	Slag thickness ^b (mm)	Holding time (min)	Teeming rate ^c (tonnes/min)
A1	S1	1000	83	30	2.816
A2	S2	1000	55	20	2.488
A3	S3	1000	28	10	2.229
A4	S4	800	55	30	2.229
A5	S5	800	28	20	2.816
A6	S6	800	83	10	2.488
A7	S7	600	28	30	2.488
A8	S8	600	83	20	2.229
A9	S9	600	55	10	2.816

ตารางที่ 2-2 รายละเอียดแบบจำลองที่ทำการศึกษา, Pan et al. (2003)

^a 'A' refers to alumina ladles and 'S' refers to spinel ladles.
 ^b The slag thickness of 28, 55 and 83 mm corresponds, respectively, to 500, 1000 and 1500 kg slag in 107-tonne steel ladles.
 ^c The teeming rates are calculated based on 107-tonne liquid steel drained for 38, 43 and 48 min, respectively.

ผลของการศึกษาที่สำคัญแสดงให้เห็นว่าการเปลี่ยนอุณหภูมิน้ำเหล็กขณะทำ การถ่ายจากเบ้ารับน้ำเหล็กเป็นผลเนื่องมาจากตัวแปรทั้งสี่ตัว โดย 1) อุณหภูมิผิวด้านในเบ้ารับน้ำ เหล็กจะส่งผลถึงระดับอุณหภูมิน้ำเหล็กในช่วงต้นขนาดถ่ายน้ำเหล็กที่แตกต่างกัน แต่ผลที่เกิดกับ การลดลงของอุณหภูมิในขณะทำการถ่ายน้ำเหล็กนั้นมีค่าน้อย ซึ่งการเพิ่มอุณหภูมิผิวด้านในเบ้า วับน้ำเหล็กจาก 600 เป็น 800 °C จะทำให้อุณหภูมิน้ำเหล็กที่ถ่ายสูงขึ้นประมาณ 3 °Cตลอดช่วง ทำการถ่ายน้ำเหล็ก รูปที่ 2-44 a 2) ความหนาของขั้นสแลกที่ปกคลุมผิวหน้าน้ำเหล็กซึ่งเป็นปัจจัย ควบคุมการถ่ายเทความร้อนจากผิวหน้าน้ำเหล็ก (กรณีที่สแลกมีความหนา 28 มิลลิเมตร อัตรา การสูญเสียพลังงานความร้อนจำกผิวหน้าน้ำเหล็ก (กรณีที่สแลกมีความหนา 28 มิลลิเมตร อัตรา การสูญเสียพลังงานความร้อนที่ผิวด้านบนของน้ำเหล็กในระหว่างการรอการถ่ายน้ำเหล็กลงไปยัง อ่างรับน้ำเหล็กมีค่าประมาณ 15 kW/m²) โดยความหนาของชั้นสแลกที่มีความหนามากขึ้นทำให้การ เปลี่ยนแปลงของอุณหภูมิน้ำเหล็กลดลง รูปที่ 2-44 b 3) ระยะเวลาที่เบ้ารับน้ำเหล็กที่แตกต่างกัน ปัจจัยที่ส่งผลอย่างมากต่อระดับระดับอุณหภูมิน้ำเหล็กในช่วงต้นขนาดถ่ายน้ำเหล็กที่แตกต่างกัน จึงเวลาที่รอเพิ่มขึ้น 10 นาทีจะทำให้อุณหภูมิน้ำเหล็กที่ถ่ายจากเบ้ารับน้ำเหล็กลดลง 4-5 °C รูปที่ 2-44 c 4) อัตราการถ่ายน้ำเหล็กออกจากเบ้ารับน้ำเหล็ก (teeming rate) นั้นส่งผลต่อการลดลง
ของอุณหภูมิน้ำเหล็กในขณะที่ทำการถ่ายน้ำเหล็กเท่านั้น โดยการเพิ่มอัตราการถ่ายน้ำเหล็กทำให้ การเปลี่ยนแปลงของอุณหภูมิน้ำเหล็กลดลง รูปที่ 2-44 d

รูปที่ 2-44 ผลของตัวแปร 1) อุณหภูมิด้านในเบ้ารับน้ำเหล็กก่อนทำการรับน้ำเหล็ก 2) ความหนาของสแลกที่อยู่ปกคลุมด้านบนของเบ้ารับน้ำเหล็ก 3) ระยะเวลาที่เบ้ารับน้ำเหล็กบรรจุน้ำเหล็กในระหว่างรอการถ่ายลงอ่างรับน้ำเหล็ก 4) อัตราการถ่ายน้ำเหล็กออกจากเบ้ารับน้ำเหล็ก (teeming rate) ต่อการเปลี่ยนแปลงอุณหภูมิ ถ่ายน้ำเหล็กในขณะช่วงทำการถ่ายน้ำเหล็ก,Pan et al. (2003)

ซึ่งอุณหภูมิด้านในเบ้ารับน้ำเหล็กก่อนทำการรับน้ำเหล็กนี้เองทาง ข้าพเจ้าคิดว่า เป็นผลมาจากความร้อนสะสมภายในผนังเบ้ารับน้ำเหล็ก ที่ขึ้นกับระยะเวลาการอุ่นเบ้ารับน้ำเหล็ก ก่อนนำไปทำการรับน้ำเหล็ก ดังนั้นการศึกษาวิจัยในวิทยานิพนธ์ฉบับนี้ส่วนหนึ่งจึงมุ่งเน้นไปที่การ หาความสัมพันธ์ของตัวแปรการอุ่นเบ้ารับน้ำเหล็ก ที่ส่งผลถึงการสูญเสียอุณหภูมิของน้ำเหล็กไป ยังเบ้ารับน้ำเหล็ก

จุฬาลงกรณ่มหาวิทยาลัย

2.2.4 ผลการศึกษาสภาวะทางความร้อนของเบ้ารับน้ำในระหว่างกระบวนการ ผลิต

Volkova และ Janke (2003) ทำการศึกษาโดยใช้แบบสร้างแบบจำลองทาง คณิตศาสตร์ของการถ่ายเทความร้อนของ เบ้ารับน้ำเหล็กในระหว่างกระบวนการผลิต เพื่อทำนาย อุณหภูมิในชั้นต่างๆ ของเบ้ารับน้ำเหล็ก โดยพิจารณาการสูญเสียของชั้นวัสดุ ของอิฐทนทนไฟ ชนิด dolomite และ spinel mass โดยสร้างแบบจำลองทางคณิตศาสตร์ที่มีพื้นฐานมาจาก Fourier differential equation ในสภาวะที่การถ่ายเทความร้อนเป็นฟังก์ชันของเวลา และตำแหน่ง (non-stationary state) รูปที่ 2-45

แลที่ได้การศึกษาที่สำคัญพบว่า ผลการจำลองที่ได้กับผลการทดลองวัดอุณหภูมิ จริงในชั้นอิฐทนไฟชนิด dolomite ของผลการศึกษาก่อนหน้า ทั้งระหว่างขั้นตอนการเคลื่อนย้ายน้ำ เหล็ก รูปที่ 2-46 a และ ขั้นตอนการอุ่นน้ำเหล็ก รูปที่ 2-46 b มีความสอดคล้องกัน นอกจากนี้ยัง ในระหว่างรอบการทำงานอิฐทนไฟชนิด spinel mass มีความร้อนสะสมมากกว่าอิฐทนไฟชนิด dolomite ซึ่งหมายความว่าน้ำเหล็กจะมีการสูญเสียความร้อนมากกว่าเมื่อบรรจุอยู่ในเบ้ารับน้ำ เหล็กที่ก่อด้วยอิฐทนไฟชนิด spinel mass

รูปที่ 2-45 สภาวะที่การถ่ายเทความร้อนเป็นฟังก์ชันของเวลา และตำแหน่ง (Non-Stationary state), Volkova and Janke (2003)

จุฬาลงกรณ่มหาวิทยาลัย

รูปที่ 2-46 <mark>เปรียบเทียบผลการทดลองวัดอุณหภูมิภ</mark>ายในเบ้ารับน้ำเหล็ก กับผลที่ได้<mark>จากการทำนาย, Volkova</mark> and Janke (2003)

Zimmer et al. (2008) การศึกษาการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กใน ระหว่างกระบวนการการผลิตเหล็ก โดยการวัดค่าอุณหภูมิจากการฝังเทอร์โมคอปเปิลชนิด N ใน เบ้ารับน้ำเหล็กที่ตำแหน่งแนวสแลก (slag line position) และการวัดค่าอุณหภูมิผิวเหล็กภายนอก ของเบ้ารับน้ำเหล็กด้วยไพโรมิเตอร์ ประกอบกับข้อมูลการแจกแจงอุณหภูมิในชั้นวัสดุทนไฟที่ได้ จากการทดลอง รูปที่ 2-47 แสดงตำแหน่งเทอร์โมคอปเปิลในการทดลอง

รูปที่ 2-4<mark>7 ตำแหน่งเทอร์โมค</mark>ัปเปิลที่ใช้ในการทดลอง, Zimmer et al. (2006)

ผลการศึกษาที่สำคัญพบว่า 1) การสูญเสียความร้อนของน้ำเหล็กเกิดขึ้นมากใน ขั้นตอนการเทน้ำเหล็กจากเตาหลอมไฟฟ้าลงมายังเบ้ารับน้ำเหล็ก ดังนั้นจึงมีความจำเป็นอย่างยิ่ง ในการรักษาอุณหภูมิของเบ้ารับน้ำเหล็กให้สูงเพื่อลดการสูญเสีย ตารางที่ 2-3 2) ระยะเวลา หลังจากการถ่ายน้ำเหล็กจนถึงการรับน้ำเหล็กอีกครั้งมีผลต่อการสูญเสียความร้อนของเบ้ารับน้ำ เหล็ก โดยอุณหภูมิของเบ้ารับน้ำเหล็กจะลดลงไปประมาณ 10% หลังจากเวลาผ่านไป 15 นาที รูป ที่ 2-48 3) เบ้ารับน้ำเหล็กที่ผ่านการใช้งานแล้วจะมีอุณหภูมิที่สูงกว่าเบ้ารับน้ำเหล็กใหม่ เนื่องจาก การสูญเสียอิฐทนไฟ และการถ่ายเทความร้อนจากน้ำเหล็กในระหว่างรอบการทำงาน รูปที่ 2-49 4) รูปที่ 2-50 แสดงการแจกแจงอิฐทนไฟ ซึ่งความไม่ต่อเนื่องของอุณหภูมิเกิดเนื่องมากจากค่า ความต้านทานทางความร้อนของปูนที่ใช้ประสานอิฐทนไฟในการทดลอง นอกจากนั้น Zimmer et al. ยังเสนอแนะว่าการแจกแจกอุณหภูมิภายในเบ้ารับน้ำเหล็กในแต่ละตำแหน่งจะมีค่าแตกต่างไป ขึ้นกับขั้นตอนในการทำงาน ยิ่งไปกว่านั้นแต่ละระยะเวลาของกระบวนการยังขึ้นอยู่กับ กระบวนการก่อนหน้าซึ่งทำให้การควบคุมอุณหภูมิภายในเบ้ารับน้ำเหล็กมีความยุ่งยาก

ตารางที่ 2-3 อุณหภูมิน้ำเหล็กและการสูญเสียอุณหภูมิน้ำเหล็กขั้นตอนต่างๆ,

Time/min	Processing step	Steel temperature/°C	Change in temperature/ °C	Q/GJ	P_*/MW	C/MWh
0-+20	Tapping	1 680-+1 580	-100	-3.47	-2.89	-0.96
20-100	Ladie furnace	1 580-1 660	+80	+2.77	+0.46	+0.77
100-+140	Vacuum	1 660-1 560	-100	-3.47	-0.41	-0.96
140-+180	Casting	1 560-+1 530	-30	-1.04	-0.10	-0.29
180	End of the cycle	1 530	989209		17-15	

Zimmer et al. (2008)

Note: The positive values mean gain of temperature or energy and the negative values mean losses in the temperature or energy.

รูปที่ 2-48 อุณหภูมิภายในเบ้ารับน้ำเหล็กที่ในแต่ละกระบวนการ,Zimmer et al. (2006)

รูปที่ 2-49 การเปลี่ยนแปลงอุณหภูมิต่อเวลา เปรียบเทียบระหว่างเบ้ารับน้ำเหล็กที่ ก่อขึ้นใหม่กับเบ้ารับน้ำเหล็กที่ผ่านการใช้งานแล้ว, Zimmer et al. (2006)

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 2-50 <mark>การแจ</mark>กแจ<mark>งอุณหภูมิในชั้นต่างๆ ของเบ้ารับน้ำเหล็ก,Zimmer et al. (2006)</mark>

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

2.3 ทฤษฎีที่เกี่ยวข้อง

การถ่ายเทความร้อน เป็นการถ่ายเทของพลังงานจากส่วนหนึ่งไปสู่อีกส่วนหนึ่ง เนื่องจากผลต่างของอุณหภูมิ (temperature difference) ของสองส่วนนั้น โดยที่การถ่ายเทความ ร้อนสามารถเกิดขึ้นได้สามรูปคือ การนำความร้อน (conduction heat transfer) การพาความร้อน (convection heat transfer) และการแผ่รังสีความร้อน (radiation heat transfer) โดยมีทิศทาง จากส่วนที่อุณหภูมิสูงไปยังส่วนที่มีอุณหภูมิต่ำกว่า

2.3.1 การนำความร้อน

การนำความร้อนเป็นการถ่ายเทพลังงานความร้อน ผ่านการสั่นของโมเลกุลที่อยู่ ติดกันของตัวกลางของแข็ง หรือของเหลวที่อยู่นิ่ง โดยมีทิศทางการถ่ายเทความร้อนจากตำแหน่งที่ มีอุณหภูมิสูงไปยังตำแหน่งที่มีอุณหภูมิต่ำกว่า โดยสมการอัตราการนำความร้อนหรือที่เรียกว่า Fourier's law ในหนึ่งมิติสามารถเขียนได้ดังนี้

$$q_x'' = -k\frac{dT}{dx}$$
(2.16)

$$q_x'' = k \frac{T_1 - T_2}{L} = k \frac{\Delta T}{L}$$
 (2.17)

โดย

$q_x^{"}$	แทน	<mark>อัตราการถ่ายเทคว</mark> ามร้อนต่อหน่วยพื้นที่ตามแนวแกน x
		(W/m ²)
k	แทน	ค่าสัมประสิทธิ์การนำความร้อนของวัสดุ (W/m.K)
T_1	แทน	อุณหภูมิของตำแหน่งที่หนึ่ง (K)
T_2	แทน	อุณหภูมิของตำแหน่งที่สอง (K)
ΔT	แทน	ผลต่างของอุณหภูมิระหว่างตำแหน่งที่หนึ่งและสอง (K)
L	แทน	ระยะทางระหว่างตำแหน่งที่หนึ่งและตำแหน่งที่สอง (m)

การนำความร้อนหนึ่งมิติที่ขึ้นกับเวลา (one dimension transient conduction) กรณีที่ของแข็งมีลักษณะกึ่งต่อเนื่อง (semi-infinite solid) กล่าวคือ ของแข็งมีลักษณะแผ่ออกสู่ อนันต์ในทิศทางเดียว เช่น ปัญหาการนำความร้อนสู่พื้นโลก ค่าอุณหภูมิที่ตำแหน่งและเวลาใดๆ ในแต่ละกรณี รูปที่ 2-51 สามารถหาได้โดยใช้สมการผลเฉลยในตารางที่ 2-4

รูปที่ 2-51 การแจกแจงอุณหภูมิที่เวลาใดๆ ของของแข็งมีลักษณะกึ่งต่อเนื่อง (semi-infinite solid) สำหรับเงื่อนไขที่ผิว 3 กรณี:กรณีที่ 1อุณหภูมิผิวคงที่, กรณีที่ 2 อัตราการ ถ่ายเทความร้อนคงที่ และ กรณีที่ 3 การพาความร้อนที่ผิวหน้า, Incropera และ (DeWitt 2001)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

กรณีที่	เงื่อนไขที่ผิว	สมการ
1	อุณหภูมิผิวคงที่ Constant Surface Tomporature:	$\frac{T(x,t)-T_s}{T_i-T_s} = erf\left(\frac{x}{2\sqrt{\alpha t}}\right) $ (2.18)
	$T(0,t) = T_s$	$q_s^{\prime\prime} = \frac{k(T_{\infty} - T_i)}{\sqrt{\pi\alpha t}} $ (2.19)
2	อัตราการถ่ายเทความร้อนคงที่ Constant Surface Heat Flux: $q_s^{\prime\prime}=q_o^{\prime\prime}$	$T(x,t) - T_{i} = \frac{2q_{o}^{\prime\prime}\left(\frac{\alpha t}{\pi}\right)^{\frac{1}{2}}}{k} \exp \left(\frac{2.20}{\pi}\right)$ $-\frac{q_{o}^{\prime\prime}x}{\pi} erfc\left(\frac{x}{2\sqrt{\alpha t}}\right)$
3	การพาความร้อนที่ผิวหน้า Surface Convection: $-k \frac{\partial T}{\partial x}\Big _{x=0}$ $= h[T_{\infty} - T(0, t)]$	$\frac{T(x,t)-T_i}{T_{\infty}-T_i} = erfc\left(\frac{x}{2\sqrt{\alpha t}}\right) $ $-\left[exp\left(\frac{hx}{k} + \frac{h^2\alpha t}{k^2}\right)\right]\left[\frac{x}{2\sqrt{\alpha t}} + \frac{h\sqrt{\alpha t}}{k}\right] $ (2.21)

ตารางที่ 2-4 สมการผลเฉลยการนำความร้อนหนึ่งมิติที่ขึ้นกับเวลาด้วยวิธี semi-infinite solid

อนึ่ง ในการสอบเทียบการทำงานของโปรแกรมสำเร็จเชิงพาณิชย์ (บทที่ 4) ได้การ เปรียบเทียบผลเฉลยการนำความร้อนหนึ่งมิติที่ขึ้นกับเวลา กับผลจากการจำลองของโปรแกรม สำเร็จเชิงพาณิชย์ ซึ่งที่กำหนดเงื่อนไขขอบเขตเหมือนกับที่ใช้ในการคำนวณด้วยสมการ ทั้ง 3 รูปแบบ

2.3.2 การพาความร้อน

การพาความร้อนเป็นการถ่ายเทพลังงาน ระหว่างผิวของแข็ง ไปยังของเหลวหรือ ก๊าซที่อยู่ติดกับพื้นผิวนั้น ซึ่งเป็นผลเนื่องมาจากการนำความร้อนและการเคลื่อนที่ของของไหล ถ้า เป็นการพาความร้อนในลักษณะที่ของไหลได้รับอิทธิพลจากภายนอก เช่น พัดลม ปั๊ม เพื่อทำให้ เกิดการไหล จะเรียกการพาความร้อนในลักษณะนี้ว่า การพาความร้อนแบบบังคับ (forced convection) แต่ถ้าเป็นการพาความร้อนในลักษณะที่ของไหลด้วยแรงลอยตัว (buoyancy force) อันเนื่องมาจากความแตกต่างของความหนาแน่นซึ่งเกิดจากความแตกต่างของอุณหภูมิในของไหล จะเรียกการพาความร้อนในลักษณะดังกล่าวนี้ว่า การพาความร้อนแบบอิสระหรือการพาความ ร้อนแบบธรรมชาติ (free convection or natural convection) อัตราการพาความร้อนแบบบังคับจะเป็นสัดส่วนโดยตรงกับผลต่างของอุณหภูมิ

โดยสามารถเขียนสมการการพาความร้อนตามกฎการเย็นตัวของนิวตัน (Newton's law of cooling) ได้ดังนี้

$$q'' = h(T_{\infty} - T_s)$$
 (2.22)

โดย

$q^{"}$	แทน	อัตราการถ่ <mark>ายเทความร้อน</mark> ต่อหน่วยพื้นที่ (W/m ²)
h	แทน	ค่าสัมประสิทธิ์การพาความร้อน (W/m ² .K)
T_{∞}	แทน	อุณหภูมิพื้นผิว (K)
T_s	แทน	อุณหภูมิของของไหล (K)

กรณีการพาความร้อนธรรมชาติสำหรับการไหลภายนอก (external flow) แบบ ปั่นป่วน (turbulent) ตัวแปรที่สำคัญในการกำหนดอัตราการถ่ายเทความร้อนได้แก่ ค่าสัมประสิทธิ์ การพาความร้อนธรรมชาติเฉลี่ย *โ* ซึ่งสามารถหาได้จากความสัมพันธ์ของค่า Average Nusselt number (*Nu*_L) ดังสมการ

$$\overline{Nu}_L = \frac{\overline{h}L}{k} = CRa_L^n \tag{2.23}$$

ค่าคงที่ *C* และ n ขึ้นกับช่วงของค่า Rayleigh number, Ra_L ซึ่งหาได้จา

	Ro	$a_L = Gr_L Pr = \frac{g\beta(T_s - T_\infty)L^3}{\nu\alpha} $ (2.24)
โดย		
<i>Gr_L</i>	แทน	Grashof Number ซึ่งคืออัตราส่วนระหว่างแรงลอยตัว
		(buoyancy force) ต่อแรงที่เกิดจากสภาพความหนืด
		(viscous force) ของของไหล
Pr	แทน	Prandtl number ซึ่งคืออัตราส่วนระหว่างโมเมนตัม
		ແລະ thermal diffusivities
g	แทน	specific gravity (m/s ²)
β	แทน	coefficient of volume expansion (K ⁻¹)
L	แทน	ระยะสำคัญของวัตถุ (characteristic length)
ν	แทน	kinematics viscosity ของของใหล (m²/s)
α	แทน	thermal diffusivities ของของไหล (m²/s)

ซึ่งสมการที่ใช้หาค่าสัมประสิทธิ์การพาความร้อนธรรมชาติเฉลี่ย hิ ในแต่ละกรณี แสดงในตารางที่ 2-5

กรณี	เงื่อนไข	สมการ	
แผ่นเรียบวาง ตั้ง	การไหลแบบปั่นป่วน	$\overline{Nu}_{L} = \left\{ 0.825 + \frac{0.387Ra_{L}^{1/6}}{\left[1 + (0.492)^{9/16}\right]^{4/9}} \right\}^{2}$	(2.25)
แผ่นเรียบวาง เอียง	แทนค่า g ในสมการ Ra_L ด้วย $g\cos heta$ ซึ่ง $ heta$ เป็นมุมเอียงของแผ่น โดย $0 \le heta \le 60^\circ$	$\overline{Nu}_{L} = \left\{ 0.825 + \frac{0.387Ra_{L}^{1/6}}{\left[1 + (0.492)^{9/16}\right]^{4/9}} \right\}^{2}$	(2.26)
แผ่นเรียบวาง นอน	$10^4 \le Ra_L \le 10^7$	$\overline{Nu}_L = 0.54Ra_L^{1/4}$	(2.27)
ด้านบนร้อน หรือด้านล่างเย็น	$10^7 \le Ra_L \le 10^{11}$	$\overline{Nu}_L = 0.15 Ra_L^{1/4}$	(2.28)
แผ่นเรียบวาง นอน ด้านบนเย็น หรือด้านล่างร้อน	$10^5 \le Ra_L \le 10^{10}$	$\overline{Nu}_L = 0.27Ra_L^{1/4}$	(2.29)

ตารางที่	2-5	สมการที่	ใช้ใน	เการหาค่า	Average	Nusselt	number	(\overline{Nu}_L)
----------	-----	----------	-------	-----------	---------	---------	--------	---------------------

2.3.3 การแผ่รังสีความร้อน

การแผ่รังสีความร้อน เป็นการส่งผ่านพลังงานในรูปของคลื่นแม่เหล็กไฟฟ้าหรือโฟ ตอน (electromagnetic waves or photons) ซึ่งเป็นผลจากการเปลี่ยนระดับพลังงานของอะตอม หรือโมเลกุล การแผ่รังสีความร้อนมีความแตกต่างจากการนำความร้อนและการพาความร้อน เนื่องจากไม่จำเป็นต้องมีตัวกลางสำหรับการถ่ายเทความร้อน

สำหรับวัตถุใดๆที่มีอุณหภูมิสูงกว่าศูนย์องศาสัมบูรณ์จะแผ่รังสีความร้อน (thermal radiation) เสมอ ผลต่างของอัตราการแผ่รังสีและการดูดกลืนรังสีโดยพื้นผิวก็คือ การแผ่ รังสีความร้อนสุทธิของพื้นผิวนั้น ถ้าอัตราการดูดกลืนมากกว่าอัตราการแผ่รังสีจะเรียกพื้นผิวนั้นว่า ได้รับพลังงานจากการแผ่รังสี แต่ถ้าอัตราการดูดกลืนน้อยกว่าอัตราการแผ่รังสีจะเรียกว่า สูญเสีย พลังงานจากการแผ่รังสี อัตราการแผ่รังสีสูงสุด จากวัตถุดำ (black body) ที่พื้นผิวมีอุณหภูมิสัมบูรณ์ T_s จาก Stefan-Boltzmann's Law สามารถแสดงได้ดังนี้

$$E_b = \sigma T_s^4 \tag{2.30}$$

โดย

E _b	แทน	<mark>อัตราการแผ่รังสีขอ</mark> งวัสดุดำต่อหน่วยพื้นที่ (W/m²)
σ	แทน	ค่าคงที่ Stef <mark>an-Boltzman</mark> n มีค่า 5.67 x 10 ⁻⁸ W/(m ² .K ⁴)
T_s	แทน	อุณหภูมิของ <mark>พื้นผิว (K)</mark>

ในส่วนของสภาพวัตถุจริงในธรรมชาติที่มีการแผ่รังสีความร้อนน้อยกว่าวัตถุดำ สามารถแสดงได้ดังนี้

$$E = \varepsilon \sigma T_s^4 \tag{2.31}$$

โดย

E แทน อัตราการแผ่รังสีวัตถุจริงต่อหน่วยพื้นที่ (W/m²)
 ε แทน ค่าสภาพเปล่งรังสี (emissivity) ของพื้นผิว

ซึ่งค่าสภาพก<mark>ารแผ่รังสี เป็นคุณสมบัติเฉ</mark>พาะของพื้นผิวของวัตถุนั้นเป็นปริมาณ ไร้หน่วย โดยจะมีค่าระหว่าง 0 ถึ<mark>ง 1</mark>

สำหรับการแผ่รังสีระหว่างผิววัตถุเทา (gray surface) ขนาดเล็กกับ สิ่งแวดล้อมที่ แผ่คลุมวัตถุเทาสามารถเขียนได้ดังนี้

$$q'' = \varepsilon \sigma (T_s^4 - T_{sur}^4) \tag{2.32}$$

โดย

σ

ε

 T_s

T_{sur}

แทน อัตราการแผ่รังสีจากวัตถุเทาไปยังสิ่งแวดล้อมต่อตาราง
 เมตร (W/m²)
 แทน ค่าคงที่ Stefan-Boltzmannมีค่า 5.67 x 10⁻⁸ W/(m².K⁴)
 แทน ค่าสภาพเปล่งรังสี (emissivity) ของพื้นผิว
 แทน อุณหภูมิของพื้นผิว (K)

แทน อุณหภูมิของพื้นผิวสิ่งแวดล้อม (K)

ในกรณีการแผ่รังสีระหว่างหลายพื้นผิว การถ่ายเทความร้อนยังขึ้นอยู่กับลักษณะ ทางเรขาคณิตและการวางตัวของพื้นผิวอีกด้วย ตัวแปรที่ใช้ในการคำนวณการแผ่รังสีระหว่าง พื้นผิวสองพื้นผิวได้แก่ view factor, *F_{ij}* ซึ่งถูกนิยามว่าเป็นสัดส่วนการของการแผ่รังสีออกจากผิว วัสดุ i ต่อการรับการแผ่รังสีที่ผิววัสดุ j ซึ่งเขียนได้ในสมการ

$$F_{ij} = \frac{1}{A_i} \int_{A_j} \int_{A_j} \frac{\cos\theta_i \cos\theta_j}{\pi R^2} dA_i \ dA_j$$
(2.33)

ความสัมพันธ์ของค่าสัมประสิทธิ์การมองเห็น F (view factor) ระหว่างสองพื้นผิว เขียนได้ในรูปของ Reciprocity relation

$$A_i F_{ij} = A_j F_{ji} \tag{2.34}$$

นอกจากนี้ความสัมพันธ์ของค่าสัมประสิทธิ์การมองเห็น F (view factor) ของผิวที่ มีลักษณะล้อมรอบ(enclosure) รูปที่ 2-52

รูปที่ 2-52 ผิวที่มีลักษณะล้อมรอบ (enclosure)

ได้แก่ Summation rule

$$\sum_{j=1}^{N} F_{ij} = 1$$

(2.35)

ซึ่งสามารถใช้กับพื้นผิวทั้ง N ในบริเวณล้อมรอบ โดยกฏที่ว่านี้มีที่มาจากความ จริงว่าที่ว่ารังสีทั้งหมดที่แผ่ออกจากผิว i ต้องมีการรับการแผ่รังสีโดยผิวที่มีลักษณะล้อมรอบ กรณี ที่ผิวไม่สามารถมองเห็นตัวเอง เช่น ผิวเรียบ หรือผิวนูน ค่า F_{ii} จะมีค่าเท่ากับ 0

สูตรการหาค่าสัมประสิทธิ์การมองเห็น F (view factor) ที่สำคัญที่ใช้ในการศึกษา ครั้งนี้ได้แก่ สูตรการหาค่า view factor 3 มิติ ระหว่างแผ่นวงกลมเรียบสองแผ่นที่วางห่างกัน รูปที่ 2-53

รูปที่ 2-53 การหาค่<mark>า view factor ระหว่างแผ่นวงกลม</mark>เรียบสองแผ่นที่วางห่างกัน

สามารถหาได้โดยใช้สมการ

$$F_{ij} = \frac{1}{2} \left\{ S - \left[S^2 - 4(r_j/r_i)^2 \right]^{1/2} \right\}$$
(2.36)

สึ่ง

$$S = 1 + \frac{1 + R_j^2}{R_i^2} \tag{2.37}$$

$$R_i = r_i / L \tag{2.38}$$

$$R_i = r_i / L \tag{2.39}$$

เมื่อพิจารณาการแผ่รังสีระหว่างพื้นผิวของวัตถุเทา (gray surface) ประกอบด้วย ผิว 3 ผิว ที่มีลักษณะยาวทำให้<mark>ละการคำนวณการแผ่รังสีร</mark>ะหว่างหัวและท้าย ดังรูปที่ 2-54

รูปที่ 2-54 ผิวปิดลักษณะยาว ประกอบด้วยผิว 3 ผิว

กำหนดให้อุณหภูมิที่ผิวทั้ง 3 คงที่ สมมุติให้การแผ่รังสีมีค่าเท่ากันทั่วทั้งพื้นผิว โดยการถ่ายเทความร้อนจากภายนอก สามารถเขียนสมการการถ่ายเทความร้อนของผิวทั้ง 3 ได้ ดังนี้ ผิวที่ 1

$$\frac{Q_1}{A_1} = \frac{\varepsilon_1}{1 - \varepsilon_1} \left(\sigma T_1^4 - q_{o,1} \right)$$
(2.40)

$$\frac{Q_1}{A_1} = q_{o,1} - F_{1-1}q_{o,1} - F_{1-2}q_{o,2} - F_{1-3}q_{o,3}$$
(2.41)

ผิวที่ 2

$$\frac{Q_2}{A_2} = \frac{\varepsilon_2}{1 - \varepsilon_2} \left(\sigma T_2^4 - q_{o,2} \right)$$
(2.42)

$$\frac{q_2}{A_2} = q_{o,2} - F_{2-1}q_{o,1} - F_{2-2}q_{o,2} - F_{2-3}q_{o,3}$$
(2.43)

ผิวที่ 3

$$\frac{Q_3}{A_3} = \frac{\varepsilon_3}{1 - \varepsilon_3} \left(\sigma T_3^4 - q_{o,3} \right)$$
(2.44)

$$\frac{Q_3}{A_3} = q_{o,1} - F_{3-1}q_{o,1} - F_{3-2}q_{o,2} - F_{3-3}q_{o,3}$$
(2.45)

เมื่อรวมสมการในแต่ละผิวเพื่อกำจัดตัวแปร q_oจะได้ระบบสมการที่แสดง ความสัมพันธ์ระหว่า<mark>งถ่ายเท</mark>ความร้อน (Q) และ อุณหภูมิ (T)

$$\begin{aligned} \frac{Q_1}{A_1} \left(\frac{1}{\varepsilon_1} - F_{1-1} \frac{1-\varepsilon_1}{\varepsilon_1} \right) &= \frac{Q_2}{A_2} F_{1-2} \frac{1-\varepsilon_2}{\varepsilon_2} - \frac{Q_3}{A_3} F_{1-3} \frac{1-\varepsilon_3}{\varepsilon_3} \end{aligned} \tag{2.46} \\ &= (1 - F_{1-1}) \sigma T_1^4 - F_{1-2} \sigma T_2^4 - F_{1-3} \sigma T_3^4 \\ &\quad - \frac{Q_1}{A_1} F_{2-1} \frac{1-\varepsilon_1}{\varepsilon_1} + \frac{Q_2}{A_2} \left(\frac{1}{\varepsilon_2} - F_{2-2} \frac{1-\varepsilon_2}{\varepsilon_2} \right) - \frac{Q_3}{A_3} F_{2-3} \frac{1-\varepsilon_3}{\varepsilon_3} \end{aligned} \tag{2.47} \\ &= -F_{2-1} \sigma T_1^4 + (1 - F_{2-2}) \sigma T_2^4 - F_{2-3} \sigma T_3^4 \\ &\quad - \frac{Q_1}{A_1} F_{3-1} \frac{1-\varepsilon_1}{\varepsilon_1} - \frac{Q_2}{A_2} F_{3-2} \frac{1-\varepsilon_2}{\varepsilon_2} + \frac{Q_3}{A_3} \left(\frac{1}{\varepsilon_3} - F_{3-3} \frac{1-\varepsilon_3}{\varepsilon_3} \right) \end{aligned} \tag{2.48} \\ &= -F_{3-1} \sigma T_1^4 - F_{3-2} \sigma T_2^4 + (1 - F_{3-3}) \sigma T_3^4 \end{aligned}$$

แต่อย่างไรก็ดีวิธีการนี้เป็นเพียงการหาผลโดยประมาณ เนื่องจากสมมุติฐานที่ กำหนดให้การแผ่รังสีมีค่าเท่ากันทั่วทั้งพื้นผิว ซึ่งการแบ่งพื้นผิวเพิ่มขึ้นจะทำให้การคำนวณแม่นยำ ยิ่งขึ้น ซึ่งกรณีการแผ่รังสีจากหลายพื้นผิวสามารถใช้ระบบสมการ

$$-\frac{Q_{1}}{A_{1}}F_{k-1}\frac{1-\varepsilon_{1}}{\varepsilon_{1}}-\frac{Q_{2}}{A_{2}}F_{k-2}\frac{1-\varepsilon_{2}}{\varepsilon_{2}}-\cdots$$
$$+\frac{Q_{k}}{A_{k}}\left(\frac{1}{\varepsilon_{k}}-F_{k-k}\frac{1-\varepsilon_{k}}{\varepsilon_{k}}\right)-\cdots-\frac{Q_{N}}{A_{N}}F_{N-N}\frac{1-\varepsilon_{N}}{\varepsilon_{N}}=$$
$$-F_{k-1}\sigma T_{1}^{4}-F_{k-2}\sigma T_{2}^{4}-\cdots+(1-F_{k-k})\sigma T_{k}^{4}-\cdots-F_{N-N}\sigma T_{N}^{4} \quad (2.49)$$

สามารถเขียนในรูปของ index notation ของN พื้นผิว

$$\sum_{j=1}^{N} \left(\frac{\delta_{kj}}{\varepsilon_j} - F_{k-j} \frac{1-\varepsilon_j}{\varepsilon_j}\right) \frac{Q_j}{A_j} = \sum_{j=1}^{N} \left(\delta_{kj} - F_{k-j}\right) \sigma T_N^4$$
(2.50)

k เป็นค่าตั้งแต่ 1 ถึง N

ี และ <mark>δ_{kj} คือ Krone</mark>cker delta ซึ่งกำหนดให้

$$\delta_{kj} = \begin{cases} 1 & \text{ide } k = j \\ 0 & \text{ide } k \neq j \end{cases}$$
(2.51)
(2.52)

อนึ่งในบทที่ 5 ได้มีการเขียนเป็นโปรแกรมคอมพิวเตอร์เพื่อคำนวณหาค่าการแผ่ รังสีระหว่างหลายพื้นผิวนี้ จากสมการข้างต้น

บทที่ 3 ข้อมูลเชิงสถิติของการผลิต และข้อมูลจากการตรวจวัดภาคสนาม

การศึกษาอัตราการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในระหว่างกระบวนการ ผลิตเหล็กกล้า โดยใช้โปรแกรมจำลองเชิงความร้อนทำนายอุณหภูมิของเบ้ารับน้ำเหล็กนั้น เพื่อให้ แบบจำลองมีความสอดคล้องกับการปฏิบัติงานจริงของทางโรงงาน และมีความแม่นยำในการ ทำนายปรากฏการณ์การถ่ายเทความร้อนที่เกิดขึ้น จึงจำเป็นต้องใช้ข้อมูลเชิงสถิติของการผลิต และข้อมูลจากการตรวจวัดภาคสนาม ในการออกแบบการจำลอง และสอบเทียบผลการจำลอง

<u>Part1 ข้อมูลเชิงสถิติของการผลิต</u>

การผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า และเครื่องจักรหล่อแบบต่อเนื่องของ โรงงานที่ทำการศึกษานั้นพบว่า การผลิตในแต่ละวันแบ่งออกเป็น 3 กะ กะแรกเริ่มตั้งแต่เวลา 8.00 น. ถึง 16.00 น. กะที่สองตั้งแต่เวลา 16.00 น. ถึง 24.00 น. และกะที่สามตั้งแต่เวลา 24.00 น. ถึง 8.00 น. ซึ่งมีการหยุดการผลิตในระหว่างช่วงเวลา 18.00 น. ถึง 22.00 น. เนื่องจากไฟฟ้า ในช่วงนี้มีราคาแพงกว่าราคาไฟฟ้าในช่วงอื่นของวัน (on peak) อัตราการผลิตในแต่ละวันอยู่ที่ 18 - 22 เตา (heat) ซึ่งในการผลิตเหล็กกล้าแต่ละเตาของโรงงานนั้น คนงานจะเป็นผู้บันทึกข้อมูล สำคัญในการผลิต เพื่อเป็นหลักฐานอ้างอิง ซึ่งการบันทึกข้อมูลนั้นทำที่ 3 สถานีการทำการ ได้แก่ 1) สถานีเตาหลอมอาร์คไฟฟ้า รูปที่ 3-1 ใบบันทึกข้อมูลของสถานีเตาหลอมอาร์คไฟฟ้า 2) สถานี การหล่อแบบต่อเนื่อง รูปที่ 3-2 ใบบันทึกข้อมูลของสถานีการหล่อแบบต่อเนื่อง และ 3) สถานีอุ่น เบ้ารับน้ำเหล็ก รูปที่ 3-3 ใบบันทึกข้อมูลของสถานีอุ่นเข้ารับน้ำเหล็ก

ในการศึกษาครั้งนี้ได้ทำการวิเคราะห์ข้อมูลเชิงสถิติของการผลิต จากเอกสาร บันทึกข้อมูลการทำงานของทั้ง 3 สถานีในระหว่างวันที่ 1 - 21 ธันวาคม 2551 รวมระยะเวลาการ ผลิต 20 วัน (โรงงานหยุดทำการผลิตในวันที่ 5 ธันวาคม 2551) จำนวนการผลิตทั้งสิ้น 418 เตา แบ่งการพิจารณาข้อมูลออกเป็นส่วนๆ ดังนี้ ได้แก่ 1) ข้อมูลการผลิตในส่วนของเตาหลอมอาร์ค ไฟฟ้า 2) ข้อมูลวัตถุดิบ ผลิตภัณฑ์ และ สแลก 3) ระยะเวลาของเบ้ารับน้ำเหล็กในแต่ละสถานีการ ผลิต และ 4) อุณหภูมิน้ำเหล็กในแต่ละขั้นตอนการผลิต

