องค์ประกอบทางเคมีและฤทธิ์ยับยั้งไวรัสเฮอร์ปีส์ซิมเพล็กซ์ของสมุยและส้มชื่น

นายชัยศักดิ์ จันศรีนิยม

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2552 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CHEMICAL CONSTITUENTS AND ANTI-HERPES SIMPLEX VIRUS ACTIVITY OF *MICROMELUM HIRSUTUM* AND *GLYCOSMIS PARVA*

Mr. Chaisak Chansriniyom

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Pharmacognosy Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2009

Copyright of Chulalongkorn University

Thesis Title	CHEMICAL	CONS	TITUENTS	AND	ANTI-HERPES
	SIMPLEX	VIRUS	ACTIVITY	OF	MICROMELUM
	HIRSUTUM	AND GLY	COSMIS PAR	VA	
Ву	Mr. Chaisak (Chansriniy	/om		
Field of Study	Pharmacogno	sy			
Thesis Advisor	Associate Pro	fessor Nij	siri Ruangrung	gsi, Ph.I	D.
Thesis Co-Advisor	Professor Tsu	tomu Ishi	kawa, Ph.D.		

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Associate Professor Pintip Pongpech, Ph.D.)

THESIS COMMITTEE

Kittijak CelebitChairman

(Associate Professor Kittisak Likhitwitayawuid, Ph.D.)

(Associate Professor Nijsiri Ruangrungsi, Ph.D.)

Thesis Co-Advisor

(Professor Tsutomu Ishikawa, Ph.D.)

Vimemals Lipipon Examiner

(Associate Professor Vimolmas Lipipun, Ph.D.)

Wondee Gritsanop External Examiner

(Associate Professor Wandee Gritsanapan, Ph.D.)

ชัชศักดิ์ จันศรีนิขม : องค์ประกอบทางเคมีและฤทธิ์ขับขั้งไวรัสเฮอร์ปีส์ซิมเพล็กซ์ของสมุข และส้มชื่น (CHEMICAL CONSTITUENTS AND ANTI-HERPES SIMPLEX VIRUS ACTIVITY OF *MICROMELUM HIRSUTUM* AND *GLYCOSMIS PARVA*) อ. ที่ปรึกษาวิทขานิพนธ์หลัก : รศ. คร. นิจศิริ เรืองรังษี, อ. ที่ปรึกษาวิทขานิพนธ์ ร่วม : Professor Tsutomu Ishikawa, Ph.D., 279 หน้า.

การศึกษาองค์ประกอบทางเคมีของสมุยและส้มชื่น สามารถแยกสารในกลุ่มคุมารินได้ 3 ชนิด 6 ชนิด ลิโมนอยค์ ชนิด และสารที่เป็นอนุพันธ์ของ อะคริโคน อัลกาลอยค์ 3 N-[(4monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide 5 ชนิด และ ควิโนโลน อัลคา ลอยค์ ไชนิด การพิสจน์โครงสร้างของสารทั้งหมุดที่แยกได้ อาศัยการวิเคราะห์เชิงสเปคโตสโคปีของ UV, IR, MS และ NMR ร่วมกับการเปรียบเทียบข้อมูลกับสารที่ทราบโครงสร้างแล้ว พบสารที่แยกได้จากกิ่งของสมุย ประกอบด้วยสารในกลุ่มควิโนโลน อัลคาลอยด์ที่พบครั้งแรกในธรรมชาติ 1 ชนิด คือ 1,2-dimethyl-4-oxo-1,4dihydroquinoline-3-carboxylic acid [262] สารกลุ่มคมารินที่เคยมีรายงานมาแล้ว 2 ชนิด คือ scopoletin [41] และ micromelin [5] ส่วนสารที่แขกได้จากใบของสมุขประกอบด้วยสารในกลุ่มคูมารินที่เคยมีรายงานมาแล้ว 2 ชนิด คือ micromelin [5] และ (-)-(2'S, 3'R)-3'-senecioyloxymarmesin [263] สารที่แยกได้จากกิ่งของส้มชื่น ประกอบด้วยสารในกลุ่มอะคริโคน อัลคาลอยด์ชนิดใหม่ 1 ชนิด คือ glycospavarine (1,3,5-trihydroxy-2methoxy-N-methyl-9-acridone) [266] สารในกลุ่มอะคริโคน อัลคาลอย์ที่เคยมีรายงานมาแล้วจำนวน 4 ชนิด กือ N-methylatalaphylline [258], glycofolinine [163], citramine [264] และ N-methylcyclo-atalaphylline-A [265] สารในกลุ่มลิโมนอยค์ 3 ชนิด คือ limonin [267] และ สารผสมของ limonexic acid [268] และ ส่วนสารที่แยกได้จากใบของส้มชื่นประกอบด้วยสารในกลุ่ม isolimonexic [269] acid N-[(4monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivatives ที่เป็นสารชนิด ใหม่งำนวน 3 ชนิด คือ (+)-S-deoxydihydroglyparvin [270], (+)-S-deoxytetrahydroglyparvin [271] และ (+)-tetrahydroglyparvin [272] สารในกลุ่ม N-[(4-monoterpenyloxy)phenylethyl]-substituted sulfurcontaining propanamide derivatives ที่เคยมีรายงานมาแก้ว 2 ชนิด คือ glyparvin-A [214] and (+)dihydroglyparvin [213] และสารในกลุ่มอะคริโดน อัลคาลอยค์ที่เคยมีรายงานมาแล้ว 1 ชนิด คือ arborinine [87] สารที่แยกได้ถูกนำไปทดสอบฤทธิ์ทางชีวภาพ คือ ฤทธิ์ยับยั้งไวรัสเฮอร์ปีส์ซิมเพล็กซ์ไทป์ 1 และไทป์ 2 พบว่า glycosparvarine [266], glycofolinine [163] และ (+)-tetrahydroglyparvin [272] มีฤทธิ์ยับยังไวรัส เฮอร์ปีส์ซิมเพล็กซ์ไทปี 1 และไทป์ 2 ในระดับปานกลางโดยที่มีค่าความเข้มข้นที่ยับยั้งไวรัสเฮอร์ปีส์ซิมเพล็กซ์ 50 เปอร์เซ็นต์ เท่ากับ 151, 348 และ 229 ใมโครโมลาร์ ตามลำดับ ในขณะที่ (+)-S-deoxydihydroglyparvin [270] มีค่าความเข้มข้นที่ยับยังไวรัสเฮอร์ปีส์ชิมเพล็กซ์ 50 เปอร์เซ็นต์ เท่ากับ 29.8 และ 44.6 ไมโครโมลาร์ ต่อ ใวรัสเฮอร์ปีส์ซิมเพล็กซ์ไทป์ 1 และ ไทป์ 2 ตามลำคับ

ภาควิชา เภสัชเวทและเภสัชพฤกษศาสตร์	ลายมือชื่อนิสิต มันศึกด์ อันศรีนิษา
สาขาวิชา <u>เภสัชเวท</u>	ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก ดีไม่ Nu (ช
ปีการศึกษา <u>2552</u>	ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม 👤 🔼

##4876951233 : MAJOR PHARMACOGNOSY KEYWORDS : COUMARINS / ACRIDONE ALKALOIDS / SULFUR-CONTAINING PROPANAMIDE DERIVATIVES / LIMONIODS / QUINOLONE ALKALOID / ANTI-HERPES SIMPLEX VIRUS ACTIVITY / *MICROMELUM HIRSUTUM / GLYCOSMIS PARVA*

CHAISAK CHANSRINIYOM : CHEMICAL CONSTITUENTS AND ANTI-HERPES SIMPLEX VIRUS ACTIVITY OF *MICROMELUM HIRSUTUM* AND *GLYCOSMIS PARVA*. THESIS ADVISOR : ASSOCIATE PROFESSOR NIJSIRI RUANGRUNGSI, Ph.D., THESIS CO-ADVISOR : PROFESSOR TSUTOMU ISHIKAWA, Ph.D., 279 pp.

Chemical investigation of Micromelum hirsutum Oliv. and Glycosmis parva Criab led to the isolation of three coumarins, six acridone alkaloids, three limoniods, five N-[(4monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivatives and a 4quinolone alkaloid. The structure determination of these compounds was accomplished by spectroscopic analyses (UV, IR, MS and NMR properties) and by comparison with previously reported data of known compounds. The branches of Micromelum hirsutum Oliv. provided a new natural quinolone alkaloid, namely 1,2-dimethyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid [262], two known coumarins identified as scopoletin [41] and micromelin [5] whereas the leaves afforded two known coumarins, micromelin [5] and (-)-(2'S, 3'R)-3'-senecioyloxymarmesin [263]. The branches of Glycosmis parva Craib yielded a new acridone alkaloid, namely glycosparvarine (1,3,5-trihydroxy-2methoxy-N-methyl-9-acridone) [266], together with four known acridone alkaloids (Nmethylatalaphylline [258], glycofolinine [163], citramine [264] and N-methylcyclo-atalaphylline-A [265]) and three limonoids (limonin [267] and a mixture of limonexic acid [268] and isolimonexic acid [269]). From the leaves of *Glycosmis parva* Craib, three new N-[(4-monoterpenyloxy)phenylethyl]substituted sulfur-containing propanamide derivatives, namely (+)-S-deoxydihydroglyparvin [270], (+)-S-deoxytetrahydroglyparvin [271] and (+)-tetrahydroglyparvin [272], two known N-[(4monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivatives (glyparvin-A [214] and (+)-dihydroglyparvin [213]) and a known acridone alkaloid, arborinine, were obtained. The isolated compounds were evaluated for their antiviral activity against HSV-1 and HSV-2. Among them, glycosparvarine [266], glycofolinine [163] and (+)-tetrahydroglyparvin [272] exhibited moderate activities against both HSV-1 and HSV-2 with EC50 of 151 µM, 348 µM and 229 µM, respectively. (+)-S-deoxydihydroglyparvin [270] exhibited activities with lower EC₅₀ of 29.8 and 44.6 µM against HSV-1 and HSV-2, respectively.

Department : Pharmaco	gnosy and	Stude
Pharmaceutical Botany		
Field of Study : Pharma	cognosy	Advi
Academic Year : 2009		Co-A

Student's Signature Chaisak Chansriniyom.

Advisor's Signature	Nipin	Lengros	nj
Co-Advisor's Signatu	ire D	2-	

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to his thesis advisor, Associate Professor Dr. Nijsiri Ruangrungsi, for his guidance, suggestion, and support throughout the course of this study.

His gratitude is particularly extended to Professor Dr. Tsutomu Ishikawa and Associate Professor Dr. Takuya Kumamoto, Department of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Japan, for providing an opportunity for conduct of experiments, and their help on NMR measurements, discussion on structure elucidation, constructive suggestions and valuable critical comments. Without their help the completion of this work would not have been possible.

His appreciations are also extended to Associate Professor Dr. Vimolmas Lipipun, Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for her help with anti-herpes simplex virus activity tests, kindness and valuable suggestions on antiviral activity test.

His gratitude is sincerely grateful to the dissertation committee for their important and constructive suggestions and crucial review of his dissertation.

A large debt of his gratitude is owed to Dr. Mayuree Kanlayavattanakul, School of Cosmetic Science, Mae Fah Luang University, Thailand, Dr. Daisuke Watanabe, Mr. Yuh-suke Akagi, Mr. Kazuya Suzuki and all members in Department of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Japan, and his friends at the department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, who kindly offer their assistance, encouragement and helpful comments throughout his research.

For the financial support, he is grateful to the Thailand Research Fund under the Royal Golden Jubilee (RGJ) Ph.D. program 2004 (PHD/0212/2547).

For the provision of laboratory facilities, he is grateful to Department of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Japan and department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand.

The author's final thank goes to his family. They provided him with every opportunity to succeed in life, encourage and support the author.

CONTENTS

Page

ABSTRACT (Thai)	iv
ABSTRACT (English)	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SCHEMES	xxi
LIST OF ABBREVIATIONS	xxii
CHAPTER	
I INTRODUCTION	1
II HISTORICAL	11
1. Chemical Constituents of <i>Micromelum</i> spp	11
2. Chemical Constituents of Glycosmis spp	30
3. Biological Activities of <i>Micromelum</i> spp	84
3.1 Traditional Uses and Biological Activities of Micromelu	т
spp	84
3.2 Biological Activities of Compounds Isolated from	
Micromelum spp	85
4. Biological Activities of Glycosmis spp	85
4.1 Traditional Uses and Biological Activities of <i>Glycosmis</i>	
spp	85
4.2 Biological Activities of Compounds Isolated from	
Glycosmis spp.	86
III EXPERIMENTAL	88
1. Source of Plant Material	88
2. General Techniques	88
2.1 Chromatographic Technique	88
2.1.1 Analytical Thin-Layer Chromatography	88
2.1.2 Preparative Thin-Layer Chromatography	89
2.1.3 Column Chromatography	89

Page

		0
2.1.4 Flash Column Chromatography		89
2.1.5 Vacuum Liquid Column Chromatogra	aphy	90
2.1.6 Gel Filtration Chromatography		90
2.1.7 Gel Filtration Chromatography (Recy	cling	
Preparative HPLC)		90
2.2 Crystallization Technique		91
2.3 Spectroscopy		91
2.3.1 Ultraviolet (UV) Absorption Spectra.		91
2.3.2 Infared (IR) Absorption Spectra		91
2.3.3 Mass Spectra (MS)		91
2.3.4 Proton and Carbon-13 Nuclear Magne	etic	
Resonance (¹ H-and ¹³ C-NMR) Spectra		91
2.4 Physical Property		92
2.4.1 Melting Points		92
2.4.2 Optical Rotations		92
2.4.3 Circular Dichroism Spectra		92
2.5 Solvents		92
3. Extraction and Isolation		92
3.1 Extraction and Isolation of Compounds from M	licromelu	т
hirsutum		92
3.1.1 Extraction		92
3.1.2 Separation of CH ₂ Cl ₂ Extract of Brand	ches (Firs	t
Batch)		93
3.1.2.1 Isolation of Compound MH1		94
3.1.2.2 Isolation of Compound MH2		94
3.1.3 Separation of CH ₂ Cl ₂ Extract of Branc	hes (Seco	ond
Batch)		94
3.1.3.1 Isolation of Compound MH3.		94
3.1.4 Separation of CH ₂ Cl ₂ Extract of Leave	es (First	
Batch)	•••••	95
3.1.4.1 Isolation of Compound MH2.		95
3.1.4.2 Isolation of Compound MH4.		95

Page

3.2 Extraction and Isolation of Compounds from Glycosmis	
parva	96
3.2.1 Extraction	96
3.2.2 Separation of EtOAc Extract of Branches	96
3.2.2.1 Isolation of Compound GP1	96
3.2.2.2 Isolation of Compound GP2	97
3.2.2.3 Isolation of Compound GP3	97
3.2.2.4 Isolation of Compound GP4	97
3.2.2.5 Isolation of Compound GP5	97
3.2.2.6 Isolation of Compound GP6 and	
Mixture GP7	97
3.2.3 Separation of EtOAc Extract of Leaves	97
3.2.3.1 Isolation of Compound GP8	98
3.2.3.2 Isolation of Compound GP9 and	
compound GP13	98
3.2.3.3 Isolation of Compound GP10	98
3.2.3.4 Isolation of Compound GP11 and	
Compound GP12	99
4. Physical and Spectral Data of Isolated Compounds	115
4.1 Compound MH1	115
4.2 Compound MH2	115
4.3 Compound MH3	115
4.4 Compound MH4	116
4.5 Compound GP1	116
4.6 Compound GP2	117
4.7 Compound GP3	117
4.8 Compound GP4	117
4.9 Compound GP5	118
4.10 Compound GP6	118
4.11 Mixture GP7	119
4.12 Compound GP8	119
4.13 Compound GP9	119
4.14 Compound GP10	120

Page
4.15 Compound GP11 120
4.16 Compound GP12 121
4.17 Compound GP13 121
5. Evaluation of Antiviral Activity against Herpes Simplex Virus Type
1 and Type 2
5.1 Viruses and Cells
5.2 Plaque Reduction Assay 122
IV RESULT <mark>S AND DISCU</mark> SSION
1. Antiviral Activity against Herpes Simplex Virus (HSV) Type 1 and
Type 2 of Extracts 123
2. Extracts and Isolated Compounds
3. Structure Determination of Compounds Isolated from Micromelum
hirsutum
3.1 Structure Determination of Compound MH1126
3.2 Structure Determination of Compound MH2128
3.3 Structure Determination of Compound MH3130
3.4 Structure Determination of Compound MH4132
4. Structure Determination of Compounds Isolated from Glycosmis
parva135
4.1 Structure Determination of Compound GP1 135
4.2 Structure Determination of Compound GP2
4.3 Structure Determination of Compound GP3140
4.4 Structure Determination of Compound GP4 142
4.5 Structure Determination of Compound GP5144
4.6 Structure Determination of Compound GP6146
4.7 Structure Determination of Mixture GP7 149
4.8 Structure Determination of Compound GP8153
4.9 Structure Determination of Compound GP9155
4.10 Structure Determination of Compound GP10159
4.11 Structure Determination of Compound GP11161
4.12 Structure Determination of Compound GP12164
4.13 Structure Determination of Compound GP13166

