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CHAPTER I

INTRODUCTION

1.1 Perfect Graphs

A k-coloring of a graph G is a labeling f : V (G) → S, where |S| = k. The

labels are colors. A k-coloring is proper if adjacent vertices have different colors.

The chromatic number of graph G, written χ(G), is the minimum number k such

that G has a proper k-coloring. A clique of a graph G is a complete subgraph of

G. The clique number of a graph G, written ω(G), is the order of the largest clique

of G. For any graph G, it is always true that χ(G) ≥ ω(G), because vertices of a

clique need different colors. The gap between the two parameters χ(G) and ω(G)

can be arbitrarily large. A graph G is perfect if χ(F ) = ω(F ) for every induced

subgraph F of G, and a graph is imperfect if it is not perfect.

Now, we give trivial examples of perfect graphs as follows: complete graph,

bipartite graph, chordal graph, interval graph[15], etc. Nontrivial examples of

perfect graphs are as follows: bull-free Berge graph[7], planar Berge graph[13],

degenerate Berge graph[1], etc. Other examples are compiled by Hougardy[8].

Example 1.1.1. Some imperfect graphs:
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Figure 1.1.1: Some imperfect graphs

In Figure 1.1.1, all graphs are imperfect graphs. We observe that G1 and G2

are induced subgraphs of itself such that χ(G1) 6= ω(G1) and χ(G2) 6= ω(G2).

But G3 contains a proper induced subgraph whose chromatic number and clique

number are unequal, while χ(G3) = ω(G3). 2

Berge[2] defined perfect graphs in 1961. Research on perfect graphs has cen-

tered around two questions. The first is: “Which graphs are perfect?”, the second

is: “Do perfect graphs have special structures which allow us to find the chromatic

number and the clique number quickly?”. Research into these questions originally

centered around the Strong Perfect Graph Conjecture, due to Berge:

A graph G is perfect if and only if

neither G nor G contains an odd induced cycle of length at least five.

An odd hole of a graph G is an induced subgraph of G which is an odd cycle

of length at least 5. An odd antihole of a graph G is an induced subgraph of G

whose complement is an odd hole of G. A graph having no odd hole and no odd

antihole is called a Berge graph. Thus, the Strong Perfect Graph Conjecture is

equivalent to the statement that:
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A graph is perfect if and only if it is a Berge graph.

Note that C2k+1, k ≥ 2, is an odd hole of itself. For all k ≥ 2, we call graphs

C2k+1 and C2k+1 an odd hole and an odd antihole, respectively. In Figure 1.1.1,

G1 and G3 contain odd holes, and G2 contains an odd antihole which are shown

as bold edges. Also, G1 is an odd hole and G2 is an odd antihole.

A minimal imperfect graph is an imperfect graph whose proper induced sub-

graphs are all perfect. The Strong Perfect Graph Conjecture is equivalent to the

following statement:

A graph is minimal imperfect if and only if

it is an odd hole or an odd antihole.

The Strong Perfect Graph Conjecture has led to the definitions and study of

many new classes of graphs for which the correctness of this conjecture has been

verified.

A weaker conjecture was proved by Lovász in 1972, named the Perfect Graph

Theorem. This theorem only shows that the class of perfect graphs is closed under

complementation. So, many authors attempt to find an other characterization of

a perfect graph. Recently(2006), Chudnovsky et al.[5] were able to prove the

Strong Perfect Graph Conjecture in its full generality. After remaining unsolved

for more than 40 years it can now be called the Strong Perfect Graph Theorem.

However, the proof was very long (179 pages), recently(2009), Chudnovsky

and Seymour[6] replaced the final 55 pages with a new much shorter proof.

The Perfect Graph Theorem and the Strong Perfect Graph Theorem are our

major tools to verify the perfection of our glued graphs. We conclude them here

for future references.
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Theorem 1.1.2. (Perfect Graph Theorem)[9]

A graph is perfect if and only if its complement is perfect.

Theorem 1.1.3. (Strong Perfect Graph Theorem)[5]

A graph is perfect if and only if it contains no odd hole and no odd antihole.

1.2 Glued graphs

Let G1 and G2 be two nontrivial vertex-disjoint graphs. Let H1 and H2 be

nontrivial connected subgraphs of G1 and G2, respectively, such that H1
∼= H2

with an isomorphism f , then the glued graph of G1 and G2 at H1 and H2 with

respect to f , denoted by G1/.G2
H1

∼=f H2
, is the graph that results from combining G1

with G2 by identifying H1 and H2 with respect to the isomorphism f between H1

and H2. Let H be the copy of H1 and H2 in the glued graph G1/.G2
H1

∼=f H2
. We refer

to H, H1 and H2 as the clones of the glued graph, G1 and G2, respectively, and

refer to G1 and G2 as the original graphs of the glued graph.

The glued graph of G1 and G2 at the clone H, written G1/.G2
H

, means that

there exist subgraph H1 of G1 and subgraph H2 of G2 and isomorphism f between

H1 and H2 such that G1/.G2
H

= G1/.G2
H1

∼=f H2
and H is the copy of H1 and H2 in the

resulting graph.

We use G1/.G2 to denote an arbitrary graph resulting from gluing graphs

G1 and G2 at any isomorphic subgraph H1
∼= H2 with respect to any of their

isomorphism.

The glue operator is a mathematical operator defined by Uiyyasathian[14] since

2003. In 2006, Promsakon[11] studied colorability of the glued graphs. Bounds

of the chromatic numbers of the glued graphs in terms of the chromatic numbers

of its original graphs were obtained in [12]. Later, the subject of total colorings

of glued graphs was studied by Charoenpanitseri[4] and Pimpasalee[10] studied
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clique covering of glued graphs. Some results are useful for our study. More details

regarding glued graphs can be explored in Promsakon[11].

Throughout the thesis, G1 and G2 are nontrivial graphs with disjoint vertex

sets and the clone H is a nontrivial connected graph. For a glued graph G1/.G2
H1

∼=f H2
,

we use u ≡ v to denote the vertex in a glued graph G1/.G2
H1

∼=f H2
, where u ∈ V (H1) and

v ∈ V (H2) and f(u) = v. Moreover, we use the following symbols for convenience:

G(u1, u2, ..., un) : a graph G on the vertex set {u1, u2, ..., un};

G(u1, u2, ..., un) : the complement of G(u1, u2, ..., un);

Kn(u1, u2, ..., un) : a complete graph on the vertex set {u1, u2, ..., un};

Pn(u1, u2, ..., un) : a path on the vertex set {u1, u2, ..., un}

and the edge set {u1u2, u2u3, ..., un−1un};

Cn(u1, u2, ..., un) : a cycle on the vertex set {u1, u2, ..., un}

and the edge set {u1u2, u2u3, ..., un−1un, unu1}.

For other terminologies and notations, see West[15].

Now, we show examples of different glued graphs even if they have the same

pair of original graphs.

Example 1.2.1. Let G1 and G2 be graphs as shown in Figure 1.2.1.
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Figure 1.2.1: Glued graphs with different isomorphisms

Let H1 = K3(1, 2, 3) ⊆ G1 and H2 = K3(a, b, c) ⊆ G2. Consider three isomor-

phisms f, g and h between H1 and H2 as follows:

f(1) = a, f(2) = b, f(3) = c;

g(1) = c, g(2) = a, g(3) = b;

h(1) = b, h(2) = c, h(3) = a.

Glued graphs of G1 and G2 with respect to f, g and h are shown in Figure

1.2.1. 2

It is possible that a glued graph of simple graphs has multiple edges. This

illustrates in Example 1.2.2.
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Example 1.2.2. Let G1 and G2 be graphs as shown in Figure 1.2.2.

Figure 1.2.2: A glued graph containing multiple edges

However, multiple edges of a graph do not affect both the chromatic number

and the clique number of such graph because multiple edges have the same pair

of endpoints. Hence, we allow our glued graphs to have multiple edges. 2

We first observe some basic properties of glued graphs in the following remark.

Remark 1.2.3.

1. The original graphs are subgraphs of their glued graph.

2. The graph gluing does not create or destroy an edge.

3. A glued graph of disconnected graphs is also disconnected and a glued graph

of connected graphs is also connected.

4. If u ∈ V (G1) − V (H) and v ∈ V (G2) − V (H) where G1 and G2 are graphs

and H is a clone of G1/.G2
H

, then u and v are not adjacent in G1/.G2
H

.

Next, we introduce definitions of a new edge and a new clique.

Definition 1.2.4. An edge e = ab in any glued graph G1/.G2 is a new edge

for an original graph Gi, i=1 or 2 if the corresponding vertices of a and b in Gi

are not adjacent. A clique Q in any glued graph G1/.G2 is a new clique for an

original graph Gi, i=1 or 2 if the corresponding vertices of V (Q) in Gi do not

form a clique.
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Example 1.2.5. Let G1/.G2
H

be the glued graph of original graphs G1 and G2

whose clone H is shown as bold edges in Figure 1.2.3.

Figure 1.2.3: A glued graph containing new cliques

In Figure 1.2.3. It is easily seen that G1/.G2
H

contains an edge e but vertices

b and d are not adjacent in G1. Thus, an edge e is a new edge for G1. Moreover,

K3(a, b ≡ x, d ≡ z) is a clique in G1/.G2
H

but G1 does not contain a clique

K3(a, b, d), so K3(a, b ≡ x, d ≡ z) is a new clique for G1. Similarly, K4(a, b ≡

x, c ≡ y, d ≡ z) is a new clique for G1. 2

Example 1.2.5 suggests some basic properties of a new edge and a new clique

of a glued graph as shown in the following remark.