จุฬาลงกรณ์มหาวิทยาลัย

	Late	10 0	-	-	10.0	12.00	1	- 1		-	10.5	-	20	1		-	-	where a	nen	-	-	-	-	-
200	10	0140 PM	are.	-	100	AN	(miles	1004	Cetta		11 -		H.	Colorda .	Le.	1	Ma I	P	5	0	NI	Cal.	54	0
and a star	1 6	12490 - X.00	aufra)	-	-	net.	1000	de (0).	12515	81	S THESE	40	00	Statut 1	121	-	2.7	-	01	18	ch	16	0.6	07
dust into		गानी बालगी	a diameteri	-	-	1.8	090	A (2)	PLAN	-	tine.	1.00		Frank 1	000		1.0-	-	-	-	-	-	-	-
dimension of	1 20	Car	and the state			2.4	of Sch	La cr	1	-	101	-		Sugar 1	-									
	1 10	PALLY .	and a state of	-		18./	3	an (4).	015M	5 4		-	-	within 1	100	20	p.1	4	02	48	ob	16	05	0,1
-140	-		Stated	Lunz		-	Los	Le	In the	Ke G	15.M-1	~	1.04	wilded 2	100	10	(55)	01	01	14	07	14	16	00
C Mart		THE R. L.	10.000	NOLT .	100	1 w	- au	1.0	10.000				-	desument i	100	-		-		-				
07:04	1	and the	elselata	15401	2	-	-					-		designant 7	1		-	-	-					
	-		ALCOND PT.	1 and				Con						animate	33	14	19%	15	25	41	10h	16	05	0
6	-	1.6.	4	ica	82	-	100					-		[(7)	7.4				- 1-	-	1	-	-	1
0	454	216.1	2	7001	25	88.	70	10	1	-	-		-	T James [_ fru	A1 [1 401	876			619/26		_	
-8	616	60.2	2573	-	X	121	600	88		1	18	1	-	aniae chueschie									1	1
57	414	663	4847		X	156	1	75	17	1	1		1	น้ำเหลือจา	างหรือ	£1.				ŵ				
	4,54	det a	-		/			-		1	1	1		OTINTIA	in i	P	Th.			12	Г	1.0	levbe	1
2.4	1.7	in her		-	pangl	-		-		-	-		-	and march	T		-		-		T	-	17	3
32	1000	ALL AND ALL AN	ONIC	100.000	water		-	100		-	-	-	-	Support	-			-	-	-	-	-	+1	2
41	- #0#	186518 1	23/0	GDEV	16-16	0	1	1000		1.00					. 14	1151	18	1612	18	0405	1.0	(181)	10	etyka
	1 mil	when eld 1	37	<i>11</i>		write			1	-	ilasia.			อุณหภูมิ Cali		anijis	uini	R1=	A	7	CR	2= 4	\$1	1
	1 min	when eld 2	10	##		ertise	1		1				-	1 47 °C	P	1= 1	51	CP	2- 1	4.4	CP	5- 1	48	1
		ethers elist	พ่งออกจังกา	-	day	100	- Er	hin		1 m	ident.	-	M	12 11 10	1	dir.	47	"C P	5.	47	"C I	No.	55	. 8
_	D DA	shareful 2	พ่งออกซิเลน	+1	day	-		uni.		1701	with .		st.	1 45 %		anita	ine	in.	61	Nr.	0.12	har	61	-
-	- kaka	etuit 2			-	1	11	1			1.30	-		int.	1º		ANT.	. 4	lins	P	113	YE.	172	64
	Sec.	and a			-	1	11	1					-	-	-	40			1.00	-		1	1	-
41		4.1	1	alient	-	1	1	-	-	Int	100	-	0	-	-		_	-	-	-		-	-	-
.84		-	are	0001			1	-	-	10B	240	-	20			_	_	_					-	-
140	worklin	inerest .	100	-	1373	04	2	-	1		1.1.1	22	-		-		-	_		_		-		-
-	R1432512	FENDRUMS I		1	1	1	1	1.14	-		1.1	1	6.1	134					-	-		_	_	_
-	And technic	Summer 2		0	1	1	8-	2 mill	-	1				1000	-			_	-		_		_	_
171.4	191	#1:	9999/k	74	169	24	-			50	1		20											
05		01	200 0	CM	190	°c								1	V	/	-				1			
	10	100	0001117	-	100	-	110 0		-	-	1000		100.000	1	2	/					-1			

รูปที่ <mark>3-1 ใบบันทึกข้อมูลของสถานีเตาหลอมอาร์คไฟฟ้า</mark>

5	P	Ma	s	с	angle	Se	1	2	L	ruá e	5.00	0.00 0	1) and	51 -	221	4011
100	01	69	107	27	./D	1	daltu	Sinten .	การณ์	arf 1	-	1 5	Eninsa (7 0	153	#104
Jan Barris	4	3	1	1	LENCE	SEQ	BULLET	100	8000	MEČ 2.	1ª 1	100	fuga	ułu –	á	1943641
manual a	-2	[] 3.4	Date:	4		-	14-24	10-40	14-80	é e : supis	QC [100	0-0 /s	UD.u 1	1.00.0	2 mi
N. Sector Del		wy	1000	UNITO CALL	AL PROPERTY	-	70	10	10	estudueves	Full	, 0-	2 Mil	adaula	ปริง	e_1
		_	-		lune e	-	+0	64	72	fermiles	500	6 11	çêşetî .	6m	ule 1	angigta
			n		Junto 1	Buil	40	42	40	(mufnasa)	120	e are un fille	ระบองโตคายอิ	9 m	tes_2	ripata
			n		inner		40	01	49	ferefrance	ala C		-		di.	in the state
.in		differe.			15-4+7-	1-	0	-	1	4	_N.M		0		quente	6438.50
÷		olies.	n	1	Iman		6	6	ь	Actual and	Δ	inish		Start	7	. 17
<i>4</i> 1		ntinu	10	11	Inni	Tolda .	1.7	-	15	and so a real	-	-	-	-	Variate	Cantin 2
42		riffere	D	12	Inuit		17	1.1	10	1441	-	que	191		54	Ascessia
	1 2	Γ	In	1.10	Lunn	F	10		10	1992	0	°C	4	1381	ela	
		-						-	-	KODELLARDELARD	-	1678	4	08.09	12	L/D
		in the second se		-	0014		06.15	08.15	08.15	สามเวลา					2	
					and L	-	08-52	06.59	08.52	สินสุดเวอา	-				3	
	Tel.						-37	37	137	เวลาราม (นาที	-	-	-	-	1	T/D
(and max		i. leave	1	and a	E fala	_	3.3	26	27	สายเกิร				1	2	
		a reading			1014	-				an an CD			2-		.1	
(and area	in tilter, s	อื่นโลกากมี	L	Arean .	11/1	sia .	0.00 pp.m	5 met a	sum 3.1	100	135	3		2	1	1defei
	-		0		111	1	CAL	(Cot)		8 8 6	6	1-8	12		h	L/D
-	-		14			n	1306 In	unia 2	99	รวมจำนวน		1			0	T/D
							DY W	and a	7		7				1	
	0	N					<u>a</u> <u>a</u>	10	-		- +	-		- Contraction		น้ำทึก
น้ำชุด Of		1A	010													
ณ้าแหน่ง	พัวพ															-
	-	-														

สำคั	1 10	Victor .		-			-	-	-		2.4				187	őı.			Tenten Tenten
		multi	MUTHER	1381	12001	3.26	-		भूतिमृत	u laise	NAMES OF	hilleniter		1981		î	iativ	ŵ	aufati
		(Second)	meida	100.01	mels	278	न्युत्यु नर्देव	unen ulch	แหน เป็นไป	42sen	ส่วนชา	กระเทพริก	iile -	ıl	175	(i)e	4	575	Thereau
	10-		1					di	nÎs	si.	ela	eśi			भाग	-	-	-	9-91
1	U-	104.554	8-5	09.17	09/9	2	10	8	4	1	4	1	46.10	9.1	30	-	-		1- 134
2	U	101005	3-8	10.10	IR.IE	2	19	1	1	1	4		09.30	10.05	-65	-	1		2-92
3	U-	101556	8-B	11.11	1120	1	41	9	1	10	1		103	11.10	36	-	-		6-148
4	U-	101659	3-A	肥料	12.15	1	10	5	1	1	3	1	11.12	1430	4.8	-	-		1 - 93
5	11-	101653	8.8	故书台	15.34	1	12	te.	+	Ł	E		1-49	19.34	45	+	+		6-179
6	U-	104539	3-51	2. 54	4.11	1	41	6	2	2	st.	1	144	14.5	30	-	+		2-94
7	U-	102560	1.8	後部	质势。	4	18	11	3	31	3	-	(8.5)	1965	20	-	-	-	6-180
	U-	101561	3-3	1620	1250 -	4	Al	17	3	8	3		15.80	14.20	117	-	-		\$-95
1	13-	101568	(D-B)	14.41	17:23 -	1	43	11	4	1	X	-	16.2	17.54	11	+	-	10	1 6-181
5	U-	101563	D.A	273	1.25	2	(13)	8	4	d.	2	-	11.27	100	441	2	-	tal 1	sel 11-1021.
	U-	101361	1-A	LAST-	1452	X	1	1		1	40	-	PIN	TID	LUI	+	-	1	N-642.
	U-	leverth	120	KR .	00	2	de	20	20	944	a d	-	1224	the second	1	1	-	Mail	80 91 - NO
	U-	ie un the	JCP &	1220	해석	2	00	1	1	-	1	-	11.11	1000	10	-	-	1	4-019
	U-	jerney.	130	139 K	23177	2		194	24	× ·	4		PL 4	600	5	F	-	-	90-201
	U-	leroes.	210 0	3.5	251	2	all.	2-	alt.	2	20		Gil	ales.	42	2	-	-	Nr Walte
	U-	levarza.	TOPO	431	433	8-	4.	4	4	4	i.e.	1	DYC	NDUB	4 19	14	-	-	9.1.11
	U-	leichda	7130	DE	ay !	2	dis	S-	8	2	3.	1	Cluy	1005	9 00	1.	-		the water
	U-	JOYFRYI.	190	HE	68	2	5	6	1	21	1	111	=61	10-to	1-2	+	-	-	9122
1	JL	104542-	X/PE	1000	UN S	S.	St.	46	k.	4	4.	111	ot	APRIL OF	24-24	*	-	-	11 12
1	Į.	1064231	1-800	12 0	34.8	J	6	6	4	4	1		CT ::	5 mi.	10 -	8			2 11-420
	-	NG	1.2	-	01	1	UEAT	T	000	T MAR	1	18 10 1					-	2/	Adl - WSENN!

รูปที่ 3-3 ใบบันทึกข้อมูลของสถานีอุ่นเบ้ารับน้ำเหล็ก

3.1 ข้อมูลการผลิตใ<mark>น</mark>ส่วนของเตาหลอมอาร์คไฟฟ้า

ข้อมูลการผลิตในส่วนของเตาหลอมอาร์คไฟฟ้าที่สำคัญได้แก่ พลังงานไฟฟ้าที่ใช้ ในการหลอมเศษเหล็ก, ปริมาณการพ่นก๊าซออกซิเจน ปริมาณการเติมธาตุคาร์บอนในการหลอม เศษเหล็ก ระยะเวลาที่ใช้ในการหลอม (tap to tap time) และอุณหภูมิน้ำเหล็กที่ทำการเท ซึ่งมี รายละเอียดดังนี้

3.1.1 พลังงานไฟฟ้าที่ใช้ในการหลอมเศษเหล็ก

เมื่อพิจารณาข้อมูลการใช้ไฟฟ้าในการหลอมเศษเหล็ก 409 เตา (ตัดข้อมูลการ ทำงานของรอบการผลิตที่มีปัญหาออกไป) พบว่าโรงงานที่ทำการศึกษามีการใช้กำลังไฟฟ้าในการ หลอมเศษเหล็กในแต่ละเตาเฉลี่ยอยู่ที่ 10,814 kW หรือคิดเป็นพลังงานไฟฟ้าเฉลี่ย 10,466 kWhour เมื่อเทียบเป็นการใช้พลังงานไฟฟ้าต่อปริมาณผลิตภัณฑ์ มีค่าเฉลี่ยอยู่ที่ 472 kW.hour/ton (billet) รูปที่ 3-4 แสดงการแจกแจงความถี่ (histogram) ของข้อมูล

รูปที่ <mark>3-4 การแจกแจงค</mark>วามถี่ (histogram) พลังงานไฟฟ้าที่ใช้ในการหลอม

3.1.2 ปร<mark>ิม</mark>าณการพ่นก๊าซออกซิเจน ปริมาณการเติมธาตุคาร์บอนในการหลอม เศษเหล็ก

เมื่อพิจารณาจากข้อมูลการผลิตของโรงงานพบว่าในแต่ละรอบของการผลิต พบว่าปริมาณการพ่นก๊าซออกซิเจนอยู่ในช่วง 0 – 120 m³ และปริมาณการเติมธาตุคาร์บอนอยู่ ในช่วง 0 – 90 kg ซึ่งทั้งปริมาณก๊าซออกซิเจน และธาตุคาร์บอนที่เติมลงไปในน้ำเหล็กมีค่าไม่ แน่นอนขึ้นกับการปรุงน้ำเหล็ก แต่โดยทั่วไปการทำงานจะทำไม่พร้อมกัน ยกตัวอย่างเช่น กรณีที่มี การพ่นก๊าซออกซิเจนจะไม่มีการเติมธาตุคาร์บอน

3.1.3 ระยะเวลาที่ใช้ในการหลอม (tap to tap time)

ค่าเฉลี่ยของระยะเวลาที่ใช้ในการหลอมเศษเหล็ก (tap to tap time) นับตั้งแต่ สิ้นสุดการเทน้ำเหล็กในรอบก่อนหน้า จนกระทั่งทำการเทน้ำเหล็กในรอบต่อมา จากข้อมูลการผลิต 410 เตา พบว่าในการหลอมเศษเหล็กแต่ละรอบนั้น ใช้เวลาในการหลอมเฉลี่ย 58 นาที ซึ่งมีการ แจกแจงความถี่ (histogram) ดังรูปที่ 3-5

จุฬาลงกรณ่มหาวิทยาลัย

รูปที่ 3-5 การแจกแจงความถี่ (histogram) ระยะเวลาที่ใช้ในการหลอม (tap to tap time)

3.1.4 อุณ<mark>ห</mark>ภูมิน้ำเห_{ล็}กที่ทำการเท

อุณหภูมิน้ำเหล็กที่ทำการเทจากเตาหลอมอาร์คไฟฟ้า ซึ่งทำการวัดด้วยการแหย่ เทอร์โมคัปเปิลเข้าไปในช่องเปิดของเตา ในแต่ละรอบการหลอม มีการทำการวัดหลายครั้ง เพื่อ ตรวจสอบว่าอุณหภูมิน้ำเหล็กในเตาเหมาะสมต่อการเทหรือไม่ อุณหภูมิน้ำเหล็กเฉลี่ยที่ทำการเท จากเตาหลอมอาร์คไฟฟ้าอยู่ที่ 1702 °C (ข้อมูลการผลิต 410 เตา)

3.2 ข้อมูลวัตถุดิบ ผลิตภัณฑ์ และ สแลก

จากข้อมูลการผลิตของโรงงานที่ทำการศึกษาพบว่า ในการหลอมเศษเหล็กในแต่ ละรอบ จากปริมาณเศษเหล็กที่ใช้ในการหลอมเฉลี่ย 23.6 ตัน จะได้ปริมาณผลิตภัณฑ์เหล็กทรง เฉลี่ย 21.8 ตัน คิดเป็นปริมาณผลผลิตต่อวัตถุดิบ (yield) เฉลี่ย 92.4% (ข้อมูลการผลิต418 เตา) ส่วนประกอบเฉลี่ยทางเคมีของเหล็กกล้าที่ทำการผลิตได้ดังตารางที่ 3-1

ปริมาณสแลกที่เททิ้งจากเบ้ารับน้ำเหล็กในแต่ละรอบของการหลอม ซึ่งประมาณ จากปริมาตรสแลกในถ้วยรับสแลก พบว่าในการเทสแลกทิ้งแต่ละครั้งมีปริมาตรสแลกทั้งสิ้น 0.43 m³ รูปที่ 3-6 แสดงภาพถ้วยรับสแลก

SteelComposition	C (%)	Si (%)	Mn (%)	P (%)	S (%)
Average	2.66	2.28	7.53	0.14	0.23
SD	0.35	0.59	0.96	0.05	0.06

ตารางที่ 3-1 ส่วนประกอบเฉลี่ยทางเคมีของเหล็กกล้าที่ทำการผลิต

รูปที่ 3-6 ถ้วยรับสแลก

3.3 ระยะเวลาของเบ้า<mark>รับน้ำเหล็กในแต่ละสถานีการ</mark>ผลิต

ระยะเวลาที่ใช้ในแต่ละขั้นตอน ของการทำงานของเบ้ารับน้ำเหล็กในกระบวนการ ผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้าของโรงงานที่ทำการศึกษานั้นพบว่า นั้นสามารถแบ่งออก ได้ดังนี้

3.3.1 ขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก

การอุ่นเบ้ารับน้ำเหล็กนั้นสามารถแบ่งได้เป็นสองรูปแบบ ได้แก่ 1) การอุ่นเบ้ารับ น้ำเหล็กที่เพิ่งทำการก่อขึ้นใหม่ (green ladle) หลังจากผ่านการซ่อมเล็ก หรือซ่อมใหญ่ จะทำการ อุ่นเป็นระยะเวลาประมาณ 2 ชั่วโมง และ 2) การอุ่นเบ้ารับน้ำเหล็กในระหว่างรอบการทำงาน ซึ่ง ระยะเวลา ในการอุ่นไม่แน่นอนขึ้นกับจังหวะการทำงาน ของเตาหลอมอาร์คไฟฟ้า ระยะเวลาเฉลี่ย ในการอุ่นอยู่ที่ 29 นาที ซึ่งกรณีที่ไม่มีการอุ่นเบ้ารับน้ำเหล็กคิดได้เป็น 10.2% ของรอบการทำงาน ของเบ้ารับน้ำเหล็ก รูปที่ 3-7 แสดงฮีสโตแกรม (histogram) ข้อมูลระยะเวลาทำการอุ่นในระหว่าง รอบการทำงาน

รูปที่ 3-7 กา<mark>รแจกแจงความถี่</mark> (histogram) ระยะเวลาทำการอุ่นในระหว่างรอบการทำงาน

3.3.2 ขั้น<mark>ต</mark>อนการรอการเทน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า

ในการทำงานของโรงหลอมนั้น เมื่อเตาหลอมอาร์คไฟฟ้า ทำการปรุงน้ำเหล็กใกล้ เสร็จ จะมีเรียกไปยังสถานีอุ่นเบ้ารับน้ำเหล็กเพื่อให้เคลื่อนย้ายเบ้ารับน้ำเหล็กมารอรับน้ำเหล็กที่เท จากเตาหลอมอาร์คไฟฟ้า ระยะเวลาเฉลี่ยในการรอของทางโรงงานอยู่ที่ 7 นาที รูปที่ 3-8

รูปที่ 3-8 การแจกแจงความถี่ (histogram) ระยะเวลาเฉลี่ยในการรอการเทน้ำเหล็ก

3.3.3 ขั้นตอนการเทน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า

ข้อมูลจากเอกสารบันทึกข้อมูลการทำงาน แสดงให้เห็นว่า การเทน้ำเหล็กจากเตา หลอม ไปยังเบ้ารับน้ำเหล็กใช้เวลา 2 นาที ซึ่งระยะเวลาในการเทค่อนข้างเท่ากันในแต่เตา

3.3.4 ขั้นตอนการรอการถ่ายน้ำเหล็ก

การรอการถ่ายน้ำเหล็ก เป็นช่วงระยะเวลาหลังจากที่เบ้ารับน้ำเหล็ก รับน้ำเหล็ก จากเตาหลอมอาร์คไฟฟ้าแล้ว เคลื่อนย้ายมายังสถานีหล่อแบบต่อเนื่อง เพื่อรอการถ่ายน้ำเหล็กไป ยังอ่างรับน้ำเหล็ก (teeming) สาเหตุที่ต้องทำการรอนั้น เนื่องจากการผลิตเหล็กกล้าเป็น กระบวนการผลิตแบบต่อเนื่องในอ่างรับน้ำเหล็กต้องมีปริมาณน้ำเหล็กอยู่เสมอ ดังนั้นกรณีที่เป็น น้ำเหล็กจากเตานำ (เตานำ: การถ่ายน้ำเหล็กไปยังอ่างรับน้ำเหล็กใหม่ที่ภายในยังไม่มีน้ำเหล็ก) เบ้ารับน้ำเหล็กที่เคลื่อนย้ายมาถึงสถานีหล่อแบบต่อเนื่องจึงจำเป็นต้องรอ เพื่อให้เตาหลอมทำการ เตรียมน้ำเหล็กที่เคลื่อนย้ายมาถึงสถานีหล่อแบบต่อเนื่องจึงจำเป็นต้องรอ เพื่อให้เตาหลอมทำการ เตรียมน้ำเหล็กที่เคลื่อนย้ายมาถึงสถานีหล่อแบบต่อเนื่องจึงจำเป็นต้องรอ เพื่อให้เตาหลอมทำการ เตรียมน้ำเหล็กที่เคลื่อนย้ายมาถึงสถานีหล่อแบบต่อเนื่องจึงจำเป็นต้องรอ เพื่อให้เตาหลอมทำการ เตรียมน้ำเหล็กที่เคลื่อนย้ายมาถึงสถานีหล่อแบบต่อเนื่องจึงจำเป็นต้องรอ เพื่อให้เตาหลอมทำการ เตรียมน้ำเหล็กที่เป็นน้ำเหล็กจากเตาตาม (เตาตาม: การถ่ายน้ำเหล็กไปยังอ่างรับน้ำเหล็กที่ ภายในมีน้ำเหล็กอยู่แล้ว) เบ้ารับน้ำเหล็กจึงต้องรอเบ้ารับน้ำเหล็กใบก่อนหน้าทำการถ่ายน้ำเหล็ก จนกระทั่งเมื่อเบ้ารับน้ำเหล็กใบก่อนหน้าทำการถ่ายน้ำเหล็กเสร็จสิ้นจึงเข้าทำการถ่ายน้ำเหล็กต่อ ทันที ระยะเวลาเฉลี่ยของการรอการถ่ายน้ำเหล็กของทางโรงงานเท่ากับ 12 นาที รูปที่ 3-9 แสดง อีสโตแกรม (histogram) ข้อมูลระยะเวลารอ

รูปที่ 3-9 การแจกแจงความถี่ (histogram) ระยะเวลารอการถ่ายน้ำเหล็ก (Holding Time)

3.3.5 ขั้นตอนการถ่ายน้ำเหล็ก

ระยะเวลาในการถ่ายน้ำเหล็กจากเบ้ารับน้ำเหล็กไปยังอ่างรับน้ำเหล็ก สามารถ แบ่งออกได้เป็นสองกรณี ได้แก่ 1) กรณีที่อ่างรับน้ำเหล็กเปิดช่องถ่ายน้ำเหล็กไปยังแบบหล่อ 2 ช่อง (stand) (คิดเป็น 82% ของการผลิต) ใช้ระยะเวลาของการถ่ายน้ำเหล็กเฉลี่ยที่ 54 นาที และ 2) กรณีที่อ่างรับน้ำเหล็กเปิดช่องถ่ายน้ำเหล็กไปยังแบบหล่อ 3 ช่อง (stand) (คิดเป็น 18% ของ การผลิต) ทำให้ต้องถ่ายน้ำเหล็กจากเบ้ารับน้ำเหล็กด้วยอัตราการไหลที่เพิ่มขึ้น ซึ่งทำให้ระยะเวลา ในถ่ายน้ำเหล็กน้อยกว่ากรณีแรก ใช้เวลาเฉลี่ยทั้งสิ้น 39<u>+</u> นาที รูปที่ 3-10 และ 30-11 แสดงฮีสโต แกรม (histogram) กรณีทำการหล่อแบบ 2 และ 3 ช่อง (stand) ตามลำดับ

รูปที่ 3-10 การแจกแจงความถี่ (histogram) กรณีทำการหล่อแบบ 2 ช่อง (stand)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 3-11 การแจกแจงความถี่ (histogram) กรณีทำการหล่อแบบ 3 ช่อง (stand)

3.3.6 ขั้<mark>นต</mark>อน<mark>การเทส</mark>แลก

ภายหลังจากที่เบ้ารับน้ำเหล็กถ่ายน้ำเหล็กไปยังอ่างรับน้ำเหล็กแล้ว สแลกที่ เหลืออยู่ภายในเบ้าต้องทำการเททิ้ง ระยะเวลาตั้งแต่สิ้นสุดการถ่ายน้ำเหล็กจนกระทั้งสิ้นสุดการ เทสแลกทิ้งใช้เวลาประมาณ 8 นาที

3.3.7 ขั้นตอนการรอการอุ่น

ภายหลังจากเทสแลกแล้ว เบ้ารับน้ำเหล็กจะถูกเคลื่อนย้ายกลับมายังสถานีอุ่น เบ้ารับน้ำเหล็ก คนงานจะทำการตรวจสภาพประตูเลื่อน เป่าช่องถ่ายน้ำเหล็กด้วยแก๊สอาร์กอน และรอจังหวะเพื่อทำการอุ่นเบ้ารับน้ำเหล็กอีกครั้ง จากการวิเคราะห์ข้อมูลการผลิตของทางโรงงาน พบว่า ในขั้นตอนนี้ใช้ระยะเวลาเฉลี่ย 13 นาที รูปที่ 3-12 แสดงฮีสโตแกรม (histogram) ระยะเวลาในขั้นตอนการรอการอุ่นเบ้ารับน้ำเหล็ก

ๆ นยาทยทวพยากว จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 3-12 กา<mark>รแจกแจงความถี่ (his</mark>tog<mark>ram) ระยะเวลาในขั้นตอนการร</mark>อการอุ่นเบ้ารับน้ำเหล็ก

ระยะเวลาการทำงานของเบ้ารับน้ำเหล็กในแต่ละรอบการผลิตแยกเป็นค่าเฉลี่ย ค่าเฉลี่ยฐานนิยม แสดงในตารางที่ 3-2 ซึ่งจากข้อมูลที่ได้จึงนำไปทำการออกแบบรูปแบบการ จำลองการเทความร้อนของเบ้ารับน้ำเหล็กต่อไป (บทที่ 5)

	Mean (min)	Mode (min)	
Tap to Tap Time	58	57	
Preheat	29	21	
Waiting for Tapping	7	6	
Tapping*	2	2	
Holding	12	11	DAL O
Teeming (2 stands)	54	56	712
Slag draining**	8	8	
Waiting for preheat	13	9	~ 8
11911	196k	าน	6

ตารางที่ 3-2 ระยะเวลาการทำงานของเบ้ารับน้ำเหล็กในแต่ละรอบการผลิต

3.4 อุณหภูมิน้ำเหล็กในแต่ละขั้นตอนการผลิต

อุณหภูมิน้ำเหล็กในระหว่างกระบวนการผลิตเหล็กกล้า เป็นตัวแปรควบคุมสำคัญ เพื่อให้แน่ใจได้ว่าอุณหภูมิน้ำเหล็กสุดท้ายในแบบหล่อ อยู่ในช่วงที่สามารถทำการผลิตได้ ดังนั้นใน การควบคุมการผลิตของทางโรงงาน จึงมีการตรวจวัดอุณหภูมิน้ำเหล็กด้วยการยื่นเทอร์โมคัปเปิล ลงไปในน้ำเหล็ก 3 ครั้งในระหว่างกระบวนการผลิต ได้แก่ 1) วัดอุณหภูมิน้ำเหล็กก่อนทำการเท จากเตาหลอมที่สถานีเตาหลอมอาร์คไฟฟ้า 2) วัดอุณหภูมิน้ำเหล็กในเบ้ารับน้ำเหล็กขณะ เคลื่อนย้ายมาถึงสถานีหล่อแบบต่อเนื่อง และ 3) วัดอุณหภูมิน้ำเหล็กในอ่างรับน้ำเหล็ก ซึ่งการวัด ครั้งที่ 1 และ 2 มีการทำการวัดในการผลิตทุกเตา ต่างจากการวัดในครั้งที่ 3 ซึ่งจะมีการวัดในทุกๆ 4 – 5 รอบการทำงาน ตารางที่ 3-3 แสดงข้อมูลอุณหภูมิเฉลี่ยในแต่ละครั้ง

ตารางที่ 3-3 อุณหภูมิน้ำเหล็กเฉลี่ยในระหว่างกระบวนการผลิต

Measurement position	Average Temperature (°C)		
EAF (before tapping)	1702		
L/D	1694		
Tundish	1577		

Part 2 ข้อมูลจากการตรวจวัดภาคสนาม

ในการศึกษาอัตราการถ่ายเทความร้อนของเบ้ารับน้ำเหล็ก ได้มีการเก็บข้อมูล ภาคสนาม เพื่อใช้ในการสอบเทียบผลการจำลองของโปรแกรม รายละเอียดของข้อมูลที่ทำการเก็บ มีดังนี้

3.5 ข้อมูลการแจกแจกอุณหภูมิภายในเบ้ารับน้ำเหล็กในระหว่างทำการอุ่น

การแจกแจงอุณหภูมิภายในเบ้ารับน้ำเหล็กในระหว่างทำการอุ่น เป็นข้อมูลที่ใช้ ร่วมกันในการศึกษาเรื่อง การปรับปรุงประสิทธิภาพของฝาและอุปกรณ์อุ่นถังถ่ายน้ำเหล็กโดยการ ใช้หัวเผาแบบรีเจนเนอเรทีฟ, จักราวุธ จรูญศารทูล (2010) ซึ่งกระทำในโรงงานเดียวกับที่ ทำการศึกษา วิทยานิพนธ์ฉบับนี้ ดังนั้นข้อมูลที่ได้จึงสามารถนำมาใช้เป็นพื้นฐานในการสร้าง แบบจำลอง

3.5.1 เบ้ารับน้ำเหล็กที่ใช้ในการตรวจวัดภาคสนาม

การทดลองอุ่นเบ้ารับน้ำเหล็กด้วยหัวเผาซึ่งใช้น้ำมันดีเซลเป็นเชื้อเพลิง ด้วยการ ฝังเทอร์โมคัปเปิลในผนังที่ระดับชั้นต่างๆ ภายในเบ้ารับน้ำเหล็ก รูปที่ 3-13 แสดงแผนผังตำแหน่งที่ ติดตั้งเทอร์โมคัปเปิลภายในเบ้ารับน้ำเหล็ก และรูปที่ 3-14 แสดงภาพเบ้ารับน้ำเหล็กที่ทำการฝัง เทอร์โมคัปเปิลไว้ภายใน ซึ่งในชั้นทำงาน (working linging) และชั้นปลอดภัย (safety linging) ใช้ เทอร์โมคัปเปิล ชนิด R ช่วงการวัดอุณหภูมิ 0 ถึง 1,600 °C ขนาดเส้นผ่านศูนย์กลาง 1.6 มิลลิเมตร หุ้มด้วยปลอกเซรามิก รูปที่ 3-15 แสดงเทอร์โมคัปเปิล ชนิด R ที่ฝังในเบ้ารับน้ำเหล็ก ส่วนในชั้นเปลือกเหล็ก (steel shell) ใช้เทอร์โมคัปเปิล ชนิด K ช่วงการวัดอุณหภูมิตั้งแต่ 0 ถึง 1,400°C และใช้เทอร์โมคัปเปิล ชนิด K แบบตะเกียบ รูปที่ 3-16 ทำการวัดอุณหภูมิแก๊สเผาไหม้ หรืออากาศภายในเบ้ารับน้ำเหล็กที่ตำแหน่ง 4A ในรูปที่ 3-13 (ภาคผนวก ก แสดงการสอบเทียบ เทอร์โมคัปเปิลที่ใช้ในการทดลอง) นอกจากนั้นยังมีการวัดอุณหภูมิที่ผิวด้านนอกเบ้ารับน้ำเหล็ก ด้วย เทอร์โมมิเตอร์แบบอินฟราเรด ยี่ห้อ Fluke รุ่น 561 HVAC Pro ตั้งค่า emissivity ที่ระดับสูง high รูปที่ 3-16

รูปที่ 3-13 แผนผังตำแหน่งที่ติดตั้งเทอร์โมคัปเปิลภายในเบ้ารับน้ำเหล็ก

จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 3-14 เบ้ารับน้ำเหล็กที่ทำการฝังเทอร์โมคัปเปิลไว้ภายใน

รูปที่ 3-15 เทอร์โมคัปเปิล ชนิด R ที่ฝังในเบ้ารับน้ำเหล็ก

รูปที่ 3-16 เทอร์โมคัปเปิล ชนิด K แบบตะเกียบ

รูปที่ 3**-17 เทอร์โมมิเตอร์แบบอินฟราเรด ยี่ห้อ Fluke รุ่น** 561 HVAC Pro

3.5.2 ก<mark>ารตรวจวัดภาคสนาม</mark>ของอุ่นเบ้ารับน้ำเหล็ก

การทดลองอุ่นเบ้ารับน้ำเหล็กโดยใช้หัวเผาที่มีน้ำมันดีเซลเป็นเชื้อเพลิง ในแบบที่ 1 เป็นการทดลองซึ่งออกแบบการอุ่นให้ใกล้เคียงกับเงื่อนไขการทำงานของโรงงาน ให้ได้ข้อมูล สภาวะทางความร้อนของเบ้ารับน้ำเหล็ก ทั้งในการอุ่นเบ้ารับน้ำเหล็กที่ก่อขึ้นใหม่ และการอุ่นเบ้า รับน้ำเหล็กในระหว่างรอบการทำงาน รวมทำการอุ่นทั้งสิ้น 3 รอบ ออกแบบขั้นตอนการทดลอง ดังนี้

- ในรอบแรกของการอุ่นเป็นการจำลองการอุ่นเบ้ารับน้ำเหล็กที่ทำการก่อขึ้นใหม่ เป็น ระยะเวลา 3 ชั่วโมง (อุ่นนานกว่าการทำงานปกติของโรงงานที่ 2 ชั่วโมง) การทำงาน ของหัวเผาควบคุมจากค่าอุณหภูมิไอเสียที่วัดจากปล่องหัวเผา (ตั้งไว้ที่ 1,000°C) หลังจากนั้นจึงดับหัวเผาเป็นระยะเวลา 1 ชั่วโมง
- 2) ในรอบที่ 2 เป็นการจำลองการอุ่นเบ้ารับน้ำเหล็กในระหว่างรอบการทำงาน การ ทำงานของหัวเผาควบคุมจากค่าอุณหภูมิไอเสียที่วัดจากปล่องหัวเผา (ตั้งไว้ที่ 850°C) เมื่ออุณหภูมิเสียที่ได้วัดถึงค่าที่ตั้งไว้ก็จะทำการดับหัวเผา เป็นเวลา 30 นาที แล้วจึงทำการอุ่นต่อในครั้งที่ 3 เมื่ออุณหภูมิไอเสียถึงเกณฑ์ที่ตั้งไว้ จึงดับหัวเผา
- 3) ในการหัวเผาในรอบที่ 3 จึงได้ทำการยกเบ้ารับน้ำเหล็กตั้งขึ้นเพื่อเก็บข้อมูลการเย็นตัว ของเบ้ารับน้ำเหล็กในกรณีวางตั้ง เหมือนรูปแบบการทำงานจริง เป็นเวลา 60 นาที

3.5.3 ผลการตรวจวัดภาคสนาม

เมื่อพิจารณากราฟแสดงอุณหภูมิภายในเบ้ารับน้ำเหล็กที่เปลี่ยนแปลงตามเวลา ที่ตำแหน่งผนังข้าง ตลอดช่วงการทดลอง รูปที่ 3-18 พบว่า ค่าอุณหภูมิที่วัดจากเทอร์โมคับเปิลที่ ติดตั้งไว้ในชั้นทำงาน (working lining) ที่ระยะ 5, 50 และ 100 mm จากผนังด้านใน มีการ เปลี่ยนแปลงไปในแนวโน้มเดียวกับอุณหภูมิก๊าซที่ก้นเบ้ารับน้ำเหล็ก (สัญลักษณ์ gas) ทั้งในช่วง การอุ่นและดับหัวเผา แตกต่างๆ จากค่าอุณหภูมิในชั้นปลอดภัย (safety linging) และชั้นเปลือก เหล็ก (steel shell) ที่มีการเปลี่ยนแปลงในแนวโน้มที่เพิ่มขึ้นตลอดช่วงการอุ่นและการดับหัวเผา

กราฟแสดงอุณหภูมิภายในเบ้ารับน้ำเหล็กที่เปลี่ยนแปลงตามเวลา ที่ตำแหน่ง ผนังก้น รูปที่ 3-19 แสดงข้อมูลในลักษณะเดียวกัน

ดังนั้นจึงสามารถสรุปได้ว่าการเปลี่ยนแปลงสภาวะทางความร้อนที่ผิวด้านในเบ้า รับน้ำเหล็กส่งผลอย่างชัดเจนต่อการเปลี่ยนแปลงอุณหภูมิภายเบ้ารับน้ำเหล็กที่ชั้นทำงานแตกต่าง จากการเปลี่ยนแปลงอุณหภูมิที่ชั้นปลอดภัย (safety lining) และเปลือกเหล็ก (steel shell) ที่เป็น ผลระหว่างการนำความร้อนจากด้านในเบ้ารับน้ำเหล็ก และการสูญเสียความร้อนที่เปลือกเหล็ก ไปยังบรรยากาศในรูปแบบการพาและแผ่รังสีความร้อน

เมื่อพิจารณาเปรียบเทียบระหว่างอุณหภูมิภายในเบ้ารับน้ำเหล็กที่ระยะเดียวกัน ระหว่างผนังข้าง และผนังก้น รูปที่ 3-20 พบว่าที่ระยะจากผิวด้านใน 50 mm อุณหภูมิมีการ เปลี่ยนแปลงในลักษณะเดียวกัน ในช่วงการอุ่นอุณหภูมิผนังข้างจะสูงกว่าอุณหภูมิผนังก้นเกือบ ตลอดช่วงทำการทดลอง แต่ช่วงดับหัวเผาอุณหภูมิผนังข้างจะลดลงมากกว่าผนังก้น ซึ่งแสดงถึง การสูญเสียความร้อนที่มากกว่า ส่วนที่ระยะจากผิวด้านใน 100 mm พบว่าอุณหภูมิวัดได้ยังมีค่า และลักษณะการเปลี่ยนแปลงที่ใกล้เคียงกัน

ระหว่างผนังข้าง และผนังก้น

3.5.4 พิจารณาเฉพาะการจำลองการอุ่นเบ้ารับน้ำเหล็กที่ทำการก่อขึ้นใหม่ (การ อุ่นครั้งแรก)

เมื่อพิจารณากราฟการเปลี่ยนแปลงอุณหภูมิ รูปที่ 3-21 ประกอบกับกราฟการ แจงแจงอุณหภูมิภายในเบ้ารับน้ำเหล็ก ที่ตำแหน่งผนังข้าง ในช่วงทำการอุ่นครั้งที่ 1 รูปที่ 3-22 พบว่าอุณหภูมิภายในเบ้ารับน้ำเหล็กมีการเพิ่มสูงขึ้นเหล็กในระหว่างช่วงการอุ่น 3 ชั่วโมง ที่เวลา เดียวกันอุณหภูมิที่ตำแหน่งใกล้กับผิวด้านในมีค่าสูงกว่าอุณหภูมิในชั้นถัดมา ในช่วงต้นของการ อุ่น (นาทีที่ 0 – 60) อุณหภูมิที่ตำแหน่งใกล้ผิวด้านในสูงขึ้นอย่างรวดเร็ว หลังจากนั้นอุณหภูมิมี การเพิ่มด้วยอัตราที่ลดลง เมื่อสิ้นสุดการอุ่นที่เวลา 3 ชั่วโมง อุณหภูมิที่ระยะ 5 mm จะสูงถึง 1100 C ในขณะที่เปลือกเหล็กจะมีอุณหภูมิประมาณ 100 C นอกจากนั้นกราฟแสดงอัตราการ เปลี่ยนแปลงอุณหภูมิภายในเบ้ารับน้ำเหล็กที่ระยะต่างๆที่เวลาใดๆ เทียบกับเวลา รูปที่ 3-23 ยัง แสดงให้เห็นว่าที่ตำแหน่ง 5 mm จากผิวด้านในมีอัตราการเปลี่ยนแปลงของอุณหภูมิสูงที่สุด อัตรา การเปลี่ยนแปลงของอุณหภูมิเพิ่มสูงสุดเมื่อเวลาผ่านไป 5 นาที ที่ 38 °C/min หลังจากนั้นจะมีค่า ลดลงจนกระทั่งมีค่าใกล้เคียงกับตำแหน่งอื่นเมื่อเวลา 90 นาทีเป็นต้นไป

รูปที่ 3-2<mark>2 การแจงแจงอุณหภูมิภ</mark>ายในเบ้ารับน้ำเหล็ก ที่ตำแหน่งผนังข้าง ในช่วงทำการอุ่นครั้งที่ 1

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

3.5.5 พิจารณาเฉพาะการ<mark>เย็นตัวของเ</mark>บ้ารับน้ำเหล็กในกรณีวางตั้ง

เมื่อพิจารณากราฟแสดงอุณหภูมิภายในเบ้ารับน้ำเหล็กที่เปลี่ยนแปลงตามเวลา ที่ตำแหน่งผนังข้าง ในช่วงการเย็นตัวของเบ้ารับน้ำเหล็กในกรณีวางตั้ง รูปที่ 3-24 พบว่าอุณหภูมิ ในชั้นทำงานที่ตำแหน่ง 5 และ 50 mm มีการปรับตัวลดลง ที่ระยะ 5 mm การลดลงเป็นไปใน แนวโน้มเดียวกับอุณหภูมิก๊าซที่ก้นเบ้ารับน้ำเหล็ก ซึ่งลดลงต่ำกว่าที่ตำแหน่ง 50 mm และ 100 mm เมื่อเวลาผ่านไป 18 และ 45 นาทีตามลำดับ ที่ในส่วนของตำแหน่ง 50 mm อุณหภูมิจะ ปรับตัวลดลงหลังจากผ่านนาทีที่ 10 ไปแล้ว