Page
5. Aspect of Stereochemistry of N-[(4-Monoterpenyloxy)phenylethyl]-
Substituted Sulfur-Containing Propanamide Derivatives
6. Antiviral Activity against Herpes Simplex Virus (HSV) Type 1 and
Type 2 of the Isolated Compounds
V CONCLUSION
REFERENCES 173
APPENDIX
VITA

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

LIST OF TABLES

Table		Page
1	Distribution of chemical constituents in Micromelum spp	11
2	Distribution of chemical constituents in <i>Glycosmis</i> spp	30
3	Antiviral activities of the hexane, CH ₂ Cl ₂ and MeOH extracts	
	prepared from branches, young branches and leaves of M.	
	hirsutum against HSV-1 and HSV-2	123
4	Antiviral activities of the hexane, EtOAc, <i>n</i> -BuOH, and	
	aqueous extracts prepared from branches and leaves of G .	
	parva against HSV-1 and HSV-2	124
5	NMR spectral data of compound MH1 and scopoletin	127
6	NMR spectral data of compound MH2 and micromelin	129
7	NMR spectral data of compound MH3	131
8	NMR spectral data of compound MH4 and $(-)-(2'S, 3'R)-3'-$	
	senecioyloxymarmesin	134
9	NMR spectral data of compound GP1 and N-	
	methylatalaphylline	137
10	NMR spectral data of compound GP2 and glycofolinine	139
11	NMR spectral data of compound GP3 and citramine	141
12	NMR spectral data of compound GP4 and N-methylcyclo-	
	atalaphylline-A	143
13	NMR spectral data of compound GP5	145
14	NMR spectral data of compound GP6 and limonin	148
15	NMR spectral data of compound GP7-I and limonexic acid	151
16	NMR spectral data of compound GP7-II and isolimonexic acid.	152
17	NMR spectral data of compound GP8 and arborinine	154
18	NMR spectral data of compound GP9	158
19	NMR spectral data of compound GP10	160
20	NMR spectral data of compound GP11 and glyparvin-A	163

LIST OF TABLES (Continued)

Table		Page
21	NMR spectral data of compound GP12 and dihydroglyparvin	165
22	NMR spectral data of compound GP13	167
23	Antiviral activities of isolated compounds against HSV-1 and	
	HSV-2 determined by plaque reduction assay	169

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figure		Page
1	Micromelum hirsutum Oliver	9
2	Glycosmis parva Craib	10
3	FABMS of compound MH1	186
4	UV spectrum of compound MH1 (CHCl ₃)	186
5	IR spectrum of compound MH1 (ATR)	18
6	¹ H-NMR spectrum of compound MH1 (400 MHz, CDCl ₃)	18
7	¹³ C-NMR spectrum of compound MH1 (100 MHz, CDCl ₃)	188
8	HMQC spectrum of compound MH1 (CDCl ₃)	188
9	HMBC spectrum of compound MH1 (CDCl ₃)	189
10	FABMS of compound MH2	189
11	EIMS of compound MH2	190
12	UV spectrum of compound MH2 (CHCl ₃)	190
13	IR spectrum of compound MH2 (ATR)	19
14	¹ H-NMR spectrum of compound MH2 (600 MHz, CDCl ₃)	19
15	¹³ C-NMR spectrum of compound MH2 (150 MHz, CDCl ₃)	192
16	DEPT135 spectrum of compound MH2 (75 MHz, CDCl ₃)	192
17	HMQC spectrum of compound MH2 (CDCl ₃)	193
18	HMBC spectrum of compound MH2 (CDCl ₃)	193
19	Expanded HMBC spectrum of compound MH2 (CDCl ₃)	194
20	FAB <mark>MS</mark> of compound MH3	194
21	EIMS of compound MH3	19:
22	UV spectrum of compound MH3 (CH ₃ CN)	19:
23	IR spectrum of compound MH3 (ATR)	190
24	¹ H-NMR spectrum of compound MH3 (300 MHz, DMSO- d_6)	190
25	¹ H-NMR spectrum of compound MH3 (600 MHz, DMSO- d_6)	19
26	¹³ C-NMR spectrum of compound MH3 (150 MHz, DMSO- d_6)	197
27	HMQC spectrum of compound MH3 (DMSO- <i>d</i> ₆)	198
28	HMBC spectrum of compound MH3 (DMSO- <i>d</i> ₆)	198
29	FABMS of compound MH4	199
30	UV spectrum of compound MH4 (CHCl ₃)	199

Figure		Page
31	IR spectrum of compound MH4 (ATR)	200
32	¹ H-NMR spectrum of compound MH4 (600 MHz, CDCl ₃)	200
33	¹³ C-NMR spectrum of compound MH4 (150 MHz, CDCl ₃)	201
34	¹ H- ¹ H COSY spectrum of compound MH4 (CDCl ₃)	201
35	HMQC spectrum of compound MH4 (CDCl ₃)	202
36	HMBC spectrum of compound MH4 (CDCl ₃)	202
37	FABMS of compound GP1	203
38	EIMS of compound GP1	203
39	UV spectrum of compound GP1 (EtOH)	204
40	IR spectrum of compound GP1 (ATR)	204
41	¹ H-NMR spectrum of compound GP1 (600 MHz, acetone- d_6)	205
42	¹ H-NMR spectrum of compound GP1 (400 MHz, acetone- d_6)	205
43	¹³ C-NMR spectrum of compound GP1 (150 MHz, acetone- d_6)	206
44	DEPT135 spectrum of compound GP1 (100 MHz, acetone- d_6)	206
45	HMQC spectrum of compound GP1 (acetone- <i>d</i> ₆)	207
46	HMBC spectrum of compound GP1 (acetone- <i>d</i> ₆)	207
47	Expanded HMBC spectrum of compound GP1 (acetone- d_6)	208
48	Expanded HMBC spectrum of compound GP1 (acetone- d_6)	208
49	FABMS of compound GP2	209
50	EIMS of compound GP2	209
51	UV spectrum of compound GP2 (MeOH)	210
52	IR spectrum of compound GP2 (ATR)	210
53	¹ H-NMR spectrum of compound GP2 (600 MHz, acetone- d_6)	211
54	¹³ C-NMR spectrum of compound GP2 (150 MHz, acetone- d_6)	211
55	HMQC spectrum of compound GP2 (acetone- d_6)	212
56	HMBC spectrum of compound GP2 (acetone- d_6)	212
57	EIMS of compound GP3	213
58	UV spectrum of compound GP3 (EtOH)	213
59	IR spectrum of compound GP3	214
60	¹ H-NMR spectrum of compound GP3 (600 MHz, acetone- d_6)	214

Figure		Page
61	¹ H-NMR spectrum of compound GP3 (400 MHz, acetone- d_6)	215
62	¹³ C-NMR spectrum of compound GP3 (150 MHz, acetone- d_6)	215
63	HMQC spectrum of compound GP3 (acetone- d_6)	216
64	HMBC spectrum of compound GP3 (acetone- d_6)	216
65	NOE experiments of compound GP3 (acetone- <i>d</i> ₆)	217
66	FABMS of compound GP4.	217
67	EIMS of compound GP4	218
68	UV spectrum of compound GP4 (MeOH)	218
69	IR spectrum of compound GP4 (ATR)	219
70	¹ H-NMR spectrum of compound GP4 (600 MHz, acetone- d_6)	219
71	¹³ C-NMR spectrum of compound GP4 (150 MHz, acetone- d_6)	220
72	DEPT135 spectrum of compound GP4 (100 MHz, acetone- d_6)	220
73	HMQC spectrum of compound GP4 (acetone-d ₆)	221
74	HMBC spectrum of compound GP4 (acetone-d ₆)	221
75	Expanded HMBC spectrum of compound GP4 (acetone- d_6)	222
76	Expanded HMBC spectrum of compound GP4 (acetone- d_6)	222
77	FABMS of compound GP5	223
78	EIMS of compound GP5	223
79	UV spectrum of compound GP5 (MeOH)	224
80	IR spectrum of compound GP5 (ATR)	224
81	¹ H-NMR spectrum of compound GP5 (600 MHz, acetone- d_6)	225
82	¹³ C-NMR spectrum of compound GP5 (150 MHz, acetone- d_6)	225
83	HMQC spectrum of compound GP5 (CDCl ₃ +CD ₃ OD)	226
84	HMBC spectrum of compound GP5 (acetone- <i>d</i> ₆)	226
85	Expanded HMBC spectrum of compound GP5 (acetone- d_6)	227
86	Expanded HMBC spectrum of compound GP5 (acetone- d_6)	227
87	NOE experiments of compound GP5 (acetone- <i>d</i> ₆)	228
88	FABMS of compound GP6	228
89	EIMS of compound GP6	229
90	UV spectrum of compound GP6 (MeOH)	229

Figure		Page
91	IR spectrum of compound GP6 (ATR)	230
92	¹ H-NMR spectrum of compound GP6 (600 MHz, CDCl ₃)	230
93	Expanded ¹ H-NMR spectrum of compound GP6 (600 MHz,	
	CDCl ₃)	231
94	¹³ C-NMR spectrum of compound GP6 (150 MHz, CDCl ₃)	231
95	Expanded ¹³ C-NMR spectrum of compound GP6 (150 MHz,	
	CDCl ₃)	232
96	DEPT135 spectrum of compound GP6 (100 MHz, CDCl ₃)	232
97	¹ H- ¹ H COSY spectrum of compound GP6 (CDCl ₃)	233
98	HMQC spectrum of compound GP6 (CDCl ₃)	233
99	Expanded HMQC spectrum of compound GP6 (CDCl ₃)	234
100	Expanded HMQC spectrum of compound GP6 (CDCl ₃)	234
101	Expanded HMBC spectrum of compound GP6 (CDCl ₃)	235
102	Expanded HMBC spectrum of compound GP6 (CDCl ₃)	235
103	FABMS of mixture GP7	236
104	EIMS of mixture GP7	236
105	UV spectrum of mixture GP7 (MeOH)	237
106	IR spectrum of mixture GP7 (ATR)	237
107	¹ H-NMR spectrum of mixture GP7 (600 MHz, DMSO- <i>d</i> ₆)	238
108	Expanded ¹ H-NMR spectrum of mixture GP7 (600 MHz,	
	DMSO- <i>d</i> ₆)	238
109	Expanded ¹ H-NMR spectrum of mixture GP7 (600 MHz,	
	DMSO- <i>d</i> ₆).	239
110	Expanded ¹ H-NMR spectrum of mixture GP7 (600 MHz,	
	DMSO- <i>d</i> ₆)	239
111	¹³ C-NMR spectrum of mixture GP7 (150 MHz, DMSO- d_6)	240
112	Expanded ¹³ C-NMR spectrum of mixture GP7 (150 MHz,	
	DMSO- <i>d</i> ₆)	240
113	Expanded ¹³ C-NMR spectrum of mixture GP7 (150 MHz,	
	$DMSO-d_6$)	241

Figure	,	Page
114	Expanded ¹³ C-NMR spectrum of mixture GP7 (150 MHz,	
	DMSO- <i>d</i> ₆)	241
115	Expanded ¹³ C-NMR spectrum of mixture GP7 (150 MHz	
	DMSO- <i>d</i> ₆)	242
116	DEPT135 spectrum of mixture GP7 (150 MHz, DMSO- <i>d</i> ₆)	242
117	HMQC spectrum of mixture GP7 (DMSO- <i>d</i> ₆)	243
118	Expanded HMQC spectrum of mixture GP7 (DMSO-d ₆)	243
119	Expanded HMQC spectrum of mixture GP7 (DMSO-d ₆)	244
120	Expanded HMQC spectrum of mixture GP7 (DMSO-d ₆)	244
121	Expanded HMQC spectrum of mixture GP7 (DMSO-d ₆)	245
122	HMBC spectrum of mixture GP7 (DMSO- <i>d</i> ₆)	245
123	Expanded HMBC spectrum of mixture GP7 (DMSO-d ₆)	246
124	Expanded HMBC spectrum of mixture GP7 (DMSO- <i>d</i> ₆)	246
125	Expanded HMBC spectrum of mixture GP7 (DMSO- <i>d</i> ₆)	247
126	Expanded HMBC spectrum of mixture GP7 (DMSO-d ₆)	247
127	FABMS of compound GP8	248
128	EIMS of compound GP8	248
129	UV spectrum of compound GP8 (MeOH)	249
130	IR spectrum of compound GP8 (ATR)	249
131	¹ H-NMR spectrum of compound GP8 (600 MHz, CDCl ₃)	250
132	¹³ C-NMR spectrum of compound GP8 (150 MHz, CDCl ₃)	250
133	HMQC spectrum of compound GP8 (CDCl ₃)	251
134	HMBC spectrum of compound GP8 (CDCl ₃)	251
135	FABMS of compound GP9	252
136	EIMS of compound GP9	252
137	UV spectrum of compound GP9 (MeOH)	253
138	CD spectrum of compound GP9 (MeOH)	253
139	IR spectrum of compound GP9 (ATR)	254
140	¹ H-NMR spectrum of compound GP9 (600 MHz, CDCl ₃)	254
141	¹³ C-NMR spectrum of compound GP9 (150 MHz, CDCl ₃)	255

Fi	gure		Page
	142	DEPT135 spectrum of compound GP9 (100 MHz, CDCl ₃)	255
	143	¹ H- ¹ H COSY spectrum of compound GP9 (CDCl ₃)	256
	144	HMQC spectrum of compound GP9 (CDCl ₃)	256
	145	HMBC spectrum of compound GP9 (CDCl ₃)	257
	146	FABMS of compound GP10	257
	147	EIMS of compound GP10	258
	148	UV spectrum of compound GP10 (MeOH)	258
	149	CD spectrum of compound GP10 (MeOH)	259
	150	IR spectrum of compound GP10 (ATR)	259
	151	¹ H-NMR spectrum of compound GP10 (600 MHz, CDCl ₃)	260
	152	¹³ C-NMR spectrum of compound GP10 (150 MHz, CDCl ₃)	260
	153	DEPT135 spectrum of compound GP10 (100 MHz, CDCl ₃)	261
	154	¹ H- ¹ H COSY spectrum of compound GP10 (CDCl ₃)	261
	155	HMQC spectrum of compound GP10 (CDCl ₃)	262
	156	HMBC spectrum of compound GP10 (CDCl ₃)	262
	157	Expanded HMBC spectrum of compound GP10 (CDCl ₃)	263
	158	FABMS compound GP11	263
	159	EIMS compound GP11	264
	160	UV spectrum of compound GP11 (MeOH)	264
	161	IR spectrum of compound GP11 (ATR)	265
	162	¹ H-NMR spectrum of compound GP11 (600 MHz, CDCl ₃)	265
	163	¹³ C-NMR spectrum of compound GP11 (150 MHz, CDCl ₃)	266
	164	DEPT135 spectrum of compound GP11 (100 MHz, CDCl ₃)	266
	165	¹ H- ¹ H COSY spectrum of compound GP11 (CDCl ₃)	267
	166	HMQC spectrum of compound GP11 (CDCl ₃)	267
	167	HMBC spectrum of compound GP11 (CDCl ₃)	268
	168	FABMS of compound GP12	268
	169	EIMS of compound GP12	269
	170	UV spectrum of compound GP12 (MeOH)	269
	171	CD spectrum of compound GP12 (MeOH)	270

Figure		Page
172	IR spectrum of compound GP12 (ATR)	270
173	¹ H-NMR spectrum of compound GP12 (600 MHz, CDCl ₃)	271
174	¹³ C-NMR spectrum of compound GP12 (150 MHz, CDCl ₃)	271
175	DEPT135 spectrum of compound GP12 (100 MHz, CDCl ₃)	272
176	¹ H- ¹ H COSY spectrum of compound GP12 (CDCl ₃)	272
177	HMQC spectrum of compound GP12 (CDCl ₃)	273
178	HMBC spectrum of compound GP12 (CDCl ₃)	273
170	FABMS of compound GP13	274
180	UV spectrum of compound GP13 (CHCl ₃)	274
181	CD spectrum of compound GP13 (MeOH)	275
182	IR spectrum of compound GP13 (ATR)	275
183	¹ H-NMR spectrum of compound GP13 (600 MHz, CDCl ₃)	276
184	¹³ C-NMR spectrum of compound GP13 (150 MHz, CDCl ₃)	276
185	¹ H- ¹ H COSY spectrum of compound GP13 (CDCl ₃)	277
186	HMQC spectrum of compound GP13 (CDCl ₃)	277
187	HMBC spectrum of compound GP13 (CDCl ₃)	277
188	Overlay of CD spectrum of compound GP9 - GP13 (MeOH)	277

