
การประเมินวิธีการยิงท่อกรุในหลุมผลิตก๊าซธรรมชาติในอ่าวไทย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมปีโตรเลียม ภาควิชาวิศวกรรมเหมืองแร่และปีโตรเลียม คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ลิขสิทธ์ของจุฬาลงกรณ์มหาวิทยาลัย

EVALUATION OF PERFORATION STRATEGIES OF GAS WELLS IN THE GULF OF THAILAND

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Petroleum Engineering Department of Mining and Petroleum Engineering Faculty of Engineering Chulalongkorn University Academic Year 2006 Copyright of Chulalongkorn University Thesis Title EVALUATION OF PERFORATION STRATEGIES OF

GAS WELLS IN THE GULF OF THAILAND

By Mr. Nattapon Nampratchayakul

Field of Study Petroleum Engineering

Thesis Advisor Assistant Professor Suwat Athichanagorn, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Engineering
(Professor Direk Lavansiri, Ph.D.)

THESIS COMMITTEE

Korley Chairman

(Associate Professor Sarithdej Pathanasethpong)

Simust Attichangern Thesis Advisor

(Assistant Professor Suwat Athichanagorn, Ph.D.)

(Jirawat Chewaroungroaj, Ph.D.)

นัฐพล นำปรัชญากุล : การประเมินวิธีการยิงท่อกรุในหลุมผลิตก๊าชธรรมชาติในอ่าวไทย (EVALUATION OF PERFORATION STRATEGIES OF GAS WELLS IN THE GULF OF THAILAND) อ.ที่ ปรึกษา : ผศ.คร. สุวัฒน์ อธิชนากร, 189 หน้า.

การยิงท่อกรุในหลุมผลิตในสภาวะที่ความคันในหลุมผลิตน้อยกว่าความคันของแหล่งกักเก็บ เป็นวิธีที่ยอมรับกัน มานานแล้วว่า เป็นวิธีที่ดีที่สุดวิธีหนึ่งในการลดความเสียหายของแหล่งกักเก็บที่เกิดจากการยิงท่อกรุ อย่างไรก็ดี ประสิทธิภาพในการใหลของหลุมผลิตที่ได้จากการยิงท่อกรุขึ้นอยู่กับหลายปัจจัย เช่น ระดับความแตกต่างของ ความคันในหลุมผลิตและความคันของแหล่งกักเก็บ ขนาดของปืนยิงท่อกรุ จำนวนลูกปืนต่อหนึ่งฟุตของปืนยิงท่อกรุ องศาที่ต่างกันของถูกปืนแต่ละลูกในหนึ่งฟุต และชนิดของดินปืน การศึกษาในวิทยานิพนธ์ฉบับนี้ได้ ทำการวิเคราะห์ผลการทดสอบหลุมหรือการวิเคราะห์การเปลี่ยนแปลงของความคันเมื่ออัตราการผลิตเปลี่ยนไป ของแหล่งกักเก็บก๊าชธรรมชาติจำนวน 70 แหล่ง จาก 70 หลุมผลิตก๊าชธรรมชาติในอ่าวไทย แหล่งกักเก็บก๊าชธรรมชาติจำนวน 70 แหล่ง จาก 70 หลุมผลิตก๊าชธรรมชาติในอ่าวไทย แหล่งกักเก็บก๊าช ธรรมชาติ 70 แหล่งนี้มีคำความพรุนที่แตกต่างกัน ถูกขิงท่อกรุด้วยปืนขิงท่อกรุที่ต่างกันในสภาวะความคันที่ ต่างกัน

จากการการวิเคราะห์ข้อมูลของแหล่งกักเก็บก้าชธรรมชาติจำนวนเจ็ดสิบแหล่ง สามารถสรุปได้ว่า ระดับความแตกต่างของความคันในหลุมผลิตและความคันของแหล่งกักเก็บ ขณะทำการยิงท่อกรุ มีผลกระทบ โดยตรงต่อขนาดของความเสียหายและประสิทธิภาพในการใหลของแหล่งกักเก็บ ระดับความแตกต่างของความ ตันสูงๆ จะทำให้ขนาดของความเสียหายต่ำและประสิทธิภาพในการใหลของแหล่งกักเก็บสูง อย่างไรก็ดี ระดับ ความแตกต่างของความคันมีผลกระทบมากกับประสิทธิภาพในการใหลของแหล่งกักเก็บที่มีคำความพรุนน้อย กว่า 18%

นอกจากนี้ จากการศึกษา สามารถหาสมการความสัมพันธ์ระหว่างระดับความแตกต่างของความดันที่ จำเป็นเพื่อให้ความเสียหายของแหล่งกักเก็บที่เกิดจากการยิงท่อกรุเป็นศูนย์ สำหรับแหล่งกักเก็บที่มีคำความพรุน หรือค่าความสามารถใหการใหลผ่านใดๆ สมการความสัมพันธ์นี้ยังได้ถูกนำไปเปรียบเทียบกับความสัมพันธ์จาก การศึกษาอื่นๆ ก่อนหน้านี้ จากการเปรียบเทียบ แหล่งกักเก็บที่อยู่ต่างแหล่งต่างพื้นที่กันต้องการระดับความ แตกต่างของความคันไม่เหมือนกันเพื่อให้ความเสียหายของแหล่งกักเก็บที่เกิดจากการยิงท่อกรุเป็นศูนย์

การยิงท่อกรุโดยการใช้ดินปืนที่ต่างกัน จำเป็นต้องใช้ระดับความแตกต่างของความดัน 1500 ถึง 1777 ปอนด์ต่อตารางนิ้ว ขณะทำการยิงท่อกรุ เพื่อให้ความเสียหายของแหล่งกักเก็บที่เกิดจากการยิงท่อกรุเป็นศูนย์ และ จากการศึกษาพบว่าที่ระดับความแตกต่างของความดันที่น้อยกว่า 1300 ปอนด์ต่อตารางนิ้ว มีดินปืนอยู่สองชนิดที่ ให้ความเสียหายของแหล่งกักเก็บต่ำกว่า

ภาควิชาวิศวกรรมเหมืองแร่และปิโครเลียม	ลายมือชื่อนิสิต Nattap Nampatahayahal
สาขาวิชาวิศวกรรมปีโครเลียม	ลายมือชื่ออาจารย์ที่ปรึกษา Simut Athickenayาก
ปีการศึกษา 2549	5

4671637121 : MAJOR PETROLEUM ENGINEERING

KEY WORD: PERFORATION/GAS WELL/SKIN/FLOW EFFICIENCY
NATTAPON NAMPRATCHAYAKUL: EVALUATION OF
PERFORATION STRATEGIES OF GAS WELLS IN THE GULF OF
THAILAND. THESIS ADVISOR: ASSIST. PROF. SUWAT
ATHICHANAGORN, Ph.D. 189 pp.

Underbalance perforation has long been recognized as one of the best techniques for mitigating perforating damage. However, the flow efficiency of the perforated wells is controlled by several parameters such as underbalance condition, perforation gun size, shot density, phase angle, and charge type. In this study, seventy pressure transients of seventy gas reservoirs from different wells in the Gulf of Thailand have been analyzed. These reservoirs have different porosities and were perforated with various perforation gun assemblies under different pressure conditions.

After analyzing results obtained from seventy gas reservoirs, it can be concluded that the underbalance pressure condition directly affects the perforation damage or skin of perforated gas reservoir, as well as corrected flow efficiency. The higher the underbalance pressure the lower the perforation skin is. As a result, the higher flow efficiency and recovery of gas reservoir can be achieved. However, the underbalance pressure has more impact on the corrected flow efficiency of tight gas reservoirs which have porosity equal to or lower than 18%.

The correlations of underbalance pressure required to achieve zero perforation skin for any reservoir porosity or permeability were obtained and compared to published correlations. From comparison, reservoirs located in different fields require different underbalance pressure condition to achieve zero perforation skin.

Regardless of reservoirs properties, depending on perforation charge type, 1500 to 1777 psi underbalance pressure is required to achieve zero perforation skin. There are two recommended charge types for better perforation performance when available or achievable underbalance pressure is lower than 1300 psi.

Department of Mining and Petroleum Engineering	Student's signature / altop. Mampretchayaku
Field of Study: Petroleum Engineering	Advisor's signature Irmat Attachung on
Academic Year: 2006	

Acknowledgements

My utmost appreciation and gratitude are expressed to my thesis advisor, Assist. Prof. Dr. Suwat Athichanagorn, Department of Mining and Petroleum Engineering, Chulalongkorn University, for his guidance and advice during this study. His understanding, encouragement and personal guidance have provided a good basis, not only for this thesis, but also during the course works both Bachelor and Master degrees.

Special thanks are also extended to all professors in Department of Mining and Petroleum Engineering, Chulalongkorn University, for infinite valuable knowledge that I have been using for my career for last 6 years and also in the future.

A deep appreciation is also expressed to Chevron Thailand Exploration and Production, Ltd for providing all information for this thesis, as well as a financial support.

Finally, I would like to take this opportunity to thank my parents for their infinite support and endless love.

Contents

		Page
Abstr	act (in Thai)	iv
Abstr	act (in English)	v
	owledgements	vi
	of Contents	vii
List o	of Tables	ix
List o	of Figures	x
	enclature	xix
Chap	iter	
1	Introduction	1
П	Theoretical Considerations	3
	2.1 Underbalance Perforation	. 3
	2.2 Pressure Transient (Well Test) Analysis	7
	2.3 Skin	. 8
	2.3.1 Rate Dependent (Non-Darcy) Skin	9
	2.3.2 Partial Penetration Skin	10
	2.3.3 Perforation Skin and Flow Efficiency	14
п	I Evaluation of Perforation Strategies of Gas Wells in the	
	Gulf of Thailand	. 16
	3.1 Perforation of Gas Wells	. 20
	3.2 Pressure Transient (Well Test) Analysis	. 23
	3.2.1 Skin and Corrected Flow Efficiency for Perforated	
	Gas Wells	. 26
	3.3 Relationship between Skin and Underbalance Pressure	28
	3.4 Relationship between Corrected Flow Efficiency and	
	Underhalance Pressure	32

	Page
3.5 Relationship between Underbalance and Permeability	36
3.6 Relationship between Underbalance and Porosity	39
3.7 Relationship between Corrected Flow Efficiency and	
Perforation Charge Type	41
IV Conclusions	44
Reference	46
Appendix	48
Vitae	189

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

List of Tables

Table		Page
2.1	Typical ranges of underbalance pressure for perforated system cleanup.	4
3.1	Gas reservoir properties.	19
3.2	Swabbing depths and perforation information	22
3.3	Results of pressure transient analyses	24
3.4	Calculated partial penetration skin and corrected data	27
3.5	Information for relationship study	29
3.6	Coefficient of determination, R2, of each porosity cutoff on perforation	
	skin versus underbalance pressure	30
3.7	Coefficient of determination, R2, of each porosity cutoff on corrected	
	flow efficiency versus underbalance pressure	33
3.8	Minimal underbalance pressure to obtain zero perforation skin for each	
	perforation charge type	43

List of Figures

rigure	P	age
2.1	Underbalance used in perforating oil reservoir in sandstone formation	5
2.2	Underbalance used in perforating gas reservoir in sandstone formation	5
2.3	Drawdown test	8
2.4	Buildup test	8
2.5	Flow after flow well test	9
2.6	Total skin versus flow rate	10
2.7	Yeh and Reynolds' correlation for C' - multilayer reservoir	13
3.1	Histogram of porosity	16
3.2	Histogram of water saturation	17
3.3	Gulf of Thailand pressure profile	18
3.4	Histogram of permeability	25
3.5	Average permeability versus porosity of 70 gas reservoirs	26
3.6	Total skin and perforation skin versus underbalance pressure	28
3.7	Perforation skin versus underbalance pressure - cutoff porosity of 18%.	31
3.8	Corrected flow efficiency versus underbalance pressure - all 70 gas	
	reservoirs of interest	32
3.9	Corrected flow efficiency versus underbalance pressure - cutoff	
	porosity of 18%	34
3.10	Underbalance pressure versus gas reservoir permeability at corrected	
	flow efficiency higher than 60, 80, and 100%	36
3.11	Underbalance pressure versus gas reservoir permeability at corrected	
	flow efficiency higher than 100% (zero-perforation skin) compared	
	with King's field correlation and Hsia & Behrmann's correlation	38
3.12	Underbalance pressure versus gas reservoir porosity at corrected	
	flow efficiency higher than 60, 80, and 100%	39
3.13	Corrected flow efficiency versus underbalance pressure for each	
	perforation charge type	41

Figure	Page	
3.14	Corrected flow efficiency versus underbalance pressure for each	
	perforation charge type, 2-1/8" gun size, 60 degree phasing,	
	5-6 shot per foot, and HMX explosive	
A.1	Well-01 testing overview	
A.2	Well-01 main build-up, log-log plot	
A.3	Well-01 main build-up, semi-log plot	
A.4	Well-02 testing overview	
A.5	Well-02 main build-up, log-log plot	
A.6	Well-02 main build-up, semi-log plot	
A.7	Well-03 testing overview	
A.8	Well-03 main build-up, log-log plot	
A.9	Well-03 main build-up, semi-log plot	
A.10	Well-04 testing overview	
A.11	Well-04 main build-up, log-log plot	
A.12	Well-04 main build-up, semi-log plot	
A.13	Well-05 testing overview	
A.14	Well-05 main build-up, log-log plot	
A.15	Well-05 main build-up, semi-log Plot	
A.16	Well-06 testing overview	
A.17	Well-06 main build-up, log-log plot	
A.18	Well-06 main build-up, semi-log plot	
A.19	Well-07 testing overview	
A.20	Well-07 main build-up, log-log plot	
A.21	Well-07 main build-up, semi-log plot	
A.22	Well-08 testing overview	
A.23	Well-08 main build-up, log-log plot	
A.24	Well-08 main build-up, semi-log plot	
A.25	Well-09 testing overview	
A.26	Well-09 main build-up, log-log plot	
A.27	Well-09 main build-up, semi-log plot	
1 20	Well 10 testing overview 67	

Figure		Page
A.29	Well-10 main build-up, log-log plot	. 67
A.30	Well-10 main build-up, semi-log plot.	. 68
A.31	Well-10 rate dependent skin plot	. 68
A.32	Well-11 testing overview.	. 69
A.33	Well-11 main build-up, log-log plot	. 69
A.34	Well-11 main build-up, semi-log plot	. 70
A.35	Well-11 rate dependent skin plot	. 70
A.36	Well-12 testing overview	. 71
A.37	Well-12 main build-up, log-log plot	. 71
A.38	Well-12 main build-up, semi-log plot	. 72
A.39	Well-12 rate dependent skin plot	. 72
A.40	Well-13 testing overview	73
A.41	Well-13 main build-up, log-log plot	. 73
A.42	Well-13 main build-up, semi-log plot	. 74
A.43	Well-14 testing overview	75
A.44	Well-14 main build-up, log-log plot	. 75
A.45	Well-14 main build-up, semi-log plot	. 76
A.46	Well-14 rate dependent skin plot	
A.47	Well-15 testing overview	77
A.48	Well-15 main build-up, log-log plot	. 77
A.49	Well-15 main build-up, semi-log plot	
A.50	Well-15 rate dependent skin plot	. 78
A.51	Well-16 testing overview	79
A.52	Well-16 main build-up, log-log plot	. 79
A.53	Well-16 main build-up, semi-log plot	. 80
A.54	Well-16 rate dependent skin plot	. 80
A.55	Well-17 testing overview	81
A.56	Well-17 main build-up, log-log plot	81
A.57	Well-17 main build-up, semi-log plot	. 82
A.58	Well-18 testing overview	83
A.59	Well-18 main build-up, log-log plot	83

Figure		Page
A.60	Well-18 main build-up, semi-log plot	. 84
A.61	Well-18 rate dependent skin plot	84
A.62	Well-19 testing overview	85
A.63	Well-19 main build-up, log-log plot	85
A.64	Well-19 main build-up, semi-log plot	. 86
A.65	Well-20 testing overview	87
A.66	Well-20 main build-up, log-log plot	87
A.67	Well-20 main build-up, semi-log plot	. 88
A.68	Well-21 testing overview	89
A.69	Well-21 main build-up, log-log plot	89
A.70	Well-21 main build-up, semi-log plot	. 90
A.71	Well-22 testing overview	91
A.72	Well-22 main build-up, log-log plot	91
A.73	Well-22 main build-up, semi-log plot	. 92
A.74	Well-23 testing overview.	93
A.75	Well-23 main build-up, log-log plot	93
A.76	Well-23 main build-up, semi-log plot	. 94
A.77	Well-24 testing overview	95
A.78	Well-24 main build-up, log-log plot.	95
A.79	Well-24 main build-up, semi-log plot.	. 96
A.80	Well-25 testing overview	97
A.81	Well-25 main build-up, log-log plot	97
A.82	Well-25 main build-up, semi-log plot	
A.83	Well-26 testing overview	99
A.84	Well-26 main build-up, log-log plot	99
A.85	Well-26 main build-up, semi-log plot	100
A.86	Well-27 testing overview.	101
A.87	Well-27 main build-up, log-log plot.	101
A.88	Well-27 main build-up, semi-log plot	102
A.89	Well-28 testing overview	103
A.90	Well-28 main build-up, log-log plot	103

Figure		Page
A.91	Well-28 main build-up, semi-log plot	104
A.92	Well-29 testing overview	
A.93	Well-29 main build-up, log-log plot	105
A.94	Well-29 main build-up, semi-log plot	106
A.95	Well-30 testing overview	107
A.96	Well-30 main build-up, log-log plot	107
A.97	Well-30 main build-up, semi-log plot	108
A.98	Well-31 testing overview	109
A.99	Well-31 main build-up, log-log plot	109
A.100	Well-31 main build-up, semi-log plot	110
A.101	Well-32 testing overview	111
A.102	Well-32 main build-up, log-log plot	111
A.103	Well-32 main build-up, semi-log plot	112
A.104	Well-33 testing overview	113
A.105	Well-33 main build-up, log-log plot	113
A.106	Well-33 main build-up, semi-log plot.	114
A.107	Well-34 testing overview.	115
A.108	Well-34 main build-up, log-log plot	115
A.109	Well-34 main build-up, semi-log plot.	116
	Well-35 testing overview	
A.111	Well-35 main build-up, log-log plot	117
A.112	Well-35 main build-up, semi-log plot	118
A.113	Well-36 testing overview	119
A.114	Well-36 main build-up, log-log plot	119
A.115	Well-36 main build-up, semi-log plot	120
A.116	Well-37 testing overview	121
A.117	Well-37 main build-up, log-log plot.	121
A.118	Well-37 main build-up, semi-log plot.	122
A.119	Well-38 testing overview	123
A.120	Well-38 main build-up, log-log plot	123
A.121	Well-38 main build-up, semi-log plot	124

Figure		Page
A.122	Well-39 testing overview	125
	Well-39 main build-up, log-log plot	
A.124	Well-39 main build-up, semi-log plot	126
A.125	Well-40 testing overview	127
A.126	Well-40 main build-up, log-log plot.	127
A.127	Well-40 main build-up, semi-log plot	128
	Well-41 testing overview	
	Well-41 main build-up, log-log plot	
A.130	Well-41 main build-up, semi-log plot	130
A.131	Well-42 testing overview	131
A.132	Well-42 main build-up, log-log plot	131
A.133	Well-42 main build-up, semi-log plot	132
A.134	Well-43 testing overview	133
A.135	Well-43 main build-up, log-log plot	133
A.136	Well-43 main build-up, semi-log plot	134
A.137	Well-44 testing overview	135
A.138	Well-44 main build-up, log-log plot	135
A.139	Well-44 main build-up, semi-log plot	136
A.140	Well-45 testing overview	137
A.141	Well-45 main build-up, log-log plot	137
A.142	Well-45 main build-up, semi-log plot	138
A.143	Well-46 testing overview	139
A.144	Well-46 main build-up, log-log plot	139
A.145	Well-46 main build-up, semi-log plot	140
A.146	Well-47 testing overview	141
A.147	Well-47 main build-up, log-log plot	141
A.148	Well-47 main build-up, semi-log plot	142
A.149	Well-48 testing overview	143
A.150	Well-48 main build-up, log-log plot	143
A.151	Well-48 main build-up, semi-log plot	144
A.152	Well-49 testing overview	145

Figure		Page
A.153	Well-49 main build-up, log-log plot	145
	Well-49 main build-up, semi-log plot	
A.155	Well-50 testing overview	147
A.156	Well-50 main build-up, log-log plot	147
A.157	Well-50 main build-up, semi-log plot.	148
A.158	Well-51 testing overview	149
A.159	Well-51 main build-up, log-log plot	149
	Well-51 main build-up, semi-log plot	
	Well-52 testing overview.	
	Well-52 main build-up, log-log plot	
A.163	Well-52 main build-up, semi-log plot	152
A.164	Well-53 testing overview	153
A.165	Well-53 main build-up, log-log plot	153
A.166	Well-53 main build-up, semi-log plot	154
A.167	Well-54 testing overview	155
A.168	Well-54 main build-up, log-log plot	155
A.169	Well-54 main build-up, semi-log plot	156
A.170	Well-55 testing overview	157
A.171	Well-55 main build-up, log-log plot	157
A.172	Well-55 main build-up, semi-log plot	158
A.173	Well-56 testing overview	159
A.174	Well-56 main build-up, log-log plot	159
A.175	Well-56 main build-up, semi-log plot	160
A.176	Well-57 testing overview	161
A.177	Well-57 main build-up, log-log plot	161
A.178	Well-57 main build-up, semi-log plot	162
A.179	Well-58 testing overview	163
A.180	Well-58 main build-up, log-log plot	163
A.181	Well-58 main build-up, semi-log plot	164
A.182	Well-59 testing overview	165
A.183	Well-59 main build-up, log-log plot	165

Figure		Page
A.184	Well-59 main build-up, semi-log plot	166
	Well-60 testing overview	
	Well-60 main build-up, log-log plot	
	Well-60 main build-up, semi-log plot	
	Well-61 testing overview	
	Well-61 main build-up, log-log plot	
	Well-61 main build-up, semi-log plot	
	Well-62 testing overview	
A.192	Well-62 main build-up, log-log plot	171
	Well-62 main build-up, semi-log plot	
	Well-63 testing overview	
A.195	Well-63 main build-up, log-log plot	173
A.196	Well-63 main build-up, semi-log plot	174
A.197	Well-64 testing overview.	175
	Well-64 main build-up, log-log plot	
A.199	Well-64 main build-up, semi-log plot	176
A.200	Well-65 testing overview	177
	Well-65 main build-up, log-log plot	
	Well-65 main build-up, semi-log plot	
A.203	Well-66 testing overview	179
A.204	Well-66 main build-up, log-log plot	179
A.205	Well-66 main build-up, semi-log plot	180
	Well-67 testing overview	
A.207	Well-67 main build-up, log-log plot	181
A.208	Well-67 main build-up, semi-log plot	182
A.209	Well-68 testing overview	183
A.210	Well-68 main build-up, log-log plot	183
A.211	Well-68 main build-up, semi-log plot	184
A.212	Well-69 testing overview	185
A.213	Well-69 main build-up, log-log plot	185
A.214	Well-69 main build-up, semi-log plot.	186

Figure		Page
A.215	Well-70 testing overview	187
A.216	Well-70 main build-up, log-log plot	187
Δ 217	Well-70 main build-up, semi-log plot	188

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Nomenclature

b	penetration ratio
C'	correlating coefficient
D	rate dependent skin coefficient
f_t	dimensionless flow capacity
FE	flow efficiency
h	reservoir pay thickness
h_D	dimensionless pay thickness
h_p	limited interval open to flow
k	average reservoir permeability
\overline{k}	thickness-average horizontal permeability
k_h	horizontal permeability
k_j	horizontal permeability of layer j
k_v	vertical permeability
h_{wD}	dimensionless wellbore length
p_i	initial reservoir pressure
$p_{\rm w}$	wellbore pressure
q_{sc}	tested flow rate
R^2	coefficient of determination
r_{w}	wellbore radius
S'	total skin factor
S	skin due to wellbore damage effect
$S_{non-Darcv}$	non-Darcy skin
S_p	perforation skin
S_{pp}	partial penetration skin
y	distance from the top of formation to the top of perforated
	interval
Δp	underbalance pressure
Δp_{upper}	upper bound underbalance pressure
Δp_{lower}	lower bound underbalance pressure

Greek Letter

φ porosity

 π pi value, approximately of 3.1415926

Subscripts

D dimensionless

h horizontal

i initial

j layer index

p perforated interval

pp partial penetration

sc standard condition

v vertical

w wellbore

CHAPTER I

INTRODUCTION

"The fate of a well hinges on years of exploration, months of well planning and weeks of drilling. But it ultimately depends on performing the optimal completion, which begins with the millisecond of perforation. Profitability is strongly influenced by this critical link between the reservoir and wellbore."

Quoted from Oilfield Review, Oct 1992

As per quotation in Oilfield Review, the perforation is not only a common operation to complete oil and gas wells, but also the critical link between the reservoir and wellbore. The flow efficiency of a perforated well might be higher that of on openhole when the perforating parameters are optimized. At the moment, under balance perforation has been widely accepted and applied in oil and gas well completion, especially in development wells. However, the flow efficiency of the perforated wells is controlled by several parameters, such as, perforation length, perforation diameter, shot density, phase angle, and degree of the damage around the perforation tunnels.

Numerous laboratory tests have been performed under simulated downhole conditions to obtain zero-perforation damage skin or the best flow efficiency. In addition, many field studies attempt to identify the minimum required underbalance pressure to obtain clean perforation and zero-perforation skin for different gas reservoir permeabilities and porosities.

The damage or skin around the perforations can be quantified indirectly by means of flow efficiency (FE). A poor flow efficiency requires a much higher pressure drop to obtain a certain rate. Thus, the flow efficiency is directly related to oil and gas reserves and recovery efficiency. The pressure transient analysis (well test) can be used to evaluate the overall damage or total skin. However, the reservoir damage or skin could be caused by several factors, such as drilling operation, perforation, partial penetration, and high velocity flow. In order to determine the perforation skin, it is necessary to subtract skins caused by other factors from the total skin.

The perforation skin depends on various factors, such as wellbore condition (under balance) and perforation gun assembly in term of gun size, charge type, shot density, and phase angle.

The objective of this study is to define the guidelines for underbalance condition that leads to the best flow efficiency and an increase in recovery efficiency for various reservoir permeability (k) and porosities (ϕ) of gas wells in the Gulf of Thailand environment.

CHAPTER II

THEORITICAL CONSIDERATIONS

2.1 Underbalance Perforation

Underbalance perforation has gained a wide acceptance and become a more common practice than overbalance perforation which provides a lower flow efficiency, less well productivity, and higher degree of reservoir damage.

Perforation damage cleanup during underbalance perforation is the result of the transient decompression of the reservoir fluid around the perforation once the reservoir/wellbore pressure differential is established during the perforation process. It is assumed that cleanup of the perforation damage is from the dynamic force, form the pressure differential, on the fractured sand grain particles that progressively move these particles from the perforation tunnel walls, thus moving the permeability damaged region.

The first reservoir in multi-layered reservoirs that is perforated and used to unload the completion fluid is called unloading reservoir. Prior to perforation on the unloading reservoir, the conditions of both reservoir and within the wellbore are usually known.

Before the first perforation, the well is usually filled with the completion fluid. Thus, the hydrostatic pressure within the wellbore at any depth could be determined by Equation 2.1.

 $Hvdrostatic\ pressure = 0.052 \times completion\ fluid\ density(ppg) \times vertical\ depth(ft)\ [2.1]$

With the initial reservoir pressure obtained from the wireline formation testing (or from general pressure profile in the particular area) and calculated Hydrostatic pressure, the under balance perforation condition could be estimated and obtained from the Equation 2.2.

Under Balance Pressure = Initial Reservoir Pressure - Hydrostatic Pressure [2.2]

The underbalance condition may be naturally existed in the case where initial reservoir pressure is higher than hydrostatic pressure. However, the required underbalance condition can be achieved by the certain operation such gas lift, liquid swabbing, etc.

Bell¹ first estimated the ranges of necessary underbalance pressure on the basis of both permeability and well performance. Bell conducted a perforation experimental test based on API RP 43, "Standard Procedure for Evaluation of Well Perforators". However, his estimation is useful in only two permeability ranges listed in Table 2.1.

Table 2.1: Typical ranges of underbalance pressure for perforated system cleanup¹.

	Liquid	Gas	
High Permeability (>100 MD)	200 to 500 psi	1,000 to 2,000 psi	
Lower Permeability (< 100 MD)	1,000 to 2,000 psi	2,000 to 5,000 psi	

After Bell's study, King² et al. conducted a field study of 90 wells with sandstone pays in five different regions which are the Rocky Mountain overthrust, Alberta, Canada, New Mexico Morrow sandstone, Lafayette Tuscaloosa trend, and U.S. gulf coast. Those 90 wells of King's study were perforated with tubing-conveyed systems at various levels of underbalance pressure.

The underbalance pressure was considered sufficient, and the perforation was assumed clean wherever the subsequent acidizing did not improve the well's performance. King's data show a clear correlation between a minimum required underbalance pressure and the formation permeability, determined from either core tests or pressure transient analysis, as shown in Figures 2.1 and 2.2, for oil and gas

reservoirs, respectively. In Figures 2.1 and 2.2, black and white points represent the reservoirs that well performance did improved and did not improved after acidizing, respectively,.

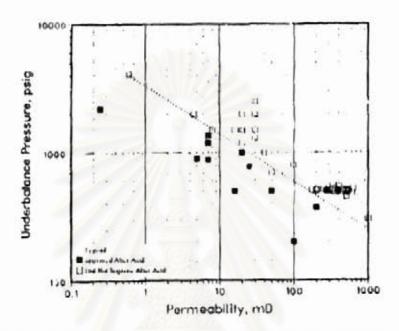


Figure 2.1: Underbalance pressure used in perforating oil reservoirs in sandstone formation.

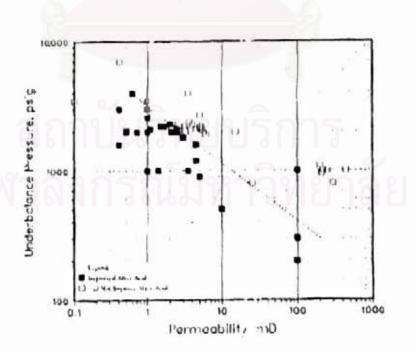


Figure 2.2: Underbalance pressure used in perforating gas reservoirs in sandstone formation.

Statistical analysis of King's field data was undertaken to find the best straight lines for correlations by Tariq⁴, as shown in Equations 2.3, 2.4, and 2.5. These equations provide a general guideline to estimate the minimum underbalance pressure requirement to obtain minimum perforation skin damage skin, based on the formation permeability.

Overall,
$$\Delta p = \frac{2900}{k^{0.36}}$$
 [2.3]

Oil,
$$\Delta p = \frac{3100}{k^{0.37}}$$
 [2.4]

Gas,
$$\Delta p = \frac{3000}{k^{0.4}}$$
 [2.5]

where
$$\Delta p$$
 = underbalance pressure, psi
 k = average reservoir permeability, md

Tariq concluded that there is no significant difference between underbalance requirements for oil and gas reservoirs. Therefore, King's filed data for oil and gas wells have been combined as a single graph. Thus, the best straight line to determine sufficient underbalance pressure points for King's field data is given by Equation 2.3.

However, King's filed data and Tariq's Equation 2.3 represents the minimum underbalance pressure for which acidization is not effective in any further reduction of perforation damage skin, but not for zero-perforation skin.

Hsia and Behrmann⁶ performed experimental tests to determine the minimum underbalance necessary to obtain zero-perforation damage skin. Single-shot perforation flow tests were conducted in nominally 100 md and 200 md sandstone cores under various underbalance pressure conditions. Prior to the perforation, the virgin whole core diametral and axial permeabilities were measured. Perforation damage skin was determined using analytical and finite elements models.

From the perforation experimental tests, Hsia and Behrmann presented the upper and lower bound underbalance pressure requirement, as shown in Equations 2.6 and 2.7, for zero-perforation skin for fluid properties similar to King's field data.

$$\Delta p \text{ Upper bound}, \qquad \Delta p_{upper} = \frac{5.06 \times 10^4}{k^{0.913}}$$
 [2.6]

$$\Delta p$$
 Lower bound, $\Delta p_{lower} = \frac{1.7 \times 10^4}{k^{0.7}}$ [2.7]

King's filed study and Hsia and Behrmann experimental tests were based on sandstone formation only. Since all gas reservoirs of interest in this study are sandstone formation, their equations can be used to compare with Gulf of Thailand data.

Not only the underbalance pressure, the combination of perforation gun assembly also affect the reservoir productivity and degree of reservoir damage. The Following perforation gun assemblies are generally used in the Gulf of Thailand petroleum industry.

- a. Gun size 1.56", 2", 2.5"
- b. Charge Type PowerJet Plus, Predator, Predator XP, Owen HERO
- c. Shot Density 2, 4, 5, or 6 shot per foot
- d. Phasing 0, 60, 180 phasing degree
- e. Explosive HMX, HTX, HNS

2.2 Pressure Transient (Well Test) Analysis

A pressure transient (well test), in its simplest form, consists of disturbing the reservoir by producing from or injecting into a well at a controlled flow rate for a period of time and measuring the pressure response at the production or injection well, or at some nearby observation well. The pressure response, which depends on the reservoir rock and fluid properties, is then analyzed for reservoir parameters.

One of the main objective of pressure transient analysis is to determine the skin around wellbore which may be caused by wellbore damage, partial penetration, perforation, turbulence flow, etc. However, skin obtained from pressure transient analysis is the total skin of the area near the wellbore. To identify whether the reservoir is damaged and needs well cleaning or well-stimulation treatments, the total skin have to be subtracted by skin due to other factors, such as partial penetration skin, non-Darcy skin, etc.

For reservoir evaluation, there are several types of well test, such as drawdown, buildup, injection, falloff. In a drawdown test (Figure 2.3), a well that shut-in is opened to flow. For the purposes of traditional analysis, the flow rate is controlled to be as constant as possible. In a buildup test (Figure 2.4), a well which is already flowing (ideally at constant rate) is shut-in, and the downhole pressure is measured as the pressure builds up. In this study, most of pressure transient tests are buildup tests.

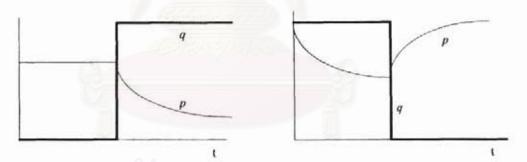


Figure 2.3: Drawdown test.

Figure 2.4: Buildup test.

2.3 Skin

It is well known that the properties of the reservoir near the wellbore are usually altered during drilling, completion, and stimulation procedures. The invasion of drilling fluids, the presence of mudcakes and cement, partial penetration of the formation, and insufficient perforation density are some of the factors that cause "damage" to the formation and, more importantly, cause an additional localized pressure drop during flow.

Skin is the term used to refer to the alteration of permeability that exists near the wellbore. The skin factor, S, is used to quantify the skin. If the well has been damaged, there is an additional pressure drop at the wellbore for a given flow rate and the skin factor is positive. If the well has been stimulated and the pressure drop at the wellbore has been decreased, the skin factor is negative. As stated in the previous section, the total skin can be determined by pressure transient analysis. However, other technique or correlation is required to determine other skin factors caused by turbulent flow and partial penetration.

2.3.1 Rate Dependent (Non-Darcy) Skin

For gas which has low viscosity, turbulent or non-Darcy flow may occur in the vicinity of the wellbore and cause the rate dependent skin effect. To determine the rate dependent or Non-Darcy skin ($S_{non-Darcy}$), a multi rate or flow after flow well test (Figure 2.5) must be performed and analyzed.