การเปลี่ยนแปลงอุณหภูมิที่ตำแหน่ง 100, 182 และ 224 mm พบว่าอุณหภูมิ ค่อนข้างคงที่ มีการเปลี่ยนแปลงไม่มากนัก ซึ่งจะเห็นได้ชัดในกราฟการแจงแจงอุณหภูมิภายใน เบ้ารับน้ำเหล็ก รูปที่ 3-25 ที่แสดงให้เห็นว่าอุณหภูมิที่ตำแหน่ง 5 และ 50 mm เท่านั้นที่ลดลงอย่าง ชัดเจน ในช่วงการเย็นตัวของเบ้ารับน้ำเหล็กในกรณีวางตั้ง

รูปที่ 3-24 อุณหภูมิภายในเบ้ารับน้ำเหล็กที่เปลี่ยนแปลงตามเวลาที่ตำแหน่งผนังข้าง ในช่วงการเย็นตัวของเบ้ารับน้ำเหล็กในกรณีวางตั้ง

รูปที่ 3-25 การแจงแจงอุณหภูมิภายในเบ้ารับน้ำเหล็ก ที่ตำแหน่งผนังข้าง ในช่วงการเย็นตัว ของเบ้ารับน้ำเหล็กในกรณีวางตั้ง

3.6 ข้อมูลอุณหภูมิผิวนอกเบ้ารับน้ำเหล็กในระหว่างกระบวนการผลิตเหล็กกล้า

ข้อมูลอุณหภูมิผิวนอกเบ้ารับน้ำเหล็กในระหว่างกระบวนการผลิตเหล็กกล้า เป็น หนึ่งในตัวแปรที่แสดงถึงสภาวะทางความร้อนของเบ้ารับน้ำเหล็กในระหว่างกระบวนการผลิต ซึ่ง ในการตรวจวัดอุณหภูมิผิวด้านนอกนี้สามารถทำการตรวจวัดทางอ้อม (Indirect Measurement) โดยการตรวจจับรังสีอินฟราเรดที่แผ่พลังงานรังสีจากการสั่นสะเทือนในระดับโมเลกุลของวัสดุหนึ่ง ซึ่งมีการแปรผันตรงกับอุณหภูมิของวัสดุนั้นๆ ในการศึกษาครั้งนี้ได้ทำการตรวจวัดด้วยกล้อง ถ่ายภาพรังสีอินฟราเรด ยี่ห้อ Electrophysics รุ่นHotshot XL ช่วงการวัด -20 ถึง 500 °C รูปที่ 3-26 ทำการถ่ายภาพผิวเปลือกเหล็ก (steel sheel) ในรอบการทำงานที่ 1 ถึง 4 ของเบ้ารับน้ำเหล็กที่ ก่อขึ้นมาใหม่ ตั้งแต่กระบวนการอุ่นเบ้ารับน้ำเหล็กที่ก่อขึ้นใหม่ จนกระทั้งรอการอุ่นอีกครั้ง ซึ่งใน การตรวจวัดตั้งค่าสภาพการเปล่งรังสีความร้อน (emissivity) ที่ 0.79

รูปที่ 3-26 กล้องถ่ายภาพรังสีอินฟราเรด ยี่ห้อ Electrophysics รุ่นHotshot XL ช่วงการวัด -20 ถึง 500 **°**C

3.6.1 ผลการตรวจวัดภาคสนาม

ตัวอย่างภาพถ่ายรังสีอินฟราเรดของเบ้ารับน้ำเหล็กระหว่างรอบการทำงานที่ 1 ถึง 4 ที่สถานีหล่อแบบต่อเนื่องในรูปที่ 3-27 แสดงให้เห็นถึงการแจกแจงอุณหภูมิบริเวณผิวเปลือก เหล็กของเบ้ารับน้ำเหล็ก เมื่อนำข้อมูลอุณหภูมิของผนังข้างสองตำแหน่ง รูปที่ 3-28 มาพล็อต

การเปลี่ยนแปลงของอุณหภูมิเทียบกับเวลาตลอดช่วงการทำงาน รูปที่ 3-29 พบว่าอุณหภูมิจะเพิ่มสูงขึ้นเมื่อรอบการทำงานเพิ่มขึ้น ซึ่งตำแหน่งผนังข้าง-ด้านล่างจะมีอุณหภูมิ สูงกว่าที่ตำแหน่งผนัง-ด้านบน อันน่าจะมีสาเหตุมาจากการถ่ายน้ำเหล็กจากเบ้าทางด้านล่าง ทำ ให้ผิวในด้านล่างของเบ้ามีการสัมผัสกับน้ำเหล็กที่นานกว่า ส่งผลต่อการถ่ายเทความร้อนออกมาที่ ผิวเปลือกเหล็กภายนอก

รูปที่ 3-27 ภ<mark>าพถ่ายรังสีอิ</mark>นฟราเร<mark>ดของเบ้ารับน้ำเหล็กระห</mark>ว่างรอบการทำงานที่ 1 ถึง 4

รูปที่ 3-28 ตำแหน่งของเปลือกนอกเบ้ารับน้ำเหล็กที่นำข้อมูลมาวิเคราะห์

จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 3-29 ก<mark>าร</mark>เป<mark>ลี่ยนแปลงของอุณหภูมิเทียบกับเวลาของผนังเบ้ารับน้ำเหล็ก</mark> ในระหว่างรอบการทำงานที่ 1 ถึง 4

นอกจากข้อมูลอุณหภูมิเปลือกเหล็กของเบ้ารับน้ำเหล็กในระหว่างการทำงานแล้ว ในการศึกษาครั้งนี้ยังได้เก็บข้อมูลการเย็นด้วย รูปที่ 3-30 แสดงแจกแจงอุณหภูมิผิวนอกของเบ้า รับน้ำที่ผ่านการใช้งานมาแล้ว 22 รอบการทำงาน ที่ระยะเวลาต่างๆ เมื่อพิจารณาการเปลี่ยนแปลง ของอุณหภูมิเทียบกับเวลาในระหว่างการปล่อยให้เย็นเพื่อนำไปซ่อมเล็ก รูปที่ 3-31

พบว่าเมื่อเริ่มการพักอุณหภูมิที่ตำแหน่งผนังข้าง-ด้านล่างจะมีอุณหภูมิสูงกว่าที่ ตำแหน่งผนัง-ด้านบน เมื่อระยะเวลาในการพักนานขึ้นอุณหภูมิทั้งสองตำแหน่งจะลดลง ซึ่งที่ ตำแหน่งผนังข้าง-ด้านล่างจะมีมีการลดลงของอุณหภูมิที่มากกว่าตำแหน่งผนัง-ด้านบน

รูปที่ 3-<mark>30 ภาพถ่ายรังสีอินฟราเรดของ</mark>เบ้ารับน้ำเหล็กระหว่างการเย็นตัวแบบตั้ง

รูปที่ 3-31 การเปลี่ยนแปลงของอุณหภูมิเทียบกับเวลาของผนังเบ้ารับน้ำเหล็ก ในระหว่างการเย็นตัวแบบตั้ง

3.7 ข้อมูลอุณหภูมิน้ำเหล็กในระหว่างการรอการถ่ายน้ำเหล็ก

เพื่อให้ทราบถึงข้อมูลการเปลี่ยนแปลงอุณหภูมิน้ำเหล็กตั้งแต่ทำการเทจากเตา หลอมอาร์คไฟฟ้า และในช่วงระหว่างการรอการถ่ายน้ำเหล็ก ผู้วิจัยจึงทำการตรวจวัดภาคสนาม ขอร้องให้ทางโรงงานเพิ่มการวัดอุณหภูมิน้ำเหล็กภายในเบ้ารับน้ำเหล็กที่มาถึงสถานีหล่อ แบบต่อเนื่องอีกหนึ่งครั้ง โดยเว้นระยะจากการวัดครั้งแรกเมื่อเบ้ารับน้ำเหล็กเคลื่อนย้ายมาถึง สถานีหล่อแบบต่อเนื่อง ประมาณ 3-4 นาที

3.7.1 ผลการ<mark>ตรวจวัดภาคส</mark>นาม

การเปลี่ยนแปลงอุณหภูมิน้ำเหล็กในระหว่างการรอการถ่ายน้ำเหล็กในรูปที่ 3-32 แสดงให้เห็นถึงการลดลงของอุณหภูมิน้ำเหล็กเมื่อระยะเวลาในการรอเพิ่มขึ้น ซึ่งอัตราเฉลี่ยการ ลดลงของอุณหภูมิน้ำเหล็กมีค่าเท่ากับ 2.5 C/min

รูปที่ 3-32 การเปลี่ยนแปลงอุณหภูมิน้ำเหล็กในระหว่างการรอการถ่ายน้ำเหล็ก

จุฬาลงกรณ่มหาวิทยาลัย

3.8 ข้อมูลอุณหภูมิผิวหน้าสแลกที่ปกคลุมน้ำเหล็ก

ข้อมูลอุณหภูมิผิวหน้าน้ำเหล็กเป็นข้อมูลที่มีความสำคัญในการประเมินการสูญ เสียความร้อนที่ผิวหน้าน้ำเหล็ก ที่ปกคลุมด้วยสแลก ซึ่งในการตรวจวัดภาคสนามกระทำด้วยการ ใช้กล้องถ่ายภาพรังสีอินฟราเรดยี่ห้อ FLIR รุ่น P640 ช่วงการวัด -40 ถึง 2000 °C รูปที่ 3-29 ถ่ายภาพผิวสแลก เมื่อเบ้ารับน้ำเหล็กเคลื่อนย้ายมาถึงที่สถานีการหล่อแบบต่อเนื่อง ในการ ตรวจวัดแต่ละครั้งจะทำการถ่ายภาพรังสีอินฟราเรด ซึ่งตั้งค่าสภาพการเปล่งรังสีความร้อน (emissivity) ที่ 0.85 จำนวน 2 ภาพ ที่เวลาห่างกัน 5 นาที

รูปที่ 3-33 กล้องถ่<mark>ายภาพรั</mark>งสีอินฟราเรด ยี่ห้อ FLIR รุ่น P640 ช่วงการวัด -40 ถึง 2000 C

3.8.1 ผลการต<mark>รว</mark>จวัดภาคสนาม

ภาพถ่ายรังสีอินฟราเรด และภาพถ่ายผิวหน้าสแลกที่ปกคลุมน้ำเหล็ก ในสองรอบ การทำงานในรูปที่ 3-34 และตารางที่ 3-4 แสดงให้เห็นถึงสแลกที่ปกคลุมอยู่ที่ผิวหน้าน้ำเหล็ก ที่ ผิวหน้าสแลกมีอุณหภูมิในช่วง 450 ถึง 960 °C ขึ้นกับความหนาของสแลก ซึ่งในบริเวณ ที่สแลกบางอุณหภูมิจะสูงกว่าบริเวณที่สแลกหนา อันน่าจะมาจากการที่สแลกมีคุณสมบัติเป็น ฉนวน นอกจากนี้เมื่อพิจารณาผลการตรวจวัดสองครั้ง พบว่าให้ผลได้ใกล้เคียงกัน

รูปที่ 3-34 ภาพถ่ายรังสีอินฟราเรด และภาพถ่ายของผิวสแลก ขณะเคลื่อนย้ายมาถึงสถานีหล่อแบบต่อเนื่อง

a	<u>a</u> 0	1 1	9 2
ตาจางท 3_1	<i>ดกาหก</i> บไบตาเ	19891.967.99	ของแก่หมาสแลก
		BRIDONDI IN J	

Spot	Temperature (deg C)			
Sp1	964			
Sp2	637			
Sp3	486			
Sp4	952			
Sp5	784			
Sp6	469			

3.9 ข้อมูลอุณหภูมิผิวด้านในเบ้ารับน้ำเหล็ก

อุณหภูมิผิวด้านในเบ้ารับน้ำเหล็ก ซึ่งวัดทางอ้อมด้วยถ่ายภาพรังสีอินฟราเรด เป็นข้อมูลที่ใช้สำหรับการสอบเทียบ ผลการจำลองสภาวะทางความร้อนของเบ้ารับน้ำเหล็ก การ ตรวจวัดภาคสนามทำด้วยกล้องถ่ายภาพรังสีอินฟราเรด ซึ่งตั้งค่าสภาพการเปล่งรังสีความร้อน (emissivity) ที่ 0.8 ถ่ายภาพเบ้ารับน้ำเหล็กหลังเสร็จสิ้นการถ่ายน้ำเหล็กไปยังอ่างรับน้ำเหล็ก

3.9.1 ผลการตรวจ<mark>วัดภาคสนาม</mark>

ภาพถ่ายรังสีอินฟราเรด และภาพถ่ายผิวข้างด้านในเบ้ารับน้ำเหล็กภาพหลังการ ถ่ายน้ำเหล็กในรูปที่ 3-35 และตารางที่ 3-5 แสดงให้เห็นการแจกแจงอุณหภูมิผิวด้านใน พบว่า อุณหภูมิผิวด้านในอยู่ในช่วง 700 – 900 °C ซึ่งบริเวณขอบปากเบ้ารับน้ำเหล็กมีอุณหภูมิสูงกว่า บริเวณที่ลึกลงไปข้างใน เนื่องจากการลดระดับของน้ำเหล็กในขณะทำการถ่ายน้ำเหล็ก และ บริเวณปากเบ้ายังมีการสัมผัสกับบรรยากาศภาย นอกทำให้มีการสูญเสียความร้อนมากกว่า

รูปที่ 3-35 ภาพถ่ายรังสีอินฟราเรด และภาพถ่ายของผิวข้างด้านในเบ้ารับน้ำเหล็ก ภายหลังจากการถ่ายน้ำเหล็ก

ตารางที่ 3-5 อุณหภูมิในตำแหน่งต่างๆ ของผิวข้างด้านในเบ้ารับน้ำเหล็ก

Spot	Temperature (deg C)		
Sp1	707		
Sp2	750		
Sp3	770		
Sp4	804		
Sp5	869		

เทรัพยากร โมหาวิทยาลัย

บทที่ 4 โปรแกรม และแบบจำลองที่ใช้ในการศึกษาวิจัย

ปัจจุบันการใช้แบบจำลองคอมพิวเตอร์ในการศึกษาปัญหาเชิงวิศวกรรมเป็นไป อย่างแพร่หลาย เนื่องจากความสามารถในการแก้ปัญหาที่ซับซ้อน ซึ่งผลที่ได้ใกล้เคียงกับ ปรากฏการณ์ที่เกิดขึ้นจริง เช่น การใช้แบบจำลองคอมพิวเตอร์ช่วยในการออกแบบผลิตภัณฑ์เพื่อ การลดระยะเวลา และค่าใช้จ่ายในการสร้างชิ้นงานทดสอบ (prototype)

ดังนั้นในการศึกษาการถ่ายเทความร้อนในของเบ้ารับน้ำเหล็กในระหว่างกระบวน การผลิตเหล็กกล้า จึงได้ใช้โปรแกรมสำเร็จเชิงพาณิชย์ ร่วมกับโปรแกรมคำนวณสมการเชิงเส้น หลายตัวแปรที่ผู้วิจัยเขียนขึ้นเอง ในการศึกษาการถ่ายเทความร้อนที่เกิดขึ้น โดยวิธีนี้ทำให้ สามารถทำนายผลการเปลี่ยนตัวแปรต่างๆ ของขั้นตอนการทำงานของเบ้ารับน้ำเหล็ก ได้อย่าง สะดวก ซึ่งผลที่ได้สามารถนำไปใช้เป็นแนวทางในการผลิตต่อไป

Part 1 โปรแกร<mark>มสำเร็จเชิงพาณิชย์ที่ใช้ในการศึกษาวิจัย</mark>

โปรแกรมสำเร็จเชิงพาณิชย์ที่ใช้ในการศึกษา ได้แก่ โปรแกรม Procast รูปที่ 4-1 ซึ่งพัฒนาขึ้นโดยบริษัท ESI-group เป็นโปรแกรมคำนวณทางคณิตศาสตร์ด้วยระเบียบวิธีไฟไนต์ เอลิเมนต์ ออกแบบมาสำหรับการจำลองการถ่ายเทความร้อนในระหว่างการหล่อชิ้นงาน โดยมี ความสามารถในการจำลองการถ่ายเทความร้อนในแบบสามมิติ, ลักษณะการไหล, ความเค้นที่ เกิดขึ้นในหล่อโลหะในรูปแบบสามมิติได้ โดยการกำหนดค่าตัวแปรต่างๆ ที่จำเป็น เช่น อุณหภูมิ เริ่มต้นของแบบหล่อ (mold), อุณหภูมิน้ำเหล็ก, ความหนาแน่นของน้ำเหล็ก, อัตราการไหลของน้ำ เหล็ก, คุณสมบัติวัสดุที่ใช้เป็นแบบหล่อ เป็นต้น

ดังนั้นการศึกษาครั้งนี้จึงได้นำโปรแกรมมาปรับใช้ในการจำลองการถ่ายเทความ ร้อนของเบ้ารับน้<mark>ำเห</mark>ล็กในระหว่างกระบวนการผลิต

รูปที่ 4-1 โปรแกรมสำเร็จเชิงพาณิชย์ที่ใช้ในการศึกษา

4.1 การทำงานของโปรแกรมสำเร็จเชิงพาณิชย์

การทำงานของโปรแกรมสำเร็จเชิงพาณิชย์ นั้นแบ่งขั้นตอนการทำงานออกเป็น หลายๆ ส่วน (Module) แยกจากกันเป็น 4 ส่วน ได้แก่

4.1.1 MeshCAST

เป็นส่วนแรกของการทำงานโปรแกรม ทำหน้าที่สร้างแบบจำลองสามมิติเพื่อใช้ใน การคำนวณจาก ไฟล์แบบสามมิติที่นำเข้ามาจากโปรแกรมเขียนแบบสามมิติ เช่น Solid work โดย การกำหนดขนาดของตารางสามมิติ (Mesh) ที่ใช้ในการคำนวณจะทำในขั้นตอนนี้ รูปที่ 4-2 แสดง หน้าต่าง MeshCAST

รูปที่ 4-2 หน้าต่าง MeshCAST

4.1.2 PreCAST

เป็นขั้นตอนที่ทำงานต่อจาก MeshCAST มีหน้าที่กำหนดคุณสมบัติทางกล และ ทางเทอร์โมไดนามิค ของวัสดุที่ทำการคำนวณ, ค่าอินเตอร์เฟสระหว่างชิ้นวัสดุ (interface), ค่า เงื่อนไขขอบเขต (boundary condition), ค่าเงื่อนไขเริ่มต้น (initial condition) ซึ่งสามารถดึงผล ของการจำลองครั้งก่อนหน้ามาเป็นค่าเงื่อนไขเริ่มต้นในการจำลองครั้งใหม่ได้, ระยะเวลาจำลอง (simulation time) และขั้นระยะเวลา (time step) ที่ต้องการในการคำนวณ รูปที่ 4-3 การกำหนดค่าที่สำคัญในการคำนวณมีรายละเอียดดังนี้

รูปที่ 4-3 หน้าต่าง PreCAST

4.1.2.1 การกำหนดค<mark>ุณสมบัติวัส</mark>ดุ

คุณสมบัติของวัสดุที่สำคัญในการคำนวณอัตราการถ่ายเทความร้อนได้แก่ ค่า สภาพการนำความร้อน ค่าความจุความร้อนจำเพาะ และค่าความหนาแน่น ซึ่งสามารถกำหนดได้ ในรูปฟังก์ชันของอุณหภูมิ รูปที่ 4-4

รูปที่ <mark>4-4 หน้าต่า</mark>งการกำหนดคุณสมบัติทางความร้อนของวัสดุ

4.1.2.2 การกำห<mark>น</mark>ดอินเทอร์เฟสระหว่างชิ้นวัตถุ

ในการคำนวณอัตราการถ่ายเทความร้อนระหว่างวัตถุ 2 ชิ้นที่สัมผัสกันด้วย โปรแกรมสำเร็จเชิงพาณิชย์จำเป็นอย่างยิ่งที่จะกำหนดชนิดของผิวสัมผัส ที่หน้าจออินเทอร์เฟส ซึ่งสามารถกำหนดได้ใน 3 รูปแบบได้แก่

1) แบบ Equivalence

กรณีนี้ node ที่รอยต่อระหว่างสองผิวจะใช้ node ชนิดเดียวกันในการคำนวณ ทำ ให้การแจกแจงอุณหภูมิของวัตถุทั้งสองชิ้นมีลักษณะต่อเนื่องกัน วิธีนี้ใช้กำหนดสำหรับกรณีที่ วัตถุ ทั้งสองชิ้นเป็นวัสดุชนิดเดียวกัน หรือ กรณีที่ไม่มีความต้านทานทางความร้อนที่ระหว่างผิววัตถุ ลักษณะการวางตัวของ node ในการคำนวณ และการแจกแจงอุณหภูมิแสดงในรูปที่ 4-5

รูปที่ 4-5 การกำหนดอินเทอร์เฟสแบบ Equivalence

2) แบบ Coincident

กรณีนี้ node ที่รอยต่อระหว่างสองผิวจะใช้ node แยกจากกันในการคำนวณ ซึ่ง โปรแกรมจะทำการสร้าง node ในตำแหน่งเดียวกันเพิ่มขึ้นในตำแหน่งเดียวกัน ทำให้สามารถทำ การจำลองการแจกแจงอุณหภูมิที่มีลักษณะไม่ต่อเนื่อง เช่นในกรณี ชิ้นงานหล่อ (casting) กับ แบบหล่อ (mold) ได้ ลักษณะการวางตัวของ node ในการคำนวณ และการแจกแจงอุณหภูมิ แสดงในรูปที่ 4-6 ซึ่งการเลือกกำหนดแบบ Coincident จำเป็นที่ต้องกำหนดค่าสัมประสิทธิ์การ ถ่ายเทความร้อน (Heat transfer coefficient, W/m².K) ระหว่างสองผิววัสดุด้วย

รูปที่ 4-6 การกำหนดอินเทอร์เฟสแบบ Coincident

3) แบบ Non-coincident

กรณีนี้คล้ายกับกรณี แบบ Coincident ซึ่งจะมีการสร้าง node เพิ่มขึ้น เพียงแต่ node จะไม่อยู่ในตำแหน่งเดียวกันกับ node แรก ลักษณะการวางตัวของ node ในการคำนวณ และการแจกแจงอุณหภูมิแสดงในรูปที่ 4-7

รูปที่ 4-7 การกำหนดอินเทอร์<mark>เฟสแบบ Non-</mark>coincident

อย่างไรก็ดีในการศึกษาเบื้องต้นพบว่าการที่จะทำโมเดลที่สามารถทำการจำลอง แบบหลายขั้นได้นั้น กรณีที่จำนวนชิ้นวัสดุที่ทำการคำนวณในแต่ละขั้นไม่เท่ากัน โปรแกรมจะยอม ให้ทำการกำหนดผิวสัมผัสของชิ้นที่เพิ่มเติมเข้าไปภายหลังด้วย การถ่ายเทความร้อนเป็นแบบ NCOINC เท่านั้น

4.1.2.3 การกำหน<mark>ด</mark>เงื่อนไขขอบเขต (boundary conditions) ของโปรแกรม

การกำหนดเงื่อนไขขอบเขตในการคำนวณของโปรแกรมสำเร็จเชิงพาณิชย์ สามารถกำหนดได้ในหลายรูปแบบ ไม่ว่าจะเป็นอุณหภูมิ ความดัน หรือ อัตราการไหลเข้าของมวล แต่อย่างไรก็ดีในการศึกษาการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กนี้ ได้เลือกใช้การกำหนดเงื่อนไข ขอบเขตในรูปแบบของ การถ่ายเทความร้อน เนื่องจากความสะดวกในการทำงาน รูปที่ 4-8 แสดง หน้าต่างในการกำหนดเงื่อนไขขอบเขต ซึ่งเงื่อนไขขอบเขตการถ่ายเทความร้อนเป็นการอนุญาตให้ มีการคำนวณการถ่ายเทความร้อนระหว่างผิวที่กำหนดเงื่อนไขขอบเขตกับผิวด้านนอกที่ไม่ได้ กำหนดเป็น โดเมนในการคำนวณ โดยสามารถกำหนดได้ในรูปตัวแปรสี่ตัว ได้แก่ สัมประสิทธิ์การ พาความร้อน, อุณหภูมิสิ่งแวดล้อม, สภาพเปล่งรังสี (Emissivity) และ Heat Flux (Q_F) ซึ่ง สอดคล้องกับสมการการถ่ายเทความร้อน

$$Q = Q_F + h(T - T_a) + \sigma \varepsilon (T^4 - T_a^4)$$
(4.1)

อนึ่งโปรแกรมทำการคำนวณการถ่ายเทความร้อนเฉพาะตัวแปรที่กำหนดเท่านั้น กรณีที่ไม่มีการกำหนดตัวแปรใด เทอมนั้นของสมการจะไม่นำมาคำนวณ

	BC-Type: Heat					
Keyword: MeshSizingOutside	Use	User: Siripong_Cheanklin			Date: 1/27/10	
Film Coeff: 2.000000e+001	W/m**2/K	_	Time	Temp	Function	
Emissivity: 7.800000e-001			Time	Temp	Function	
Ambient Temp: 3.500000e+001	с	-	Time		Function	
Heat Flux: 20	W/m**2	-	Time		Function	
View Factor: OFF						
Please Enter Comments	Here:					
					Store	
					Cancel	

รูปที่ 4-8 หน้าต่างในการกำหนดเงื่อนไขขอบเขต

4.1.2.4 การกำหนดเงื่อนไขเริ่มต้น (initial conditions)

การกำหนดเงื่อนไขเบื้องต้นในการคำนวณ ซึ่งหมายถึงการกำหนดค่าอุณหภูมิ เริ่มต้น สามารถทำได้ในสองรูปแบบได้แก่ 1) การกำหนดเป็นค่าอุณหภูมิในการคำนวณครั้งนั้นๆ และ 2) การนำค่าอุณหภูมิจากการคำนวณในครั้งก่อนหน้ามาเป็นค่าเริ่มต้นในการคำนวณ ซึ่ง จำเป็นต้องกำหนดขั้นที่ใช้ในการดึงข้อมูลด้วย อนึ่งวิธีการนี้ทำได้ในกรณีที่โดเมนของการจำลอง การถ่ายเทความร้อนสอดคล้องกัน

4.1.2.5 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step)

ในการจำลองการถ่ายเทความร้อนด้วยโปรแกรมสำเร็จเชิงพาณิชย์ จำเป็นที่ จะต้องกำหนดระยะเวลาในการจำลอง (simulation time) เพื่อที่จะเป็นขอบเขตในการสิ้นสุดการ คำนวณ และขั้นระยะเวลา (time step)

4.1.3 DataCAST/ProCAST

ขั้นตอนนี้มีหน้าที่ทำการคำนวณ ตามค่าที่ได้กำหนดไว้ในขั้นตอน PreCAST โดย รายละเอียดการคำนวณสามารถดูได้จากหน้าจอควบคุม รูปที่ 4-9 ซึ่งแสดงข้อมูลที่สำคัญ เช่น สัดส่วนร้อยละการแข็งตัวของน้ำเหล็ก (Solid fraction) จำนวนขั้นในการคำนวณ (TimeSteps) ระยะเวลาที่จำลอง (Simulated time) ขั้นเวลาสุดท้ายที่ใช้ในการคำนวณ (Time step) และ ระยะเวลาที่ใช้ในการคำนวณ (Wall clock time)

รูปที่ 4-9 หน้าจอควบคุม

4.1.4 ViewCAST

ขั้นตอนนี้มีหน้าที่แสดงผลการคำนวณที่แต่ละขั้นเวลาที่ได้ทำการบันทึกข้อมูล ใน รูปแบบสามมิติ ทั้งในรูปแบบของอุณหภูมิ หรืออัตราการถ่ายเทความร้อน นอกจากนี้ยังสามารถ ส่งออก (export) ข้อมูลอุณหภูมิต่อเวลาที่ตำแหน่งต่างๆ ในรูปไฟล์เอกสารได้ด้วย รูปที่ 4-10 แสดงหน้าต่าง ViewCAST

รูปที่ 4-10 หน้าต่าง view case

4.2 การตรวจสอบการทำงานของโปรแกรม (validation)

เพื่อความมั่นใจในการใช้งานโปรแกรมสำเร็จเชิงพาณิชย์ในการคำนวณการ ถ่ายเทความร้อนนั้น ทางผู้วิจัยได้ทำการทดสอบการทำงานของโปรแกรม ด้วยการเปรียบเทียบ ผลลัพธ์ เช่น การแจกแจกอุณหภูมิ และอัตราการถ่ายเทความร้อน ที่ได้จากการคำนวณของ โปรแกรมกับ ผลที่ได้จากการคำนวณการนำความร้อนหนึ่งมิติที่ขึ้นกับเวลา (one dimension transient conduction) กรณีที่ของแข็งมีลักษณะกึ่งอนันต์ (semi-infinite solid) ทั้งใน 3 กรณี ได้แก่ 1) อุณหภูมิผิวคงที่ (Constant Surface Temperature) 2) อัตราการถ่ายเทความร้อนคงที่ (Constant Surface Heat Flux) และ 3) การพาความร้อนที่ผิวหน้า (Surface Convection) ซึ่ง ทฤษฏีได้แสดงไว้ในหัวข้อที่ 2.3.1

4.2.1 แบบจำลองที่ใช้ในการศึกษา

ในการตรวจสอบการทำงานของโปรแกรมสำเร็จเชิงพาณิชย์ ด้วยการคำนวณการ ถ่ายเทความร้อนหนึ่งมิติที่ขึ้นกับเวลา ได้ใช้แบบจำลองในรูปแท่งสี่เหลี่ยม หน้าตัดขนาด 25x25 มิลลิเมตร ยาว 1000 มิลลิเมตร รูปที่ 4-11 และแสดงข้อมูลแบบจำลองในตารางที่ 4-1

รูปที่ 4-11 แบบจำลองที่ใช้ในการตรวจสอบการทำงานของโปรแกรม

Dimension (mm x mm x mm)	25 x 25 x 1000		
Mesh size (mm)	5		
Number of material	1		
Nodes	7,833		
Elements	31,394		

ตารางที่ 4-1 ข้อมูลแบบจำลองที่ใช้ในการสอบเทียบโปรแกรมสำเร็จเชิงพาณิชย์

กำหนดคุณสมบัติทางความร้อนของวัตถุ ในการจำลองการถ่ายเทความร้อน ทั้ง 3 รูปแบบ ด้วยคุณสมบัติของ Plain carbon AISI 1100 แสดงในตารางที่ 4-2

ตารางที่ 4-2 คุณสมบัติทางความร้อนของวัตถุที่ใช้ในการสอบเทียบโปรแกรมสำเร็จเชิงพาณิชย์

Material	Plain carbon AISI 1100		
	Mn \leq 1% Si \leq 0.1%		
Density (kg/m ³)	7,854		
Thermal Conductivity, k (W/m.K)	60.5		
Specific heat , Cp (J/kg.K)	434		
Thermal diffusivity, Q (m ² /s)	1.77x10 ⁻⁵		

กำหนดในการถ่ายเทความร้อนเฉพาะในแนว x ที่ตำแหน่งผิว ด้าน x = 0 เท่านั้น ส่วนผิวด้านอื่นๆ กำหนดให้ไม่มีการถ่ายเทความร้อน (adiabatic heat transfer surface)

4.2.2 กรณีที่ 1 อุณหภูมิผิวคงที่ (Constant Surface Temperature)

กรณีการถ่ายเทความร้อน ด้วยการกำหนดให้เป็นการถ่ายเทความร้อนในรูปแบบ อุณหภูมิผิวคงที่ เปรียบเทียบระหว่างผลที่ได้จากการคำนวณด้วยโปรแกรมสำเร็จ กับผลที่ได้จาก การคำนวณด้วยวิธีที่ของแข็งมีลักษณะกึ่งอนันต์ (semi-infinite solid) ด้วยสมการที่ 2.18 และ 2.19 ในตารางที่ 2-4 ซึ่งกำหนดให้ตัวแปรที่ใช้ในการคำนวณให้เหมือนกับ เงื่อนไขขอบเขต และ เงื่อนไขเริ่มต้น มีค่าเท่ากันกับที่ใช้ในโปรแกรมสำเร็จเชิงพาณิชย์

4.2.2.1 การกำหนดเงื่อนไขขอบเขต

ที่ผิวด้าน x = 0 มีการกำหนด เงื่อนไขขอบเขตให้อุณหภูมิภายนอกผิวสัมผัสมี ค่าคงที่เท่ากับ 800K

4.2.2.2 การกำหนดเงื่อนไขเบื้องต้น

แบบจำลองที่ใช้ในการคำนวณมีการกำหนดอุณหภูมิเริ่มต้นในการคำนวณ เท่ากันทั่วทั้งชิ้นวัตถุ มีค่าเท่ากับ 300K (27 °C)

4.2.2.3 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step)

ในการจำลองการถ่ายเทความร้อนด้วยโปรแกรมสำเร็จเชิงพาณิชย์ กำหนด ระยะเวลาในการจำลองทั้งสิ้น 60 นาที ด้วยการกำหนดขั้นระยะเวลาเริ่มต้น 0.001 วินาที และขั้น ระยะเวลามากที่สุด 0.1 วินาที

4.2.2.4 เปรียบเทียบผลลัพธ์ที่ได้

ผลการเปลี่ยนแปลงของอุณหภูมิตามเวลาที่ตำแหน่งต่างๆ และการแจกแจง อุณหภูมิภายในแบบจำลองที่ระยะเวลาต่างๆ ของผลที่ได้จากการคำนวณด้วยโปรแกรมสำเร็จ กับ ผลที่ได้จากการคำนวณด้วยวิธีที่ของแข็งมีลักษณะกึ่งอนันต์ (semi-infinite solid) ในกรณีอุณหภูมิ ที่ผิว x= 0 มีอุณหภูมิคงที่เท่ากับ 800K (527 °C) แสดงในรูปที่ 4-12 และรูปที่ 4-13 ตามลำดับ ซึ่งเห็นได้ว่าค่าที่ได้มีความใกล้เคียงกันอย่างมาก

 Semi-infinite solid
 0 m
 0.1 m
 0.2 m
 0.3 m
 0.4 m
 0.5 m

 Commercial software
 0 m
 0.1 m
 0.2 m
 0.3 m
 0.4 m
 0.5 m

รูปที่ 4-12 การเปลี่ยนแปลงของอุณหภูมิตามเวลาที่ตำแหน่งต่างๆ กรณีที่ 1 อุณหภูมิผิวคงที่

รูปที่ 4-13 การแจกแ<mark>จ</mark>งอุณ<mark>หภูมิภายในแบบจำลองที่ระยะเวลาต่</mark>างๆ กรณีที่ 1 อุณหภูมิผิวคงที่

 4.2.3 กรณีที่ 2 อัตราการถ่ายเทความร้อนคงที่ (Constant Surface Heat Flux) กรณีการถ่ายเทความร้อน ด้วยการกำหนดให้เป็นการถ่ายเทความร้อนในรูปแบบ อัตราการถ่ายเทความร้อนคงที่ เปรียบเทียบระหว่างผลที่ได้จากการคำนวณด้วยโปรแกรมสำเร็จ กับผลที่ได้จากการคำนวณด้วยวิธีที่ของแข็งมีลักษณะกึ่งอนันต์ (semi-infinite solid) ด้วยสมการที่
 2.20 ในตารางที่ 2-4 ซึ่งกำหนดให้ตัวแปรที่ใช้ในการคำนวณให้เหมือนกับ เงื่อนไขขอบเขต และ เงื่อนไขเริ่มต้น มีค่าเท่ากันกับที่ใช้ในโปรแกรมสำเร็จเชิงพาณิชย์

4.2.3.1 การกำหนดเงื่อนไขขอบเขต

ที่ผิวด้าน x = 0 มีการกำหนด เงื่อนไขขอบเขตให้มีอัตราการถ่ายเทความร้อนใน ทิศทางเข้าสู่วัตถุที่ 10 kW/m²

4.2.3.2 การกำหนดเงื่อนไขเบื้องต้น

แบบจำลองที่ใช้ในการคำนวณมีการกำหนดอุณหภูมิเริ่มต้นในการคำนวณ เท่ากันทั่วทั้งชิ้นวัตถุ มีค่าเท่ากับ 300K (27 °C)

4.2.3.3 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step)

ในการจำลองการถ่ายเทความร้อนด้วยโปรแกรมสำเร็จเชิงพาณิชย์ กำหนด ระยะเวลาในการจำลองทั้งสิ้น 60 นาที ด้วยการกำหนดขั้นระยะเวลาเริ่มต้น 0.001 วินาที และขั้น ระยะเวลามากที่สุด 0.1 วินาที

4.2.3.4 เปรียบเทียบผลลัพธ์ที่ได้

ผลการเปลี่ยนแปลงของอุณหภูมิตามเวลาที่ตำแหน่งต่างๆ และการแจกแจง อุณหภูมิภายในแบบจำลองที่ระยะเวลาต่างๆ ของผลที่ได้จากการคำนวณด้วยโปรแกรมสำเร็จ กับ ผลที่ได้จากการคำนวณด้วยวิธีที่ของแข็งมีลักษณะกึ่งอนันต์ (semi-infinite solid) ในกรณีที่ผิว ด้าน x = 0 มีการกำหนด เงื่อนไขขอบเขตให้มีอัตราการถ่ายเทความร้อนในทิศทางเข้าสู่วัตถุที่ 10 kW/m² แสดงในรูปที่ 4-14 และรูปที่ 4-15 ตามลำดับ ซึ่งเห็นได้ว่าค่าที่ได้มีความใกล้เคียงกันอย่าง มาก

รูปที่ 4-<mark>1</mark>5 ก<mark>ารแจกแจงอุณหภูมิภายในแบบจำลองที่ระยะเวลาต่างๆ</mark>

กรณีที่ 2 อัตราการถ่ายเทความร้อนคงที่

4.2.4 กรณีที่ 3 การ<mark>พาความร้อนที่ผิวหน้า (</mark>Surface Convection)

กรณีการถ่ายเทความร้อน ด้วยการกำหนดให้เป็นการถ่ายเทความร้อนในรูปแบบ มีการพาความร้อนที่ผิวหน้า เปรียบเทียบระหว่างผลที่ได้จากการคำนวณด้วยโปรแกรมสำเร็จ กับ ผลที่ได้จากการคำนวณด้วยวิธีที่ของแข็งมีลักษณะกึ่งอนันต์ (semi-infinite solid) ด้วยสมการที่ 2.21 ในตารางที่ 2-4 ซึ่งกำหนดให้ตัวแปรที่ใช้ในการคำนวณให้เหมือนกับ เงื่อนไขขอบเขต และ เงื่อนไขเริ่มต้น มีค่าเท่ากันกับที่ใช้ในโปรแกรมสำเร็จเชิงพาณิชย์

4.2.4.1 การกำหนดเงื่อนไขขอบเขต

ที่ผิวด้าน x = 0 มีการกำหนด เงื่อนไขขอบเขตให้มีการพาความร้อน ด้วยอุณหภูมิ ของไหลภายนอกเท่ากับ 1,000K ซึ่งกำหนดสัมประสิทธิ์การพาความร้อน (Convection coefficient) เท่ากับ 300 W/m².K

4.2.4.2 การกำหนดเงื่อนไขเบื้องต้น

แบบจำลองที่ใช้ในการคำนวณมีการกำหนดอุณหภูมิเริ่มต้นในการคำนวณ เท่ากันทั่วทั้งชิ้นวัตถุ มีค่าเท่ากับ 300K (27 °C)

4.2.4.3 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step)

ในการจำลองการถ่ายเทความร้อนด้วยโปรแกรมสำเร็จเชิงพาณิชย์ กำหนด ระยะเวลาในการจำลองทั้งสิ้น 60 นาที ด้วยการกำหนดขั้นระยะเวลาเริ่มต้น 0.001 วินาที และขั้น ระยะเวลามากที่สุด 0.1 วินาที

4.2.4.4 เปรียบเทียบผลลัพธ์ที่ได้

ผลการเปลี่ยนแปลงของอุณหภูมิตามเวลาที่ตำแหน่งต่างๆ และการแจกแจง อุณหภูมิภายในแบบจำลองที่ระยะเวลาต่างๆ ของผลที่ได้จากการคำนวณด้วยโปรแกรมสำเร็จ กับ ผลที่ได้จากการคำนวณด้วยวิธีที่ของแข็งมีลักษณะกึ่งอนันต์ (semi-infinite solid) ในกรณีที่ผิว ด้าน x = 0 มีการกำหนด เงื่อนไขขอบเขตให้มีการพาความร้อน ด้วยอุณหภูมิของไหลภายนอก เท่ากับ 1000K ซึ่งกำหนดสัมประสิทธิ์การพาความร้อน (Convection coefficient) เท่ากับ 300 W/m².K แสดงในรูปที่ 4-16 และรูปที่ 4-17 ตามลำดับ ซึ่งเห็นได้ว่าค่าที่ได้มีความใกล้เคียงกัน อย่างมาก