Remark 1.2.6.

1. If a glued graph G1/.G2 has a new clique for Gi, i=1 or 2, then G1/.G2 has

a new edge for Gi.

2. Any new edge of a glued graph cannot be a new edge for both original graphs

at the same time.

3. Both endpoints of a new edge of a glued graph must lie in the clone.
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1.3 Thesis overview

Our purpose in this thesis is to study the perfection of glued graphs whose

original graphs are perfect. It is possible that a glued graph of perfect graphs

is imperfect; shown by an example in Section 2.1. We then look for conditions

to obtain the perfection of glued graphs whose original graphs are perfect. We

separate this study into many chapters as follows:

Chapter 2 contains all possibilities of perfect glued graphs and imperfect glued

graphs. Also, the perfection of glued graphs whose one of original graphs is a

minimal imperfect graph is investigated.

Chapter 3 gives a condition to guarantee the perfection of a glued graph whose

original graphs are perfect. Our main results reveal that the clone of the glued

graph must be a complete graph in order to get the desired result. To show such

fact, we investigate values of the chromatic numbers and the clique numbers of

glued graphs at complete clones in terms of these parameters of their original

graphs. Later, we utilize them to prove our main theorem. Beyond that, we in-

troduce the simplicial set elimination ordering as a generalization of the simplicial

elimination ordering which is a characterization of chordal graphs.

While Chapter 3 studies the perfection of glued graphs at complete clones for

arbitrary original graphs, Chapter 4 studies the perfection of glued graphs at arbi-

trary clones with some specified original graphs. The specified original graphs are

such as bipartite graphs, complete graphs and forests. We also investigate values

of the chromatic numbers and the clique numbers of glued graphs at arbitrary

clones in terms of these parameters of their original graphs. Later, we utilize

them to prove our main theorems.

Finally, we conclude main results of this work and give some open problems

for future work in Chapter 5.



CHAPTER II

THE PERFECTION AND THE IMPERFECTION OF

GLUED GRAPHS

This chapter contains all possibilities of perfect glued graphs and imperfect

glued graphs. Also, the perfection of glued graphs whose one of original graphs is

a minimal imperfect graph is investigated.

2.1 The Possibility of Perfect Glued Graphs and Imperfect

Glued Graphs

First, we consider all six possibilities of perfect glued graphs and imperfect

glued graphs, namely:

Case 1. imperfect /. imperfect

Case 2. imperfect /. perfect

Case 3. perfect /. perfect























is imperfect.

Case 4. imperfect /. imperfect

Case 5. imperfect /. perfect

Case 6. perfect /. perfect























is perfect.

Next, we introduce a new definition for convenience:

Definition 2.1.1. For graphs G1 and G2, a clone H of a glued graph G1/.G2
H

is

called an induced clone of G1/.G2
H

if H is an induced subgraph of both G1 and

G2.
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If an original graph is imperfect, its glued graph at an induced clone is always

imperfect. This can be conclued here:

Proposition 2.1.2. Let G1 and G2 be graphs containing H as their induced sub-

graph. If G1 or G2 is an imperfect graph, then G1/.G2
H

is imperfect.

Proof. Let G1 and G2 be graphs containing H as their induced subgraph. Assume

that G1 or G2 is an imperfect graph. Without loss of generality, assume G1 is

an imperfect graph. By the Strong Perfect Graph Theorem, G1 contains an odd

hole or an odd antihole. Since H is an induced subgraph of both G1 and G2, it

follows that every induced subgraph of G1 is also an induced subgraph of G1/.G2
H

.

Hence, G1/.G2
H

contains an odd hole or an odd antihole. Therefore, G1/.G2
H

is

imperfect.

Proposition 2.1.2 is an example of Cases 1 and 2.

Now, we show examples for each remaining possibility. Examples 2.1.3, 2.1.4

and 2.1.5 for Cases 3, 4 and 5, respectively.

Example 2.1.3. Imperfect glued graphs of perfect graphs:

Let G1 = C2n, G2 = K1 ∨ P2n−2 and H = P2n−2 where n ≥ 3. Both G1 and

G2 are Berge graphs. Observe that G1/.G2
H

contains C5 as an induced subgraph,

so it is not a Berge graph. By the Strong Perfect Graph Theorem, G1 and G2

are perfect but G1/.G2
H

is imperfect. For n = 3, G1 and G2 are illustrated in

Figure 2.1.1. 2
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Figure 2.1.1: An imperfect glued graph of perfect graphs

Example 2.1.4. Perfect glued graphs of imperfect graphs:

Let G1 = C2n+1, G2 = K1 ∨ C2n−3 and H = K1,2n−3 where n ≥ 4. Since G1

is an odd antihole and G2 contains an odd hole, both G1 and G2 are not Berge

graphs. By the Strong Perfect Graph Theorem, they are imperfect. Observe that

G1/.G2
H

∼= P6 + K2n−5 which is perfect. By the Perfect Graph Theorem, we have

that G1/.G2
H

is perfect. For n = 4, G1 and G2 are illustrated in Figure 2.1.2. 2

Figure 2.1.2: A perfect glued graph of imperfect graphs

Example 2.1.5. Perfect glued graphs of imperfect graphs and perfect graphs:

Let G1 = C2n+1, G2 = K2n−1 and H = K1,2n−2 where n ≥ 2. Then G1 is not

a Berge graph but G2 is a Berge graph. By the Strong Perfect Graph Theorem,

G1 is imperfect but G2 is perfect. Observe that G1/.G2
H

∼= P5 + K2n−4 which is

perfect, by the Perfect Graph Theorem, G1/.G2
H

is perfect. For n = 3, G1 and G2

are illustrated in Figure 2.1.3. 2
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Figure 2.1.3: A perfect glued graph of an imperfect graph and a perfect graph

Example 2.1.3 shows that it is possible that a glued graph of perfect graphs

is not perfect. We give conditions for the perfection of glued graphs whose orig-

inal graphs are perfect in Chapters 3 and 4 where many examples of Case 6 are

presented.

2.2 The Perfection of Glued Graphs of Minimal Imperfect

Graphs and Perfect Graphs

In Proposition 2.1.2, we know that a glued graph of an imperfect graph and

a perfect graph may be imperfect. In this section, we give conditions for the

perfection of a glued graph of an imperfect graph and a perfect graph. Since every

imperfect graph contains a minimal imperfect graph as an induced subgraph, it

is enough to consider a glued graph of a minimal imperfect graph and a perfect

graph. We recall the equivalent form of the Strong Perfect Graph Theorem that

a graph is minimal imperfect if and only if it is an odd hole or an odd antihole.

Then we study only the case that one of original graphs of a glued graph is an

odd hole or an odd antihole.
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First, we consider a glued graph of an odd hole and any cycle. It is possible

that the glued graph is not perfect. We illustrate this in the following example.

Example 2.2.1. Imperfect glued graphs of odd holes and cycles:

Let G1 = C2n+1, G2 = C2n−2 and H = P2n−2 where n ≥ 3. Observe that

G1/.G2
H

contains C5 as an induced subgraph, so it is not a Berge graph. By the

Strong Perfect Graph Theorem, G1/.G2
H

is not perfect. For n = 3, G1 and G2 are

illustrated in Figure 2.2.1. 2

Figure 2.2.1: An imperfect glued graph of an odd hole and a cycle

Now, note that all cycles in G1 and G2 are in G1/.G2. However, it is possible

that G1/.G2 contains a new cycle. We illustrate this in the following example.

Example 2.2.2. Let G1 and G2 be graphs in Figure 2.2.2.
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Figure 2.2.2: Created cycles

Let H1 = P3(1, 2, 3) ⊆ G1 and H2 = P3(a, b, c) ⊆ G2. Define f : H1 → H2 by

f(1) = a, f(2) = b and f(3) = c. Then we get that G1/.G2
H1

∼=f H2
contains an cycle

C6(v1, v2, v6, v3, v4, v5) but C6(v1, v2, v6, v3, v4, v5) is not a cycle in G1 and G2. Also,

we get that G1/.G2
H1

∼=f H2
contains an induced cycle C5(v1, v2, ..., v5) but C5(v1, v2, ..., v5)

is not a cycle in G1 and G2. 2

Example 2.2.2 shows that the graph gluing can create a new cycle. We call

such new cycles as created cycles and all cycles in the original graphs as original

cycles.

In Theorem 2.2.3, we give a condition for a cycle to obtain the perfection of

a glued graph of an odd hole and the cycle. Alike, we characterize a cycle with

perfect glued graph whose one of original graphs is an odd hole.

Theorem 2.2.3. Let n be a positive integer and m an odd positive integer such

that m ≥ max{5, n}. Then

Cm/.Cn is a perfect graph if and only if its clone is Pn,and n = 3 or n = m − 1.

Proof. Let n be a positive integer and m an odd positive integer such that m ≥

max{5, n}. Let H be the clone of Cm/.Cn
H

.

Necessity. Assume that Cm/.Cn
H

is a perfect graph. Since H is a connected

subgraph of cycles Cm and Cn, H is a cycle or a path. If H is a cycle, Cm/.Cn
H

∼=
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Cm which is not perfect. This is a contradiction. Thus, H = Pl for some l ≤ n.

Since Cm is not perfect but Cm/.Cn
H

is perfect, Cm/.Cn
H

has a new edge for Cm.

Thus, the clone H is not an induced subgraph of Cn. Hence, l = n. That is,

H = Pn. Since m is odd, Cm/.Cn
H

contains exactly one even induced cycle and

one odd induced cycle. But Cm/.Cn
H

is perfect, the odd induced cycle has length 3.