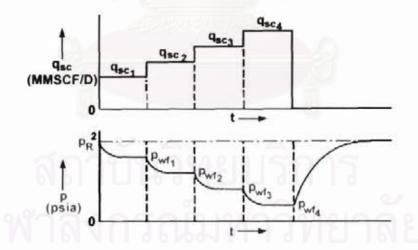


Figure 2.5: Flow after flow well test.

The total skin at a particular flow rate can be determined from pressure transient analysis of that flow period. The plot between the total skin and flow rate yields a straight line as shown in Figure 2.4. The linear equation of total skin and flow rate is as follows:

$$S = S' + Dq_{sc} \tag{2.8}$$

where

S = total skin (interpreted result from well test analysis)

S' = skin due to other factors

D = Rate dependent skin coefficient

 $q_{sc} = flow rate$

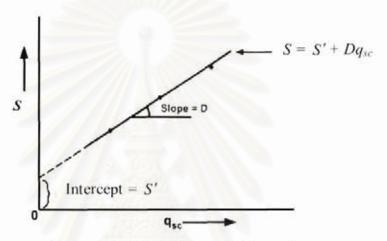


Figure 2.6: Total skin versus flow rate.

2.3.2 Partial Penetration Skin (S_{pp})

Partial completion or perforation of gas wells to inhibit the water coning has been a common practice in the petroleum industry for many years. However, partial perforation of a well will force the flow near the wellbore to converge with high velocity towards the perforations, resulting in flow turbulence and spherical flow which incurs the higher pressure loss in the formation and hence the deviation from the ideal Darcy' flow occur.

Numerous studies, based on a variety of assumptions, have investigated the theoretical pressure response, productivity, and additional skin called partial penetration skin (S_{pp}) of such well. Common correlations used to compute the partial penetration skin (S_{pp}) are summarized as follows:

1. Brons and Marting11

Brons and Marting expressed the additional kind of productivity impairment They presented the following equation for or partial penetration skin (S_{pp}) . estimation, regardless the location of the perforated interval on the formation.

$$S_{pp} = \left(\frac{1}{b} - 1\right) \left[\ln h_D - G(b)\right]$$
 [2.9]

where

$$G(b) = 2.948 - 7.363b + 11.45b^2 - 4.675b^3$$

 $h_D = \frac{h}{r_w} \sqrt{\frac{k_h}{k_v}}$, dimensionless pay thickness

$$b = \frac{h_p}{h}$$
, penetration ratio

h = reservoir pay thickness (ft)

 $r_{\rm w} = \text{wellbore radius (ft)}$ $h_p = \text{limited interval open to flow (ft)}$

 k_h = horizontal permeability (md)

 $k_v = \text{vertical permeability (md)}$

2. Odeh12

Odeh stated that the location of the perforated interval is usually dictated by formation characteristics and reservoir behavior. Therefore, by considering the location of perforated interval of formation, Odeh suggested the Equation 2.10 to determine the partial penetration skin (Spp):

$$S_{pp} = 1.35 \left(\frac{1}{b} - 1\right)^{0.825} \left[\ln(r_w h_D + 7) - 1.95 - \left[0.49 + 0.1 \ln(r_w h_D)\right] \ln r_{wc} \right] \quad [2.10]$$

where

$$\begin{aligned} r_{wv} &= r_w e^{0.2126\left(\frac{2.753 + \frac{z_w}{h}}{h}\right)}, \qquad 0 < \frac{z_m}{h} < 0.5 \\ r_{wv} &= r_w \qquad \qquad \text{if } y = 0 \\ z_m &= y + \frac{h_p}{2} \end{aligned}$$

y = distance from the top of formation to the top of perforated interval If $\frac{z_m}{h}$ is greater than 0.5, then use $1 - \frac{z_m}{h}$ instead.

In this study, all reservoirs of interest were perforated at the topmost part; as a result, all y values are zero. So, Equation 2.5 can be rewritten as the Equation 2.11:

$$S_{pp} = 1.35 \left(\frac{1}{b} - 1\right)^{0.825} \left[\ln(r_w h_D + 7) - 1.95 - \left[0.49 + 0.1\ln(r_w h_D)\right] \ln r_w\right]$$
 [2.11]

3. Papatzacos¹³

Papatzacos presented Equation 2.12 to determine the partial penetration skin.

The equation was derived based on an infinite-conductivity well in an infinite reservoir.

$$S_{pp} = \left(\frac{1}{b} - 1\right) \ln\left(\frac{\pi h_D}{2}\right) + \frac{1}{b} \ln\left[\frac{b}{2 + b} \left(\frac{A - 1}{B - 1}\right)^{1 - 2}\right]$$
 [2.12]

where

$$A = \frac{1}{\left(\frac{y}{h}\right) + \frac{b}{4}}$$

$$B = \frac{1}{\left(\frac{y}{h}\right) + \frac{2b}{4}}$$

 $B = \frac{1}{\left(\frac{y}{h}\right) + \frac{3b}{4}}$

As previously mentioned, all y values in this study are zero because all reservoirs were perforated at the topmost part. So, the equations to calculate A and B can be rewritten as follows:

$$A = \frac{1}{0.25b} = \frac{h}{0.25h_p}$$

$$B = \frac{1}{0.75b} = \frac{h}{0.75h_p}$$

4. Yeh and Reynolds14

Yeh and Reynolds showed the general equation to determine the partial penetration skin (S_{pp}) for either single or multilayer reservoirs:

$$S_{pp} = \left(\frac{1 - f_1}{f_1}\right) \ln(h_{nD})$$
 [2.13]

where

$$f_1 = \frac{\overline{k}_p h_p}{\overline{k}h}$$
, dimensionless flow capacity

$$\overline{k}_p = \frac{1}{h_p} \sum_{j=n_0}^{n_0} k_j h_{pj}$$
, thickness-average horizontal permeability

of open interval

$$\overline{k} = \frac{1}{h} \sum_{j=1}^{m} k_j h_j$$
, thickness-average horizontal permeability

 k_i = horizontal permeability of layer j

$$h_{wD} = \frac{C' f_1 (1 - f_1) h_D}{\exp(C_1)}$$
, dimensionless wellbore length

$$C_I = 0.481 + 1.01(f_I) - 0.838(f_I)^2$$

C' = correlating coefficient that can be obtain from Figure 2.7

 Δz_D = dimensionless distance from top of open interval to top of reservoir

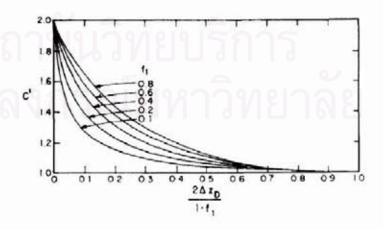


Figure 2.7: Yeh and Reynolds' correlation for C' – multilayer reservoir.

However, for single-layer reservoirs, many parameters can be simplified: $f_1 = b = \frac{h_p}{h}$, $\Delta z_D = 0$, C' = 2

Thus, Yeh and Reynolds partial penetration skin correlation can be rewritten as follows:

$$S_{pp} = \left(\frac{1-b}{b}\right) \ln h_{\text{HD}} \tag{2.14}$$

where

$$h_{scD} = \frac{2b(1-b)h_D}{\exp(C_1)}$$

$$C_I = 0.481 + 1.01(b) - 0.838(b)^2$$

Since this study is considering only single reservoir, Equation 2.14 was used to estimate the partial penetration skin.

2.3.3 Perforation Skin and Flow Efficiency

The damage or skin around the perforations could be quantified indirectly by means of flow efficiency (FE).

$$FE = \frac{\Delta p_{zero \ skin}}{\Delta p_{total}} = \frac{q_{actual \ skin}}{q_{zero \ skin}}$$
[2.15]

In order to evaluate different perforation strategies, the pressure drop due to skin will be corrected by subtracting pressure drop due to skin caused by non-Darcy flow and partial penetration.

corrected
$$FE = \frac{\Delta p_{zero skin}}{\Delta p_{corrected skin}} = \frac{q_{corrected skin}}{q_{zero skin}}$$
 [2.16]

where

However, rather than non-Darcy and partial penetration skins, other skins caused by other factors are unknown and assumed to be the same for all wells. Thus, the corrected flow efficiency could be relatively compared and used to evaluate the perforation strategies. In this study, the corrected skin is called perforation skin.

CHAPTER III

EVALUATION OF PERFORATION STRATEGIES OF GAS WELLS IN THE GULF OF THAILAND

In this study, data from 70 gas reservoirs penetrated by 70 gas wells were used for perforation evaluation. The reservoir properties of these sands vary in a wide range as detailed in Table 3.1. The subsea vertical depths of these sands vary from 5216 feet to 9563 feet with sand thickness in a range between 5 and 92 feet vertical depth. Porosity and water saturation are in the range of 13 to 28% and 10 to 62%, respectively. Figures 3.1 and 3.2 show the histogram of reservoir porosity and water saturation, respectively. The mean and the standard deviation of porosity are 18.67 and 3.16, respectively, while the mean and the standard deviation of water saturation are 39.9 and 12.2, respectively.

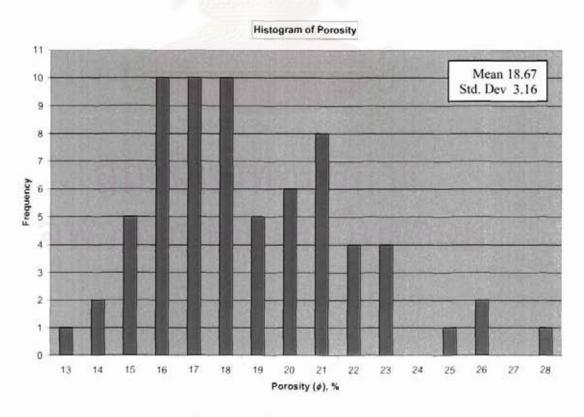


Figure 3.1 Histogram of porosity.

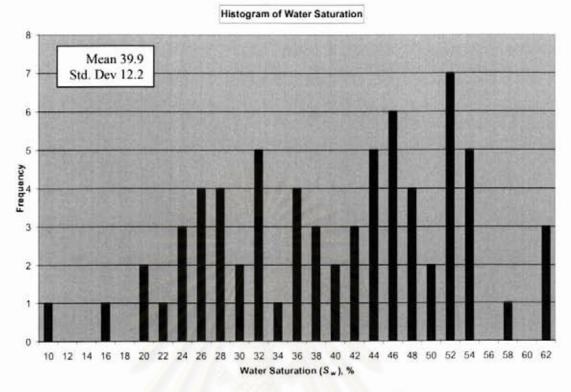


Figure 3.2 Histogram of water saturation.

The reservoir initial pressure can be obtained from either Repeated Formation Tester (RFT) or interpretation results from pressure transient analysis, which are presented in Table 3.1. For the condition inside wellbore, the pressure can be estimated from completion fluid gradient and completion fluid level.

For gas wells in the Gulf of Thailand, the completion fluid is typically brine with 3% Potassium Chloride (KCL), with a density of 8.6 pound per gallon. However, saraline oil based completion fluid is used in some cases to lower the hydrostatic pressure, especially in oil wells. Thus, prior to perforation, the wellbore pressure (p_w) can be estimated by hydrostatic pressure caused by completion fluid.

Figure 3.3 illustrates the Gulf of Thailand's pressure profile, 3% Potassium Chloride (KCL) completion fluid gradient at 8.6 ppg, and initial pressure of 70 gas reservoirs chosen for this study. All red points in Figure 3.3 are the initial reservoir pressures obtained from Repeated Formation Tester (RFT). Some reservoirs were depleted by existing wells prior to pressure measurement. The black dash line shows the upper limit of the initial reservoir pressure of gas reservoirs in the Gulf of

Thailand. For the gas reservoirs that have initial pressure on the right hand side of the completion fluid gradient at 8.6 ppg ($P_i > P_w$), the perforation can be performed with the natural existing of underbalance pressure. However, for the gas reservoirs that have initial pressure on the left hand side of the completion fluid gradient at 8.6 ppg ($P_i < P_w$), additional work prior to perforation is required to achieve the underbalance pressure condition.

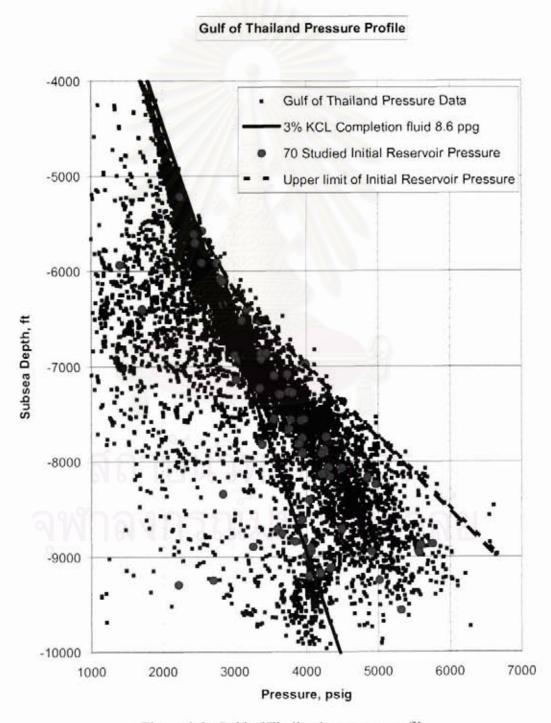


Figure 3.3: Gulf of Thailand pressure profile.

Table 3.1: Gas reservoir properties.

	7 3	Gas Reservoir Properties							
		***			Thickness				
Well	Res. Name	Res. depth, TVD ft	RFT Initial Res. Pressure, psi	PBU, Initial Res. Pressure, psi	ft MD	ft TVD	Porosity, %	Sw, %	
Well-01	68-8	6884	3.010	2,901	8	5	13	58	
Well-02	82-4	8240	4,966	4.780	27	22	16	62	
Well-03	92-4	9243	none	5,017	20	18	13	30	
Well-04	95-6	9563	none	5.320	13	10	16	39	
Well-05	75-6	7560	none	3,790	37	27	18	45	
Well-06	69-2	6920	3.070	2,721	25	20	20 17	26 38	
Well-07	81-7	8170	4.852	4.254 2.835	18 51	10	22	28	
Well-08	89-5	6343 8952	2,840 5,568	5.504	16	11	17	46	
Well-09 Well-10	52-2	5216	none	2.238	63	45	28	23	
Well-11	55-8	5581	2.553	2.514	68	54	21	10	
Well-12	56-1	5612	none	2,440	64	53	26	32	
Well-13	59-1	5911	none	2.545	25	23	26	16	
Well-14	72-7	7266	none	3.757	41	28	18	44	
Well-15	75-5	7553	none	3.555	57	49	20	52	
Well-16	60-8	6082	none	2,799	61	47	25	23	
Well-17	59-2	5916	none	2,764	70	52	21	41	
Well-18	61-0	6104	none	2.826	37	28	23	31	
Well-19	81-6	8159	4.334	4,334	27	20	15	52	
Well-20	72-9	7292	none	3.629	31	22	17	25 50	
Well-21	73-0	7296	none	3,640	26	19	23	37	
Well-22	78-2	7822	none	3,389	23	38	21	36	
Well-23	59.4	5938	none	3,964	52	37	22	47	
Well-24 Well-25	71-0	7098	none	3,555	42	32	18	52	
Well-25	65-3	6528	3.360	3.261	82	60	19	30	
Well-27	57-0	5704	2,453	2.209	47	28	17	47	
Well-28	80-6	8063	none	4,315	45	28	15	45	
Well-29	92-5	9246	none	2,705	27	22	21	19	
Well-30	88-4	8842	none	3,842	33	25	19	32	
Well-31	86-1	8611	none	3,946	38	23	20	52	
Well-32	84-0	8404	none	4,044	46	34	15	53	
Well-33	78-8	7880	4.257	4,047	61	42	17	54	
Well-34	92-9	9293	none	2,220	63	50	17	36 54	
Well-35	87-1	8708	none	4,500	35	24	16	31	
Well-36	91-7	9170	4.202	3.997	32	34	22	25	
Well-37	64-0	6399 8988	3,998	3,619	42	34	23	27	
Well-38 Well-39	89-9	8710	3,998 none	3,604	78	45	19	35	
Well-40	83-4	8344	none	2.843	29	25	20	49	
Well-41	69-8	6978	none	3,989	48	40	23	43	
Well-42	77-5	7754	3,952	3,853	15	13	16	48	
Well-43	75-7	7568	none	3,938	25	20	18	62	
Well-44	79-2	7916	none	3.949	46	20	22	52	
Well-45	80-7	8068	none	4,499	32	26	17	28	
Well-46	88-6	8864	none	5,756	78	59	16	46	
Well-47	77-4	7742	4.288	4.266	28	24	21	40	
Well-48	76-6	7660	none	3.765	24	20	19	36 54	
Well-49	79-2	7917	none	4,223	42	36	18	24	
Well-50	68-7	6865	none	3.372	62	27	17	42	
Well-51	72-8	7276	none	3,811	78	58	16	32	
Well-52 Well-53	91-1	9114	4,346	4.293	35	27	16	33	
Well-54	89-4	8943	none	4.070	74	31	15	20	
Well-55	89-1	8906	4.062	4,000	30	22	21	26	
Well-56	75-6	7560	none	3.972	49	32	16	52	
Well-57	87-6	8757	3.663	3.555	120	92	19	22	
Well-58	88-9	8894	none	3,258	49	32	16	57	
Well-59	88-8	8877	none	5,596	68	45	18	45	
Well-60	69-2	6921	none	3.376	56	41	17	51	
Well-61	78-2	7815	none	3,908	49	30	20	54	
Well-62	70-8	7084	none	3.738	75	56	20 15	62	
Well-63	81-2	8121	none	4,259	55	16	18	43	
Well-64	92-0	9199	none	4,053	48	42	14	38	
Well-65	89-5	6397	3,178	3,142	78	61	21	28	
	64-0	0341	3.170	2,174	765			_	
Well-66	81.3	8130	pone	4.230	23	19	18	46	
Well-67 Well-68	81-3 71-4	8130 7141	none	4.230 3.024	23	32	18	46	

3.1 Perforation of Gas Wells

In the Gulf of Thailand, the underbalance pressure perforation technique is commonly applied, in order to achieve the lower completion or perforation skin. The lower skin helps maximize the production rate and also reduce the abandonment pressure, resulting in a higher recovery efficiency. The underbalance condition can be achieved by:

- Swabbing fluid out of the well by the wireline swabbing cup, lowering the fluid column, as a result, lowering the hydrostatic pressure on the reservoir face.
- Displacing with low density of completion fluid (saraline, base oil), to lower the hydrostatic pressure on the reservoir face.
- Flowing the well by opening the choke and drawing the pressure down in the wellbore.
- 4. Leaving the naturally existing underbalance when $P_{Reservoir} > P_{Wellbore}$
- Injecting gas (N2 or produced gas) to lift into annulus and unloading completion fluid via gas lift valve. This method is typically applied in oil wells.

To obtain the desired underbalance condition, the swabbing technique seems to be the most popular choice comparing to others since it is the cheapest and fastest execution. However, the wireline unit is capable of swabbing liquid down to a certain level, depending on well deviation, due to tension limitation. If the desired depth is deeper than the limit, a coiled tubing unit might be required for gas lifting which is more expensive.

Table 3.2 contains the data related to swabbing operation and perforation for all 70 wells chosen in this study. All wells were filled with 3% KCL completion fluid which exerts a hydrostatic weight of 8.6 ppg.

All wells were perforated with underbalance pressure varying from 185 to 1792 psi, with an average of 865 psi. Fifty wells out of seventy wells achieved the underbalance condition by swabbing at depth between 500 to 6100 feet (measured depth). The completion fluids of other twenty wells were not swabbed out; however, the underbalance conditions were still achieved due to naturally existing underbalance condition.

Speaking of gun assembly, charge type is the only parameter that has sufficient variation of data for evaluation. Other parameters such as gun size, slot density, phasing, and explosive cannot be evaluated because the ranges of the data values are too narrow.

Fifteen gas reservoirs out of seventy were perforated full-to-base without any gap. These fifteen wells were completed using an old fashion strategy based on the idea of lowering the pressure drop across the sand face as much as possible in order to maximize the recovery. However, many operators in the Gulf of Thailand experienced many problems, especially water shut-off related issues, in full-to-base perforated gas reservoirs. The longer the perforated interval, the more difficulty the water shut-off can be performed.

To shut the water off, the long perforated interval may require expensive chemical treatment, such as cement squeeze or polymer treatment, instead of cheaper mechanical shut-off, such as permanent or retrievable tubing patch.

The other fifty five gas reservoirs out of seventy were partially perforated. At this moment, partial perforation now becomes the best practice for all gas wells in the Gulf of Thailand. The short interval of partial perforation eliminates or reduces the difficulty for future remedial well work, especially water shut-off. However, this partial perforation causes an additional skin, called partial penetration skin, as mentioned in the previous chapter.

Table 3.2: Swabbing depths and perforation information.

1777 to 18		Swabbing	Depth, ft	Under	Gun Assembly					Perf	orated
Well	Res. Name	measured depth, ft	true vertical depth, ft	balance pressure, psi	Gun size, inch	Charge Type	Shot Density	Phasing	Explosive	ft MD	ft TVD
Well-01	68-8	5,600	3,558	1523	2-1/8"	Predator XP	6	60	HMX	8	5.0
Well-02	82-4	0	0	1281	2-1/8"	Power Jet	6	60	HMX	15	12.2
Well-03	92-4	0		884	2-1/8"	Power Jet	4	60	HMX	10	9.0
Well-04 Well-05	95-6 75-6	2050	1516	1043	2-1/8"	Power Jet Owen Hero	6	60	HMX	24	17.5
Well-06	69-2	4030	2673	1171	2-1/8"	Owen Hero	6	60	HMX	20	16.0
Well-07	81-7	0	0	1198	2-1/8"	Owen Hero	6	60	HMX	14	7.8
Well-08	63-4	1,250	1,164	524	2-1/8"	Predator	6	60	HMX	9	7.2
Well-09	89-5	0	0	1565	2-1/8"	Power Jet	6	60	HMX	9	6.2
Well-10	52-2	1,000	982	344	2-1/8"	Predator	5	60	HMX	40	6.4 31.8
Well-11 Well-12	55-8	1,200	1,200	594 447	2-1/8"	Predator Predator	6	60	HMX	9	7.5
Well-13	59-1	1,200	1,168	424	2-1/8"	Power Jet	6	60	HMX	18	16.6
Well-14	72-7	1,044	993	951	2-1/8"	Power Jet	6	60	HMX	29	19.8
Well-15	75-5	5,000	3,104	1565	2-1/8"	Power Jet	6	60	HMX	40	34.4
Well-16	60-8	1,250	1,215	622	2-1/8"	Power Jet	6	60	HMX	61	47.0
Well-17	59-2	1,200	1,195	653	2-1/8"	Power Jet	6	60	HMX	27	32.7
Well-18 Well-19	81-6	1,160	1,160	615 685	2-1/8"	Power Jet Power Jet	6	60	HMX	20	14.8
Well-20	72-9	2057	1707	1131	2-1/8"	Power Jet	6	60	HMX	31	22.0
Well-21	73-0	0	0	377	2-1/8"	Power Jet	6	60	HMX	15	11.0
Well-22	78-2	974	959	320	2-1/8"	Predator	5	60	HMX	36	26.3
Well-23	59-4	5,500	3,658	385	2-1/8"	Power Jet	6	60	HMX	18	14.9
Well-24	88-3	1,021	1,021	471	2-1/8"	Power Jet	5	60	HMX	9	6.9
Well-25 Well-26	71-0 65-3	1,200 3,060	1,092 2,213	869 1430	2-1/8"	Owen Hero	6	60	HMX	20	14.6
Well-27	57-0	1,200	1,000	349	2-1/8"	Owen Hero	6	60	HMX	5	3.0
Well-28	80-6	0	0	709	2-1/8"	Power Jet	6	60	HMX	30	18.7
Well-29	92-5	5,500	3,835	285	2-1/8"	Predator	5	60	HMX	18	14.7
Well-30	88-4	1,010	1,004	337	2"	Predator	5	60	HNS	18	13.6
Well-31	86-1	1,000	982	535	2-1/8"	Power Jet	6	60	HMX	38	23.0
Well-32	84-0	1,300	1,246	843 1054	2-1/8"	Predator	6	60	HMX	46 30	34.0
Well-33 Well-34	78-8	720 5,500	718 4,743	185	2"	Owen Hero Predator	5	60	HNS	14	11.1
Well-35	87-1	3,300	0	606	2-1/8"	Power Jet	6	60	HMX	20	13.7
Well-36	91-7	3,320	3,183	1525	2-1/8"	Power Jet	6	60	HMX	32	11.0
Well-37	64-0	5,500	4,765	982	2-1/8"	Power Jet	6	60	HMX	30	26.8
Well-38	89-9	4,150	3,453	1523	2-1/8"	Predator XP	6	60	HMX	10	8.1
Well-39	87-1	6.100	3,561	1301	2-1/8"	Predator XP	5	60	HMX	45	17.2
Well-41	69-8	5,000	3,229 1,024	555 1327	2-1/8"	Predator Predator	5	60	HMX	9	7.5
Well-42	77-5	2,800	2.307	1516	2-1/8"	Owen Hero	6	60	HMX	7	6.1
Well-43	75-7	0	0	554	2-1/8"	Predator	6	60	HMX	25	20.0
Well-44	79-2	1,000	996	855	2-1/8"	Predator	6	60	HMX	46	20.0
Well-45	80-7	550		1137	2-1/8"	Predator	5	60	HMX	20	16.3
Well-46	88-6	0				Power Jet	6	60	HMX	30	22.7 18.0
Well-47	77-4	2000		1587	2-1/8"	Power Jet Predator	5	60	HMX	18	15.0
Well-48 Well-49	79-2	2020				Predator	5	60	HMX	27	23.1
Well-50	68-7	0				Owen Hero	6	60	HMX	18	14.2
Well-51	72-8	2000	1724	1328	2-1/8"	Predator XP	6	60	HMX	8	4.9
Well-52	68-6	1000			2-1/8"	Predator XP	6	60	HMX	9	6.7
Well-53	91-1	3500		1342		Predator XP	6	60	HMX	40	6.2
Well-54	89-4	3500			1-9/16"	Predator XP Predator XP	6	60	HMX	10	7.3
Well-55 Well-56	89-1 75-6	2100			2-1/8"	Power Jet	6	60	HMX	10	6.5
Well-57	87-6	2000		640		Power Jet	6	60	HMX	80	61.3
Well-58	88-9	2500				Power Jet	6	60	HMX	49	32.0
Well-59	88-8	0				Power Jet	6	60	HMX	30	19.9
Well-60	69-2	0				Power Jet	6	60	HMX	56	41.0
Well-61	78-2	500				Power Jet	6	60	HSD	75	30.0 56.0
Well-62 Well-63	70-8 81-2	0				Power Jet Power Jet	6	60	HSD	29	16.0
Well-64	92-0	2500			2-1/8"	Power Jet	6	60	HSD	55	43.0
Well-65	89-5	0			2-1/8"	Predator	5	60	HMX	40	35.0
Well-66	64-0	0		317	2-1/8"	Power Jet	6	60	HMX	40	31.3
Well-67	81-3	1000			2-1/8"	Power Jet	6	60	HMX	8	6.6
Well-68	71-4	1500				Predator	6	60	HMX	27	21.1
Well-69	72-3	3000				Predator Predator	6	60	HMX	24	33.1

3.2 Pressure Transient (Well Test) Analysis

To evaluate the perforation strategies of gas wells in the Gulf of Thailand, seventy pressure transient tests were interpreted for permeability, total skin, non-Darcy skin coefficient, and pressure drop due to skin. The results from these pressure transient analyses were then used along with other parameters, such as gas reservoir properties and underbalance condition, for perforation evaluation.

In this study, PanSystem version 3.1.1 software was used for all seventy pressure transient analyses. Suitable models were chosen based on the characteristic of the pressure responses. Rate dependent skin coefficient (D) can also be incorporated, by trial and error, into each model for better matching between actual and model pressure responses. The trial and error was performed by changing the Rate Dependent Skin Coefficient in order to match pressure transient data acquired in different flow periods. However, the rate dependent skin factor sometimes cannot be simply obtained from the trial and error approach. In this case, the rate dependent skin plot is required for Rate Dependent Skin Coefficient determination.

The details of pressure transient analysis, including test overview, log-log and semi-log plots, and rate dependent skin plot (if available), of each perforated gas reservoir is presented in Appendix A. The summary of interpreted results of all pressure transient analyses is presented in Table 3.3.

In addition, by using the total pressure drop and pressure drop due to total skin from the pressure transient analysis, the flow efficiency then can be calculated. These results are shown in Table 3.3. These flow efficiencies were calculated based on total skin. So, these flow efficiencies do not represent perforation performance of gas wells.

Table 3.3: Results of pressure transient analyses.

		_			Pressure Transient Analyses Non-Darcy			Towns D	1000 Carlo 1000 Carlo	Flow
Well	Res. Name	Main Gas Flow Rate, MMscfd	Permeability (k), md	Total Skin	Coefficient, 1/(Mscf/day)	Skin	Initial Pressure, psi	Total Pressure Drop, psi	Pressure Drop from Total Skin, psi	Efficiency,
Well-01	68-8	0.40	1.65	0.52	0.00000	0.0	2,901	1,598	117	939
Well-02	82-4	4.86	2.98	4.97	0.00000	0.0	4,780	3,277	1,552	539
Well-03 Well-04	92-4	0.85	1.77	21.43 19.50	0.00000	0.0	5,017	3,727	2,923 2,905	229 269
Well-05	75-6	6.66	9.07	8.67	0.00030	2.0	3,790	2,714	922	665
Well-06	69-2	6.02	16.60	3.05	0.00025	1.5	2,721	801	253	685
Well-07	81-7	3.03	4.30	3.60	0.00003	0.1	4,254	3,090	1,268	599
Well-08	63-4	13.10	520.00	101.13	0.00310	40.6	2,835	239	224	69
Well-09	89-5	7.03	9.06	6.89	0.00015	74.5	5,504 2,238	3,277	1,697	489
Well-10 Well-11	55-8	12.00	850.00 250.00	6.60	0.00621	0.8	2,514	67	27	599
Well-12	56-1	14.80	850.00	45.30	0.00026	3.8	2,440	91	59	359
Well-13	59-1	14.40	700.00	23.00	0.00000	0.0	2,545	222	79	65%
Well-14	72-7	11.70	28.00	17.50	0.00060	7.0	3,757	1,187	787	34%
Well-15	75-5	13,25	100.00	16.20	0.00142	18.8	3,555	220	145	34% 70%
Well-16 Well-17	59-2	15.00 14.80	160.00 152.80	5.50	0.00020	3.0	2,799	105	29	70%
Well-18	61-0	13.30	123.00	5.80	0.00024	3.2	2,826	198	84	58%
Well-19	81-6	3.00	100.00	10.00	0.00000	0.0	4,334	90	48	46%
Well-20	72-9	9.10	8.90	-0.95	0.00000	0.0	3,629	1,252	-232	119%
Well-21	73-0	6.64	18.34	15.00	0.00000	0.0	3,640	1,781	1,356	24% 88%
Well-22 Well-23	78-2 59-4	9.12	70.00 80.00	2.00 6.60	0.00000	0.0	3,389 1,404	168 297	115	61%
Well-24	88-3	9.10	14.00	14.30	0.00000	0.0	3,964	1,458	904	38%
Well-25	71-0	8.80	13.00	14.25	0.00000	0.0	3,555	1,698	1,167	31%
Well-26	65-3	13.60	40.00	23.80	0.00000	0.0	3,261	630	463	27%
Well-27	57-0	3.51	65.00	135.00	0.00000	0.0	2,209	1,409	1,344	5%
Well-28	92-5	7.66	1.66	16.86	0.00000	0.0	4,315 2,705	3,624	2,658 57	279 709
Well-29 Well-30	88-4	8,71	15.10	8.90	0.00000	0.0	3,842	1,676	784	53%
Well-31	86-1	8.55	83.00	1.00	0.00000	0.0	3,946	360	14	965
Well-32	84-0	0.82	0.17	2.40	0.00000	0.0	4,044	2,975	1,378	54%
Well-33	78-8	3.50	1,86	7.07	0.00000	0.0	4,047	2,920	1,578	46%
Well-34	92-9	5.45	80.00	127.71	0.00050	0.0	2,220 4,500	1,035	967 94	7%
Well-35 Well-36	91-7	5.00 4.20	70,00	-2.20	0.00000	0.0	3,997	2.088	-569	127%
Well-37	64-0	4.05	81.68	3.10	0.00000	0.0	1,712	78	22	72%
Well-38	89-9	14.48	200.00	13.60	0.00000	0.0	3,619	342	114	679
Well-39	87-1	13.93	50.00	1.40	0.00000	0.0	3,604	234	2.7	88%
Well-40	83-4	7.87	31.36	7.15	0.00000	0.0	2,843 3,989	792	355 170	55% 25%
Well-41 Well-42	77-5	10.30 4.50	104.27	26.02	0.00001	0.0	3,853	2,656	695	74%
Well-43	75-7	1.66	3.00	15.50	0.00000	0.0	3,938	3,166	2,368	25%
Well-44	79-2	6.10	7.10	3.30	0.00000	0.0	3,949	1,761	590	67%
Well-45	80-7	6.83	3,80	3.40	0.00000	0.0	4,499	2,538	945	639
Well-46	88-6	6.00	30.00		0.00500	30.0	5,756	530		739
Well-47 Well-48	77-4 76-6	11.11	183.71 24.18	2.76	0.00001	3.0	4,266 3,765	116 991	31 234	769
Well-49	79-2	4.00	1,81	1.92	0.00028	0.0	4,223	2,459		75%
Well-50	68-7	9.10	60,00		0.00000	0.0	3,372	1,336	1,066	209
Well-51	72-8	1.80	2.77		0,00000	0.0	3,811	2,972	2,419	195
Well-52	68-6	11.10	60.00		0.00000	0.0	3,447	959		95
Well-53	91-1	9.80	16.00 39.00		0.00000	0.0	4,293 4,070	1,883	1,326	305
Well-54 Well-55	89-4	15.87	633.00		0.00200	33.4	4,000	188	139	269
Well-56	75-6	3.93	20.00		0.00000	0.0	3,972	2,615	2,442	75
Well-57	87-6	15.30	300.00	30.00	0.00010	1.5	3,555	122	62	499
Well-58	88-9	7.23	43.00		0.00000	0.0	3,258	806		315
Well-59	88-8	5.00	60.00		0.00000	0.0	5,596 3,376	2,678	139	499
Well-60 Well-61	69-2 78-2	7.41	1,20 410,55		0.00000	0.0	3,576	163	51	695
Well-62	70-8	8.22	19.00		0.00000	0.0	3,738	1,460		529
Well-63	81-2	2.79	4.40	9.30	0.00000	-0.0	4,259	3,078	1,982	365
Well-64	92-0	11.70	27.68		0.00000	0.0	4,053	559		525
Well-65	89-5	2.10	0.95		0.00000	0.0	4,913	3,810		309
Well-66	64-0	15.20	65.00		0.00001	0.2	3,142 4,230	268	156 1,129	425
Well-67 Well-68	81-3 71-4	7.78	13.65 58.00	8.96 19.98	0.00000	0.0	3,024	612		305
Well-69	72-3	8.00	18.87	-	0.00150	12.0		1,280		299

Figure 3.4 shows the histogram reservoir permeabilities which obtained from pressure transient analyses. The mean and the standard deviation of permeability are 102.45 and 188.51, respectively.