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

LIST OF SCHEMES

Scheme		Page					
1	Extraction of Micromelum hirsutum branches (first batch)	100					
2	Extraction of Micromelum hirsutum leaves (first batch)	100					
3	Extraction of Micromelum hirsutum branches (second batch)	101					
4	Extraction of Micromelum hirsutum branches (young						
	branches, second batch)	102					
5	Extraction of <i>Micromelum hirsutum</i> leaves (second batch)	103					
6	Separation of CH ₂ Cl ₂ extract (first batch) of the branches of						
	Microm <mark>elum hirsutum</mark>	104					
7	Separation of CH_2Cl_2 extract (second batch) of the branches						
	of Micromelum hirsutum	105					
8	Separation of CH ₂ Cl ₂ extract of the leaves of <i>Micromelum</i>						
	hirsutum	106					
9	Separation of fraction MLC 747 from CH ₂ Cl ₂ extract of the						
	leaves of <i>Micromelum hirsutum</i>	107					
10	Extraction of <i>Glycosmis parva</i> branches	108					
11	Extraction of <i>Glycosmis parva</i> leaves	109					
12	Separation of EtOAc extract of the branches of Glycosmis						
	parva	110					
13	Separation of fraction GBE5 from EtOAc extract of the						
	branches of Glycosmis parva	111					
14	Separation of EtOAc extract of the leaves of Glycosmis parva.	112					
15	Separation of fraction GLE6 from EtOAc extract of the leaves						
	of Glycosmis parva	113					
16	Separation of fraction GLE7 and GLE8 from EtOAc extract						
	of the leaves of Glycosmis parva	114					
17	Proposed EIMS fragmentation mechanism of compound MH3	131					
18	Proposed EIMS fragmentation mechanism of compound GP6.	147					
19	Proposed EIMS fragmentation mechanism of compound GP9.	157					

LIST OF ABBREVIATIONS

α	=	Alpha
$\left[\alpha\right]_{D}^{t}$	=	Specific rotation at t°C and sodium D line (589 nm)
Acetone- d_6	=	Deuterated acetone
ATR-IR	=	Attenuated Total Reflection Infrared Spectroscopy
β	=	Beta
br	=	Broad (for NMR spectra)
С	=	Concentration (Molar)
conc.	=	Concentration
°C	=	Degree Celsius
CC	=	Column Chromatography
CC ₅₀	=	50% Cytotoxic Concentration
CD	=	Circular Dichroism
CDCl ₃	= /	Deuterated chloroform
CH ₂ Cl ₂	=	Dichloromethane
calcd for	= /	Calculated for
cm	=	Centimeter
cm ⁻¹	=	Reciprocal centimeter (unit of wave number)
¹³ C-NMR	=	Carbon-13 Nuclear Magnetic Resonance
δ	=	Chemical shift
d	=	Doublet (for NMR spectra)
dd	=	Doublet of doublets (for NMR spectra)
ddd	=	Doublet of doublets of doublets (for NMR spectra)
dddd =	Doub	let of doublets of doublets of doublets (for NMR spectra)
DEPT	E.	Distortionless Enhancement by Polarization Transfer
DMSO- d_6) <u>=</u> (Deuterated dimethyl sulfoxide
D_2O	=	Deuterated water
dt	24	Doublet of triplets (for NMR spectra)
EC ₅₀	1 <u>-</u> 1	50% Effective Concentration
ED ₅₀	=	50% Effective Dose
EIMS	=	Electron Impact Mass Spectrometry
EtOAc	=	Ethylacetate
EtOH	=	Ethanol

FABMS	=	Fast Atom Bombardment Mass Spectrometry		
γ	=	Gamma		
g	=	Gram		
h	=	Hour		
¹ H-NMR	=	Proton Nuclear Magnetic Resonance		
¹ H- ¹ H COSY	=	Homonuclear (Proton-Proton) Correlation Spectroscopy		
HMBC =	¹ H-det	ected Heteronuclear Multiple Bond Coherence		
HMQC =	¹ H-det	ected Heteronuclear Multiple Quantum Coherence		
HRESIMS =	High	Resolution ElectroSpray Ionization Mass Spectrometry		
HRFAB =	High	Resolution Fast Atom Bombardment Mass Spectrometry		
HSV-1	=	Herpes Simplex Virus Type 1		
HSV-2	=	Herpes Simplex Virus type 2		
HPLC	= /	High Pressure Liquid Chromatography		
Hz	= //	Hertz		
IR	=	Infrared spectroscopy		
J	= //	Coupling constant		
К	=	Kalvin (unit increment of temperature)		
Kg	=	Kilogram		
L	=	Liter		
Lit.	= //	Literature		
λ _{max}	=	Wavelength at maximal absorption		
m	=	Multiplet (for NMR spectra)		
3	=	Molar absorptivity		
[Φ]	=	Molar ellipticity		
μg	<u>.</u>	Microgram		
μΜ	-d 1	Micromolar		
$[\mathbf{M}]^+$	=	Molecular ion		
$[M+H]^+$	56	Pseudo molecular ion		
[M+Na] ⁺	= d	Pseudo molecular ion		
$[M+K]^+$	=	Pseudo molecular ion		
МеОН	=	Methanol		
MeCN	=	Acetonitrile		
mg	=	Milligram		

MHz	=	Megahertz
mm	=	Millimeter
mp	=	Melting point
MS	=	Mass Spectrometry
<i>m/z</i> ,	=	Mass to charge ratio
nm	=	Nanometer
NMR	=	Nuclear Magnetic Resonance
No.	-	Number
NOE	=	Nuclear Overhauser Effect
v _{max}	=	Wave number of maximal absorption
ppm	=	Part-per-million
rel. int.	=	Relative intensity
S	=//	Singlet (for NMR spectra)
Si-60	= /	Silica gel
spp.	=	Species
t	= /	Triplet (for NMR spectra)
td	=	Triplet of doublets (for NMR spectra)
TLC	=	Thin Layer Chromatography
TMS	=	Tetramethylsilane
UV	= /	Ultraviolet Spectroscopy

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

The genus *Micromelum* belongs to Aurantioideae sub-family in Rutaceae family. The genus *Micromelum* is a member in the subtribes Micromelinae in the tribe Clauseneae, which is very restricted to tropical East Asia and Malesiana (Kong, *et al.*, 1988). The botanical characteristics of plants in the genus of "*Micromelum*, Blume." in "the Flora of Malay Peninsula" (Hooker, 1875) were described as follows:

"Shrubs or small trees. Leaves imparipinnate. Leaflets alternate oblique, membranous, Flowers small white in corymbose cyme large and terminal. Calyx copular 3-to 5- toothed. Petals 5, valvate. Stamens 10 inserted round a disc; filaments linearsubulate, alternate ones shorter. Ovary 5-celled (rarely 2- to 6-celled); ovules 2 in each cell; style 1. Berry pulpy 1- or 2- seeded. Seed oblong. Species 4 to 5, Asia and Polynesia."

There are at least eighteen valid species of *Micromelum* in the Index Kewensis and its supplements according to (Varisara Vaisiriroj, 1980: 1-2), as listed below:

- 1. Micromelum caudatum Merr.
- 2. M. ceylanicum Wight
- 3. M. compressum Merr.
- 4. M. coriaceum Seem.
- 5. M. curranii Elmer
- 6. M. diversifolium Miq.
- 7. M. falcatum Tanaka
 - [*M. glabrescens* Benth. (= *M. pubescens* Blume)]
 - [*M. glabrescens* Villar (= *M. tephrocarpum* Turcz.)]
- 8. *M. glabrum* Guillamin
- 9. M. globosum Elmer ex Tanaka
- 10. M. hirsutum Oliver
- 11. M. integerrimum Wight & Arn.

[*M. minutum* Seem., *M. minutum* Wight & Arn. and *M. minutum* (G. Forst) Wight & Arn. (= *M. pubescens* Blume)] 12. *M. molle* Turcz.

13. M. monophyllum Wight

14. M. octandrum Turcz.

15. M. pubescens Blume

16. M. scandens Rechinger

17. M. sorsogonense Elmer ex Tanaka

18. M. tephrocarpum Turcz.

[*M. timoriense* Zipp. ex Span. (= *M. pubescens* Blume)]

The species of *Micromelum* in Thailand according to Smitinand (2001) are as follows:

Micromelum glanduliferum B. Hansen

ขี้ผึ้ง Khi phueng (Nakorn Ratchasima);

ชมัด Chamat, ชมัดน้อย Chamat noi, สมัด

น้อย Samat noi Loei).

= M. minutum (G. Forst.) Wight & Arn.

uມວັ<mark>ວ Nom wu</mark>a (Chiang Mai).

กะม่วง Kamuang, สมุขช้าง Samui chang, หมุขช้าง Mui chang (Yala), กันโทร้ก Kan-throk (Khmer-Surin); กาจับลัก Ka chap lak, จี้ปุกตัวผู้ Chipuk tua phu, จี้ย้อย Chiyoi, มองคอง Mong khong, หญ้าสาบ อึ้น Ya sap hin (Northern); คอมขน Khom khon, สามโซก Sam sok (Chiang Mai), จี้ Chi, ลิ้นชี่ Linchi, สาบแร้งสาบกา Sap raeng sap ka (Chanthaburi); ชะมุย Chamui (Chumphon); ดอกสมัด Dok samat, สะแบก Sa baek (Ubon Ratchathani);

M. integerrimum Roxb.

M. hirsutum Oliv.

M. mimutum (G. Forst.) Wight & Arn.

M. mimutum (G. Forst.) Wight & Arn.

เพี้ยฟานดง Phia fan dong, สมัดดง Samat dong, สมัดค้น Samat ton, สมัดใหญ่ Samat yai (Loei); มรุยช้าง Marui chang, ถำผีพ่าย Lam phi phai (Trang); มุยขาว Mui khao (Prachuap Khiri Khan); สมุย Samui (Surat Thani); หมอน้อย Mo noi (Uttaradit); หมุยขน Mui khon (Nakhon Si Thammarat); หวด Huat (Lampang); หัสกุฉ Hatsa Khun (Saraburi).

= M. minutum (Forst.f.) Wight & Arn.

M. pubescens Blume

According to The Flora of Malay Peninsula (Hooker, 1875), the key distinguishing features between *M. hirsutum* Oliv. and *M. pubescens* Blume have been described as follows:

Leaflets ovate lanceolate, glabrescent; cymes pubescent.... 1. *M. pubescens* Leaflets lanceolate, base very oblique tomentose; cymes very tomentose

.... 2. M. hirsutum

The botanical features of *M. hirsutum* were described in The Flora of Malay Peninsula (Hooker, 1875), as the following quote.

"M. hirsutum Oliv. Journ. Linn. Soc. V. Supp. (2), 40; Hook. fil. F. B. I. i. 502; King, l.c. 219.

shrub or small tree tomentose. Leaves 6 to12 in. long; leaflets 9 to 25, lanceolate to oblong-lanceolate, base very oblique, edges obscurely serrate, tomentose beneath; nerves 5 to 10 pairs, 1.5 to 3.5 in. long, 0.8 to 1.5 in. wide; petioles up to 2 in. long. Cymes very tomentose, lax, 4 to 6 in. across or less. Flowers 25 in. across, white. Calyx deeply 5-lobed. Ovary very villous. Berry orange. *Hab*. Open country, less common than the last, Malaca, Mt. Ophir (Hullett). Perak, Gunong Keledang. Penang (Jack, Porter). Kelantan Kota Bharu (Ridley). *Distrib*. Indo-Malaya. *Native name*: Chemama."

Although *M. hirsutum* is considered to be synonymous with *M. minutum* according to Smitinand (2001), these two species can be discriminated by the following dichotomous key (Humbert and Gagnepain, 1945).

A. Pétales abondamment velus en dehors.

a. Pétales à poils hirsute; feuilles veloutées en dessous..... 1. M hirsutum

b. Pétales à poils couchés, très courts.

α. Folioles très inégales à la base 2. M. minutum
β. Folioles peu ou pas inégals à la base 3. M. integerrimum
B. Pétales peu ou pas velus en dehors; feuilles glabres ou seulement avec quelques poils sur la côte en dessous. 4. M. falcatum

The genus *Glycosmis* belongs to the tribe Clauseneae of Aurantioideae subfamily in Rutaceae family. There are forty-three accepted species of plants in the genus *Glycosmis* distributed in India, Malaysia, Thailand, Laos, Viet Nam, Burma, China, Nepal, Tibet, Bangladesh, Sri Lanka, Philippines, Indonesia and Taiwan (Stone, 1985).

According to Ridley and Hutchinson (1922) and Merrill (1986), the plants in the genus *Glycosmis* are evergreen shrubs or undertrees. Leaves alternate, 1-5 foliate. Flowers usually small, axillary panicles. Calyx 4 or 5 partial imbricate. Petals 4 or 5 imbricate. Stamen 8 to 10 free, filaments dilated below. Ovary 2 to 5 celled, the style very short, not jointed, ovule 1 in each cell. Fruits globose, freshy, berry. Seeds 1 to 3 oblong, testa membranous.

The species of *Glycosmis* in Thailand according to Smitinand (2001) are as follows:

Glycosmis chlorosperma (Blume) Spreng	นำข้าวเขา Nam khao khao (Nakorn
	Si Thammarat).
G. cochinchinensis (Lour.) Pierre	เขยโค Khoei kho (General).
G. dinhensis Pierre ex Guillaumin	เขยดิน Khoei din (Nakorn
	Ratchasima).
G. esquirolii (Lév.) Tanaka	เขยทาน Khoei tai long (General).
G. longipes (Craib) Tanaka	เขยตายลอง Khoei kho(General).

G. ovoidea Pierre

G. parkinsonii Tanaka

G. parva (Craib)

G. pentaphylla (Retz.) DC.

G. pierrei Tanaka*G. puberula* Lindl. var. puberula.

var. subsessilis (Craib) B.C.Stone

G. subsessilis Craib

G. tricanthera Guillaumin

ประยงค์ใบใหญ่ Prayong bai yai (General). ประยงค์ไข่ Prayong khai (General). เขยแม่ลาน Khoei mae lan (General). ประยงค์เกลื่อน Prayong kluean, ส้มชื่น Som chuen (General). กระรอกน้ำ Krarok nam, กระรอกน้ำข้าว Krarok nam khao (Chon Buri); กระโรกน้ำข้าว Krarok nam khao, เขยตาย Khoei tai, ลูกเขยตาย Luk Khoei tai (Central); เขนทะ Khen tha (Northern); ตาระแป Ta-ra-pae (Malay-Yala); น้ำข้าว Nam khao (Central, Peninsular); ประยงค์ใหญ่ Prayong yai (Bangkok); พุทธรักษา Phuttharaksa (Sukhothai); มันหมู Man mu (Prachuap Khiri Khan); ส้มชื่น Som chuen (Northeastern, Northern). เขยเพลีย Khoei plia (Southeastern). ประยงค์ขนบาง Prayong khon bang (Peninsular). ค้างคาวหนู Khangkhao nu (Nakorn Ratchasima). = *G. puberula* Lindl. var. subsessilis (Craib) B.C.Stone เขยตรี Khoei tri (Peninsular).

ขะขงป่า Khayong pa, ประขงก์ป่า Prayong pa, พะขงป่า Phayong pa (Northern).

The botanical characteristics of *Glycosmis parva* Craib were described in Bullentin of Miscellaneous Information of Royal Botanic Garden Kew (1926), as the following quote.

"Glycosmis parva Craib [Rutaceae-Aurantieae]; a *G. Montana* Pierre foliis angustioribus, filamentis inferne ampliatis, a *G. dinhense* Pierre ex Guillaumin petalis haud dorso pilosis, foliis haud longe acuminates recedit.

Frutex circa 1.5 m. altus (ex Kerr); ramuli graciles, primo subferrugineotomentosi vel pubescentes, compressi, mox puberuli, cortice cinereo vel brinneocinereo obtecti, lenticellis haud conspicuis. Folia alterna, interdum subopposita, lanceolata, apice obtuse, interdum retusa, rarius subacuminata, 3.5-9 cm. longa, 1-2.5 cm. lata, chataceo-coriacea, supra viridia, ad costam breviter subtomentella vel matura fere glabra, subtus pallid viridia, subglabra, costa supra conspicua subtus prominente, nervis lateralibus utrinque 11-14 rectis intra marginem anastomo-santibus supra obscuris vel subconspicuis subtus subprominentibus, aliis paulo minus validis interpositis, nervulis subtus prominulis, margine integra, petiolo 2-6 mm. longo primo puberulo mox fere glabro supra canaliculato suffulta. Infloerscentia axillaris, petiole subaequilonga vel eo paululo longior, pedunculo communi ferrugineo-pubescente perbrevi vel sub fructu circa 1 mm. longo suffulata; flores albi (ex Kerr), pedicello brevi articulato subglabro bracteolato suffulti. Sepala 5, subrotundata, vix 1.5 mm. diametro, dorsoglabra, glandula unica prominente instructa, ciliate. Petala 5, oblongolanceolata, apice obtusa, basi angustata, 4 mm. longa, 1.5 mm. lata, glabra, glandulosa. Discus brevis, crenulatus, glaber. Filamenta complanata, apice acuminata, ad 2.5 mm. longa, glabra, antheris 0.75 mm. longis apice glandula parva conspicua globosa ornatis. Pistillum glabrum, 1.75 mm. altum, glandulosum, stylo valido vix distincto. Fructus subellipsoideus, circa 7 mm. longus.