Since the even cycle or the odd cycle is created, n = 3 or n = m− 1, respectively.

Sufficiency. Assume that H = Pn, and n = 3 or n = m − 1. Note that

Cm/.C3
P3

∼= Cm/.Cm−1
Pm−1

. Without loss of generality, assume n = 3. We observe

that Cm/.Cn
Pn

contains exactly one even induced cycle and one odd induced cycle.

Since n = 3, the odd induced cycle has length 3. Thus, these two cycles is neither

an odd hole nor an odd antihole with 5 vertices. Since an odd antihole with 7

vertices has more than 2 cycles but Cm/.Cn
Pn

contains exactly two cycles, an odd

antihole with 7 vertices is not contained in Cm/.Cn
Pn

. Thus, Cm/.Cn
Pn

contains no

odd hole and no odd antihole. By the Strong Perfect Graph Theorem, Cm/.Cn
Pn

is

perfect.

Next, we consider a glued graph of an odd hole and any perfect graph. It is

possible that the glued graph is not perfect. We illustrate this in the following

example.

Example 2.2.4. Imperfect glued graphs of odd holes and perfect graphs:

Let G1 = C2n+1, G2 = K4 − e and H = P4 where n ≥ 3. Then G2 is a perfect

graph. Observe that G1/.G2
H

contains C2n−1 as an induced subgraph, so it is not a

Berge graph. By the Strong Perfect Graph Theorem, G1/.G2
H

is not perfect. For

n = 3, G1 and G2 are illustrated in Figure 2.2.3. 2
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Figure 2.2.3: An imperfect glued graph of an odd hole and a perfect graph

In Theorem 2.2.5, we give a condition for a perfect graph to obtain the per-

fection of a glued graph of an odd hole and the perfect graph.

Theorem 2.2.5. Let G be a perfect graph and m an odd positive integer such that

m ≥ 5. If G contains a cycle Cn, where n is odd or n = m − 1, then Cm/.G
Cn−e

is

perfect.

Proof. Let G be a perfect graph and m an odd positive integer such that m ≥ 5.

Assume that G contains a cycle Cn, where n is odd or n = m − 1. We observe

that Cm/.G
Cn−e

has only one created induced cycle, namely Cm−n+2. Since m is odd

and n is odd or m − 1, m − n + 2 is even or 3, respectively. Thus, Cm−n+2 is

not an odd hole. Since G is perfect, G contains no odd hole and no odd antihole.

Besides, vertices in V (G) and V (Cm) − V (H) are not adjacent, Cm/.G
Cn−e

contains

no odd hole and no odd antihole. By the Strong Perfect Graph Theorem, Cm/.G
Cn−e

is perfect.

Next, we recall a definition of a hamiltonian graph.

Definition 2.2.6. A Hamiltonian graph G is a graph containing a cycle with

the vertex set V (G).

Corollary 2.2.7. Let Gn be the n-vertex hamiltonian perfect graph and m an odd

positive integer such that m ≥ max{5, n}. Then Cm/.Gn
Pn

is a perfect graph if and

only if n is odd or n = m − 1.
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Proof. Let Gn be the n-vertex hamiltonian perfect graph and m an odd positive

integer such that m ≥ max{5, n}.

Necessity. Assume that Cm/.Gn
Pn

is a perfect graph. Cm/.Gn
Pn

has only one

created induced cycle, namely Cm−n+2. Since Cm−n+2 is not an odd hole, m−n+2

is even or m − n + 2 = 3. Since m is odd, n is odd or n = m − 1.

Sufficiency follows from Theorem 2.2.5.

Next, we consider a glued graph of an odd antihole and any perfect graph. It

is possible that the glued graph is not perfect. We illustrate this in the following

example.

Example 2.2.8. Imperfect glued graphs of odd antiholes and perfect graphs:

Figure 2.2.4: An imperfect glued graph of an odd antihole and a perfect graph

It is easily seen in Figure 2.2.4 that G1 is an odd antihole and G2 is a perfect

graph. Observe that G1/.G2
H

contains C5(v1, v2, ..., v5) as an induced subgraph, so

it is not a Berge graph. By the Strong Perfect Graph Theorem, G1/.G2
H

is not

perfect. 2

Theorem 2.2.9. Let G be a perfect graph and m an odd positive integer such that

m ≥ 5. If Cm/.G is a perfect graph, then its clone contains Pn and G contains a

cycle Pn + uv, where n ≤ m and uv ∈ E(Cm).
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Proof. Let G be a perfect graph and m an odd positive integer such that m ≥ 5.

Let H be the clone of Cm/.G
H

. Assume that Cm/.G
H

is a perfect graph. Then

Cm/.G
H

contains no odd antihole, so Cm/.G
H

has a new edge for Cm, say uv. Thus,

uv ∈ E(Cm). Note that u, v must lie in the clone H, and u is not adjacent to v

in Cm but u is adjacent to v in G. Since H is connected, there is an u, v-path in

H ⊆ Cm. That is, H contains Pn, where n ≤ m. Since H ⊆ G, G contains Pn.

Together with the edge uv in G, we have G contains a cycle Pn + uv.

The converse of Theorem 2.2.9 is not true. This is confirmed by Example 2.2.8

because H contains P3 and G2 contains P3 + e, but G1/.G2
H

is not perfect.



CHAPTER III

THE PERFECTION OF GLUED GRAPHS AT

COMPLETE CLONES

This chapter gives a condition to guarantee the perfection of a glued graph

whose original graphs are perfect. Our main results reveal that the clone of the

glued graph must be a complete graph in order to get the desired result. To

show such fact, we investigate values of the chromatic numbers and the clique

numbers of glued graphs at complete clones in terms of these parameters of their

original graphs. Later, we utilize them to prove our main theorem. Beyond that,

we introduce the simplicial set elimination ordering as a generalization of the

simplicial elimination ordering which is a characterization of chordal graphs.

3.1 The Perfection of Glued Graphs at Induced Clones

In this section, we give remarks and results about a glued graph whose clone

is an induced subgraph of both original graphs.

Remark 3.1.1. For graphs G1 and G2, if the clone of G1/.G2 is an induced

subgraph of G1 and G2, then

1. G1/.G2 has no new edge for any original graphs and

2. G1/.G2 has no new clique for any original graphs.

Proof. Let G1 and G2 be graphs. Let H be the clone of G1/.G2
H

which is an

induced subgraph of G1 and G2. By Remark 1.2.6(3), The endpoints of a new
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edge must lie in the clone H but H is an induced subgraph of G1 and G2. Hence

G1/.G2
H

has no new edge for any original graphs. By Remark 1.2.6(1), G1/.G2
H

has no new clique for any original graphs.

The lower bounds of the chromatic numbers and the clique numbers of glued

graphs at arbitrary clones in terms of these parameters of their original graphs

are shown in the following remark.

Remark 3.1.2. For graphs G1 and G2, we have

1. χ(G1/.G2) ≥ max{χ(G1), χ(G2)} and

2. ω(G1/.G2) ≥ max{ω(G1), ω(G2)}.

This holds because G1 and G2 are subgraphs of G1/.G2.

In general, χ(G1/.G2) ≤ χ(G1)χ(G2). This upper bound was shown in [12]

along with its sharpness.

Unlike the chromatic number, we have not had an upper bound of the clique

number of glued graphs in terms of the clique numbers of their original graphs.

Promsakon conjectured in [11] that ω(G1/.G2) ≤ ω(G1)ω(G2).

Theorem 3.1.3. For graphs G1 and G2, if the clone of a glued graph G1/.G2 is

an induced subgraph of both G1 and G2, then ω(G1/.G2) = max{ω(G1), ω(G2)}.

Proof. Let G1 and G2 be graphs. Let H be the clone of G1/.G2
H

which is an

induced subgraph of G1 and G2. By Remark 3.1.2(2), we have ω(G1/.G2
H

) ≥

max{ω(G1), ω(G2)}. Since H is an induced subgraph of G1 and G2, by Re-

mark 3.1.1(2), G1/.G2
H

has no new clique for any original graphs. Hence, ω(G1/.G2
H

)

= max{ω(G1), ω(G2)}.

For a bipartite graph G1 and a nontrivial graph G2, we have χ(G1) = 2,

χ(G2) ≥ 2 and χ(G1/.G2) ≥ max{χ(G1), χ(G2)}.
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It is possible that χ(G1/.G2) > max{χ(G1), χ(G2)} even if χ(G1) = 2. We

illustrate this in the following example.

Example 3.1.4. Let G1 and G2 be graphs as shown in Figure 3.1.1.

Figure 3.1.1: A glued graph of a bipartite graph G1 and a graph G2 such that

χ(G1/.G2) > max{χ(G1), χ(G2)}.

It is easily seen that G1 is a bipartite graph that is χ(G1) = 2 and G2 is a

graph such that χ(G1) = 3. But χ(G1/.G2) = 4 > 3 = max{χ(G1), χ(G2)}. 2

Theorem 3.1.5 shows that the chromatic number of a glued graph of a bipartite

graph and any graph at an induced clone does not exceed the chromatic number

of its original graphs.

Theorem 3.1.5. For graphs G1 and G2, if G1 or G2 is a bipartite graph and the

clone of a glued graph G1/.G2 is an induced subgraph of both G1 and G2, then

χ(G1/.G2) = max{χ(G1), χ(G2)}.

Proof. Let G1 and G2 be graphs. Let H be the clone of G1/.G2
H

which is an

induced subgraph of both G1 and G2. Assume that G1 or G2 is a bipartite graph.