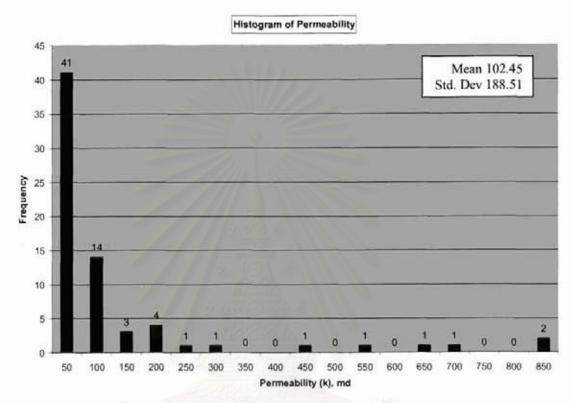


Figure 3.4 Histogram of permeability.

In addition, the relationship of reservoir permeability and porosity was also obtained as shown in Figure 3.5. From the trend line, which has coefficient of determination (R²) at 0.4754, the permeability can be estimated for any reservoir porosity by the following equation:

$$k = 0.0141e^{40.329\phi}$$
 [3.1]

where

k = average reservoir permeability, md

 $\phi = \text{gas reservoir porosity, } \%$

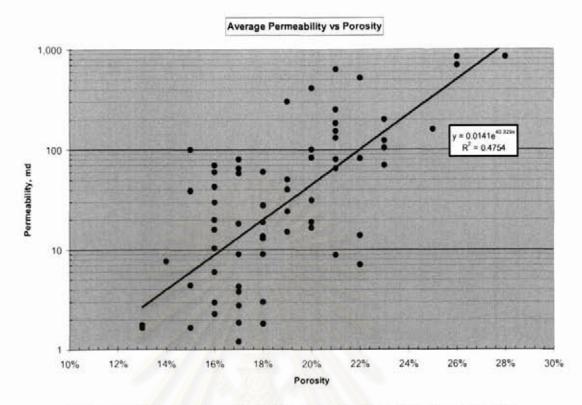


Figure 3.5: Average permeability versus porosity of 70 gas reservoirs.

3.2.1 Skin and Corrected Flow Efficiency for Perforated Gas Wells

In addition to non-Darcy skin, partial penetration skin was calculated from wellbore configuration, perforation interval, and an assumption of reservoir permeability ratio (k_1/k_h) of 0.2, using four correlations as described in Chapter 2. The calculated value from each correlation and the average value are presented in Table 3.4

To obtain the skin that represents the performance of perforation, the average partial penetration skin and non-Darcy skin were then subtracted from the total skin estimated from pressure transient analysis. Finally, the corrected flow efficiency can be determined from the pressure drop due to perforation skin using Equation 2.16.

To evaluate the perforation strategy, the impact of underbalance pressure on flow efficiency and skin was analyzed. The effect of reservoir porosity and charge type would also be discussed.

Table 3.4: Calculated partial penetration skin and corrected data.

				d Partial Penet		-		Corrected Data	
Well	Res. Name	Brons & Marting	Odeh	Yeh & Reynolds	Papatzacos	Avg	Perforation Skin	Pressure Drop due to Perforation Skin, psi	Flow Efficiency %
Well-01	68-8	0.00	0.00	0.00	0.00	0.00	0.52	117	93%
Well-02	82-4	2.94	3.68	3.02	3.16	3.20	1.77	553	839
Well-03 Well-04	92-4	3.52	3.87	3.59	3.73	3.75	17.68	2.412	359 399
Well-04 Well-05	75-6	2.03	2.84	2.11	3.64 2.26	2.31	4.36	464	839
Well-06	69-2	0.79	1.37	0.82	0.96	0.99	0.54	45	949
Well-07	81-7	0.72	1.21	0.76	0.90	0.90	2,61	920	709
Well-08	63-4	18.22	18.90	18.74	18.72	18.65	41.87	93	61%
Well-09	89-5	2.31	2.86	2.39	2.54	2.53	3.33	821	75%
Well-11	52-2 55-8	23.17	23.85 4.25	3.26	23.73	3.52	5.85	7	95% 86%
Well-12	56-1	24.54	25.27	25.15	25.10	25.02	16.44	21	76%
Well-13	59-1	1.35	2.06	1.41	1.56	1.59	21,41	73	67%
Well-14	72-7	1.53	2.30	1.59	1.74	1.79	8.69	391	67%
Well-15	75-5	1.81	2,75	1.88	2.03	2.11	-4.73	-42	1199
Well-16	60-8	0.00	0.00	0.00	0.00	0.00	-0.80	-8	111%
Well-17 Well-18	59-2	1.35	3.66 2.10	2.70	2.85 1.56	2.96	2.54	14	93%
Well-19	81-6	1.15	1.81	1.20	1.35	1.38	8.62	42	54%
Well-20	72-9	0.00	0.00	0.00	0.00	0.00	-0.95	-232	119%
Well-21	73-0	2.57	3.28	2.65	2.80	2.82	12.18	1.101	38%
Well-22	78-2	1.79	2.66	1.86	2.01	2.08	-0.08	-1	100%
Well-23	59-4	0.88	1.47	0.91	1.05	1.08	5.52	96	68%
Well-24	88-3	6.68	7.50	6.76	6.87	6.95	7.35	464	68%
Well-25 Well-26	71-0 65-3	13.89	14.46	14.26	14.27	14.22	9.47	184	71%
Well-26	57-0	27.00	27.57	27.42	14.26 27.38	27.34	107.66	1,072	24%
Well-28	80-6	1.88	2.69	1.96	2.11	2.16	14.70	2,318	36%
Well-29	92-5	1.76	2.50	1.83	1.98	2.02	3.07	32	83%
Well-30	88-4	3.18	3.96	3.26	3.40	3.45	5.45	481	71%
Well-31	86-1	0.00	0.00	0.00	0.00	0.00	1.00	14	96%
Well-32	84-0	0.00	0.00	0.00	0.00	0.00	2.40	1.378	54% 83%
Well-33 Well-34	78-8	14.90	15.72	4.59 15.25	4.72 15.26	4.83	109.70	500 830	20%
Well-35	87-1	2.81	3.59	2.89	3.03	3.08	6.92	65	61%
Well-36	91-7	0.00	0.00	0.00	0.00	0.00	-2.20	-569	127%
Well-37	64-0	0.99	1,69	1.02	1.17	1.22	1.88	13	83%
Well-38	89-9	12.53	13.15	12.83	12.86	12.84	0.76	6	98%
Well-39	87-1	3.20	4.21	3.28	3,43	3.53	-2.13	-42	118%
Well-40 Well-41	69-8	1.62	17.66	1.69	1.84	1.89	5.27 8.52	261 56	76%
Well-42	77-5	3.66	4.17	3.74	3.87	3.86	-1.46	-422	116%
Well-43	75-7	0.00	0.00	0.00	0.00	0.00	15.50	2.368	25%
Well-44	79-2	0.00	0.00	0.00	0.00	0.00	3.30	590	67%
Well-45	80-7	2.25	3.06	2.33	2.48	2.53	0.87	242	90%
Well-46	88-6	7.53	8.60	7.61	7.72	7.86	3.71	40	92%
Well-47	77-4	1.15	1.84	1.20	1.35	1.38	2.59	20	83% 113%
Well-48 Well-49	76-6	2.25	3.15	2.33	1.29	2.55	-1.52 -0.68	-129 -218	109%
Well-50	68-7	10.76	11.63	10.93	11.00	11.08	72.92	925	31%
Well-51	72-8	15.78	16.30	16.28	16.26	16.16	6.84	720	76%
Well-52	68-6	30.57	31.18	31.10	31.06	30.98	50.52	543	43%
Well-53	91-1	12.35	12,85	12.68	12.70	12.65	3.35	278	85%
Well-54	89-4	3.43	4,29	3.50	3.65	3.72	1.25	59	90%
Well-55 Well-56	89-1 75-6	7.34	7.85	7.45 15.06	7.54 15.06	7.54	-4.44 79.68	2.055	21%
Well-57	87-6	2.47	3.66	2.55	2.70	2.85	25.62	53	56%
Well-58	88-9	0.00	0.00	0.00	0.00	0.00	23.50	554	31%
Well-59	88-8	5.64	6.61	5.71	5.83	5.95	4.05	56	79%
Well-60	69-2	0.00	0.00	0.00	0.00	0.00	4.90	1,491	44%
Well-61	78-2	0.00	0.00	0.00	0.00	0.00	20.22	51	69%
Well-62	70-8	0.00	0.00	0.00	0.00	0.00	18.00	701 1,982	52% 36%
Well-63 Well-64	91-2 92-0	0.00	0.00	0.00	0.00	0.00	9.30 7.17	1,982	52%
Well-65	89-5	0.77	1.42	0.78	0.91	0.97	11.90	2,476	35%
Well-66	64-0	4.49	5.64	4.57	4.71	4.85	7.51	94	65%
Well-67	81-3	6.64	7.11	6.74	6.83	6.83	2.13	269	87%
Well-68	71-4	2.03	2.88	2.10	2.25	2,32	17.56	378	38%

3.3 Relationship between Skin and Underbalance Pressure

Only data for relationship study is re-presented in Table 3.5. The plot between skin versus underbalance pressure is shown in Figure 3.6. Both the total and perforation skins tend to decrease as underbalance pressure increases. However, the total skin values are more scattered. As a result, a relationship between the total skin and underbalance pressure cannot be established. From Figure 3.6, the linear trend line of perforation skin has coefficient of determination (R²) of 0.2104 while the coefficient of determination for the total skin is only 0.0277.

As described in Chapter 2, the total skin is the combination of various skin factors: non-Darcy skin, partial penetration skin, perforation skin, and other pseudo skin factors. Non-Darcy skin is a rate dependent factor while partial penetration skin is a penetration ratio dependent factor. So, both non-Darcy and partial penetration skins are not function of underbalance pressure.

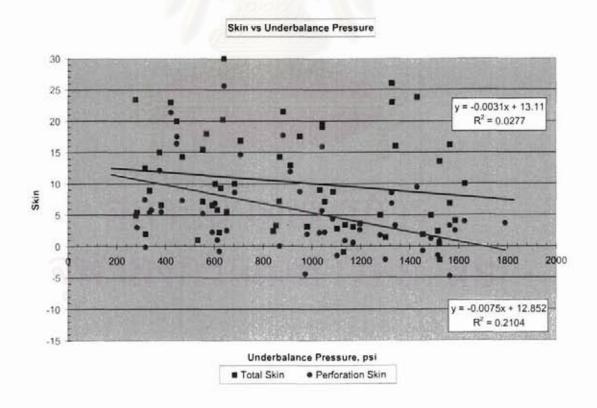


Figure 3.6: Total skin and perforation skin versus underbalance pressure.

Table 3.5: Information for relationship study.

	Gas Reservoir Pro		ir Properties	amorece a	Pressure Transie	nt Analyses		
Well	Res. Name	Porosity, %	Sw, %	Under balance pressure, psi	Permeability (k), md	Total Skin	Perforation Skin	Corrected Flow Efficiency, %
Well-01	68-8	13	58	1523	1.65	0.52	0.52	93%
Well-02	82-4	16	62	1281	2.98	4.97	1.77	83%
Well-03 Well-04	92-4	13	39	1043	1.77	19.50	17.68	35%
Well-05	75-6	18	45	1043	9.07	8.67	4.36	83%
Well-06	69-2	20	26	1171	16.60	3.05	0.54	94%
Well-07	81-7	17	38	1198	4.30	3.60	2.61	70%
Well-08	63-4	22	28	524	520.00	101.13	41.87	61%
Well-09 Well-10	89-5 52-2	17 28	23	1565	9.06 850.00	6.89	3.33 5.85	75% 95%
Well-11	55-8	21	10	594	250.00	6.60	2.29	86%
Well-12	56-1	26	32	447	850.00	45.30	16.44	76%
Well-13	59-1	26	16	424	700.00	23.00	21.41	67%
Well-14 Well-15	72-7	18 20	52	951 1565	28.00	17.50	8.69 -4.73	67%
Well-15	60-8	25	23	622	160.00	2.20	-0.80	111%
Well-17	59-2	21	41	653	152.80	5.50	2.54	87%
Well-18	61-0	23	31	615	123.00	5.80	1.00	93%
Well-19	81-6	15	52	685	100.00	10.00	8.62 -0.95	54% 119%
Well-20 Well-21	72-9	17	25 50	1131	8.90 18.34	15.00	12.18	38%
Well-22	78-2	23	37	320	70.00	2.00	-0.08	100%
Well-23	59-4	21	36	385	80.00	6.60	5.52	68%
Well-24	88-3	22	47	471	14.00	14.30	7,35	68%
Well-25	71-0	18	52 30	869 1430	13.00	23.80	9.47	71%
Well-26 Well-27	65-3 57-0	17	47	349	65.00	135.00	107.66	24%
Well-28	80-6	15	45	709	1.66	16.86	14.70	36%
Well-29	92-5	21	19	285	130.73	5.43	3.07	83%
Well-30	88-4	19	32	337	15.10	8.90	5,45	71%
Well-31 Well-32	86-I 84-0	20 15	52	535 843	83.00	2.40	2.40	96%
Well-33	78-8	17	54	1054	1.86	7.07	2.24	83%
Well-34	92-9	17	36	185	80.00	127.71	109.70	20%
Well-35	87-1	16	54	606	70.00	10.00	6.92	61%
Well-36	91-7	14 22	31	1525	7.69 81.68	-2.20 3.10	-2,20 1,88	127% 83%
Well-37 Well-38	64-0 89-9	23	25	1523	200.00	13.60	0.76	98%
Well-39	87-1	19	35	1301	50.00	1.40	-2.13	118%
Well-40	83-4	20	49	555	31,36	7.15	5,27	67%
Well-41	69-8	23	43	1327	104.27	26.02	8.52	76%
Well-42 Well-43	77-5	16	62	1516 554	6.00 3.00	2.40 15.50	-1.46 15.50	116% 25%
Well-44	79-2	22	52	855	7.10	3.30	3.30	
Well-45	80-7	17	28	1137	3.80	3.40	0.87	90%
Well-46	88-6	16	46	1792	30.00	41.58	3.71	92%
Well-47 Well-48	77-4 76-6	19	40 36	1587	183.71 24.18	4.11 2.76	2.59 +1.52	83%
Well-49	79-2	18	54	1454	1.81	1.92	-0.68	109%
Well-50	68-7	18	24	302	60.00	84.0	72.92	31%
Well-51	72-8	17	42	1328	2.77	23.00	6.84	76%
Well-52	68-6	16	32	1342	60.00 16.00	81.50 16.00	50.52 3.35	43% 85%
Well-53 Well-54	91-1 89-4	16 15	20	1342	39.00	4.97	1.25	90%
Well-55	89-1	21	26	974	633.00	36.50	4.44	109%
Well-56	75-6	16	52	591	20.00	94.67	79.68	21%
Well-57	87-6	19	22	640	300.00	30.00 23.50	25.62 23.50	56% 31%
Well-58 Well-59	88-9 88-8	16	57 45	279 1626	43.00	10.00	4.05	79%
Well-60	69-2	17	51	280	1.20	4.90	4.90	44%
Well-61	78-2	20	42	637	410.55	20.22	20.22	69%
Well-62	70-8	20	54	570	19.00	18.00	18.00	
Well-63 Well-64	81-2 92-0	15 18	62 43	627 867	4.40 27.68	9.30 7.17	9,30	36% 52%
Well-65	89-5	14	38	912	0.95	12.87	11.90	35%
Well-66	64-0	21	28	317	65.00	12.51	7.51	65%
Well-67	81-3	18	46	1033	13.65	8.96	2.13	87%
Well-68	71-4	17	43	449	58.00	19.98	17.56	38%

From Figure 3.6, the relationship between perforation skin and underbalance pressure can be established as follows:

$$S_{perforation} = -0.0075\Delta p + 12.852$$
 [3.2]

where

 Δp = underbalance pressure, psi

From Figure 3.6 and Equation 3.2, perforation skin less than 5 or even negative in some cases, can be achieved with underbalance pressure higher than 1,000 psi. In addition, the zero perforation skin can be obtained at an underbalance pressure of 1714 psi.

To better understand the effect of underbalance pressure on the perforation skin, the data were divided into two groups based on porosity. Based on all 70 gas reservoirs of interest data, trial and error was performed to identify the best porosity cutoff. Eighteen percent porosity yields the best average coefficient of determination for both groups of data as shown in Table 3.6.

Table 3.6: Coefficient of determination, R², of each porosity cutoff on perforation skin versus underbalance pressure.

Porosity cutoff, %	Coefficient of determination, R ²					
	Lower or equal to cutoff	Higher than cutoff				
17	0.4431	0.1112				
18	0.4503	0.1276				
19	0.3682	0.1247				
20	0.3620	0.1054				

Figure 3.7 was plotted using the same perforation skin data set as presented earlier in Figure 3.6, but the data were divided into two groups based on 18% porosity cutoff which has the best average coefficient of determination. The blue points represent data with porosity less than or equal to 18% (tight reservoirs) which have the coefficient of determination (R²) of 0.4503, while others with porosity higher than 18% (porous reservoirs) are shown in red which have the coefficient of determination

(R²) of 0.1276. Both categories indicate that the perforation skin decrease as underbalance pressure increases but with a different trend as shown in blue and red straight lines. The blue line is steeper than the red one indicating that underbalance pressure has more impact on the perforation skin in the case of lower reservoir porosity.

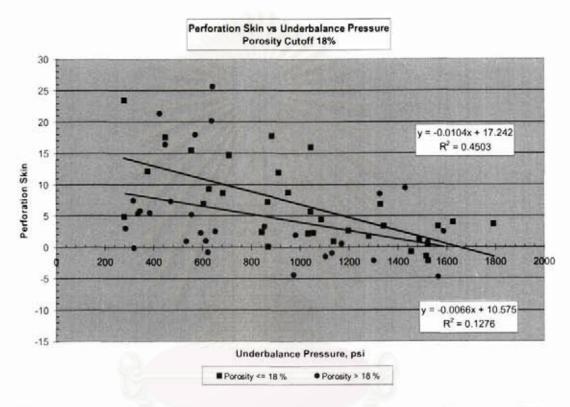


Figure 3.7: Perforation skin versus underbalance pressure - cutoff porosity of 18%.

From Figure 3.7, the linear relationship between perforation skin and underbalance pressure (Δp) for tight reservoir (porosity, $\phi \leq 18\%$) and porous reservoir (porosity, $\phi > 18\%$) can be established as follows:

For
$$\phi \le 18\%$$
, Perforation $Skin = -0.0104\Delta p + 17.242$ [3.3]

For
$$\phi > 18\%$$
, Perforation $Skin = -0.0066\Delta p + 10.575$ [3.4]

From Equations 3.3 and 3.4, to achieve zero perforation skin, 1658 and 1602 psi underbalance pressure is required for tight and porous reservoirs.

3.4 Relationship between Corrected Flow Efficiency and Underbalance Pressure

According to the previous section, the higher the underbalance the higher corrected flow efficiency will be. This section describes more details on the relationship between underbalance pressure and corrected flow efficiency.

Figure 3.8 illustrates the relationship between corrected flow efficiency and underbalance pressure for 70 perforated gas reservoirs. The underbalance pressure of 185 to 1800 psi results in flow efficiency ranging from 12% to almost 130%. Although the data points are relatively scattered, an increasing trend can be observed. The trend indicates, as expected, that the higher the underbalance pressure, the higher the flow efficiency can be achieved. With a higher underbalance pressure, the degree of reservoir damage from perforation can be reduced and consequently resulting in a higher flow efficiency.

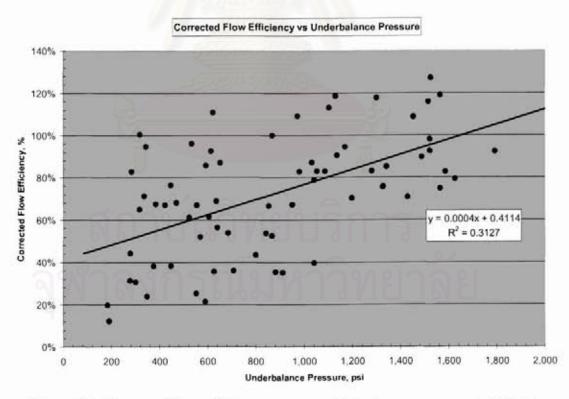


Figure 3.8: Corrected flow efficiency versus underbalance pressure – all 70 gas reservoirs of interest.

According to the trend line, a 50% corrected flow efficiency can be obtained by an underbalance pressure of 222 psi while a 100% efficiency or zero-perforation skin requires an underbalance pressure of 1472 psi. However, without underbalance pressure condition while perforation (perforate the gas reservoir at the equivalent pressure between reservoir and the wellbore), the corrected flow efficiency will be only 43%.

Based on all 70 gas reservoirs of interest data, as shown in Figure 3.8, the linear relationship between corrected flow efficiency (CFE) and underbalance pressure (Δp) can be established as follows:

$$CFE = 0.0004\Delta p + 0.4114$$
 [3.5]

However, the coefficient of determination (R²) is only 0.3127 and the linear trend line in Figure 3.8 does not well represent all 70 gas reservoirs of interest. To better understand the effect of underbalance pressure on the corrected flow efficiency, the data were divided into two groups based on porosity. Similar to the previous section, trial and error was performed again to identify the best porosity cutoff. The same porosity of eighteen percent yields the best average coefficient of determination for both groups of data as shown in Table 3.7.

Table 3.7: Coefficient of determination, R², of each porosity cutoff on corrected flow efficiency versus underbalance pressure.

Porosity cutoff, %	Coefficient of determination, R ²					
	Lower or equal to cutoff	Higher than cutoff				
17	0.1870	0.6435				
18	0.1900	0.6980				
19	0.1719	0.6161				
20	0.0844	0.5661				



Figure 3.9: Corrected flow efficiency versus underbalance pressure – cutoff porosity of 18%.

Figure 3.9 was plotted using the same data set as presented earlier in Figure 3.8, but the data were divided into two groups based on 18% porosity cutoff which has the best average coefficient of determination. The blue points represent data with porosity less than or equal to 18% (39 tight reservoirs) which have the coefficient of determination (R²) of 0.698, while others with porosity higher than 18% (31 porous reservoirs) are shown in red which have the coefficient of determination (R²) of 0.19. Both categories indicate that the flow efficiency increase as underbalance pressure increases but with a different trend as shown in blue and red straight lines. The blue line is steeper than the red one indicating that underbalance pressure has more impact on the corrected flow efficiency in the case of lower reservoir porosity.

From Figure 3.9, the linear relationship between corrected flow efficiency (CFE) and underbalance pressure (Δp) for tight reservoir (porosity, $\phi \le 18\%$) and porous reservoir (porosity, $\phi > 18\%$) can be established as follows:

For
$$\phi \le 18\%$$
, $CFE = 0.0006\Delta p + 0.1050$ [3.6]

For
$$\phi > 18\%$$
, $CFE = 0.0002\Delta p + 0.6854$ [3.7]

By increasing the underbalance pressure from 500 to 1200 psi, the corrected flow efficiency doubles from 41% to 83% for the tight gas reservoirs but increases from 79% to only 93% for the porous gas reservoirs. This is because high porosity reservoirs naturally have high flow ability, thus the flow efficiency would only be slightly affected by underbalance pressure conditions, as seen from the less slop of the red line in Figure 3.9.

With equivalent pressure perforation (or zero underbalance pressure at the yintercept shown in Figure 3.9), corrected flow efficiency will be 69% for gas reservoir with porosity higher than 18%, but only 11% for reservoir with porosity equal or lower than 18%.

In summary, porous gas reservoirs that have porosity higher than 18% require lower underbalance pressures compared to tight gas reservoirs to achieve the same corrected flow efficiency.

3.5 Relationship between Underbalance and Permeability

In order to prove whether the published correlations of required underbalance pressure for given reservoir permeability can be used for gas wells in the Gulf of Thailand, the relationship between underbalance pressure and reservoir permeability of all 70 gas reservoirs of interest has been studied and compared with the published correlations.

Figure 3.10 presents the relationship between underbalance pressure and reservoir permeability of all 70 gas reservoirs of interest, but arranged into 3 different groups based on corrected flow efficiency: higher than 60%, 80%, and 100%. Note that the first group is a subset of the second group and that the second is a subset of the third one.

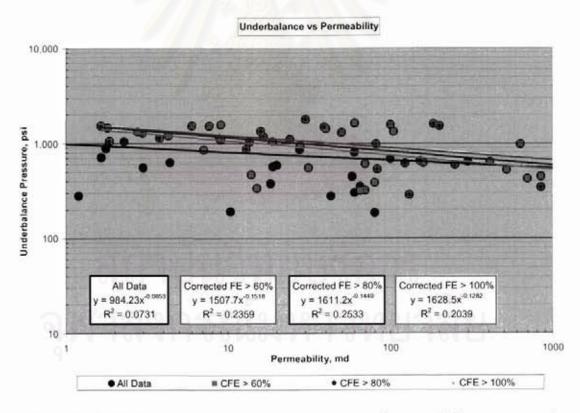


Figure 3.10: Underbalance pressure versus gas reservoir permeability at corrected flow efficiency higher than 60, 80, and 100%.

The coefficient of determination (R^2) of CFE higher than 80% is the highest, having a value of 0.2533, while CFE higher than 60% and 100% has R^2 of 0.2359 and 0.2039, respectively. From trend lines in Figure 3.10, the minimum required underbalance pressure (Δp) to obtain a certain level of corrected flow efficacy (CFE), can be determined as follows:

To obtain
$$CFE > 60\%$$
, $\Delta p = \frac{1507.7}{k^{0.1518}}$ [3.8]

To obtain
$$CFE > 80\%$$
, $\Delta p = \frac{1611.2}{k^{0.1449}}$ [3.9]

To obtain
$$CFE > 100\%$$
, $\Delta p = \frac{1628.5}{k^{0.1282}}$ [3.10]

For any gas reservoir in the Gulf of Thailand, zero or negative perforation skin can be obtained by applying the underbalance pressure calculated from Equation 3.10 based on permeability.

To compare the result obtained from this study with published correlations, Equation 3.10 which represents zero-perforation skin was plotted together with King's and Hsia & Behrmann's correlations as shown in Figure 3.11. However, Equation 3.10 cannot directly be compared with King's correlation which is not entirely correct for zero-perforation skin as mentioned in Chapter 2.

It can be seen from Figure 3.11 that the published correlations cannot be used for Gulf of Thailand's gas reservoirs. It seems that different fields have different requirements for underbalance pressure condition to achieve zero-perforation skin.

In order to achieve zero-perforation skin, Behrmann's correlation requires much higher underbalance pressure for reservoirs that have permeability lower than 90 md, but requires lower underbalance pressure for reservoirs that have permeability higher than 90 md.

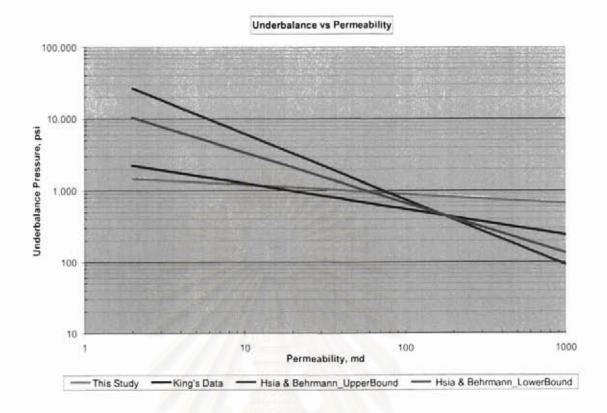


Figure 3.11: Underbalance pressure versus gas reservoir permeability at corrected flow efficiency higher than 100% (zero-perforation skin) compared with King's field correlation and Hsia & Behrmann's correlation.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

3.6 Relationship between Underbalance and Porosity

The average permeability of each gas reservoir is unlikely available before perforation. Even though, for any gas reservoir in the Gulf of Thailand, the average permeability can be estimated by Equation 3.1 but with low accuracy. Typically, the gas reservoir porosity is known by either openhole wireline log or logging while drilling (LWD). So, the perforation plan is practically based on reservoir porosity, but not permeability.

To determine the minimum required underbalance pressure to obtain a certain level of corrected flow efficiency, the underbalance pressures and gas reservoir porosities are plotted in Figure 3.12. The data are arranged into there groups based on the corrected flow efficiency: higher than 60, 80, and 100%. As mentioned before, the first group is a subset of the second group and the second is a subset of the third one.

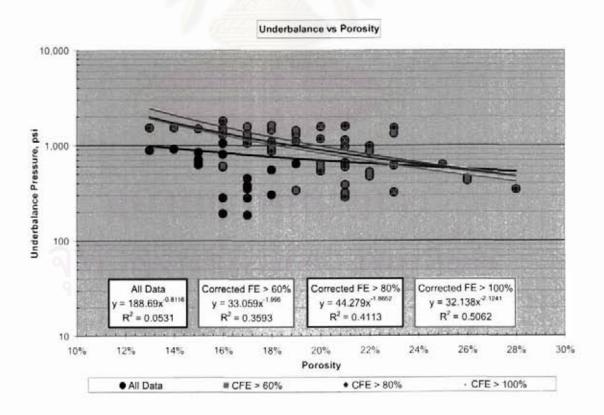


Figure 3.12: Underbalance pressure versus gas reservoir porosity at corrected flow efficiency higher than 60, 80, and 100%.

All trend lines in Figure 3.12 also support the results discussed in Section 3.4 that the higher the porosity the lower underbalance pressure is required to get the same corrected flow efficiency.

From Figure 3.12, the coefficient of determination (R^2) of CFE higher than 100% is the highest, having a value of 0.5062, while CFE higher than 60% and 80% has R^2 of 0.3593 and 0.4113, respectively. From trend lines in Figure 3.11, to obtain a certain level of corrected flow efficacy (CFE), the following minimum underbalance pressure (psi), Δp , is required:

To obtain
$$CFE > 60\%$$
, $\Delta p = \frac{33.059}{\phi^{1.995}}$ [3.11]

To obtain
$$CFE > 80\%$$
, $\Delta p = \frac{44.279}{\phi^{1.8652}}$ [3.12]

To obtain
$$CFE > 100\%$$
, $\Delta p = \frac{32.138}{\phi^{2.1241}}$ [3.13]

For any gas reservoir in the Gulf of Thailand, zero or negative perforation skin can be obtained by applying the underbalance pressure calculated from Equation 3.13 based on porosity.

3.7 Relationship between Corrected Flow Efficiency and Perforation Charge Type

To evaluate the performance of different charge types, the same data set in Figure 3.8 was plotted again in Figure 3.13 but they are categorized into 4 groups according to 4 different charge types: Owen Hero, Power Jet, Predator, and Predator XP. The relationship between flow efficiency and underbalance pressure is similar among all 4 different charge types, increasing in underbalance pressure results in higher flow efficiency.

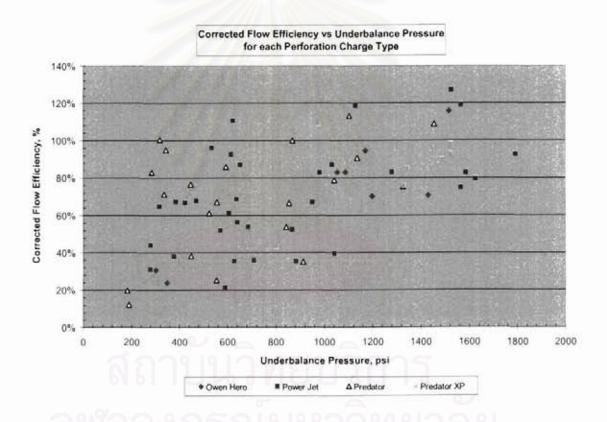


Figure 3.13: Corrected flow efficiency versus underbalance pressure for each perforation charge type.

To better understand the affect from only perforation charge type to the corrected flow efficiency, the data were narrowed down as shown in Figure 3.14, focusing only 2-1/8" gun size, 60 degree phasing, 5-6 shot per foot, and HMX explosive.

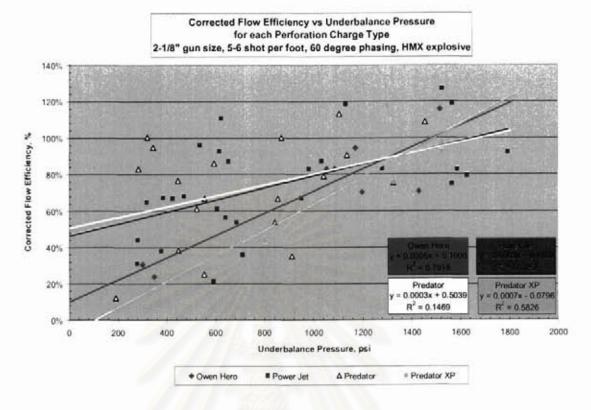


Figure 3.14: Corrected flow efficiency versus underbalance pressure for each perforation charge type, 2-1/8" gun size, 60 degree phasing, 5-6 shot per foot, and HMX explosive.

From Figure 3.14, the coefficient of determination (R^2) of Owen Hero is the highest, having a value of 0.7918, while Predator XP, Power Jet, and Predator has R^2 of 0.5826, 0.3257, and 0.1469, respectively. From trend lines in Figure 3.14, the linear relationship between corrected flow efficiency (CFE) and underbalance pressure (Δp) for each perforation charge type can be established as follows:

For Owen Hero,	$CFE = 0.0006\Delta p + 0.1000$	[3.14]
For Predator XP,	$CFE = 0.0007 \Delta p - 0.0796$	[3.15]
For Power Jet,	$CFE = 0.0003\Delta p + 0.4668$	[3.16]
For Predator,	$CFE = 0.0003\Delta p + 0.5039$	[3.17]

From Figure 3.14, Power Jet and Predator perforation charges have similar trend lines which provide better corrected flow efficiency than Owen Hero and Predator XP when underbalance pressure lower than 1300 psi. However, from the trend lines, Owen Hero and Predator XP perforation charge types provide better corrected flow efficiency when underbalance pressure higher than 1300 psi.

To obtain zero perforation skin or 100% corrected flow efficiency, from Equations 3.14 to 3.17, following minimal underbalance pressure is required for each perforation charge type:

Table 3.8: Minimal underbalance pressure to obtain zero perforation skin for each perforation charge type.

Charge Type	Equation	Minimal underbalance pressure, psi
Owen Hero	$CFE = 0.0006 \Delta p + 0.1000$	1,500
Predator XP	$CFE = 0.0007 \Delta p - 0.0796$	1,542
Power Jet	$CFE = 0.0003 \Delta p + 0.4668$	1,777
Predator	$CFE = 0.0003 \Delta p + 0.5039$	1,654

From Table 3.8, the lowest required underbalance pressure is 1500 psi when using Owen Hero perforation charge while the highest is 1777 psi using Power Jet to obtain zero perforation skin or 100% corrected flow efficiency.

In summary, regardless of gas reservoir properties, the range of underbalance pressure of 1500 to 1777 psi, depending on perforation charge type, is required to achieve best perforation performance or zero perforation skin. However, if available or achievable underbalance pressure condition is lower than 1300 psi, Power Jet and Predator perforation charges are recommended for better perforation performance and lower perforation skin.

CHAPTER IV

CONCLUSIONS

This study was based on seventy perforations of gas wells in the Gulf of Thailand. Seventy interpreted results from pressure transient tests were used along with other skin factor correlations, and perforation information such as underbalance pressure, perforation charge type, etc. Perforation skin factors were obtained by subtracting the total skin by other skin factors such as partial penetration skin and non-Darcy skin.