Krabin, Sakêo, 50 m., evergreen forest, Kerr 9766."

In addition, Stone (1985) described the 3-celled ovary as the important recognition feature of *G. parva* which was not mentioned by Craib. Moreover, the reliable key to *G. parva* was available, as quoted below.

Group E

Leaves simple or unifoliolate, or some of them 2- or 3- foliolate. Ovary finely densely puberulent; leaves 1-3-foliolate.... 33. *G. puberula*

Ovary glabrous; style glabrous.

Stamens puberulent; leaves usually lanceolate; ovary 2-locular

. 28. G. petelotii

Stamens glabrous.

"

Ovary 2- or 3-locular, rarely imperfectly 4-locular; petiolule present (i.e. petiole articulated). except in *G parva*.

Leaves very thick coriaceous	 6. G. crassifolia
Leaves chartaceous to pergamentaceous,	
Leaves ovate to elliptic; ovary pustular	 15. G. lanceolata
Leaves narrowly elliptic; ovary smooth	 24. G. parva

Ovary 5- (sometimes 4-) locular.

Petiole not articulated 4. *G. cochinchinensis* and 9. *G. dinhensis* Petiole articulated.

Inflorescence longer than petiole. cymose-paniculate, about half as longas leaf.....40. G. tetracronia

Inflorescence condensed cymose, as long as or shorter than petiole.

Petiole + petiole 25-40 mm long....16. G. longipesPetiole + petiole shorter.

Lamina narrowly lanceolate, about 3 ½ times as long as wide ormore.... 31. G pseudoracemosaLamina proportionally wider, sub-caudately acuminate; leaflets1-3.... 20. G mansiana

Ovary glabrous (?); style puberulent; flowers tetramerous

.... 23. G parkinsonii"

Recently, *G. longipetala* F. J. Mou & D. X. Zhang was discovered in Guangxi and Yunnan province in southwestern China. The new species is similar to *G. cochinchinensis* (Lour.) Pierre ex Engl. by its simple leaves, but distinguishable in having long-elliptic or oblanceolate leaves, long-ovoid to ellipsoid floral buds, ovaries with many tubercles and glabrous stamens (Mou and Zhang, 2009).

So far, three phytochemical and biological studies on *M. hirsutum* have been published. Six carbazole alkaloids and a lactone derivative of oleic acid with antituberculosis activity from the stem bark (Ma *et al.*, 2005), two coumarins, i.e. micromelin and magnolioside, and three flavonoids from the leaves (Trinh, Tran and Adam, 2004), and essential oils of the branches and leaves, flowers, and fruits (Diep *et al.*, 2007) were reported. For *G. parva*, only one publication on phenethylamides with 4-oxo-2-oxolenyl terpenoid side chain from the lipophilic leaf extracts (Hofer, Vajrodaya and Greger, 1998) was reported.

A number of interesting phytochemical studies on coumarins, acridone alkaloids and sulfur-containing propanamides of these two genus and the promising anti-viral activity against herpes simplex virus type 1 and type 2 of the extracts (see the Results and Discussion section) motivated the author to believe that there were possibilities of finding new compounds and/or new biological active compounds from these two plants. Therefore, the following objectives are put forwards:

1. Isolation and purification of compounds from the branches and leaves of *M*. *hirsutum* and *G. parva*

2. Determination of the chemical structure of each isolated compound

3. Evaluation of each isolate for its anti-herpes simplex virus activity

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Figure 1 Micromelum hirsutum Oliver.

Fruit

Flower

Figure 2 Glycosmis parva Craib.

CHAPTER II

HISTORICAL

1. Chemical Constituents of *Micromelum* spp.

Chemical investigations of the genus *Micromelum* have revealed the widespread occurrence of coumarins. Prenylated coumarins are the unique feature of *Micromelum*. In addition, other classes of substances such as carbazole alkaloids and polyoxygenated flavonoids have also been isolated from this genus. The compounds isolated from *Micromelum*.spp. are shown in **Table 1**.

Plant and compound	Category	Plant part	Reference
Micromelum ceylanicum	Junga		
Angelical [1]	Coumarin	Stem	Bowen and Perera 1982
ОНС	and a straight		1 cicia, 1982
H ₃ CO O O	1) Silvin		
5-Hydroxy-3,3',4',7,8-	Flavonoid	Leaf and	Bowen and
pentametnoxyflavone [2]		Stem	Perera, 1982
QCH3 QCH3		20	
	กรัพย	ากร	
H OCH3 OH O		1110	
Koenigine [3]	Carbazole	Leaf	Bowen and
	alkaloid		Perera, 1982
H ₃ CO			
HO N H			

Table 1 Chemical constituents in Micromelum spp.

Table 1 (Continued)

Plant and compound	Category	Plant part	Reference
Micromelum ceylanicum		•	
7-[4'-(4"-Methyl-5"-oxo-2",5"- dihydro-2"-furyl)-3'-methyl-2'- butenyloxy]coumarin [4]	Coumarin	Leaf	De Silva <i>et</i> <i>al.</i> , 1980
Micromelin [5]	Coumarin	Leaf and Stem	Bowen and Perera, 1982
H_3C Q H			
<i>O</i> -Methylhalfordinol [6]	Oxazole alkaloid	Leaf and Stem	Bowen and Perera, 1982
Micromelum falcatum			
3,4-Dihydro-1,2-secomicrominutinin [7] OH	Dihydrocinnamic acid derivative	Leaf	Kamperdick et al., 1999
H CH ₂	าวีพย	າຄຈ	
3,4-Dihydro-1,2-secomicrominutinin- 9- <i>O</i> -glucoside [8]	Dihydrocinnamic acid derivative	Leaf	Kamperdick et al., 1999
O O -glucose H O CH_2			
Plant and compound	Category	Plant part	Reference
---	------------------------------------	---------------	---------------------------------
Micromelum falcatum			
3,4-Dihydro-1,2-secomicrominutinin methylester [9]	Dihydrocinnamic acid derivative	Leaf	Kamperdick et al., 1999
O O H O C H C H 2			
Hydramicromelin A [10]	Coumarin	Stem bark	Luo <i>et al.</i> , 2009
3-Hydroxy-1-methyl-3-(2-oxopropyl)- quinoline-2,4(1 <i>H</i> ,3 <i>H</i>)-dione [11]	Quinolone alkaloid	Stem bark	Luo <i>et al.</i> , 2009
OHOHO CH ₃ CH ₃			
4-Hydroxy-3-methoxy-1-methyl- 2(1 <i>H</i>)-quinolinone [12]	Quinolone alkaloid	Stem bark	Luo <i>et al.</i> , 2009
	เร้พยา อิเ		
6-Methoxymicrominutinin [13]	Coumarin	Leaf	Kamperdick <i>et al.</i> , 1999

Plant and compound	Category	Plant part	Reference
<i>Micromelum falcatum</i> Methyl 2-(3-hydroxy-1-methyl-2,4- dioxo-1,2,3,4-tetrahydroquinolin-3- yl)acetate [14]	Quinolone alkaloid	Stem bark	Luo <i>et al.</i> , 2009
$ \begin{array}{c} $	Coumarin	Leaf	Kamperdick et al., 1999
$H_2C + O + O + O + O + O + O + O + O + O + $	Coumarin	Root	Kong <i>et al.</i> , 1988
H ₃ CO O Micromeloside A [16]	Coumarin	Stem bark	Luo <i>et al.</i> , 2009
H ₃ CO H ₁ , OH OH CH ₂	ารัพย	ากร	~
Micromeloside B [17] $H_3CO(1)$ $H_3CO($	Coumarin	Stem bark	Luo <i>et al.</i> , 2009

Micromelum falcatum Micromeloside C [18] $H_{3}CO$ $H_{3}CO$ OH	in Stem bark	Luo <i>et al.</i> , 2009
Micromeloside C [18] Coumar $H_3CO \rightarrow OH$	in Stem bark	Luo <i>et al.</i> , 2009
UH		
H ₃ CO		
H ₂ C		
Micromeloside D [19]	in Stem bark	Luo et al
		2009
H_3C H $C_2H_5O(r)$ ()OH		
H ₃ CO ^L O ^C O		
Microminutinin [20] Coumar	in Leaf	Kamperdick
		<i>et al.</i> , 1999
H- H		
O CH ₂		
Minumicrolin [21] Coumar	in Root	Kong et al.,
	เขากร	1988 Luo <i>et al.</i> ,
H ₂ CO O O		2009
H ₁ , HO	4	v
Ú Ú H	าทยาว	3 8
9	VID I	

Plant and compound	Category	Plant part	Reference
Micromelum falcatum			
<i>N</i> -Methylflindersine [22]	Quinolone alkaloid	Stem bark	Luo <i>et al</i> ., 2009
ĊH ₃			
<i>N</i> -Methylswietenidine-B [23] OCH ₃ \bigcirc \bigcirc \bigcirc \bigcirc OCH ₃	Quinolone alkaloid	Stem bark	Luo <i>et al.</i> , 2009
Г СН ₃			
Murrangatin [24]	Coumarin	Stem bark	Luo <i>et al.</i> ,
H ₃ CO H _{1,1} HO OH HO //H		6	2009
Phebalosin [25]	Coumarin	Root	Kong <i>et al.</i> ,
H ₃ CO O O	ารัพย	ม ากร	1988
5,6-Pyranoglycozoline [26] (= Glycomaurin)	Carbazole alkaloid	Root	Kong <i>et al.</i> , 1988

Plant and compound	Category	Plant part	Reference
Micromelum falcatum	D		17 1
Yuehchukene [27]	Dimeric indole alkaloid	Root	Kong <i>et al.</i> , 1988
Micromelum hirsutum			
5,7-Dihydroxy-3,6,8,4'- tetramethoxyflavone [28]	Flavonoid	Leaf	Trinh, Tran and Adam, 2004
HO HO H_3CO OH OOH O			2004
5,7-Dihydroxy-3,6,4'- trimethoxyflavone [29]	Flavonoid	Leaf	Trinh, Tran and Adam, 2004
HO H ₃ CO OH O			2004
3-Formylcarbazole [30]	Carbazole alkaloid	Stem bark	Ma <i>et al</i> ., 2005
N H	10000		5.01
3-Formyl-6-methoxycarbazole [31] H ₃ CO	Carbazole alkaloid	Stem bark	Ma <i>et al.</i> , 2005

Plant and compound	Category	Plant part	Reference
Micromelum hirsutum			
7-Hydroxy-3,5,6,8,4'- pentamethoxyflavone [32]	Flavonoid	Leaf	Trinh, Tran and Adam, 2004
HO OCH_3 OCH_3 H_3CO OCH_3 OCH_3 OCH_3O			
Lansine [33]	Carbazole alkaloid	Stem bark	Ma <i>et al.</i> , 2005
H ₃ CO H ₁ CO H H	2		
Magnolioside [34]	Coumarin	Leaf	Trinh, Tran and Adam, 2004
			2004
3-Methylcarbazole [35]	Carbazole alkaloid	Stem bark	Ma <i>et al</i> ., 2005
	รัพย	ากร	
Methyl carbazole-3-carboxylate [36]	Carbazole alkaloid	Stem bark	Ma <i>et al</i> ., 2005
OCH ₃	VI I d	101	

Plant and compound	Category	Plant part	Reference
Micromelum hirsutum		P	
Micromelide [37] $O = O e^H$	Lactone derivative of oleic acid	Stem bark	Ma <i>et al.</i> , 2005
Micromeline [38]	Carbazole alkaloid	Stem bark	Ma <i>et al</i> ., 2005
Micromelum integerrimum			
1,3-Dihydroxy-4-methoxy-10- methylacridone [39]	Acridone alkaloid	Leaf	Yang <i>et al.</i> , 2009
		Ð	
Glycozolinol [40]	Carbazole alkaloid	Leaf	Yang <i>et al.</i> , 2009
H ₃ C N H	์พยา	ากร	
Methyl carbazole-3-carboxylate [36]	Carbazole alkaloid	Leaf	Yang <i>et al.</i> , 2009

Plant and compound	Category	Plant part	Reference
Micromelum integerrimum			
Micromelin [5]	Coumarin	Stem and leaf	Cassady <i>et al.</i> , 1979
H_3C Q H			
Scopoletin [41]	Coumarin	Stem and leaf	Cassady <i>et al.</i> , 1979
H ₃ CO HO O			
Micromelum minutum			
Acetyldihydromicromelin A [42]	Coumarin	Aerial part	Das et al., 1984
H_3C Q H H_3COCO' O H H_3COCO' H H_3COCO' O O			
a mixture of Dihyromicromelin A and B	Coumarin	Aerial part	Das et al., 1984
$H_{3}C \xrightarrow{O} H$ $RO^{n} \xrightarrow{O} H$ $H_{3}CO \xrightarrow{O} O$ $H_{3}CO \xrightarrow{O} O$ $A \cdot B = \alpha - OH [43]$	ຮັອມອ		
B; $R = \beta$ -OH [44]	9115		
3",4"-Dihydrocapnolactone [45]	Coumarin	Leaf	Rahmani <i>et al.</i> , 2003

Plant and compound	Category	Plant part	Reference
Micromelum minutum		•	
8,4"-Dihydroxy-3",4"-dihydrocapnolactone- 2',3'-diol [46]	Coumarin	Leaf	Susidarti <i>et al.</i> , 2006
$H_{3}C \xrightarrow{OH} HO \xrightarrow{CH_{3}} O \xrightarrow{OH} O O O O O O O O O O O O O O O O O O $			
5,7-Dihydroxy-3,6,8,4'-tetramethoxyflavone [28]	Flavonoid	Leaf	Sohrab, Hasan and
HO HO H_3CO OH OCH_3 OCH_3 OCH_3 OCH_3 OCH_3			Rasnid, 1999
7,12-Ether of 5,7-dihydroxy-3,6,8,4'- tetramethoxyflavone and murrangatin [47]	Dimeric compound of coumarin	Aerial part	Das <i>et al.</i> , 1984
H_3CO $H_{/,/}$ H OCH_3 OCH_3 HO H_3CO OCH_3 OCH_3 H_3CO OCH_3 OCH_3	and flavonoid	8	
5,7-Dihydroxy-3,4',8-trimethoxyflavone [48]	Flavonoid	Leaf	Sohrab, Hasan and
	กอา าวิท	มาง ยาส	Rashid, 1999
2',3'-Epoxyisocapnolactone [49]	Coumarin	Leaf	Rahmani
			et al., 2003

Plant and compound	Category	Plant part	Reference
Micromelum minutum			
Hopeyhopin [50] $H_{3C} \rightarrow H_{3C} \rightarrow H_{3CO} \rightarrow H_{3CO}$	Coumarin	Leaf	Sohrab, Hasan and Rashid, 1999
5(6)-Gluten-3 α -ol [51]	Triterpenoid	Leaf	Susidarti <i>et al.</i> , 2006
5(6)-Gluten-3-one [52]	Triterpenoid	Leaf	Susidarti <i>et al.</i> , 2006
8-Hydroxy-3",4"-dihydrocapnolactone- 2',3'-diol [53]	Coumarin	Leaf	Rahmani et al., 2003
8-Hydroxyisocapnolactone-2',3'-diol [54] H_2C $H_$	Coumarin	Leaf	Rahmani et al., 2003

Plant and compound	Category	Plant part	Reference
Micromelum minutum			
5-Hydroxy-3,4',6,7,8-pentamethoxyflavone [55] $H_3CO \rightarrow OCH_3 \rightarrow OCH_3$ $H_3CO \rightarrow OCH_3 \rightarrow OCH_3$ $H_3CO \rightarrow OCH_3 \rightarrow OCH_3$	Flavonoid	Leaf	Sohrab <i>et al.</i> , 2004
5-Hydroxy-3,4',7,8-tetramethoxyflavone [56] $H_3CO \xrightarrow{OCH_3} OCH$	Flavonoid	Leaf	Sohrab <i>et al.</i> , 2004
Mahanine [57] HO $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$ $(+)$	Carbazole alkaloid	Aerial part	Nakahara <i>et al.</i> , 2002
Marmesin [58] HO \rightarrow \bigcirc	Coumarin	Leaf	Sohrab <i>et al.</i> , 2004
6-Methoxymicrominutinin [13] H_3CO H_3CO H_4CO	Coumarin	Leaf and twigs Stem	Rahmani <i>et al.</i> , 1994 Ito <i>et al.</i> , 2000b