กรณีที่ 3 การพาความร้อนที่ผิวหน้า

รูปที่ 4-<mark>1</mark>7 ก<mark>าร</mark>แจกแจ<mark>งอุณหภูมิ</mark>ภายในแบบจำลองที่ระยะเวลาต่างๆ

กรณีที่ 3 การพาความร้อนที่ผิวหน้า

4.3 สรุปผลการตรวจสอบกา<mark>รทำงานของโปรแกรม</mark> (validation)

ผลการเปรียบเทียบการคำนวณของโปรแกรมสำเร็จเชิงพาณิชย์กับ ผลที่ได้จาก การคำนวณการนำความร้อนหนึ่งมิติที่ขึ้นกับเวลา (one dimension transient conduction) กรณี ที่ของแข็งมีลักษณะกึ่งอนันต์ (semi-infinite solid) ทั้งใน 3 กรณี ทำให้เชื่อมั่นได้ว่าโปรแกรม สำเร็จเชิงพาณิชย์สามารถใช้ในการศึกษาการถ่ายเทความร้อนในหนึ่งมิติที่ขึ้นกับเวลาได้

4.4 การหาขนาดตารางที่เหมาะสมในการคำนวณ (mesh sizing)

การหาค่าตาราง (mesh) ของแบบจำลองที่เหมาะสมในการคำนวณ มีความ จำเป็น เนื่องจากค่าตารางที่เหมาะสมจะทำให้คอมพิวเตอร์ใช้ระยะเวลาใช้ในการคำนวณน้อย ที่สุด ซึ่งผลการคำนวณมีการเปลี่ยนแปลงไม่มากอย่างมีนัยสำคัญ เมื่อเทียบกับการใช้ตารางที่ ละเอียดกว่าในการคำนวณ

เนื่องจากแบบจำลองที่ใช้ในการคำนวณมีขนาดใหญ่เท่ากับขนาดจริงของเบ้ารับ น้ำเหล็ก การหาค่าตารางที่เหมาะสมจึงไม่สะดวกที่จะใช้แบบจำลองจริงในการศึกษา ทำให้ผู้วิจัย เลือกใช้ส่วนหนึ่งของแบบจำลองจริงในการศึกษาแทน รูปที่ 4-18 แสดงแบบจำลองที่ใช้ในการหา ค่าตารางที่เหมาะสม ซึ่งประกอบด้วยวัสดุ 3 ชิ้น

รูปที่ 4-1<mark>8</mark> แบบจ<mark>ำลองที่ใช้ในการหาค่าตารางที่เหมาะสม</mark>

การหาค่าตารางที่เหมาะสมนั้น ได้ทำการเปลี่ยนขนาดตารางที่ใช้ต่างๆ กัน เพื่อ เปรียบเทียบผลการคำนวณ ทั้งสิ้น 10 รูปแบบ ได้แก่ ตารางขนาด 5, 6, 7, 8, 10, 12, 15, 17, 20 และ ขนาด 5 และ 10 mm ผสมกัน รูปที่ 4-19 แสดงแบบจำลองเมื่อทำการตีตารางขนาด 10 mm ซึ่งจากขนาดตารางทั้ง 9 ค่าทำให้ได้ค่าจำนวน node และ element แสดงในรูปที่ 4-20 ซึ่งจะ สังเกตได้ว่า กรณีที่ตารางมีขนาดเล็กจะมีจำนวน node และ element มากกว่าตารางที่มีขนาด ใหญ่ โดยขนาดตาราง ต่อจำนวน node และ element มีความสัมพันธ์ของการลดลงแบบเอ็กซ์ โพเนนเชียล

รูปที่ 4-20 ความสัมพันธ์ระหว่างขนาดตาราง ต่อจำนวน node และ element

กำหนดคุณสมบัติทางความร้อนของวัตถุของวัสดุทั้ง 3 ชิ้น ในการคำนวณเพื่อหา ขนาดตารางที่เหมาะสม ด้วยคุณสมบัติของวัสดุทนไฟ ชนิด SK38 แสดงในตารางที่ 4-3

Material	Refractory, SK38		
Density (kg/m ³)	2,750		
Thermal Conductivity, k	Temperature (°C)	Conductivity, k (W/m.K)	
(W/m.K)	400	2.20	
	600	2.09	
	800	2.03	
	1,000	2.00	
Specific heat, Cp (J/kg.K)	1,100		
Thermal diffu <mark>sivi</mark> ty, Q (m ² /s)	$7.27 \times 10^{-7} - 6.61 \times 10^{-7}$		

ตารางที่ 4-3 คุณสมบัติทางความร้อนของวัตถุที่ใช้ในการหาค่าตารางที่เหมาะสม (mesh sizing)

4.4.1.1 การกำหน<mark>ดอินเทอร์เฟสระหว่างชิ้นวัตถุ</mark>

กำหนดอินเทอร์เฟสระหว่างวัสดุชิ้นที่ 1 กับ ชิ้นที่ 2 และระหว่างชิ้นที่ 2 และชิ้นที่ 3 กำหนดอินเทอร์เฟสในรูปแบบ Equivalence เนื่องจากวัสดุชิ้นที่ 1 2 และ 3 ในการจำลองเป็น วัสดุชนิดเดียวกัน

4.4.1.2 การกำหนดเงื่อนไขขอบเขต

ที่ผิวด้าน A x = 0 มีการกำหนดเงื่อนไขขอบเขตให้เสมือนว่ามีการรับความร้อน จาก ทั้งในรูปของการพาความร้อนและการแผ่รังสีความร้อน ซึ่งกำหนดสัมประสิทธิ์การพาความ ร้อน (convection coefficient) เท่ากับ 50 W/m².K และ ค่าการเปล่งรังสีความร้อน, **E** (emissivity) เท่ากับ 0.7 จากบรรยากาศภายนอกอุณหภูมิ 800 °C นอกจากนั้นยังกำหนดให้ที่ผิว ด้าน A มีอัตราการถ่ายเทความร้อนในทิศทางเข้าสู่วัตถุที่ 5 kW/m²

ที่ผิวด้าน B มีการกำหนดเงื่อนไขขอบเขตให้เสมือนว่ามีการสูญเสียความร้อนจาก ผิวด้านนอกสู่บรรยากาศ ในรูปของการพาความร้อนและการแผ่รังสีความร้อน ซึ่งกำหนด สัมประสิทธิ์การพาความร้อน (convection coefficient) เท่ากับ 20 W/m².K และ ค่าการเปล่งรังสี (emissivity) **E** เท่ากับ 0.78 ไปสู่บรรยากาศภายนอกอุณหภูมิ 35 °C

4.4.1.3 การกำหนดเงื่อนไขเบื้องต้น

แบบจำลองที่ใช้ในการคำนวณมีการกำหนดอุณหภูมิเริ่มต้นในการคำนวณ เท่ากันทั่วทั้งชิ้นวัตถุ มีค่าเท่ากับ 35 °C

4.4.1.4 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step)

ในการจำลองการถ่ายเทความร้อนด้วยโปรแกรมสำเร็จเชิงพาณิชย์ กำหนด ระยะเวลาในการจำลองทั้งสิ้น 120 นาที ด้วยการกำหนดขั้นระยะเวลาเริ่มต้น 0.001 วินาที และ ขั้นระยะเวลามากที่สุด 1 วินาที

4.4.1.5 เปรียบเทียบผลของกา<mark>รเปลี่ยนขนาดตาร</mark>าง

การเปรียบเทียบผลของการเปลี่ยนขนาดตารางจากการพิจารณาการ เปลี่ยนแปลงของอุณหภูมิของ node ที่อยู่ระหว่างวัสดุชิ้นที่ 1 และ 2 ตำแหน่งของ node ดังแสดง ในรูปที่ 4-21 พบว่า การเปลี่ยนแปลงขนาดตารางส่งผลต่อการคำนวณอุณหภูมิน้อยมาก อย่างไรก็ ดีขนาดตารางที่เล็กลงจะใช้ระยะเวลาในการคำนวณเพิ่มมากขึ้น รูปที่ 4-22

รูปที่ 4-21 เปรียบเทียบผลการคำนวณการเปลี่ยนแปลงอุณหภูมิ เมื่อเปลี่ยนขนาดตาราง

รูปที่ 4<mark>-</mark>22 ค<mark>ว</mark>ามสัมพันธ์ระหว่างขนาดตาราง ต่อผลการคำนวณ และระยะเวลาที่ใช้ในการคำนวณ

4.5 สรุปผลการเลือกข<mark>นา</mark>ดต<mark>าราง</mark>

เพื่อความเหมาะสมในส่วนของการคำนวณการถ่ายเทความร้อนของเบ้ารับน้ำ เหล็กจึงเลือกใช้ ตารางสองขนาด ได้แก่ตารางขนาด 10 mm ในบริเวณทั่วไป และตารางขนาด 5 mm ในบริเวณที่เป็นแนวเดียวกับแนวการฝังเทอร์โมคัปเปิลภายในเบ้ารับน้ำเหล็ก

4.6 การเลือกขั้นระยะเวลามากที่สุด (maximum time step)

การเลือกขั้นระยะเวลาที่เหมาะสมในการคำนวณ เพื่อที่จะพิจารณาผลของการ คำนวณ ทำโดยการใช้แบบจำลองและการกำหนดค่าเหมือนกับที่ใช้ในการหาขนาดตารางที่ เหมาะสมในการคำนวณ (mesh sizing) แต่ทำการเลือกขั้นระยะเวลามากที่สุด (maximum time step) ที่ต่างกัน ได้แก่ 0.05, 0.1, 1, 5 และ 10 วินาที ผลที่ได้แสดงให้เห็นว่าการเปลี่ยนแปลงขั้น ระยะเวลาส่งผลต่อการคำนวณอุณหภูมิน้อยมาก รูปที่ 4-23 แต่ขั้นระยะเวลาที่น้อยลงจะใช้ ระยะเวลาที่ใช้ในการคำนวณเพิ่มมากขึ้น รูปที่ 4-24

รูปที่ 4-23 เปร<mark>ียบเทียบผล</mark>การค<mark>ำนวณการเป</mark>ลี่ยนแปลงอุณหภูมิ เมื่อเปลี่ยนขั้นระยะเวลา

รูปที่ 4-24 ความสัมพันธ์ระหว่างขั้นระยะเวลา ต่อผลการคำนวณ และระยะเวลาที่ใช้ในการคำนวณ

4.7 สรุปผลการเลือกขั้นระยะเวลามากที่สุด

เพื่อความเหมาะสมในส่วนของการคำนวณการถ่ายเทความร้อนของเบ้ารับน้ำ เหล็กจึงเลือกใช้ ขั้นระยะเวลามากที่สุดที่ 1 วินาที

4.8 ข้อจำกัดของโปรแกรมสำเร็จเชิง<mark>พาณิ</mark>ชย์

ผลจากการทดลองใช้งานโปรแกรมสำเร็จเชิงพาณิชย์ พบว่าโปรแกรมมีข้อจำกัด บางประการในการทำงาน เช่น การจำลองการถ่ายเทความร้อนในระหว่างการถ่ายน้ำเหล็กออก จากเบ้า (teeming period) ซึ่งน้ำเหล็กภายในเบ้าต้องมีการลดระดับลงเรื่อยๆ ซึ่งโปรแกรมไม่ สามารถทำการจำลองได้ เนื่องจากโปรแกรมออกแบบมาสำหรับเงื่อนไขปัญหาที่มีการเทน้ำเหล็ก เข้าสู่แบบหล่อเท่านั้น ดังนั้นการคำนวณการถ่ายเทความร้อนในขั้นตอนนี้ จึงใช้วิธีการแบ่ง แบบจำลองออกเป็นส่วนๆ ซึ่งแต่ละส่วนมีระดับน้ำเหล็กที่ลดระดับลงเรื่อยๆ ซึ่งอัตราการถ่ายเท ความร้อนของผิวหน้าน้ำเหล็ก และผิวข้างจะได้กำหนดจากการคำนวณการถ่ายเทความร้อนจาก การแผ่รังสีของผิวหลายผิว ที่เขียนขึ้นด้วยโปรแกรม MATLAB

Part 2 โปรแกรมคำนวณสมการเชิงเส้นหลายตัวแปร

4.9 ที่มาและความจำเป็นของโปรแกรม

เนื่องจากข้อจำกัดของโปรแกรมสำเร็จเชิงพาณิชย์ ที่ได้กล่าวไว้ในหัวข้อ 4.5 การ จำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในระหว่างการถ่ายน้ำเหล็ก (teeming period) จึง ใช้วิธีการจำลองโดยแบ่งโมเดลออกเป็นส่วนๆ ซึ่งแต่ละส่วนมีระดับน้ำเหล็กที่บรรจุอยู่ภายใน แตกต่างกัน เสมือนว่าน้ำเหล็กมีการลดระดับลงเรื่อยๆ ในระหว่างการถ่ายน้ำเหล็กออก ประกอบ กับการดึงผลลัพธ์จากการคำนวณขึ้นก่อน มาใช้เป็นอุณหภูมิเบื้องต้นในการคำนวณขั้นต่อไป แสดงขั้นตอนการทำงานในรูปที่ 4-25

<u>หมายเหตุ</u> นำผลของแบบจำลองส่วนที่ 2, 3 และ 4 จากการคำนวณในขั้นที่ i มาใช้เป็นค่าเริ่มต้นในการคำนวณขั้นที่ i+1

รูปที่ 4-25 ขั้นตอนการทำงานที่เลือกใช้ในการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กใน ระหว่างการถ่ายน้ำเหล็ก (teeming period)

การถ่ายเทความร้อนระหว่างผิวหน้าสแลก และผิวข้างด้านในของเบ้ารับน้ำ เหล็กในระหว่างการจำลองกำหนดเงื่อนไขขอบเขตในรูปของ อัตราการถ่ายเทความร้อน ซึ่งอัตรา การถ่ายเทความร้อนได้มาจากการคำนวณสองส่วนได้แก่ 1) การประเมินการสูญเสียความร้อน จากการพาความร้อนธรรมชาติ และ 2) การแผ่รังสีความร้อนระหว่างพื้นผิวหลายพื้นผิว ประกอบด้วย ผิวหน้าสแลก พื้นผิวข้างภายในเบ้ารับน้ำเหล็กที่แบ่งออกเป็นส่วนๆ ตามการแบ่งขั้น น้ำเหล็ก และบรรยากาศภายนอกซึ่งกำหนดให้เป็นผิวๆ หนึ่ง

การเขียนโปรแกรมคำนวณการแผ่รังสีความร้อน ระหว่างพื้นผิวหลายผิวได้ใช้ ทฤษฏีที่กล่าวถึงไว้ในหัวข้อที่ 2.3.3

4.10 การออกแบบโปรแกรม

การออกแบบโปรแกรมเพื่อทำการคำนวณหาอัตราการถ่ายเทความร้อนเนื่องจาก การแผ่รังสีระหว่างผิวหลายผิวนั้น เมื่อพิจารณาจากสมการการแผ่รังสีความร้อนระหว่างผิวหลาย ผิว ที่แสดงไว้ในหัวข้อที่ 2.3.3 พบว่าตัวแปรที่ต้องกำหนดในการคำนวณ ได้แก่ 1) จำนวนผิว ซึ่งจะ เพิ่มขึ้นเมื่อระดับน้ำเหล็กลดลง 2) พื้นที่ของแต่ละผิว 3) สัมประสิทธิ์การมองเห็น, F (view factor) ของผิวแต่ละคู่ 4) สภาพการเปล่งรังสี (emissivity), **E** และ 5) อุณหภูมิของแต่ละผิว ซึ่ง รายละเอียดการหาค่าของแต่ละตัวแปรมีดังนี้

4.10.1 <mark>จำนวนผิวในการค</mark>ำนวณ

จำนวนผิวที่ใช้ในการคำนวณขึ้นกับขั้นของน้ำเหล็กที่ลดระดับลงไป แบบจำลอง แบ่งการลดระดับของน้ำเหล็กออกเป็น 20 ขั้น ซึ่งปริมาตรน้ำเหล็กในแต่ละขั้น, อัตราส่วนปริมาตร ร้อยละต่อความจุเต็มเบ้า, ระยะจากขอบปากเบ้าถึงผิวหน้าสแลก และ จำนวนผิวของแต่ละขั้น แสดงในตารางที่ 4-4

ตารางที่ 4-4 ข้อมูลการแบ่งขั้นน้ำเหล็กในการจำลอง

			ปริมาตรน้ำ	สัดส่วน	ระยะจากขอบ	-
ข้น	ขั้น	กระบวนการ	เหล็กภายใน	ปริมาตรต่อ	ปากถึง	จำนวนผิวที่ใช้
			เบ้า (m³)	ความจุเต็มเบ้า	ผิวหน้าสแลก	ในการคำนวณ
		97		(%)	(m)	
		รอการถ่ายน้ำ	3.54	79.36	0.41	3
	1	เหล็ก				
	2	ถ่ายน้ำเหล็ <mark>ก 1</mark>	3.39	75.87	0.49	4
	3	ถ่ายน้ำเ <mark>หล็ก 2</mark>	3.23	72.38	0.56	5
	4	ถ่าย <mark>น้ำเหล็ก 3</mark>	3.07	68.89	0.63	6
	5	ถ่ายน <mark>้ำเหล็ก</mark> 4	2.92	65.41	0.71	7
	6	ถ่าย <mark>น้ำเหล็ก</mark> 5	2.76	61.92	0.78	8
	7	ถ่าย <mark>น้ำเหล็ก 6</mark>	2.61	58.43	0.86	9
	8	ถ่ายน้ำเ <mark>หล็</mark> ก 7	2.45	54.94	0.93	10
	9	ถ่ายน้ <mark>ำเหล็ก 8</mark>	2.30	51.45	1.01	11
	10	ถ่ายน้ำเห <mark>ล็</mark> ก 9	2.14	47.97	1.09	12
	11	ถ่ายน้ำเหล็ก <mark>1</mark> 0	1.98	44.48	1.16	13
	12	ถ่ายน้ำเหล็ก 11	1.83	40.99	1.24	14
	13	ถ่ายน้ำเหล็ก 12	1.67	37.50	1.32	15
	14	ถ่ายน้ำเหล็ก 13	1.52	34.01	1.40	16
	15	ถ่ายน้ำเหล็ก 14	1.36	30.53	1.48	17
	16	ถ่าย <mark>น้ำเห</mark> ล็ก 15	1.21	27.04	1.57	18
	17	ถ่ายน้ำเหล็ก 16	1.05	23.55	1.65	19
	18	ถ่ายน้ำเหล็ก 17	0.90	20.06	1.73	20
	19	ถ่ายน้ำเหล็ก 18	0.74	16.57	1.82	21
	20	ถ่ายน้ำเหล็ก 19	0.58	13.08	1.90	22
0.0	20	ถ่ายน้ำเหล็ก 20	0.43	9.60	1.99	23
91	21	รอเทสแลก	0.43	9.60	1.99	23
9	22	เบ้าปล่าว	0.00	0.00	2.23	24

4.10.1.1 พื้นที่ของแต่ละผิว

พื้นที่ของแต่ละผิว หาจากการคำนวณทางเรขาคณิต ซึ่งลำดับของผิวแสดงในรูป ที่ 4-26 และขนาดพื้นที่ผิวแต่ละผิวแสดงในตารางที่ 4-5

รูปที่ <mark>4-</mark>26 การแบ่งการลดระดับของน้ำเหล็กออกเป็น 22 ขั้น

,	2	/ /				£٧		
a	4	a	1		,	~	0	
m 1 6 1 99 1	5 91	9 19/010	າເເຕັດ	veini	າມເຕັດຈ	/ ดั้าๆ เดเผ	າກາວຂອງເບລເ	
	-:) //	UNIT	N 66 121 21 2	シーイト	46681816	1112111		
	• • •					2,022		

ขั้น	กระบวนการ	จำนวน ผิวที่ใช้ ในการ คำน <mark>วณ</mark>	พื้นที่ปาก เบ้า, ผิวที่ 1 (m ²)	ผิว ด้านข้าง ผนังที่	พื้นที่ (m ²)	ผิวหน้า สแลกที่	พื้นที่ ผิวหน้า สแลก (m ²)
	รอการถ่ายน้ำ	3	2.28	ผิวที่ 2	2.19	ผิวที่ 3	2.17
1	เหล็ก						
2	ถ่ายน้ำเหล็ก 1	4	2.28	ผิวที่ 4	0.38	ผิวที่ 5	2.15
3	ถ่ายน้ำเหล็ก 2	5	2.28	ผิวที่ 6	0.38	ผิวที่ 7	2.13
4	ถ่ายน้ำ <mark>เหล็ก 3</mark>	6	2.28	ผิวที่ 8	0.38	ผิวที่ 9	2.12
5	ถ่ายน้ำเหล็ก 4	7	2.28	ผิวที่ 10	0.38	ผิวที่ 11	2.10
6	ถ่ายน้ำเหล็ก 5	8	2.28	ผิวที่ 12	0.38	ผิวที่ 13	2.08
7	ถ่ายน้ำ <mark>เห</mark> ล็ก 6	9	2.28	ผิวที่ 14	0.38	ผิวที่ 15	2.06
8	ถ่ายน้ำเห <mark>ล็ก</mark> 7	10	2.28	ผิวที่ 16	0.39	ผิวที่ 17	2.04
9	ถ่ายน้ำเ <mark>ห</mark> ล็ก 8	11	2.28	ผิวที่ 18	0.39	ผิวที่ 19	2.02
10	ถ่ายน้ำเหล็ <mark>ก</mark> 9	12	2.28	ผิวท <mark>ี่</mark> 20	0.39	ผิวที่ 21	2.01
11	ถ่ายน้ำเหล็ก 10	13	2.28	ผิวที่ 22	0.39	ผิวที่ 23	1.99
12	ถ่ายน้ำเหล็ก 11	14	2.28	ผิวที่ 24	0.39	ผิวที่ 25	1.97
13	ถ่ายน้ำเหล็ก 12	15	2.28	ผิวที่ 26	0.39	ผิวที่ 27	1.95
14	ถ่ายน้ำเหล็ก 13	16	2.28	ผิวที่ 28	0.40	ผิวที่ 29	1.93
15	ถ่ายน้ำเหล็ก 14	17	2.28	ผิวที่ 30	0.40	ผิวที่ 31	1.91
16	ถ่ายน้ำ <mark>เหล็</mark> ก 15	18	2.28	ผิวที่ 32	0.40	ผิวที่ 33	1.89
17	ถ่ายน้ำเหล็ก 16	19	2.28	ผิวที่ 34	0.40	ผิวที่ 35	1.87
18	ถ่ายน้ำเหล็ก 17	20	2.28	ผิวที่ 36	0.40	ผิวที่ 37	1.85
19	ถ่ายน้ำเหล็ก 18	21	2.28	ผิวที่ 38	0.41	ผิวที่ 39	1.83
20	ถ่ายน้ำเหล็ก 19	22	2.28	ผิวที่ 40	0.41	ผิวที่ 41	1.81
21	ถ่ายน้ำเหล็ก 20	23	2.28	ผิวที่ 42	0.41	ผิวที่ 43	1.79
22	รอเทสแลก	23	2.28	ผิวที่ 42	0.41	ผิวที่ 43	1.79
23	เบ้าปล่าว	24	2.28	ผิวที่ 44	1.14	ผิวที่ 45*	1.74

*ผิวที่ 45 เป็นผิวก้นเบ้ารับน้ำเหล็ก

4.10.1.2 ตัวประกอบการมองเห็น, F (view factor)

การคำนวณการหาค่าตัวประกอบการมองเห็น *F* (view factor) เริ่มจาก การหา ค่าสัมประสิทธิ์การมองเห็นในขั้นที่ 1 ก่อน ซึ่งขั้นนี้จะมีผิวทั้งสิ้น 3 ผิว ได้แก่ ผิวที่ 1 ผิวปากขอบ เบ้า, ผิวที่ 2 ผิวข้างผนัง และ ผิวที่ 3 ผิวหน้าสแลก ซึ่งค่าตัวประกอบการมองเห็น F_{13} สามารถหา ได้โดยใช้ในสูตรการหาค่าตัวประกอบการมองเห็น 3 มิติ ระหว่างแผ่นวงกลมเรียบสองแผ่นที่วาง ห่างกัน ดังที่แสดงไว้ในหัวข้อที่ 2.3.3 หลังจากนั้นจึงใช้ความสัมพันธ์ Reciprocity relation และ Summation rule ในการหาค่าตัวประกอบการมองเห็น F_{11} , F_{12} , F_{21} , F_{22} , F_{23} , F_{31} , F_{32} และ F_{33} ตามลำดับ

สำหรับในกรณีการหาค่าสัมประสิทธิ์การมองเห็นขั้นอื่นๆ จากการพิจารณาพบว่า เนื่องจากรูปทรงของเบ้ารับน้ำเหล็กที่มีลักษณะลึกเข้าไปด้านในทำให้ สามารถเขียนความสัมพันธ์ ของสัมประสิทธิ์การมองเห็นเพิ่มเติมได้อีก เช่น กรณีการหาค่าตัวประกอบการมองเห็น ในขั้นที่ 2 ซึ่งมี 4 ผิวจะพบว่าค่าตัวประกอบการมองเห็น *F*₁₃ จะสัมพันธ์กับผิวที่ 4 และ 5 ดังแสดงรูปที่ 4-27

รูปที่ 4-27 ความสัมพันธ์ของค่าตัวประกอบการมองเห็น

สามารถเขียนได้ในรูปความสัมพันธ์

$$F_{13} = F_{14} + F_{15} \tag{4.2}$$

สำหรับขั้นอื่นก็ใช้กระบวนการเช่นเดียวกันนี้ในการหาค่าตัวประกอบการมองเห็น

ด้วยขั้นตอนที่แสดงไว้ในรูปที่ 4-28

จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 4-28 การหาค่าตัวประกอบการมองเห็น

4.10.1.3 สภาพการเปล่งรังสี (emissivity), **E** และ อุณหภูมิของแต่ละผิว

สภาพการเปล่งรังสี (emissivity), **E** และ อุณหภูมิของแต่ละผิวเป็นตัวแปรที่ต้อง กำหนดโดยผู้ใช้งานโปรแกรม ซึ่งสภาพการเปล่งรังสี (emissivity), **E** เป็นคุณสมบัติของผิววัสดุที่ ใช้ในการคำนวณ ซึ่ง ในที่นี้ได้แก่ ผิวที่ด้านบนที่การถ่ายเทความร้อนออกสู่บรรยากาศ ผิวด้านใน เบ้าส่วนเหนือระดับน้ำเหล็ก และผิวหน้าสแลกที่ปกคลุมผิวน้ำเหล็ก

อุณหภูมิของแต่ละผิวเป็นค่าที่ได้จากการคำนวณด้วยโปรแกรมสำเร็จในขั้นก่อน

4.10.2 ขั้นตอนการทำงานของโปรแกรม

ขั้นตอนการทำงานของโปรแกรมเริ่มจากผู้ใช้ต้องใส่ค่าอุณหภูมิ และ สัมประสิทธิ์ การเปล่งรังสีความร้อนของแต่ละผิว ในรูป array หลังจากนั้นจึงเรียกใช้คำส่ง RadMatrixInput ซึ่ง ประกอบด้วยตัวแปร ขั้นของแบบจำลองที่ต้องการคำนวณ ตัวแปร array อุณหภูมิ และ สัมประสิทธิ์การเปล่งรังสีความร้อนของแต่ละผิว หลังจากนั้นโปรแกรมจะเรียกค่าสัมประสิทธิ์การ มองเห็นของขั้นที่ทำการคำนวณ และพื้นที่ผิว จากค่าหาไว้แล้วมาใช้ในการคำนวณ แล้วจึงทำการ แก้ระบบสมการเชิงเส้นหลายตัวแปรของการคำนวณอัตราการถ่ายเทความร้อนจากการแผ่รังสี ระหว่างหลายพื้นผิว สุดท้ายจึงทำการแสดงผลค่าที่คำนวณได้ รูปที่ 4-29 แสดงการใช้งาน โปรแกรมและผลลัพธ์ที่ได้

อนึ่งในการการศึกษาวิจัยได้ใช้โปรแกรม MATLAB ในการเขียนโปรแกรมซึ่ง รายละเอียดคำสั่งของโปรแกรมแสดงในภาคผนวก ค.

รูปที่ 4-29 หน้าต่างการใช้งานโปรแกรมที่เขียนขึ้น

4.11 การทดสอบการคำนวณของโปรแกรม

การสอบเทียบผลการคำนวณของโปรแกรมที่เขียนขึ้น ทำโดยการเปรียบเทียบกับ ผลการคำนวณด้วยมือ ซึ่งพบว่ามีค่าตรงกันทำให้เชื่อมันได้ว่าโปรแกรมที่เขียนขึ้นมีความถูกต้อง สามารถนำไปใช้งานได้

<u>Part 3 แบบจำลองที่ใช้ในการศึกษา</u>

4.12 แบบจำลองที่ใช้ในการศึกษา

การศึกษาสภาวะทางความร้อนอัตราการถ่ายเทความร้อนของเบ้ารับน้ำเหล็ก ขนาด 25 ตัน ในครั้งนี้ได้ใช้แบบจำลองในขนาด 1 ต่อ 1 สร้างตามแผนผังเบ้ารับน้ำเหล็กรูปที่ 2-5 และเนื่องจากความสามารถในการจำลองแบบสมมาตรในระบบแกนทรงกระบอกของโปรแกรม ทำ ให้เลือกใช้แบบจำลองเพียงเสี้ยวหนึ่งของเบ้ารับน้ำเหล็ก (5° ตามแกนรัศมี) โดยแบ่งตารางใน ขนาด 5 mm ในการคำนวณในตำแหน่งเดียวกับที่มีการฝังเทอร์โมคัปเปิลในการทดลอง ขนาด 10 mm ในบริเวณส่วนอื่นๆ ของเบ้า และขนาด 20 mm ในบริเวณน้ำเหล็ก รูปที่ 4-30 แสดง แบบจำลองที่ใช้ ซึ่งในการคำนวณการถ่ายเทความร้อนแบ่งแบบจำลองออกเป็นส่วนๆ ตามช่วง การจำลองการทำงานของเบ้ารับน้ำเหล็ก ซึ่งตารางที่ 4-6 แสดงจำนวน node และelement ที่ใช้ใน ขั้นต่างๆ ของการ ซึ่งมีรายละเอียดดังต่อไปนี้

รูปที่ 4-30 แบบจำลองที่ใช้ในการศึกษา

ขั้น	กระบวนการ	จำนวนวัสดุ	node	element
1	อุ่นเบ้ารับน้ำเหล็ก	3	88,455	448,172
2	รอการเทน้ำเหล็ก	3	88,455	448,172
3	รอการถ่ายน้ำเหล็ก	24	118,015	581,428
4	ถ่ายน้ำเห <mark>ล็ก 1</mark>	23	116,809	575,958
5	ถ่ายน้ำเหล็ก 2	22	115,579	570,331
6	ถ่าย <mark>น้ำเหล็ก 3</mark>	21	114,272	564,404
7	ถ่ <mark>ายน้ำเหล็ก 4</mark>	20	113,051	558,890
8	ถ่ายน้ำเหล็ก 5	19	111,822	553,344
9	<mark>ถ่าย</mark> น้ำเหล็ก 6	18	110,608	547,886
10	ถ่ <mark>าย</mark> น้ำเหล็ <mark>ก</mark> 7	17	109,385	542,356
11	<mark>ถ่ายน้ำเห</mark> ล็ <mark>ก 8</mark>	16	108,160	536,835
12	ถ่ <mark>ายน้ำเหล็ก 9</mark>	15	106,934	531,330
13	ถ่ายน้ำเ <mark>ห</mark> ล็ก <mark>1</mark> 0	14	105,683	525,657
14	ถ่ายน้ <mark>ำเหล็ก</mark> 11	13	104,463	520,172
15	ถ่ายน้ำเห <mark>ล็</mark> ก 12	12	103,282	514,882
16	ถ่ายน้ำเหล็ก 13	11	102,063	509,370
17	ถ่ายน้ำเหล็ก 14	10	100,836	503,840
18	ถ่ายน้ำเหล็ก 15	9	99,612	498,299
19	ถ่ายน้ำเหล็ก 16	8	98,411	492,926
20	ถ่ <mark>ายน้ำเหล็ก 17</mark>	7	97,261	487,754
21	ถ่ายน้ำเหล็ก 18	6	96,057	482,355
22	ถ่ายน้ำเหล็ก 19	5	94,829	476,851
23	ถ่ายน้ำเหล็ก 20	4	93,578	471,200
24	รอเทสแลก	4	93,578	471,200
25	ซ่อม และรอการอุ่น	3	88,455	448,172

ตาราง 4-6 จำนวน node และ element ในแต่ละขั้นของการคำนวณ

4.12.1 ช่วงการอุ่นเบ้ารับน้ำเหล็ก และช่วงการพักเบ้ารับน้ำเหล็ก

ในช่วงการอุ่นเบ้ารับน้ำเหล็ก และช่วงการพักเบ้ารับน้ำเหล็กใช้แบบจำลองที่มี เฉพาะเบ้ารับน้ำเหล็กเท่านั้น แสดงในรูปที่ 4-31 แยกเป็นชิ้นวัสดุ 3 ชิ้น ได้แก่ ผนังเบ้ารับน้ำเหล็ก ชั้นทำงาน (working lining), ผนังเบ้ารับน้ำเหล็กชั้นปลอดภัย (safety lining) และเปลือกเหล็ก ด้านนอก (steel shell)

รูปที่ 4-31 <mark>แบ</mark>บจำลองที่ใช้ในช่วงการอุ่นเบ้ารับน้ำเหล็ก และช่ว<mark>งก</mark>ารพักเบ้ารับน้ำเหล็ก

4.12.2 ช่วงการรอการถ่ายน้ำเหล็ก

ในช่วงการรอการถ่ายน้ำเหล็กแบบจำลองใช้แบบจำลองเดียวกับที่ใช้ในช่วงช่วง การอุ่นเบ้ารับน้ำเหล็ก และช่วงการพักเบ้ารับน้ำเหล็ก แต่จะเพิ่มเติมส่วนของน้ำเหล็กที่อยู่ภายใน เบ้า ซึ่งปริมาณของน้ำเหล็กในเบ้าได้มาจากค่าปริมาณน้ำเหล็ก และสแลกเฉลี่ยของทางโรงงาน แบบจำลองแบ่งออกเป็นชั้น ทั้งสิ้น 20 ชั้นเพื่อจะได้ใช้ประโยชน์ต่อไปในการจำลองช่วงการถ่ายน้ำ เหล็ก รูปที่ 4-30 แสดงแบบจำลองที่ใช้ในขั้นตอนนี้

4.12.3 ช่วงการถ่ายน้ำเหล็ก

ในช่วงการถ่ายน้ำเหล็ก ในการจำลองในขั้นตอนนี้จะแบ่งย่อยแบบจำลอง ออกเป็นขั้นตามจำนวนระดับชั้นน้ำเหล็ก รูปที่ 4-32 แสดงแบบจำลองที่ใช้ และขั้นตอนในการ จำลองในขั้นตอนนี้

รูปที่ 4-<mark>32 แบบจำล</mark>องในช่ว<mark>งการ</mark>ถ่ายน้ำเหล็ก และขั้นตอนในการจำลอง

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

บทที่ 5 ผลการศึกษาวิจัย และอภิปรายผลการศึกษาวิจัย

การศึกษาการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในระหว่างกระบวนการผลิต เหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า ด้วยการจำลองการถ่ายเทความร้อนที่เกิดขึ้นด้วยโปรแกรม สำเร็จเซิงพาณิชย์ เมื่อพิจารณาวัฏจักรการทำงานของเบ้ารับน้ำเหล็กที่แสดงไว้ในหัวข้อที่ 2.1.3 พบว่าการถ่ายเทความร้อนในแต่ละขั้นตอนมีความแตกต่างกันตามลักษณะการทำงาน ใน การศึกษาจึงทำการจำลองการถ่ายเทความร้อนแยกกันในแต่ละขั้นตอน ทั้งสิ้น 4 ขั้นตอนได้แก่ 1) ขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก 2) ขั้นตอนการพักเบ้ารับน้ำเหล็ก 3) ขั้นตอนการรอการถ่ายน้ำ เหล็ก และ 4) ขั้นตอนการถ่ายน้ำเหล็ก เพื่อให้ได้ผลจากการเปลี่ยนตัวแปรในการทำงานในขั้นตอน นั้นๆ หลังจากนั้นจึงทำการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กตลอดทั้งวัฏจักรการ ทำงาน เพื่อให้เห็นถึงภาพรวมของการถ่ายเทความร้อนที่เกิดขึ้น ซึ่งรายละเอียดการศึกษาแสดงใน หัวข้อต่างๆ ดังต่อไปนี้

5.1 การศึกษากา<mark>รถ่ายเทควา</mark>มร้อนในระหว่างขั้นต<mark>อนการอุ่นเบ้า</mark>รับน้ำเหล็ก

ขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก (preheating period) เพื่อป้องกันความเสียหาย ของเบ้ารับน้ำเหล็กจาก thermal shock และลดการสูญเสียความร้อนจากน้ำเหล็กให้แก่เบ้ารับน้ำ เหล็ก ในขั้นตอนนี้ผนังด้านในเบ้ารับน้ำเหล็กได้รับการถ่ายเทความร้อนจากก๊าซร้อน ที่มาจากการ เผาใหม้ของน้ำมันดีเซลที่ใช้เป็นเชื้อเพลิง ซึ่งการหาระยะเวลาที่เหมาะสมในการอุ่นเบ้ารับน้ำเหล็ก เป็นประเด็นสำคัญที่น่าสนใจในการศึกษา

5.1.1 วัตถุประสงค์ในการศึกษา

<u>วัตถุประสงค์หลัก</u>

เพื่อศึกษาผลของการเปลี่ยนแปลงระยะเวลาที่ใช้อุ่นเบ้ารับน้ำเหล็กต่อสภาวะทาง ความร้อนของเบ้ารับน้ำเหล็ก ซึ่งได้แก่อุณหภูมิ และการสะสมความร้อน โดยระยะเวลาที่ใช้จำลอง การอุ่นอยู่ในช่วง 0 – 3 ชั่วโมง ซึ่งเป็นระยะเวลาที่นานกว่าการทำงานของโรงงานซึ่งใช้เวลา 2 ชั่วโมง

ผลการศึกษาที่ได้จะนำมาเปรียบเทียบกับผลจากการตรวจวัดอุณหภูมิเบ้ารับน้ำ เหล็ก ที่ทำการอุ่นโดยน้ำมันดีเซลเป็นเชื้อเพลิง

<u>วัตถุประสงค์รอง</u>

เพื่อทดสอบการกำหนดค่าตัวแปรคุณสมบัติทางความร้อนของวัสดุว่ามีความ เหมาะสมหรือไม่ เพื่อที่จะใช้ในการจำลองขั้นอื่นๆ

5.1.2 แบบจำลองที่ใช้ในการศึกษา

แบบจำลองที่ใช้ศึกษาการถ่ายเทความร้อนในขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก ซึ่งมี เพียงเฉพาะส่วนของเบ้าเท่านั้น รายละเอียดตามที่ได้กล่าวไว้ในหัวข้อที่ 4.12.1

5.1.3 การกำหนดค่าตัวแป<mark>รในการศึกษา</mark>

การจำลองมี<mark>การถ่ายเทความร้อนในระห</mark>ว่างขั้นตอนการอุ่นเบ้ารับน้ำเหล็กที่ก่อ ใหม่ มีการกำหนดค่าโปร<mark>แกรมสำเร็จเชิ</mark>งพาณิชย์ที่ใช้ในการศึกษาดังต่อไปนี้

5.1.3.1 การกำหน<mark>ดคุณสมบัติทางค</mark>วามร้อนขอ<mark>งวัสดุ</mark>

คุณสมบัติวัสดุที่ใช้ในการศึกษาแยกเป็น 2 ชนิดได้แก่ 1) อิฐทนไฟที่อยู่ในชั้น ทำงาน และชั้นปลอดภัย และ 2) เปลือกเหล็กที่อยู่ด้านนอกของเบ้ารับน้ำเหล็ก ซึ่งมีรายละเอียด ดังตารางที่ 5-1 และตารางที่ 5-2 ตามลำดับ

ตารางที่ 5-1 คุณ<mark>สม</mark>บัติทางความร้อนของอิฐทนไฟที่ใช้ในการคำนวณ

1	
Material	เปลือกเหล็ก (steel shell)
Density (kg/m ³)	7,800
Thermal conductivity, k (W/m.K)	52
Specific heat, Cp (J/kg.K)	787
Thermal diffusivity, $\mathbf{\alpha}$ (m ² /s)	8.47x10 ⁻⁶