After analyzing the skins of seventy tests, it can be concluded that the underbalance pressure condition directly affects the perforation damage or skin of perforated gas reservoirs, as well as corrected flow efficiency. The magnitude of the perforation skin depends on the degree of the underbalance pressure. The higher the underbalance pressure, the lower the perforation skin will be. As a result, a higher flow efficiency and recovery of gas reservoir can be achieved.

It was also found that the underbalance pressure has more impact on the corrected flow efficiency of tight gas reservoirs than that of porous sands. For the tight gas reservoirs (porosity less than 18%), every additional 100 psi underbalance pressure will provide an increase of 6% in corrected flow efficiency but only an increase of 2% can be obtained if the porosity is over 18%.

Without any underbalance pressure applied during the perforation, tight gas reservoirs will have only 11% corrected flow efficiency while porous gas reservoirs will have 69% corrected flow efficiency. In order to obtain 100% corrected flow efficiency, 1620 and 1550 psi underbalance pressures are required for tight and porous gas reservoirs, respectively.

To obtain the best corrected flow efficiency or zero-perforation skin for a given gas reservoir permeability or porosity, the minimum required underbalance pressure can be estimated by $\Delta p = \frac{1628.5}{k^{0.1282}}$, and $\Delta p = \frac{32.138}{\phi^{2.1241}}$, respectively.

However, these equations are applicable only for gas reservoirs in the Gulf of Thailand. Reservoirs with the same properties but located in different environments require different minimal underbalance pressures to achieve the same corrected flow efficiency or perforation skin.

Regardless of gas reservoir properties, at underbalance pressure lower than 1300 psi, Power Jet and Predator perforation charges provide better perforation performance and lower perforation skin. To achieve the zero perforation skin or 100% corrected flow efficiency, 1500, 1542, 1777, and 1654 psi underbalance pressure is required when using Owen Hero, Predator XP, Power Jet, and Predator charge, respectively.

References

- Bell, W.T.: <u>Perforating Underbalanced Evolving Techniques</u>. JPT (Oct 1984) :1653-62 SPE 13413
- King, G. E., Anderson, A., and Bingham, M.: <u>A Field Study of Underbalance</u>
 Pressure Necessary To Obtain Clean Perforations Using Tubing Conveyed
 Perforating. JPT (June 1986): 662-664 SPE 14321
- Halleck, P. M., and Deo, M.: <u>Effects of Underbalance on Perforation Flow</u>. paper SPE 16895
- Tariq, S. M.: New, <u>Generalized Criteria for Determining the Level of</u> <u>Underbalance for Obtaining Clean Perforations</u>. paper SPE 20636
- Behrmann, L.A. et al.: Measurement of Additional Skin Resulting From Perforation Damage. paper SPE 22809
- Hsia, T.Y. and Behrmann, L.A.: <u>Perforating Skin as a Function of Rock</u>
 Permeability and Underbalance. paper SPE 22810
- Kent Folse et al.: <u>Perforating System Selection for Optimum Well Inflow</u> <u>Performance</u>. paper SPE 73762
- 8. Roostapour A. and Yildiz T.: <u>Post-Perforation Flow Models For API</u>

 Recommended Practices 19B. paper SPE 94245
- Behrmann, L.A.: <u>Underbalance Criteria for Minimum Perforating Damage</u>. paper SPE 30081
- 10. Roland N. Horne: Modern Well Test Analysis. May 1995

- Brons, F. and Marting, V. E.: <u>The Effect of Restricted Fluid Entry on Well Productivity</u>. JPT (Feb. 1961); 172-174
- Odeh, A.S.: <u>An Equation for Calculating Skin Factor Due to Restricted Entry</u>. JPT 8879-PA
- 13. Paul Papatzacos: Approximate Partial-Penetration Pseudoskin for InfiniteConductivity Wells. paper SPE 13956-PA
- 14. Yeh N. and Reynolds A. C.: <u>Computation of the Pseudoskin Factor Caused by a Restricted-Entry Well Completed in a Multilayer Reservoir</u>. paper SPE 15793-PA

APPENDICES

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Appendix A

This appendix presents all pressure transient analyses of 70 gas reservoirs.

Well-01 Reservoir 68-8

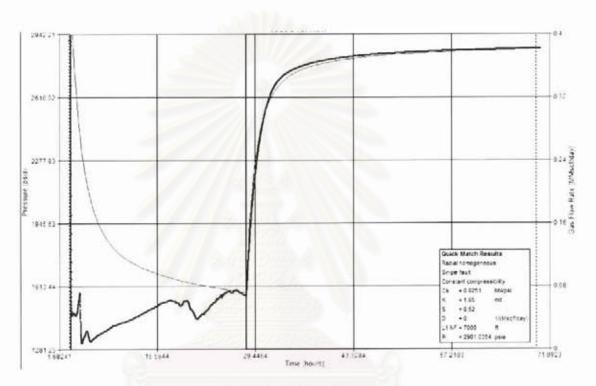


Figure A.1: Well-01 testing overview.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

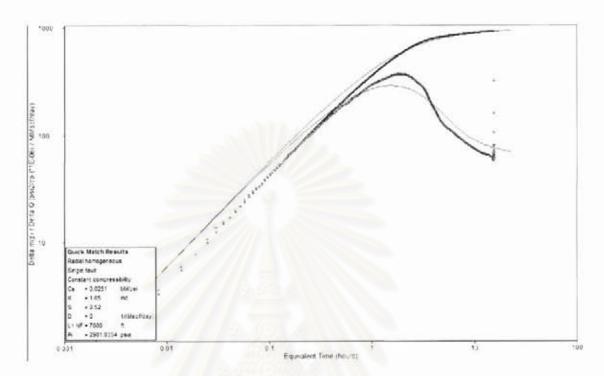


Figure A.2: Well-01 main build-up, log-log plot.

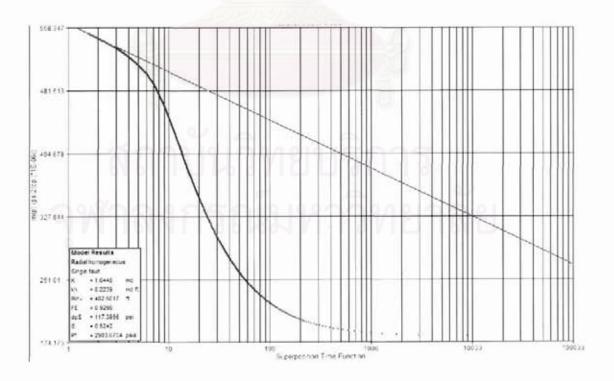


Figure A.3: Well-01 main build-up, semi-log plot.

Well-02 Reservoir 82-4

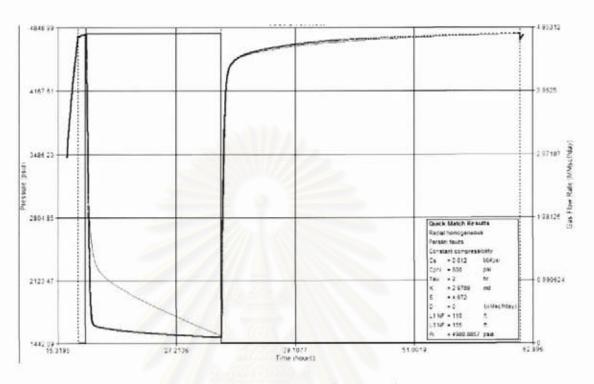


Figure A.4: Well-02 testing overview.

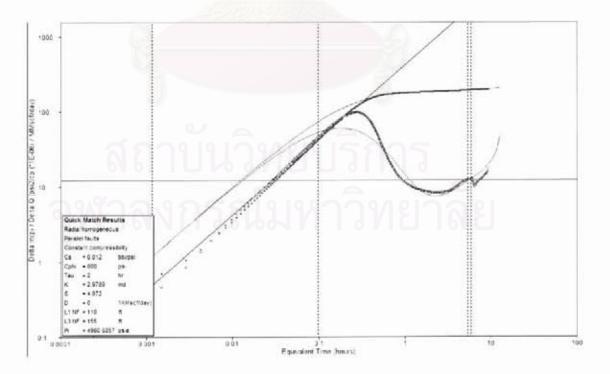


Figure A.5: Well-02 main build-up, log-log plot.

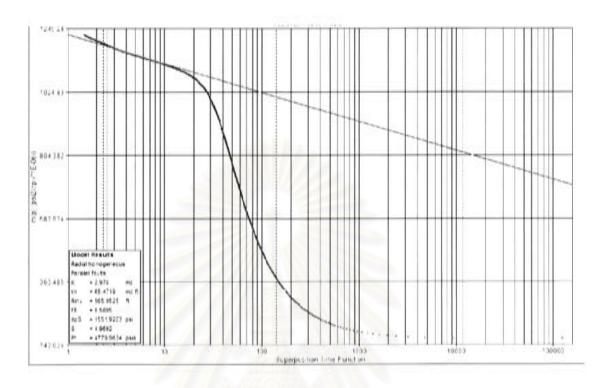


Figure A.6: Well-02 main build-up, semi-log plot.

Well-03 Reservoir 92-4

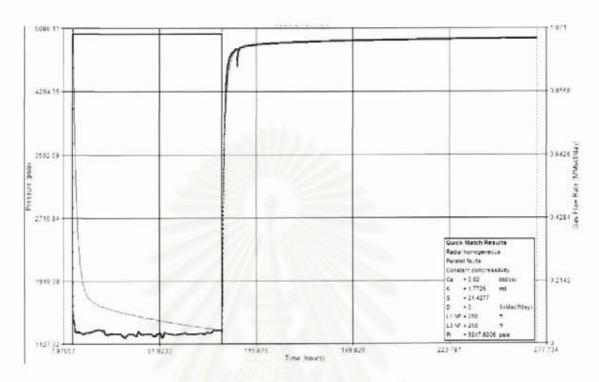


Figure A.7: Well-03 testing overview.

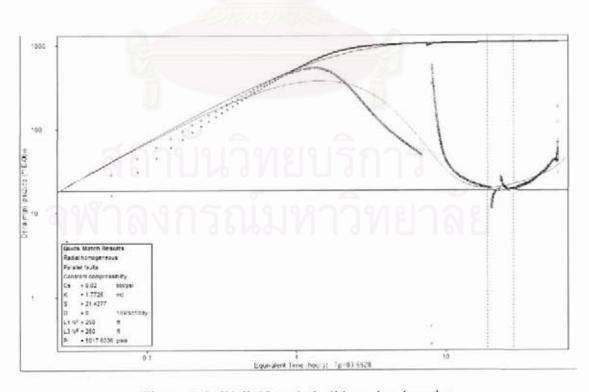


Figure A.8: Well-03 main build-up, log-log plot.

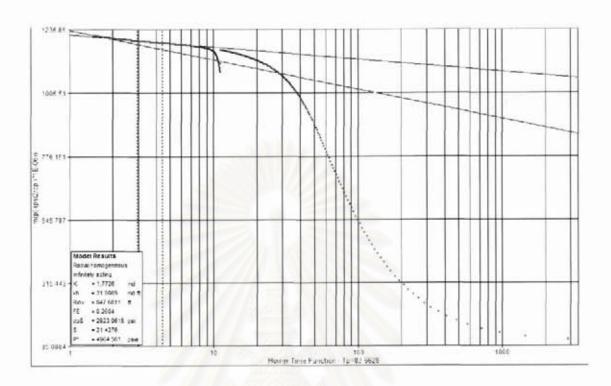


Figure A.9: Well-03 main build-up, semi-log plot.

Well-04 Reservoir 95-6

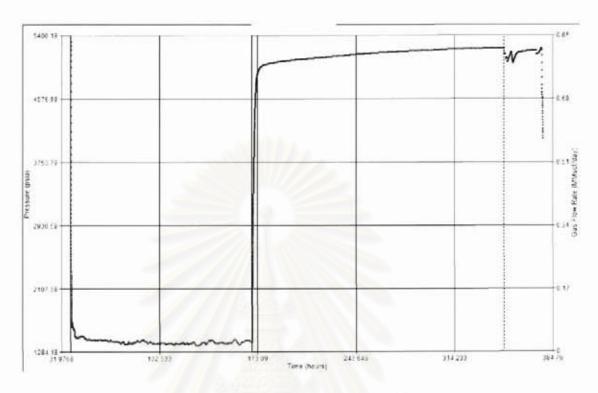


Figure A.10: Well-04 testing overview.

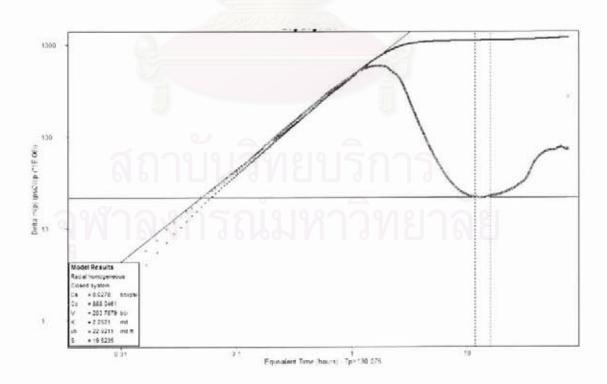


Figure A.11: Well-04 main build-up, log-log plot.

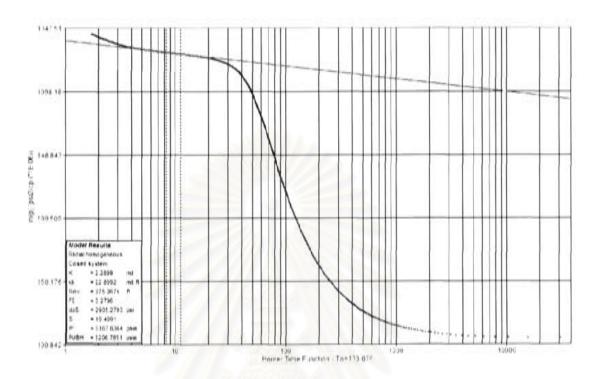


Figure A.12: Well-04 main build-up, semi-log plot.

Well-05 Reservoir 75-6

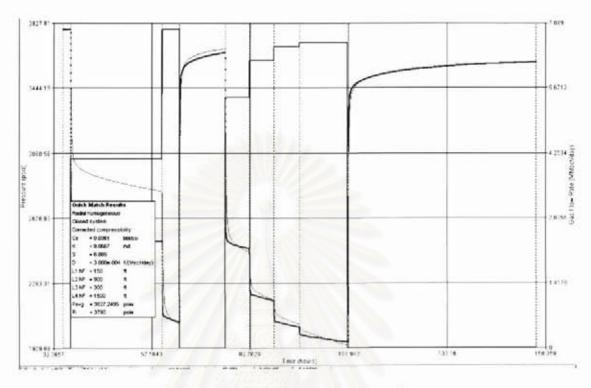


Figure A.13: Well-05 testing overview.

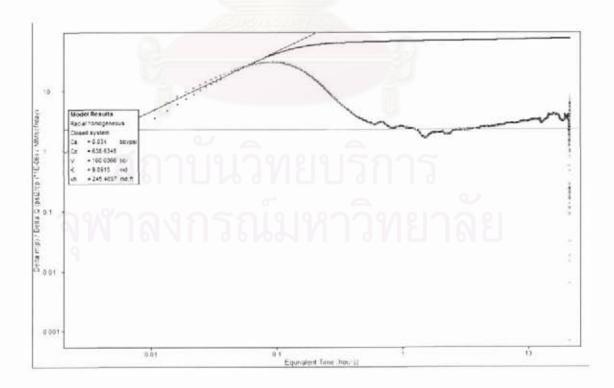


Figure A.14: Well-05 main build-up, log-log plot.

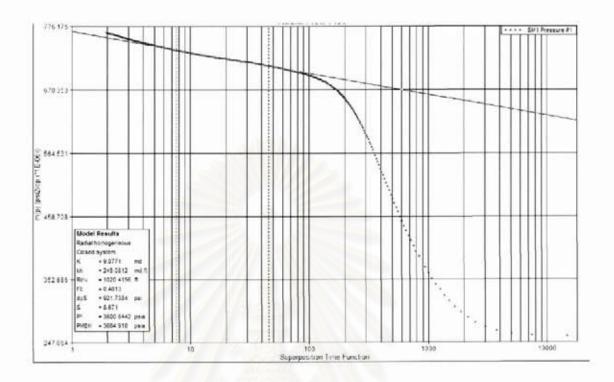
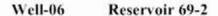



Figure A.15: Well-05 main build-up, semi-log plot.

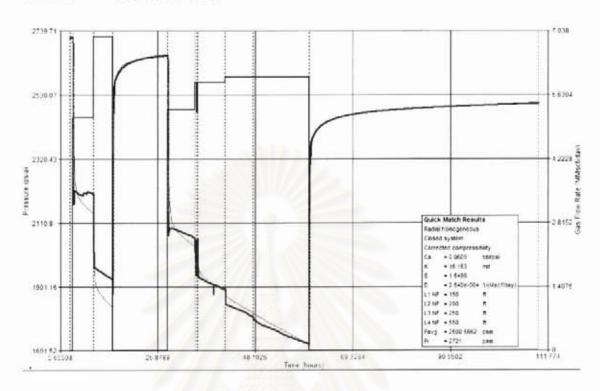


Figure A.16: Well-06 testing overview.

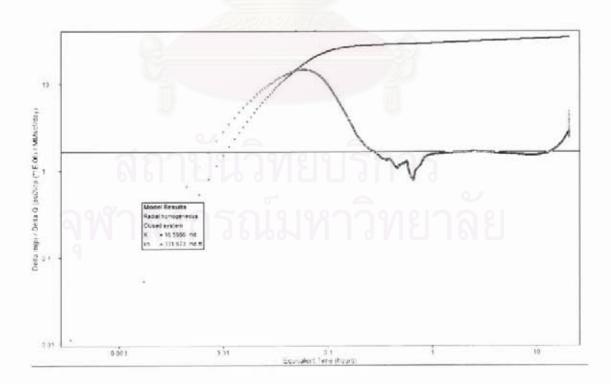


Figure A.17: Well-06 main build-up, log-log plot.

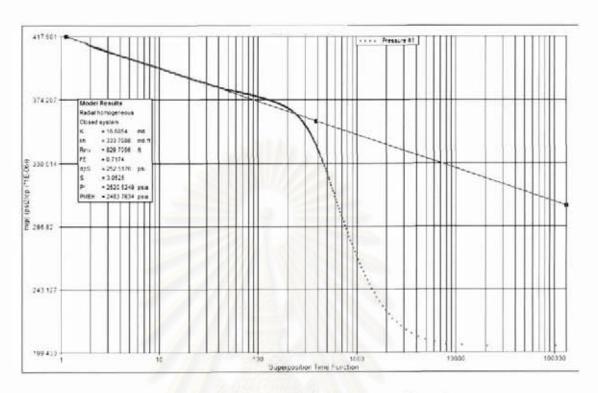


Figure A.18: Well-06 main build-up, semi-log plot.

Well-07 Reservoir 81-7

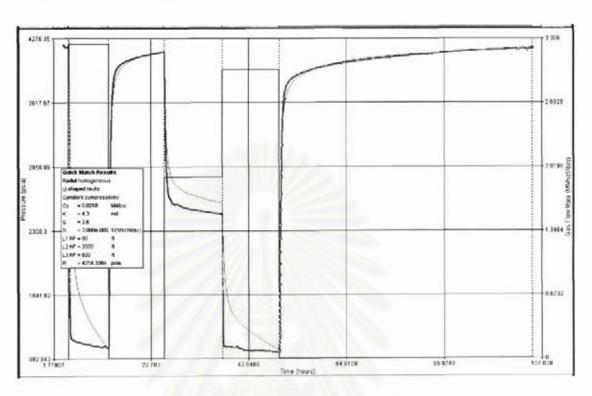


Figure A.19: Well-07 testing overview.

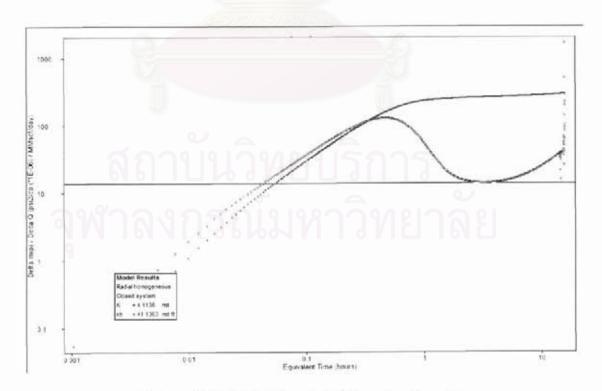


Figure A.20: Well-07 main build-up, log-log plot.

Figure A.21: Well-07 main build-up, semi-log plot.

Well-08 Reservoir 63-4

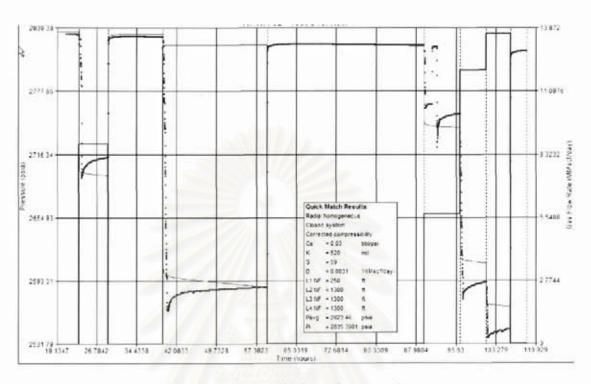


Figure A.22: Well-08 testing overview.

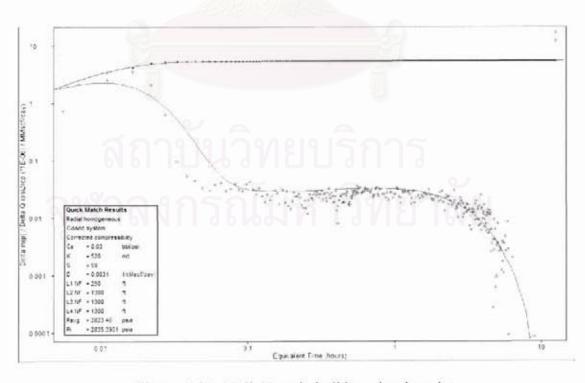


Figure A.23: Well-08 main build-up, log-log plot.

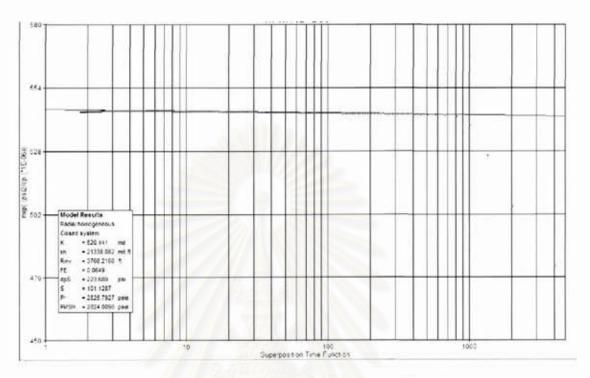


Figure A.24: Well-08 main build-up, semi-log plot.

Well-09 Reservoir 89-5

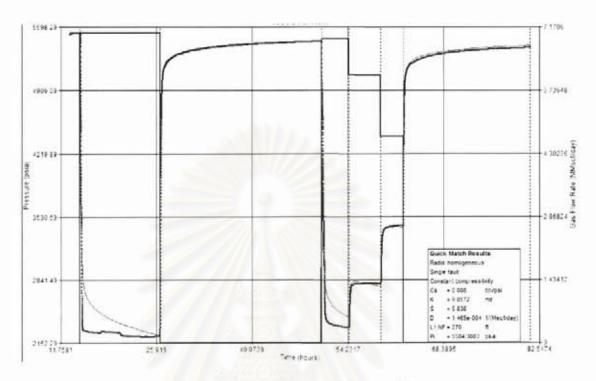


Figure A.25: Well-09 testing overview.

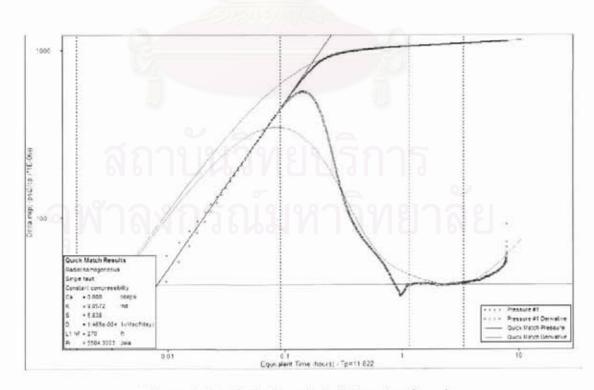


Figure A.26: Well-09 main build-up, log-log plot.

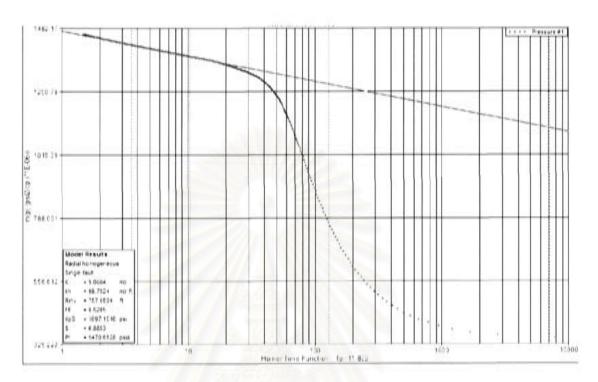


Figure A.27: Well-09 main build-up, semi-log plot.

Well-10 Reservoir 52-2

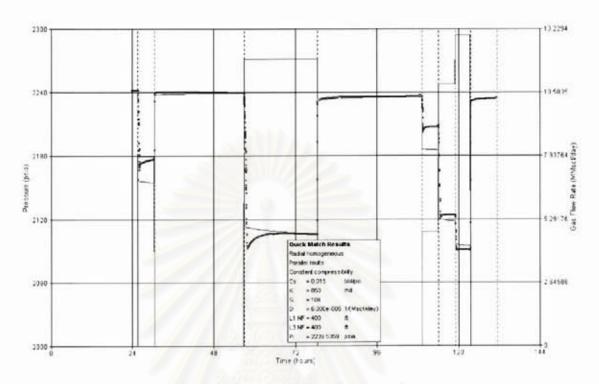


Figure A.28: Well-10 testing overview.

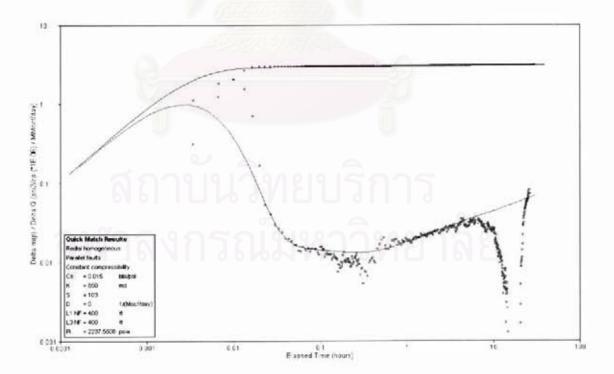


Figure A.29: Well-10 main build-up, log-log plot.

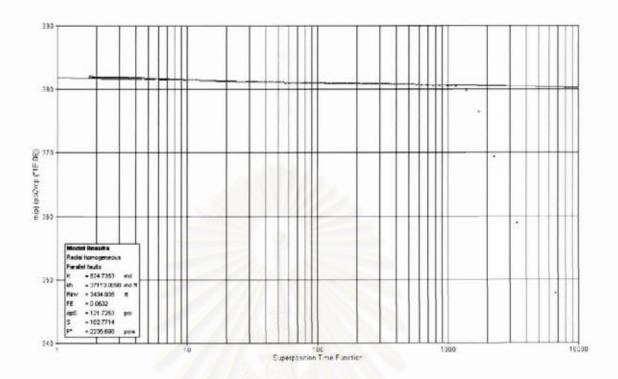


Figure A.30: Well-10 main build-up, semi-log plot.

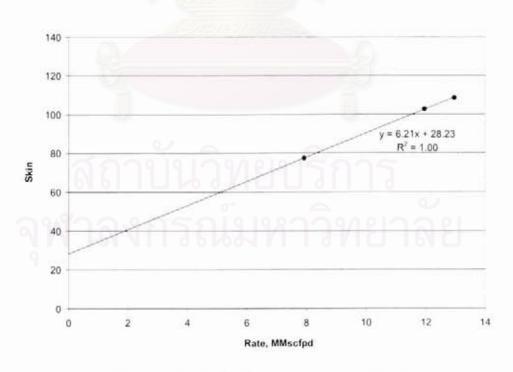


Figure A.31: Well-10 Rate Dependent Skin Plot

Well-11 Reservoir 55-8

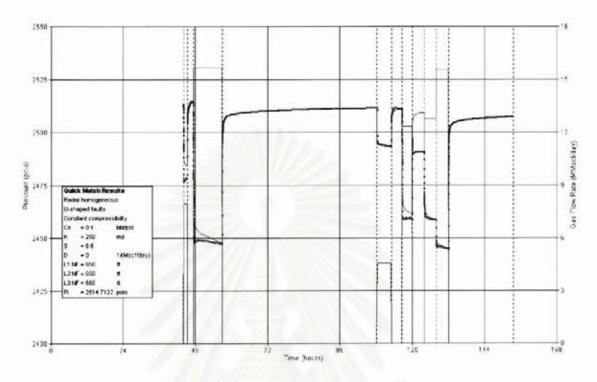


Figure A.32: Well-11 testing overview.

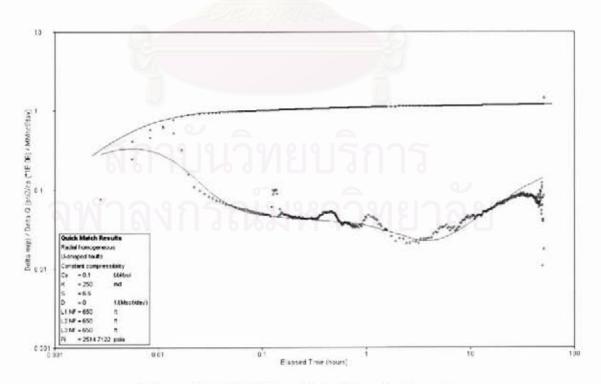


Figure A.33: Well-11 main build-up, log-log plot.

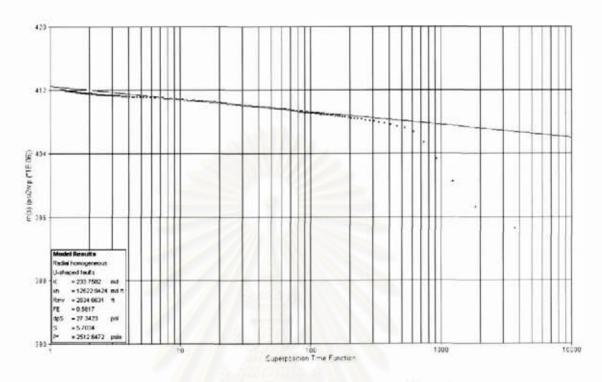


Figure A.34: Well-11 main build-up, semi-log plot.

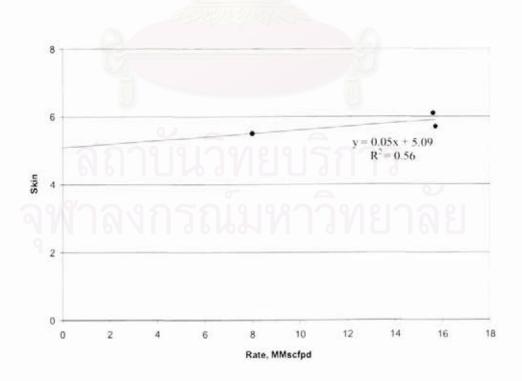


Figure A.35: Well-11 Rate Dependent Skin Plot

Well-12 Reservoir 56-1

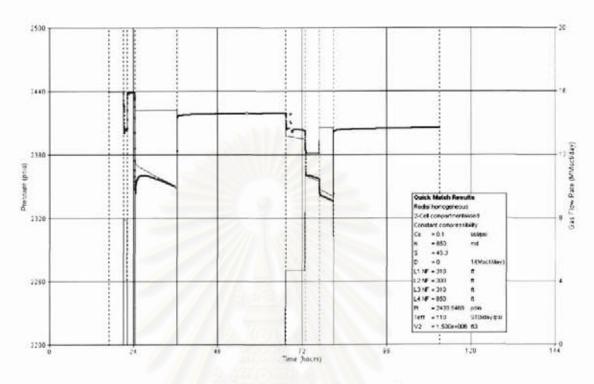


Figure A.36: Well-12 testing overview.

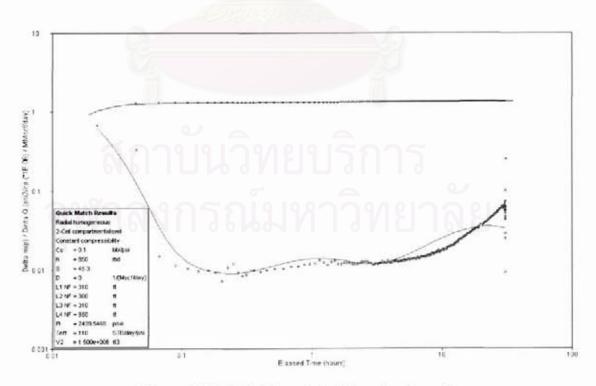


Figure A.37: Well-12 main build-up, log-log plot.

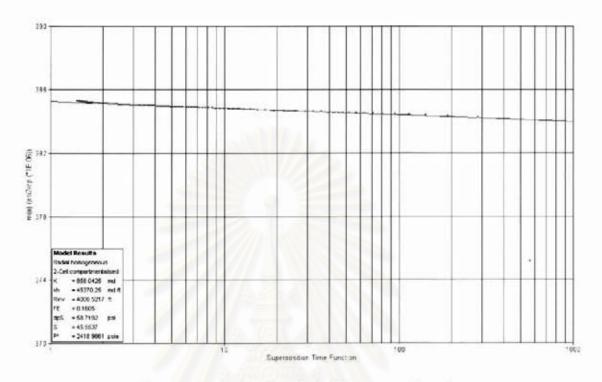


Figure A.38: Well-12 main build-up, semi-log plot.

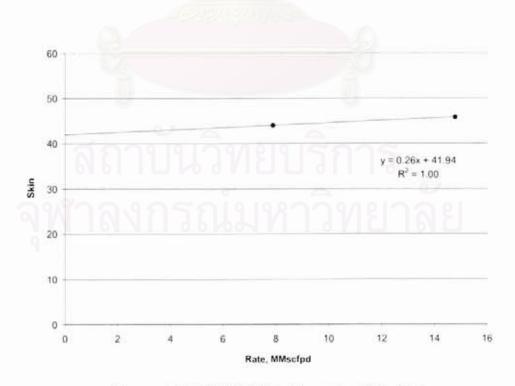


Figure A.39: Well-12 Rate Dependent Skin Plot

Well-13 Reservoir 59-1

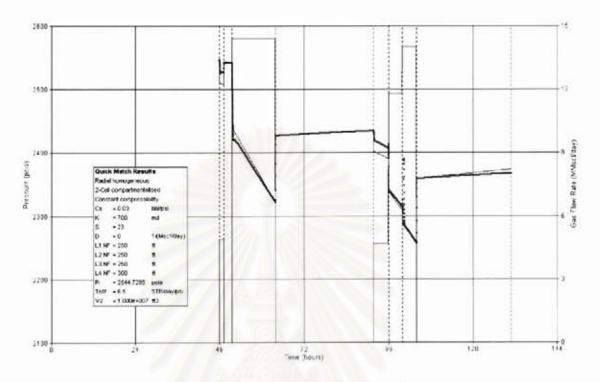


Figure A.40: Well-13 testing overview.