Without loss of generality, assume G2 is a bipartite graph. There are proper

colorings f : V (G1) → S1 and g : V (G2) → S2 of G1 and G2, respectively,

where |S1| = χ(G1) ≥ 2, |S2| = χ(G2) = 2 and S1 ∩ S2 = ∅. By Remark 3.1.2,

χ(G1/.G2
H

) ≥ max{χ(G1), χ(G2)} = χ(G1). It suffices to show that χ(G1/.G2
H

) ≤

χ(G1), that is G1/.G2
H

has a proper χ(G1)-coloring. Let a1b1 and a2b2 be edges in
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the copies of H in G1 and G2, respectively, such that a1 ≡ a2 and b1 ≡ b2. Let

h : V (G1/.G2
H

) → S1 be defined by

h(v) =































f(v) , if v ∈ V (G1);

f(a1) , if v ∈ V (G2) − V (H) and g(v) = g(a2);

f(b1) , if v ∈ V (G2) − V (H) and g(v) = g(b2).

To show that h is proper, let u and v be vertices in G1/.G2
H

such that u and v

are adjacent. Since H is an induced subgraph of both G1 and G2, G1 and G2

are induced subgraphs of G1/.G2
H

. If u, v ∈ V (G1), then u and v are adjacent in

G1, so h(u) = f(u) 6= f(v) = h(v). Assume that u, v ∈ V (G2). Then u and v

are adjacent in G2. Without loss of generality, assume g(u) = g(a2) and g(v) =

g(b2). Thus, h(u) = f(a1) 6= f(b1) = h(v). Besides, vertices in V (G1) − V (H)

and V (G2) − V (H) are not adjacent. Thus, h is proper. Hence, χ(G1/.G2
H

) ≤

χ(G1).

Next, we study the perfection of glued graphs at induced clones.

Proposition 3.1.6. Let G1 and G2 be graphs containing H as their induced sub-

graph. If G1/.G2
H

is a perfect graph, then both G1 and G2 are perfect.

Proof. This follows from Proposition 2.1.2.

The converse of Proposition 3.1.6 is not true. Namely, if H is not a complete

graph, one can find perfect graphs G1 and G2 containing H as their induced

subgraph while G1/.G2
H

is not perfect.

Theorem 3.1.7. Let H be a connected incomplete graph. If H is a perfect graph,

then there exist perfect graphs G1 and G2 containing H as their induced subgraph

such that G1/.G2
H

is not perfect.
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Proof. Let H be a connected incomplete graph. Assume that H is a perfect

graph. Let |V (H)| = r. Let H1(u1, u2, ..., ur) and H2(v1, v2, ..., vr) be the copies

of H with an isomorphism f : V (H1) → V (H2) which is defined by f(ui) = vi for

all i ∈ {1, 2, ..., r}. Let Pl(u1, u2, ..., ul) and Pl(v1, v2, ..., vl) be the longest induced

paths of H1 and H2, respectively. Since H1 and H2 are not complete graphs,

l ≥ 3. Choose G1 = H1 ∨ K1(z); a join graph between H1 and a new vertex z,

and choose G2 = (H2 ∨ K2(x, y)) − {xvl, yv1}, where x and y are distinct new

vertices. Then G1 and G2 are perfect. Consider G1/.G2
H1

∼=f H2
, it is easily seen that the

corresponding vertices of v1, x, y, vl, z in G1/.G2
H1

∼=f H2
form an induced cycle C5. By

the Strong Perfect Graph Theorem, G1/.G2
H1

∼=f H2
is not perfect.

Example 3.1.8. We illustrate a glued graph in Theorem 3.1.7. We construct

4-vertex graphs H1(u1, u2, u3, u4) and H2(v1, v2, v3, v4) having the longest induced

paths P4(u1, u2, u3, u4) and P4(v1, v2, v3, v4), respectively. Choose G1 to be H1 ∨

K1(z) and G2 to be H2 ∨K2(x, y)−{xv4, yv1}. Define f : H1 → H2 by f(ui) = vi

for all i ∈ {1, 2, ..., 4}. Then G1/.G2
H1

∼=f H2
contains an induced cycle C5(w1, x

′, y′, w4, z
′).

Hence, G1/.G2
H1

∼=f H2
is not perfect. We have G1 and G2 as graphs in Figure 3.1.2.

2

Figure 3.1.2: An imperfect glued graph of perfect graphs at an induced clone
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3.2 The Perfection of Glued Graphs at Complete Clones

First, we introduce a definition for convenience:

Definition 3.2.1. For graphs G1 and G2, a clone H of a glued graph G1/.G2
H

is called a complete clone of G1/.G2
H

if H is a complete graph; otherwise, it is

called an incomplete clone.

Note that a glued graphs of perfect graphs at an induced clone may be imper-

fect. We know that a complete clone of any glued graph is an induced subgraph

of both original graphs. Now, we consider glued graphs of perfect original graphs

at complete clones.

When the clone is a complete graph, the chromatic numbers of glued graphs

do not exceed the chromatic numbers of their original graphs, see Lemma 3.2.2

For a positive integer r, a glued graph at a complete clone, G1/.G2
Kr

, denotes

an arbitrary glued graph of graphs G1 and G2 at any clone which is isomorphic

to Kr.

Throughout the rest of the thesis, Kr in our proofs always means the clone of

the glued graph G1/.G2
Kr

, not arbitrary subgraph Kr in the glued graph.

Lemma 3.2.2. For graphs G1 and G2, χ(G1/.G2
Kr

) = max{χ(G1), χ(G2)}.

Proof. Let G1 and G2 be graphs. Let χ(G1) = m and χ(G2) = n. Assume

m ≥ n. By Remark 3.1.2(1), we have χ(G1/.G2
Kr

) ≥ max{χ(G1), χ(G2)} = m. It

suffices to show that χ(G1/.G2
Kr

) ≤ m, that is G1/.G2
Kr

has a proper m-coloring.

Let f be an m-coloring of G1 with colors a1, a2, ..., am and g an n-coloring with

colors b1, b2, ..., bn. Note that any pair of vertices in Kr must have different colors.

Without loss of generality, for i ∈ {1, 2, ..., r}, let ai and bi be colors of the

corresponding vertices of Kr in G1 and G2, respectively. Let h : V (G1/.G2
Kr

) →

{a1, a2, ..., am} defined by
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h(v) =















f(v) , if v ∈ V (G1);

ai , if v ∈ V (G2) − V (Kr) and g(v) = bi.

Since the clone is a complete graph, h is well-defined. To show that h is proper,

let u and v be vertices in G1/.G2
Kr

such that u and v are adjacent. If u, v ∈ V (G1),

then h(u) = f(u) 6= f(v) = h(v). If u, v ∈ V (G2), then g(u) = bi and g(v) = bj

for some i 6= j, so h(u) = ai 6= aj = h(v). Besides, vertices in V (G1) − V (Kr)

and V (G2) − V (Kr) are not adjacent. Hence, h is proper. That is, G1/.G2
Kr

has a

proper m-coloring. Therefore, χ(G1/.G2
Kr

) ≤ m.

Lemma 3.2.3. For graphs G1 and G2, ω(G1/.G2
Kr

) = max{ω(G1), ω(G2)}.

Proof. This follows from Theorem 3.1.3.

The condition in Lemmas 3.2.2 and 3.2.3 that the clone must be a complete

graph is necessary. This is confirmed by Theorem 3.2.5.

Theorem 3.2.4. [3] For every graph G, χ(G) ≤ ∆(G) + 1. If G is a connected

graph other than a complete graph or an odd cycle, then χ(G) ≤ ∆(G).

Theorem 3.2.5. Let H be a connected graph. If H is not a complete graph, then

there exist graphs G1 and G2 such that χ(G1/.G2
H

) > max{χ(G1), χ(G2)} and

ω(G1/.G2
H

) > max{ω(G1), ω(G2)}.

Proof. Let H be a connected graph. Assume that H is not a complete graph. Let

|V (H)| = r, so r ≥ 3. Choose G1 = Kr and choose G2 = H∨K1. Then G1/.G2
H

=

Kr+1. If H is an odd cycle of length at least 5, χ(H) = 3 < r − 1. Otherwise, H

is not an odd cycle of length at least 5, by Theorem 3.2.4, χ(H) ≤ ∆(H) ≤ r− 1.

Now, we have χ(H) ≤ r − 1, so χ(G2) = χ(H ∨ K1) ≤ (r − 1) + 1 = r. Hence,

χ(G1/.G2
H

) = r + 1 > r = max{χ(G1), χ(G2)}. Since H is not a complete graph
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and |V (H)| = r, we get ω(H) ≤ r− 1. So, ω(G2) = ω(H ∨K1) ≤ (r− 1) + 1 = r.

Therefore, ω(G1/.G2
H

) = r + 1 > r = max{ω(G1), ω(G2)}.

Example 3.2.6. We illustrate an example of graphs in Theorem 3.2.5. We con-

struct a 4-vertex graph H, choose G1 to be K4 and choose G2 to be H ∨ K1.

Observe that G1/.G2
H

∼= K5 such that χ(G1/.G2
H

) = 5 > 4 = max{χ(G1), χ(G2)}

and ω(G1/.G2
H

) = 5 > 4 = max{ω(G1), ω(G2)}. we have G1 and G2 as graphs in

Figure 3.2.1.