Plant and compound	Category	Plant part	Reference
Micromelum minutum			
Micromarin-A [59]	Coumarin	Stem	Ito <i>et al.</i> , 2000b
Micromarin-B [60]	Coumarin	Stem	Ito <i>et al.</i> ,
H_3CO $H_{1,1}$ OH H_2C			20000
Micromarin-C [61]	Coumarin	Stem	Ito <i>et al.</i> , 2000b
$H_{3}CO H_{1/2} O O H_{1/2} $		2	
Micromarin-F [62]	Coumarin	Stem	Ito <i>et al.</i> , 2000b
	รัพย	ากร	
Micromarin-G [63]	Coumarin	Stem	Ito <i>et al.</i> ,
H ₃ CO CH ₂ OH	1 1 9 1	1216	20000

Plant and compound	Category	Plant part	Reference
Micromelum minutum			
Micromarin-H [64]	Coumarin	Stem	Ito <i>et al.</i> , 2000b
H ₃ CO O			
H ₂ C OH			
Micromelin [5]	Coumarin	Aerial part	Das <i>et al.</i> , 1984
H ₃ C O H H		Leaf and twigs	Rahmani <i>et al.</i> , 1994
H ₃ CO O O			
Microminutin [65]	Coumarin	Aerial part	Das <i>et al.</i> , 1984
H ₃ CO O		Leaf and twigs	Rahmani <i>et al.</i> , 1994
	SEL .		
Microminutinin [20]	Coumarin	Leaf and	Rahmani
			1993, 1994
	CON OIL	000	
Minumicrolin [21]	Coumarin	Aerial part	Das <i>et al</i> ., 1984
	เกวิเ	เยาส์	1ย
(Das <i>et al.</i> 1984 reported the <i>threa</i> isomer:			
however, the relative stereochemistry of			
minumicrolin was proved to be <i>erythro</i> isomer based on NOF experiments. (Ito and			
Furukawa, 1987)			

Plant and compound	Category	Plant part	Reference
Micromelum minutum			
Murralongin [66]	Coumarin	Aerial part	Das <i>et al</i> ., 1984
H ₃ CO O			
СНО			
Murralonginol isovalerate [67]	Coumarin	Stem	Ito <i>et al</i> ., 2000b
Murrangatin [24]	Coumarin	Aerial part	Das <i>et al.</i> ,
$H_{3}CO + H_{I,I} + OH_{I}OH$		3	1984
Osthol [68]	Coumarin	Aerial part	Das <i>et al.</i> ,
H ₃ CO O O	เร้พยา	ิกร	1984
<u>ลหา้ลงกรณ</u> เ	หาวท	ยาล	1.21
1,2-seco-dihydromicromelin [69]	Dihydrocinnamic acid derivative	Leaf	Rahmani <i>et al.</i> , 1994
			,

Plant and compound	Category	Plant part	Reference
Micromelum minutum			
Scopoletin [41] H_3CO HO	Coumarin	Leaf and twigs	Rahmani <i>et al.</i> , 1994
Tomentin [70] $H_{3}CO + H_{3}CO + H_{3}CO + O$	Coumarin	Leaf	Sohrab <i>et al.</i> , 2004
Micromelum pubescens			
Angelical [1] OHC	Coumarin	Root	Banerji <i>et al.</i> , 1988
	The to be		
6-(2,3-Dihydroxy-3-methylbutyl)-7- methoxycoumarin [71]	Coumarin	Leaf and stem	Joshi <i>et al</i> ., 1975
H ₂ CO O		H	
Flindersine [72]	Quinolone alkaloid	Leaf	Tantivatana <i>et al.</i> , 1983
Hentriacontane [73] $CH_3 - (CH_2)_{29} - CH_3$	Long chain hydrocarbon	Leaf and stem	Bhakuni <i>et al.</i> , 1971

Plant and compound	Category	Plant part	Reference
Micromelum pubescens			
1-Hentriacontanol [74]	Long chain	Leaf and stem	Bhakuni <i>et al.</i> , 1971
СН ₃ -(СН ₂) ₃₀ -ОН	nyarocaroon	stem	1771
Imperatorin [75]	Coumarin	Root	Banerji <i>et al.</i> , 1988
Limettin [76]	Coumarin	Root	Banerji <i>et al.</i> ,
			1700
Micromelin [5]	Coumarin	Leaf	Croft and Toja 1989
H_3C O H H H_3C O	Neldes-	Leaf and branch	Lamberton, Price and Redcliffe, 1967
Microminutin [65]	Coumarin	Leaf	Tantivatana
	รัพย	Root	Banerji, <i>et al.</i> , 1988
Micropubescin [77] $H_{3}CO \qquad O \qquad$	Coumarin	Stem bark	Chatterjee, Dutta and Bhattacharyya, 1967

Plant and compound	Category	Plant part	Reference
Micromelum pubescens			
Minumicrolin [21]	Coumarin	Root	Banerji <i>et al.</i> , 1988
H ₃ CO H ₁ , H HO H			
Murrangatin [24]	Coumarin	Root	Banerji <i>et al.</i> , 1988
H ₃ CO H _{1,1} HO OH HO IIII			1700
Osthol [68]	Coumarin	Leaf	Croft and Toia, 1989
H ₃ CO O O		Leaf and branch	Lamberton, Price and Redcliffe, 1967
~			
Phebalosin [25]	Coumarin	Stem bark	Tantishaiyakul <i>et al.</i> , 1986
		Stem bark	Croft and Toia, 1989
H ₃ CO O O		Root	Banerji <i>et al.</i> , 1988
Scopoletin [41] $H_{3}CO$ HO HO HO HO HO HO HO HO	Coumarin	Leaf Root	Tantivatana <i>et al.</i> , 1983 Banerji <i>et al.</i> , 1988
Scopoletin [41] H_3CO H_0 H_0 H_0	Coumarin	Leaf Root	Tantir <i>et al.</i> Banerj 19

2. Chemical Constituents of *Glycosmis* spp.

The genus *Glycosmis* is a rich source of various classes of alkaloids and sulfurcontaining amides. Quinolone, acridone, and carbazole alkaloids are preferably accumulated in the stem and root bark (Vajrodaya *et al.*, 1998), whilst sulfurcontaining amides have been mainly detected in leaves. In addition, furoquinoline and quinazoline alkaloids and flavonoids have been usually isolated from leaves (Lukaseder *et al.*, 2009). The compounds isolated from *Glycosmis*. spp. are shown in **Table 2**.

Plant and compound	Category	Plant part	Reference
<i>Glycosmis angustifolia</i> Dambullin [78]	Phenylethyl	Leaf	Greger
H O CH ₃	amide		et al., 1994
Gerambullin [79]	Phenylethyl amides	Leaf	Greger et al., 1994
Gerambullindiol [80] $H \rightarrow O = O = O = O = O = O = O = O = O = O$	Phenylethyl amides		Greger et al., 1994

Table 2 Chemical constituents in *Glycosmis* spp.

Plant and compound	Category	Plant part	Reference
Glycosmis angustifolia Methyldambullin [81] $CH_3 O O O O O O O O O O O O O O O O O O O$	Phenylethyl amides	Leaf	Greger et al., 1994
Methylgerambullin [82]	Phenylethyl amides	Leaf	Greger et al., 1994
Methylgerambullone [83]	Phenylethyl amides	Leaf	Greger et al., 1994
Methylisogerambullone [84] \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Phenylethyl amides	Leaf	Greger et al., 1994

Plant and compound	Category	Plant part	Reference
Glycosmis arborea Acutifolin [85] $OCH_3 CH_2$ H_2 OCH_3CH_3 OH OCH_3CH_3	Quinolone alkaloid	Stem	Ito <i>et al.</i> , 2004
Arborine [86] \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Quinazolone alkaloid	Leaf Leaf	Banerjee <i>et al.</i> , 1961 Chakravarti <i>et al.</i> , 1961
Arborinine [87] $0 OH OCH_3$ $H_3 OCH_3$	Acridone alkaloid	Leaf	Banerjee <i>et al.</i> , 1961
Arborinol [88] HOW HOW HOW HOW HOW HOW HOW HOW HOW HOW	Triterpenoid	Leaf	Kennard <i>et al.</i> , 1965 Pakrashi and Samanta, 1967
4,8-Dimethoxy-1-methyl-3-(3- methylbut-2-enyl)quinolin- 2(1 <i>H</i>)-one [89] $\downarrow \qquad \qquad$	Quinolone alkaloid	Root	Chakravarty et al., 1999

Plant and compound	Category	Plant part	Reference
<i>Glycosmis arborea</i> 24,24-Dimethyl-5 <i>α</i> -lanosta- 9(11),25-dien-3 <i>α</i> -ol [90]	Triterpenoid	Aerial part	Chakravarty <i>et al.</i> , 1996
$\frac{1}{H_{O}}$	Triterpenoid	Aerial part	Chakravarty
9(11),25-dien- 3β -ol [91]			<i>et al.</i> , 1996
γ -Fagarine [92]	Quinoline alkaloid	Stem	Ito <i>et al.</i> , 2004
OCH ₃ Glybomine-A [93] $(\bigcirc CH_3 \qquad CH_3 \qquad CH_3 \qquad H$	Carbazole alkaloid	Stem	Ito <i>et al.</i> , 2004
Glybomine-B [94] H_3CO (H_3) $(H$	Carbazole alkaloid	Stem	Ito <i>et al.</i> , 2004

Plant and compound	Category	Plant part	Reference
Glycosmis arborea			
Glybomine-C [95]	Carbazole alkaloid	Stem	Ito <i>et al.</i> , 2004
HO CH ₃ OH			
Glycoborinine [96]	Carbazole alkaloid	Root	Chakravarty <i>et al.</i> , 1999
о с с с с с с с с с с с с с с с с с с с			
Glycocitlone-C [97]	Quinolone alkaloid	Stem	Ito <i>et al.</i> , 2004
OCH ₃ OCH ₃ CH ₃	here and the second		
Glycomaurrol [98]	Carbazole alkaloid	Root	Ito <i>et al.</i> , 2004
H ₃ C OH	ยุทรัพ	ยาก	
าหา"ลงกรอ	111877	591811	เลีย

Plant and compound	Category	Plant part	Reference
Glycosmis arborea			
Glycoric acid [99]	10- normegastigmane skeleton	Aerial part	Chakravarty <i>et al.</i> , 1996
но			
Glycorine [100]	Quinazolone alkaloid	Leaf	Pakrashi and Bhattacharyya, 1963
Г Г И К С H ₃			
Glycosmicine [101]	Quinazolone alkaloid	Leaf	Pakrashi and Bhattacharyya, 1963
NH NH CH ₃			1705
Glycosminine [102]	Quinazolone alkaloid	Leaf	Pakrashi and Bhattacharyya, 1963
NH			
Glycozolidine [103]	Carbazole alkaloid	Root	Chakravarty <i>et al.</i> , 1999
	ยุทรพ	ยากร	j
Glycozoline [104]	Carbazole alkaloid	Root	Chakravarty et al., 1999
H ₃ CO N H			

Plant and compound	Category	Plant part	Reference
<i>Glycosmis arborea</i> Glycozolinine [105]	Carbazole alkaloid	Stem	Ito <i>et al.</i> , 2004
HO N H			
Isodictamnine [106]	Quinolone alkaloid	Stem	Ito <i>et al.</i> , 2004
N CH ₃			
Iso- γ -fagarine [107]	Quinolone alkaloid	Stem	Ito <i>et al.</i> , 2004
OCH ₃ CH ₃	292/02/D		
3-Methylcarbazole [35]	Carbazole alkaloid	Stem	Ito <i>et al.</i> , 2004
	~		
Methyl carbazole-3-carboxylate [36]	Carbazole alkaloid	Stem	Ito <i>et al.</i> , 2004
	มหาวิ	ทยา	ลัย

Plant and compound	Category	Plant part	Reference
Glycosmis arborea $(24S)-24$ -Methyl-5 α -lanosta-			
9(11),25-dien-3α-ol [108]	Triterpenoid	Aerial part	<i>et al.</i> , 1996
How $(24S)$ -24-methyl-5 α -lanosta- 9(11),25-dien- 3β -ol [109]	Triterpenoids	Aerial part	Chakravarty <i>et al.</i> , 1996
HO H'			
Skimmianine [110] $\downarrow \qquad \qquad$	Quinoline alkaloid	Root	Chakravarty <i>et al.</i> , 1999
Glycosmis bilocularis			
Arborine [86]	Quinazolone alkaloid	Leaf	Bowen, Perera and Lewis, 1978
$ \begin{array}{c} \dot{C}H_{3} \\ Arborinine [87] \\ $	Acridone alkaloid	Leaf	Bowen, Perera and Lewis, 1978

Plant and compound	Category	Plant part	Reference
Glycosmis bilocularis			
Dictamnine [111]	Quinoline alkaloid	Stem	Bowen, Perera and Lewis, 1980
$\frac{100}{100}$	Quinazolone alkaloid	Leaf	Bowen, Perera and Lewis, 1978
5-Hydroxy-arborinine [112] $\downarrow \downarrow $	Acridone alkaloid	Leaf and stem	Bowen, Perera and Lewis, 1978, 1980
OH CH_3 Kokusaginine [113] H_3CO H_3CO H_3CO	Quinoline alkaloid	Leaf and stem	Bowen, Perera and Lewis, 1978, 1980
Skimmianine [110] OCH ₃	Quinoline alkaloid	Laef and stem	Bowen, Perera and Lewis, 1978, 1980
H ₃ CO NOCH ₃	์มหา'	วิทยา	เล้ย

Plant and compound	Category	Plant part	Reference
Glycosmis chlorosperma			
(Z)-Bogorin [114]	Quinazolone alkaloid	Leaf	Seger <i>et al.</i> , 1998
Chlorospermin [115] H_3CO O OH	Flavanonol	Leaf	Lukaseder et al., 2009
Dambullin [78]	Phenylethylamide derivative	Leaf Leaf	Hofer <i>et al.</i> , 2000 Rahmani <i>et al.</i> , 2004
Dihydroglychalcone-A [116]	Chalcone	Leaf	Rahmani <i>et al.</i> , 2004
H_3CO OH OH O Flowerine [117] OCH_3	Flavanone	Leaf	Lukaseder et al., 2009
$ \begin{array}{c} $	Phenylethylamide derivative	Leaf	Rahmani et al., 2004

Plant and compound	Category	Plant part	Reference
Glycosmis chlorosperma Gerambullol [118] $H \rightarrow S \rightarrow CH_3$	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 2000
β -Hydroxygerambullal [119] β -Hydroxygerambullal [119] β -Hydroxygerambullal [119]	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 2000
β -Hydroxygerambullin [120]	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 2000
β -Hydroxygerambullol [121] β -Hydroxygerambullol [121]	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 2000
$ \begin{array}{c} $	Amidosulfide	Leaf	Greger et al., 1993a

Plant and compound	Category	Plant part	Reference
Glycosmis chlorosperma		•	
4'-O-Methyl-8-prenylnaringenin [123]	Flavanone	Leaf	Lukaseder et al., 2009
HO OCH ₃ OH O			
O-Methylsakambullin [124]	Phenylethylamide	Leaf	Hofer et al.,
H ₃ CO H S CH ₃	derivative		2000
<i>O</i> -Methylsakerinol-A [125]	Phenylethylamide	Leaf	Hofer <i>et al.</i> ,
H ₃ CO H O CH ₃ CH ₂ OH	denvauve	3	2000
7- <i>O</i> -Methylselinone [126]	Flavanone	Leaf	Lukaseder
	ารัพยา	ากร	et al., 2009
Mundulea-flavanone-B [127]	Flavanone	Leaf	Lukaseder
H ₃ CO OH O			et al., 2009

Plant and compound	Category	Plant part	Reference
Glycosmis chlorosperma			
Penangin [128]	Amidosulfide	Leaf	Greger <i>et al.</i> , 1993a
H ₃ C _S NH CH ₃		1	
Penimide-A [129]	Sulfur-	Leaf	Greger
H ₃ C _S N CH ₃	imide		Hinterberger, Hofer and Greger, 1994
Penimide-B [130]	Sulfur-	Leaf	Greger
H ₃ C_S O O O O O O O O O O O O O O O O O O O	imide		Hinterberger, Hofer and Greger, 1994
8-Prenylnaringenin [131]	Flavanone	Leaf	Lukaseder <i>et al.</i> ,
			2007
Sakambullin [132]	Phenylethyl amide derivative	Leaf	Hofer <i>et al.</i> , 2000
HO N S'CH ₃	้มหา	วิทยา	າລັຍ