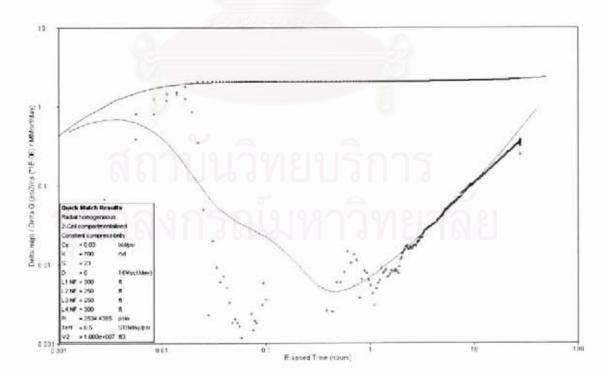


Figure A.41: Well-13 main build-up, log-log plot.

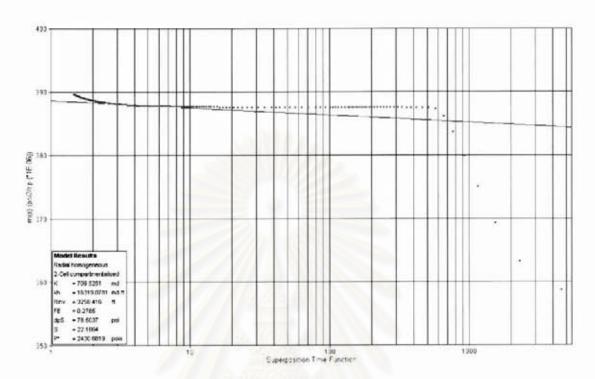


Figure A.42: Well-13 main build-up, semi-log plot.

Well-14 Reservoir 72-7

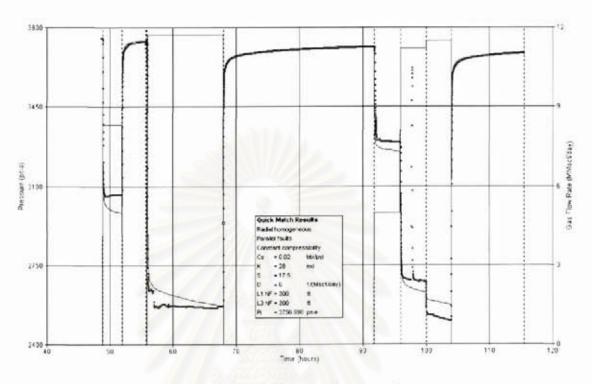


Figure A.43: Well-14 testing overview.

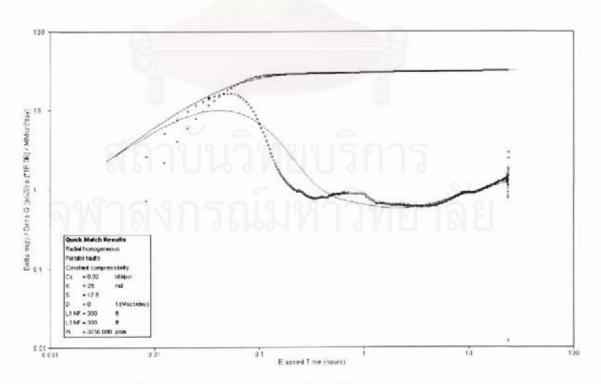


Figure A.44: Well-14 main build-up, log-log plot.

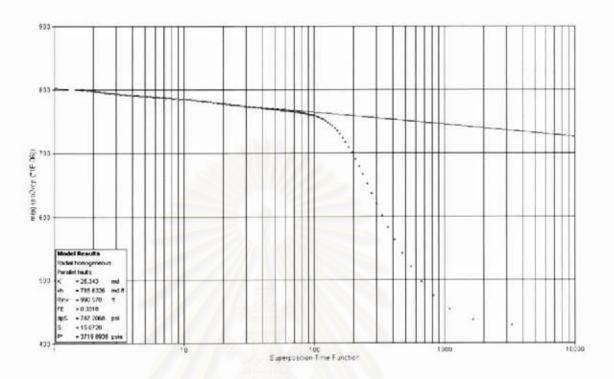


Figure A.45: Well-14 main build-up, semi-log plot.

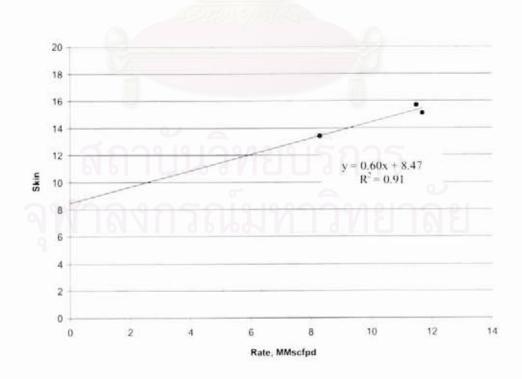


Figure A.46: Well-14 Rate Dependent Skin Plot

Well-15 Reservoir 75-5

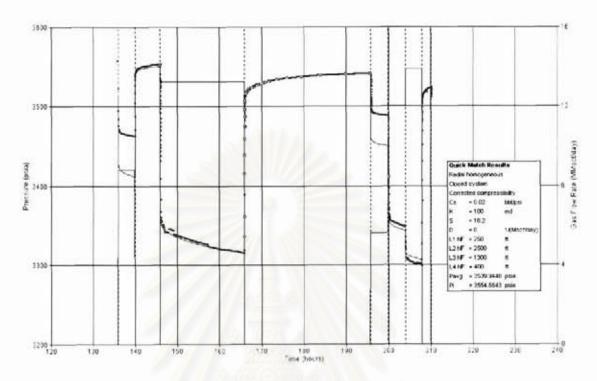


Figure A.47: Well-15 testing overview.

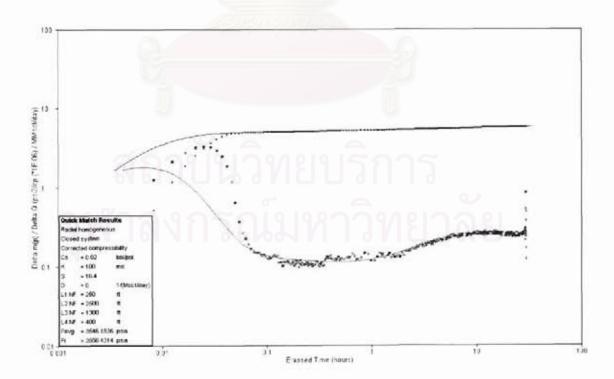


Figure A.48: Well-15 main build-up, log-log plot.

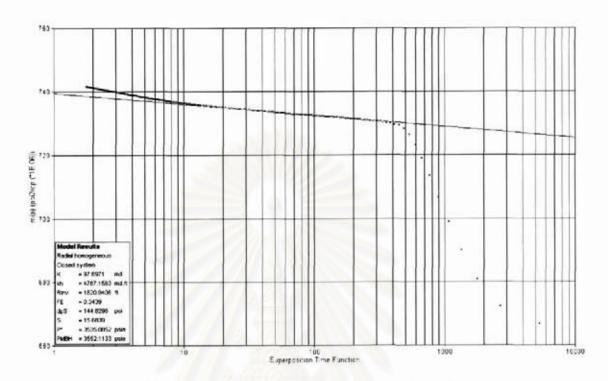


Figure A.49: Well-15 main build-up, semi-log plot.

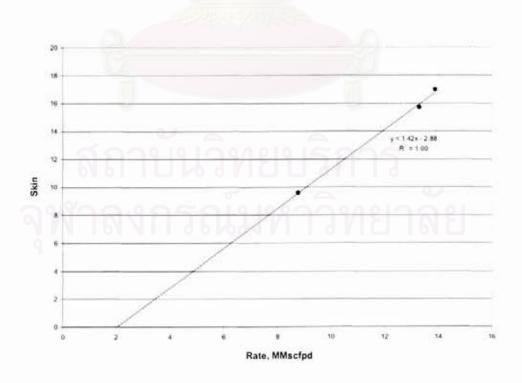


Figure A.50: Well-15 Rate Dependent Skin Plot

Well-16 Reservoir 60-8

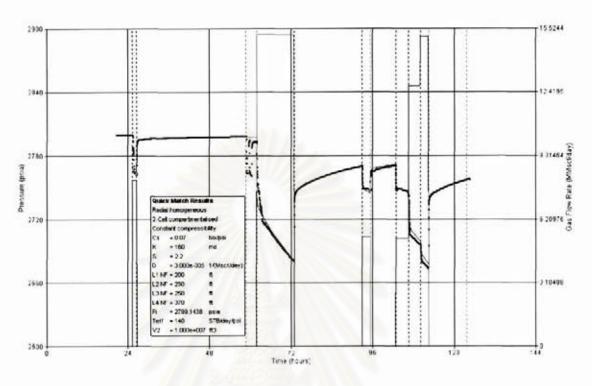


Figure A.51: Well-16 testing overview.

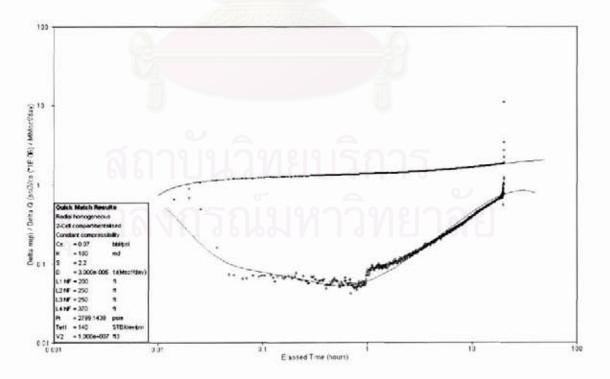


Figure A.52: Well-16 main build-up, log-log plot.

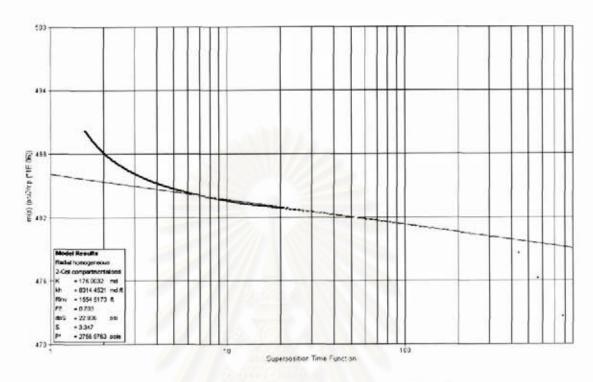


Figure A.53: Well-16 main build-up, semi-log plot.

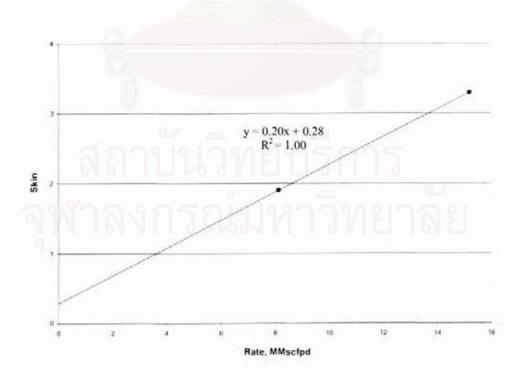


Figure A.54: Well-16 Rate Dependent Skin Plot

Well-17 Reservoir 59-2

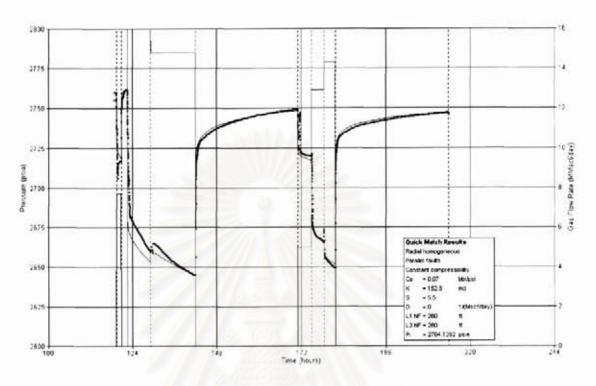


Figure A.55: Well-17 testing overview.

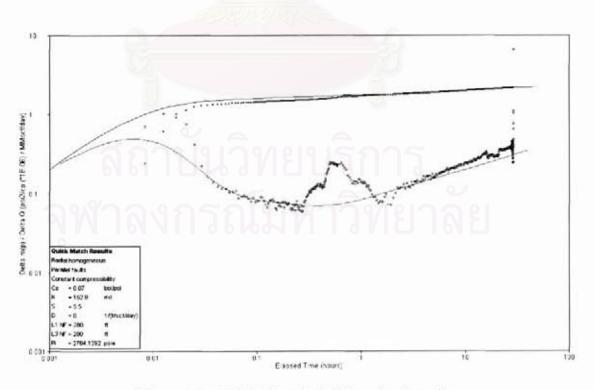


Figure A.56: Well-17 main build-up, log-log plot.

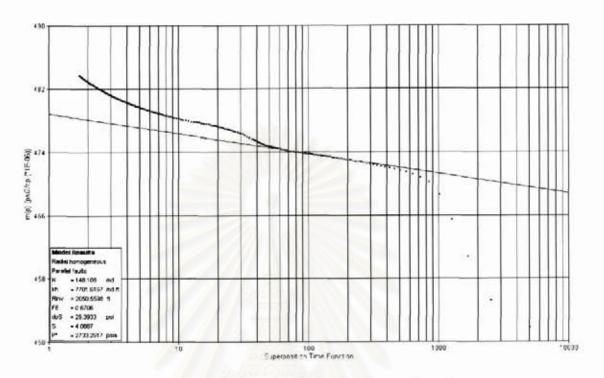


Figure A.57: Well-17 main build-up, semi-log plot.

Well-18 Reservoir 61-0

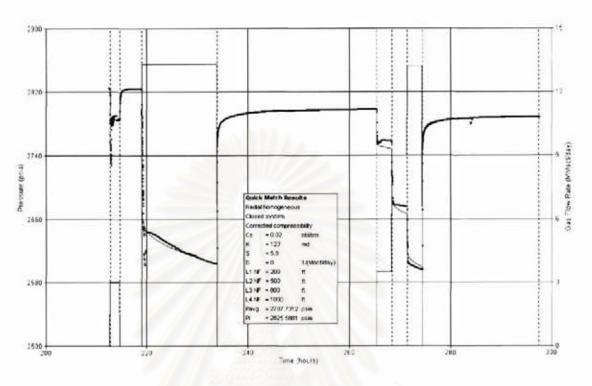


Figure A.58: Well-18 testing overview.

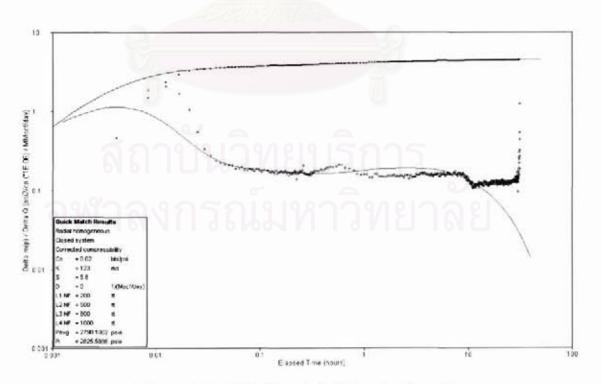


Figure A.59: Well-18 main build-up, log-log plot.

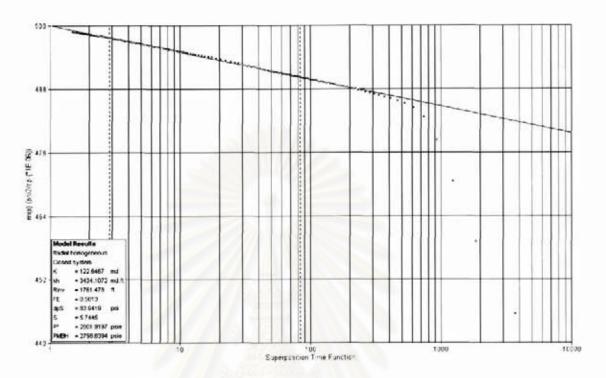


Figure A.60: Well-18 main build-up, semi-log plot.

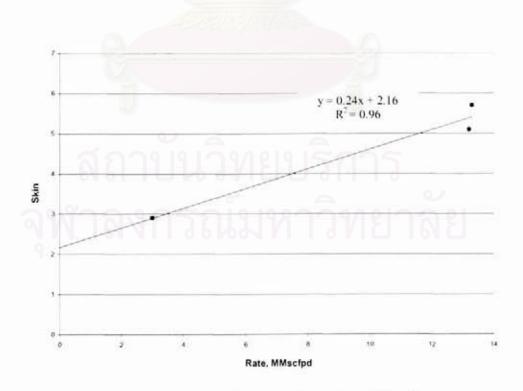


Figure A.61: Well-18 Rate Dependent Skin Plot

Well-19 Reservoir 81-6

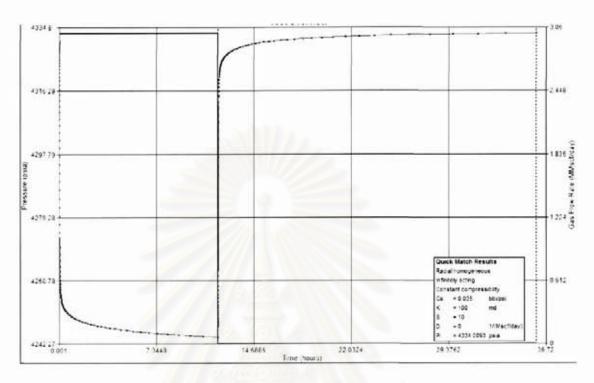


Figure A.62: Well-19 testing overview.

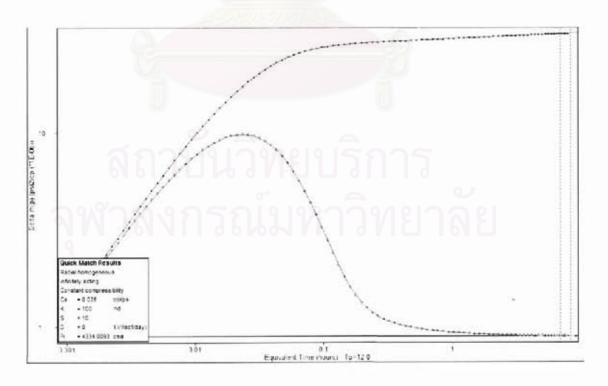


Figure A.63: Well-19 main build-up, log-log plot.

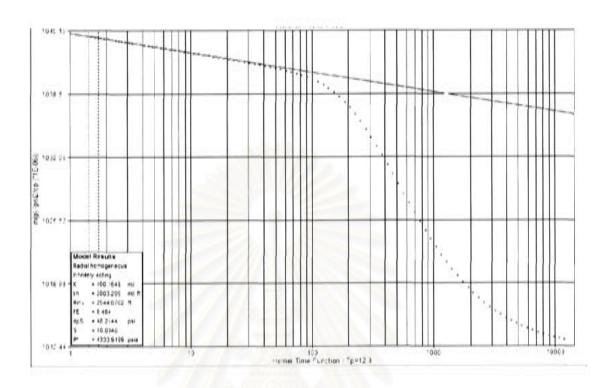


Figure A.64: Well-19 main build-up, semi-log plot.

Well-20 Reservoir 72-9

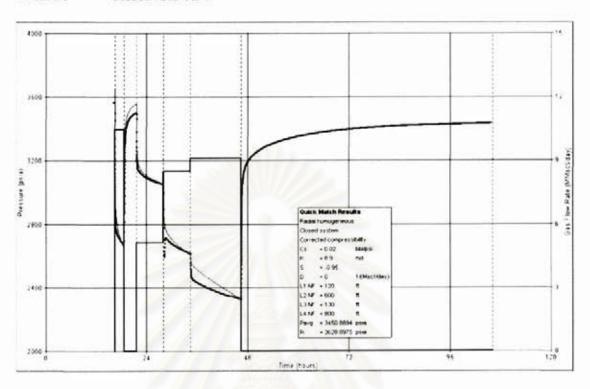


Figure A.65: Well-20 testing overview.

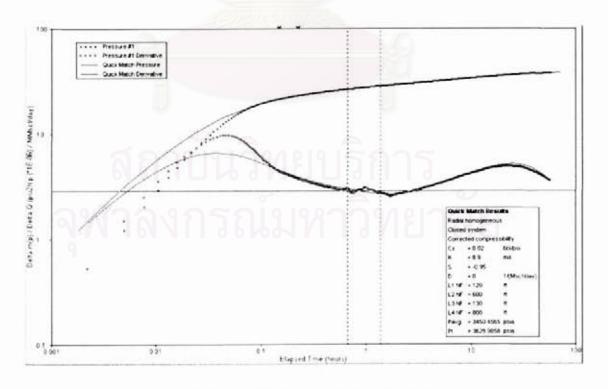


Figure A.66: Well-20 main build-up, log-log plot.

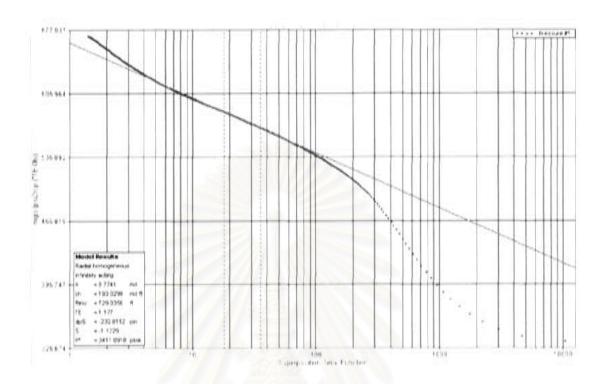


Figure A.67: Well-20 main build-up, semi-log plot.

Well-21 Reservoir 73-0

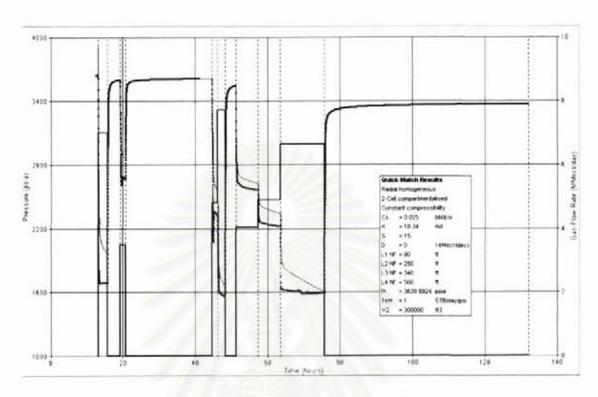


Figure A.68: Well-21 testing overview.

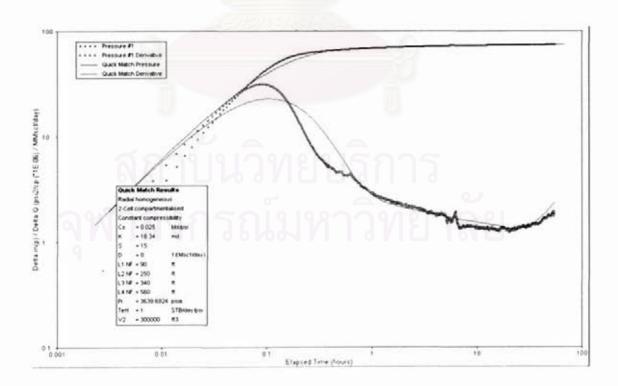


Figure A.69: Well-21 main build-up, log-log plot.

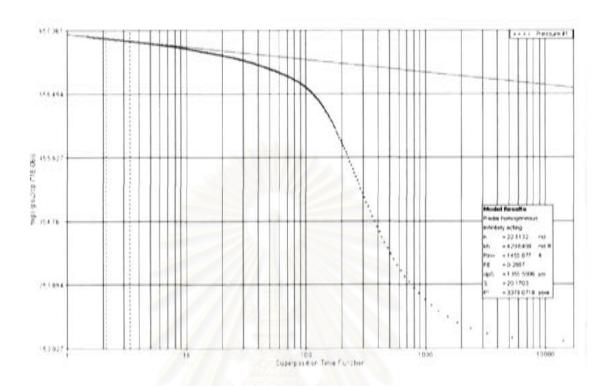


Figure A.70: Well-21 main build-up, semi-log plot.

Well-22 Reservoir 78-2

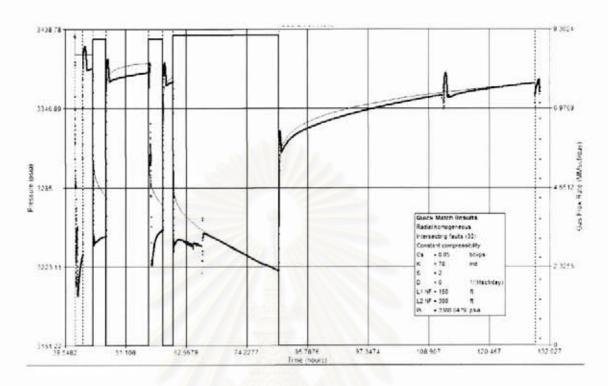


Figure A.71: Well-22 testing overview.

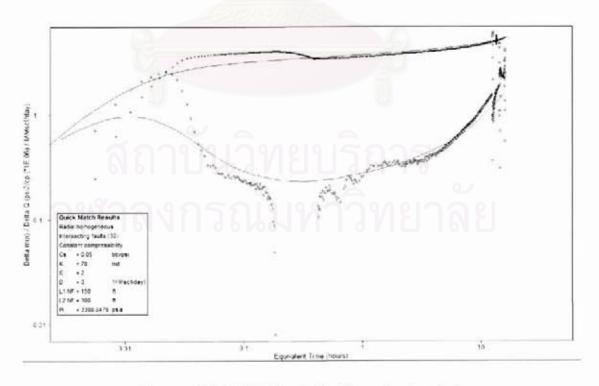


Figure A.72: Well-22 main build-up, log-log plot.

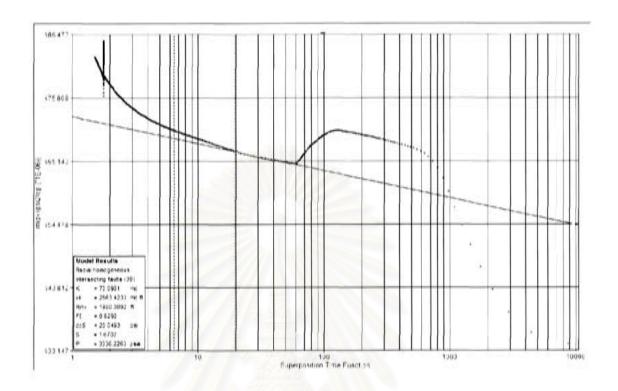


Figure A.73: Well-22 main build-up, semi-log plot.

Well-23 Reservoir 59-4

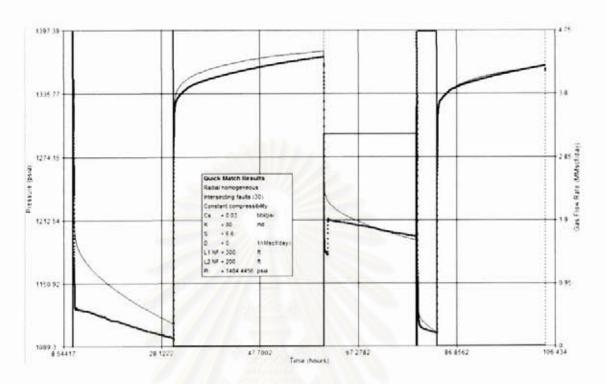


Figure A.74: Well-23 testing overview.

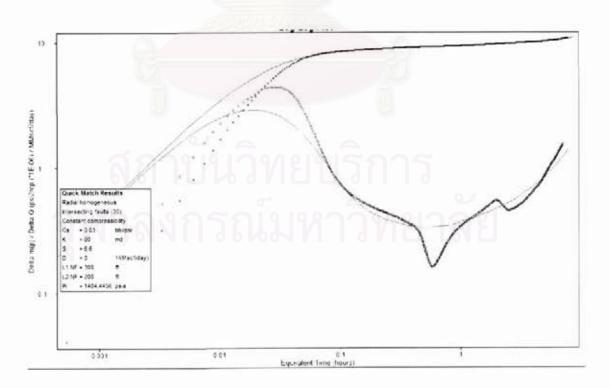


Figure A.75: Well-23 main build-up, log-log plot.

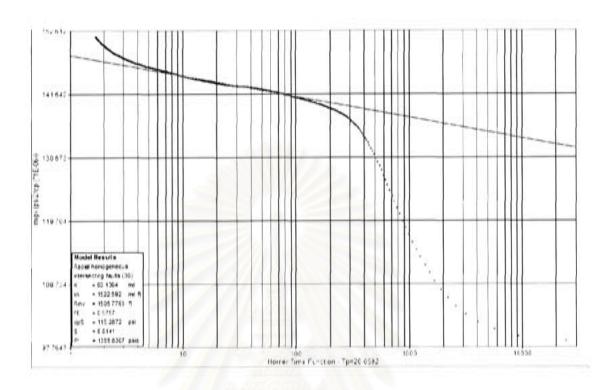


Figure A.76: Well-23 main build-up, semi-log plot.

Well-24 Reservoir 88-3

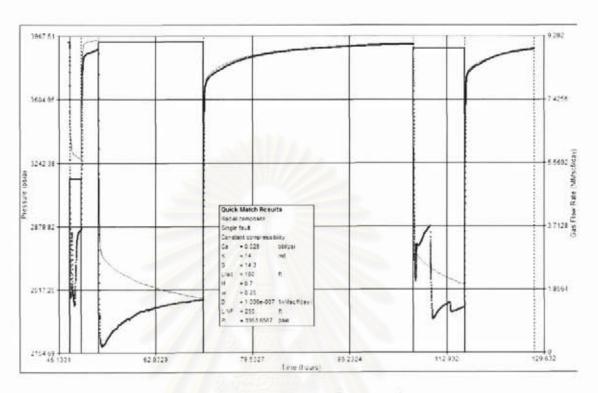


Figure A.77: Well-24 testing overview.

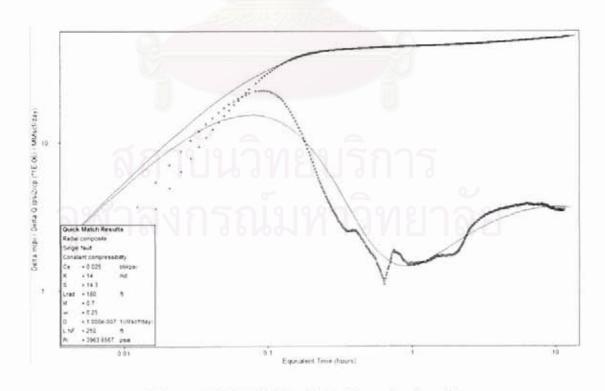


Figure A.78: Well-24 main build-up, log-log plot.

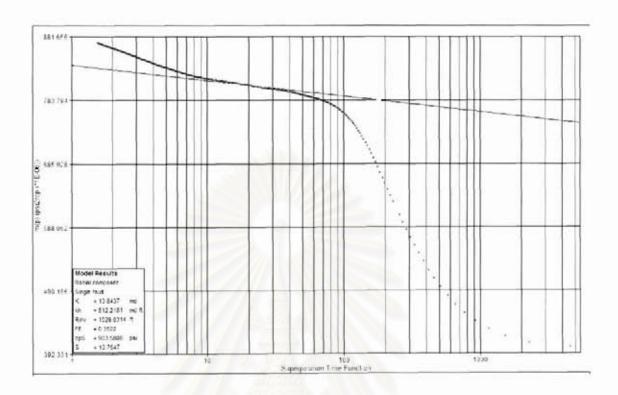


Figure A.79: Well-24 main build-up, semi-log plot.

Well-25 Reservoir 71-0

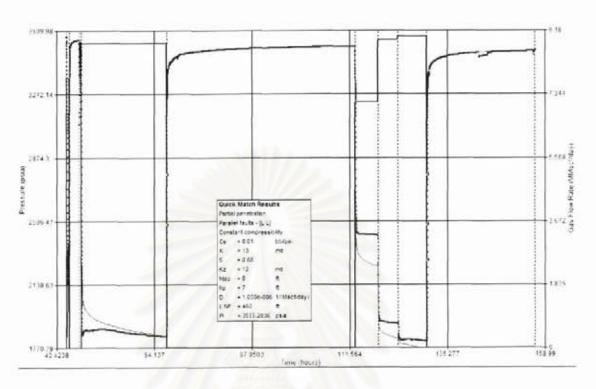


Figure A.80: Well-25 testing overview.

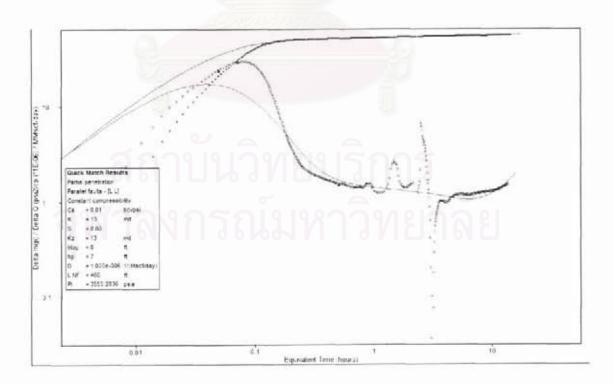


Figure A.81: Well-25 main build-up, log-log plot.

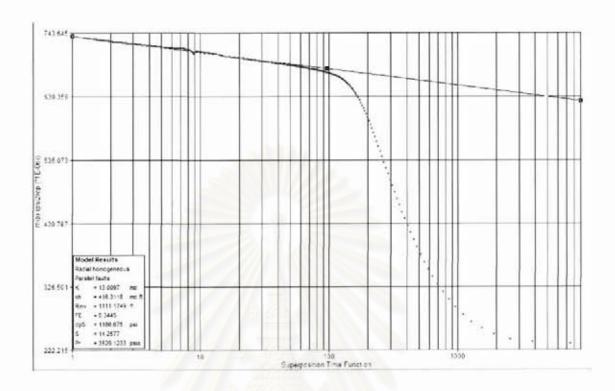


Figure A.82: Well-25 main build-up, semi-log plot.

Well-26 Reservoir 65-3

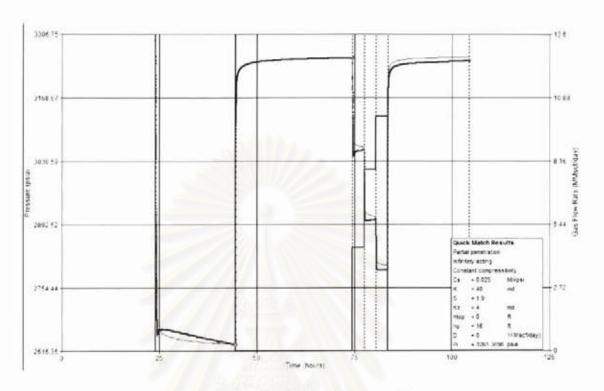


Figure A.83: Well-26 testing overview.

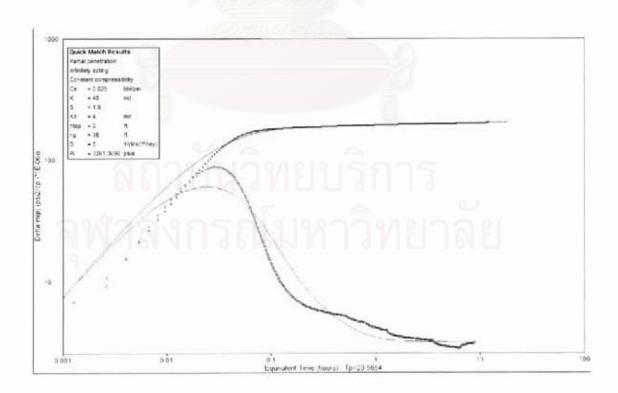


Figure A.84: Well-26 main build-up, log-log plot.