ตารางที่ 5-2 คุณสมบัติทางความร้อนของเปลือกเหล็กที่ใช้ในการคำนวณ

5.1.3.2 การกำหนดอินเทอร์เฟสระหว่างชิ้นวัตถุ

กำหนดอินเทอร์เฟสระหว่างชั้นทำงาน/ชั้นปลอดภัย และชั้นปลอดภัย/ชั้นเปลือก เหล็ก โดยสมมุติว่าไม่มีค่าความต้านทานทางความร้อน (thermal resistance) จึงเลือกกำหนดค่า อินเทอร์เฟสในรูปแบบ equivalence

5.1.3.3 การกำหนดเงื่อนไขขอบเขต (boundary conditions) ของโปรแกรม

เมื่อพิจาณาการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในระหว่างทำการอุ่นสามารถ เขียนเป็นแผนผังการถ่ายเทความร้อนได้ ในรูปที่ 5-1 ซึ่งจำเป็นต้องกำหนดเงื่อนไขขอบเขตที่ผิว ด้านใน และด้านนอกของเบ้ารับน้ำเหล็ก

รูปที่ 5-1 การถ่ายเทความร้อนบนผนังเบ้ารับน้ำเหล็กในระหว่างการอุ่น

จุฬาลงกรณมหาวิทยาลัย

<u>ผิวด้านในเบ้ารับน้ำเหล็ก</u>

กรณีผิวด้านในเบ้ารับน้ำเหล็ก จากการศึกษางานวิจัยที่ผ่านมาของ สมศักดิ์ คง โชติ (1993) และ Mohanty และ Satayayut (1992) พบว่าการถ่ายเทความร้อนในระหว่างการอุ่น เบ้ารับน้ำเหล็กมาจากการแผ่รังสีความร้อนเป็นหลัก แต่อย่างไรก็ดีเพื่อให้การจำลองมีความ สมบูรณ์จึงได้ทำการกำหนดเงื่อนไขขอบเขตให้มีการถ่ายเทความร้อนทั้งจากการแผ่รังสี และการ พาความร้อน

เงื่อนไขขอบเขตส่วนของการแผ่รังสีความร้อน กำหนดให้เสมือนมีการถ่ายเท ความร้อนจากการแผ่รังสีของแก๊สที่เกิดจากการเผาไหม้ ซึ่งคำนวณค่าสภาพการเปล่งรังสีของแก๊ส เผาไหม้เป็นฟังก์ชันของอุณหภูมิแก๊สเผาไหม้ ด้วยวิธีของ Wimpress (1978) ซึ่งในการจำลองใช้ ค่าอากาศส่วนเกิน 30% ดังแสดงในรูปที่ 5-2 และค่าอุณหภูมิแก๊สเผาไหม้ ที่หาจากเส้นแนวโน้ม ของอุณหภูมิแก๊สเผาไหม้บริเวณกันเบ้ารับน้ำเหล็ก ที่วัดได้จากการทดลอง ที่ตั้งแต่นาที่ที่ 10 จนถึง นาทีที่ 180 ดังแสดงในรูปที่ 5-3 โดยกำหนดเท่ากันทั่วทั้งบริเวณผิวด้านในเบ้ารับน้ำเหล็ก

รูปที่ 5-2 ความสัมพันธ์ระหว่างค่าสภาพการเปล่งรังสีของแก๊สเผาไหม้กับอุณหภูมิแก๊ส

จุฬาลงกรณ่มหาวิทยาลัย

รูปที่ 5-3 อุณหภูมิของก๊<mark>า</mark>ซเผ<mark>าไ</mark>หม้ที่ใช้ในการจำลองการถ่ายเทความร้อนในระหว่างทำการอุ่นเบ้า รับน้ำเหล็กที่ก่อใหม่

อนึ่งสำหรับการจำลองการอุ่นเบ้ารับน้ำเหล็กในระหว่างรอบการทำงาน ได้ใช้ค่า อุณหภูมิแก๊สเผาไหม้ ที่หาจากเส้นแนวโน้มของอุณหภูมิแก๊สเผาไหม้บริเวณก้นเบ้ารับน้ำเหล็ก ที่ วัดได้จากการทดลองอุ่นเบ้ารับน้ำเหล็กในระหว่างรอบการทำงาน ตั้งแต่นาทีที่ 2 จนถึงนาทีที่ 35 ดังแสดงในรูปที่ 5-4

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 5-4 อุณห<mark>ภู</mark>มิข<mark>อง</mark>ก๊าซ**เ**ผาไหม้ที่ใช้ในการจำลองการถ่ายเทความร้อนในระหว่างทำการอุ่น

เงื่อนไขขอบเขตส่วนของการพาความร้อน ประเมินความเร็วของก๊าซเผาไหม้ที่ ไหนผ่านผนังด้านในเบ้ารับน้ำเหล็กจากการคำนวณอัตราการไหลของก๊าซเผาไหม้ ด้วยการแบ่ง อัตราส่วนพื้นที่การไหลเข้า และไหลออกเท่ากับ 1:1 ทำให้ได้ค่าความเร็วของก๊าซเผาไหม้ที่ไหล ผ่านผนังด้านในเบ้ารับน้ำเหล็กมีความเร็วเท่ากับ 2.8 m/s โดยสัมประสิทธิ์การพาความร้อน เปลี่ยนแปลงตามอุณหภูมิก๊าซ แสดงในรูปที่ 5-5 ซึ่งอุณหภูมิก๊าซเผาไหม้ที่เวลาต่างๆ ใช้เดียวกับที่ ใช้ในเงื่อนไขขอบเขตส่วนการแผ่รังสีความร้อน

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

. รูปที่ 5-5 ความสัมพันธ์ระหว่างสัมประสิทธิ์การพาความร้อนกับอุณหภูมิแก๊ส

<u>ผิวด้านนอกเบ้ารับน้ำเหล็ก</u>

ที่ผิวด้านนอกเบ้ารับน้ำเหล็ก มีการกำหนดเงื่อนไขขอบเขตให้มีการสูญเสียความ ร้อนไปยังบรรยากาศรอบข้างด้วยการแผ่รังสีความร้อน และการพาความร้อน ซึ่งเงื่อนไขขอบเขต การแผ่รังสีกำหนดให้ผิวด้านนอกเบ้ารับน้ำเหล็กแผ่รังสีไปยังสิ่งแวดล้อมที่อุณหภูมิ 38°C ด้วยค่า สภาพการเปล่งรังสี (**E**) ของผิวเปลือกเหล็กด้านนอกเบ้ารับน้ำเหล็กเท่ากับ 0.79

ในส่วนเงื่อนไขขอบเขตการพาความร้อนนั้น กำหนดสัมประสิทธิ์การพาความร้อน อิสระเท่ากับ 5.4 W/m².K อ้างอิงจากผลการศึกษาเรื่องการปรับปรุงประสิทธิภาพของฝาและ อุปกรณ์อุ่นเบ้ารับน้ำเหล็กโดยการใช้หัวเผาแบบรีเจนเนอเรทีฟ, จักราวุธ จรูญศารทูล (2553) และ อากาศภายนอกมีอุณหภูมิเท่ากับ 38°C

5.1.3.4 การกำหนดเงื่อนไขเริ่มต้น (initial conditions)

แบบจำลองที่ใช้ในการคำนวณมีการกำหนดอุณหภูมิเริ่มต้นในการคำนวณ เท่ากันทั่วทั้งชิ้นวัตถุ มีค่าเท่ากับ 38 °C

5.1.3.5 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step) ในการจำลองการถ่ายเทความร้อนด้วยโปรแกรมสำเร็จเชิงพาณิชย์ กำหนด ระยะเวลาในการจำลองทั้งสิ้น 180 นาที ด้วยการกำหนดขั้นระยะเวลาเริ่มต้น 0.001 วินาที และ ขั้นระยะเวลามากที่สุด 1 วินาที

5.1.4 ผลการศึกษา และอภิปรายผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนในระหว่างการอุ่นเบ้ารับน้ำเหล็กด้วยการ ประยุกต์ใช้โปรแกรมสำเร็จ ทำการจำลองการอุ่นทั้งสิ้น 180 นาที แสดงในรูปที่ 5-6 จะเห็นได้ว่า เบ้ารับน้ำเหล็กมีการเปลี่ยนแปลงอุณหภูมิเพิ่มสูงขึ้นตลอดช่วงทำการอุ่น ซึ่งการเพิ่มของอุณหภูมิ เริ่มจากที่ผิวด้านในของผนังเบ้ารับน้ำเหล็กก่อน หลังจากนั้นอุณหภูมิของผนังชั้นถัดมาจะเพิ่มตาม ในช่วง 45 นาทีแรกอุณหภูมิที่ผิวด้านในของเบ้ารับน้ำเหล็กเพิ่มขึ้นอย่างรวดเร็ว หลังจากนั้นอัตราการเพิ่มของอุณหภูมิจะลดลง ซึ่งสังเกตได้จากสีของผิวด้านใน

แต่อย่างไรก็ตามอุณหภูมิผิวด้านนอกของเบ้ารับน้ำเหล็กตลอดช่วงการอุ่นมีการ เปลี่ยนแปลงไม่มากเนื่องจากความสามารถในการสะสมความร้อนของเบ้ารับน้ำเหล็กและความ เป็นฉนวนของผนังเบ้ารับน้ำเหล็ก

รูปที่ 5-7 และ 5-8 เป็นการพล็อตเปรียบเทียบระหว่างค่าอุณหภูมิที่วัดได้จาก เทอร์โมคัปเปิล ที่ผังไว้ในผนังด้านของเบ้ารับน้ำเหล็กที่ตำแหน่ง 2 กับค่าที่ตำแหน่งเดียวกันใน แบบจำลองซึ่งใช้อุณหภูมิแก๊สเผาไหม้ที่ก้นเบ้ารับน้ำเหล็กเป็นส่วนหนึ่งของตัวเงื่อนไขขอบเขต ผล ปรากฏว่าการจำลองการถ่ายเทความร้อนด้วยแบบจำลองให้ผลที่ค่อนข้างสอดคล้องกับผลที่ได้ จากการวัด

เมื่อพิจารณากราฟการเปลี่ยนแปลงอุณหภูมิเทียบกับเวลา ดังแสดงในรูปที่ 5-7 พบว่าการเปลี่ยนแปลงอุณหภูมิที่ตำแหน่งใกล้ๆ กับผิวของผนังด้านในที่ระยะ 5mm ที่ระยะเวลา เริ่มต้นของการอุ่น (นาทีที่ 0 ถึง 60) มีการเปลี่ยนแปลงของอุณหภูมิที่รวดเร็วกว่าตำแหน่งที่อยู่ลึก เข้าไปในผนังเนื่องจากคุณสมบัติของอิฐทนไฟ ที่มีคุณสมบัติเป็นฉนวนความร้อน แต่ที่ระยะเวลา ในการอุ่นเพิ่มขึ้น การเปลี่ยนแปลงของอุณหภูมิที่ตำแหน่ง 5 mm จะเพิ่มขึ้นในอัตราที่ลดลง ต่าง จากตำแหน่ง 50 และ 100 mm ที่การเพิ่มของอุณหภูมิมีลักษณะเป็นเส้นตรงตลอดช่วงการอุ่น 180 นาที

เมื่อพิจารณากราฟแสดงการแจกแจงอุณหภูมิในผนังข้าง ณ เวลาต่างๆ ดังแสดง ในรูปที่ 5-8 พบว่าเมื่อระยะเวลาที่ทำการอุ่นเบ้ารับน้ำเหล็กเพิ่มขึ้นความร้อนจากการอุ่นเบ้ารับน้ำ เหล็กก็จะถ่ายเทเข้าลึกเข้าไปยังผนังด้านในเบ้ารับน้ำเหล็กได้มากขึ้น สังเกตได้จากอุณหภูมิ ภายในผนังที่เพิ่มสูงขึ้นตามเวลาแต่ระยะเวลาที่นานขึ้นในการอุ่นทำให้เกิดการเปลี่ยนแปลงการ แจกแจงของอุณหภูมิที่ลดลง ซึ่งเมื่อพิจารณาความสัมพันธ์ของการอัตราการถ่ายเทความร้อนเข้า สู่ผิวด้านใน กับระยะเวลาที่ใช้ในการอุ่น ดังแสดงในรูปที่ 5-9 พบว่าอัตราการถ่ายเทความร้อนเข้า สู่ผนังด้านในจะเพิ่มสูงสุดประมาณ 40kW/m² ที่ระยะเวลาการอุ่นเท่ากับ 35 นาที หลังจากนั้น อัตราการถ่ายเทความร้อนจะมีค่าลดลง อนึ่งจากผลการศึกษาชี้ให้เห็นว่าระยะเวลาการอุ่นที่เพิ่มจาก 2 เป็น 3 ชั่วโมง ส่งผลให้อุณหภูมิผิวด้านในเบ้ารับน้ำเหล็กเพิ่มขึ้นเพียง 150 °C เท่านั้น

รูปที่ 5-7 การเป<mark>ลี่ยนแป</mark>ลงอุณหภูมิ ณ จุดต่างๆในผนังข้าง เทียบกับเวลา ขณะทำการอุ่น

เปรียบเทียบกับผลการทดลอง

รูปที่ 5-8 การแจกแจงอุณหภูมิภายในผนังเบ้าจากการจำลองที่ระยะเวลาต่างๆ ขณะทำการอุ่นเปรียบเทียบกับผลการทดลอง

-Heat flux input

รูปที่ 5-<mark>9 ความ</mark>สัมพันธ์ระหว่างอัตราการถ่ายเทความร้อนเข้าสู่ผิวด้านใน กับระยะเวลาที่ใช้ในการอุ่น

5.1.5 สรุปผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในขั้นตอนการอุ่นเบ้ารับน้ำ เหล็ก ด้วยการประยุกต์ใช้โปรแกรมสำเร็จ มีความใกล้เคียงกับผลที่ได้จากการทดลอง โดยการแผ่ รังสีความร้อนเป็นกลไกสำคัญในการถ่ายเทความร้อนจากแก๊สที่ได้จากการเผาไหม้ไปยังเบ้ารับน้ำ เหล็ก, การวัดอุณหภูมิแก๊สเผาไหม้ที่ก้นเบ้ารับน้ำเหล็กสามารถใช้เป็นตัวแปรในการควบคุมการอุ่น เบ้ารับน้ำเหล็ก และระยะเวลาการอุ่นที่นานขึ้นจะส่งผลให้การเปลี่ยนแปลงอุณหภูมิที่ผิวของผนัง ด้านในเพิ่มขึ้นด้วยอัตราที่ลดลง

นอกจากนี้ผลการจำลองยังบ่งชี้ว่า คุณสมบัติทางความร้อนของวัสดุที่ใช้ก่อเบ้า ที่ ใช้ในการจำลองมีความเหมาะสม

5.2 การศึกษาการถ่ายเทความร้อนในระหว่างขั้นตอนการพักเบ้ารับน้ำเหล็ก

ขั้นตอนการพักเบ้ารับน้ำเหล็กหมายรวมถึง ขั้นตอนการรอการเทน้ำเหล็กจากเตา หลอมอาร์คไฟฟ้า และขั้นตอนการรอการอุ่นเบ้ารับน้ำเหล็ก ในระหว่างขั้นตอนนี้ผนังด้านในเบ้ารับ น้ำเหล็กมีการสูญเสียความร้อนให้แก่บรรยากาศภายนอกจากการแผ่รังสี และการพาความร้อน ธรรมชาติ ซึ่งข้อมูลการสูญเสียความร้อนของเบ้าเป็นข้อมูลพื้นฐานที่สำคัญในการออกแบบการ ทำงานของเบ้ารับน้ำเหล็ก

5.2.1 วัตถุประสงค์ในการศึกษา

<u>วัตถุประสงค์</u>

เพื่อศึกษาการเปลี่ยนแปลงอุณหภูมิ และการถ่ายเทความร้อนของเบ้ารับน้ำเหล็ก ในระหว่างขั้นตอนการพักเบ้ารับน้ำเหล็ก แบบตั้งขึ้น ซึ่งมีการสูญเสียความร้อนจากการพาความ ร้อนธรรมชาติและการแผ่รังสีความร้อน ใช้ระยะเวลาในการจำลองการพักน้ำเหล็กที่ 0 – 30 นาที

5.2.2 แบบจำลองที่ใช้ในการศึกษา

แบบจำลองที่ใช้ศึกษาการถ่ายเทความร้อนในขั้นตอนการพักเบ้ารับน้ำเหล็ก ซึ่งมี เพียงเฉพาะส่วนของเบ้าเท่านั้น รายละเอียดตามที่ได้กล่าวไว้ในหัวข้อที่ 4.12.1

5.2.3 การก<mark>ำหน</mark>ดค่าตัวแปรในการศึกษา

การจ<mark>ำล</mark>องมีการถ่ายเทความร้อนในระหว่างขึ้นตอนการอุ่นเบ้ารับน้ำเหล็กที่ก่อ ใหม่ มีการกำหนดค่าโปรแกรม<mark>สำเร็จเชิงพาณิชย์ที่ใช้ใน</mark>การศึกษาดังต่อไปนี้

5.2.3.1 การกำหนดคุณสมบัติวัสดุ

การจำลองในขั้นตอนนี้กำหนดค่าคุณสมบัติทางความร้อนของเบ้ารับน้ำเหล็กใน ชั้นทำงาน ชั้นปลอดภัย และเปลือกเหล็ก เหมือนกับการศึกษาการถ่ายเทความร้อนในการอุ่นเบ้า รับน้ำเหล็ก

5.2.3.2 การกำหนดอินเทอร์เฟสระหว่างชิ้นวัตถุ

กำหนดอินเทอร์เฟสระหว่างชั้นทำงาน/ชั้นปลอดภัย และชั้นปลอดภัย/ชั้นเปลือก เหล็ก เหมือนกับกรณีการศึกษาการถ่ายเทความร้อนในการอุ่นเบ้ารับน้ำเหล็ก

5.2.3.3 การกำหนดเงื่อนไขขอบเขต (boundary conditions) ของโปรแกรม

ในระหว่างขั้นตอนการพักเบ้ารับน้ำเหล็ก เบ้าจะมีการสูญเสียความร้อนออกจาก ทั้งผนังด้านในและผนังด้านนอก ผ่านการแผ่รังสี และการพาความร้อน เมื่อพิจารณาควบคู่กับข้อมูลผลการแจงแจงอุณหภูมิภายในเบ้ารับน้ำเหล็กใน ระหว่างการพักเบ้ารับน้ำเหล็กแบบตั้งขึ้น ที่ได้จากการตรวจวัดในโรงงาน ดังแสดงในรูปที่ 3-25 ซึ่ง พบว่าอุณหภูมิภายในเบ้า ที่ระยะ 0 – 100 mm จากผนังด้านใน เท่านั้นที่มีการลดลงมากใน ระหว่างพักเบ้ารับน้ำเหล็ก

<u>ผนังด้านในเบ้ารับน้ำเหล็ก</u>

เงื่อนไขขอบเขตส่วนของการแผ่รังสีความร้อน กำหนดโดยการคำนวณค่าอัตรา การถ่ายเทความร้อน จากการแผ่รังสีระหว่างพื้นผิว ของผิวด้านในเบ้ารับน้ำเหล็กที่แบ่งออกเป็น ส่วนๆ ด้วยโปรแกรมคำนวณสมการเชิงเส้นหลายตัวแปร ที่เขียนขึ้นด้วยโปรแกรม MATLAB

ซึ่งความสัมพันธ์ระหว่างอุณหภูมิพื้นผิวกับอัตราการถ่ายเทความร้อนจากการ เปล่งรังสีของพื้นผิวภายในแต่ละส่วน ดังแสดงในรูปที่ 5-10

รูปที่ 5-10 ความสัมพันธ์ระหว่างอุณหภูมิพื้นผิวกับอัตราการถ่ายเทความร้อนจากการเปล่งรังสี ของพื้นผิวภายในแต่ละส่วน กับระยะเวลาที่ใช้ในการอุ่น ลักษณะรูปทรงของเบ้ารับน้ำเหล็กที่มีลักษณะเป็นถ้วยทำให้ที่บริเวณปากเบ้าจะ มีการสูญเสียความร้อนจากการแผ่รังสีไปยังบรรยากาศ มากกว่าที่ตำแหน่งก้นเบ้า ในการจำลอง การเปลี่ยนแปลงอุณหภูมิเบ้ารับน้ำเหล็กในขณะทำการพักจึงได้กำหนดอัตราการถ่ายเทความร้อน ของผิวแต่ละส่วน ซึ่งประเมินจากการใช้โปรแกรมคำนวณสมการเชิงเส้นหลายตัวแปร (หัวข้อที่ 4.9) คำนวณหาอัตราการถ่ายเทความร้อนจากการเปล่งรังสีของผิวด้านในเบ้ารับน้ำเหล็ก ซึ่งค่าที่ ใช้ในการจำลองแสดงในตารางที่ 5-3

ผิว	Heat transfer rate (kW/m ²)
ผิวข้างลำดับที่ 2	-18.14
ผิวข้างลำดับที่ 4-6	-13.52
ผิวข้างลำดับที่ <mark>8-10</mark>	-11.33
ผิวข้างลำดับที <mark>่</mark> 12-14	-9.61
ผิวข้างลำดับที่ 1 <mark>6-18</mark>	-8.12
ผิวข้างลำดับที <mark>่ 20</mark> -22	-6.86
ผิวข้างลำดับที่ 24- <mark>26</mark>	-5.80
ผิวข้างลำดับที่ 2 <mark>8-3</mark> 0	-4.92
ผิวข้างลำดับที่ <mark>3</mark> 2-34	-4.19
ผิวข้างลำดับที่ 36- <mark>38</mark>	-3.60
ผิวข้างลำดับที่ 40- <mark>4</mark> 2	-3.12
ผิวข้างลำดับที่ 44	-2.85
ผิวกัน	-4.14

ตารางที่ 5-3 อัตราก<mark>ารถ่ายเทความร้อ</mark>นของผิวด้านในเบ้ารับน้ำเหล็กในแต่ละส่วน

เงื่อนไขขอบเขตส่วนของการถ่ายเทความร้อนจากการพาความร้อนธรรมชาตินั้น แยกเป็นส่วนของผิวข้างด้านใน และ ผิวก้นด้านใน ซึ่งมีค่า Rayleigh number เท่ากับ 8.7 × 10⁸ และ 2.6 × 10⁸ ตามลำดับ ซึ่งเมื่อใช้สมการคำนวณหาค่าสัมประสิทธิ์การพาความร้อน ที่ แสดงไว้ในตารางที่ 2-4 จะได้ว่า

ที่ผนังข้างด้านในมีค่า

$$\bar{h} = 4.45 W/(m^2.K)$$
 (5.

และผนังก้นด้านในมีค่า

$$\bar{h}=4.95\,W/(m^2.K)$$

ในส่วนของอุณหภูมิอากาศภายในเบ้าที่ใช้ในการทดลองนั้น หาได้จากการใช้ค่า แนวโน้มของข้อมูลอุณหภูมิอากาศจากการตรวจวัดในหัวข้อที่ 3.3.5 โดยใช้โปรแกรม Origin ใน การสร้างสมการ ดังแสดงในรูปที่ 5-11

1)

(5.2)

ฐปที่ 5-11 <mark>อุณหภู</mark>มิอากาศภายในเบ้าที่ใช้ในการจำลองการพักเบ้ารับน้ำเหล็ก

<u>ผิวด้านนอกเบ้ารับน้ำเหล็ก</u>

กำหนดเงื่อนไขขอบเขตเหมือนกับกรณีการจำลองการถ่ายเทความร้อนในระหว่าง ขั้นตอนการอุ่นเบ้ารับน้ำเหล็กที่ก่อใหม่

5.2.3.4 การกำหนดเงื่อนไขเริ่มต้น (initial conditions)

ในการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในขณะพักเบ้ารับน้ำเหล็ก นั้นได้ใช้ข้อมูลอุณหภูมิที่ได้จากการจำลองการอุ่น ในหัวข้อที่ 5.1 ที่ระยะเวลาการอุ่นผ่านไป เท่ากับ 180 นาที เป็นเงื่อนไขเริ่มต้นในการจำลอง

5.2.3.5 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step) ในการจำลองการถ่ายเทความร้อนด้วยโปรแกรมสำเร็จเชิงพาณิชย์ กำหนด ระยะเวลาในการจำลองทั้งสิ้น 30 นาที ด้วยการกำหนดขั้นระยะเวลาเริ่มต้น 0.001 วินาที และขั้น ระยะเวลามากที่สุด 1 วินาที

5.2.4 ผลการศึกษา และอภิปรายผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนในระหว่างการพักเบ้ารับน้ำเหล็กด้วยการ ประยุกต์ใช้โปรแกรมสำเร็จ ทำการจำลองการอุ่นทั้งสิ้น 30 นาที ดังแสดงในรูปที่ 5-12 เมื่อสังเกต ได้จากสีของผิวด้านในเบ้ารับน้ำเหล็กพบว่า เห็นได้ว่าเบ้ารับน้ำเหล็กมีการเปลี่ยนแปลงอุณหภูมิ ลดลงตลอดช่วงทำการพัก ซึ่งอุณหภูมิที่ผิวจะมีการลดลงก่อน หลังจากนั้นอุณหภูมิของผนังชั้นถัด มาจะลดลงตามมา และการลดลงของอุณหภูมิที่ปากเบ้าจะมากว่าการลดลงของอุณหภูมิที่ ตำแหน่งก้นเบ้า

ในช่วง 10 นาทีแรกอุณหภูมิที่ผิวด้านในของเบ้ารับน้ำเหล็กลดลงอย่างรวดเร็ว หลังจากนั้นอัตราการลดลงของอุณหภูมิจะลดลง

แต่อย่างไรก็ตามอุณหภูมิผิวด้านนอกของเบ้ารับน้ำเหล็กตลอดช่วงการพักมีการ เปลี่ยนแปลงไม่มาก เช่นเดียวกับกรณีการอุ่นเบ้ารับน้ำเหล็ก

เมื่อพิจารณากราฟการเปลี่ยนแปลงอุณหภูมิเทียบกับเวลา ดังแสดงในรูปที่ 5-13 พบว่าการเปลี่ยนแปลงอุณหภูมิที่ตำแหน่งใกล้ๆ กับผิวของผนังด้านในที่ระยะ 5mm มีการ เปลี่ยนแปลงของอุณหภูมิที่รวดเร็วกว่าตำแหน่งที่อยู่ลึกเข้าไปในผนังเนื่องจากคุณสมบัติของอิฐ ทนไฟ ที่มีคุณสมบัติเป็นฉนวนความร้อนต่างจากตำแหน่ง 50 และ 100 mm ที่มีการเปลี่ยนแปลง ของอุณหภูมิเพียงเล็กน้อยตลอดช่วงการพัก

เมื่อพิจารณากราฟแสดงการแจกแจงอุณหภูมิในผนังข้าง ณ เวลาต่างๆ ดังแสดง ในรูปที่ 5-14 พบว่าอุณหภูมิที่ตำแหน่ง 0 -70 mm จากผิวด้านในจะมีการลดลงอย่างรวดเร็ว แตกต่างจากที่ตำแหน่งมากกว่า 70 mm ที่อุณหภูมิจะมีการเพิ่มขึ้นเล็กน้อยเนื่องจากผลของการ นำความร้อนผ่านวัสดุทนไฟ

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 5-13 การเปลี่<mark>ยนแปล</mark>งอุณหภูมิ ณ จุดต่างๆในผนังข้าง เทียบกับเวลา ขณะทำการพัก

รูปที่ 5-14 การแจกแจงอุณหภูมิภายในผนังเบ้าจากการจำลองที่ระยะเวลาต่างๆ ขณะทำการพัก

5.2.5 สรุปผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในขั้นตอนการพักเบ้ารับน้ำ เหล็ก ด้วยการประยุกต์ใช้โปรแกรมสำเร็จ แสดงให้เห็นถึงการลดลงของอุณหภูมิเบ้ารับน้ำเหล็กใน ขณะทำการพัก ซึ่งในระหว่างการพักเบ้ารับน้ำเหล็ก ผิวด้านในเบ้าจะมีการสูญเสียความร้อนอย่าง รวดเร็ว ดังนั้นในการปฏิบัติงานจึงควรลดระยะเวลาการพักเบ้าให้น้อยลงเพื่อลดการสูญเสีย อุณหภูมิ

5.3 การศึกษาการถ่ายเทความร้อนในระหว่างขั้นตอนการรอการถ่ายน้ำเหล็ก

ขั้นตอนการรอการถ่ายน้ำเหล็ก (holding period) ซึ่งเป็นขั้นตอนหลังจากที่เบ้า รับน้ำเหล็กรับน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า และรอการถ่ายน้ำเหล็กไปยังอ่างรับน้ำเหล็ก ใน ขั้นตอนนี้ผนังด้านในเบ้ารับน้ำเหล็กจะได้รับการถ่ายเทความร้อนจากน้ำเหล็กที่บรรจุอยู่ภายใน ซึ่งข้อมูลในส่วนของอัตราการถ่ายเทความร้อนของน้ำเหล็กไปยังเบ้าที่สภาวะทางความร้อนต่างๆ จะมีความสำคัญในการกำหนดอุณหภูมิน้ำเหล็กที่เทจากเตาหลอมอาร์คไฟฟ้าที่เหมาะสม

5.3.1 วัตถุประสงค์ในการศึกษา

<u>วัตถุประสงค์หลัก</u>

เพื่อศึกษาการเปลี่ยนแปลงอุณหภูมิ และการถ่ายเทความร้อนของน้ำเหล็ก และ เบ้ารับน้ำเหล็ก ในระหว่างตั้งรอการถ่ายน้ำเหล็กเป็นระยะเวลา 0 – 30 นาที

5.3.2 แบ<mark>บจำ</mark>ลองที่ใช้ในการศึกษา

แบบจำลองที่ใช้ศึกษาการถ่ายเทความร้อนในขั้นตอนการรอการถ่ายน้ำเหล็ก เป็นแบบจำลองเบ้าที่เพิ่มเติมส่วนของน้ำเหล็กภายใน รายละเอียดตามที่ได้กล่าวไว้ในหัวข้อที่ 4.12.2

5.3.3 การกำหน<mark>ด</mark>ค่าตัวแปรในการศึกษา

การจ<mark>ำลองมีการกำหนดค่าโปรแกรม</mark>สำเร็จเชิงพาณิชย์ที่ใช้ในการศึกษา ดังต่อไปนี้

5.3.3.1 การกำหนดคุณสมบัติวัสดุ

การจำลองในขั้นตอนนี้กำหนดค่าคุณสมบัติทางความร้อนของเบ้ารับน้ำเหล็กใน ชั้นทำงาน ชั้นปลอดภัย และเปลือกเหล็ก เหมือนกับการศึกษาการถ่ายเทความร้อนในการอุ่นเบ้า รับน้ำเหล็ก

ในส่วนของคุณสมบัติทางความร้อนของน้ำเหล็กนั้น การจำลองมีสมมุติฐานให้ การเปลี่ยนแปลงอุณหภูมิน้ำเหล็กในส่วนใดๆ ของแบบจำลองเกิดขึ้นพร้อมกัน (Lump capacitance method) ซึ่งทำได้โดยการกำหนดให้ค่าการนำความร้อน (thermal conductivity) มี ค่ามาก กรณีนี้กำหนดให้เท่ากับ 10,000 W/m.K

ซึ่งคุณสมบัติทางความร้อนของน้ำเหล็กในแบบจำลองขั้นตอนนี้ กำหนดดังแสดง ในตารางที่ 5-4

ตารางที่ 5-4 คุณสมบัติทางความร้อนของน้ำเหล็กที่ใช้ในการคำนวณ

5.3.3.2 การกำหนดอินเทอร์เฟสระหว่างชิ้นวัตถุ

กำหนดอินเทอร์เฟสระหว่างชั้นทำงาน/ชั้นปลอดภัย และชั้นปลอดภัย/ชั้นเปลือก เหล็ก เหมือนกับกรณีการศึกษาการถ่ายเทความร้อนในการอุ่นเบ้ารับน้ำเหล็ก

สำหรับอินเทอร์เฟสระหว่างน้ำเหล็ก/ชั้นทำงานของเบ้ารับน้ำเหล็ก นั้นเลือก กำหนดในรูปแบบ Non-coincident เพราะน้ำเหล็กเป็นส่วนของแบบจำลองที่เพิ่มเข้ามาจาก แบบจำลองเดิมที่มีเฉพาะส่วนของเบ้า ซึ่งค่า Heat transfer coefficient (W/m².K) ระหว่างน้ำ เหล็ก/ชั้นทำงานกำหนด การเลือกใช้ค่าที่ทำให้อัตราการถ่ายเทความร้อนระหว่างน้ำเหล็ก/ชั้น ทำงาน ของแบบจำลองมีความใกล้เคียงกับข้อมูลที่ได้จากการศึกษางานวิจัยก่อนหน้า ซึ่งสรุปได้ ว่าค่า Heat transfer coefficient ทีมีค่าเท่ากับ 500 W/m².K ซึ่งทำให้อัตราการถ่ายเทความร้อน

ระหว่างน้ำเหล็กและชั้นทำงาน มีค่าใกล้เคียงกับงานวิจัยของ Xia และ Ahokainen (2001) ดัง แสดงในรูปที่ 2-37

5.3.3.3 การกำหนดเงื่อนไขขอบเขต (boundary conditions) ของโปรแกรม ้ผิวด้านในเบ้ารับน้ำเหล็กเหนือระดับน้ำเ<mark>หล็ก</mark>

้กำหนดเงื่อนไขขอบเขตบริเวณผิวด้านในเบ้ารับน้ำเหล็กเหนือระดับน้ำเหล็กด้วย ้ค่าอัตราการถ่ายเทความ<mark>ร้อนเข้าสู่ผิวด้านในเบ้ารับน้ำเหล็กเหน</mark>ือระดับน้ำเหล็กที่ 20 kW/m² ที่ได้ จากการประเมินการถ่ายเทความร้อน ด้วยโปรแกรมคำนวณสมการเชิงเส้นหลายตัวแปรที่ ้กำหนดให้การแผ่รังสีความร้อนของผิวหน้าสแลกที่มีอุณหภูมิคงที่เท่ากับ 800°C ้ผิวด้านบนน้ำเหล็<mark>ก</mark>

<mark>กำหนดเงื่อนไขขอบเข</mark>ตโ<mark>ดยการประเมินการสูญเสียค</mark>วามร้อนจากการแผ่รังสีของ ้ผิวหน้าน้ำเหล็กไปยังบรรยากาศร<mark>อบข้างโด</mark>ยอาศัยข้อมูลการตรวจวัดอุณหภูมิผิวสแลกโดยใช้ กล้องถ่ายภาพรั<mark>งสีอิ</mark>นฟร**าเ**รด ทำให้กำหนดอัตราการถ่ายเทความร้อนออกจากผิวสแลกที่ 59.9 kW/m²

้ผิวด้านนอกเบ้ารับ<mark>น้ำเหล็</mark>ก

กำห<mark>น</mark>ดเงื่<mark>อนไขขอบเขตเหมือนกับกรณีการจำลองการถ่ายเทความร้อนในระหว่าง</mark> ขั้นตอนการอุ่นเบ้ารับน้ำเ<mark>ห</mark>ล็กที่ก่อใหม่

5.3.3.4 การกำหนดเงื่อนไขเริ่มต้น (initial conditions)

้กำหนดเงื่อนไขเริ่มต้นในการจำลองการถ่ายเทความร้อน ในส่วนของเบ้ารับน้ำ เหล็กโดยการใช้ข้อมูลอุณหภูมิที่ได้จากการจำลองการอุ่น ในหัวข้อที่ 5.1 ที่ระยะเวลาการอุ่นผ่าน ไปเท่ากับ 120 นาที ซึ่งอุณหภูมิผิวของเบ้ามีค่าประมาณ 1,100[°]C และกำหนดอุณหภูมิน้ำเหล็ก เริ่มต้นที่ 1.700**°**C

5.3.3.5 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step)

ในการจำลองการถ่ายเทความร้อนด้วยโปรแกรมสำเร็จเชิงพาณิชย์ กำหนด ระยะเวลาในการจำลองทั้งสิ้น 30 นาที ด้วยการกำหนดขั้นระยะเวลาเริ่มต้น 0.001 วินาที และขั้น

ระยะเวลามากที่สุด 1 วินาที

5.3.4 ผลการศึกษา และอภิปรายผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนในระหว่างการรอการถ่ายน้ำเหล็ก เป็น ระยะเวลาตั้งแต่ 0 - 30 นาที ดังแสดงในรูปที่ 5-15 พบว่าเบ้ารับน้ำเหล็กบริเวณที่สัมผัสกับน้ำ เหล็กจะมีการเพิ่มขึ้นของอุณหภูมิอย่างรวดเร็วในช่วง 10 นาทีแรก

เมื่อพิจารณากราฟการเปลี่ยนแปลงอุณหภูมิเทียบกับเวลา ดังแสดงในรูปที่ 5-16 พบว่าการเปลี่ยนแปลงอุณหภูมิที่ตำแหน่งใกล้ๆ กับผิวของผนังด้านในที่ระยะ 5mm มีการ เปลี่ยนแปลงของอุณหภูมิที่รวดเร็วเนื่องอยู่ใกล้กับน้ำเหล็ก จึงได้รับการถ่ายเทความร้อนจากน้ำ เหล็กมากกว่า ตำแหน่ง 50 และ 100 mm ที่อยู่ไกลออกไป

เมื่อพิจารณากราฟแสดงการแจกแจงอุณหภูมิในผนังข้าง ณ เวลาต่างๆ ดังแสดง ในรูปที่ 5-17 พบว่าการอุณหภูมิภายในผนังจะค่อยๆ เพิ่มสูงขึ้น ตามระยะเวลาการรอการถ่ายน้ำ เหล็ก นอกจากนี้กราฟแสดงการเปลี่ยนแปลงอุณหภูมิน้ำเหล็กเทียบกับเวลา ขณะทำการรอการ ถ่ายน้ำเหล็ก รูปที่ 5-18 แสดงให้เห็นว่าในขณะการรอการถ่ายน้ำเหล็ก อุณหภูมิน้ำเหล็กภายใน เบ้าจะมีการลดลง ซึ่งการลดลงของอุณหภูมิน้ำเหล็กในช่วงแรกของการรอการถ่ายน้ำเหล็กจะ มากกว่าในช่วงหลัง โดยมีอัตราการลดลงเฉลี่ยที่ 2.5 °C/min สอดคล้องกับผลจากการตรวจวัด ภาคสนามในหัวข้อที่ 3.7

อัตราการถ่ายเทความร้อนจากน้ำเหล็กมายังเบ้ารับน้ำเหล็กแสดงในรูปที่ 5-19 สังเกตได้ว่าอัตรากรถ่ายเทความร้อนจะสูงในช่วงแรกเนื่องจากความแตกต่างของอุณหภูมิน้ำเหล็ก และเบ้ารับน้ำเหล็ก หลังจากนั้นอัตราการถ่ายเทความร้อนจะลดลงเนื่องจากบริเวณเบ้ารับน้ำ เหล็กที่สัมผัสกับน้ำเหล็กมีอุณหภูมิเพิ่มสูงขึ้น

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

รูปที่ 5-<mark>15</mark> ผลการจำลองการถ่ายเทความร้อนของผนังเบ้ารับน้ำเหล็กที่เวลาต่างๆ ขณะทำการรอการถ่ายน้ำเหล็ก

จุฬาลงกรณ์มหาวิทยาลัย

ขณะทำการรอการถ่ายน้ำเหล็ก

รูปที่ 5-19 ความสัมพันธ์ระหว่างอัตราการถ่ายเทความร้อนเข้าสู่ผิวด้านในเบ้า กับระยะเวลาที่ใช้ในการรอการถ่ายน้ำเหล็ก

5.3.5 สรุปผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในขั้นตอนการรอการถ่าย น้ำเหล็ก ด้วยการประยุกต์ใช้โปรแกรมสำเร็จ แสดงให้เห็นถึงการการเปลี่ยนแปลงของอุณหภูมิน้ำ เหล็ก และเบ้ารับน้ำเหล็กในขณะทำการรอการถ่ายน้ำเหล็ก โดยจะเห็นได้ว่าอัตราการถ่ายเทความ ร้อนของน้ำเหล็กมายังเบ้าในช่วงต้นของการบรรจุน้ำเหล็กยังมีค่าสูง หลังจากนั้นเมื่ออุณหภูมิ บริเวณผิวด้านในเพิ่มขึ้น อัตราการถ่ายเทความร้อนจะลดลง ทำให้สามารถสรุปได้ว่าอุณหภูมิ ภายในเบ้ารับน้ำเหล็กเป็นตัวแปรที่สำคัญที่ควบคุมอัตราการถ่ายเทความร้อนของน้ำเหล็กใน ระหว่างที่บรรจุอยู่ภายในเบ้า ดังนั้น