Plant and compound	Category	Plant part	Reference
Glycosmis chlorosperma		-	
Sakerinol-A [133] HO HO HO HO HO HO HO HO H	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 2000
СН2ОН			
Sakerol [134]	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 2000
Selinone [135]	Flavanone	Leaf	Lukaseder
	(19769) Visios	-9	et al., 2009
Glycosmis citrifolia			
Acrifoline [136] 0 OH $HO OCH_3 O$	Acridone alkaloid	Root and stem bark	Ono, Ito and Furukawa, 1995
Atalaphyllidine [137] $\downarrow \qquad \qquad$	Acridone alkaloid	Root and stem bark	Wu <i>et al.</i> , 1983

Plant and compound	Category	Plant part	Reference
Glycosmis citrifolia Citracridone-I [138]	Acridone alkaloid	Root and stem bark	Wu et al., 1983
HO OCH_3CH_3 OCH_3	Acridone alkaloid	Root and stem bark	Wu <i>et al</i> ., 1983
Des- <i>N</i> -methylnoracronycine [140] $\downarrow \downarrow $	acridone alkaloid	Root and stem bark	Wu <i>et al.</i> , 1983
4,8-Dimethoxy-1-methyl-3-(3- methylbut-2-enyl)quinolin-2(1 <i>H</i>)-one [89]	Quinolone alkaloid	Root and stem bark	Wu <i>et al</i> ., 1983
$\overrightarrow{OCH_3CH_3}^{N}$ 1,2-Dimethylquinolin-4(1 <i>H</i>)-one [141] $\overrightarrow{O}_{H_3}^{O}$ $\overrightarrow{CH_3}^{CH_3}$	Quinolone alkaloid	Leaf	Wu, Chang and Wu, 1995

Plant and compound	Category	Plant part	Reference
Glycosmis citrifolia			
Evomeliaefolin [142] OCH ₃ OH O CH ₃	Quinolone alkaloid	Leaf	Wu, Chang and Wu, 1995
$\begin{array}{c} H_{3}CO^{2} \qquad \begin{array}{c} & & \\ & \\ OCH_{3} \end{array} \end{array} \xrightarrow{O} \\ \hline \\ \gamma - Fagarine \ [92] \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	Quinoline alkaloid	Leaf	Wu, Chang and Wu, 1995
OCH ₃ Furofoline-I [143] O OH O OH CH_3	Acridone alkaloid	Root and stem bark	Wu, Furukawa and Hsu 1982
Furofoline-II [144] O OH	Acridone alkaloid	Root and stem bark	Wu, Furukawa and Hsu, 1982
CH ₃		Root and stem bark	Wu <i>et al.</i> , 1983
ОН	a dan	1000	
Glychalcone-A [145]	Chalcone	Leaf	Wu, Chang and Wu, 1995
OH O			
Glychalcone-B [146] O OCH_3 OCH_3 OH OH OH OH OH OH OH OH	Chalcone	Leaf	Wu, Chang and Wu, 1995

Plant and compound	Category	Plant part	Reference
Glycosmis citrifolia	Dimorio	Poot and	Ito at al. 2000a
$\begin{array}{c} O \\ H_{3}C \\ H$	acridone alkaloid	stem bark	no el al., 2000a
Glycobismine-F [152] $ \begin{array}{c} $	Dimeric acridone alkaloid	Root	Negi <i>et al.</i> , 2004
Glycobismine-G [153] 0 OH HO OH HO OH $O CH_3 OH$ $O CH_3 OH$ $O CH_3 OH$	Dimeric acridone alkaloid	Root	Negi <i>et al.</i> , 2004
ОН О			

Plant and compound	Category	Plant part	Reference
Glycosmis citrifolia			
Glycocitlone-A [154] OCH_3 OH	Quinolone alkaloid	Root and stem bark	Ito <i>et al</i> ., 2000a
Glycocitlone-B [155] $\downarrow \downarrow $	Quinolone alkaloid	Root and stem bark	Ito <i>et al</i> ., 2000a
Glycocitlone-C [97] $\downarrow \downarrow \downarrow \downarrow \bigcirc$ $\downarrow \downarrow \downarrow \bigcirc$ $\downarrow \downarrow \downarrow \bigcirc$ $\downarrow \downarrow \downarrow \bigcirc$ $\downarrow \downarrow \bigcirc$ $\downarrow \bigcirc$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	Quinolone alkaloid	Root and stem bark	Ito <i>et al.</i> , 2000a
Glycocitridine [156] OCH_3 H_3CO OCH_3 H_3CO OCH_3	Quinolone alkaloid	Leaf	Wu, Chang and Wu, 1995
Glycocitrine-I [157] $\downarrow 0$ OH $\downarrow $	Acridone alkaloid	Root and stem bark Root and stem bark	Wu, Furukawa and Kuoh, 1982a Wu <i>et al.</i> , 1983
Plant and compound	Category	Plant part	Reference
---	----------------------	--	--
Glycosmis citrifolia			
Glycocitrine-II [158] о он	Acridone alkaloid	Root and stem bark	Wu, Furukawa and Kuoh,
N CH ₃ CH ₃		Root and stem bark	Wu <i>et al.</i> , 1983
Glycocitrine-IV [159] 0 OH OH OH OH OH OH OH O	Acridone alkaloid	Root and stem bark	Ito <i>et al.</i> , 2000a
Glycocitrine-V [160] $HO \rightarrow HO \rightarrow$	Acridone alkaloid	Root and stem bark	Ito <i>et al.</i> , 2000a
Glycocitrine-VI [161] $\downarrow \downarrow $	Acridone alkaloid	Root and stem bark	Ito <i>et al.</i> , 2000a
Glycofoline [162] $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	Acridone alkaloid	Root and stem bark Root and stem bark	Wu and Furukawa, 1982 Wu <i>et al.</i> , 1983

Plant and compound	Category	Plant part	Reference
Glycosmis citrifolia			
Glycofolinine [163] $ \begin{array}{c} 0 & OH \\ \hline HO & H \\ \hline HO & H \\ \hline OCH_3 CH_3 & OCH_3 \end{array} $	Acridone alkaloid	Root and stem bark	Ono, Ito and Furukawa, 1995
Glycothiomin-A [164]	Amidosulfoxide	Leaf	Wu, Chang and
H ₃ C _N H			Wu, 1995
Glycothiomin-B [165]	Amidosulfoxide	Leaf	Wu, Chang and
H_3C_N			Wu, 1995
Glyflavanone-A [166]	Flavonoid	Leaf	Wu, Chang and
OCH ₃ OCH ₃			Wu, 1995
สมเย้าริทย	พรัพเ	ากกร	
Glyflavanone-B [167]	Flavonoid	Leaf	Wu, Chang and Wu, 1995
OCH ₃ OCH ₃ OCH ₃	มหาวิ	ทยา	เล้ย

Plant and compound	Category	Plant part	Reference
Glycosmis citrifolia			
Glyfoline [168] од он	Acridone alkaloid	Root and stem bark	Wu, Furukawa and Kuoh, 1982a
HO N OCH ₃ OCH ₃ CH ₃ OCH ₃		Root and stem bark	Wu <i>et al.</i> , 1983
5-Hydroxy- <i>N</i> -methylseverifoline [169] (= <i>N</i> -methylatalaphyllinine) $O \to OH$ $O \to OH$ OH $OHO \to OHOH$ $OHO \to OHOH$ $OHOH$ $OHOHOH$ $OHOH$ $OHOHOHOHOHOHOHOH$	Acridone alkaloid	Root and stem bark	Wu <i>et al.</i> , 1983
5-Hydroxy-noracronycine [170] $\downarrow 0$ OH $\downarrow +$ $\downarrow 0$ OH CH ₃ $\downarrow \downarrow \downarrow$	Acridone alkaloid	Root and stem bark	Wu <i>et al.</i> , 1983
3- <i>O</i> -Methylglycocitrine-II [171] О ОН	Acridone alkaloid	Root and stem bark	Wu, Furukawa and Kuoh, 1982a
CH ₃ CH ₃	รัพ	Root and stem bark	Wu <i>et al.</i> , 1983
<i>N</i> -Methylseverifoline [172]	Acridone alkaloid	Root and stem bark	Wu et al., 1983

Plant and compound	Category	Plant part	Reference
Glycosmis citrifolia Noracronycine [173] 0 </td <td>Acridone alkaloid</td> <td>Root and stem bark</td> <td>Wu et al., 1983</td>	Acridone alkaloid	Root and stem bark	Wu et al., 1983
$\dot{C}H_3$ Penangin [128] H_3C_S H	Amidosulfide	Leaf	Wu, Chang and Wu, 1995
Pyranofoline [174] 0 OH OH OH OH OH OH OH O	Acridone alkaloid	Root and stem bark Root and stem bark	Wu, Furukawa and Hsu, 1983 Wu <i>et al.</i> , 1983
(Z)-Rhoifolic acid methyl ester [175] $H_3CO \longrightarrow OCH_3$ $H_3CO \longrightarrow OCH_3$ $H_3CO \longrightarrow OCH_3$ $H_3CO \longrightarrow OCH_3$	Furopyridine alkaloid	Leaf	Wu, Chang and Wu, 1995
(<i>E</i>)-Rhoifolic acid methyl ester [176] $H_{3}CO$	Furopyridine alkaloid	Leaf	Wu, Chang and Wu, 1995
Skimmianine [111] $\downarrow \qquad \qquad$	Quinoline alkaloid	Leaf	Wu, Chang and Wu, 1995

Plant and compound	Category	Plant part	Reference
Glycosmis craibii			
Dihydroisosakerol [177] HO HO H O CH_3 O HO H O CH_3	Phenylethylamide derivertive	Leaf	Hofer <i>et al</i> ., 1995a
Glovanon [178]	Flavanone	Leaf	Lukaseder
			<i>et al.</i> , 2009
5- <i>O</i> -Methylglovanon [179]	Flavanone	Leaf	Lukaseder et al., 2009
Sakerine [180] HO + H + O + O + O + O + O + O + O + O +	Phenylethylamide derivertive	Leaf	Hofer <i>et al.</i> , 1995a

Plant and compound	Category	Plant part	Reference
Glycosmis crassifolia	Salar .		
Dehydrothalebanin-A [181] $\downarrow 0$ $\downarrow 0$ \downarrow	Phenylethenylamide derivative	Leaf	Greger, <i>et al.</i> , 1996
Dehydrothalebanin-B [182]	Phenylethenylamide derivative	Leaf	Greger, <i>et al.</i> , 1996
Thalebanin-B [183] $\downarrow 0$ $\downarrow 0$ \downarrow	Phenylethenylamide derivative	Leaf	Greger, <i>et al.</i> , 1996
Glycosmis cyanocarpa			
Angelical [1] OHC $H_{3}CO$ O	Coumarin	Leaf	Sarkar, Kundu and Chakraborty, 1978
Dehydroniranin-A [184] $H_3C_S \xrightarrow[]{}_{H_3}C_{H_3}$	Phenylethenylamide derivative	Leaf	Greger, <i>et al.</i> , 1996
Dehydroniranin B-[185] H ₃ C S N CH ₃	Phenylethenylamide derivative	Leaf	Greger, <i>et al.</i> , 1996

Plant and compound	Category	Plant part	Reference
Glycosmis cyanocarpa			
Evolitrine [186] OCH_3 H_2CO	Quinoline alkaloid	Leaf	Sarkar, Kundu and Chakraborty, 1978
Glycarpine [187] OCH_3O H_3CO H_3CO H_3CO H_3CO H_3O H_3CO H_3	Quinolone alkaloid	Leaf	Sarkar, Kundu and Chakraborty, 1978
Glycozolidol [188] HO (H_3) HO $(H_$	Carbazole alkaloid	Leaf	Greger <i>et al</i> , 1992
Kokusaginine [113] H_3CO H_3CO H_3CO H_3CO	Quinoline alkaloid	Leaf	Greger <i>et al</i> , 1992
Limettin [76]	Coumarin	Leaf	Sarkar, Kundu and Chakraborty, 1978
H ₃ CO ^{\sim} O	Phenylethylamide	Leaf	Greger <i>et al</i> , 1992 Hinterberger, Hofer and Greger, 1994

Plant and compound	Category	Plant part	Reference
Glycosmis cyanocarpa		•	
Skimmianine [110] $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ $H_3CO + \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ OCH_3	Quinoline alkaloid	Leaf	Greger <i>et al</i> , 1992
Sinharine [190]	Phenylethylamide	Leaf	Greger <i>et al.</i> , 1992 Hinterberger, Hofer and Greger, 1994
Xanthyletin [191] $\int_{0}^{1} \int_{0}^{1} \int_{0$	Coumarin	Leaf	Sarkar, Kundu and Chakraborty, 1978
Glycosmis mauritiana	all spinster the		
Arborinine [86] $O OH OCH_3$ $H_3 OCH_3$	Acridone alkaloid	Root	Rastogi, Kapil and Popli, 1980
Des- <i>N</i> -methylacronycine [139]	Acridone alkaloid	Stem bark	Kumar, Reisch and Wickramasinghe, 1989
Dictamnine [111] OCH_3 $V_N = O$	Quinoline alkaloid	Root	Rastogi, Kapil and Popli, 1980

Plant and compound	Category	Plant part	Reference
<i>Glycosmis mauritiana</i> 4,8-Dimethoxy-1-methyl-3-(3- methylbut-2-enyl)quinolin-2(1 <i>H</i>)- one [89]	Quinolone alkaloid	Root	Rastogi, Kapil and Popli, 1980
OCH ₃ NO OCH ₃ CH ₃			
Friedelin [192]	Triterpenoid	Leaf and stem	Bhakuni <i>et al</i> ., 1971
Glycomaurin [26]	Carbazole	Stem bark	Kumar Reisch
(= 5,6-pyranoglycozoline) H_3C H_3C H_H	alkaloid	Stelli bark	and Wickramasinghe, 1989
Glycomaurrol [98]	Carbazole alkaloid	Stem bark	Kumar, Reisch and Wickramasinghe, 1989
	มหาร์	โทย	าลัย
Glycozolidine [103] H ₃ CO CH_3 OCH_3	Carbazole alkaloid	Root	Rastogi, Kapil and Popli, 1980

Plant and compound	Category	Plant part	Reference
Glycosmis mauritiana			
Glycozoline [104] H_3CO H_3CO H_H	Carbazole alkaloid	Root	Rastogi, Kapil and Popli, 1980
1-Hydroxy-3-methoxy-10-methyl-2-(3- methylbut-2-enyl)acridan-9(10 <i>H</i>)-one [193]	Acridone alkaloid	Root	Rastogi, Kapil and Popli, 1980
O OH O OH O OH OCH ₃ CH ₃			
Hentriacontane [73] $CH_3-(CH_2)_{29}-CH_3$	Long chain hydrocarbon	Leaf and stem	Bhakuni <i>et al</i> ., 1971
1-Hentriacontanol [74] СН ₃ -(СН ₂) ₃₀ -ОН	Long chain hydrocarbon	Leaf and stem	Bhakuni <i>et al</i> ., 1971
Illukumbin-B [194]	Phenylethyl amide derivative	Leaf	Greger <i>et al.</i> , 1993b Hinterberger, Hofer and Greger, 1994
Isopenangin [122] $H_{3}C$ S H_{N} $H_{3}C$ O	Amidosulfide	Leaf	Greger <i>et al.</i> , 1993b

Plant and compound	Category	Plant part	Reference
Glycosmis mauritiana		F ·····	
Kokusaginine [113] OCH ₃ H ₃ CO	Quinoline alkaloid	Leaf	Greger <i>et al.</i> , 1993b
Methylillukumbin-A [195] H ₃ C $_{S}$ \sim N $_{CH_3}$	Phenylethylamide derivative	Leaf	Greger <i>et al.</i> , 1993b Hinterberger, Hofer and Greger, 1994
Methylillukumbin-B [196] $H_3C_s \xrightarrow{O}_{H_3C_s} \xrightarrow{O}_{H_3}$	Phenylethylamide derivative	Leaf	Greger <i>et al.</i> , 1993b Hinterberger, Hofer and Greger, 1994
Niranin [197] H ₃ C $_{S}$ $\stackrel{O}{\underset{CH_3}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{\overset{I}{$	Phenylethylamide derivative	Leaf	Greger, <i>et al.</i> , 1996
Noracronycine [173] $\downarrow \downarrow $	Acridone alkaloid	Stem bark	Kumar, Reisch and Wickramasinghe, 1989
Penangin [128] H ₃ C ₅ $\stackrel{O}{\leftarrow}$ NH $\stackrel{C}{\leftarrow}$ H ₃	Amidosulfide	Leaf	Greger <i>et al.</i> , 1993b

Plant and compound	Category	Plant part	Reference
Glycosmis mauritiana		•	
Ritigalin [198]	Sulfur-containg imide	Leaf	Hofer <i>et al.</i> , 1995b
H_3C_S N C_H_3			
Sakerol [134]	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 1995a
HO HO S CH ₃			
OH			
Sakerone [199]	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 1995a
HO HO S CH ₃			
lit			
Sinharine [190]	Phenylethylamide derivative	Leaf	Greger <i>et al.</i> , 1993b
O N H S CH ₃	ทรัพย		j
Skimmianine [110]	Quinoline alkaloid	Root	Rastogi, Kapil and Popli, 1980
H ₃ CO OCH ₃ OCH ₃	YN.1.3		ାର ମ