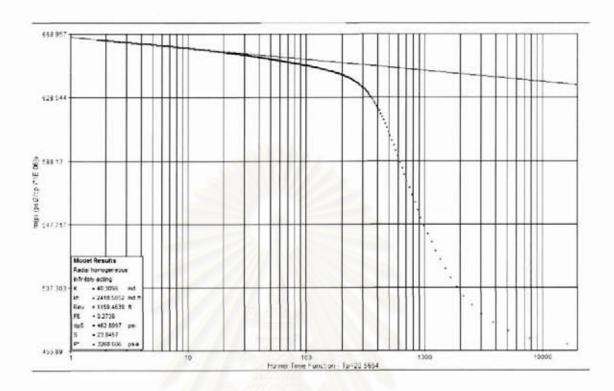


Figure A.85: Well-26 main build-up, semi-log plot.

Well-27 Reservoir 57-0

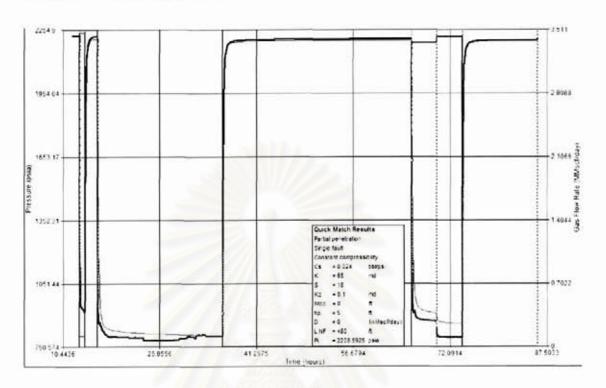


Figure A.86: Well-27 testing overview.

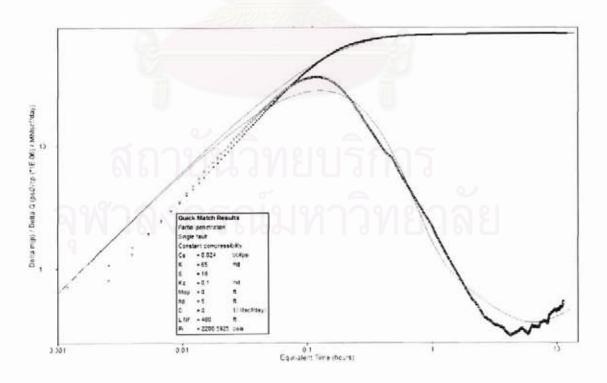


Figure A.87: Well-27 main build-up, log-log plot.

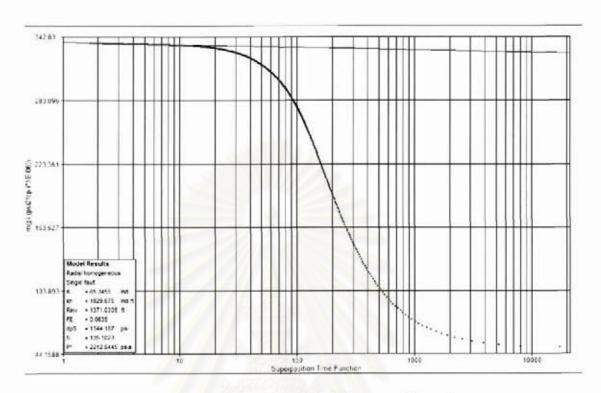


Figure A.88: Well-27 main build-up, semi-log plot.

Well-28 Reservoir 80-6

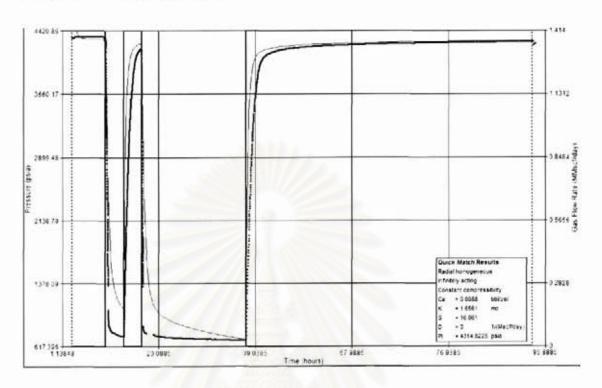


Figure A.89: Well-28 testing overview.

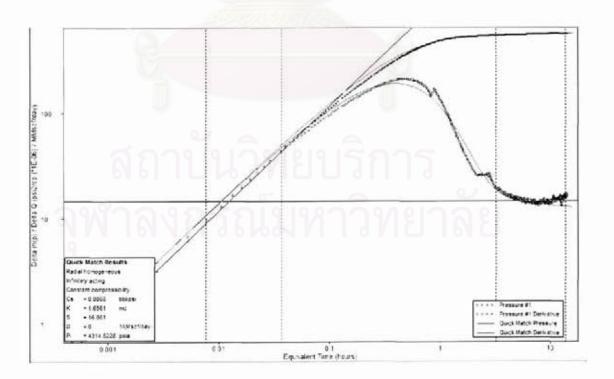


Figure A.90: Well-28 main build-up, log-log plot.

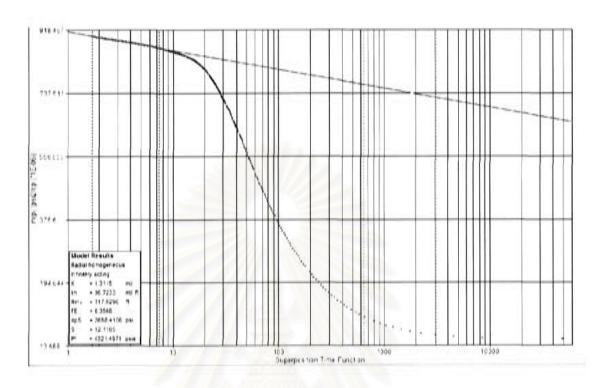


Figure A.91: Well-28 main build-up, semi-log plot.

Well-29 Reservoir 92-5

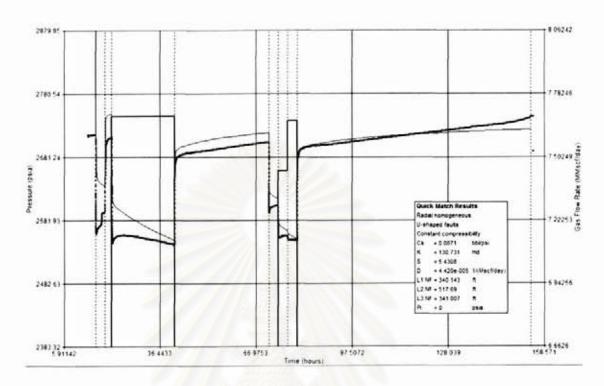


Figure A.92: Well-29 testing overview.

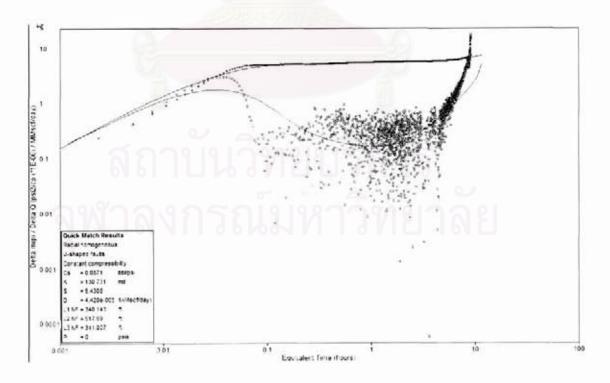


Figure A.93: Well-29 main build-up, log-log plot.

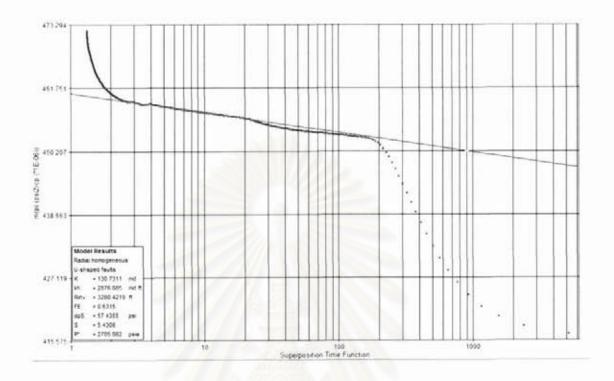


Figure A.94: Well-29 main build-up, semi-log plot.

Well-30 Reservoir 88-4

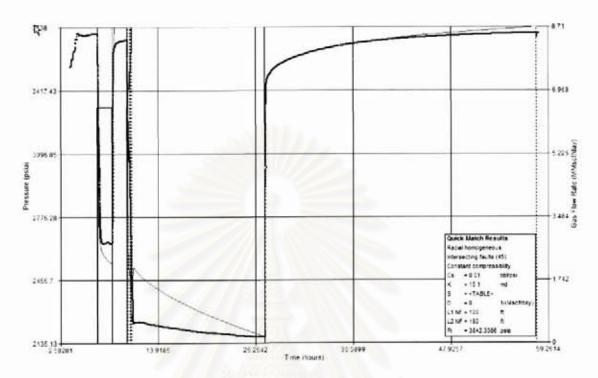


Figure A.95: Well-30 testing overview.

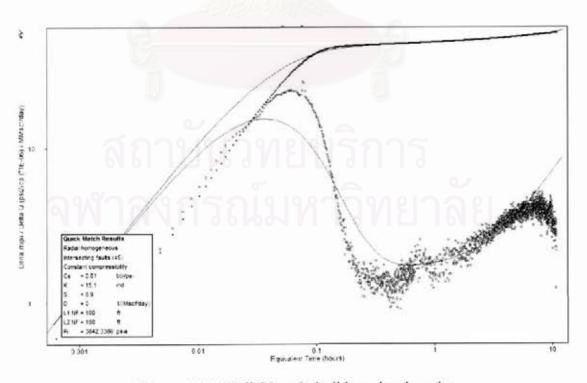


Figure A.96: Well-30 main build-up, log-log plot.

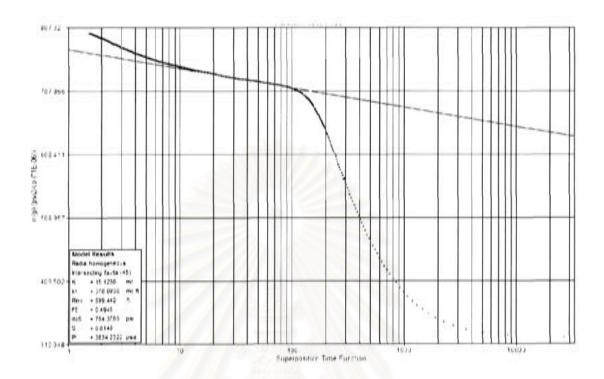


Figure A.97: Well-30 main build-up, semi-log plot.

Well-31 Reservoir 86-1

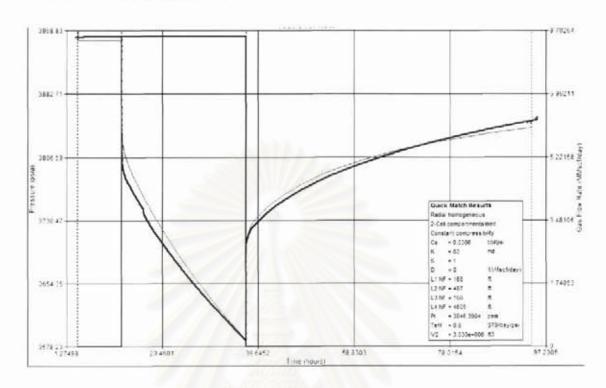


Figure A.98: Well-31 testing overview.

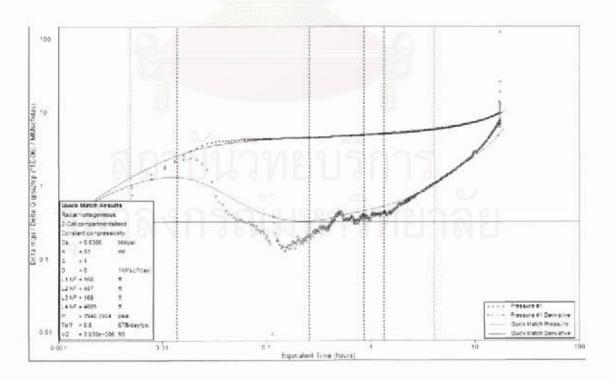


Figure A.99: Well-31 main build-up, log-log plot.

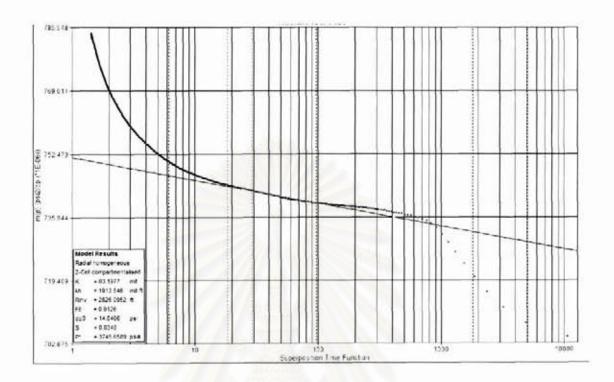


Figure A.100: Well-31 main build-up, semi-log plot.

Well-32 Reservoir 84-0

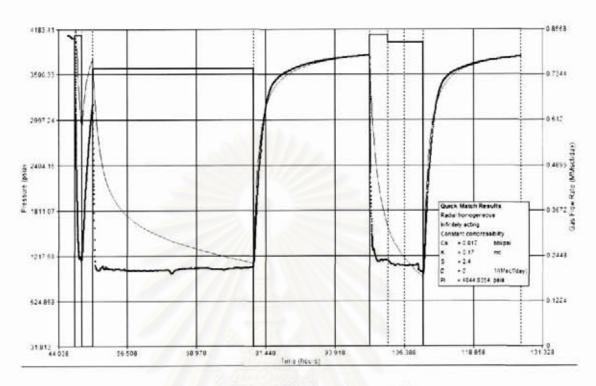


Figure A.101: Well-32 testing overview.

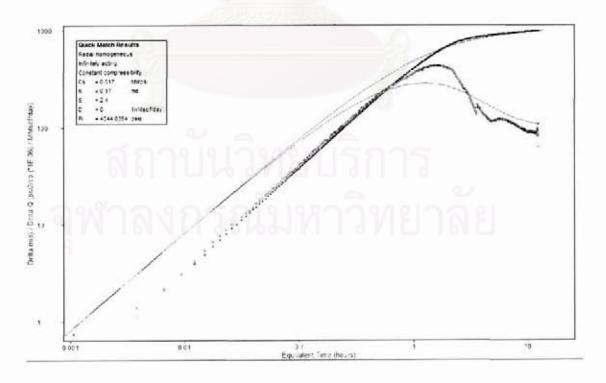


Figure A.102: Well-32 main build-up, log-log plot.

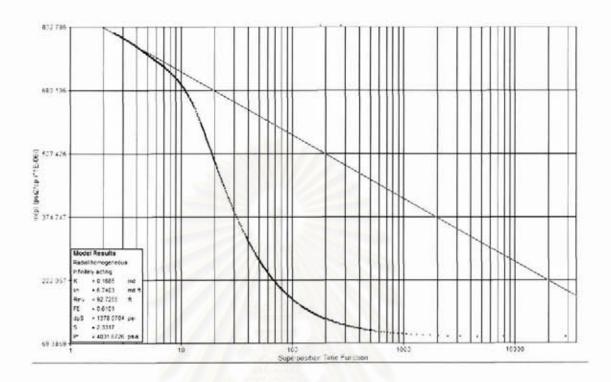


Figure A.103: Well-32 main build-up, semi-log plot.

Well-33 Reservoir 78-8

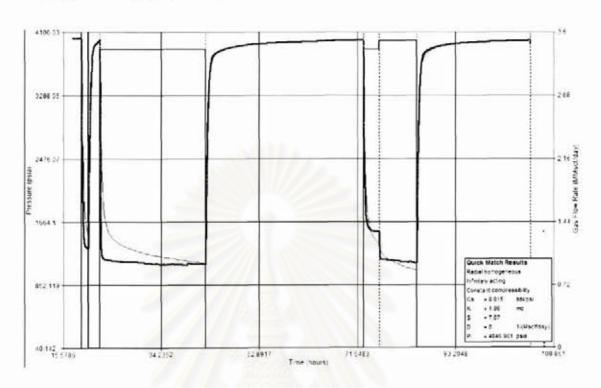


Figure A.104: Well-33 testing overview.

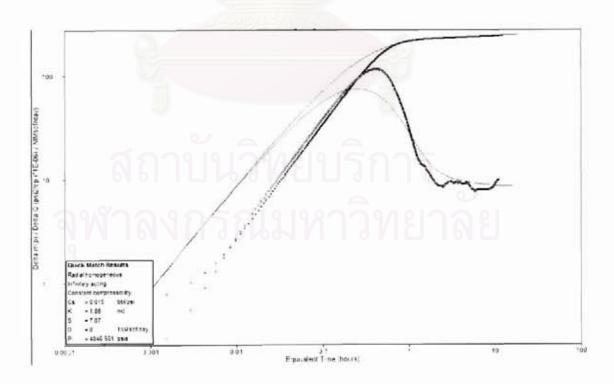


Figure A.105: Well-33 main build-up, log-log plot.

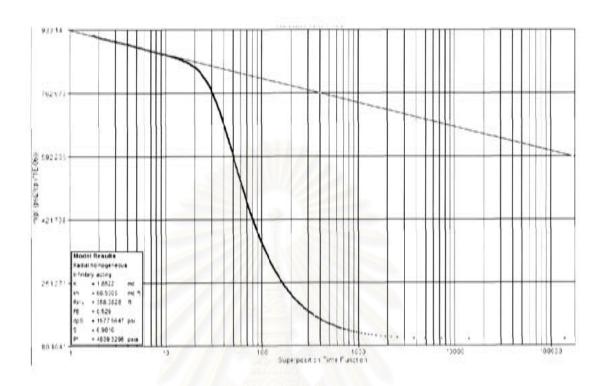


Figure A.106: Well-33 main build-up, semi-log plot.

Well-34 Reservoir 92-9

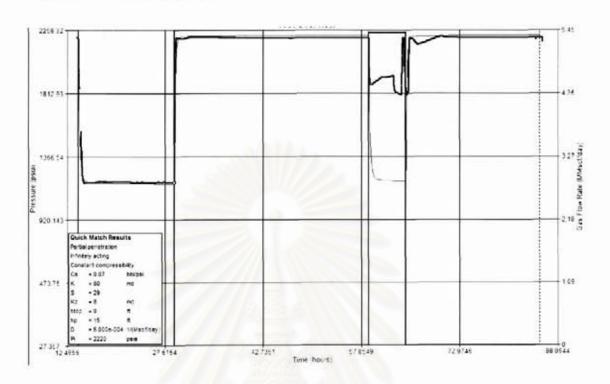


Figure A.107: Well-34 testing overview.

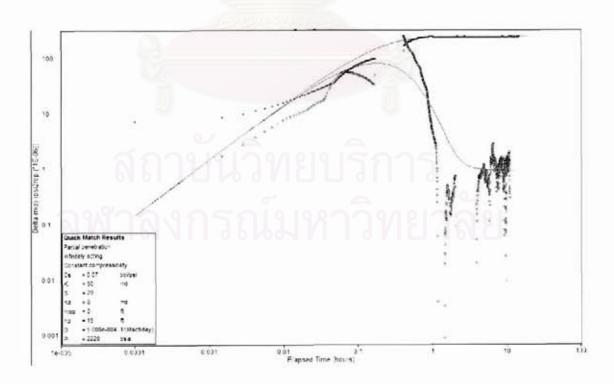


Figure A.108: Well-34 main build-up, log-log plot.

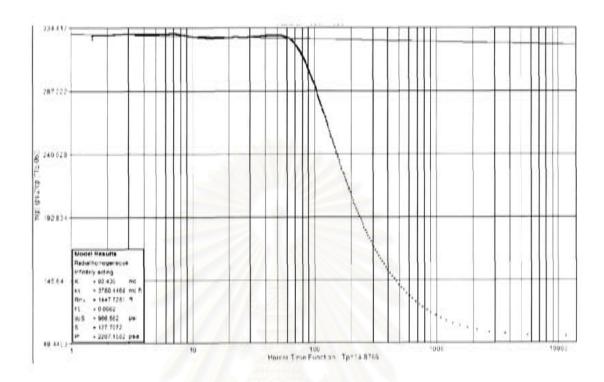


Figure A.109: Well-34 main build-up, semi-log plot.

Well-35 Reservoir 87-1

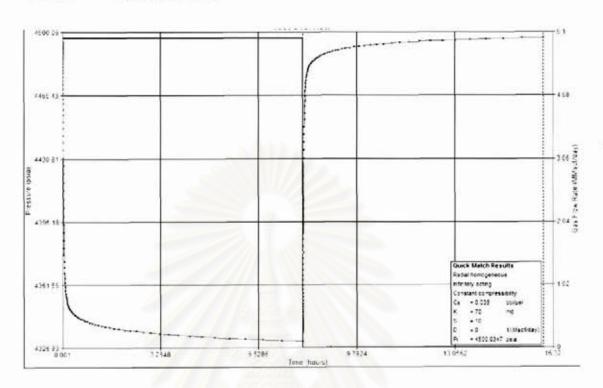


Figure A.110: Well-35 testing overview.

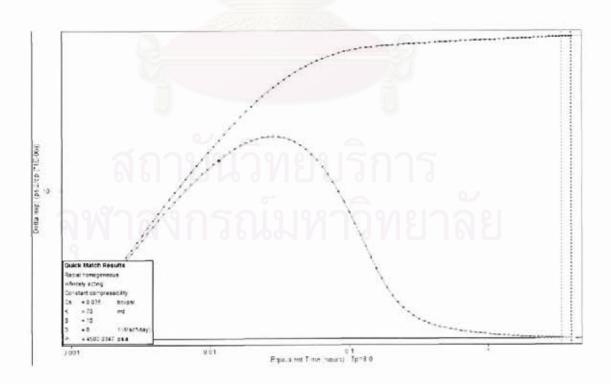


Figure A.111: Well-35 main build-up, log-log plot.

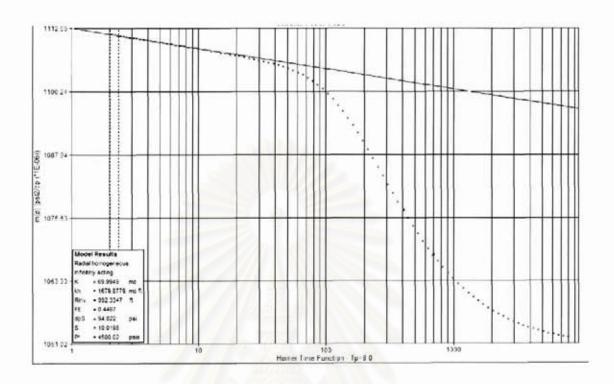


Figure A.112: Well-35 main build-up, semi-log plot.

Well-36 Reservoir 91-7

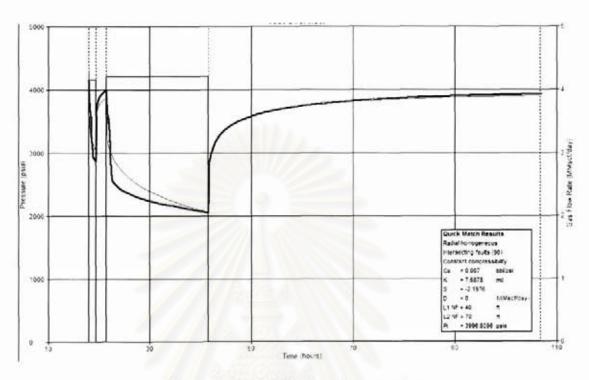


Figure A.113: Well-36 testing overview.

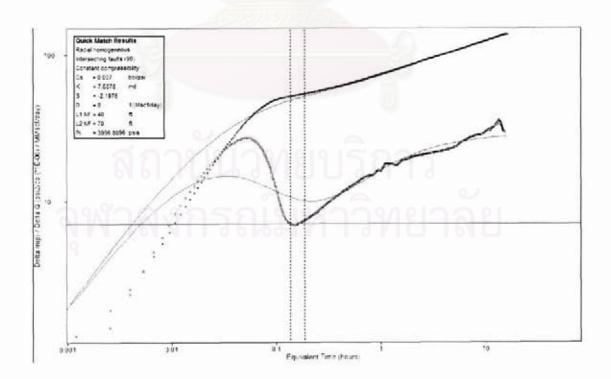


Figure A.114: Well-36 main build-up, log-log plot.

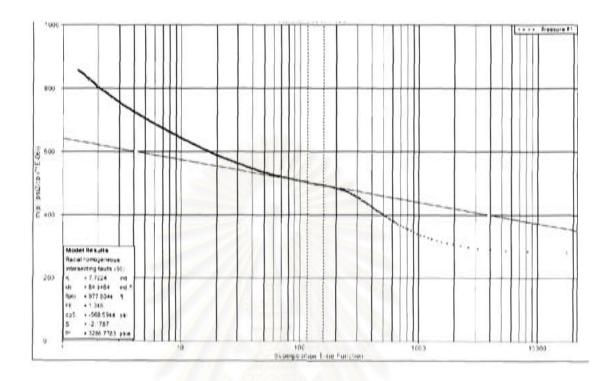


Figure A.115: Well-36 main build-up, semi-log plot.

Well-37 Reservoir 64-0

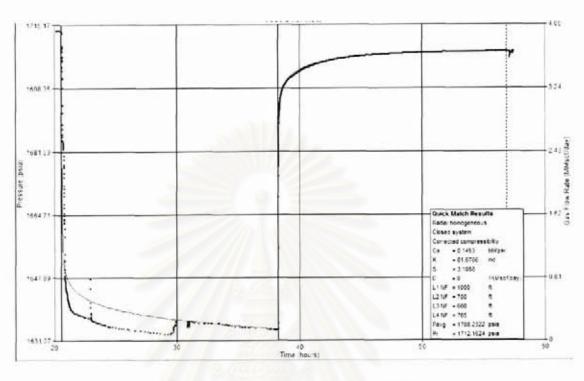


Figure A.116: Well-37 testing overview.

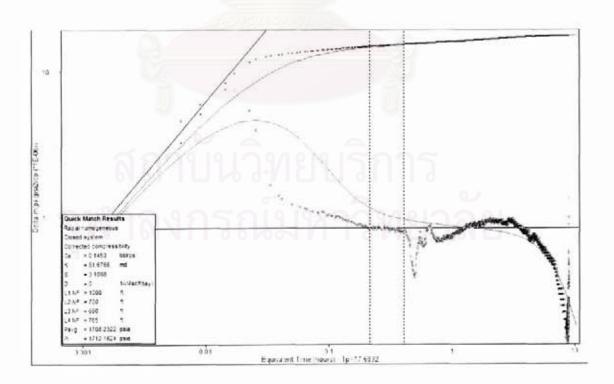


Figure A.117: Well-37 main build-up, log-log plot.

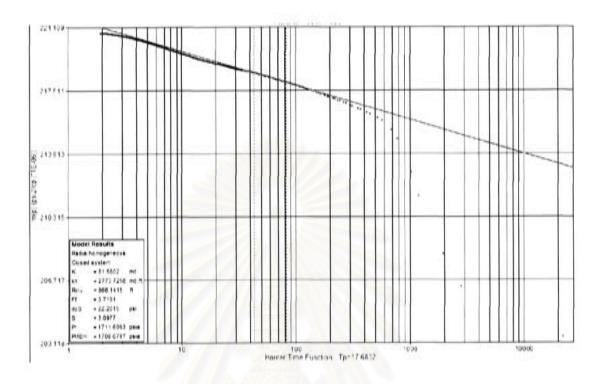


Figure A.118: Well-37 main build-up, semi-log plot.

Well-38 Reservoir 89-9

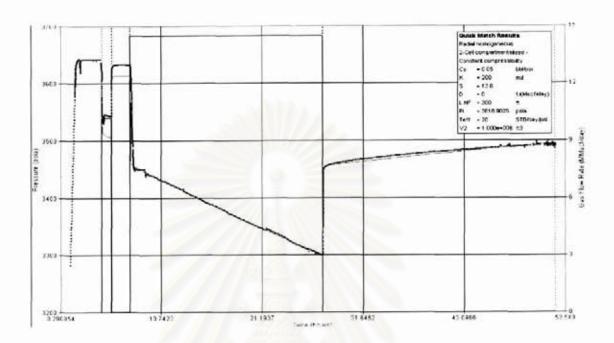


Figure A.119: Well-38 testing overview.

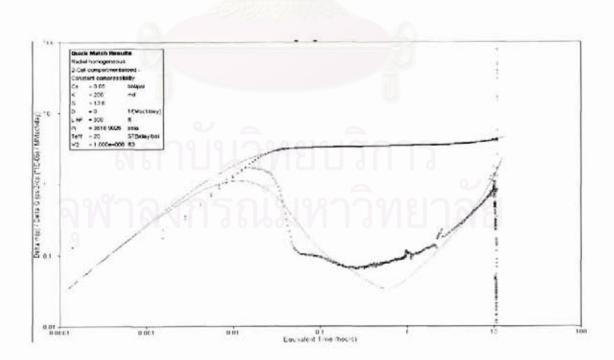


Figure A.120: Well-38 main build-up, log-log plot.

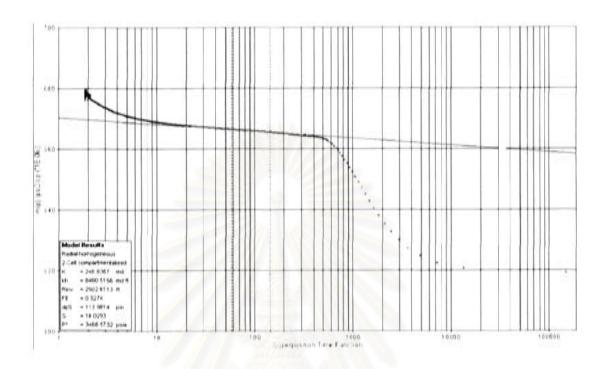


Figure A.121: Well-38 main build-up, semi-log plot.

Well-39 Reservoir 87-1

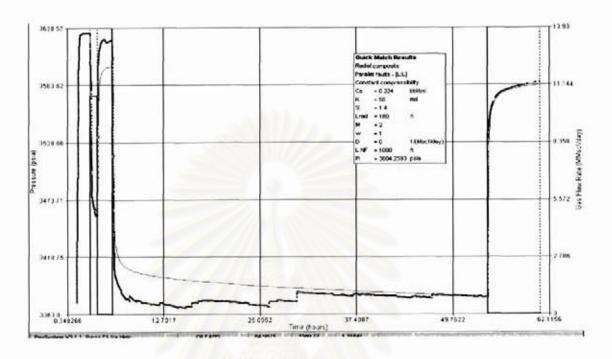


Figure A.122: Well-39 testing overview.

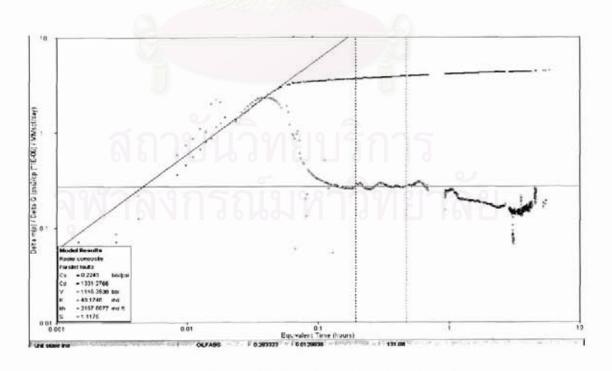


Figure A.123: Well-39 main build-up, log-log plot.

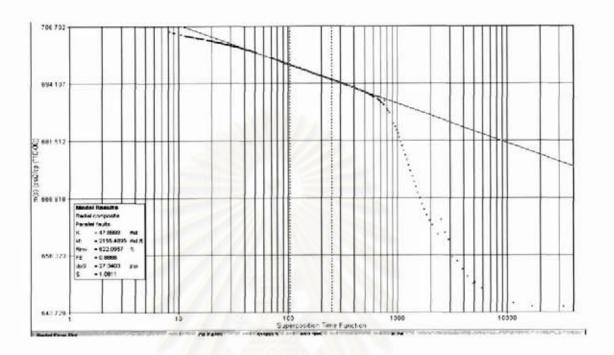


Figure A.124: Well-39 main build-up, semi-log plot.

Well-40 Reservoir 83-4

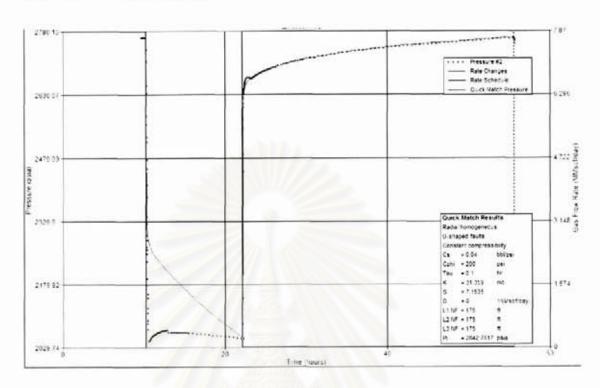


Figure A.125: Well-40 testing overview.

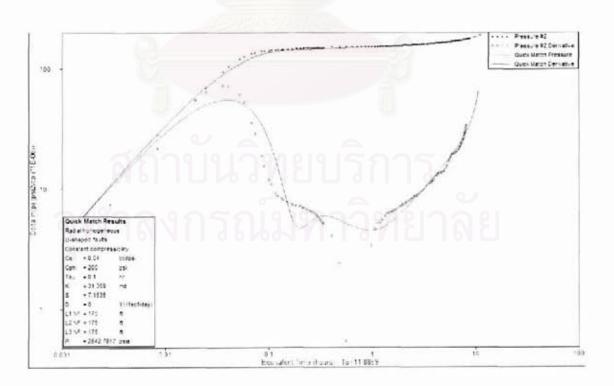


Figure A.126: Well-40 main build-up, log-log plot.

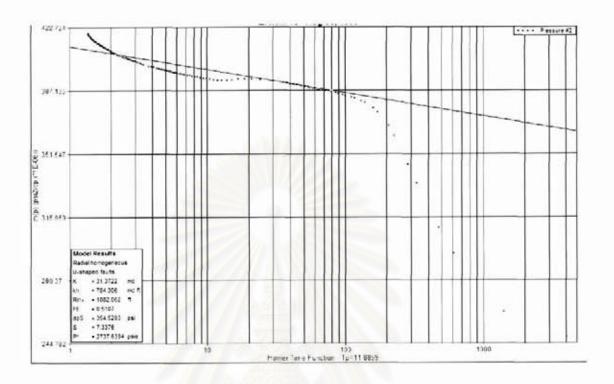


Figure A.127: Well-40 main build-up, semi-log plot.