5.4 การศึกษาการถ่ายเทความร้อนในระหว่างขั้นตอนการถ่ายน้ำเหล็ก

ขั้นตอนการถ่ายน้ำเหล็ก ซึ่งน้ำเหล็กภายในเบ้าจะมีการลดระดับลงไปเรื่อยๆ ตามระยะเวลา ในขั้นตอนนี้การถ่ายเทความร้อนของผนังเบ้าด้านในจะแบ่งออกเป็นสองบริเวณ ได้แก่ 1) บริเวณด้านบนเหนือระดับน้ำเหล็ก การถ่ายเทความร้อนที่ส่วนนี้จะเป็นการแผ่รังสี ระหว่างพื้นผิวหลายผิว ได้แก่ ผิวข้าง ผิวหน้าสแลกที่ปกคลุมผิวหน้าน้ำเหล็ก และผิวเสมือน ด้านบนบริเวณขอบปากเบ้ารับน้ำเหล็ก และการพาความร้อนธรรมชาติของอากาศที่สัมผัสกับผนัง ข้างด้านใน ซึ่งการถ่ายเทความร้อนในส่วนนี้จะคล้ายกับการถ่ายเทความร้อนในระหว่างการพัก เบ้ารับน้ำเหล็ก และ 2) บริเวณด้านล่างระดับน้ำเหล็กที่มีการถ่ายเทความร้อนจากน้ำเหล็กเข้าสู่ ผนังด้านใน ซึ่งเหมือนกับขั้นตอนการรอการถ่ายน้ำเหล็ก

5.4.1 วัตถุประสงค์ในการศึกษา

เพื่อศึกษาการเปลี่ยนแปลงอุณหภูมิ และการถ่ายเทความร้อนของน้ำเหล็ก และ เบ้ารับน้ำเหล็ก ในระหว่างขั้นตอนการถ่ายน้ำเหล็กไปยังอ่างรับน้ำเหล็ก

5.4.2 แ<mark>บบ</mark>จำลองที่ใช้ในการศึกษา

แบบจำลองที่ใช้ศึกษาการถ่ายเทความร้อนในขั้นตอนการถ่ายน้ำเหล็ก รายละเอียดตามที่ได้กล่าวไว้ในหัวข้อที่ 4.12.3 ซึ่งแม้ว่าแบบจำลอง และโปรแกรมคำนวณสมการ เชิงเส้นหลายตัวแปรจะได้ออกแบบมาสำหรับการแบ่งขั้นตอนในการจำลองออกเป็น 20 ขั้นก็ตาม แต่เพื่อความสะดวกในการศึกษาจึงเลือกใช้เพียง 10 ขั้น โดยรวมขั้นการถ่ายน้ำเหล็กขั้นที่ติดกัน เข้าด้วยกัน ตามตารางที่ 5-5

ลำดับขั้นการถ่ายน้ำเหล็กที่	แบบจำลองขั้นที่
1 และ 2	1
3 และ 4	2
5 และ 6	3
7 และ 8	4
9 ແລະ 10 📃	5
11 และ 12 🛛 🚽 🛁	6
13 และ 14	7
15 และ 16	8
17 ແລະ 18	9
19 และ 20	10

ตารางที่ 5-5 การยุบรวมขั้นถ่ายน้ำเหล็กในการจำลอง จาก 20 เป็น 10 ขั้น

5.4.3 การกำหนดค่าตัวแปรในการศึกษา

การจำลองมีการกำหนดค่าโปรแกรมสำเร็จเชิงพาณิชย์ที่ใช้ในการศึกษา

ดังต่อไปนี้

5.4.3.1 การกำห<mark>นดคุณสมบัติวัส</mark>ดุ

คุณสมบัติทางความร้อนของวัสดุในส่วนของเบ้ารับน้ำเหล็กและ น้ำเหล็ก กำหนดเหมือนกับในหัวข้<mark>อ</mark>ที่ 5.1.3.1และหัวข้อที่ 5.3.3.1 ตามลำดับ

5.4.3.2 การกำหนดอินเทอร์เฟสระหว่างชิ้นวัตถุ

กำหนดอินเทอร์เฟสระหว่างชิ้นวัสดุเหมือนกับการศึกษาการถ่ายเทความร้อนใน ระหว่างขั้นตอนการรอการถ่ายน้ำเหล็กในหัวข้อที่ 5.3.3.2

5.4.3.3 การกำหนดเงื่อนไขขอบเขต (boundary conditions) ของโปรแกรม ผิวด้านในเบ้ารับน้ำเหล็กเหนือระดับน้ำเหล็ก

กำหนดเงื่อนไขขอบเขตบริเวณผิวด้านในเบ้ารับน้ำเหล็กเหนือระดับน้ำเหล็กด้วย ค่าอัตราการถ่ายเทความร้อนเข้าสู่ผิวด้านในเบ้ารับน้ำเหล็กเหนือระดับน้ำเหล็ก ที่ได้จากการ ประเมินการถ่ายเทความร้อน ด้วยโปรแกรมคำนวณสมการเชิงเส้นหลายตัวแปร ดังแสดงในตาราง ที่ 5-6

<u>ผิวด้านบนน้ำเหล็ก</u>

กำหนดเงื่อนไขขอบเขตเหมือนกับกรณีการจำลองการถ่ายเทความร้อนในระหว่าง ขั้นตอนการรอการถ่ายน้ำเหล็ก
<u>ผิวด้านนอกเบ้ารับน้ำเหล็ก</u>

กำหนดเงื่อนไขขอบเขตเหมือนกับกรณีการจำลองการถ่ายเทความร้อนในระหว่าง ขั้นตอนการอุ่นเบ้ารับน้ำเหล็กที่ก่อใหม่

				10	ขั้นในกา	<mark>เรจำลอง</mark>				
	1	2	3	4	5	6	7	8	9	10
ลำดับผิว ข้าง			i	<u>อัตราก</u> าร	ถ่าย <mark>เทค</mark>	วามร้อน	(kW/m ²)		
2	-8.8	-8.8	-4.4	-4.4	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2
4	-30.6	-16.6	-8.8	-4.4	-4.4	-2.2	-2.2	-2.2	-2.2	-2.2
6	-30.6	-16.6	-8.8	-4.4	-4.4	-2.2	-2.2	-2.2	-2.2	-2.2
8		- <mark>30</mark> .6	-16.6	-8.8	-4.4	-4.4	-4.4	-2.2	-2.2	-2.2
10	-	-30.6	<mark>-16.6</mark>	-8.8	-4.4	-4.4	-4.4	-2.2	-2.2	-2.2
12			-30.6	-16.6	-8.8	-4.4	-4.4	-4.4	-4.4	-2.2
14			- <mark>30.6</mark>	-16.6	-8.8	-4.4	-4.4	-4.4	-4.4	-2.2
16			/ A.A	-30.6	-16.6	-8.8	-4.4	-4.4	-4.4	-4.4
18				-30.6	-16.6	-8.8	-4.4	-4.4	-4.4	-4.4
20			20.4	200	-30.6	-16.6	-8.8	-4.4	-4.4	-4.4
22	1			The second	-30.6	-16.6	-8.8	-4.4	-4.4	-4.4
24			100		610	-30.6	-16.6	-8.8	-4.4	-4.4
26			2000	3/14/20		-30.6	-16.6	-8.8	-4.4	-4.4
28		<u> </u>	-	0.000		2	-30.6	-16.6	-8.8	-4.4
30			STREET, D	0000000			-30.6	-16.6	-8.8	-4.4
32			1					-30.6	-16.6	-8.8
34								-30.6	-16.6	-8.8
36	2							37	-30.6	-16.6
38									-30.6	-16.6
40	T									-30.6
42							1			-30.6

ตารางที่ 5-6 การถ่ายเทความร้อนขอ<mark>งผิวด้านในเบ้ารับน้ำเหล็กในแต่แบบจำลอง แยกเป็นแต่ละ</mark> พื้นผิว

5.4.3.4 การกำหนดเงื่อนไขเริ่มต้น (initial conditions)

กำหนดเงื่อนไขเริ่มต้นในการจำลองการถ่ายเทความร้อน ทั้งในส่วนของน้ำเหล็ก และเบ้ารับน้ำเหล็ก โดยการใช้ข้อมูลอุณหภูมิที่ได้จากการจำลองในขั้นตอนการรอการถ่ายน้ำ เหล็ก เมื่อระยะเวลาในการรอผ่านไป 12 นาที ซึ่งระยะเวลานี้อ้างอิงจากข้อมูลการผลิตของโรงงาน ตามที่ได้กล่าวไว้ในหัวข้อที่ 3.3 5.4.3.5 การกำหนดระยะเวลาการจำลอง (simulation time) และขั้นระยะเวลา(time step) เนื่องจากแบบจำลองได้แบ่งออกเป็นขั้นตอนย่อยๆ ทั้งสิ้น 10 ขั้นตอน แม้ว่า แบบจำลอง ซึ่งระยะเวลาการจำลองในแต่ละขั้นตอนเท่ากับ 5.6 นาที รวมระยะเวลาการถ่ายน้ำ เหล็กทั้งสิ้น 56 นาที ซึ่งระยะเวลานี้อ้างอิงจากข้อมูลการผลิตของโรงงานตามที่ได้กล่าวไว้ในหัวข้อ ที่ 3.3 ตารางที่ 5-7แสดงระยะเวลาในแต่ละขั้นตอน

	ระยะเวลาในการ	รถ่ายน <mark>้ำเหล็ก (นาที)</mark>
แบบจำลองขั้น <mark>ท</mark> ี่	เริ่ม	สิ้นสุด
1	0.0	5.6
2	5.6	11.2
3	11.2	16.8
4	16.8	22.4
5	22.4	28.0
6	28.0	33.6
7	33.6	39.2
8	39.2	44.8
9	44.8	50.4
10	50.4	56.0
รวมระยะเวลาถ่ <mark>าย</mark> น้ำ	แหล็ก (นาที)	56.0

ตารางที่ 5-7 ระยะเวล<mark>าการถ่ายน้ำเหล็กในแต่ละขั้นของแบบจ</mark>ำลอง

ในการจำลองในแต่ละขั้นย่อยกำหนดขั้นระยะเวลาเริ่มต้น 0.001 วินาที และขั้น ระยะเวลามากที่สุด 1 วินาที

5.4.4 ผลการศึกษา และอภิปรายผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนในระหว่างการถ่ายน้ำเหล็ก แสดงในรูปที่ 5-20 แสดงให้เห็นถึงการเปลี่ยนแปลงอุณหภูมิของน้ำเหล็ก และเบ้าในขณะทำการถ่ายน้ำเหล็ก เมื่อพิจารณากราฟการเปลี่ยนแปลงอุณหภูมิเทียบกับเวลา รูปที่ 5-21 ช่วงที่ผิว เบ้ารับน้ำเหล็กยังสัมผัสกับน้ำเหล็ก การถ่ายเทความร้อนจากน้ำเหล็กจะทำให้อุณหภูมิภายใน ผนังสูงขึ้น แต่เมื่อระดับน้ำเหล็กลดต่ำลงกว่าตำแหน่งผนัง ผนังบริเวณใกล้ผิวจะสูญเสียความร้อน ให้แก่บรรยากาศรอบข้าง ทำให้อุณหภูมิภายในผนังลดลง ซึ่งจะสังเกตได้ชัดเจนที่ตำแหน่งที่ 5 mm แตกต่างจากตำแหน่งที่ 50 และ 100 mm ที่อยู่ไกลออกไป ที่อุณหภูมิยังเพิ่มสูงขึ้นอีก เนื่องจากผลของการนำความร้อน

เมื่อพิจารณากราฟแสดงการแจกแจงอุณหภูมิในผนังข้าง ณ เวลาต่างๆ รูปที่ 5-22 พบว่าการอุณหภูมิภายในผนังจะค่อยๆ เพิ่มสูงขึ้นเมื่อยังสัมผัสกับน้ำเหล็ก เมื่อระดับน้ำเหล็ก ลดต่ำลง การสูญเสียความร้อนทำให้อุณหภูมิบริเวณใกล้ผิวด้านในลดต่ำลง แต่ผลของการนำ ความร้อนจะยังทำให้ที่ตำแหน่งด้านในเบ้ารับน้ำเหล็กอุณหภูมิยังคงเพิ่มสูงขึ้น

ขณะทำการถ่ายน้ำเหล็ก

นอกจากนี้เมื่อพิจารณากราฟแสดงการเปลี่ยนแปลงอุณหภูมิน้ำเหล็กเทียบกับ เวลา ขณะทำการรอการถ่ายน้ำเหล็ก รูปที่ 5-23 พบว่าในขณะการถ่ายน้ำเหล็ก อุณหภูมิน้ำเหล็ก ภายในเบ้าจะมีการลดลง ซึ่งเมื่อสิ้นสุดการถ่ายน้ำเหล็กเป็นระยะเวลา 56 นาที น้ำเหล็กภายในถัง จะมีอุณหภูมิลดลง 86[°]C

รูปที่ 5-23 การเปลี่ยนแปลงอุณหภูมิน้ำเหล็กเทียบกับเวลา ขณะทำการถ่ายน้ำเหล็ก

5.4.5 สรุปผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในขั้นตอนการถ่ายน้ำเหล็ก ด้วยการประยุกต์ใช้โปรแกรมสำเร็จ แสดงให้เห็นถึงการการเปลี่ยนแปลงของอุณหภูมิน้ำเหล็ก และ เบ้ารับน้ำเหล็กในขณะทำการถ่ายน้ำเหล็ก ทำให้สรุปได้ว่าวิธีการดังกล่าวนี้สามารถใช้จำลองการ ถ่ายเทความร้อนของน้ำเหล็กและเบ้าในระหว่างขั้นตอนการถ่ายน้ำเหล็กได้

5.5 การศึกษาการถ่ายเทความร้อนในวัฏจักรการทำงานของเบ้ารับน้ำเหล็ก

5.5.1 วัตถุประสงค์ในการศึกษา

เพื่อศึกษาการเปลี่ยนแปลงอุณหภูมิ และการถ่ายเทความร้อนของน้ำเหล็ก และ เบ้ารับน้ำเหล็ก ในระหว่างวัฏจักรการทำงานของเบ้ารับน้ำเหล็ก ในรอบการทำงานที่ 1 – 5

5.5.2 แนวทางในการจำลองการถ่ายเทความร้อน

ใช้แบบจำลองในขั้นตอนที่ 5.1 ถึง 5.4 จำลองการถ่ายเทความร้อนในวัฏจักรการ ทำงานของเบ้ารับน้ำเหล็ก ด้วยวิธีการจำลองแบบต่อเนื่องกันไป จนครบรอบการทำงานของเบ้ารับ น้ำเหล็ก

5.5.3 ระยะเวลาในแต่ละขั้นตอน

ระยะเวลาในแต่ละขั้นตอนการทำงานของเบ้ารับน้ำเหล็ก ที่ใช้ในการจำลองนั้น อ้างอิงจากข้อมูลที่ได้จากการตรวจวัดที่ได้กล่าวไปแล้วในหัวข้อที่ 3.3 เพื่อความเหมาะสมในการ จำลองจึงได้ ตัดขั้นตอนการเทน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า และขั้นตอนการเทสแลกออกไป และปรับเปลี่ยนระยะเวลาในแต่ละขั้นตอนซึ่งแสดงในตารางที่ 5-7 ซึ่งรายละเอียดการจำลองในแต่ ละขั้นตอน แสดงในรูปที่ 5-24

อนึ่งเนื่องจากในการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้าจำเป็นต้องใช้เบ้ารับ น้ำเหล็ก 2 ใบสลับกันรับน้ำเหล็กจากเตาหลอมอาร์คไฟฟ้า ทำให้ระยะเวลาของวัฏจักรการทำงาน ของเบ้ารับน้ำเหล็ก จะเป็น 2 เท่าของระยะเวลาการหลอม (tap to tap time)

Heat	Simulation period	Simulation time (min)
0	Preheat green ladle	120
	Waiting for Tapping	6
1	Holding	13
I	Teeming	56
do	Waiting for preheat	18
	Preheat	21
	Waiting for Tapping	6
2 - 5	Holding	13
	Teeming	56
01	Waiting for preheat	18
	Ladle Cycling	114
	Tap to Tap time	57

ตารางที่ 5-7 ระยะเวลาในแต่ละขั้นตอนของวัฏจักรจำลองการทำงานของเบ้ารับ

รูปที่ 5-24 รายละเอียดกา<mark>รจำลองการถ่ายเทความร้อนในวัฏ</mark>จักรการทำงานของเบ้ารับน้ำเหล็ก ในแต่ละขั้นตอน

5.5.4 ผลการศึกษา และอภิปรายผลการศึกษา

เมื่อพิจารณากราฟการเปลี่ยนแปลงอุณหภูมิเทียบกับเวลาตลอด 5 รอบการ ทำงานของเบ้ารับน้ำเหล็ก ดังแสดงในรูปที่ 5-25 พบว่าในเบ้ารับน้ำเหล็กชั้นทำงานที่ตำแหน่ง 5 mm มีการเปลี่ยนแปลงอุณหภูมิอย่างรวดเร็วตามขั้นตอนการทำงาน ในขณะที่ตำแหน่ง 50 mm และ 100 mm มีการเปลี่ยนแปลงอุณหภูมิตามขั้นตอนการทำงานเช่นกัน แต่อุณหภูมิมีแนวโน้ม เพิ่มสูงขึ้นเมื่อรอบการทำงานมากขึ้น แต่ในส่วนของอุณหภูมิที่ตำแหน่ง 182 mm และ 224 mm ซึ่งอยู่ในชั้นปลอดภัย และเปลือกเหล็ก อุณหภูมิที่สองตำแหน่งนี้เพิ่มขึ้นตลอดไม่ขึ้นกับขั้นตอนการ

ทำงานของเบ้ารับน้ำเหล็ก แต่อัตราการเพิ่มของอุณหภูมิมีค่าลดลงตามรอบการทำงานที่มากขึ้น เมื่อสิ้นสุดขั้นตอนการอุ่นเบ้ารับน้ำเหล็กในแต่ละรอบ ตำแหน่งที่ 5 mm จะมี อุณหภูมิอยู่ในช่วงประมาณ 1,000 ถึง 1,100 [°]C ซึ่งจะลดลงอย่างรวดเร็วเมื่อผ่านขั้นตอนการรอ การรับน้ำเหล็ก แต่อย่างไรก็ดีการลดระยะเวลาการรอการเทน้ำเหล็กจากเตาหลอมเป็นไปได้ยาก ในทางปฏิบัติเนื่องจากในการผลิตเหล็กกล้าด้วยเตาหลอมอาร์คไฟฟ้า เบ้ารับน้ำเหล็กมีหน้าที่ต้อง มารอการเทน้ำเหล็กจากเตาหลอม ซึ่งการเทน้ำเหล็กจะเกิดขึ้นเมื่อผู้ปฏิบัติงานสามารถปรุงน้ำ เหล็กให้ได้ตามส่วนผสมที่ต้องการ

พิจารณาขั้นตอนการรอการถ่ายน้ำเหล็กของแต่ละรอบการทำงาน เมื่อเบ้ารับน้ำ เหล็กรับน้ำเหล็กแล้ว อุณหภูมิภายในผนังจะเพิ่มสูงขึ้นเมื่อยังสัมผัสกับน้ำเหล็ก ที่ตำแหน่ง 5 mm จากผิวด้านใน เมื่อสิ้นสุดการรอการถ่ายน้ำเหล็กในรอบการทำงานแรก จะมีอุณหภูมิประมาณ 1,450 °C ซึ่งจะเพิ่มสูงขึ้นในรอบการทำงานถัดไป

สำหรับในขั้นตอนการถ่ายน้ำเหล็ก การเปลี่ยนแปลงอุณหภูมิที่ตำแหน่ง 5, 50 และ 100 mm จากผิวด้านใน มีรูปแบบเดียวกันในแต่ละรอบการทำงาน โดยอุณหภูมิจะเพิ่มขึ้น เมื่อรอบการทำงานของเบ้ารับน้ำเหล็กเพิ่มขึ้น

ขั้นตอนการรอการอุ่นเบ้ารับน้ำเหล็ก เป็นขั้นตอนที่เบ้ารับน้ำเหล็กสูญเสียความ ร้อน ซึ่งในการศึกษาได้ใช้วิธีการจำลอง เหมือนกับขั้นตอนการพักเบ้ารับน้ำเหล็ก ซึ่งที่ตำแหน่ง 5 และ 50 mm จากผิวด้านในมีอุณหภูมิลดลง แสดงให้เห็นถึงการสูญเสียความร้อนที่เกิดขึ้นที่ผิว ด้านใน นอกจากนี้ยังพบว่าอุณหภูมิที่ตำแหน่ง 5 mm เมื่อสิ้นสุดการรอการอุ่นเบ้ารับน้ำเหล็กเป็น เวลา 18 นาที ในรอบการทำงานที่ 3 มีค่าใกล้เคียงกับอุณหภูมิก่อนรับน้ำเหล็กในรอบที่ 1 จาก ข้อมูลข้างต้นทำให้สรุปได้ว่า เมื่อเบ้ารับน้ำเหล็กผ่านการทำงานในรอบที่ 3 หาระยะเวลาในการรอ การรับน้ำเหล็กไม่เกิน 18 นาที นับตั้งแต่สิ้นสุดการถ่ายน้ำเหล็ก สามารถรับน้ำเหล็กมาทำการผลิต ต่อได้เลย โดยไม่จำเป็นต้องอุ่นเบ้าอีก อนึ่งการจัดการเวลาที่ใช้ระหว่างขั้นตอนการรอการอุ่นเบ้ารับน้ำเหล็ก และ ขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก ที่เหมาะสมจะช่วยลดการสูญเสียความร้อนของเบ้ารับน้ำเหล็ก และ การใช้เชื้อเพลิงในการอุ่นเบ้ารับน้ำเหล็กได้

การแจกแจงอุณหภูมิในผนังข้าง เมื่อสิ้นสุดการทำงานรอบที่ 1 ถึง 5 แสดงในรูปที่ 5-26 พบว่าการแจกแจงอุณหภูมิเบ้ารับน้ำเหล็กจะมีค่าเพิ่มขึ้น ตามรอบการทำงานแบบต่อเนื่อง ซึ่งจะสังเกตได้ว่าเมื่อสิ้นสุดการอุ่นเบ้ารับน้ำเหล็กที่ทำการก่อขึ้นใหม่ ที่ตำแหน่งใกล้ผิวด้านใน อุณหภูมิจะสูงกว่าเมื่อสิ้นสุดการทำงานในรอบที่ 1 และ 2 ซึ่งมีค่าใกล้เคียงกับอุณหภูมิเมื่อสิ้นสุด การทำงานในรอบที่ 3 ข้อมูลข้างต้นบ่งชี้ว่าเมื่อเบ้ารับน้ำเหล็กผ่านการทำงานในรอบที่ 3 ถ้า ระยะเวลาการพักเบ้ารับน้ำเหล็ก เพื่อรอการรับน้ำเหล็กไม่เกิน 18 นาที การแจกแจงอุณหภูมิเบ้า รับน้ำเหล็กจะสูงพอให้สามารถทำการรับน้ำเหล็กต่อเนื่องได้โดยไม่ต้องทำการอุ่น

รูปที่ 5-27 แสดงพลังงานสะสมภายในเบ้ารับน้ำเหล็ก ซึ่งหามาด้วยวิธีที่แสดงใน ภาคผนวก ง เปรียบเทียบกับอุณหภูมิภายในผนังเบ้ารับน้ำเหล็กที่ตำแหน่ง 50 mm จากผิวด้านใน พบว่ามีแนวโน้มการเปลี่ยนแปลงที่คล้ายคลึงกัน ดังนั้นอุณหภูมิที่ตำแหน่ง 50 mm สามารถใช้เป็น ตัวแปรที่แสดงถึงสภาวะทางความร้อนของเบ้ารับน้ำเหล็กในระหว่างการทำงานได้

รูปที่ 5-28 สังเกตได้ว่าอุณหภูมิน้ำเหล็กในเบ้าตลอดช่วงการรอการถ่ายน้ำเหล็ก และถ่ายน้ำเหล็ก กรณีอุณหภูมิเท 1700°C ในรอบการทำงานของเบ้ารอบที่ 5 จะสูงกว่าในรอบ การทำงานที่ 1 จึงเป็นที่มาของการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในรอบการ ทำงานที่ 5 ใหม่ด้วยอุณหภูมิเทน้ำเหล็ก 1690°C เพื่อหาความเป็นไปได้ของการลดอุณหภูมิการเท น้ำเหล็กจากเตาหลอม

รูปที่ 5-29 ผลจากการจำลอง โดยเปลี่ยนอุณหภูมิเทน้ำเหล็กที่ 1690°C พบว่า อุณหภูมิน้ำเหล็กเมื่อสิ้นสุดการถ่ายน้ำเหล็กยังสูงกว่า ในรอบการทำงานที่ 1 ที่มีอุณหภูมิเทน้ำ เหล็ก 1700°C ทำให้สรุปได้ว่าการปรับลดอุณหภูมิเทน้ำเหล็กลดลง 10°C ในรอบการทำงานที่ 5 ของเบ้ารับน้ำเหล็ก มีความเป็นไปได้ ซึ่งจะเป็นการลดพลังงานไฟฟ้าที่ใช้ในการหลอมเศษเหล็ก ซึ่ง เมื่อทำการประเมินผลประหยัด โดยอ้างอิงจากสมการจำลองปริมาณพลังงานไฟฟ้าของเตาหลอม อาร์คไฟฟ้า โดย Iron and Steel Institute (2000) สมการที่ 2.1 ในหัวข้อที่ 2.1.1 เตาอาร์คไฟฟ้า ซึ่งในพจน์ที่ 6 ของสมการซึ่งเป็นพจน์ที่มีตัวแปรอุณหภูมิน้ำเหล็กที่เทจากเตาหลอม จากความจริง ที่ว่าอุณหภูมิน้ำเหล็กที่เพิ่มสูงขึ้นทำให้ต้องใช้พลังงานไฟฟ้าในการหลอมเพิ่มขึ้น สมการแสดงให้ เห็นว่า ทุกๆ อุณหภูมิน้ำเหล็กที่เพิ่ม 1°C จากอุณหภูมิ 1600°C จะใช้พลังงานไฟฟ้าเพิ่มขึ้น 0.7 kWh/ton การคำนวณผลประหยัดแสดงในตารางที่ 5-8 ซึ่งสามารถสรุปได้ว่าการลดอุณหภูมิเทน้ำ เหล็กจากเดิม 1700°C ลง 10°C เป็นผลให้สามารถลดการใช้ไฟฟ้าในการหลอมได้ 7 kWh/ton ซึ่ง สำหรับโรงงานที่ศึกษาจะสามารถประหยัดได้ค่าใช้จ่ายด้านพลังงานไฟฟ้าใด้ 2.5 ล้านบาท/ปี

รูปที่ 5-26 การแจกแจงอุณหภูมิภายในผนังเบ้าจากการจำลองที่ระยะเวลาต่างๆ ตลอดรอบการทำงานที่ 1 ถึง 5

รูปที่ 5-28 เปรียบเที<mark>ย</mark>บการเปลี่ยนแปลงอุณหภูมิน้ำเหล็กระหว่างขั้นตอนการรอการถ่ายน้ำเหล็ก และการถ่ายน้ำเหล็ก ระหว่าง1) Heat 1 tap 1700 deg C: เบ้ารับน้ำเหล็กในรอบการทำงานที่ 1 รับน้ำเหล็กอุณหภูมิ 1700 °C และ 2) Heat 5 tap 1700 deg C: เบ้ารับน้ำเหล็กในรอบการ ทำงานที่ 5 รับน้ำเหล็กอุณหภูมิ 1700 °C

รูปที่ 5-29 เปรียบเทียบการเปลี่ยนแปลงอุณหภูมิน้ำเหล็กระหว่างขั้นตอนการรอการถ่ายน้ำเหล็ก และการถ่ายน้ำเหล็ก ระหว่าง1) Heat 1 tap 1700 deg C: เบ้ารับน้ำเหล็กในรอบการทำงานที่ 1 รับน้ำเหล็กอุณหภูมิ 1700 °C 2) Heat 5 tap 1700 deg C: เบ้ารับน้ำเหล็กในรอบการทำงานที่ 5 รับน้ำเหล็กอุณหภูมิ 1700 °C และ 3) Heat 5 tap 1690 deg C: เบ้ารับน้ำเหล็กในรอบการ ทำงานที่ 5 รับน้ำเหล็กอุณหภูมิ 1690 °C

1 2	
<u>พลังงานไฟฟ้าที่ลดลง</u>	
เทน้ำเหล็กอุณหภูมิ 1700°C (kW.h/ton)	70
เทน้ำเหล็กอุณหภูมิ 1690°C (kW.h/ton)	63
พลังงานไฟฟ้าที่ใช้ในการหล <mark>อมที่ลดลง</mark>	7
<u>อัตราการผลิต</u>	
อัตราการผลิตของโรงงาน (ton/year)	150,000
อัตราส่วนการท <mark>ำงานของเบ้ารับน้ำเหล็ก</mark>	
ที่ผ่านรอบการทำงานที่ 5	0.8
อัตราการผลิตของโรงงานที่ทำการเทน้ำ	
เหล็กอุณหภูมิ 1690 °C (ton/year)	120,000
ผลประหยัด	
พลังงานไฟฟ้าที่ล <mark>ดลง</mark> (kW.h/year)	840,000
ราคาไฟฟ้าต่อห <mark>น่</mark> วย (Baht/ <mark>k</mark> W.h)	3
ต้นทุนการผลิตที่ล <mark>ดล</mark> ง (B <mark>a</mark> ht)	2,520,000

ตารางที่ 5-8 ผลประหยัดของการลดอุณหภูมิเทน้ำเหล็กลง 10 °C

5.5.5 สรุปผลการศึกษา

ผลการจำลองการถ่ายเทความร้อนของเบ้ารับน้ำเหล็กในรอบการทำงานที่ 1 – 5 ด้วยการประยุกต์ใช้โปรแกรมสำเร็จเชิงพาณิชย์ แสดงให้เห็นถึงการเปลี่ยนแปลงอุณหภูมิน้ำเหล็ก และเบ้ารับน้ำเหล็กตลอดช่วงการทำงาน ทำให้สามารถสรุปได้ว่าวิธีการที่ใช้ในการศึกษามีความ เหมาะสม และผลที่ได้จากการศึกษายังสามารถนำไปปรับปรุงการทำงานของโรงงานเพื่อผลการ ประหยัดพลังงานได้

บทที่ 6 สรุปผลการศึกษาวิจัย และข้อเสนอแนะ

6.1 สรุปการศึกษาวิจัย

วิทยานิพนธ์ฉบับนี้เป็นการศึกษาสภาวะทางความร้อน อัตราการถ่ายเทความ ร้อน และ อุณหภูมิของเบ้ารับน้ำเหล็กขนาด 25 ตัน ระหว่างขั้นตอนการอุ่นเบ้ารับน้ำเหล็ก, การพัก เบ้ารับน้ำเหล็ก, การรอการเทน้ำเหล็ก และ การถ่ายน้ำเหล็กสำหรับการหล่อแบบต่อเนื่อง โดยการ คำนวณอัตราการถ่ายเทความร้อนจากข้อมูลการวัดอุณหภูมิของเบ้ารับน้ำเหล็กในแต่ละขั้นตอน และข้อมูลจากการใช้โปรแกรมสำเร็จเชิงพาณิชย์ จำลองการถ่ายความร้อนของเบ้ารับน้ำเหล็ก

ผลการศึกษาแสดงให้เห็นว่า ในระหว่างรอบการทำงานที่ 1 - 5 ความร้อนสะสม ภายในเบ้ารับน้ำเหล็กจะสูงขึ้น ส่งผลให้การสูญเสียความร้อนจากน้ำเหล็กไปยังเบ้าลดลง จึง สามารถลดอุณหภูมิน้ำเหล็กที่เทจากเตาหลอมลงจาก 1700°C เหลือ 1690°C โดยอุณหภูมิน้ำ เหล็กเมื่อสิ้นสุดการถ่ายน้ำเหล็กยังสูงพอตามเงื่อนไขในการผลิต เป็นผลให้สามารถลดการใช้ ไฟฟ้าในการหลอมได้ 7 kWh/ton ซึ่งสำหรับโรงงานที่ศึกษา จะสามารถประหยัดได้ค่าใช้จ่ายด้าน พลังงานไฟฟ้าได้ 2.5 ล้านบาท/ปี

อนึ่ง สำหรับผลการศึกษาของวิทยานิพนธ์ฉบับนี้มีลักษณะเป็นคุณสมบัติเฉพาะ ของทางโรงงาน เนื่องจากการจำลองการถ่ายเทความร้อนมีปัจจัยเฉพาะที่เป็นคุณสมบัติของ โรงงาน เช่น การก่อเบ้ารับน้ำเหล็ก คุณสมบัติวัสดุที่ใช้ก่อเบ้ารับน้ำเหล็ก ระยะเวลาการทำงานใน แต่ละขั้นตอน อุณหภูมิเทน้ำเหล็ก เป็นต้น แต่อย่างไรก็ดีวิธีที่ใช้ในการจำลองการถ่ายเทความร้อน ยังสามารถนำไปปรับใช้กับโรงงานที่มีกำลังลักษณะการผลิตใกล้เคียงกัน เพียงแต่จำเป็นต้อง ปรับตัวแปรที่ใช้ในการจำลองให้เป็นของโรงงานนั้นๆ

6.2 ปัญหาของงา<mark>น</mark>วิจัย

การศึกษาสภาวะทางความร้อนในงานวิจัยครั้งนี้ยังขาดข้อมูลการตรวจวัดการ แจกแจงอุณหภูมิภายในเป้ารับน้ำเหล็กในขั้นตอนการรับน้ำเหล็ก และถ่ายน้ำเหล็ก เนื่องจาก ปัญหาเรื่องความปลอดภัยของโรงงาน ทำให้ไม่มีข้อมูลการแจกแจงอุณหภูมิภายในเป้าในขั้นตอน การทำงานดังกล่าวมาเปรียบเทียบความถูกต้องของการจำลอง แต่อย่างไรก็ดีผู้วิจัยได้ใช้ข้อมูลอื่น เท่าที่สามารถตรวจวัดได้ เช่น ข้อมูลอุณหภูมิผิวเปลือกเหล็กเป้ารับน้ำเหล็ก ข้อมูลภาพถ่ายถ่าย รังสีอินฟาเรดของผนังเป้าด้านในเป้ารับน้ำเหล็ก เป็นต้น ในการประเมินอัตราการถ่ายเทความร้อน ที่เกิดขึ้นเพื่อใช้ในการกำหนดค่าเงื่อนไขขอบเขตในการศึกษา

6.3 ข้อเสนอแนะของงานวิจัยในอนาคต

วิธีที่ใช้ในการศึกษาการจำลองสภาวะทางความร้อนของเบ้ารับน้ำเหล็ก มีความ ยุ่งยากในการทำงาน และไม่สามารถทำการทำนายในแบบทันที (real time) ได้ ซึ่งในอนาคตควร จะทำการศึกษาในการปรับปรุงโปรแกรมที่ใช้ทำนายสภาวะทางความร้อนให้สามารถใช้งานได้ง่าย ในแบบทันทีเพื่อที่จะเป็นประโยชน์ต่อการใช้งานจริง ณ ขณะทำงานของผู้ปฏิบัติงาน

รายการอ้างอิง

<u>ภาษาไทย</u>

- จักราวุธ จรูญศารทูลและพงษ์ธร จรัญญากรณ์. การปรับปรุงประสิทธิภาพของฝาและอุปกรณ์อุ่นถัง ถ่ายน้ำเหล็กโดยการใช้หัวเผาแบบรีเจนเนอเรทีฟ. <u>การประชุมวิชาการเครือข่ายพลังงาน</u> <u>แห่งประเทศไทยครั้งที่ 5,</u> มหาวิทยาลัยนเรศวร พิษณุโลก, 2552.
- จักราวุธ จรูญศารทูล. <u>การปรับปรุงประสิทธิภาพของฝาและอุปกรณ์อุ่นเบ้ารับน้ำเหล็กโดยการใช้หัว</u> <u>เผาแบบรีเจนเนอเรทีฟ</u>. วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาเครื่องกล คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2553.
- ศิริพงษ์ ชื่นกลิ่น, จักราวุธ จรูญศารทูลและพงษ์ธร จรัญญากรณ์. การจำลองการถ่ายเทความร้อน ของเป้ารับน้ำเหล็กในระหว่างการอุ่นเป้ารับน้ำเหล็กเพื่อการประหยัดพลังงาน. <u>การประชุม</u> <u>วิชาการเครือข่ายพลังงานแห่งประเทศไทยครั้งที่ 5,</u> มหาวิทยาลัยนเรศวร พิษณุโลก, 2552.
- สมศักดิ์ คงโซติ. <u>การศึกษาปรากฏการณ์การถ่ายเทความร้อนในการอุ่นถังรับน้ำเหล็กใน</u> อ<u>ุตสาหกรรมโลหะ</u>. วิทยานิพนธ์ปริญญามหาบัณฑิต ภาควิชาวิศวกรรมเครื่องกล คณะ วิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี, 2536.

<u>ภาษาอังกฤษ</u>

Austin, P. R., Camplin, J. M., Herbertson, J., and Taggart, I. J. Mathematical modeling of thermal stratification and drainage of steel ladles. <u>ISIJ international</u> 32 (1992): 192-202.

Blondelot. E., et.al. <u>EAF Technology</u>. Belgium: Ceuterick n.v., 2000.

Chakraborty, S., and Sahai, Y. Effect of holding time and surface cover in ladles on liquid steel flow in continuous casting tundishes<u>. Metallurgical Transactions B</u> 23B (April 1992): 153-164.

- Davila, O., Morales, R. D., and Garcia-demedices, L. Mathematical simulation of fluid dynamic during steel draining operations from a ladle. <u>Metallurgical and Materials</u> <u>Transaction B</u> 37B (February 2006): 71-87.
- Fredman, T. P., and Saxen, H. Model for temperature profile estimation in the refractory of a metallurgical ladle. <u>Metallurgical and Materials Transaction B</u> 29B (June 1998): 651-659.
- Fredman, T. P., Torrkulla, J., and Saxen, H. two-dimensional dynamic simulation of the thermal state of ladles. <u>Metallurgical and Materials Transaction B</u> 30B (April 1999): 323-330.
- Fredman, T. P. Heat transfer in steelmaking ladle refractories and steel temperature. <u>Scandinavian Journal of Metallurgy</u> 29 (2000): 232-258.
- Fox, R. W., Mcdonald A. T., and Pritchard, P. J. <u>Introduction to Fluid Mechanics</u>. Sixth Edition. USA; John Wiley & Sons, 2004.
- Grip, C. E., Jonsson, K. O., Eriksson, S., Jonsson, L., Jonsson, P., and Pan, Y. Theoretical and practical study of thermal stratification and drainage in ladles of different geometry. <u>Scandinavian Journal of Metallurgy</u> 29 (2000): 30-38.
- Gupta, N., and Chandra, S. Temperature prediction model for controlling casting superheat temperature. <u>ISIJ International</u> 44 (2004): 1517-1526.

Incropera, F. P., and Dewitt, D.P. <u>Introduction to Heat Transfer</u>. Third Edition. USA : John Wiley & Sons, 1996.

Kays, W. M., and Crawford, M. E. <u>Convective Heat and Mass Transfer</u>. Third Edition. Singapore; Magraw-Hill, 1993.