Plant and compound	Category	Plant part	Reference
<i>Glycosmis mauritiana</i> Vitexin [200] (8- <i>C</i> -β-glucopyranosylapigenin)	Flavonoid	Leaf and stem	Bhakuni <i>et al.</i> , 1971
Glycosmis montana	60.4		
Carbalexin-A [201] OCH_3 CH ₃ CH_3 OH H	Carbazole alkaloid	Leaf and twig	Wang <i>et al.</i> , 2005
Carbalexin-B [202] $\downarrow \downarrow $	Carbazole alkaloid	Leaf and twig	Wang <i>et al.</i> , 2005
Carbalexin-C [203] $H_3CO \xrightarrow{CH_3} OH$	Carbazole alkaloid	Leaf and twig	Wang <i>et al.</i> , 2005
Glybomine-B [94] H ₃ CO (++++)CH ₃ (++++)OH	Carbazole alkaloid	Leaf and twig	Wang <i>et al.</i> , 2005

Plant and compound	Category	Plant part	Reference
Glycosmis montana			
Glycoborinine [96] $ \begin{array}{c} $	Carbazole alkaloid	Leaf and twig	Wang <i>et al.</i> , 2005
Glymontanine-A [204] $0 + S + CH_3 + OH_3 + OCH_3 + OH_4 + OH_4$	Sulfur- containing flavanols	Leaf and twigs	Wang <i>et al.</i> , 2004
Glymontanine-B [205] HO HO HO HO HO HO HO OH OH	Sulfur- containing flavanols	Leaf and twigs	Wang <i>et al.</i> , 2004
(E)-2-Methyl-4-(7-(3-methylbut-2- enyl)-1H-indol-3-yl)but-2-en-1-ol [206]	Diprenylated indole alkaloid	Leaf and twig	Wang <i>et al.</i> , 2005
3-Methyl-9 <i>H</i> -carbazol-2-ol [207] $\downarrow \qquad \downarrow \qquad$	Carbazole alkaloid	Leaf and twig	Wang <i>et al.</i> , 2005

Plant and compound	Category	Plant part	Reference
Glycosmis montana			
Montahomobisflavan-A [208] HO	Flavanol dimer	Leaf and twigs	Wang <i>et al.</i> , 2004
Montahomobisflavan-B [209] $HO + GH_3 + OH + O$	Flavanol dimer	Leaf and twigs	Wang <i>et al.</i> , 2004
Glycosmis ovoidea Doisuthine [210] H_3C	Phenylethyl amide derivative	Leaf	Hofer <i>et al.</i> , 1995a
Methoxydoisuthine [211] H_3C NH O OCH ₃ H_3C OCH ₃	Phenylethyl amide derivative	Leaf	Hofer <i>et al.</i> , 1995a

Plant and compound	Category	Plant part	Reference
Glycosmis ovoidea			
Methylgerambullal [212] HO HO N HO CH_3 O CH_3 CH	Phenylethylamide derivative	Leaf	Hofer <i>et al.</i> , 1995a
Glycosmis parva			
Dihydroglyparvin [213]	Phenylethylamide derivative	Leaf	Hofer, Vajrodaya and Greger, 1998
Glyparvin-A [214]	Phenylethylamide	Leaf	Hofer, Vairodava
H O S CH ₃			and Greger, 1998
	ทรัพย	ากร	
Khaochamide [215]	Phenylethylamide derivative	Leaf	Hofer, Vajrodaya and Greger, 1998

Plant and compound	Category	Plant part	Reference
Glycosmis parva			
Puhinamide [216]	Phenylethylamide derivative	Leaf	Hofer, Vajrodaya and Greger, 1998
Glycosmis parviflor <mark>a</mark>			
Carbalexin-A [201] $\downarrow \downarrow \downarrow \downarrow \downarrow \bigcirc$ CH ₃ $\downarrow \downarrow \downarrow \downarrow \bigcirc$ OH H	Carbazole alkaloid	Leaf	Pacher <i>et al.</i> , 2001
Carbalexin-B [202] $\downarrow \downarrow \downarrow \downarrow \downarrow \bigcirc$ CH ₃ $\downarrow \downarrow \downarrow \downarrow \bigcirc$ OH H ₃ CO H	Carbazole alkaloid	Leaf	Pacher et al., 2001
Carbalexin-C [203] $H_{3}CO$ $H_{$	Carbazole alkaloid	Leaf	Pacher <i>et al.</i> , 2001
Dehydrothalebanin-A [181]	Phenylethenylamide derivative	Leaf	Pacher et al., 2001

Plant and compound	Category	Plant part	Reference
Glycosmis parviflora			
Dehydrothalebanin-B [182]	Phenylethenylamide derivative	Leaf	Pacher <i>et al.</i> , 2001
Glycoborinine [96] \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Carbazole alkaloid	Leaf	Pacher et al., 2001
3-Methyl-9 <i>H</i> -carbazol-2-ol [207] $\downarrow \qquad \qquad$	Carbazole alkaloid	Leaf	Pacher <i>et al.</i> , 2001
Ritigalin [198] $H_{3}C_{S} \xrightarrow{O}_{H_{3}} \xrightarrow{O}_{CH_{3}}$	Sulfur-containing Imide	Leaf	Hofer <i>et al.</i> , 1995b
Giycosmis peleiolii			
Glypetelotine [217] H_3C $N - CH_3$ O H	Sulfur-containing indole alkaloid	Leaf	Cuong, Taylor and Sung, 1999

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
Acrifoline [136] $\downarrow \qquad \qquad$	Acridone alkaloid	Stem	Ito <i>et al</i> ., 1999
Arborine [86] $\downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Quinazolone alkaloid	Leaf	Sarkar and Chakraborty, 1979
Arborinine [87] $0 OH OCH_3$ $CH_3 CH_3$	Acridone alkaloid	Stem	Ito <i>et al.</i> , 1999
(<i>E</i>)-3-(But-2-enyl)-4-ethoxy-8-hydroxy- 1-methylquinolin-2(1 <i>H</i>)-one [218] $OC_{2}H_{5}$	Quinolone alkaloid	Root bark	Sinha and Kumar, 1988
OH CH ₃	รัพย	ากร	
Carbalexin-A [201] $\downarrow \downarrow \downarrow \downarrow \bigcirc CH_3$ $\downarrow \downarrow \downarrow \bigcirc OH$ H	Carbazole alkaloid	Leaf	Pacher <i>et al.</i> , 2001

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
Carbalexin-B [202] $\downarrow \downarrow \downarrow \downarrow \bigcirc H_3$ CO H	Carbazole alkaloid	Leaf	Pacher <i>et al.</i> , 2001
Carbalexin-C [203] $H_3CO \xrightarrow{CH_3} \xrightarrow{CH_3}$	Carbazole alkaloid	Leaf	Pacher <i>et al.</i> , 2001
Carbazole [219] \bigvee_{H}	Carbazole alkaloid	Root bark	Chowdhury et al., 1987
Citracridone-I [138] $\downarrow \downarrow $	Acridone alkaloid	Stem	Ito <i>et al</i> ., 1999
Dehydrothalebanin-B [182]	Phenylethenyl amide derivative	Root	Shapiro, Bowman and Lapointe, 2000

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
Des- <i>N</i> -methylacronycine [139] $\downarrow \downarrow $	Acridone alkaloid	Stem	Ito <i>et al.</i> , 1999
Des- <i>N</i> -methylnoracronycine [140] $\begin{array}{c} & & \\ &$	Acridone alkaloid	Stem	Ito <i>et al.</i> , 1999
Dictamnine [111] $\downarrow \downarrow \downarrow \downarrow \downarrow$ $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	Quinoline alkaloid	Root bark	Chakraborty, 1966
4',5-Dihydroxy-3',7- dimethoxyisoflavone 4'- O - β -D- apiofuranosyl-(1 \rightarrow 6)- β -D- glucopyranoside [220]	Isoflavone diglycosides	Stem	Wang <i>et al.</i> , 2006
H ₃ CO OH O HO OH O HO OH OH OH	ารัพย เหาวิ	ากร ทยา	ลัย

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
4,8-Dimethoxy-3-(3-methylbut-2- enyl)quinolin-2(1 <i>H</i>)-one [221]	Quinolone alkaloid	Leaf	Bhattacharyya and Chowdhury, 1985a
2',7-Dihydroxy-4',5',5,6- tetramethoxyisoflavone 7- O - β -D- apiofuranosyl-(1 \rightarrow 6)- β -D- glucopyranoside [222]	Isoflavone diglycosides	Stem	Wang <i>et al.</i> , 2006
OHOOHOHH3COOCH3OOCH3OOCH3			
2',7-Dihydroxy-4',5',5,6- tetramethoxyisoflavone 7- O -(5- O -trans- p -coumaroyl)- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside [223]	Isoflavone diglycosides	Stem	Wang <i>et al.</i> , 2006
OH O OH	รัพย หาวิ	ากร ทยา	ลัย
R = (coumaroyl)			

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
3',7-Dihydroxy-4',5,6- trimethoxyisoflavone 7- <i>O</i> -(5- <i>O</i> -trans- pcoumaroyl)- β -D-apiofuranosyl-(1 \rightarrow 6)- β -D-glucopyranoside [224]	Isoflavone diglycosides	Stem	Wang <i>et al.</i> , 2006
R = (coumaroyl)			
γ -Fagarine [92] $\downarrow \downarrow $	Quinoline alkaloid	Root bark	Chakraborty, 1966
3-Formylcarbazole [30] $\downarrow \downarrow $	Carbazole alkaloid	Root	Jash <i>et al.</i> , 1992
Glycoborinine [96]	Carbazole alkaloid	Leaf	Pacher <i>et al.</i> , 2001
СH ₃ СH ₃ ОН Н	หาว	ทยา	ລ ຢ

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
Glycocotrine-III [225] $\downarrow \qquad \qquad$	Acridone alkaloid	Stem	Ito <i>et al.</i> , 1999
Glycomide [226]	Amide	Flower	Sarkar and
R C			Chakraborty, 1977
Glycophylone [227]	Quinolone alkaloid	Seed	Bhattacharyya and
OH NO OCH ₃ CH ₃			Chowdhury, 1984
Glycophymine [228]	Quinazolone	Flower	Sarkar and
	aikaioid		1977
Glycophymoline [229]	Quinazoline	Flower	Sarkar and
OCH ₃		ากร	1979
Glycoquinone [230]	Naphthoquinone	Stem	Ito <i>et al.</i> , 1999
ОН			

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
Glycosine [231]	Quinazolone alkaloid	Leaf	Chatterjee and Majumdar, 1954
Glycosinine [232] CHO CHO CHO OCH_3 H	Carbazole alkaloid	Root	Jash <i>et al</i> ., 1992
Glycosminine [102]	Quinazolone alkaloid	Leaf	Chatterjee and Majumdar, 1954
Glycosolone [233] \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Quinolone alkaloid	Root bark	Das <i>et al.</i> , 1982
Glycozolicine [234] OCH_3 CH_3 H	Carbazole alkaloid	Leaf Root	Muthukrishman <i>et al.</i> , 1999 Jash <i>et al.</i> , 1992
Glycozolidal [235] H ₃ CO \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Carbazole alkaloid	Root	Bhattacharyya and Chowdhury, 1985b

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
Glycozolidol [188] $HO \longrightarrow CH_3$ $H \longrightarrow OCH_3$ H	Carbazole alkaloid	Root	Bhattacharyya, Chakrabartty and Chowdhury, 1985
Glycozoline [104]	Carbazole alkaloid	Leaf	Chakraborty, Roy and Chakraborty, 1989
N H		Root bark	Chakraborty, 1966, 1969
Glycozolidine [103] H_3CO CH_3	Carbazole alkaloid	Leaf	Chakraborty, Roy and Chakraborty, 1989
N H	Assistant	Root bark	Anwer, Kapil and Popli, 1972
Glycozolinine [105] (= Glycozolinol)	Carbazole alkaloid	Seed	Mukherjee, Mukherjee and Ganguly, 1983
HO CH ₃	nana	Root	Bhattacharyya <i>et al.</i> , 1984
ุฬาลงกรณ	มหาว	ทยา	ର ଥ

Plant and compound	Category	Plant part	Reference
Glycosmis pentaphylla			
5-Hydroxy-arborinine [112] $0 OH OCH_3 OCH_3 $	Acridone alkaloid	Stem	Ito <i>et al.</i> , 1999
7-Hydroxy-4´,6-dimethoxyisoflavone 7- $O-\beta$ -D-apiofuranosyl-(1 \rightarrow 6)- β -D- glucopyranoside [240]	Isoflavone diglycosides	Stem	Wang <i>et al.</i> , 2006
OHOOHOOHOOHOOHOOOOOOOOOOOOOOOOOOOOOOOO			
7-Hydroxy-4',8-dimethoxyisoflavone 7- <i>O</i> - β -D-apiofuranosyl-(1 \rightarrow 6)- β -D- glucopyranoside [241]	Isoflavone diglycosides	Stem	Wang <i>et al.</i> , 2006
OH OH OH OCH3	รัพย	ากร	
Kokusaginine [113]	Quinoline	Stem	Ito <i>et al.</i> ,
H_3CO H_3CO H_3CO N O	aikaioiu	ายาง	1777

Plant and compound	Category	Plant part	Reference
Glycosmis pseudoracemosa 4'-O-Methylbonannione [244] HO + ++++++++++++++++++++++++++++++++++	Flavanone	Leaf	Lukaseder et al., 2009
Puyanin [245] \downarrow HO \downarrow OCH_3	Flavanone	Leaf	Lukaseder et al., 2009
Puyanol [246]	Flavanonol	Leaf	Lukaseder et al., 2009
		มากร ทยา	ลัย

Plant and compound	Category	Plant part	Reference
Glycosmis pseudoracemosa			
Sakerine [180] HO \land \land $\stackrel{H}{\land}$ \land $\stackrel{O}{\land}$ $\stackrel{O}{\land}$	Phenylethylamide derivative	Leaf	Hofer et al., 2000
CH ₃			
Sakerinol-B [247]	Phenylethylamide	Leaf	Hofer
HO HO SCH ₃	derivative		et al., 2000
CH ₂ OH			
Glycosmis puberula	and the second second		
Glypuberol [248]	Flavanone	Leaf	Lukaseder
OH	1321252-	0	<i>ei ui.</i> , 2007
H ₃ CO O O OCH ₃			
OCH ₃ O	~		
Mepuberin [249]	Flavanone	Leaf	Lukaseder et al. 2009
OCH3	เหาวิท	ยาล	1 SI
H ₃ CO U U OCH ₃ O	A FI I O F		

Plant and compound	Category, plant part
Glycosmis rupestris	Kelerence
Des- <i>N</i> -methylacronycine [139]	Acridone alkaloid
	Bark
	Rahmani <i>et al</i> ., 1998
7-Methoxyglycomaurin [250]	Carbazole alkaloid
H ₃ C	Bark
H ₃ CO	Rahmani <i>et al.</i> , 1998
Glycosmis stenocarpa	
Bisisomahanine [251]	Dimeric carbazole alkaloid
HO + O + O + O + O + O + O + O + O + O +	Root Cuong <i>et al.</i> , 2004
Murrayafoline-A [252]	carbazole alkaloid
CH ₃ H OCH ₃	Root Choi <i>et al</i> , 2010 Root Cuong <i>et al.</i> , 2004
Murrayanine [253]	carbazole alkaloid
CHO CHO N H OCH ₃	root Cuong <i>et al.</i> , 2004

Plant and compound	Category	Plant part	Reference
Glycosmis sapindoides			
Glysapinol [254] $\downarrow \qquad \qquad$	Flavanonol	Leaf	Lukaseder et al., 2009
Glycosmis trichanthera			
Des- <i>N</i> -methylnoracronycine [140] $\downarrow \downarrow $	Acridone alkaloid	Root bark	Vajrodaya <i>et al.</i> , 1998
Dictamnine [111]	Quinoline alkaloid	Root bark	Vajrodaya <i>et al.</i> , 1998
OCH ₃		6	<i>or an</i> , 1990
3,7-Diprenyl indole [255]	Indole alkaloid	Root bark	Vajrodaya <i>et al.</i> , 1998
	รัพย	ากร	
γ-Fagarine [92]	Quinoline alkaloid	Root bark	Vajrodaya et al., 1998
$ \begin{array}{c} $	หาวิเ	ายาส	12