2

Figure 3.2.1: A glued graph with

χ(G1/.G2
H

) > max{χ(G1), χ(G2)} and ω(G1/.G2
H

) > max{ω(G1), ω(G2)}

To show the perfection of a graph G, if an induced subgraph F of G is discon-

nected, we consider the perfection of each component of F . Thus, throughout the

thesis, it suffices to consider the perfection of every connected induced subgraph

of G.

For graphs G1 and G2, G1 ∩ G2 denotes the graph on the vertex set V (G1) ∩

V (G2) and the edge set E(G1) ∩ E(G2).

Lemma 3.2.7. Let G1 and G2 be perfect graphs containing H as a nontrivial

connected subgraph. Let F be a connected induced subgraph of G1/.G2
H

. If F has

at most one vertex in H, then χ(F ) = ω(F ).
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Proof. Let G1 and G2 be perfect graphs containing H as a nontrivial connected

subgraph. Let F be a connected induced subgraph of G1/.G2
H

. If F has no

vertex in H, then F is an induced subgraph of either G1 or G2. Since G1 and

G2 are perfect, χ(F ) = ω(F ). Otherwise, F has exactly one vertex in H. Let

F1 = F ∩G1 and F2 = F ∩G2. Since F1 is an induced subgraph of a perfect graph

G1, χ(F1) = ω(F1). Similarly, χ(F2) = ω(F2). We have that F is the union of F1

and F2 with one common vertex. We can verify that χ(F ) = max{χ(F1), χ(F2)}

and ω(F ) = max{ω(F1), ω(F2)}. Therefore, χ(F ) = ω(F ).

The graph gluing at a complete clone preserves the perfection. Theorem 3.2.8

illustrates this fact and it is yielded by Lemmas 3.2.2 and 3.2.3.

Theorem 3.2.8. For graphs G1 and G2,

G1/.G2
Kr

is a perfect graph if and only if both G1 and G2 are perfect.

Furthermore, χ(G1/.G2
Kr

) = ω(G1/.G2
Kr

) = max{ω(G1), ω(G2)}.

Proof. Let G1 and G2 be graphs.

Necessity follows from Proposition 3.1.6.

For sufficiency, assume that G1 and G2 are perfect graphs. We will show that

χ(F ) = ω(F ) for every induced subgraph F of G1/.G2
Kr

. Let F be an induced

subgraph of G1/.G2
Kr

. If F is disconnected, we consider the perfection of each

component of F . We may assume that F is connected. By Lemma 3.2.7, it is

suffices to prove only case that F has at least two vertices in Kr. Assume that

F has at least two vertices in Kr. Let F1 = F ∩ G1 and F2 = F ∩ G2. Since F1

is an induced subgraph of a perfect graph G1, we get χ(F1) = ω(F1). Similarly,

χ(F2) = ω(F2). Now, let Fr = F ∩Kr. Then Fr is a complete graph. We have that

F = F1/.F2
Fr

. By Lemmas 3.2.2 and 3.2.3, χ(F ) = max{χ(F1), χ(F2)} and ω(F ) =

max{ω(F1), ω(F2)}, respectively. Hence, χ(F ) = ω(F ). Therefore, G1/.G2
Kr

is

perfect. Furthermore, χ(G1/.G2
Kr

) = ω(G1/.G2
Kr

) = max{ω(G1), ω(G2)}.
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If the clone is not a complete graph, it fails to be concluded the perfection of

glued graphs of perfect graphs. It is illustrated by Theorems 3.2.9 and 3.2.11.

Theorem 3.2.9. Let H be a connected graph. If H is not a complete graph, then

there exist a perfect graph G1 and an imperfect graph G2 such that G1/.G2
H

is

perfect.

Proof. Let H be a connected graph. Assume that H is not a complete graph. Let

|V (H)| = r, so r ≥ 3. Let H1(u1, u2, ..., ur) and H2(v1, v2, ..., vr) be the copies

of H with an isomorphism f : V (H1) → V (H2) which is defined by f(ui) = vi

for all i ∈ {1, 2, ..., r}. Since H2 is not a complete graph, there are at least 2

non-adjacent vertices , say v1 and vr. Choose G1 = Kr(u1, u2, ..., ur). Choose

G2 = C2r−1(v1, x1, ..., vr−1, xr−1, vr), where x1, x2, ..., xr−1 are distinct new ver-

tices. Then G1 is perfect but G2 is not perfect. Since H1 and H2 are not

complete graphs, H1 ⊆ Kr(u1, u2, ..., ur) and H2 ⊆ Kr(v1, v2, ..., vr) − v1vr ⊆

C2r−1(v1, x1, ..., vr−1, xr−1, vr). We can verify that G1/.G2
H

∼= G1/.G2
H1

∼=f H2

∼=

C2r−1(v1, x1, ..., vr−1, xr−1, vr) + v1vr, consequently, G1/.G2
H

∼= P2r−1. Since P2r−1

is perfect, by the Perfect Graph Theorem, G1/.G2
H

is perfect.

Example 3.2.10. We illustrate an example of graphs in Theorem 3.2.9. We

construct 3-vertex graphs H1(u1, u2, u3) and H2(v1, v2, v3). Choose G1 to be

K3(u1, u2, u3) and choose G2 to be C5(v1, x1, v2, x2, v3). Then G1 is a perfect

graph but G2 is an imperfect graph. Observe that G1/.G2
H

∼= P5. Since P5 is

perfect, by the Perfect Graph Theorem, G1/.G2
H

is perfect. We have G1 and G2

as graphs in Figure 3.2.2.

2
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Figure 3.2.2: A perfect glued graph of a perfect graph and an imperfect graph at

an incomplete clone

Theorem 3.2.11. Let H be a connected graph. If H is not a complete graph,

then there exist perfect graphs G1 and G2 such that G1/.G2
H

is not perfect.

Proof. Let H be a connected graph. Assume that H is not a complete graph. Let

|V (H)| = r, so r ≥ 3. Let H1(u1, u2, ..., ur) and H2(v1, v2, ..., vr) be the copies of

H with an isomorphism f : V (H1) → V (H2) which is defined by f(ui) = vi for

all i ∈ {1, 2, ..., r}. Since H2 is not a complete graph, there are at least 2 non-

adjacent vertices, say v1 and v2. Choose G1 = Kr(u1, u2, ..., ur). Choose G2 =

C2r+1(v1, x1, ..., vr, xr, xr+1)− v1v2, where x1, x2, ..., xr+1 are distinct new vertices.

Then G1 and G2 are perfect. Since H1 and H2 are not complete graphs, H1 ⊆

Kr(u1, u2, ..., ur) and H2 ⊆ Kr(v1, v2, ..., vr)−v1v2 ⊆ C2r+1(v1, x1, ..., vr, xr, xr+1)−

v1v2. We can verify that G1/.G2
H

∼= G1/.G2
H1

∼=f H2

∼= C2r+1. Thus, G1/.G2
H

is not a Berge

graph. By the Strong Perfect Graph Theorem, G1/.G2
H

is not perfect.

Example 3.2.12. We illustrate an example of graphs in Theorem 3.2.11. We

construct 3-vertex graphs H1(u1, u2, u3) and H2(v1, v2, v3). Choose G1 to be

K3(u1, u2, u3) and choose G2 to be C7(v1, x1, v2, x2, v3, x3, x4) − v1v2. Then G1

and G2 are perfect graphs. Since G1/.G2
H

∼= C7, by the Strong Perfect Graph

Theorem, G1/.G2
H

is not perfect. We have G1 and G2 as graphs in Figure 3.2.3.

2
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Figure 3.2.3: An imperfect glued graph of perfect graphs at an incomplete clone

Now, we conclude that for a connected graph H, if H is not a complete graph,

then there exist graphs G1 and G2 such that

1. χ(G1/.G2
H

) > max{χ(G1), χ(G2)} and ω(G1/.G2
H

) > max{ω(G1), ω(G2)}.

Moreover, χ(G1/.G2
H

) = ω(G1/.G2
H

). (Theorem 3.2.5)

2. χ(G1/.G2
H

) = max{χ(G1), χ(G2)} and ω(G1/.G2
H

) = max{ω(G1), ω(G2)}.

Moreover, χ(G1/.G2
H

) = ω(G1/.G2
H

). (Theorem 3.2.9)

3. χ(G1/.G2
H

) > max{χ(G1), χ(G2)} and ω(G1/.G2
H

) = max{ω(G1), ω(G2)}.

Moreover, χ(G1/.G2
H

) > ω(G1/.G2
H

). (Theorem 3.2.11)

Next, we recall a definition of a chordal graph and the simplicial (perfect)

elimination ordering. It is well-known that the simplicial elimination ordering

characterizes a subclass of perfect graphs, namely the chordal graphs.

Definition 3.2.13. A graph is chordal if it is simple and has no induced cycle

of length at least four.

Definition 3.2.14. [15] A vertex of G is simplicial if its neighborhood in G

forms a clique. A simplicial elimination ordering of a graph G is an ordering

vn, ..., v1 for deletion of vertices so that each vertex vi is a simplicial vertex of the

remaining graph induced by {v1, ..., vi}. (These orderings are also called perfect

elimination orderings.)
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Theorem 3.2.15. [15] A simple graph has a simplicial elimination ordering if

and only if it is a chordal graph.

For a subset S of V (G), a open neighborhood of S in G, written NG(S) or

N(S), is the set of vertices in V (G) − S which are adjacent to vertices in S.

We use G[S] and G − S for the induced subgraph of G on the vertex set S and

V (G) − S, respectively.