- Mohanty, B., and Satayayut, J. Dynamic model for ladle preheater performance evaluation. <u>International Journal of Energy Research</u> 16 (1992): 51-60.
- Pan, Y., Grip, C., and Bjorkman, B. Numerical studies on the parameters influencing steel ladle heat loss rate, thermal stratification during holding and steel stream temperature during teeming. <u>Scandinavian Journal of Metallurgy</u> 32 (2003): 71-85.
- Tetrault, C., Young, S., Roldan, D., and Zhou, C. Q. CFD analysis of heat loss in steel ladle cycling. 2nd International energy conversion engineering conference. pp. 1-8. Rhode island: .American Institute of Aeronautics and Astronautics, 2004.
- Volkova, O., and Janke, D. Modelling of temperature distribution refractory ladle lining for steelmaking. <u>ISIT International</u> 43 (2003): 1185-1190.
- Xia. J. L., and Ahokainen, T. Transient flow and heat transfer in a steelmaking ladle during the holding period. <u>Metallurgical and Materials Transaction B</u>32B (August 2001): 733-741.
- Xia. J. L., and Ahokainen, T. Homogenization of temperature field in a steelmaking ladle with gas injection. <u>Scandinavian Journal of Metallurgy</u> 32 (2003): 211-217.
- Zimmer, A., Lima, A. N. C., Trommer.R.M., Braaganca.S.R., and Bergmann.C.P. Heat transfer in steelmaking ladle. <u>J. of Iron and Steel Research</u> 15 (2008): 11-14.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

<mark>ภาค</mark>ผนวก

ภาคผนวก ก ระเบียบวิธีไฟไนต์เอลิเมนต์

ระเบียบวิธีไฟไนต์เอลิเมนต์

ระเบียบวิธีไฟในต์เอลิเมนต์หนึ่งในเป็นระเบียบวิธีทางคณิตศาสตร์ ที่ใช้ในการ แก้ปัญหาทางวิศวกรรมที่เป็นลักษณะสมการเชิงอนุพันธ์ ด้วยการคำนวณหาผลเฉลยโดยประมาณ จากแบบจำลองคณิตศาสตร์ของปัญหาในคอมพิวเตอร์ ซึ่งมีข้อดีคือสามารถทำการจำลองปัญหา ที่มีรูปร่างซับซ้อนได้ เนื่องจากแบ่งรูปร่างปัญหาออกเป็นชิ้นส่วนย่อยๆ (element) ที่ไม่จำเป็นต้อง มีขนาดที่เท่ากัน จากการกำหนดขนาดของตาราง (mesh size) ทำให้แบบจำลองที่ได้มีความ ใกล้เคียงกับปัญหาจริง รูปที่ ก.1 แสดงการจำลองปัญหาด้วยระเบียบวิธีไฟไนต์เอลิเมนต์

รูปที่ ก.1 การจำลองปัญหาด้วยระเบียบวิธีไฟไนต์เอลิเมนต์

ขั้นตอนการทำงานของระเบียบวิธีไฟไนต์เอลิเมนต์ นั้นเริ่มจากการแบ่งปัญหา ออกเป็นเอลิเมนต์ย่อยๆ ซึ่งจุดเชื่อมต่อระหว่างเอลิเมนต์เรียกว่าจุดต่อ (node) หลังจากนั้นจึงทำ การเลือกฟังก์ชันการประมาณภายในเอลิเมนต์ ยกตัวอย่างกรณีของ เอลิเมนต์แบบสองมิติ ซึ่ง ประกอบด้วยจุดต่อ 3 จุด ซึ่งมีตัวแปรไม่ทราบค่าที่จุดทั้ง 3 รูปที่ ก.2

รูปที่ n.2 เอลิเมนต์ที่ประกอบด้วยจุดต่อ (node) 3 จุด

แต่ละจุดที่มีตัวแปรไม่ทราบค่า ($oldsymbol{\phi}$)

ซึ่งค่า<mark>ตัวแปรเหล่านี้ส</mark>ามา<mark>รถ</mark>เขียนฟังก์ชันการประมาณภายใน ได้ดังนี้

$$\phi(\mathbf{x}, \mathbf{y}) = N_1(x, y)\phi_1 + N_2(x, y)\phi_2 + N_3(x, y)\phi_3$$

โดย

N_i(x, y), i = 1, 2, 3 แทนฟังก์ชันการประมาณภายในเอลิเมนต์

หลังจากนั้นจึงสร้างสมการของแต่ละเอลิเมนต์ ซึ่งสร้างขึ้นสมการเชิงอนุพันธ์ของ ปัญหา ในกรณีนี้สมการจะอยู่ในรูปแบบ

$$\begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix}_{i} \begin{pmatrix} \varphi_{1} \\ \varphi_{2} \\ \varphi_{3} \end{pmatrix}_{i} = \begin{cases} F_{1} \\ F_{2} \\ F_{3} \end{pmatrix}_{i}$$

i = 1, 2, 3 แทนตำแหน่งเอลิเมนต์

จากนั้นจึงรวมสมการของแต่ละเอลิเมนต์เป็นระบบสมการ

$$\sum (element \ equations) \rightarrow [k]_{sys} \{ \phi \}_{sys} = \{ F \}_{sys}$$

ตัวย่อ sys หมายถึงเมตริกซ์ของระบบสมการ

แล้วจึงประยุกต์เงื่อนไขขอบเขตเพื่อหาค่าตัวแปร (φ) ของแต่ละเอลิเมนต์ จึงได้ คำตอบของค่าตัวแปรในแต่ละเอลิเมนต์ ซึ่งสามารถใช้คำนวณหาค่าต่อเนื่องอื่นๆ ที่สนใจได้

ภาคผนวก ข ข้อมูลการตรวจวัด

ข้อมูลการตรวจวัดการอุ่นเบ้ารับน้ำเหล็กด้วยหัวเผาที่ใช้น้ำมันดีเซล ตาราง ก. 1 ข้อมูลดิบจากการอุ่นเบ้ารับน้ำเหล็กด้วยหัวเผาที่ใช้น้ำมันดีเซล ณ วันที่ 1 สิงหาคม 2551

							อุณ	เห <mark>ภูมิข</mark> องเ	<mark>ท</mark> อร์โมคับ	เปิลในตำ	แหน่งต่าง	ๆ ([°] C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
16:40:06	32	33	32	33	32	32	32	32	33	32	31	33	32	32	32	31	31	32
16:41:06	32	34	32	33	33	32	33	32	33	33	31	33	32	32	32	31	31	32
16:42:06	33	31	32	33	33	32	33	32	33	33	31	110	32	32	32	31	34	35
16:43:06	32	33	32	50	34	32	33	32	34	33	31	576	32	32	32	31	44	229
16:44:06	32	33	32	88	34	32	33	32	33	33	31	743	32	32	32	31	54	417
16:45:06	32	34	32	123	36	32	33	31	34	33	31	780	32	32	32	31	61	499
16:46:06	33	33	32	153	39	32	33	32	33	33	31	808	33	32	32	31	70	538
16:47:06	33	33	32	180	44	32	33	32	34	33	31	822	35	32	32	31	77	556
16:48:06	34	33	32	205	50	32	33	32	35	33	31	837	38	32	32	31	83	567
16:49:06	34	34	32	230	58	33	33	32	36	33	31	843	43	32	32	31	87	580
16:50:06	36	34	32	254	66	33	33	32	39	33	31	862	47	32	32	31	91	588
16:51:06	37	33	32	276	74	34	33	31	41	33	31	879	52	33	32	31	96	597
16:52:06	40	30	32	296	80	34	31	31	41	31	31	900	58	33	32	31	107	603
16:53:06	42	32	32	315	89	35	31	31	46	31	31	905	64	34	32	31	121	610
16:54:06	44	33	32	336	99	36	33	31	51	33	31	900	70	34	32	31	123	615
16:55:06	47	34	32	354	108	38	33	31	55	33	31	914	76	35	32	31	123	618
16:56:06	50	33	32	372	117	39	33	31	59	33	31	926	83	37	32	31	121	626
16:57:06	53	34	32	389	125	41	33	31	63	33	31	934	89	38	32	31	119	631
16:58:06	56	33	32	405	134	43	32	31	67	33	31	947	96	39	32	31	118	637
16:59:06	60	33	32	420	143	44	33	31	72	33	31	949	102	41	32	31	118	642

หาลงกรณ์มหาวิทยาลั

							อุณ	<mark>เหภู</mark> มิของเ	ทอร์โมคัป	<mark>เปิลในต</mark> ำ	แหน่งต่าง	ៗ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
17:00:06	63	33	32	435	151	46	32	31	76	33	31	958	109	43	32	31	120	648
17:01:06	67	33	32	450	160	49	33	31	82	33	31	966	116	45	32	31	122	654
17:02:06	70	33	32	466	168	51	33	31	86	33	31	968	122	46	32	31	123	659
17:03:06	74	31	32	479	175	53	31	31	90	32	31	986	129	49	32	31	129	661
17:04:06	78	31	32	491	184	56	31	31	95	31	31	992	135	51	32	31	139	663
17:05:06	82	32	32	504	192	58	31	31	100	32	31	992	142	53	32	31	144	668
17:06:06	86	32	32	515	201	61	32	32	106	32	31	998	148	55	32	31	147	671
17:07:06	90	33	32	527	209	64	32	31	111	33	31	1000	154	58	32	31	149	678
17:08:06	94	32	32	538	217	67	32	32	116	33	31	1008	160	60	32	31	151	680
17:09:06	98	33	32	549	225	69	32	31	121	33	31	1014	167	63	32	31	155	684
17:10:06	102	33	32	560	232	72	32	31	126	33	31	1026	173	65	32	31	159	687
17:11:06	107	33	32	571	240	75	33	31	131	33	31	1026	179	68	32	31	164	691
17:12:06	111	33	32	581	247	78	33	31	136	33	31	1029	186	70	32	31	167	693
17:13:06	115	33	32	590	255	81	33	31	141	33	31	1036	192	73	32	31	172	698
17:14:06	120	33	32	601	262	84	33	32	146	33	31	1046	198	76	32	31	174	700
17:15:06	123	34	32	611	269	87	33	31	151	33	31	1047	204	79	32	31	180	702
17:16:06	128	32	32	620	276	91	32	31	155	32	32	1056	210	81	32	31	186	705
17:17:06	132	33	32	629	283	94	32	31	161	33	31	1059	215	84	33	31	200	709
17:18:06	136	34	32	637	290	97	33	31	166	34	31	1063	221	87	33	31	202	714
17:19:06	140	34	32	646	297	101	33	31	171	34	32	1069	227	90	33	31	201	716
17:20:06	145	34	32	654	304	104	34	31	176	34	32	1073	233	93	33	31	203	717
17:21:06	149	34	32	662	310	107	34	31	181	34	32	1076	239	96	33	31	203	722
17:22:06	153	34	32	669	317	111	34	31	186	34	32	1079	244	99	33	31	204	723
17:23:06	157	34	32	677	323	114	34	31	191	34	32	1082	250	102	33	31	206	728
				1				1			_							

						_	อุถ	<mark>เหภู</mark> มิของเ	ทอร์โมคัป	เปิลในตำ	แหน่งต่าง	ៗ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
17:24:06	162	34	32	684	330	117	34	31	195	34	32	1089	255	105	34	31	211	729
17:25:06	166	34	32	691	336	121	34	31	200	34	32	1096	261	108	34	31	211	731
17:26:06	170	34	32	698	342	124	33	32	204	34	32	1094	266	111	34	31	212	735
17:27:06	174	34	32	706	348	127	34	32	209	35	32	1096	272	114	34	31	215	739
17:28:06	178	35	32	712	354	131	34	32	214	35	32	1101	277	117	34	31	214	740
17:29:06	182	35	32	719	360	134	35	32	219	35	32	1107	282	120	35	31	214	743
17:30:06	186	36	33	727	366	137	36	32	224	36	32	1110	287	123	35	31	211	747
17:31:06	191	36	33	734	372	141	35	32	228	36	32	1116	292	126	35	31	207	751
17:32:06	195	35	33	740	378	1 <mark>44</mark>	35	32	233	36	32	1118	298	129	35	31	208	752
17:33:06	199	37	33	748	384	<mark>14</mark> 8	36	32	237	37	32	1122	302	132	35	31	210	755
17:34:06	203	37	33	755	389	151	36	32	242	37	32	1125	307	135	36	31	209	758
17:35:06	207	37	33	762	395	155	36	32	246	37	32	1127	312	139	36	31	213	762
17:36:06	211	37	33	767	400	158	36	32	250	37	32	1131	317	142	36	31	219	765
17:37:06	215	36	33	772	405	161	36	32	254	37	32	1134	322	145	37	31	227	766
17:38:06	219	36	33	777	410	165	36	32	258	36	32	1138	327	148	37	31	240	768
17:39:06	223	38	33	782	416	168	37	32	263	37	32	1139	332	151	38	31	248	770
17:40:06	227	39	33	787	422	172	37	32	268	38	32	1140	337	154	38	31	252	771
17:41:06	231	39	34	793	427	175	38	32	272	39	32	1146	342	157	39	31	253	774
17:42:06	235	40	34	798	432	178	39	32	277	40	32	1149	346	160	39	31	253	775
17:43:06	239	39	34	803	437	182	38	33	280	39	32	1152	351	163	39	31	257	778
17:44:06	242	39	34	808	442	185	38	33	284	39	32	1158	356	166	40	31	271	779
17:45:06	246	40	34	813	447	189	39	33	289	40	33	1158	360	169	40	31	284	779
17:46:06	250	41	34	818	452	192	40	33	293	41	33	1157	365	173	41	31	285	782
17:47:06	254	42	34	822	457	195	40	33	298	42	33	1158	369	176	41	31	287	785

							อุณ	<mark>เหภู</mark> มิของเ	ทอร์โมคัป	เปิลในตำ	แหน่งต่าง	ៗ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
17:48:06	258	43	34	827	462	199	41	33	302	43	33	1162	374	179	42	31	286	790
17:49:06	262	43	35	831	467	202	41	33	306	43	33	1167	378	182	42	31	283	790
17:50:06	265	44	35	836	472	205	42	33	310	44	33	1170	383	185	43	31	282	795
17:51:06	269	44	35	840	476	208	43	33	314	44	33	1176	387	188	43	31	285	795
17:52:06	273	44	35	845	481	212	43	34	318	45	33	1177	391	191	44	31	291	796
17:53:06	277	45	35	849	485	215	43	34	322	45	34	1176	396	194	44	31	297	796
17:54:06	280	46	35	853	490	218	44	34	326	46	34	1179	400	197	45	31	295	799
17:55:06	284	47	36	858	494	222	44	34	330	47	34	1182	404	200	46	31	293	802
17:56:06	288	47	36	862	499	225	45	34	334	47	34	1184	408	203	46	31	293	802
17:57:06	291	46	36	865	502	228	45	35	337	47	34	1189	412	206	47	31	296	805
17:58:06	295	47	36	869	507	232	45	35	341	48	34	1190	417	209	47	31	303	808
17:59:06	298	48	36	873	511	235	46	35	345	49	34	1197	421	212	48	31	309	811
18:00:06	302	50	37	878	516	238	47	35	349	50	34	1197	425	215	49	31	307	813
18:01:06	305	50	37	883	520	241	48	35	353	50	35	1199	429	218	49	31	305	815
18:02:06	309	50	37	887	524	244	48	35	357	51	35	1204	433	221	50	31	309	816
18:03:06	312	51	37	891	528	248	49	36	361	52	35	1202	437	224	51	32	314	817
18:04:06	316	52	38	895	533	251	49	36	364	52	35	1204	441	227	52	32	311	821
18:05:06	319	53	38	898	537	254	50	36	368	53	35	1208	444	230	52	32	301	823
18:06:06	323	53	38	902	541	257	50	36	372	54	35	1208	448	233	53	32	301	826
18:07:06	326	54	38	906	545	260	51	37	375	55	36	1215	452	236	54	32	303	826
18:08:06	329	54	38	909	549	263	51	37	379	55	36	1213	456	239	54	32	309	826
18:09:06	333	55	39	913	553	266	52	37	383	56	36	1217	460	242	55	32	309	829
18:10:06	336	56	39	917	557	269	53	37	386	57	36	1216	464	245	56	32	303	832
18:11:06	339	55	39	920	560	273	53	38	389	57	36	1218	467	248	57	32	303	833

							อุณ	<mark>เหภู</mark> มิของเ	ทอร์โมคัป	<mark>เปิลในต</mark> ำ	แหน่งต่าง	ៗ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
18:12:06	343	53	40	922	563	276	<mark>5</mark> 1	38	391	55	37	1221	471	251	57	32	323	832
18:13:06	346	56	40	925	567	279	52	39	395	57	37	1223	475	253	58	32	340	833
18:14:06	349	54	40	927	570	282	52	39	398	58	37	1226	479	256	59	32	357	835
18:15:06	353	55	41	929	574	285	52	39	402	58	38	1227	482	259	60	32	385	837
18:16:06	356	58	41	933	579	288	54	40	406	60	38	1230	486	262	60	32	387	837
18:17:06	359	56	41	935	581	291	53	40	408	59	38	1228	490	265	61	32	400	835
18:18:06	362	59	41	939	586	294	5 <mark>5</mark>	40	413	61	38	1235	493	268	62	32	411	835
18:19:06	365	61	42	942	590	297	57	41	417	63	39	1236	497	270	63	32	399	840
18:20:06	369	61	42	945	593	300	57	41	420	63	39	1240	500	273	64	32	399	837
18:21:06	372	63	42	948	597	303	58	41	424	65	39	1241	503	276	65	32	404	839
18:22:06	375	64	43	952	601	305	60	41	427	66	40	1243	507	279	65	32	397	843
18:23:06	378	64	43	954	603	308	59	42	430	66	40	1247	510	282	66	32	402	840
18:24:06	381	62	44	956	605	311	58	42	432	65	40	1241	514	284	67	32	428	845
18:25:06	384	62	44	958	609	314	59	42	435	65	41	1238	517	287	68	33	448	847
18:26:06	387	62	44	960	612	317	59	43	437	65	41	1241	521	290	69	33	461	846
18:27:06	390	65	44	962	616	320	61	43	441	68	41	1246	524	293	70	33	471	844
18:28:06	393	65	45	965	619	323	61	44	445	69	42	1248	527	295	71	33	472	844
18:29:06	396	66	46	967	622	326	62	44	447	69	42	1249	530	298	71	33	477	843
18:30:06	399	66	46	969	625	329	62	44	450	69	43	1249	533	301	72	33	483	845
18:31:06	402	65	47	970	628	331	61	45	453	70	43	1251	537	304	73	33	485	844
18:32:06	405	70	47	974	633	334	65	46	458	73	43	1258	540	306	74	33	471	839
18:33:06	408	71	47	977	636	337	66	46	461	74	43	1258	543	309	75	33	467	841
18:34:06	411	73	48	980	639	340	67	46	464	76	44	1259	546	311	76	33	471	843
18:35:06	414	73	48	982	642	342	67	47	467	76	44	1259	549	314	77	33	473	846

						_	อุณ	<mark>เหภู</mark> มิของเ	ทอร์โมคับ	<mark>เปิลในตำ</mark>	แหน่งต่าง	ๆ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
18:36:06	417	72	49	984	644	345	67	47	468	75	45	1256	552	317	78	33	485	848
18:37:06	420	73	49	985	647	348	68	48	472	76	45	1258	555	319	79	33	492	847
18:38:06	422	72	50	987	649	351	68	48	474	76	46	1257	558	322	79	33	496	847
18:39:06	425	77	50	991	65 <mark>4</mark>	3 <mark>53</mark>	71	49	479	80	46	1262	560	325	80	33	486	849
18:40:06	428	80	50	994	658	356	73	49	483	83	46	1266	563	327	81	33	474	849
18:41:06	431	81	51	997	661	359	74	49	486	84	47	1269	566	330	82	33	471	848
18:42:06	433	81	51	999	663	361	74	50	488	85	47	1271	569	332	83	33	474	849
18:43:06	436	80	52	1000	665	364	74	51	490	84	48	1269	572	335	84	34	496	851
18:44:06	439	79	52	1002	667	3 <mark>67</mark>	74	51	492	83	48	1268	575	338	85	34	506	855
18:45:06	441	79	53	1003	670	369	74	52	494	83	49	1266	577	340	86	34	511	855
18:46:06	444	81	53	1004	672	372	75	52	497	84	49	1270	580	342	87	34	516	855
18:47:06	447	85	53	1007	676	374	77	52	502	88	49	1276	583	345	88	34	510	853
18:48:06	449	88	54	1011	681	377	80	53	506	91	50	1276	586	347	89	34	491	856
18:49:06	452	85	55	1012	681	380	78	54	507	90	50	1278	589	350	90	34	497	856
18:50:06	454	83	55	1013	683	382	78	54	508	89	51	1274	591	353	91	34	510	859
18:51:06	457	86	56	1015	686	385	79	55	511	91	51	1278	594	355	92	34	515	860
18:52:06	460	88	56	1017	689	387	80	55	514	92	52	1282	597	357	93	34	523	857
18:53:06	462	89	57	1019	691	390	81	56	516	92	52	1281	599	360	94	35	524	859
18:54:06	465	92	57	1022	695	392	83	56	520	96	53	1283	602	362	95	35	519	860
18:55:06	467	94	58	1025	699	395	86	57	524	99	53	1289	604	365	96	35	502	861
18:56:06	470	95	58	1028	702	397	87	57	527	100	53	1291	607	367	97	35	492	860
18:57:06	472	96	59	1029	704	400	87	58	529	100	54	1290	610	370	98	35	501	862
18:58:06	475	97	59	1031	706	402	87	58	532	102	55	1289	612	372	99	35	513	864
18:59:06	477	96	60	1032	707	404	86	59	533	100	55	1288	615	374	100	35	520	864

						_	อุณ	<mark>หภู</mark> มิของเ	ทอร์โมคัป	เปิลในตำ	แหน่งต่าง	ៗ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
19:00:06	480	98	60	1035	711	407	89	59	536	103	56	1293	617	377	101	35	511	865
19:01:06	482	100	61	1038	714	409	91	60	539	105	56	1294	620	379	102	35	500	866
19:02:06	484	101	61	1040	717	411	92	60	542	106	57	1297	622	381	103	36	498	865
19:03:06	487	103	62	1042	720	4 <mark>14</mark>	94	61	545	108	57	1301	625	383	104	36	492	868
19:04:06	489	103	62	1045	722	416	95	61	547	109	57	1301	627	386	105	36	494	870
19:05:06	492	104	63	1046	724	41 <mark>9</mark>	95	62	549	110	58	1299	630	388	106	36	502	870
19:06:06	494	106	63	1049	727	<mark>42</mark> 1	9 <mark>6</mark>	62	552	111	58	1303	632	390	107	36	504	872
19:07:06	496	107	64	1051	730	423	97	63	555	113	59	1303	635	393	109	36	495	875
19:08:06	499	108	64	1053	732	42 <mark>5</mark>	98	64	557	114	60	1303	637	395	110	36	490	876
19:09:06	501	108	65	1055	734	<mark>42</mark> 8	99	64	560	115	60	1307	639	397	111	36	491	877
19:10:06	503	110	65	1057	737	430	101	65	562	116	61	1308	642	399	112	36	492	878
19:11:06	506	111	66	1059	739	432	102	65	564	117	61	1310	644	401	113	37	493	877
19:12:06	508	113	67	1061	742	434	103	66	567	119	62	1313	647	404	114	37	496	879
19:13:06	510	114	67	1063	744	437	104	66	569	120	62	1310	649	406	115	37	493	880
19:14:06	513	115	68	1065	747	439	105	67	571	121	63	1313	651	408	116	37	489	881
19:15:06	515	116	68	1067	749	441	106	68	573	121	63	1312	654	410	118	37	488	883
19:16:06	517	115	70	1068	750	443	106	69	575	121	64	1313	656	413	119	37	497	883
19:17:06	519	115	70	1068	752	445	105	70	577	122	65	1312	658	415	120	38	506	883
19:18:06	522	116	71	1070	754	448	105	70	579	123	66	1317	660	417	121	38	514	882
19:19:06	524	118	71	1072	756	450	107	70	582	125	66	1315	663	419	122	38	516	883
19:20:06	526	120	71	1074	759	452	109	71	584	126	67	1315	665	421	123	38	505	884
19:21:06	528	120	72	1076	761	454	109	72	586	127	67	1321	667	423	124	38	505	887
19:22:06	531	122	73	1078	763	456	110	72	589	129	68	1322	669	425	125	38	495	887
19:23:06	533	122	74	1079	765	458	111	73	591	130	68	1324	672	427	126	39	500	890

<u>จุฬาลงกรณ์มหาวิทยาลัย</u>

						_	อุณ	<mark>หภู</mark> มิของเ	ทอร์โมคัป	เปิลในตำ	แหน่งต่าง	ៗ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
19:24:06	535	123	74	1081	767	460	112	73	593	131	69	1325	674	429	127	39	502	890
19:25:06	537	125	74	1083	770	462	<mark>114</mark>	74	596	133	70	1324	676	431	129	39	503	891
19:26:06	539	126	75	1085	772	465	115	74	598	133	70	1327	678	433	130	39	504	892
19:27:06	541	128	75	1087	774	4 <mark>67</mark>	116	75	600	135	71	1327	680	435	131	39	505	892
19:28:06	543	128	76	1088	776	469	117	75	602	136	72	1330	682	437	132	40	509	894
19:29:06	545	130	77	1090	778	471	117	76	605	138	72	1330	685	439	133	40	511	896
19:30:06	548	130	77	1091	780	<mark>4</mark> 73	117	77	607	139	73	1332	687	441	134	40	512	898
19:31:06	550	131	78	1092	781	475	<mark>11</mark> 8	77	609	13 <mark>9</mark>	73	1333	689	443	136	40	519	898
19:32:06	552	132	78	1093	783	47 <mark>7</mark>	119	78	611	140	74	1331	691	445	137	40	526	901
19:33:06	554	133	79	1095	785	<mark>47</mark> 9	120	78	613	142	75	1331	693	447	138	41	526	900
19:34:06	556	134	80	1097	787	481	121	79	614	142	75	1333	695	449	139	41	525	901
19:35:06	558	135	80	1099	790	483	123	80	616	143	76	1335	697	451	140	41	521	902
19:36:06	560	137	81	1101	793	485	125	80	619	145	76	1337	699	453	141	41	518	901
19:37:06	562	139	81	1102	795	487	126	81	620	145	77	1337	701	455	142	41	513	903
19:38:06	564	139	82	1104	797	489	127	82	623	147	78	1336	703	457	143	42	506	906
19:39:06	566	141	83	1106	799	491	129	82	625	148	78	1340	706	459	145	42	503	906
19:40:06	568	142	83	1107	801	493	130	83	627	149	79	1338	707	461	146	42	501	906
19:41:06	570	143	84	1108	803	495	131	84	629	150	79	1342	710	463	147	42	501	908
19:42:06	572	144	84	1109	804	497	131	84	631	152	80	1344	712	465	148	42	502	908
19:43:06	574	145	85	1111	806	498	131	85	633	153	81	1341	714	467	149	43	506	910
19:44:06	576	145	86	1113	808	500	132	86	635	154	81	1190	715	468	150	43	502	886
19:45:06	578	146	86	1100	809	502	132	86	637	155	82	1035	717	470	151	43	473	763
19:46:06	580	147	87	1078	812	504	134	87	639	157	83	1005	719	472	153	43	441	697
19:47:06	582	148	88	1053	813	506	135	88	640	157	83	975	721	474	154	43	413	656

		อุณหภูมิของเทอร์โมคัปเปิลในตำแหน่งต่าง ๆ (°C)																
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
19:48:06	584	149	88	1030	814	508	135	89	642	159	84	946	723	476	155	44	388	627
19:49:06	586	149	89	1008	814	<mark>510</mark>	135	89	644	159	85	921	724	479	156	44	367	605
19:50:06	588	152	90	989	815	511	137	90	646	160	85	900	726	480	157	44	349	587
19:51:06	589	153	90	971	814	5 <mark>13</mark>	139	91	647	162	86	880	727	482	158	44	334	572
19:52:06	591	154	91	953	813	515	141	91	649	162	87	862	728	484	159	45	320	559
19:53:06	593	155	92	937	811	51 <mark>7</mark>	140	92	650	163	87	844	728	486	160	45	308	546
19:54:06	594	155	92	922	808	<mark>51</mark> 9	14 <mark>0</mark>	93	651	164	88	829	728	487	162	45	296	535
19:55:06	596	155	93	907	804	520	<mark>14</mark> 0	93	652	16 <mark>3</mark>	89	813	728	489	163	45	286	523
19:56:06	597	156	94	894	801	52 <mark>2</mark>	142	94	652	164	89	800	727	491	164	45	277	512
19:57:06	598	157	95	881	797	<mark>52</mark> 3	142	95	653	165	90	787	726	493	165	46	268	503
19:58:06	598	158	95	868	793	525	143	95	654	167	90	776	725	494	166	46	260	493
19:59:06	599	159	96	857	789	527	143	96	655	168	91	763	724	496	167	46	253	484
20:00:06	600	160	97	846	785	528	144	97	655	169	92	753	723	497	168	46	246	475
20:01:06	600	159	97	833	778	529	143	98	655	169	93	739	721	499	169	47	239	467
20:02:06	600	159	98	823	774	531	145	98	654	170	93	730	720	500	171	47	233	459
20:03:06	600	161	98	814	771	532	147	99	654	171	94	720	718	502	172	47	227	452
20:04:06	600	162	99	804	766	533	147	100	654	173	95	711	716	503	173	47	222	446
20:05:06	600	162	100	795	760	534	146	100	654	174	95	702	714	504	174	48	217	440
20:06:06	599	163	101	786	756	535	148	101	654	175	96	693	712	506	175	48	212	433
20:07:06	599	163	101	778	752	536	150	102	652	176	97	685	710	507	176	48	208	427
20:08:06	598	164	102	769	746	537	150	102	651	177	98	678	707	508	177	48	203	422
20:09:06	598	166	103	762	742	537	150	103	650	178	98	672	705	509	178	49	199	416
20:10:06	597	169	103	755	739	538	150	104	650	180	99	666	703	510	179	49	195	410
20:11:06	596	171	104	749	735	539	151	105	649	181	100	660	700	511	180	49	191	405

		อุณหภูมิของเทอร์โมคัปเปิลในตำแหน่งต่าง ๆ ([°] C)																
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
20:12:06	595	172	105	742	731	539	153	105	648	182	100	654	698	512	182	49	187	400
20:13:06	594	173	105	736	727	<u>540</u>	156	106	647	184	101	650	696	513	183	49	183	395
20:14:06	593	173	106	729	723	540	15 <mark>6</mark>	107	645	184	102	643	693	513	184	50	180	390
20:15:06	592	173	107	720	716	540	155	107	644	185	102	633	691	514	185	50	176	385
20:16:06	591	173	107	713	710	540	1 <mark>54</mark>	108	641	185	103	626	688	515	186	50	173	380
20:17:06	589	175	108	708	707	540	157	109	639	185	104	623	686	515	187	50	170	377
20:18:06	588	176	109	702	704	540	15 <mark>9</mark>	110	637	185	105	617	683	516	188	51	168	373
20:19:06	586	178	109	697	700	541	<mark>15</mark> 9	110	636	188	105	612	680	516	189	51	165	369
20:20:06	585	178	110	691	696	5 <mark>41</mark>	159	111	635	189	106	606	678	517	190	51	162	365
20:21:06	584	179	110	685	692	540	161	112	632	189	107	602	675	517	191	51	159	361
20:22:06	582	180	111	680	688	540	162	112	631	191	107	597	673	517	192	51	157	356
20:23:06	581	181	112	674	683	540	162	113	629	191	108	591	670	518	194	52	154	353
20:24:06	579	183	112	670	680	540	163	114	628	194	109	586	667	518	195	52	152	349
20:25:06	578	182	113	664	675	539	163	114	625	193	110	580	665	518	196	52	149	346
20:26:06	576	183	114	659	672	539	165	115	624	194	110	576	662	518	197	52	147	343
20:27:06	575	183	114	654	668	539	165	116	622	195	111	572	660	518	198	53	146	339
20:28:06	573	183	115	649	664	538	166	116	618	194	112	565	657	519	199	53	144	336
20:29:06	571	184	116	644	660	538	165	117	617	195	112	559	655	519	200	53	142	333
20:30:06	570	184	116	638	654	537	165	118	615	196	113	555	652	518	201	53	140	330
20:31:06	568	187	117	634	651	537	166	118	615	199	114	552	649	518	202	54	139	326
20:32:06	567	186	117	628	645	536	166	119	610	195	115	546	647	518	203	54	137	323
20:33:06	565	184	118	622	640	536	168	120	606	195	115	539	644	518	204	54	135	321
20:34:06	564	185	118	618	636	535	169	120	604	196	116	534	642	518	205	55	134	320
20:35:06	562	185	119	614	633	534	172	121	602	197	117	529	640	518	206	55	134	317

<u>จุฬาลงกรณ์มหาวิทยาลัย</u>

		อุณหภูมิของเทอร์โมคัปเปิลในตำแหน่งต่าง ๆ ([°] C)																
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
20:36:06	560	187	120	611	631	534	175	122	600	197	118	526	637	518	207	55	133	315
20:37:06	558	188	120	609	630	533	176	122	598	198	118	524	635	517	208	55	131	311
20:38:06	557	188	121	604	626	533	175	123	596	199	119	520	632	517	209	56	130	307
20:39:06	555	189	122	599	621	532	173	124	592	197	120	515	629	517	210	56	128	304
20:40:06	553	189	122	594	616	531	17 <mark>2</mark>	124	589	196	121	513	627	516	211	56	127	301
20:41:06	552	189	123	591	614	530	174	125	586	196	122	510	625	516	212	57	125	298
20:42:06	550	191	123	587	610	529	17 <mark>5</mark>	125	584	196	122	508	622	515	213	57	124	295
20:43:06	548	193	124	584	609	529	<mark>17</mark> 6	126	583	197	123	504	620	515	214	57	123	293
20:44:06	547	193	125	581	606	52 <mark>8</mark>	175	127	581	199	124	500	618	514	215	58	121	291
20:45:06	545	193	125	578	604	527	176	127	578	199	124	495	615	514	216	58	120	288
20:46:06	543	195	126	575	601	526	177	128	578	202	125	493	613	513	216	58	119	285
20:47:06	541	197	126	572	599	525	180	128	576	203	126	491	611	513	217	58	117	281
20:48:06	540	199	127	570	595	524	180	129	575	205	126	783	609	512	218	58	129	342
20:49:06	538	199	127	586	591	523	180	129	573	206	127	962	606	512	219	59	152	508
20:50:06	536	199	128	611	587	522	181	130	571	207	127	1011	604	511	220	59	178	601
20:51:06	535	200	128	636	584	521	180	130	568	205	128	1034	601	510	221	59	205	645
20:52:06	533	201	128	659	583	520	180	131	566	206	129	1053	600	510	222	60	233	665
20:53:06	531	200	129	682	584	519	181	131	566	210	129	1064	598	509	223	60	256	685
20:54:06	530	202	130	703	585	518	181	132	564	210	130	1076	597	508	223	60	274	696
20:55:06	528	201	130	721	586	517	182	133	560	209	131	1086	596	508	224	61	290	703
20:56:06	527	200	130	736	586	516	183	133	558	208	131	1100	596	507	225	61	306	712
20:57:06	526	201	131	752	589	515	184	134	557	208	132	1105	596	506	226	61	326	721
20:58:06	525	201	131	766	591	514	183	134	556	209	133	1118	597	506	227	61	342	726
20:59:06	524	203	132	780	596	513	184	135	555	210	133	1123	598	505	228	62	352	731

							อุณ	<mark>เหภู</mark> มิของเ	ทอร์โมคับ	<mark>เปิลในต</mark> ำ	แหน่งต่าง	ໆ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
21:00:06	524	205	133	793	600	513	185	135	555	211	134	1131	599	504	228	62	360	738
21:01:06	523	205	133	805	603	512	186	136	556	213	134	1143	600	504	229	62	372	743
21:02:06	523	207	133	816	608	511	187	136	557	214	135	1148	602	503	230	63	381	745
21:03:06	523	207	134	828	612	51 <mark>1</mark>	187	137	555	214	136	1155	604	503	231	63	393	751
21:04:06	523	207	134	837	615	510	187	137	555	212	136	1159	606	502	231	63	403	758
21:05:06	523	207	135	846	619	509	187	138	553	212	137	1168	608	502	232	64	412	761
21:06:06	524	206	136	856	623	509	189	138	554	213	138	1173	611	501	233	64	422	767
21:07:06	524	205	136	865	628	509	<mark>18</mark> 8	139	555	21 <mark>4</mark>	138	1179	613	501	234	64	426	771
21:08:06	525	205	136	873	632	50 <mark>8</mark>	191	140	557	216	138	1183	616	501	235	65	431	775
21:09:06	526	205	137	882	637	508	194	140	559	218	139	1188	618	501	235	65	442	777
21:10:06	526	206	138	890	642	508	193	141	560	218	139	1198	621	501	236	65	449	777
21:11:06	527	208	138	898	646	508	192	141	563	220	140	1200	624	501	237	65	450	782
21:12:06	529	210	139	906	652	508	191	142	565	221	141	1208	626	501	237	66	453	787
21:13:06	530	211	139	912	655	508	191	142	565	219	141	1209	629	501	238	66	459	788
21:14:06	531	211	140	919	660	509	191	143	566	219	142	1213	632	501	239	66	466	790
21:15:06	533	209	140	925	663	509	192	143	566	218	142	1218	634	501	239	67	469	796
21:16:06	534	207	140	931	667	509	194	144	568	219	143	1215	637	501	240	67	472	799
21:17:06	535	210	141	936	670	510	192	144	568	217	143	1220	640	501	240	67	475	802
21:18:06	537	210	141	940	672	510	192	145	569	218	144	1224	643	502	241	67	480	803
21:19:06	539	208	142	945	676	511	195	145	574	222	144	1223	646	502	242	68	486	807
21:20:06	540	208	142	951	681	511	196	146	575	223	145	1229	649	502	242	68	488	811
21:21:06	542	207	143	956	685	512	197	147	575	221	146	1231	652	503	243	68	486	815
21:22:06	544	208	143	962	689	513	200	147	578	222	146	1234	654	504	243	69	486	815
21:23:06	546	210	144	965	691	514	199	147	580	222	147	1240	657	504	244	69	490	817
				1				1										

						_	อุณ	<mark>เหภู</mark> มิของเ	ทอร์โมคับ	เปิลในตำ	แหน่งต่าง	ໆ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
21:24:06	547	209	144	970	695	514	198	148	583	223	147	1243	660	504	245	69	493	821
21:25:06	549	210	144	974	699	515	200	148	586	225	148	1242	663	505	245	69	500	823
21:26:06	551	207	145	979	703	516	198	149	584	221	148	1248	665	506	246	70	506	825
21:27:06	553	206	145	984	707	517	<mark>2</mark> 01	149	586	221	149	1251	668	506	246	70	504	827
21:28:06	555	207	145	989	711	518	203	150	589	222	149	1257	671	508	247	70	509	825
21:29:06	557	214	146	992	714	51 <mark>9</mark>	204	150	594	226	150	1255	673	508	247	71	509	829
21:30:06	559	213	146	993	716	520	201	151	595	226	150	1257	676	509	248	71	513	831
21:31:06	560	215	147	996	719	522	<mark>19</mark> 7	151	596	224	151	1260	679	510	249	71	518	832
21:32:06	562	217	147	999	722	52 <mark>3</mark>	195	151	598	223	151	1264	681	511	249	71	513	834
21:33:06	564	215	148	1004	726	<mark>52</mark> 4	196	152	599	223	152	1268	684	511	250	72	510	837
21:34:06	566	215	148	1008	729	525	199	152	603	227	152	1269	686	513	250	72	516	839
21:35:06	568	215	149	1010	733	526	200	153	605	227	153	1058	689	513	251	72	503	789
21:36:06	570	222	149	999	738	528	200	153	615	237	152	955	691	514	251	72	464	675
21:37:06	572	225	150	979	743	529	200	154	618	240	153	922	694	515	252	72	425	615
21:38:06	574	218	150	955	743	530	200	154	614	233	153	889	696	516	252	73	394	577
21:39:06	576	223	150	935	747	531	201	154	619	235	153	867	699	517	253	73	368	550
21:40:06	578	226	150	917	751	532	204	154	624	241	153	844	701	518	253	73	344	527
21:41:06	580	226	150	897	749	534	201	155	623	236	154	822	703	519	254	73	324	508
21:42:06	582	226	150	880	749	535	202	155	628	241	154	805	704	520	254	73	307	493
21:43:06	583	227	151	866	749	536	203	155	628	239	154	789	705	522	255	74	292	480
21:44:06	585	226	151	851	748	537	206	155	629	239	155	775	706	523	255	74	280	469
21:45:06	587	225	152	839	748	539	207	156	627	235	155	758	707	524	256	74	269	460
21:46:06	588	223	152	826	746	540	206	156	627	232	156	743	707	525	256	74	260	452
21:47:06	589	223	153	815	743	541	206	157	628	232	156	732	706	526	257	74	252	443

							อุณ	<mark>เหภู</mark> มิของเ	ทอร์โมคับ	<mark>เปิลในตำ</mark>	แหน่งต่าง	ໆ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
21:48:06	590	222	153	803	740	542	207	157	628	231	156	717	706	527	257	75	245	435
21:49:06	591	220	153	792	735	543	208	1 <u>5</u> 8	629	233	157	704	705	528	258	75	238	426
21:50:06	592	222	153	781	730	545	210	<mark>1</mark> 58	632	238	157	691	705	530	259	75	232	419
21:51:06	593	221	154	771	726	54 <mark>6</mark>	209	159	632	237	158	684	704	531	259	76	226	413
21:52:06	593	221	154	762	724	546	210	159	633	238	158	675	702	532	260	76	220	407
21:53:06	593	220	155	753	720	54 <mark>8</mark>	<mark>2</mark> 11	160	633	239	159	667	701	532	260	76	215	399
21:54:06	594	222	155	744	716	<mark>5</mark> 48	21 <mark>1</mark>	160	633	239	159	659	700	533	261	76	210	393
21:55:06	594	221	155	737	712	549	<mark>21</mark> 0	161	630	236	160	651	698	534	261	77	206	388
21:56:06	594	220	156	728	707	5 <mark>50</mark>	210	161	629	236	160	644	697	535	262	77	202	383
21:57:06	593	220	156	722	705	550	214	161	628	235	161	638	695	536	262	77	197	378
21:58:06	593	221	156	715	701	551	212	162	626	234	161	629	693	536	263	77	193	373
21:59:06	592	222	157	708	697	552	214	162	627	235	162	622	691	537	263	78	189	368
22:00:06	592	222	157	701	693	552	214	162	626	236	162	617	689	538	264	78	186	363
22:01:06	591	222	157	694	689	552	213	163	624	236	163	610	687	538	265	78	182	359
22:02:06	590	222	158	687	685	553	213	163	624	237	163	605	685	539	265	78	179	355
22:03:06	590	221	159	682	681	553	215	163	624	238	163	601	683	539	265	79	176	351
22:04:06	589	222	158	675	677	553	214	164	621	237	164	594	681	540	266	79	173	347
22:05:06	588	224	158	670	675	554	216	164	619	236	164	582	679	540	266	79	170	342
22:06:06	587	224	158	663	670	553	215	164	617	236	164	575	677	540	267	79	167	339
22:07:06	586	224	159	659	667	553	216	164	616	238	164	574	675	541	268	79	164	336
22:08:06	585	225	159	653	663	553	216	165	616	240	164	569	672	541	268	80	162	332
22:09:06	583	226	159	650	660	553	217	165	614	240	165	827	670	541	269	80	169	383
22:10:06	582	225	159	664	656	553	217	165	613	240	165	993	668	541	269	80	189	549
22:11:06	581	226	160	686	653	553	217	165	610	238	165	1039	666	541	270	80	216	630