Well-41 Reservoir 69-8

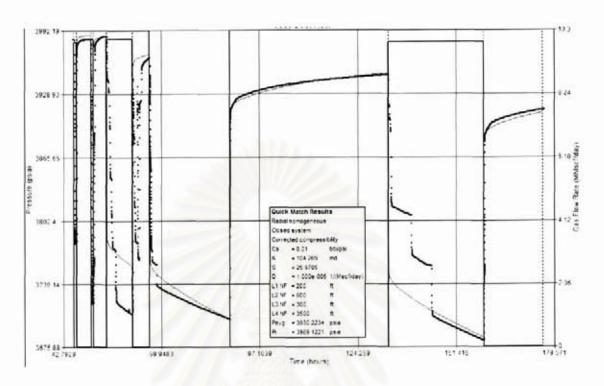


Figure A.128: Well-41 testing overview.

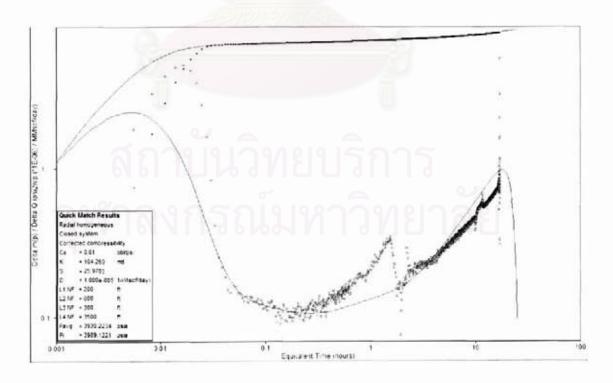


Figure A.129: Well-41 main build-up, log-log plot.

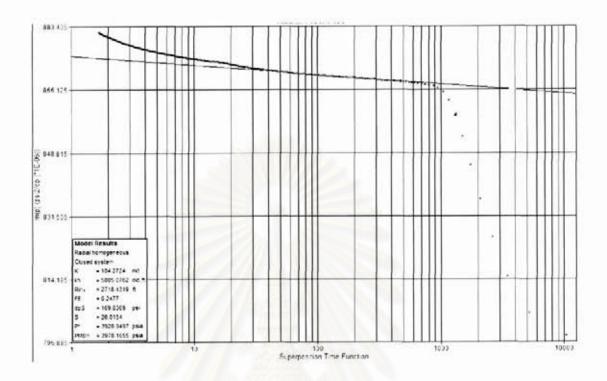


Figure A.130: Well-41 main build-up, semi-log plot.

Well-42 Reservoir 77-5

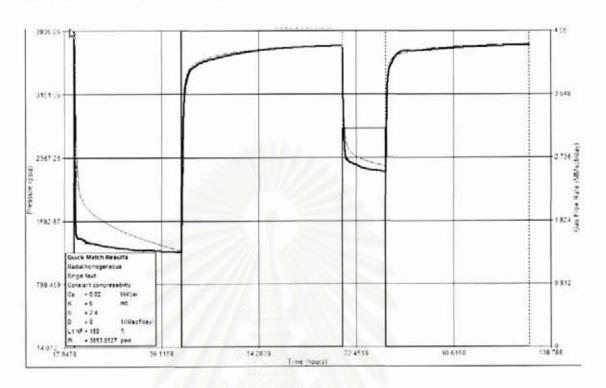


Figure A.131: Well-42 testing overview.



Figure A.132: Well-42 main build-up, log-log plot.

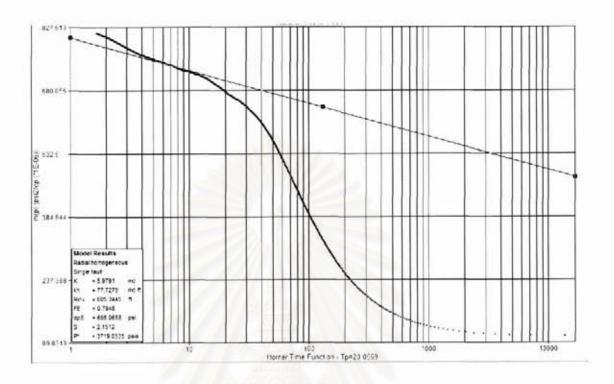


Figure A.133: Well-42 main build-up, semi-log plot.

Well-43 Reservoir 75-7

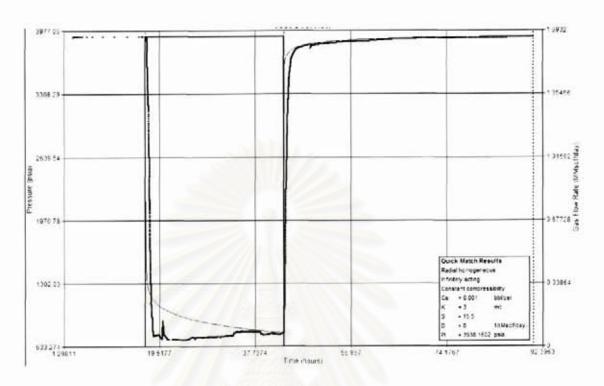


Figure A.134: Well-43 testing overview.

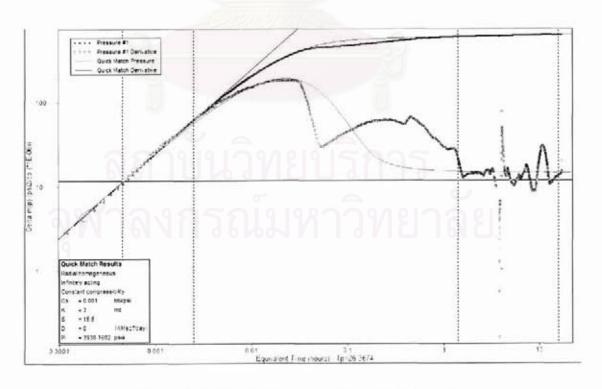


Figure A.135: Well-43 main build-up, log-log plot.

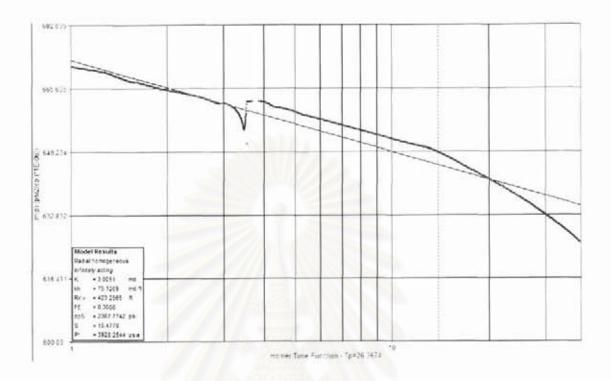


Figure A.136: Well-43 main build-up, semi-log plot.

Well-44 Reservoir 79-2

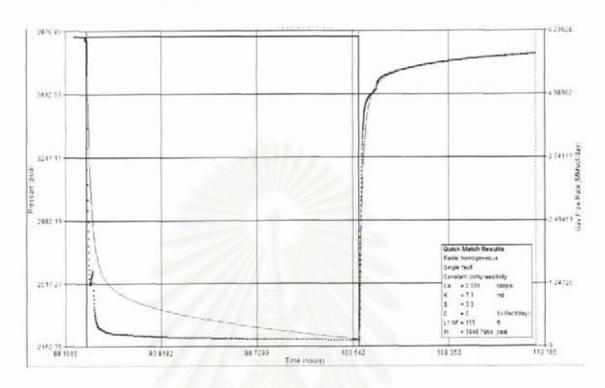


Figure A.137; Well-44 testing overview.

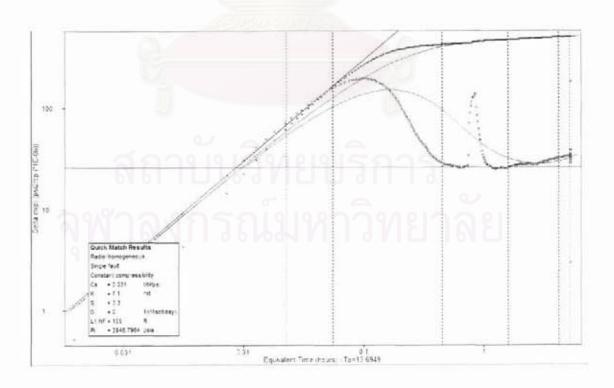


Figure A.138: Well-44 main build-up, log-log plot.

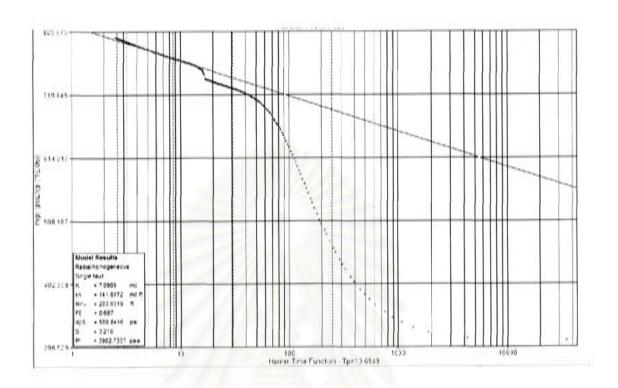


Figure A.139: Well-44 main build-up, semi-log plot.

Well-45 Reservoir 80-7

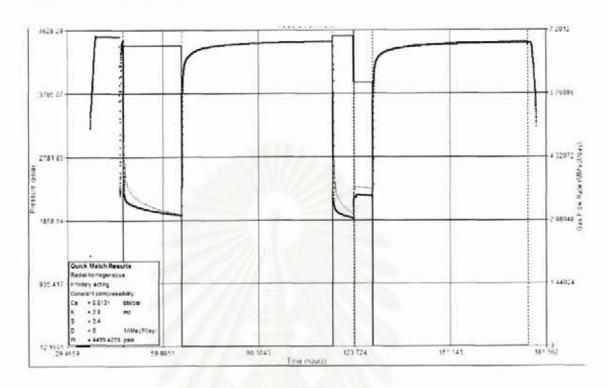


Figure A.140: Well-45 testing overview.

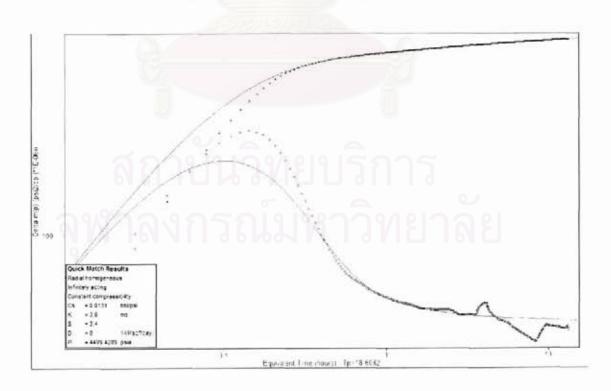


Figure A.141: Well-45 main build-up, log-log plot.

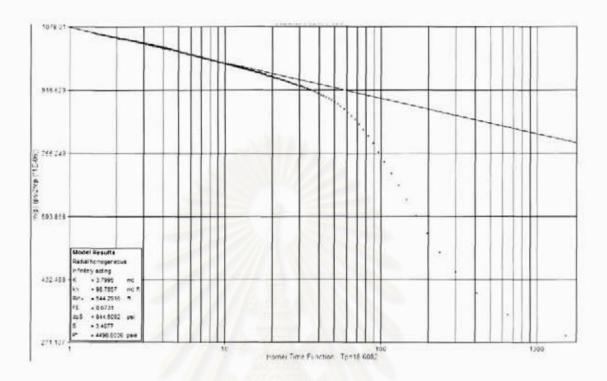


Figure A.142: Well-45 main build-up, semi-log plot.

Well-46 Reservoir 88-6

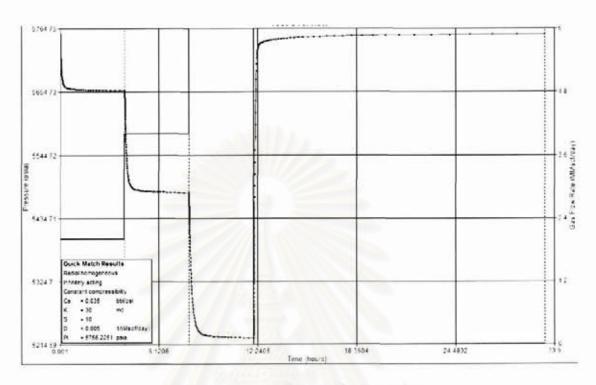


Figure A.143: Well-46 testing overview.

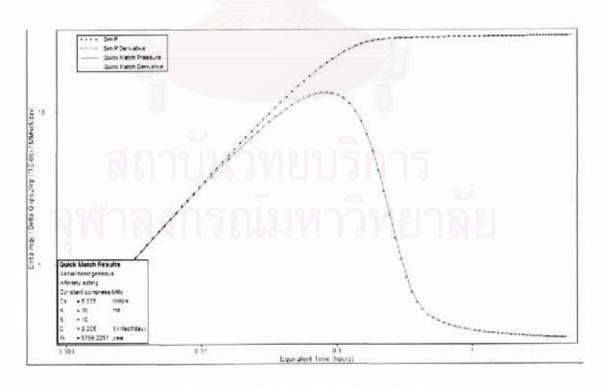


Figure A.144: Well-46 main build-up, log-log plot.

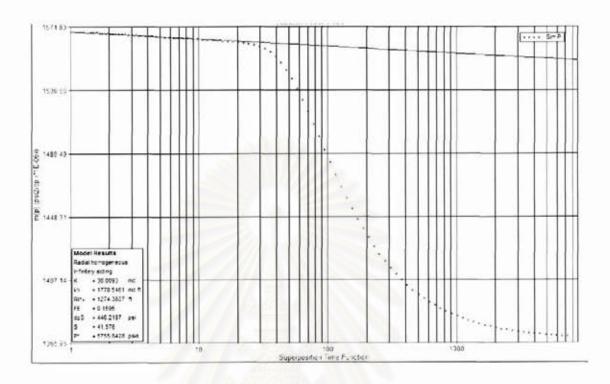


Figure A.145: Well-46 main build-up, semi-log plot.

Well-47 Reservoir 77-4

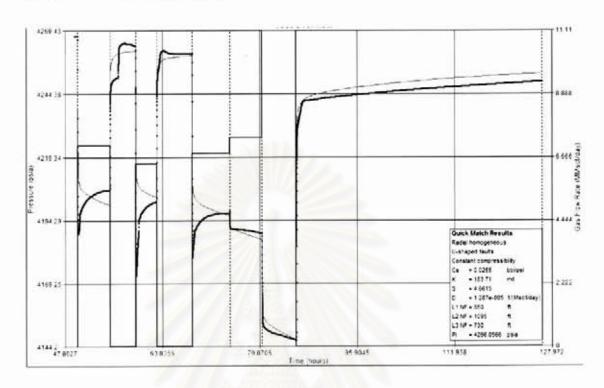


Figure A.146: Well-47 testing overview.

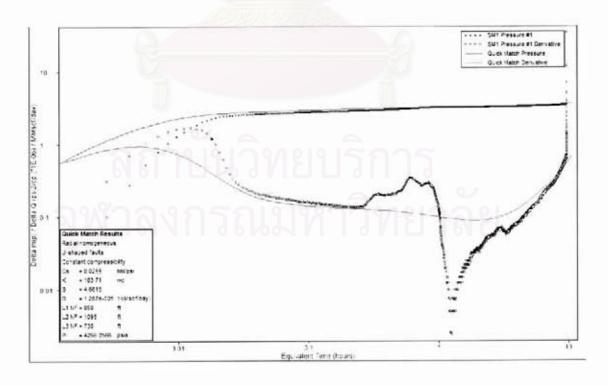


Figure A.147: Well-47 main build-up, log-log plot.

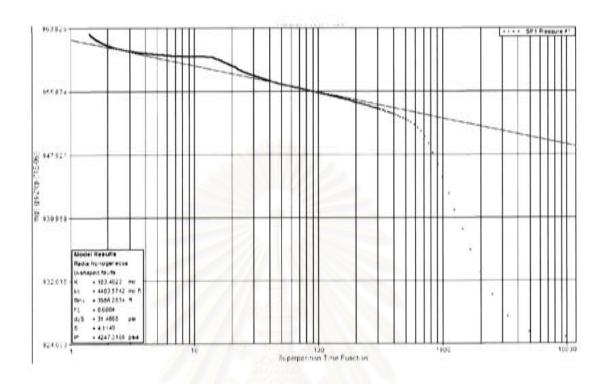


Figure A.148: Well-47 main build-up, semi-log plot.

Well-48 Reservoir 76-6

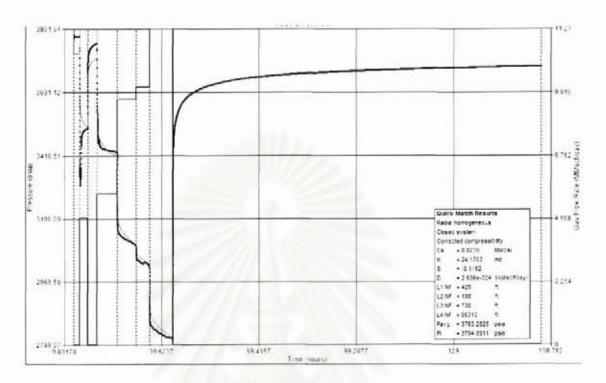


Figure A.149: Well-48 testing overview.

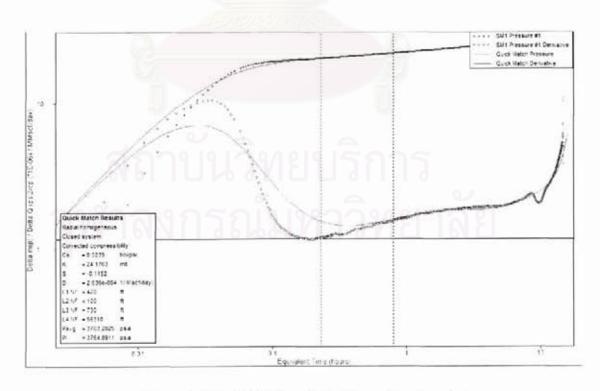


Figure A.150: Well-48 main build-up, log-log plot.

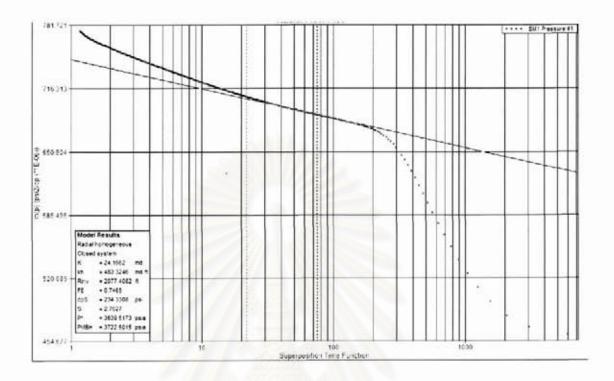


Figure A.151: Well-48 main build-up, semi-log plot.

Well-49 Reservoir 79-2

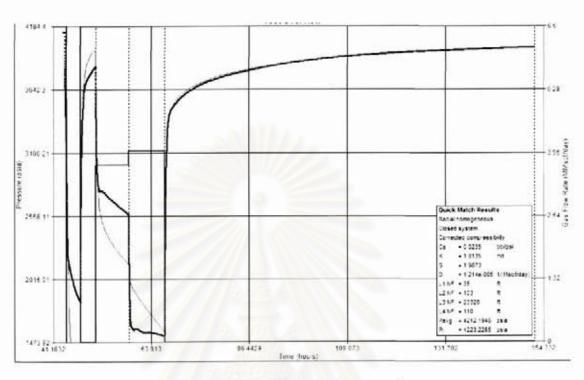


Figure A.152: Well-49 testing overview.

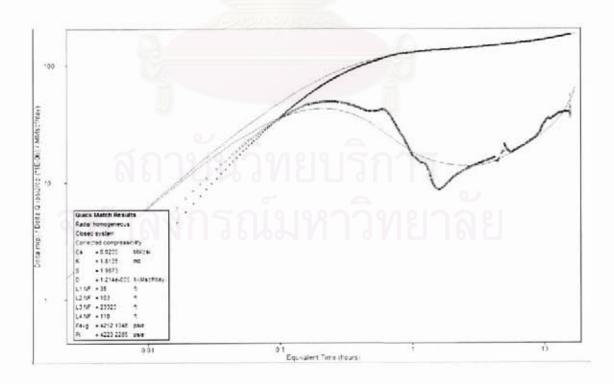


Figure A.153: Well-49 main build-up, log-log plot.

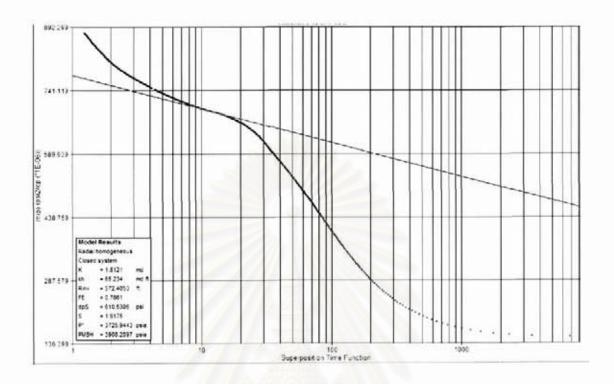


Figure A.154: Well-49 main build-up, semi-log plot.

Well-50 Reservoir 68-7

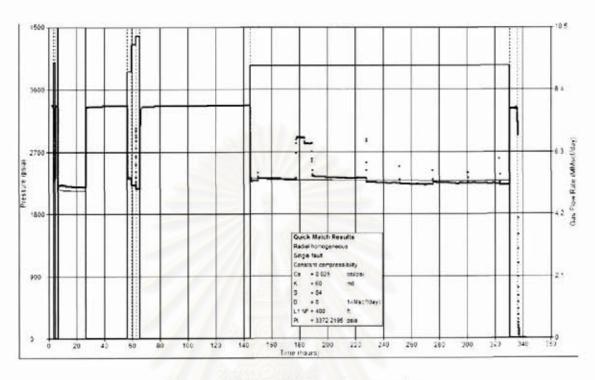


Figure A.155: Well-50 testing overview.

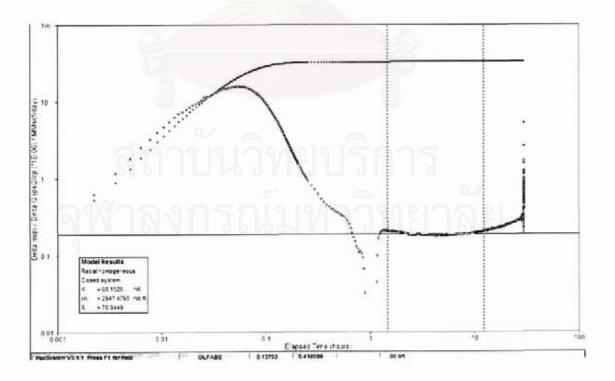


Figure A.156: Well-50 main build-up, log-log plot.

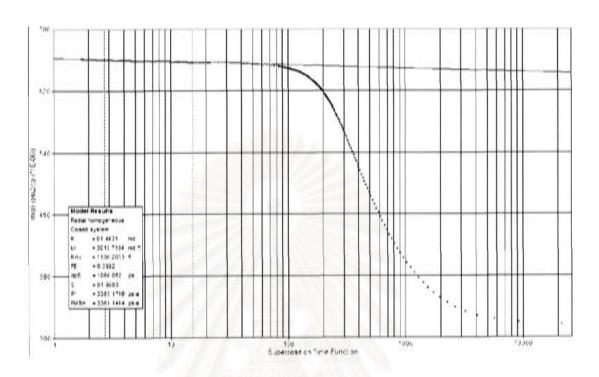


Figure A.157: Well-50 main build-up, semi-log plot.

Well-51 Reservoir 72-8

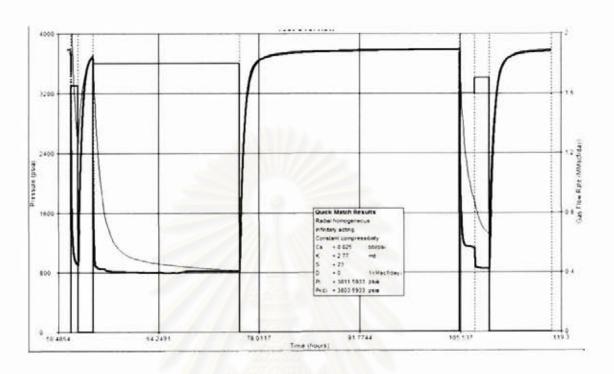


Figure A.158: Well-51 testing overview.

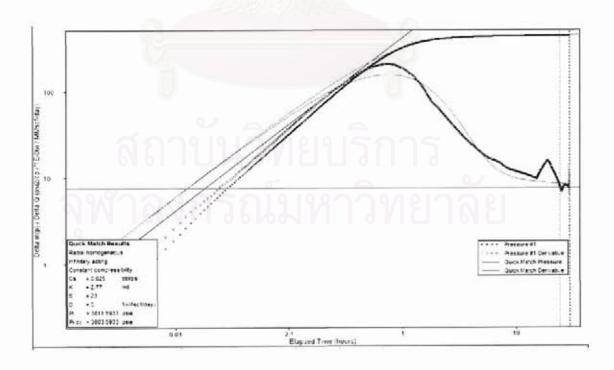


Figure A.159: Well-51 main build-up, log-log plot.

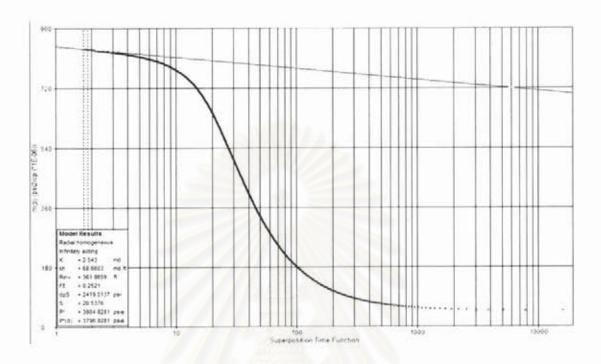


Figure A.160: Well-51 main build-up, semi-log plot.

Well-52 Reservoir 68-6

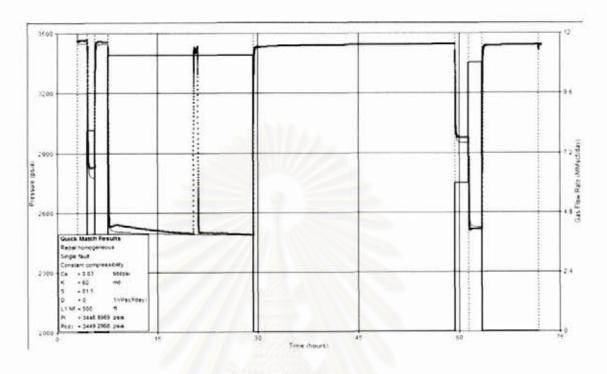


Figure A.161: Well-52 testing overview.

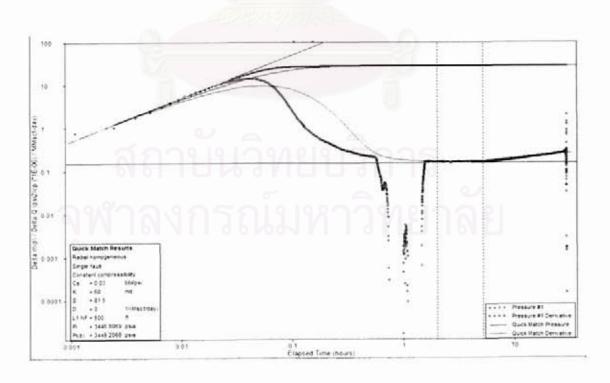


Figure A.162: Well-52 main build-up, log-log plot.

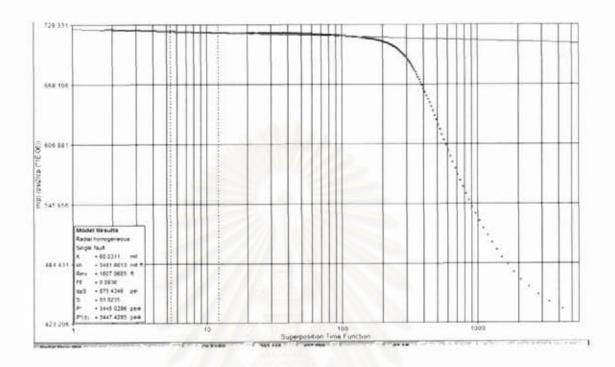


Figure A.163: Well-52 main build-up, semi-log plot.

Well-53 Reservoir 91-1

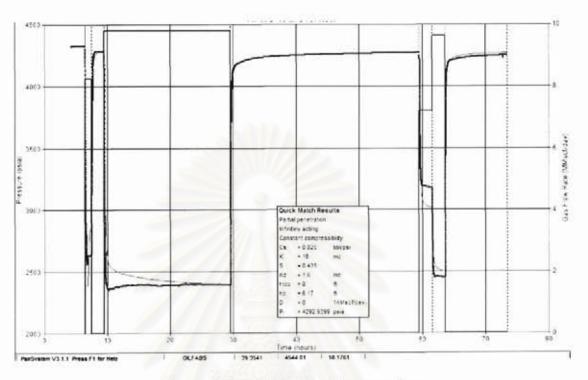


Figure A.164: Well-53 testing overview.

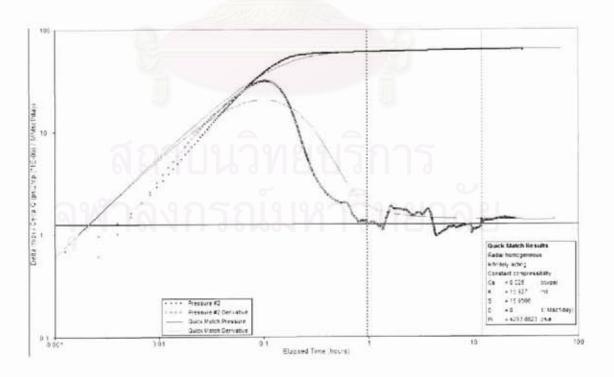


Figure A.165: Well-53 main build-up, log-log plot.

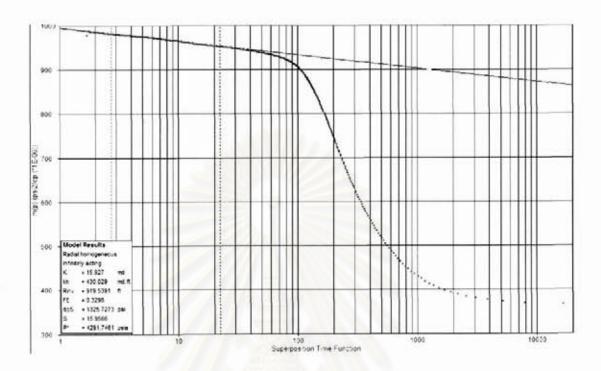


Figure A.166: Well-53 main build-up, semi-log plot.

Well-54 Reservoir 89-4

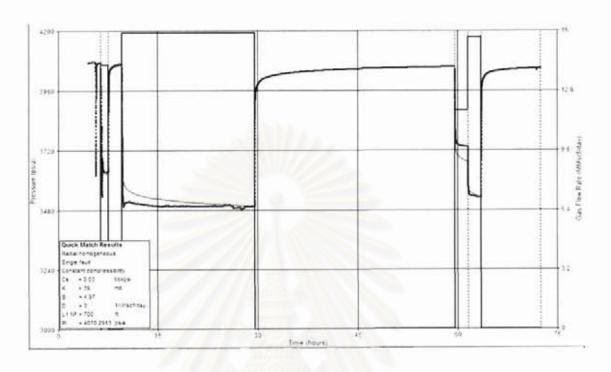


Figure A.167: Well-54 testing overview.

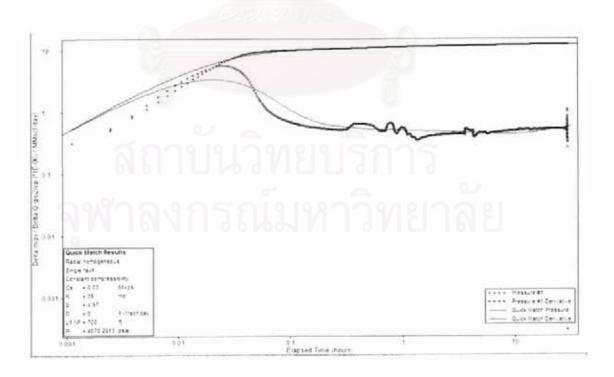


Figure A.168: Well-54 main build-up, log-log plot.

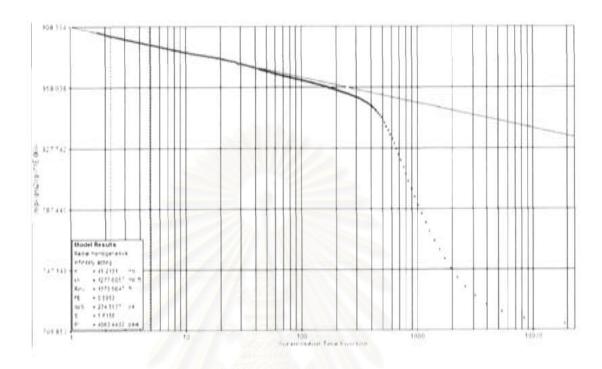


Figure A.169: Well-54 main build-up, semi-log plot.

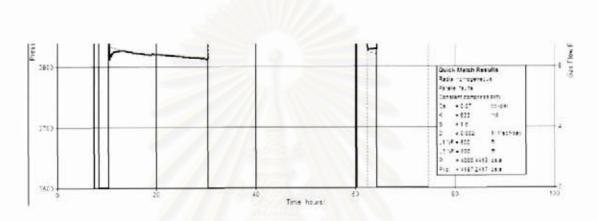


Figure A.170: Well-55 testing overview.

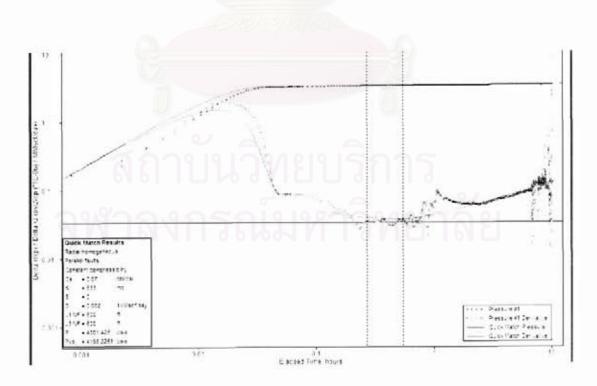


Figure A.171: Well-55 main build-up, log-log plot.

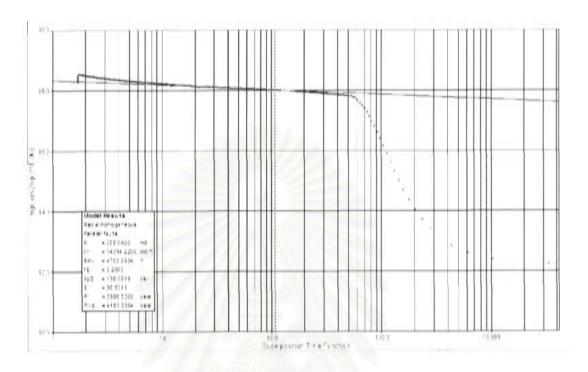


Figure A.172: Well-55 main build-up, semi-log plot.

Well-56 Reservoir 75-6

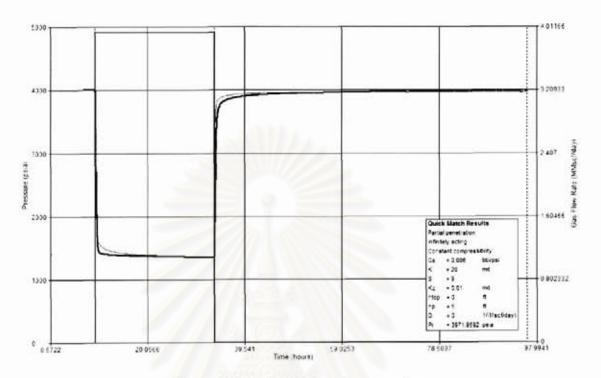


Figure A.173: Well-56 testing overview.