We now extend the simplicial (perfect) elimination ordering to a new

definition as follows:

Definition 3.2.16. A subset Vi of V (G) is simplicial if its open neighborhood

in G forms a clique. A simplicial set elimination ordering of a graph G is

an ordering V1, ..., Vk for deletion of nonempty vertex subsets so that each Vi is a

simplicial vertex subset of the remaining graph induced by
⋃k

t=i Vt with |Vi| = 1

or |Vi| = 2 for all i ∈ {1, 2, ..., k}, and V1, ..., Vk partitions V (G).

Note that a simplicial elimination ordering of a graph G is a simplicial set

elimination ordering of G with |Vi| = 1 for all i ∈ {1, 2, ..., n(G)}.

Remark 3.2.17. For a simple graph G, let V1, ..., Vk be a partition of V (G). Let

G1 = G, and for each i ∈ {2, 3, ..., k}, let Gi = G −
⋃i−1

t=1
Vt. If V1, ..., Vk is a

simplicial set elimination ordering of G, then for each i ∈ {1, 2, ..., k − 1}, Gi is a

glued graph of Gi[Vi ∪ N(Vi)] and Gi+1 at a complete clone Gi[N(Vi)]

(a clone can be a vertex).

Theorem 3.2.18. A simple graph with a simplicial set elimination ordering is a

perfect graph.

Proof. Let G be a simple graph. Assume that G has a simplicial set elimination

ordering V1, ..., Vk. Let G1 = G, and for each i ∈ {2, 3, ..., k}, let Gi = G−
⋃i−1

t=1
Vt.
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Since |Vk| = 1 or 2, Gk
∼= K1 or K2, so Gk is perfect. By Remark 3.2.17, Gi is

a glued graph of Gi[Vi ∪ N(Vi)] and Gi+1 at a complete clone Gi[N(Vi)], it is

enough to claim that Gi[Vi ∪ N(Vi)] is perfect for all i ∈ {1, 2, ..., k − 1}. Let i ∈

{1, 2, ..., k− 1}. Let C be an induced cycle in Gi[Vi ∪N(Vi)]. Since NGi
(Vi) forms

a clique, at most 2 vertices in NGi
(Vi) can be in C. Together with vertices in Vi,

C has length at most 4. Again, since NGi
(Vi) forms a clique, 2 vertices in NGi

(Vi)

cannot be adjacent in the complement of Gi[Vi ∪ N(Vi)]. Besides, each vertex in

NGi
(Vi) must be adjacent to at least one vertex in Vi, so it can be adjacent to at

most one vertex of Vi in the complement of Gi[Vi∪N(Vi)]. Thus, there is no cycle

in the complement of Gi[Vi ∪ N(Vi)]. Hence, Gi[Vi ∪ N(Vi)] contains no odd hole

and no odd antihole. By the Strong Perfect Graph Theorem, we get Gi[Vi∪N(Vi)]

is perfect. By Theorem 3.2.8, Gi is perfect for all i ∈ {1, 2, ..., k − 1}.

The converse of the theorem is not true, for instance, C2n, where n ≥ 3, is

perfect while it has no simplicial set elimination ordering.



CHAPTER IV

THE PERFECTION OF GLUED GRAPHS AT

ARBITRARY CLONES

While, Chapter 3 studies the perfection of glued graphs at complete clones for

arbitrary original graphs, this chapter studies the perfection of glued graphs at

arbitrary clones with some specified original graphs. We also investigate values of

the chromatic numbers and the clique numbers of glued graphs at arbitrary clones

in terms of these parameters of their original graphs. Later, we utilize them to

prove our main theorems.

4.1 Background

First, we introduce new definitions for convenience:

Definition 4.1.1. An odd hole C of any glued graph G1/.G2 is a created odd

hole if both G1 and G2 do not have the corresponding odd hole of C. An odd

antihole C of any glued graph G1/.G2 is a created odd antihole if both G1 and

G2 do not have the corresponding odd antihole of C.

The following theorem is directly obtained from the Strong Perfect Graph

Theorem.

Theorem 4.1.2. A glued graph of perfect graphs is perfect if and only if it contains

no created odd hole and no created odd antihole.

Proof. Let G1/.G2 be the glued graph of perfect graphs G1 and G2.
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Necessity. If G1/.G2 contains a created odd hole or created odd antihole, by

the Strong Perfect Graph Theorem, it is not perfect.

Sufficiency. Assume that G1/.G2 contains no created odd hole and no created

odd antihole. Since G1 and G2 are perfect, by the Strong Perfect Graph Theorem,

they contain no odd hole and no odd antihole. Thus, G1/.G2 contains no odd

hole and no original odd antihole. Hence, it is perfect.

This theorem helps us to verify the perfection of our glued graphs.

We next consider a glued graph of bipartite graphs at arbitrary clones.

Theorem 4.1.3. [15] A graph is bipartite if and only if it has no odd cycle.

Theorem 4.1.4. [12] A glued graph G1/.G2 is a bipartite graph if and only if G1

and G2 are bipartite.

Corollary 4.1.5. If G1 and G2 are bipartite graphs , then G1/.G2 is perfect.

Proof. Let G1 and G2 be bipartite graphs. By Theorem 4.1.4, G1/.G2 is bipartite

graph and hence G1/.G2 is perfect.

Theorem 4.1.6. A triangle-free graph G is a perfect graph if and only if G is

bipartite.

Proof. Necessity. It follows directly from the Strong Perfect Graph Theorem and

Theorem 4.1.3.

Sufficiency. By Theorem 4.1.3, a bipartite graph has no triangle as an induced

subgraph. Also, it is perfect.

Corollary 4.1.7. A triangle-free glued graph G1/.G2 is a perfect graph if and

only if G1 and G2 are bipartite.

Proof. This follows from Theorems 4.1.6 and 4.1.4.
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4.2 The Perfection of Glued Graphs at Arbitrary Clones

In this section, we study the perfection of glued graphs at arbitrary clones

with some specified original graphs.

First, we consider glued graphs of complete graphs at arbitrary clones. Lem-

mas 4.2.1 and 4.2.2 show that the chromatic numbers and the clique numbers

of glued graphs do not exceed the chromatic numbers and the clique numbers of

their original graphs, respectively.

Lemma 4.2.1. χ(Km/.Kn) = max{m,n}.

Proof. Let H be the clone of a glued graph Km/.Kn
H

and |V (H)| = r. Note that

χ(Km) = m and χ(Kn) = n. Assume m ≥ n. By Remark 3.1.2(1), we have

χ(Km/.Kn
H

) ≥ max{χ(Km), χ(Kn)} = m. It suffices to show that χ(Km/.Kn
H

) ≤

m, that is Km/.Kn
H

has a proper m-coloring. Let f be an m-coloring of Km with

colors a1, a2, ..., am and g an n-coloring of Kn with colors b1, b2, ..., bn. Note that

any pair of vertices in H must have different colors. Without loss of generality,

for i ∈ {1, 2, ..., r}, let ai and bi be colors of the corresponding vertices of H in

Km and Kn, respectively. Let h : V (Km/.Kn
H

) → {a1, a2, ..., am} defined by

h(v) =















f(v) , if v ∈ V (Km);

ai , if v ∈ V (Kn) − V (H) and g(v) = bi.

To show that h is proper, let u and v be vertices in Km/.Kn
H

such that u and v

are adjacent. If u, v ∈ V (Km), then h(u) = f(u) 6= f(v) = h(v). If u, v ∈ V (Kn),

then g(u) = bi and g(v) = bj for some i 6= j, so h(u) = ai 6= aj = h(v). Besides,

vertices in V (Km)−V (H) and V (Kn)−V (H) are not adjacent. Hence, h is proper.

That is, Km/.Kn
H

has a proper m-coloring. Therefore, χ(Km/.Kn
H

) ≤ m.
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Lemma 4.2.2. ω(Km/.Kn) = max{m,n}.

Proof. Let H be the clone of a glued graph Km/.Kn
H

. By Remark 3.1.2(2), we have

ω(Km/.Kn
H

) ≥ max{ω(Km), ω(Kn)}. Since vertices in the clone H are adjacent

to all other vertices and vertices in V (Km) − V (H) and V (Kn) − V (H) are not

adjacent, this graph gluing does not create a new clique. So, ω(Km/.Kn
H

) ≤

ω(Km) and ω(Km/.Kn
H

) ≤ ω(Kn). Hence, ω(Km/.Kn
H

) ≤ max{ω(Km), ω(Kn)}.

Therefore, ω(Km/.Kn
H

) = max{ω(Km), ω(Kn)}.

Theorem 4.2.3 shows the perfection of a glued graph of complete graphs at

arbitrary clones.

Theorem 4.2.3. A glued graph Km/.Kn is perfect.

Proof. Let H be the clone of Km/.Kn
H

. We will show that χ(F ) = ω(F ) for ev-

ery induced subgraph F of Km/.Kn
H

. Let F be a connected induced subgraph of

Km/.Kn
H

. By Lemma 3.2.7, it is suffices to prove only case that F has at least two

vertices in H. Assume that F has at least two vertices in H. Let F1 = F ∩ Km

and F2 = F ∩Kn. Since F1 is an induced subgraph of Km, F1 is a complete graph.

Also, χ(F1) = ω(F1). Similarly, F2 is a complete graph and hence χ(F2) = ω(F2).

Now, let FH = F ∩ H. We have that F = F1/.F2
FH

. By Lemmas 4.2.1 and 4.2.2,

χ(F ) = max{χ(F1), χ(F2)} and ω(F ) = max{ω(F1), ω(F2)}, respectively. There-

fore, χ(F ) = ω(F ).