							อุณ	หภู <mark>มิของเ</mark>	ทอร์โมคับ	<mark>เปิลในต</mark> ำ	แหน่งต่าง	ໆ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
22:12:06	580	225	160	708	650	553	219	166	609	240	166	1062	663	542	270	80	246	668
22:13:06	578	228	159	730	648	552	221	166	608	241	166	1078	661	542	271	81	269	694
22:14:06	577	232	160	749	646	552	221	166	609	243	166	1101	659	542	271	81	286	705
22:15:06	576	236	159	768	648	552	226	166	610	247	166	1110	658	542	272	81	300	714
22:16:06	575	234	160	784	647	552	2 <mark>24</mark>	166	609	248	166	1123	657	542	273	81	315	723
22:17:06	573	234	160	801	649	5 <mark>51</mark>	223	167	606	248	166	1136	656	541	273	81	328	736
22:18:06	573	232	160	814	648	551	221	167	606	249	167	1149	656	542	274	81	343	743
22:19:06	572	228	161	827	650	550	<mark>22</mark> 3	167	604	247	167	1151	657	542	274	82	374	750
22:20:06	571	226	161	838	651	55 <mark>0</mark>	221	168	600	245	167	1160	657	541	275	82	396	758
22:21:06	570	229	161	849	653	<mark>5</mark> 49	219	168	597	243	168	1164	658	541	275	82	410	763
22:22:06	570	228	161	858	656	549	218	169	596	242	168	1171	659	540	276	82	422	768
22:23:06	570	229	161	870	660	549	221	169	596	243	169	1177	660	540	276	82	437	770
22:24:06	570	232	161	879	665	548	223	169	594	241	169	1189	661	541	277	83	442	780
22:25:06	570	233	161	887	670	548	225	169	595	242	168	1194	663	540	277	83	438	786
22:26:06	570	234	161	896	674	548	227	169	594	241	169	1201	664	540	278	83	438	792
22:27:06	570	234	161	902	678	548	227	169	595	242	168	1205	666	540	279	83	439	799
22:28:06	570	235	160	909	681	547	227	168	596	243	168	1206	668	540	279	83	441	804
22:29:06	571	235	160	915	684	547	227	168	596	243	168	1209	671	540	280	83	443	809
22:30:06	572	235	161	922	688	547	227	169	599	245	169	1213	673	540	280	83	449	809
22:31:06	573	240	161	929	692	547	230	169	604	250	169	1220	675	541	281	84	458	806
22:32:06	573	241	162	936	696	548	229	169	607	252	169	1228	677	542	281	83	454	805
22:33:06	574	252	161	950	707	548	235	169	615	262	169	1230	680	541	282	83	441	814
22:34:06	575	251	161	956	711	548	238	169	620	267	168	1239	682	541	282	84	425	821
22:35:06	576	253	161	962	714	549	235	169	623	269	168	1241	684	542	283	84	416	823

<u>จุฬาลงกรณ์มหาวิทยาลัย</u>

							อุณ	<mark>เหภู</mark> มิของเ	ทอร์โมคับ	เปิลในตำ	แหน่งต่าง	ໆ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
22:36:06	578	251	161	967	716	549	236	169	623	268	168	1249	687	542	284	84	416	825
22:37:06	579	246	161	971	717	550	235	170	618	259	168	1248	689	543	284	84	435	822
22:38:06	580	242	162	974	716	550	231	170	616	256	169	1247	691	544	285	84	466	826
22:39:06	582	237	163	978	719	551	229	171	612	250	170	1246	694	543	285	85	484	832
22:40:06	583	237	163	982	721	551	228	171	614	250	170	1245	697	544	286	85	496	834
22:41:06	584	248	163	990	732	55 <mark>2</mark>	236	171	624	261	170	1253	698	544	286	85	494	835
22:42:06	586	252	163	996	737	553	240	171	631	268	170	1263	701	546	287	85	477	841
22:43:06	588	252	162	1001	741	553	<mark>24</mark> 2	171	631	267	169	1266	704	547	287	85	470	840
22:44:06	589	253	162	1008	746	5 <mark>54</mark>	246	171	631	265	169	1272	707	547	288	85	461	847
22:45:06	591	248	163	1007	745	555	238	172	629	260	170	1018	708	549	288	85	409	778
22:46:06	593	247	164	991	747	556	235	173	634	262	170	920	711	549	288	85	341	654
22:47:06	594	252	162	973	755	557	239	173	643	274	170	862	714	548	289	88	287	557
22:48:06	596	247	163	949	760	558	242	172	649	280	170	641	715	548	290	86	244	485
22:49:06	598	247	165	921	760	559	239	173	648	276	171	664	717	547	290	88	209	432
22:50:06	600	243	165	893	754	560	234	172	647	273	172	621	719	547	291	89	181	396
22:51:06	601	241	165	870	753	561	230	172	646	268	172	587	721	549	292	89	158	370
22:52:06	603	243	166	850	751	562	231	172	647	268	173	559	722	550	292	90	139	348
22:53:06	605	244	166	833	750	563	233	173	649	267	173	537	724	554	293	89	123	330
22:54:06	606	243	166	815	748	564	231	173	650	268	174	520	724	553	293	89	110	314
22:55:06	607	246	167	802	747	565	234	173	652	269	174	501	724	555	294	90	99	300
22:56:06	608	249	166	786	744	566	229	173	655	271	174	490	725	557	294	90	90	291
22:57:06	610	244	167	770	737	567	225	173	654	269	175	477	724	557	295	90	82	286
22:58:06	610	243	167	757	733	568	222	173	655	269	175	465	723	557	295	91	75	280
22:59:06	611	249	167	750	733	569	226	173	658	274	176	455	721	557	296	91	69	273

							อุณ	<mark>หภู</mark> มิของเ	ทอร์โมคับ	เปิลในตำ	แหน่งต่าง	ໆ (° C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
23:00:06	611	248	167	742	732	569	228	174	658	273	176	443	721	558	296	91	64	268
23:01:06	611	250	166	734	730	570	229	174	660	275	176	432	719	559	297	91	59	260
23:02:06	611	252	166	724	725	571	229	<mark>1</mark> 74	661	278	177	419	717	559	297	92	55	252
23:03:06	611	250	167	715	721	571	<mark>2</mark> 30	173	662	279	177	412	716	562	297	92	52	246
23:04:06	611	253	167	705	716	572	2 <mark>3</mark> 1	173	660	277	177	407	713	562	298	92	49	241
23:05:06	610	252	167	695	710	573	230	173	659	277	178	400	710	562	298	92	47	236
23:06:06	610	250	168	685	703	573	227	174	655	273	178	392	708	563	299	93	45	233
23:07:06	609	252	167	679	701	573	<mark>22</mark> 7	174	656	275	178	385	706	563	299	93	43	231
23:08:06	608	250	168	671	696	57 <mark>3</mark>	228	174	654	274	178	378	704	564	300	93	41	228
23:09:06	607	251	168	664	690	574	229	174	654	275	179	370	702	565	300	93	40	223
23:10:06	606	252	168	659	688	574	231	174	652	275	179	364	699	565	300	94	39	218
23:11:06	605	253	168	653	684	574	230	174	653	278	179	363	697	566	301	93	37	214
23:12:06	604	254	168	645	678	574	229	175	650	276	179	358	694	566	301	93	37	211
23:13:06	602	252	169	638	673	574	228	175	647	275	180	351	691	565	302	94	36	208
23:14:06	601	253	169	634	671	574	230	175	648	278	180	347	689	566	302	94	35	204
23:15:06	600	251	169	627	663	573	228	175	645	276	180	341	686	565	303	94	34	202
23:16:06	598	254	169	623	662	573	231	175	643	276	180	337	684	568	303	94	34	199
23:17:06	597	251	169	615	654	573	229	175	640	274	181	332	681	567	304	94	33	196
23:18:06	595	253	169	611	653	573	228	175	640	276	181	328	679	567	304	94	33	194
23:19:06	594	253	170	606	648	572	228	176	637	276	181	322	675	566	304	95	33	191
23:20:06	592	251	170	601	643	571	229	176	635	276	181	317	672	565	305	95	32	187
23:21:06	590	254	170	599	641	571	236	176	634	277	182	309	670	566	305	95	32	183
23:22:06	589	252	171	593	636	570	234	176	631	277	182	306	667	566	306	95	32	180
23:23:06	587	251	171	585	629	570	231	176	628	275	182	303	665	566	306	95	32	177

<u>จุฬาลงกรณ์มหาวิทยาลัย</u>

							อุณ	<mark>หภู</mark> มิของเ	ทอร์โมคับ	เปิลในต่า	แหน่งต่าง	ካ ([°] C)						
เวลา	1A	1B	1C	2A	2B	2C	2D	2E	3A	3B	3C	4A	4B	4C	4D	4E	5A	6A
23:24:06	585	254	170	582	628	569	231	176	628	277	182	301	663	566	307	95	31	175
23:25:06	584	254	171	576	623	568	229	177	626	277	183	296	660	565	307	95	31	172
23:26:06	582	256	171	573	621	568	231	177	623	277	183	293	657	565	308	96	31	170
23:27:06	580	255	171	568	615	567	229	177	621	277	183	291	654	564	308	96	31	168
23:28:06	578	256	171	567	615	566	2 <mark>33</mark>	177	620	278	183	289	651	564	309	95	31	168
23:29:06	576	258	171	564	613	56 <mark>5</mark>	<mark>235</mark>	177	619	281	183	288	650	564	309	96	31	167
23:30:06	575	259	171	562	611	564	237	177	618	283	183	285	646	562	309	96	31	166
23:31:06	573	258	171	557	607	564	<mark>23</mark> 4	177	617	284	184	273	644	563	310	96	30	163
23:32:06	571	260	171	555	606	5 <mark>63</mark>	236	177	616	285	184	266	642	563	310	96	30	161
23:33:06	569	261	171	552	603	562	236	178	613	284	184	260	640	562	311	96	30	160
23:34:06	568	261	171	548	599	561	235	178	612	285	184	256	637	561	311	96	30	158
23:35:06	566	257	172	539	590	560	233	178	607	282	184	250	635	561	312	96	30	157
23:36:06	564	257	172	536	586	559	235	178	603	280	185	247	632	560	312	97	30	156
23:37:06	562	259	172	534	585	558	234	178	602	281	185	245	629	559	312	97	30	153
23:38:06	561	258	172	528	579	557	232	178	598	279	185	242	627	559	313	97	30	152
23:39:06	559	258	172	525	575	556	234	178	596	279	185	238	624	557	313	98	30	151
23:40:06	557	257	173	519	570	555	232	179	593	278	185	236	622	557	314	98	30	151
23:41:06	555	259	172	519	571	554	234	179	593	280	185	234	619	556	314	98	30	149
23:42:06	553	260	173	518	569	552	236	179	591	281	186	233	617	555	314	98	30	148
23:43:06	552	260	173	517	569	551	237	179	590	282	186	230	615	555	315	99	30	146
23:44:06	550	262	172	515	567	550	236	179	590	285	186	230	613	554	315	98	30	144
23:45:07	548	262	173	514	565	549	239	179	588	285	186	227	610	552	316	99	30	143
23:46:07	547	261	173	508	561	548	238	180	584	283	186	225	608	552	316	99	30	141

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ค <mark>โปรแ</mark>กรมคำนวณสมการเชิงเส้นหลายตัวแปร

รายละเอียดโปรแกรมคำนวณสมการเชิงเส้นหลายตัวแปร

โปรแกรมเขียนขึ้นด้วย m-file ชื่อ RadMatrixInput.m ในโปรแกรม MATLAB ซึ่งมี ขั้นตอนการทำงานดังต่อไปนี้ รูปที<mark>่ ง-1</mark>

รูปที่ ค-1 ขั้นตอนการทำงานของโปรแกรมคำนวณสมการเชิงเส้นหลายตัวแปร

รายละเอียดคำสั่งของโปรแกรม

```
%This program is used for calculation multi surface net radiation
heat transfer.
 % Input
        N: calculation step
 %
        TC: Array of Temperature for each surface
 %
       e: Array of Emissivity for each surface
 %
 % Output
        1. Radiation heat transfer of each surface for maintenance
 %
input temperature
           + meaning heat transfer into surface
 %
 %
           - meaning heat transfer out of surface
 %
           covert results when used as boundary condition in Procast
 %
        2. Heat flux of each surface
 %
 % Example
 % Step 2 of calculation
 % 4 Surface:
                1 Ambient
                               40 deg C
               2 Side wall800 deg C emissivity 0.73 Side wall800 deg C emissivity 0.7
 %
 %
 %
                4 Slag cover 900 deg C emissivity 0.9
 %
 % Build array for collect input data
 %
       T = [40 \ 800 \ 800 \ 900]
 %
        e = [1 \ 0.7 \ 0.7 \ 0.9]
 %
 % Using program
 %
       RadMatrixInput(2,T,e)
 %
 % Results
 % Surface Temperature(K) Emissivity Radiation Heat
transfer(kW) Heat flux(kW/sq.m)
00
                                     1.000000
                                                    -192.961792
            1
                      313
-84.812981
%
                                     0.700000
                                                      37.790179
            2
                     1073
17.234541
           3
00
                     1073
                                     0.700000
                                                       3.525270
9.383205
%
            4
                     1173
                                     0.900000
                                                     151.646342
70.467631
function []=RadMatrixInput(N,TC,e)
% n : number of surface used for referent number of calculation
n=N+2;
fprintf(' Number of surface : %d \n',n);
%Convert Temperature from degree celcius to kelvin
TK=TC+273;
%Load view factor from view factor data store in VF.mat
load VF
if n==3
  F=VF 3S;
elseif n==4
  F=VF 4S;
elseif n==5
   F=VF_5S;
elseif n==6
   F=VF 6S;
elseif n==7
   F=VF 7S;
```

```
elseif n==8
    F=VF_8S;
elseif n==9
    F=VF_9S;
elseif n==10
    F=VF_10S;
elseif n==11
    F=VF_11S;
elseif n==12
    F=VF_12S;
elseif n==13
    F=VF_13S;
elseif n==14
    F=VF_14S;
elseif n==15
    F=VF_15S;
elseif n==16
    F=VF_16S;
elseif n==17
    F=VF 17S;
elseif n==18
    F=VF 18S;
elseif n==19
    F = VF_{19S};
elseif n==20
    F=VF_20S;
elseif n==21
    F=VF_21S;
elseif n==22
    F=VF_22S;
elseif n==23
    F=VF_23S;
elseif n==24
    F=VF_24S;
else n>24
    fprintf(' Error: over step calculation');
end
%load area from area data store in VF.mat
% a: Array that store area data
a=Area(:,N);
a=a(1:n);
%
A=zeros(n);
    for i=1:n
        for j=1:n
            if i==j
                A(i,j)=(1/e(j)-F(i,j)*(1-e(j))/e(j))/a(j);
            else
                A(i,j) = -(F(i,j) * (1-e(j)) / e(j)) / a(j);
            end
        end
    end
% SBK: Stefan-Boltman Constant = 5.67x10^-8
SBK=5.67*10^-8;
b=zeros(n);
for i=1:n
        for j=1:n
            if i==j
                b(i,j)=+(1-F(i,j))*SBK*TK(j)^4;
            else
```

```
b(i,j)=- F(i,j)*SBK*TK(j)^4;
            end
        end
    end
B=sum(b')';
%Calculation radiation heat transfer of each surface
Q=(A B) / 1000;
%Calculate heat flux
q=Q./a;
%Display results
fprintf(' Surface Temperature(K) Emissivity
                                                Radiation Heat
transfer(kW) Heat flux(kW/sq.m)\n ');
for i=1:n
                         ',i);
fprintf('%d
fprintf('%d
                    ',TK(i));
fprintf('%2f
                    ',e(i));
fprintf('%2f
                      ',Q(i));
fprintf('%2f
                   \n '
                      ,q(i));
end
```

ค่า View factor ที่ใช้ในการคำนวณ

Fij	j 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
i 1	0.00	0.40	0.60	0.05	0.55	0.05	0.50	0.04	0.46	0.04	0.42	0.04	0.39	0.03	0.35	0.03	0.32	0.03	0.30	0.02	0.27	0.02	0.25
2	0.42	0.22	0.37	0.03	0.33	0.03	0.30	0.03	0.27	0.03	0.25	0.02	0.22	0.02	0.20	0.02	0.18	0.02	0.16	0.02	0.14	0.02	0.13
3	0.63	0.37	0.00	0.09	0.91	0.08	0.83	0.07	0. <mark>76</mark>	0.07	0.69	0.06	0.63	0.06	0.57	0.05	0.52	0.05	0.47	0.04	0.43	0.04	0.39
4	0.31	0.20	0.50	0.04	0.46	0.38	0.07	0.01	0.07	0.01	0.06	0.01	0.05	0.01	0.05	0.00	0.04	0.00	0.04	0.00	0.03	0.00	0.03
5	0.58	0.34	0.92	0.08	0.00	0.09	0.91	0.08	0.83	0.07	0.76	0.07	0.69	0.06	0.63	0.06	0.57	0.05	0.52	0.05	0.47	0.04	0.43
6	0.28	0.18	0.46	0.04	0.50	0.04	0.45	0.04	0.41	0.04	0.37	0.04	0.34	0.03	0.30	0.03	0.27	0.03	0.25	0.03	0.22	0.02	0.20
7	0.54	0.31	0.85	0.07	0.92	0.08	0.00	0.09	0.91	0 <mark>.0</mark> 8	0.83	0.08	0.75	0.07	0.68	0.06	0.62	0.06	0.56	0.05	0.51	0.05	0.46
8	0.25	0.17	0.42	0.04	0.46	0.04	0.50	0.04	0 <mark>.4</mark> 5	<mark>0</mark> .04	0.41	0.04	0.37	0.04	0.34	0.03	0.30	0.03	0.27	0.03	0.24	0.03	0.22
9	0.49	0.28	0.78	0.07	0.84	0.07	0.92	0.08	0.00	0.09	0.91	0.08	0.83	0.08	0.75	0.07	0.68	0.06	0.62	0.06	0.56	0.05	0.51
10	0.23	0.15	0.39	0.04	0.42	0.04	0.46	0.04	0.50	0.05	0.45	0.04	0.41	0.04	0.37	0.04	0.33	0.03	0.30	0.03	0.27	0.03	0.24
11	0.46	0.26	0.71	0.06	0.78	0.07	0.84	0.07	0.92	0.08	0.00	0.09	0.91	0.08	0.82	0.08	0.75	0.07	0.68	0.06	0.61	0.06	0.56
12	0.21	0.14	0.35	0.03	0.39	0.04	0.42	0.04	0 <mark>.4</mark> 6	0.04	0.50	0.04	0.45	0.04	0.41	0.04	0.37	0.04	0.33	0.03	0.30	0.03	0.27
13	0.42	0.23	0.66	0.06	0.71	0.06	0.77	0.07	0.84	0.08	0.92	0.08	0.00	0.09	0.91	0.08	0.82	0.08	0.74	0.07	0.67	0.06	0.61
14	0.19	0.13	0.32	0.03	0.35	0.03	0.38	0.04	0.42	0.04	0.46	0.04	0.50	0.05	0.45	0.04	0.41	0.04	0.37	0.04	0.33	0.03	0.30
15	0.39	0.21	0.60	0.05	0.65	0.06	0.71	0.06	0.77	0.07	0.84	0.08	0.92	0.08	0.00	0.09	0.91	0.09	0.82	0.08	0.74	0.07	0.67
16	0.17	0.12	0.29	0.03	0.32	0.03	0.35	0.03	0.38	0.04	0.42	0.04	0.46	0.04	0.50	0.05	0.45	0.04	0.41	0.04	0.37	0.04	0.33
17	0.36	0.19	0.55	0.05	0.60	0.05	0.65	0.06	0.71	0.06	0.77	0.07	0.84	0.08	0.91	0.09	0.00	0.10	0.90	0.09	0.82	0.08	0.74
18	0.16	0.11	0.26	0.03	0.29	0.03	0.32	0.03	0.35	0.03	0.38	0.04	0.42	0.04	0.46	0.04	0.50	0.05	0.45	0.04	0.41	0.04	0.37
19	0.33	0.17	0.51	0.04	0.55	0.05	0.59	0.05	0.65	0.06	0.70	0.06	0.77	0.07	0.84	0.08	0.91	0.09	0.00	0.10	0.90	0.09	0.82
20	0.14	0.10	0.24	0.02	0.26	0.03	0.29	0.03	0.31	0.03	0.34	0.03	0.38	0.04	0.42	0.04	0.46	0.04	0.50	0.05	0.45	0.05	0.41
21	0.31	0.16	0.47	0.04	0.50	0.04	0.54	0.05	0.59	0.05	0.64	0.06	0.70	0.06	0.76	0.07	0.83	0.08	0.91	0.09	0.00	0.10	0.90
22	0.13	0.09	0.22	0.02	0.24	0.02	0.26	0.03	0.28	0.03	0.31	0.03	0.34	0.03	0.38	0.04	0.41	0.04	0.46	0.04	0.50	0.05	0.45
23	0.29	0.14	0.43	0.03	0.46	0.04	0.50	0.04	0.54	0.05	0.59	0.05	0.64	0.06	0.70	0.06	0.76	0.07	0.83	0.08	0.91	0.09	0.00

ค่า View factor ที่ใช้ในการคำนวณ (ต่อ)

Fij	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
i 1	0.02	0.23	0.02	0.21	0.02	0.19	0.02	0.18	0.01	0.16	0.01	0.15	0.01	0.14	0.01	0.13	0.01	0.12	0.01	0.11	0.02	0.09
2	0.01	0.11	0.01	0.10	0.01	0.09	0.01	0.08	0.01	0.07	0.01	0.06	0.01	0.06	0.01	0.05	0.01	0.05	0.00	0.04	0.01	0.03
3	0.04	0.36	0.03	0.32	0.03	0.30	0.03	0.27	0.02	0.25	<mark>0</mark> .02	0.22	0.02	0.21	0.02	0.19	0.02	0.17	0.01	0.16	0.03	0.12
4	0.00	0.03	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01
5	0.04	0.39	0.04	0.35	0.03	0.32	0.03	0.29	0.03	0.27	0.02	0.24	0.02	0.22	0.02	0.20	0.02	0.18	0.02	0.17	0.04	0.13
6	0.02	0.17	0.02	0.16	0.02	0.14	0.02	0.12	<mark>0.01</mark>	0.11	0.01	0.10	0.01	0.09	0.01	0.08	0.01	0.07	0.01	0.06	0.02	0.04
7	0.04	0.42	0.04	0.38	0.04	0.35	0.03	0.32	0.03	0.29	0.03	0.26	0.02	0.24	0.02	0.22	0.02	0.20	0.02	0.18	0.04	0.14
8	0.02	0.19	0.02	0.17	0.02	0.15	0.02	0.14	0.02	<mark>0</mark> .12	0.01	0.11	0.01	0.09	0.01	0.08	0.01	0.07	0.01	0.07	0.02	0.05
9	0.05	0.46	0.04	0.42	0.04	0.38	0.04	0.34	0.03	0.31	0.03	0.28	0.03	0.26	0.02	0.23	0.02	0.21	0.02	0.19	0.04	0.15
10	0.03	0.21	0.02	0.19	0.02	0.17	0.02	0.15	0.02	0.13	0.02	0.12	0.01	0.10	0.01	0.09	0.01	0.08	0.01	0.07	0.02	0.05
11	0.05	0.50	0.05	0.45	0.04	0.41	0.04	0.37	0.04	0.34	0.03	0.31	0.03	0.28	0.03	0.25	0.02	0.23	0.02	0.21	0.05	0.16
12	0.03	0.24	0.03	0.21	0.02	0.19	0.02	0.17	0.02	0.15	0.02	0.13	0.02	0.12	0.01	0.10	0.01	0.09	0.01	0.08	0.02	0.06
13	0.06	0.55	0.05	0.50	0.05	0.45	0.04	0.41	0.04	0.37	0.04	0.33	0.03	0.30	0.03	0.27	0.03	0.25	0.02	0.22	0.05	0.17
14	0.03	0.27	0.03	0.24	0.03	0.21	0.02	0.19	0.02	0.16	0.02	0.15	0.02	0.13	0.02	0.11	0.01	0.10	0.01	0.09	0.03	0.06
15	0.06	0.61	0.06	0.55	0.05	0.49	0.05	0.45	0.04	0.40	0.04	0.36	0.04	0.33	0.03	0.30	0.03	0.27	0.03	0.24	0.06	0.19
16	0.03	0.30	0.03	0.26	0.03	0.23	0.03	0.21	0.02	0.18	0.02	0.16	0.02	0.14	0.02	0.13	0.02	0.11	0.01	0.10	0.03	0.07
17	0.07	0.67	0.07	0.60	0.06	0.54	0.05	0.49	0.05	0.44	0.04	0.40	0.04	0.36	0.03	0.32	0.03	0.29	0.03	0.26	0.06	0.20
18	0.04	0.33	0.04	0.29	0.03	0.26	0.03	0.23	0.03	0.21	0.02	0.18	0.02	0.16	0.02	0.14	0.02	0.12	0.02	0.11	0.03	0.08
19	0.08	0.74	0.07	0.66	0.07	0.60	0.06	0.54	0.05	0.48	0.05	0.44	0.04	0.39	0.04	0.35	0.03	0.32	0.03	0.29	0.07	0.22
20	0.04	0.37	0.04	0.33	0.04	0.29	0.03	0.26	0.03	0.23	0.03	0.20	0.02	0.18	0.02	0.16	0.02	0.14	0.02	0.12	0.04	0.08
21	0.09	0.81	0.08	0.73	0.07	0.66	0.07	0.59	0.06	0.53	0.05	0.48	0.05	0.43	0.04	0.39	0.04	0.35	0.03	0.31	0.08	0.24
22	0.05	0.41	0.04	0.36	0.04	0.32	0.04	0.29	0.03	0.26	0.03	0.23	0.03	0.20	0.02	0.18	0.02	0.15	0.02	0.14	0.04	0.09
23	0.10	0.90	0.09	0.81	0.08	0.73	0.07	0.66	0.07	0.59	0.06	0.53	0.05	0.47	0.05	0.43	0.04	0.38	0.04	0.34	0.09	0.26

ค่า View factor ที่ใช้ในการคำนวณ (ต่อ)

Fij	j 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
24	0.12	0.08	0.19	0.02	0.21	0.02	0.23	0.02	0.26	0.03	0.28	0.03	0.31	0.03	0.34	0.03	0.37	0.04	0.41	0.04	0.45	0.05	0.50
25	0.27	0.13	0.39	0.03	0.42	0.03	0.46	0.04	0.49	0.04	0.54	0.05	0.58	0.05	0.63	0.06	0.69	0.06	0.76	0.07	0.83	0.08	0.91
26	0.11	0.07	0.18	0.02	0.19	0.02	0.21	0.02	0.23	0.02	0.25	0.03	0.28	0.03	0.31	0.03	0.34	0.03	0.37	0.04	0.41	0.04	0.45
27	0.25	0.12	0.36	0.03	0.39	0.03	0.42	0.03	0.45	0.04	0.49	0.04	0.53	0.05	0.58	0.05	0.63	0.06	0.69	0.07	0.75	0.07	0.83
28	0.10	0.06	0.16	0.01	0.17	0.02	0.19	0.02	0.21	0.02	0.23	0.02	0.25	0.03	0.28	0.03	0.30	0.03	0.34	0.03	0.37	0.04	0.41
29	0.23	0.10	0.33	0.02	0.36	0.03	0.38	0.03	0.41	0.03	0.45	0.04	0.49	0.04	0.53	0.05	0.57	0.05	0.63	0.06	0.68	0.07	0.75
30	0.09	0.05	0.14	0.01	0.16	0.01	0.17	0.02	0.19	0.02	0.20	0.02	0.23	0.02	0.25	0.03	0.27	0.03	0.30	0.03	0.33	0.04	0.37
31	0.21	0.09	0.31	0.02	0.33	0.02	0.35	0.03	0.38	0.03	0.41	0.03	0.44	0.04	0.48	0.04	0.52	0.05	0.57	0.05	0.62	0.06	0.68
32	0.08	0.05	0.13	0.01	0.14	0.01	0.15	0.01	0.17	0.02	0.18	0.02	0.20	0.02	0.22	0.02	0.25	0.03	0.27	0.03	0.30	0.03	0.33
33	0.20	0.08	0.28	0.02	0.30	0.02	0.32	0.02	0.35	0.03	0.37	0.03	0.40	0.03	0.44	0.04	0.48	0.04	0.52	0.05	0.56	0.05	0.62
34	0.07	0.04	0.12	0.01	0.13	0.01	0.14	0.01	0. <mark>15</mark>	0.01	0.16	0.02	0.18	0.02	0.20	0.02	0.22	0.02	0.24	0.03	0.27	0.03	0.30
35	0.18	0.08	0.26	0.02	0.28	0.02	0.30	0.02	0 <mark>.3</mark> 2	0.02	0.34	0.03	0.37	0.03	0.40	0.03	0.43	0.04	0.47	0.04	0.51	0.05	0.56
36	0.07	0.04	0.10	0.01	0.11	0.01	0.12	0.01	0.13	0.01	0.15	0.01	0.16	0.02	0.18	0.02	0.20	0.02	0.22	0.02	0.24	0.03	0.27
37	0.17	0.07	0.24	0.02	0.26	0.02	0.27	0.02	0.29	0.02	0.31	0.02	0.34	0.03	0.37	0.03	0.39	0.03	0.43	0.04	0.47	0.04	0.51
38	0.06	0.03	0.09	0.01	0.10	0.01	0.11	0.01	0.12	0.01	0.13	0.01	0.14	0.01	0.16	0.02	0.18	0.02	0.19	0.02	0.21	0.02	0.24
39	0.16	0.06	0.22	0.01	0.24	0.02	0.25	0.02	0.27	0.02	0.29	0.02	0.31	0.02	0.33	0.03	0.36	0.03	0.39	0.03	0.42	0.04	0.46
40	0.05	0.03	0.08	0.01	0.09	0.01	0.10	0.01	0.11	0.01	0.12	0.01	0.13	0.01	0.14	0.01	0.16	0.02	0.17	0.02	0.19	0.02	0.21
41	0.15	0.06	0.21	0.01	0.22	0.01	0.23	0.02	0.25	0.02	0.26	0.02	0.28	0.02	0.31	0.02	0.33	0.03	0.36	0.03	0.38	0.03	0.42
42	0.05	0.03	0.08	0.01	0.08	0.01	0.09	0.01	0.10	0.01	0.11	0.01	0.12	0.01	0.13	0.01	0.14	0.01	0.15	0.02	0.17	0.02	0.19
43	0.14	0.05	0.19	0.01	0.20	0.01	0.21	0.01	0.23	0.02	0.24	0.02	0.26	0.02	0.28	0.02	0.30	0.02	0.32	0.03	0.35	0.03	0.38
44	0.04	0.02	0.06	0.00	0.07	0.01	0.07	0.01	0.08	0.01	0.09	0.01	0.09	0.01	0.10	0.01	0.11	0.01	0.12	0.01	0.14	0.01	0.15
45	0.12	0.04	0.16	0.01	0.16	0.01	0.17	0.01	0.18	0.01	0.19	0.01	0.21	0.01	0.22	0.02	0.24	0.02	0.25	0.02	0.27	0.02	0.29

ค่า View factor ที่ใช้ในการคำนวณ (ต่อ)

Fij	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
24	0.05	0.45	0.05	0.41	0.04	0.36	0.04	0.32	0.04	0.29	0.03	0.25	0.03	0.22	0.03	0.20	0.02	0.17	0.02	0.15	0.05	0.10
25	0.09	0.00	0.10	0.90	0.09	0.81	0.08	0.73	0.07	0.65	0.07	0.58	0.06	0.52	0.05	0.47	0.05	0.42	0.04	0.38	0.10	0.28
26	0.05	0.50	0.05	0.45	0.05	0.40	0.04	0.36	0.04	0.32	0.04	0.28	0.03	0.25	0.03	0.22	0.03	0.19	0.02	0.17	0.05	0.12
27	0.08	0.91	0.09	0.00	0.10	0.90	0.09	0.81	0.08	0.72	0.08	0.65	0.07	0.58	0.06	0.52	0.05	0.46	0.05	0.41	0.11	0.31
28	0.04	0.45	0.05	0.50	0.05	0.45	0.05	0.40	0.04	0.36	0.04	0.32	0.04	0.28	0.03	0.25	0.03	0.22	0.03	0.19	0.06	0.13
29	0.07	0.82	0.08	0.91	0.09	0.00	0.10	0.90	0.09	0.80	0.08	0.72	0.08	0.64	0.07	0.57	0.06	0.51	0.05	0.46	0.12	0.34
30	0.04	0.41	0.04	0.45	0.05	0.50	0.05	0.45	0.05	0.40	0.04	0.36	0.04	0.32	0.04	0.28	0.03	0.25	0.03	0.22	0.07	0.15
31	0.07	0.75	0.07	0.82	0.08	0.91	0.09	0.00	0.10	<mark>0</mark> .90	0.09	0.80	0.09	0.72	0.08	0.64	0.07	0.57	0.06	0.51	0.14	0.37
32	0.04	0.37	0.04	0.41	0.04	0.45	0.05	0.50	0.05	0.45	0.05	0.40	0.05	0.36	0.04	0.32	0.04	0.28	0.03	0.24	0.08	0.17
33	0.06	0.68	0.07	0.74	0.08	0.82	0.08	0.90	0.10	0.00	0.11	0.89	0.10	0.80	0.09	0.71	0.08	0.63	0.07	0.56	0.15	0.41
34	0.03	0.33	0.04	0.37	0.04	0.41	0.04	0.45	0.05	0.50	0.05	0.45	0.05	0.40	0.05	0.35	0.04	0.31	0.04	0.27	0.09	0.19
35	0.05	0.61	0.06	0.67	0.07	0.74	0.08	0.82	0.09	0.90	0.10	0.00	0.11	0.89	0.10	0.80	0.09	0.71	0.08	0.63	0.17	0.45
36	0.03	0.29	0.03	0.33	0.04	0.36	0.04	0.40	0.04	0.45	0.05	0.50	0.05	0.45	0.05	0.40	0.05	0.35	0.04	0.31	0.10	0.21
37	0.05	0.56	0.05	0.61	0.06	0.67	0.07	0.74	0.08	0.81	0.09	0.90	0.10	0.00	0.11	0.89	0.10	0.79	0.09	0.70	0.20	0.51
38	0.03	0.26	0.03	0.29	0.03	0.32	0.04	0.36	0.04	0.40	0.05	0.45	0.05	0.50	0.05	0.45	0.05	0.40	0.05	0.35	0.11	0.24
39	0.04	0.50	0.05	0.55	0.05	0.60	0.06	0.67	0.07	0.73	0.08	0.81	0.09	0.90	0.10	0.00	0.11	0.89	0.10	0.79	0.22	0.57
40	0.02	0.23	0.03	0.26	0.03	0.29	0.03	0.32	0.04	0.36	0.04	0.40	0.05	0.45	0.05	0.50	0.06	0.45	0.05	0.40	0.12	0.28
41	0.04	0.46	0.04	0.50	0.05	0.55	0.05	0.60	0.06	0.66	0.07	0.73	0.08	0.81	0.09	0.90	0.10	0.00	0.11	0.89	0.25	0.63
42	0.02	0.21	0.02	0.23	0.03	0.26	0.03	0.29	0.03	0.32	0.04	0.36	0.04	0.40	0.05	0.44	0.05	0.50	0.06	0.45	0.13	0.31
43	0.03	0.41	0.04	0.45	0.04	0.49	0.05	0.54	0.05	0.60	0.06	0.66	0.07	0.73	0.08	0.81	0.09	0.90	0.10	0.00	0.29	0.71
44	0.02	0.17	0.02	0.19	0.02	0.21	0.02	0.23	0.03	0.26	0.03	0.29	0.03	0.32	0.04	0.36	0.04	0.40	0.05	0.45	0.15	0.40
45	0.02	0.32	0.03	0.34	0.03	0.37	0.03	0.41	0.04	0.45	0.04	0.49	0.05	0.54	0.06	0.60	0.06	0.66	0.07	0.74	0.26	0.00

ขนาดพื้นที่ของแต่ละผิวที่ใช้ในการคำนวณ

	พื้นที่		พื้นที่
ผิว	(m ²)	ผิว	(m²)
1	2.28	24	0.39
2	2.19	25	1.97
3	2.17	26	0.39
4	0.38	27	1.95
5	2.15	28	0.40
6	0.38	29	1.93
7	2.13	30	0.40
8	0.38	31	1.91
9	2.12	32	0.40
10	0.38	33	1.89
11	2.10	34	0.40
12	0.38	35	1.87
13	2.08	36	0.40
14	0.38	37	1.85
15	2.06	38	0.41
16	0.39	39	1.83
17	2.04	40	0.41
18	0.39	41	1.81
19	2.02	42	0.41
20	0.39	43	1.79
21	2.01	44	1.14
22	0.39	45	1.74
23	1.99		1.13

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก ง การคำนวณพลังงานสะสมภายในเบ้ารับน้ำเหล็ก

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

การคำนวณพลังงานความร้อนสะสมภายในเบ้ารับน้ำเหล็ก

พลังงานความร้อนสะสมในเบ้ารับน้ำเหล็ก (Energy content, Q_{Ladle}) ในระหว่าง การทำงานสามารถหาได้จาก

 $dm=2\pi
ho hrdr,\ h$ คือความสูงเบ้ารับน้ำเหล็ก

<u>ที่ผนังด้านล่าง</u>

$$Q_{Bottom wall} = \int_{0}^{l_{o}} C_{p} T(l) dm$$

= $\int_{0}^{l_{i}} C_{p_{refractory}} T_{refractory}(l) dm_{refrectory}$
+ $\int_{l_{i}}^{l_{o}} C_{p_{steel shell}} T_{steel sheel}(l) dm_{steel shell}$

$T_{refractory}(l)$	คืออุณห <mark>ภูมิภายในชั้นอ</mark> ิฐทนไฟเบ้ารับน้ำเหล็ก
	ที่เป็นฟังก์ชันของระยะ โดย T(l) นี้หาได้จากการผล
	<mark>การจำลองการถ่ายเทควา</mark> มร้อน
T _{steel sheel} (r)	<mark>คืออุณหภูมิภายในชั้นเปลือกเห</mark> ล็กเบ้ารับน้ำเหล็ก
	ที่เป็นฟังก์ชันของระยะ โดย T(l) นี้หาได้จากการผล
	<mark>การ</mark> จำลองการถ่ายเทความร้อน
li	<mark>คือระย</mark> ะถึงชั้ <mark>นผิวด้านนอกชั้</mark> นปลอดภัย
lo	<mark>คือรัศมีด้านนอกเบ้ารับน้ำเหล็ก</mark>
โดย	

 $dm = 2\pi r_i^2 \rho dl$

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ประวัติผู้เขียนวิทยานิพนธ์

นายศิริพงษ์ ชื่นกลิ่น เกิดเมื่อวันที่ 12 เมษายน พ.ศ. 2527 ที่จังหวัดพัทลุง สำเร็จการศึกษาระดับ ปริญญาวิศวกรรมศาสตรบัณฑิต สาขาวิศวกรรมเครื่องกล จากภาควิชาวิศวกรรมเครื่องกล คณะ วิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย จังหวัดกรุงเทพฯ เมื่อปีการศึกษา 2548 และเข้าศึกษาต่อ ในหลักสูตรปริญญาวิศวกรรมศาสตร์มหาบัณฑิต ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ในปีการศึกษา 2549 ระหว่างการศึกษาได้รับทุนอุดหนุนค่าเล่าเรียนจาก ภาควิชาวิศวกรรมเครื่องกล และได้มีโอกาสเข้าทำงานกับสถาบันเหล็กและเหล็กกล้าแห่งประเทศไทย ในตำแหน่งผู้ช่วยนักวิจัย