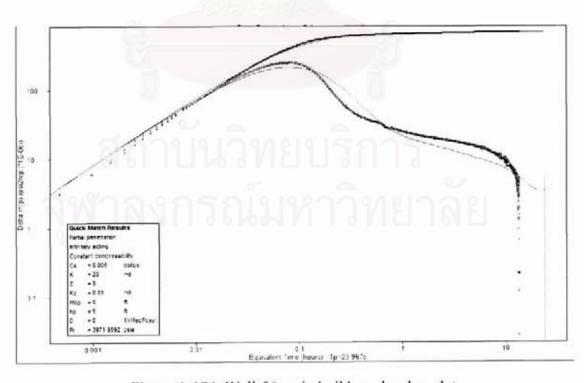


Figure A.174: Well-56 main build-up, log-log plot.

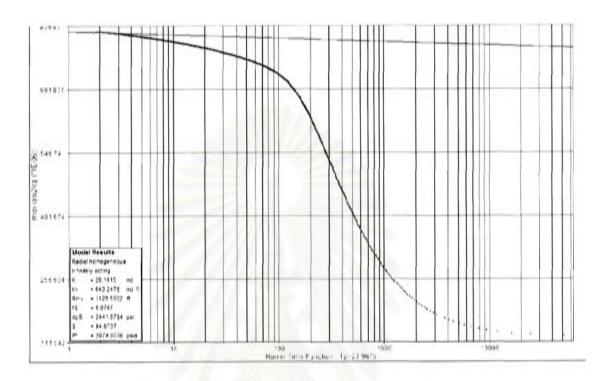


Figure A.175: Well-56 main build-up, semi-log plot.

Well-57 Reservoir 87-6

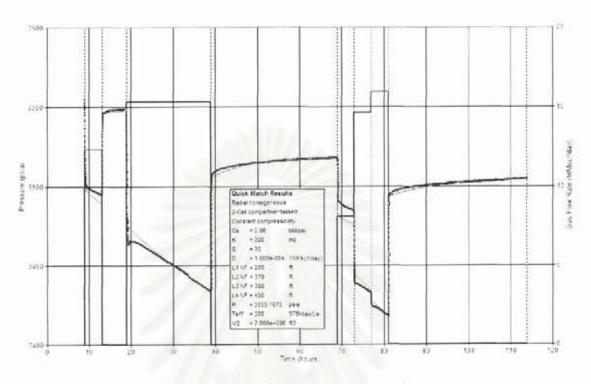


Figure A.176: Well-57 testing overview.

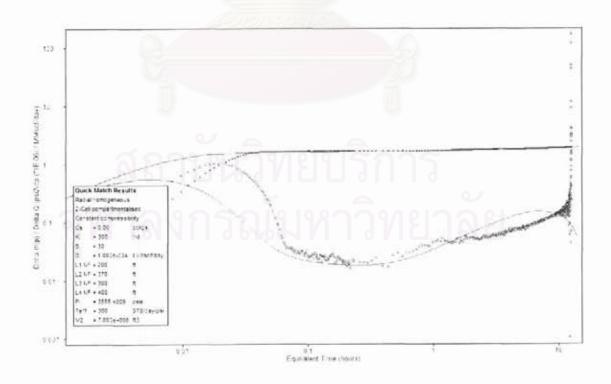


Figure A.177: Well-57 main build-up, log-log plot.

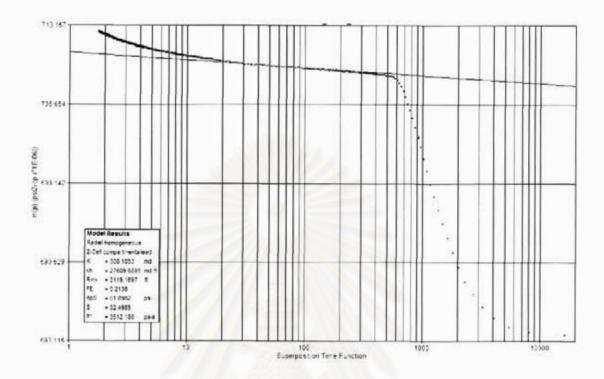


Figure A.178: Well-57 main build-up, semi-log plot.

Well-58 Reservoir 88-9

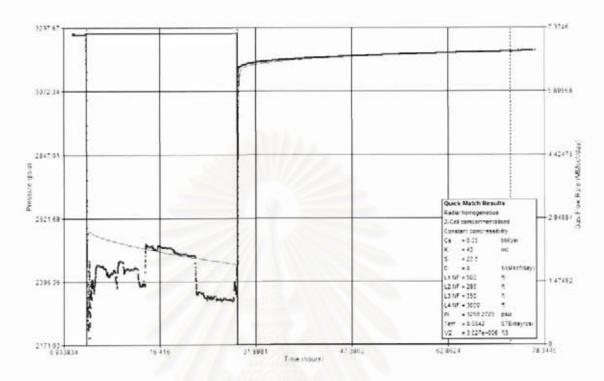


Figure A.179: Well-58 testing overview.

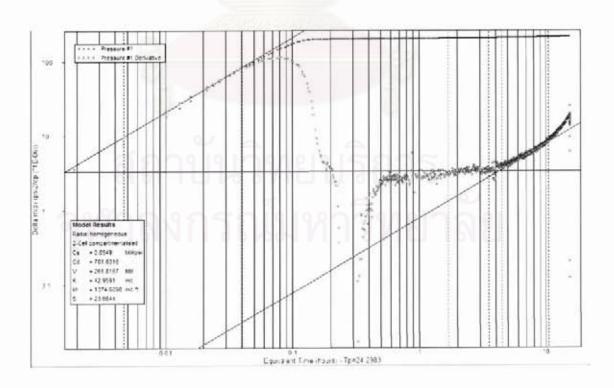


Figure A.180: Well-58 main build-up, log-log plot.

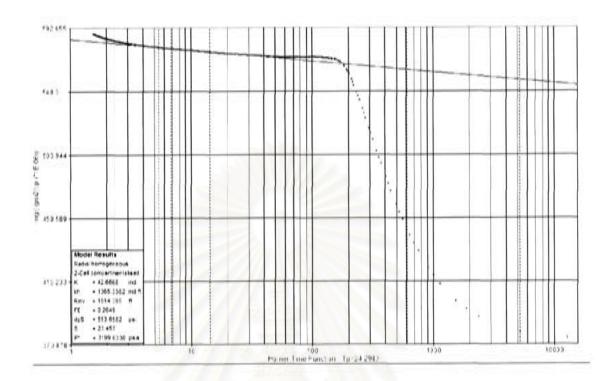


Figure A.181: Well-58 main build-up, semi-log plot.

Well-59 Reservoir 88-8

Figure A.182: Well-59 testing overview.

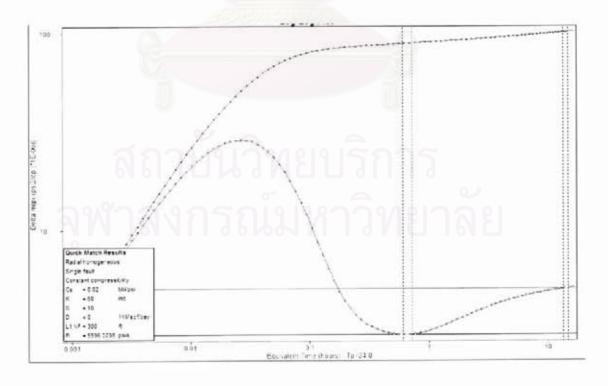


Figure A.183: Well-59 main build-up, log-log plot.

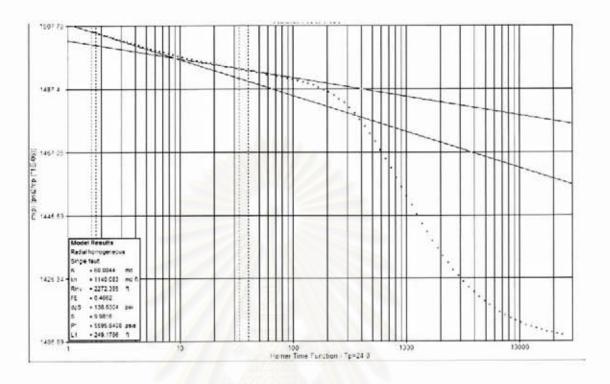


Figure A.184: Well-59 main build-up, semi-log plot.

Well-60 Reservoir 69-2

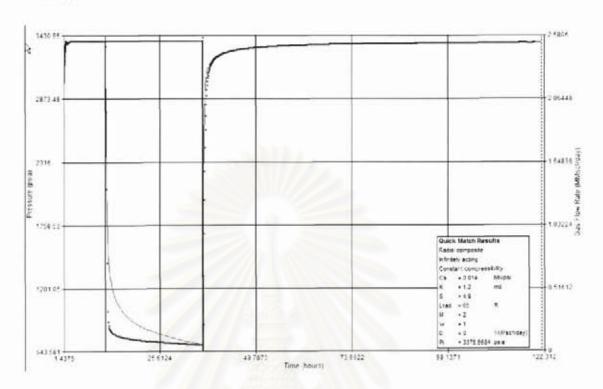


Figure A.185: Well-60 testing overview.

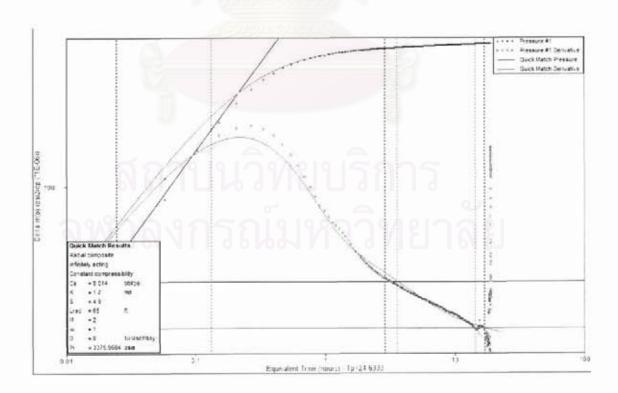


Figure A.186: Well-60 main build-up, log-log plot.

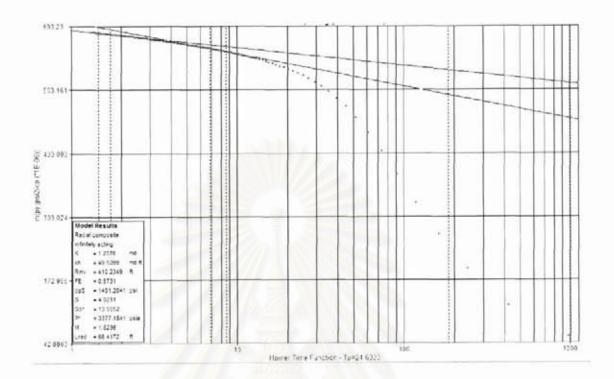


Figure A.187: Well-60 main build-up, semi-log plot.

Well-61 Reservoir 78-2

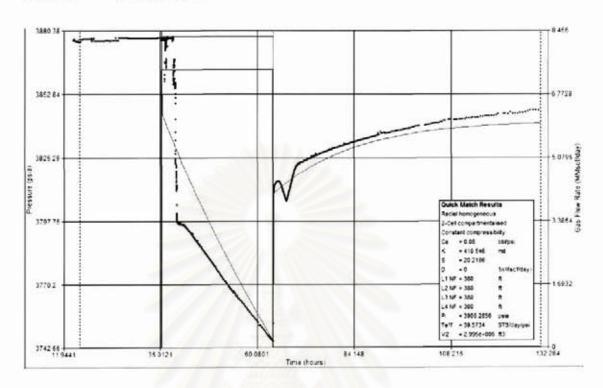


Figure A.188: Well-61 testing overview.

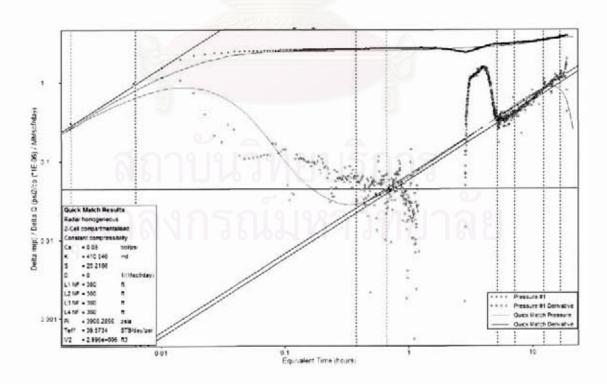


Figure A.189: Well-61 main build-up, log-log plot.

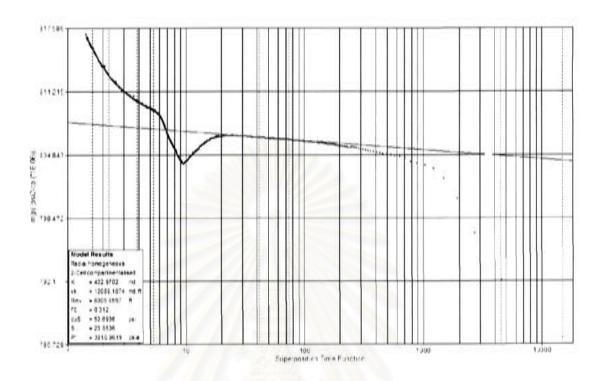


Figure A.190; Well-61 main build-up, semi-log plot.

Well-62 Reservoir 70-8

Figure A.191: Well-62 testing overview.

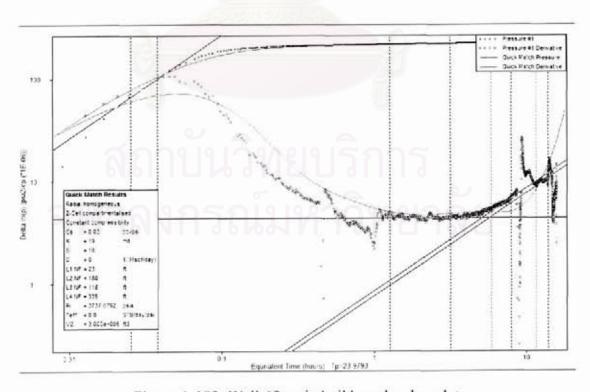


Figure A.192: Well-62 main build-up, log-log plot.

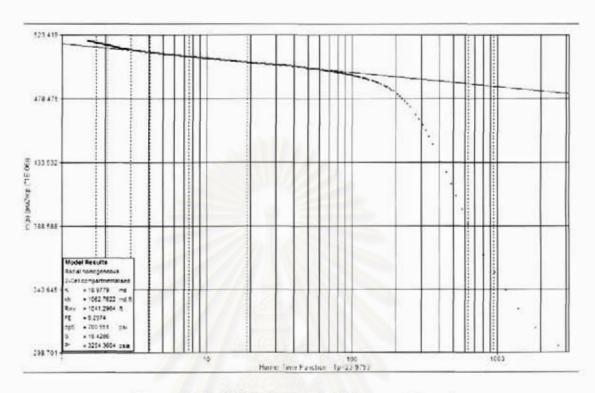


Figure A.193: Well-62 main build-up, semi-log plot.

Well-63 Reservoir 81-2

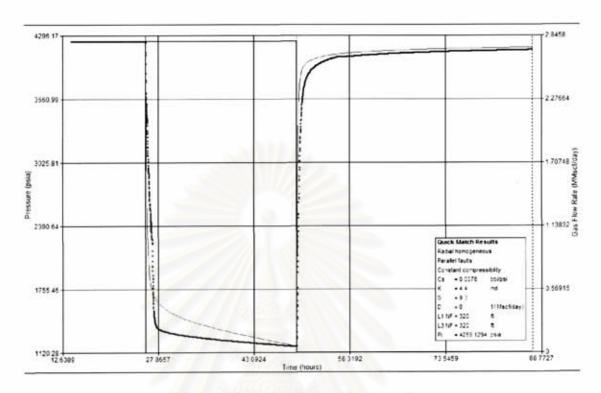


Figure A.194: Well-63 testing overview.

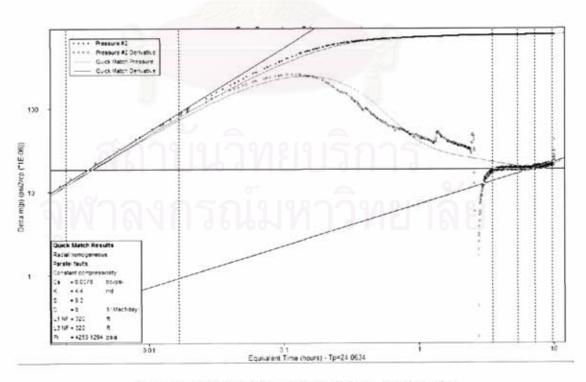


Figure A.195: Well-63 main build-up, log-log plot.

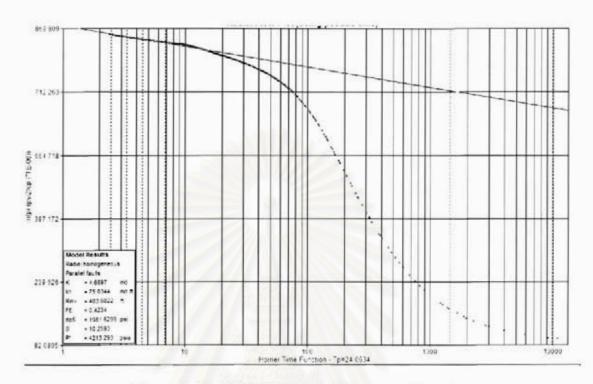


Figure A.196: Well-63 main build-up, semi-log plot.

Well-64 Reservoir 92-0

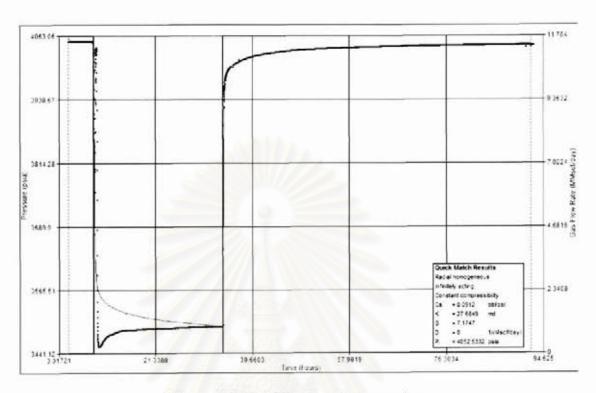


Figure A.197: Well-64 testing overview.

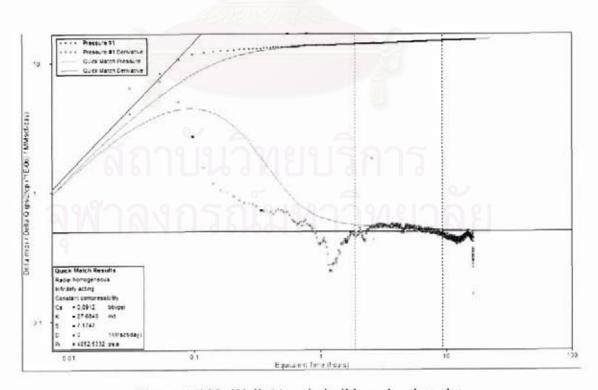


Figure A.198: Well-64 main build-up, log-log plot.

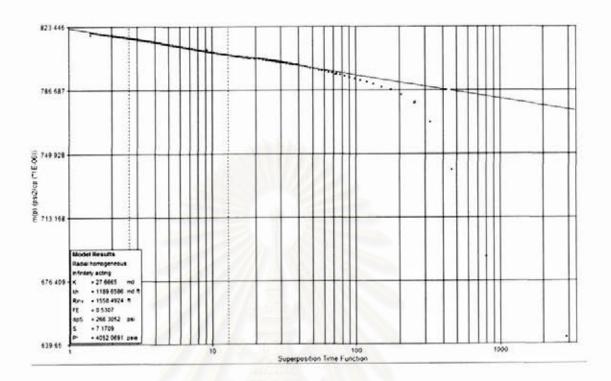


Figure A.199: Well-64 main build-up, semi-log plot.

Well-65 Reservoir 89-5

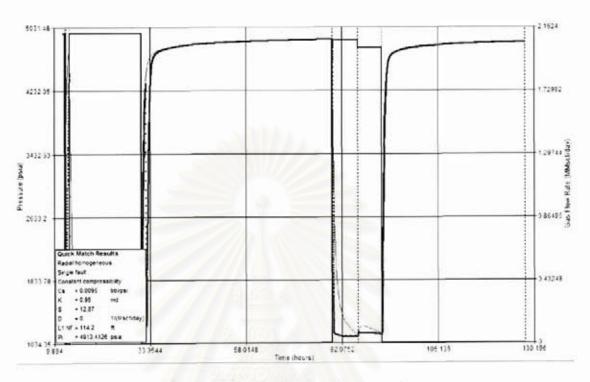


Figure A.200: Well-65 testing overview.

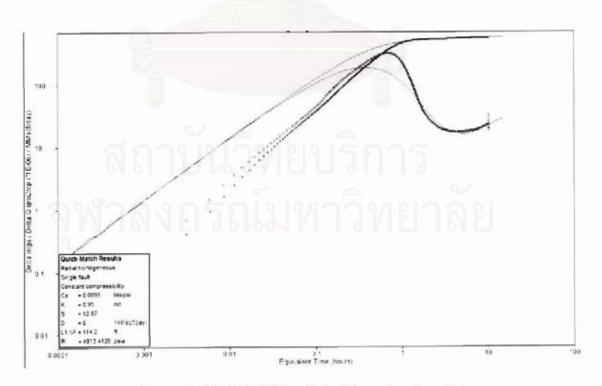


Figure A.201: Well-65 main build-up, log-log plot.

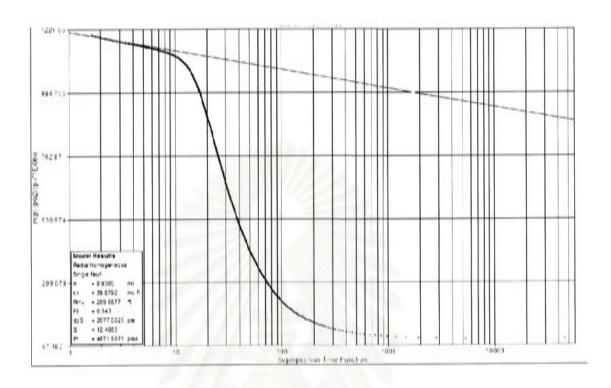


Figure A.202: Well-65 main build-up, semi-log plot.

Well-66 Reservoir 64-0

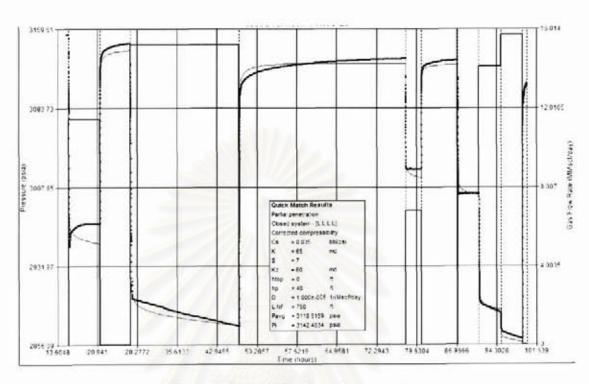


Figure A.203: Well-66 testing overview.

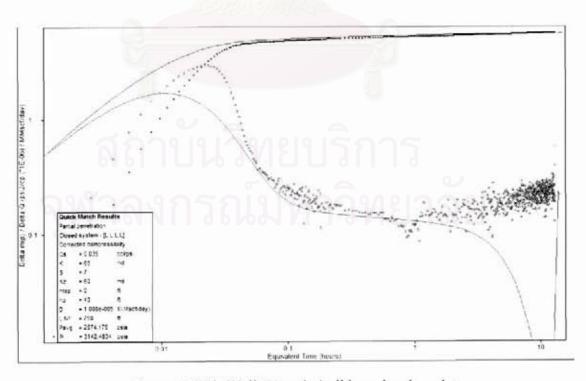


Figure A.204: Well-66 main build-up, log-log plot.

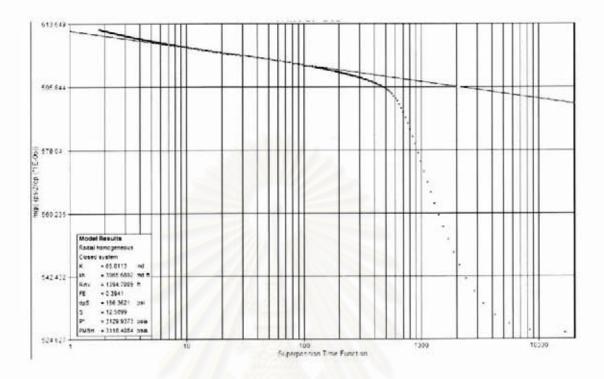


Figure A.205: Well-66 main build-up, semi-log plot.

Well-67 Reservoir 81-3

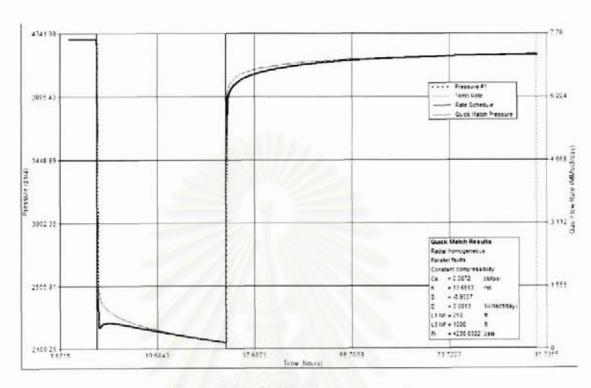


Figure A.206: Well-67 testing overview.

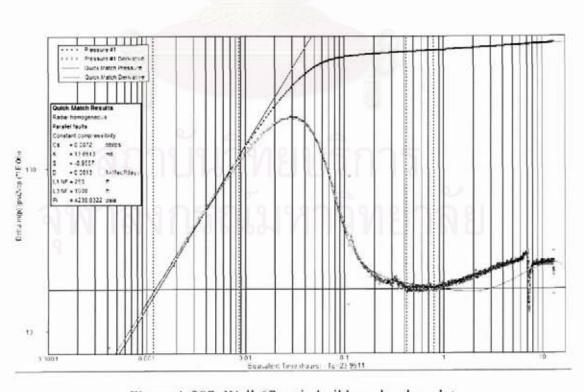


Figure A.207: Well-67 main build-up, log-log plot.

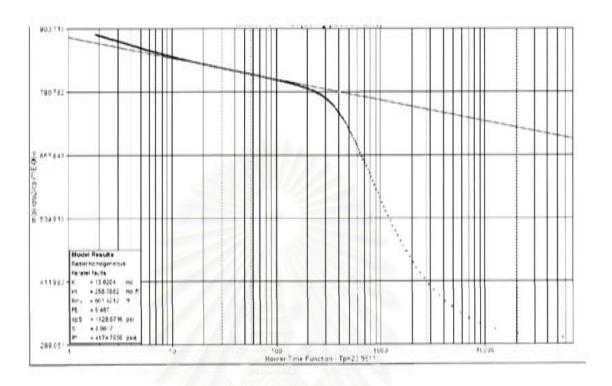


Figure A.208: Well-67 main build-up, semi-log plot.

Well 68 Reservoir 71-4

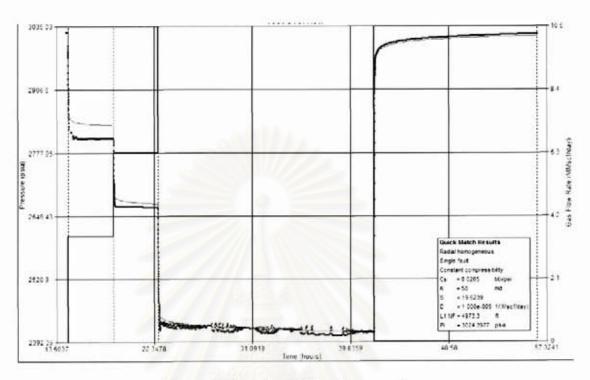


Figure A.209: Well-68 testing overview.

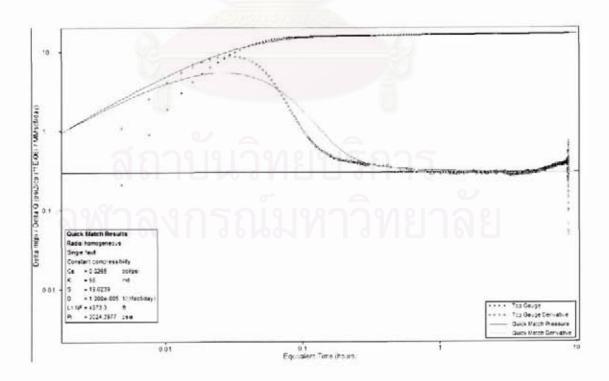


Figure A.210: Well-68 main build-up, log-log plot.

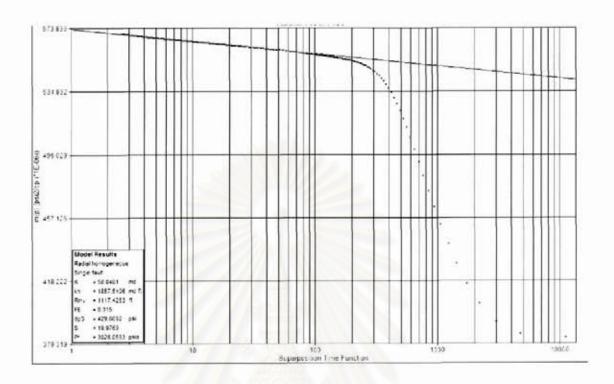


Figure A.211: Well-68 main build-up, semi-log plot.

Well 69 Reservoir 72-3

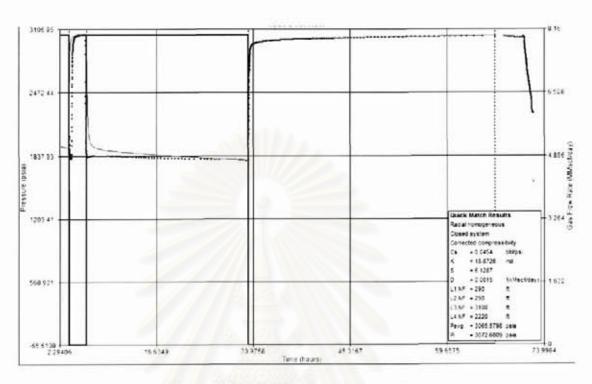


Figure A.212: Well-69 testing overview.

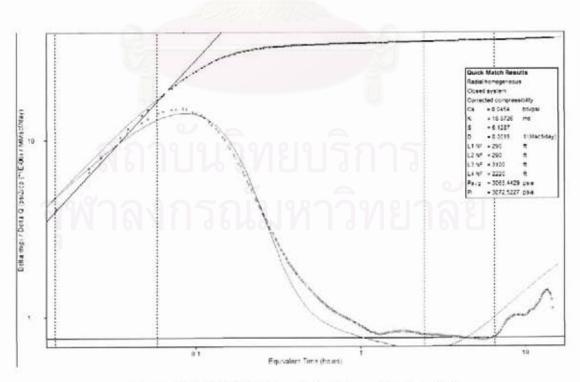


Figure A.213: Well-69 main build-up, log-log plot.

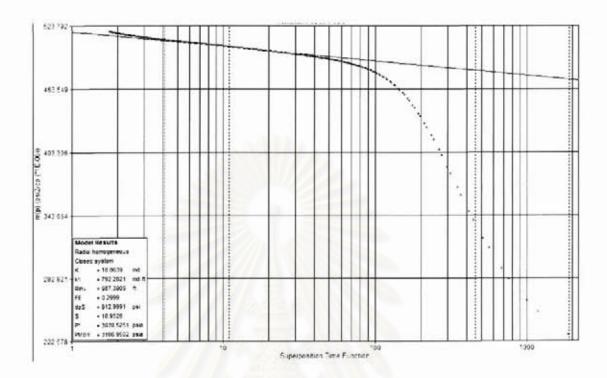


Figure A.214: Well-69 main build-up, semi-log plot.

Well 70 Reservoir 65-2

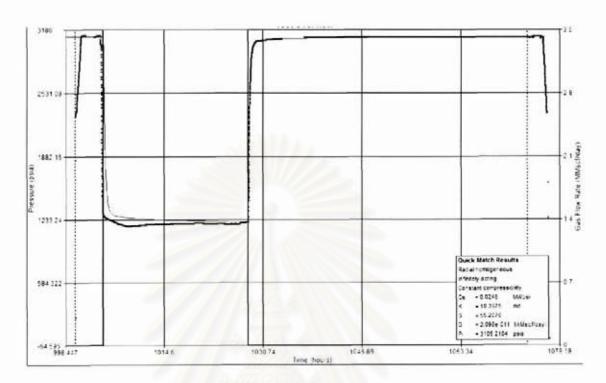


Figure A.215: Well-70 testing overview.

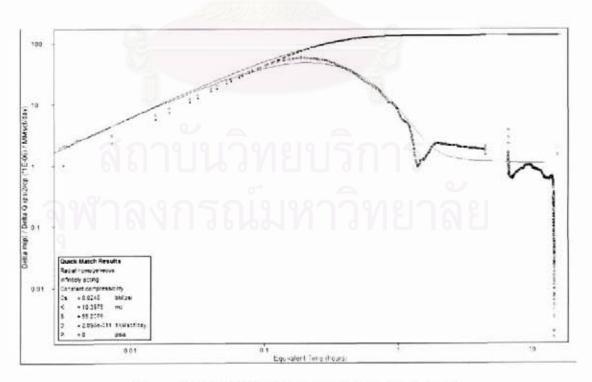


Figure A.216: Well-70 main build-up, log-log plot.

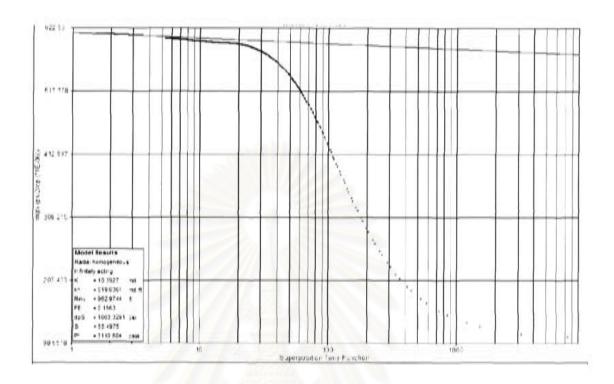


Figure A.217: Well-70 main build-up, semi-log plot.

Vitae

Nattapon Nampratchayakul was born on June 25, 1979 in Bangkok, Thailand. He received his B.Eng. in Petroleum Engineering from the Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University in March 2001. He joined Unocal Thailand, Ltd as a training engineer since April 2001. He was promoted to petroleum engineer, for gas asset team, in December 2002. After Unocal Thailand, Ltd was acquired by Chevron in August 2005, he was transferred to be a petroleum engineer of Chevron Thailand Exploration and Production, Ltd. He was assigned to work in oil asset team in February 2006 and promoted to be lead petroleum engineer in April 2006. He has been a graduate student in the Master's Degree Program in Petroleum Engineering in the Department of Mining and Petroleum Engineering, Chulalongkorn University since 2005.