Notation G− e denotes a subgraph of G on the vertex set V (G) and the edge

set E(G)−{e} where e ∈ E(G), and G−E denotes a subgraph of G on the vertex

set V (G) and the edge set E(G) − E where E ⊆ E(G).

We consider a glued graph of Km−E1 and Kn−E2. It is possible that a glued

graph of Km − E1 and Kn − E2 is not perfect. We illustrate this in the following

example.
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Example 4.2.4. Let G1 and G2 be graphs in Figure 4.2.1.

Figure 4.2.1: An imperfect glued graph of

K4 − e and K5 − E where |E| = 3

It is easily seen that G1 = K4−e and G2 = K5−E where |E| = 3, both G1 and

G2 are perfect graphs but G1/.G2
H

contains an induced cycle C5(v1, v2, v3, v4, v5).

By the Strong Perfect Graph Theorem, G1/.G2
H

is not perfect. 2

In Theorem 4.2.5, we give a condition for two edge sets E1 and E2 to obtain

the perfection of a glued graph of Km − E1 and Kn − E2.

Theorem 4.2.5. Let m and n be positive integers. If G1 = Km−e or Km−{e1, e2}

and G2 = Kn − e or Kn − {e1, e2}, then G1/.G2 is perfect.

Proof. Let m and n be positive integers. Let G1 = Km − e or Km − {e1, e2} and

G2 = Kn − e or Kn − {e1, e2}. We will show that G1/.G2 contains no odd hole

and no odd antihole. Let C be a cycle in G1/.G2. Since at most 4 edges which

does not have both two endpoints in V (C), C has length at most 4. Similarly, if

C is a cycle in the complement of G1/.G2, then C has length at most 4. Hence,

G1/.G2 contains no odd hole and no odd antihole. By the Strong Perfect Graph

Theorem, G1/.G2 is perfect.

The converse of Theorem 4.2.5 is not true. This is confirmed by Theorem 4.2.6.
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Theorem 4.2.6. Let m and n be positive integers. Then there exist graphs G1

and G2 such that G1/.G2 is a perfect graph but G1 = Km − E1, G2 = Kn − E2

where |E1| ≥ 3 or |E2| ≥ 3.

Proof. Let m and n be positive integers. Note that original graphs of any glued

graph have at least one edge. If m ≤ 3 or n ≤ 3, then Km −E1 or Kn −E2 has no

edge, where |E1| ≥ 3 or |E2| ≥ 3. Thus, m ≥ 4 and n ≥ 4. Choose G1 = Cm − e

and choose G2 = Cn − e. Then G1 = Km −E1 and G2 = Kn −E2, where |E1| ≥ 3

and |E2| ≥ 3. Also, G1 and G2 are bipartite graphs. By Corollary 4.1.5, G1/.G2

is perfect.

Example 4.2.7. We illustrate an example of graphs in Theorem 4.2.6. We con-

struct graphs G1 = C4 − e and G2 = C5 − e. Then G1/.G2 is a bipartite graph,

so G1/.G2 is perfect. We have G1 and G2 as graphs in Figure 4.2.2.

2

Figure 4.2.2: A perfect glued graph of

C4 − e and C5 − e

The condition in Theorem 4.2.5 that G1 = Km − e or Km − {e1, e2} and

G2 = Kn − e or Kn − {e1, e2} is necessary. This is confirmed by Theorem 4.2.8.

Theorem 4.2.8. Let m and n be positive integers. Then there exist graphs G1 =

Km−E1 and G2 = Kn−E2, where |E1| ≥ 3 or |E2| ≥ 3 but G1/.G2 is not perfect.
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Proof. Let m and n be positive integers. Assume that n ≥ m − 1. If m ≤ 4 or

n ≤ 4, then Km −E1 or Kn −E2 are bipartite graphs, where |E1| ≥ 3 or |E2| ≥ 3.

So, a glued graph of Km − E1 and Kn − E2 is perfect. Thus, we may assume

that m ≥ 5 and n ≥ 5. Let k be a positive integer such that k ≥ 3. Consider

Km(u1, u2, ..., um). Note that Km contains a hamiltonian cycle Cm. Let e1 =

u1um−1, e2 = u1um−2, e3 = um−2um and e4, ..., ek ∈ E(Km)−E(Cm)− {e1, e2, e3}.

Let E1 = {e1, e2, ..., ek}. Choose G1 = Km − E1. Consider Pm−2(v1, v2, ..., vm−2).

Let E2 = {vivj : |i − j| > 1 for all i, j = 1, 2, ...,m − 2}, so |E2| ≥ 1. Note

that Pm−2 = Km−2 − E2. Choose G2 = Pm−2 ∨ Kn−m+2. Then G2 = Kn − E2.

Let H1 = Pm−2(u1, u2, ..., um−2) ⊆ G1 and H2 = Pm−2(v1, v2, ..., vm−2) ⊆ G2.

Define f : H1 → H2 by f(ui) = vi for all i ∈ {1, 2, ...,m − 2}. Let x be a

vertex of a subgraph Kn−m+2 in G2. We observe that the corresponding vertices

of x, u1, um, um−1, um−2 in G1/.G2
H1

∼=f H2
form an induced cycle C5. Therefore, G1/.G2

H1
∼=f H2

is not perfect.

Example 4.2.9. We illustrate an example of graphs in Theorem 4.2.8.

We construct graphs G1 = K6(u1, u2, ..., u6, ) − {u1u5, u1u4, u4u6} and G2 =

K5(v1, v2, v3, v4, x)−{v1v4, v1v3, v2v4}. Let H1 = P4(u1, u2, u3, u4) ⊆ G1 and H2 =

P4(v1, v2, v3, v4) ⊆ G2. Define f : H1 → H2 by f(ui) = vi for all i ∈ {1, 2, 3, 4}.

Then G1/.G2
H1

∼=f H2
contains an induced cycle C5(x

′, w1, w6, w5, w4). Hence, G1/.G2
H1

∼=f H2
is

not perfect. We have G1 and G2 as graphs in Figure 4.2.3.

2
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Figure 4.2.3: An imperfect glued graph of

K6 − E1 and K5 − E2, where |E1| ≥ 3 or |E2| ≥ 3

Here, we focus a perfect graph G with ω(G) = 2. Note that G is a perfect

graph with ω(G) = 2 if and only if G is a bipartite graph. Thus, we consider a

glued graph of a bipartite graph and a perfect graph. It is possible that the glued

graph is not perfect. We illustrate this in the following example.

Example 4.2.10. Let G1 and G2 be graphs as shown in Figure 4.2.4.

Figure 4.2.4: An imperfect glued graph of a bipartite graph and a perfect graph

Let H1 = P3(1, 2, 3, 4) ⊆ G1 and H2 = P3(a, b, c, d) ⊆ G2. Define f : H1 → H2

by f(1) = a, f(2) = b, f(3) = c and f(4) = d. It can be easily seen that G1/.G2
H1

∼=f H2

contains an induced cycle C5(v, w, x, y, z). Hence, G1/.G2
H1

∼=f H2
is not perfect. 2
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In example 4.2.10, it is easily seen that a glued graph of a bipartite graph and

a perfect graph may be imperfect. Note that a bipartite graph can have a cycle

which affect appearance of a created odd hole. Thus, we give a condition for the

perfection of the glued graph that one of original graphs contains no cycle.

Next, we recall a definition of a forest.

Definition 4.2.11. A graph with no cycle is acyclic. A forest is an acyclic graph.

A tree is a connected acyclic graph.

Theorem 4.2.12. Let G1 and G2 are perfect graphs. If G1 or G2 is a forest, then

χ(G1/.G2) = max{χ(G1), χ(G2)}

Proof. Let G1 and G2 be perfect graphs. Assume that G1 or G2 is a forest.

Without loss of generality, assume G2 is a forest. Let H be the clone of a glued

graph G1/.G2
H

. Note that χ(G1) ≥ 2 and χ(G2) = 2. By Remark 3.1.2(1),

we have χ(G1/.G2
H

) ≥ max{χ(G1), χ(G2)} = χ(G1). It suffices to show that

χ(G1/.G2
H

) ≤ χ(G1) , that is G1/.G2
H

has a proper χ(G1)-coloring. There are

proper colorings f : V (G1) → S1 and g : V (G2) → S2 of G1 and G2, respectively,

where |S1| = χ(G1) ≥ 2, |S2| = χ(G2) = 2 and S1 ∩ S2 = ∅. Let a1b1 and a2b2

be edges in the copies of H in G1 and G2, respectively, such that a1 ≡ a2 and

b1 ≡ b2. Let h : V (G1/.G2
H

) → S1 defined by

h(v) =































f(v) , if v ∈ V (G1);

f(a1) , if v ∈ V (G2) − V (H) and g(v) = g(a2);

f(b1) , if v ∈ V (G2) − V (H) and g(v) = g(b2).

To show that h is proper, let u and v be vertices in G1/.G2
H

such that u and v

are adjacent. If u, v ∈ V (G1), then h(u) = f(u) 6= f(v) = h(v). Assume that

u, v ∈ V (G2). If u and v are adjacent in G2, without loss of generality, assume

g(u) = (a2) and g(v) = g(b2), so h(u) = f(a1) 6= f(b1) = h(v). Since G2 is
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forest and H is connected, G1/.G2
H

has no new edge for G1 but it can have a new

edge for G2. If uv is a new edge for G2, then u and v are adjacent in G1, so

h(u) = f(u) 6= f(v) = h(v).

Clearly, vertices in V (G1)−V (H) and V (G2)−V (H) are not adjacent. Thus,

h is proper. Hence, χ(G1/.G2
H

) ≤ χ(G1).

Theorem 4.2.13. Let G1 and G2 be perfect graphs. If G1 or G2 is a forest, then

ω(G1/.G2) = max{ω(G1), ω(G2)}

Proof. Let G1 and G2 be perfect graphs. Assume that G1 or G2 is a forest.

Without loss of generality, assume G2 is a forest. Let H be the clone of a glued

graph G1/.G2
H

. Note that ω(G1) ≥ 2 and ω(G2) = 2. By Remark 3.1.2(2), we

have ω(G1/.G2
H

) ≥ max{ω(G1), ω(G2)}. Since G2 is a forest and H is connected,

G1/.G2
H

has no new edge for G1. Thus, G1/.G2
H

has no new clique for G1 but it

can have a new clique for G2. Assume that G1/.G2
H

has a new clique for G2. Then

all vertices in the new clique are in cycles of length 3 but G2 has no cycle, so all

cycle of length 3 are in G1. Thus, all new cliques of G1/.G2
H

are cliques in G1.

So, ω(G1/.G2
H

) ≤ ω(Gi) for i = 1, 2. Hence, ω(G1/.G2
H

) ≤ max{ω(G1), ω(G2)}.

Therefore, ω(G1/.G2
H

) = max{ω(G1), ω(G2)}.

For perfect graphs G1 and G2, we conclude from Theorems 4.2.12 and 4.2.13

that if G1 or G2 is a forest, then χ(G1/.G2) = ω(G1/.G2). However, we need

more work to show that G1/.G2 is perfect. Theorem 4.2.14 concludes this.

Theorem 4.2.14. Let G1 and G2 be perfect graphs. If G1 or G2 is a forest, then

G1/.G2 is perfect.

Proof. Let G1 and G2 be perfect graphs. Assume that G1 or G2 is a forest.

Without loss of generality, assume G2 is a forest. Let H be the clone of a glued

graph G1/.G2
H

. We will show that G1/.G2
H

contains no created odd hole and no
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created odd antihole. Note that all vertices of an odd antihole are in cycles. Since

G2 is a forest and H is connected, G1/.G2
H

has no new edge for G1 but it can have

a new edge for G2. Thus, all cycles of G1/.G2
H

are cycles in a perfect graph G1.

Hence, G1/.G2
H

contains no created odd hole and no created odd antihole. By

Corollary 4.1.2, G1/.G2 is perfect.



CHAPTER V

CONCLUSION AND OPEN PROBLEMS

We conclude main results of this work and give some open problems for future

work in this chapter.

5.1 Conclusion

We have obtained necessary and/or sufficient conditions for the perfection of

the glued graphs. We also have investigated values of the chromatic numbers and

the clique numbers of glued graphs in terms of these parameters of their original

graphs. The results are as follows:

The perfection of glued graphs at induced clones:

1. Let G1 and G2 be graphs containing H as their induced subgraph.

• ω(G1/.G2
H

) = max{ω(G1), ω(G2)}.

• If G1 or G2 is a bipartite graph, then χ(G1/.G2
H

) = max{χ(G1), χ(G2)}.

• If G1/.G2
H

is a perfect graph, then both G1 and G2 are perfect.

2. Let H be a connected incomplete graph. If H is a perfect graph, then there

exist perfect graphs G1 and G2 containing H as their induced subgraph such

that G1/.G2
H

is not perfect.



46

The perfection of glued graphs at complete clones:

1. For graphs G1 and G2,

• χ(G1/.G2
Kr

) = max{χ(G1), χ(G2)}.

• ω(G1/.G2
Kr

) = max{ω(G1), ω(G2)}.

• G1/.G2
Kr

is a perfect graph if and only if both G1 and G2 are perfect.

Furthermore, χ(G1/.G2
Kr

) = ω(G1/.G2
Kr

) = max{ω(G1), ω(G2)}.

2. Let H be a connected graph. If H is not a complete graph, then

• there exist graphs G1 and G2 such that χ(G1/.G2
H

) > max{χ(G1), χ(G2)}

and ω(G1/.G2
H

) > max{ω(G1), ω(G2)};

• there exist a perfect graph G1 and an imperfect graph G2 such that

G1/.G2
H

is perfect;

• there exist perfect graphs G1 and G2 such that G1/.G2
H

is not perfect.

3. A simple graph with a simplicial set elimination ordering is a perfect graph.

The perfection of glued graphs at arbitrary clones:

1. A glued graph of perfect graphs is perfect if and only if it contains no created

odd hole and no created odd antihole.

2. A triangle-free glued graph G1/.G2 is a perfect graph if and only if G1 and

G2 are bipartite.
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3. Let m and n be positive integers.

• χ(Km/.Kn) = max{m,n}.

• ω(Km/.Kn) = max{m,n}.

• A glued graph Km/.Kn is perfect.

4. Let m and n be positive integers.

• If G1 = Km − e or Km − {e1, e2} and G2 = Kn − e or Kn − {e1, e2},

then G1/.G2 is perfect.

• There exist graphs G1 and G2 such that G1/.G2 is a perfect graph but

G1 = Km − E1, G2 = Kn − E2 where |E1| ≥ 3 or |E2| ≥ 3.

• There exist graphs G1 = Km − E1 and G2 = Kn − E2, where |E1| ≥ 3

or |E2| ≥ 3 but G1/.G2 is not perfect.

5. Let G1 and G2 be perfect graphs. If G1 or G2 is a forest, then

• χ(G1/.G2) = max{χ(G1), χ(G2)}.

• ω(G1/.G2) = max{ω(G1), ω(G2)}.

• G1/.G2 is perfect.
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5.2 Open Problems

We have some open problems for future work as follows:

1. In Section 2.2, we have already obtained a condition of a perfect graph for

the perfection of a glued graph of an odd hole and the perfect graph. It is

an open problem to find a condition of a perfect graph for the perfection of

a glued graph of an odd antihole and the perfect graph.

2. For the subject of induced clones, an open problem is to find specified orig-

inal graphs to obtain the perfection of glued graphs at induced clones.

3. In Theorem 3.2.18, we have that if G has a simplicial set elimination or-

dering, then G is a perfect graph. Also, there is an example of a perfect

graph having no simplicial set elimination ordering. Thus, it is interested

to find a subclass of perfect graphs which is characterized by simplicial set

elimination ordering.

4. In Section 4.2, we have already obtained specified original graphs such as

complete graphs and forests, for the perfection of glued graphs at arbitrary

clones. However, a forest has no cycle, an interested question is: “Are there

any other original graphs having a cycle(except complete graphs), to obtain

the perfection of glued graphs at arbitrary clones?”.
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A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a

relation that associates with each edge two vertices (not necessary to be distinct)

called its endpoints. The number of elements in V (G) is represented by n(G) and

the number of elements in E(G) is represented by e(G).

A loop is an edge whose endpoints are equal. An multiple edges are edges

having the same pair of endpoints. A simple graph is a graph having no loops and

no multiple edges.

A graph is trivial if it has no edge; otherwise it is nontrivial.

The degree of a vertex v in a graph G, written dG(v) or d(v), is the number

of edges incident to v, except that each loop at v counts twice. The maximum

degree is ∆(G) and the minimum degree is δ(G).

The neighborhood of v, written NG(v) or N(v), is the set of vertices adjacent

to v.

A subgraph F of a graph G is a graph F such that V (F ) ⊆ V (G) and E(F ) ⊆

E(G) and the assignment of endpoints to edges in F is the same as in G. We then

write F ⊆ G. If F 6= G, then it is called a proper subgraph. A subgraph F of a

graph G is an induced subgraph of G if whenever u and v are vertices of F and uv

is an edge of G, then uv is an edge of F .

A complete graph is a simple graph whose vertices are pairwise adjacent; the

complete graph with n vertices is denoted Kn.

The complement G of a simple graph G is the simple graph with vertex set

V (G) defined by uv ∈ E(G) if and only if uv /∈ E(G).

A graph G is bipartite if V (G) is the union of two disjoint (possible empty)

independent sets called partite set of G.

A path is a simple graph whose vertices can be ordered so that two vertices are

adjacent if and only if they are consecutive in the list. A cycle is a graph with an
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equal number of vertices and edges whose vertices can be placed around a circle

so that two vertices are adjacent if and only if they appear consecutive along the

circle. The length of a path or cycle is its number of edges.

A graph G is connected if it has a u, v-path whenever u, v ∈ V (G). Otherwise,

G is disconnected.

An interval representation of a graph is a family of intervals assigned to the

vertices so that vertices are adjacent if and only if the corresponding intervals

intersect. A graph having such a representation is an interval graph.

A bull is the graph with vertices a, b, c, d, e and edges ab, ac, bc, bd, ce. A Berge

graph having no a bull as an induced subgraph is called a bull-free Berge graph.

A planar Berge graph is a Berge graph which has a drawing without crossings.

A degenerate Berge graph is a Berge graph such that every induced subgraph

F has a vertex of degree at most ω(F ) + 1.

A triangle-free graph is a graph having no triangle(K3) as an induced subgraph.

The union of graphs G1, ..., Gk, written G1 ∪ ...∪Gk, is the graph with vertex

set V (G1) ∪ ... ∪ V (Gk) and edge set E(G1) ∪ ... ∪ E(Gk).

The graph obtained by taking the union of graphs G1 and G2 with disjoint

vertex sets is the disjoint union or sum, written G1 + G2.

The join of simple graphs G1 and G2, written G1 ∨ G2, is the graph obtained

from the disjoint union G1+G2 by adding the edges {uv : u ∈ V (G1), v ∈ V (G2)}.
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