Plant and compound	Category	Plant part	Reference
Glycosmis trichanthera			
Glyparvin-A [214]	Phenylethylamide derivative	Leaf	Vajrodaya et al., 1998
5-Hydroxynoracronycine [170]	Acridone alkaloid	Stem bark	Vajrodaya
O OH O OH			et al., 1998
Junosin [256]	Acridone alkaloid	Stem bark	Vajrodaya
O OH OH OH OH CH ₃	19939999 1983/449-	9	<i>et al.</i> , 1998
<i>N</i> -Methylatanine [257]	Quinolone	Root bark	Vajrodaya
OCH ₃ NO CH ₃		ต เกร	ei al., 1998
<i>N</i> -Methylatalaphylline [258]	Acridone alkaloid	Stem bark	Vajrodaya <i>et al.</i> , 1998
OH CH ₃			

Plant and compound	Category	Plant part	Reference
Glycosmis trichanthera N-methylatalaphyllinine [169] (= 5-Hydroxy-N-methylseverifoline) O	Acridone alkaloid	Stem bark	Vajrodaya <i>et al.</i> , 1998
Methylgerambullin [82] $H \rightarrow S \rightarrow CH_3$ $G \rightarrow G \rightarrow G \rightarrow CH_3$	Phenylethylamide derivative	Leaf	Vajrodaya <i>et al.</i> , 1998
Skimmianine [110] OCH_3 $H_3CO + V + V + O + O + OCH_3$ OCH_3	Quinoline alkaloid	Root bark	Vajrodaya <i>et al.</i> , 1998
Trichanthins-A [259] $\downarrow \downarrow $	Phenylethylamide derivative	Leaf	Vajrodaya <i>et al.</i> , 1998
Trichanthins-B [260] $H \rightarrow O = O = O = O = O = O = O = O = O = O$	Phenylethylamide derivative		Vajrodaya <i>et al.</i> , 1998

Plant and compound	Category	Plant part	Reference
Glycosmis trichanthera			
Yukocitrin [261] 0 OH OH OH OH OH OH OH O	Acridone alkaloid	Stem bark	Vajrodaya <i>et al.</i> , 1998

3. Biological Activities of Micromelum spp.

3.1 Traditional Uses and Biological Activities of Micromelum spp.

Micromelum plants have been used in traditional medicine in many countries with several purposes. In Thailand, many parts of M. minutum (Forst. f.) Wight & Arn. have been used. For example, the roots have been used for the treatment of abscess and hemorrhoids (ชยันต์ พิเชียรสุนทร, แม้นมาส ชวลิต และ วิเชียร จีรวงส์, 2542). A decoction of the leaves has been used as a drink for anti-asthmatic property (Panthong, Kanjanapothi and Taylor, 1986). Moreover, the ethanolic extract of the root of M. minutum (Forst. f.) Wight & Arn, which has been used for the treatment of tumor, was examined for cytotoxicity against the human cancer cell lines: large cell lung carcinoma (COR-L23), breast adenocarcinoma (MCF-7) and colon adenocarcinoma (LS-174T). The percentage survival of COR-L23, MCF-7 and LS-174T cells treated with extract (concentration 50 µg/mL) were 72.7, 65.5 and 36.3, respectively (Itharat et al., 2004). In Malaysia, M. minutum (Forst. f.) Seem. has been used for the treatment of fever and giddiness and as a poultice of the roots for ague (Rahmani et al., 1993). In the islands of Rotuma group (in the Pacific), the bark of M. *minutum* (Forst. f.) Seem. has been used for the treatment of amenorrhea and thoracic pain, while the leaves have been used for toothache, tonic (leaves were incorporated into tonics given to prevent illness, particularly in children) and infection (McClatchey, 1996). Also in the kingdom of Tonga, the bark infusion of *M. minutum* (Forst. f.) Seem. is internally taken for the treatment of stomachache. In addition, the leaf infusion is gargled in the mouth for the treatment of toothache (Whistler, 1991).
3.2 Biological Activities of Compounds Isolated from Micromelum spp.

Micromelin [5] demonstrated a significant cytotoxicity against *in vivo* P-388 lymphocytic leukemia cells with T/C 149% at 10 mg/Kg [%T/C (median survival of treated animals: median survival of control animals x 100)] (Cassady *et al.*, 1979).

Microminutin [66] showed activity with an ED_{50} of 3.7 µg/mL against *in vitro* P-388 lymphocytic leukemia cells (Tantivatana *et al.*, 1983).

Mahanine [58] showed a wide variety of biological activities. Thus it showed cytotoxicity against HL-60 tumor cell line (human promyelocytic leukemia cells) with a MIC₁₀₀ of 4.0 µg/mL (Nakahara *et al.*, 2002). Mahanine also induced apoptosis in human leukemia cells (HL-60). At the concentration of 10 µM, mahanine caused a complete inhibition of cell proliferation and the induction of apoptosis in a time dependent manner (Roy *et al.*, 2004). Moreover, mahanine inhibited growth and induced apoptosis in prostate cancer cells in a dose and time-dependent manner (Sinha *et al.*, 2006). In addition, mahanine exhibited antimutagenicity against heterocyclic amines such as Trp-P-1 with an IC₅₀ of 5.2 µM (Nakahara *et al.*, 2002). Mananine also displayed antimicrobial activity against *Bacillus cereus* and *Staphylococcus aureus* with MIC₁₀₀ values of 6.25 and 12.5 µg/mL, respectively (Nakahara *et al.*, 2002).

Micromolide [**37**] showed potent in vitro anti-tuberculosis activity against *Mycobacterium tuberculosis* strain H37Rv with an MIC value of 1.5 μ g/mL. Also, micromeline [**38**], lansine [**33**], 3-formylcarbazole [**30**] and 3-formyl-3-methylcarbazole [**31**] showed anti-TB activity with MIC values of 31.5, 14.3, 42.3 and 15.6 μ g/mL, respectively (Ma *et al.*, 2005)

4. Biological Activities of Glycosmis spp.

4.1 Traditional Uses and Biological Activities of *Glycosmis* spp.

G. pentaphylla and *G. cochinchinensis* have been used in Thai traditional medicine: barks, flowers and fruits, and roots for the treatment of abscess scabies and snakebite, respectively (นิจศิริ เรื่องรังษี และ ธวัชชัย มังคละคุปต์, 2547, วุฒิ วุฒิธรรมเวช และ ธนศักดิ์ วุฒิธรรมเวช, 2540). *G. arborea* has been used in India against fever and liver complaints (Chakravarty *et al.*, 1999). The leaves of *G. arborea* has been used extensively in the

Ayurvedic system of medicine as febrifuge and anthelmintic (Chakravarty *et al.*, 1961). *G. citrifolia* is known in Chinese traditional medicine for the treatment of skin itch, scabies, boils and ulcers (Wu *et al.*, 1983). The root of *G. pentaphylla* was reported to have pesticidal property (Das *et al.*, 1982). In Malaysia, the root of *G. rupestris* has been medicinally used for the treatment of fever and swollen spleen, and as a stimulant to digestion (Rahmani *et al.*, 1998).

4.2 Biological Activities of Compounds Isolated from Glycosmis spp.

Several biological activities of the compounds isolated from *Glycosmis* spp. have been reported. Most of them are cytotoxicity, antitumor activity, antiviral activity and antimalarial activity of acridone alkaloids. For sulfur-containing propanamides, antifungal activities were reported.

Glycocitrine-I [157], des-*N*-methylnoracronycine [140], 5-hydroxy-*N*-methylseverifoline [169], atalaphyllidine [137], *N*-methylatalaphylline [258] and glycobismine-A [147] exhibited antimalarial activities that were comparable to or greater than that of chloroquine diphosphate. At a concentration of 10 μ g/mL *in vitro*, 5-hydroxynoracronycine [170] suppressed almost 90% of *Plasmodim yoelii*, which causes malaria in rodents (Fujioka *et al.*, 1989).

Atalaphillidine [137], citracridone-I [138] and 5-hydroxy-*N*-methylseverifoline [169] showed antiviral activity against herpes simplex virus type 2 (HSV-2) by plaque reduction assays with ED_{50} values of 0.73, 1.3 and 2.0 µg/mL, respectively (Yamamoto *et al.*, 1989)

Sulfur-containing amide compounds, illukumbin-B [194], methylillukumbin-B [196] and methylillukumbin-A [195], exhibited antifungal activity against *Cladosporium cladosporioides*. Methylillukumbin-A [195], an all-*trans* orientated isomer, was the most active compound of this series; a clearly visible inhibition zone, even at the lowest concentration at 10 μ g/mL was observed (Greger *et al.*, 1993b). Later, seven sulfur-containing amide compounds, dehydroniranin-A [184], dehydroniranin-B [185], methylillukumbin-A [195], methylsinharin [189], niranin [197], penangin [128] and ritigalin [198], were examined for the antifungal activity against phytopathogenic fungus *Cladosporium herbarum* in germtube inhibition test and insecticidal activity against neonate larvae of *Spodoptera littoralis*. The most active antifungal amide was found to be methylillukumbin-A [195] with an ED₅₀ of 5.5 μ g/mL. In parallel tests against neonate larvae of *S. littoralis*, ritigalin [198]

possessed pronounced contact toxicity with a LC_{50} of 0.05 μ mol/dm² (Greger *et al.*, 1996)

Atalaphyllidine [**137**] and citracridone-I [**138**] almost completely inhibited platelet aggregation induced by arachidonic acid (100 μ M), collagen (100 μ g/mL) and PAF (2 ng/mL). Atalaphyllidine [**137**], des-*N*-methylnoracronycine [**140**] and 4,8-dimethoxy-1-methyl-3-(3-methylbut-2-enyl)quinolin-2(1*H*)-one [**89**] also showed an inhibitory effect on arachidonic acid and collagen-induced rabbit platelet aggregation (Leu *et al.*, 1998).

The EtOAc fraction of *G. pentaphylla* leaf extract inhibited the juvenile hormone III-biosynthesis of the field cricket *Gryllus bimaculatus in vitro*. The bioactive compound responsible for this activity was identified as arborine [**86**] which also showed a larvicidal activity against the mosquito *Culex quinquefasciatus* (Muthukrishnan *et al.*, 1999).

Several acridone alkaloids have been reported to possess antiproliferative effect. Atalaphyllidine [137] and des-*N*-methylnoracronycine [140] inhibited clonal proliferation of HL-60 cell (human promyelocytic leukemia cells) and induced HL-60 cell differentiation (Kawaii *et al.*, 1999a). Moreover, atalaphyllidine [137], 5-hydroxy-*N*-methylseverifoline [169] and des-*N*-methylnoracronycine [140] showed antiproliferative effect against several cancer cell lines: human lung carcinoma (A-549), melanin pigment-producing mouse melanoma (B16-melanoma 4A5), T-cell leukemia (CCRF-HSB-2) and human gastric cancer cell and lymph-node metastasized (TGBC11TKB) (Kawaii *et al.*, 1999b). Arborinine [87] showed potent antiproliferative effect against cervix adenocarcinoma (HeLa) with an IC₅₀ value of 1.84 μ M which was lower than that of cisplatin (12.43 μ M) (Réthy *et al.*, 2006).

Glycocitrine-II **[158]** and *O*-methylglycocitrine-II **[171]** which had potent cancer prevention properties inhibited Epstein-Barr virus early antigen activation with IC₅₀ values of 280 and 281 mol ratio/32 pmol TPA (12-*O*-tetradecanoylphorbol 13-acetate), respectively (Itoigawa *et al.*, 2003).

Glyfoline [168] exhibited a significant inhibition of leukemic HL-60 cell growth *in vitro* with an IC₅₀ of 1.1 μ M (Su, Dziewiszek and Wu, 1991). Mechanistically, glyfoline [168] induced nasopharyngeal carcinoma (NPC) cell growth arrest at G2/M cell cycle phase and induced apoptosis by leakage of cytochrome C into the cytosol (Su *et al.*, 2005).

CHAPTER III

EXPERIMENTAL

1. Source of Plant Material

Micromelum hirsutum was collected twice from the area near Suratthani Rajabhat University, Muang district, Suratthani province, Thailand in January 2006 (first batch) and August 2007 (second batch).

Glycosmis parva was collected at Sakaerat, Wang Nam Khieo district, Nakorn Ratchasima province, Thailand in December 2007.

Both plants were identified by Assosciate Professor Dr. Nijsiri Ruangrungsi. Voucher specimens (NSR 490121 and NSR 500812) of *Micromelum hirsutum* and a voucher specimen (NSR 510209) of *Glycosmis parva* have been deposited at the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand.

2. General Techniques

2.1 Chromatographic Technique

2.1.1 Analytical Thin-Layer Chromatography (TLC)

Technique	:	One dimension, ascending
Adsorbent	:	Silica gel 60 F ₂₅₄ (E. Merck) precoated plate
Layer thickness		0.25 mm
Solvent system	19	Various solvent systems depending on materials
Distance	.0	5.0 cm
Temperature	:	Laboratory temperature 25-35 °C
Detection	กร	1) UV light at the wavelengths of 254 and 365 nm
		2) phosphomolybdic acid reagent, heating at 110 $^{\circ}$ C for
		2-5 minutes
		3) Iodine vapor

Technique	:	One dimension, ascending	
Adsorbent	:	Silica gel 60 F_{254} (E. Merck) precoated plate for	
		preparative TLC	
Layer thickness	:	0.5 mm	
Solvent system	:	Various solvent systems depending on materials	
Distance	:	20.0 cm	
Temperature	:	Laboratory temperature 25-35 °C	
Detection	:	UV light at the wavelengths of 254 and 365 nm	
2.1.3	Colum	n Chromatography (CC)	
Column	:	Flat bottom glass column (various diameters)	
Adsorbent	:	Silica gel 60 (No. 7734, E. Merck) particle size	
		0.063-0.200 nm (70-230 mesh ASTM)	
Packing method	; /	Wet packing	
Sample loading	:	1) Dry packing	
		The sample was dissolved in a small volume of organic	
		solvent, mixed with a small quantity of adsorbents,	
		triturated, dried and then loaded on top of the column.	
	:	2) Wet packing	
		The sample was dissolved in a small volume of the	
		eluent, then loaded on top of the column.	
Solvent system	:	Various solvent systems depending on samples	
Detection	:	Fractions were examined by TLC technique in the same	
		manner as described in section 2.1.1	
2.1.4 Flash Column Chromatography (Flash CC)			
Column	E.	Flat bottom glass column (various diameters) applied	
		with positive pressure from pump at the top of column	
Adsorbent	ė.	Silica gel 60 (No. 9385, E. Merck) particle size 0.040	
		-0.063 nm (230-400 mesh ASTM)	
Packing method	:	Wet packing	
Sample loading	:	Dry packing and wet packing as described in section	
		2.1.3	
Solvent system	:	Various solvent systems depending on samples	

2.1.2 Preparative Thin-Layer Chromatography (Preparative TLC)

Detection	:	Fractions were examined by TLC technique in the same
		manner as described in section 2.1.1
2.1.5	Vacuum	a Liquid Column Chromatography
Column	:	sintered glass column (various diameters) applied with
		negative pressure from aspirator pump
Adsorbent	:	Silica gel 60 (No. 7734, E. Merck) particle size 0.063-
		0.200 nm (70-230 mesh ASTM)
Packing method	:	Dry packing, 4 cm height.
Sample loading	:	Dry packing as described in section 2.1.3
Solvent system	:	Various solvent systems depending on samples
Detection	:	Fractions were examined by TLC technique in the same
		manner as described in section 2.1.1
2.1.6	Gel Filt	ration Chromatography
Gel Filter	÷ //	Sephadex LH-20 (Pharmacia)
Packing method	://	Gel filter was suspended in the eluent and left standing
		to swell for 24 hours prior to use. It was then poured
		into the column and allowed to set tightly.
Sample loading	://	The sample was dissolved in a small volume of the
		eluent and then applied gently on top of the column.
Detection	: 4	Fractions were examined by TLC technique in the same
		manner as described in section 2.1.1
Solvent system	:	1) 50% CH ₂ Cl ₂ in MeOH
		2) 50% CHCl ₃ in MeOH
2.1.7	Gel Filt	ration Chromatography (Recycling Preparative HPLC)
Instrument model	e.	LC-9201 recycling preparative HPLC (Japan Analytical
		Industry)
Column	:	JAIGEL-2.5H column ($600 \times 200 \text{ mm}^2$)
Detector		UV-50
Sample loading	613	The sample was dissolved in a small volume of the
		eluent(CHCl ₃) and then injected into injection position
		and loaded it into the column
Detection	:	Fractions were examined by TLC technique in the same
		manner as described in section 2.1.1
Solvent system	:	CHCl ₃

Flow rate : 3.5 mL/min

2.2 Crystallization Technique

The compounds were crystallized from various solvents. Each compound was dissolved in appropriate solvents in test tube and stirred by a small spatula in water bath (about 60°C) until the stretch of crystal appeared and then left standing in ice bath until amorphous powder or crystals were grown.

Another crystallization technique was performed by the following: each compound was dissolved in appropriate solvents until saturated and left standing at room temperature until amorphous powder or crystals were formed.

2.3 Spectroscopy

2.3.1 Ultraviolet (UV) Absorption Spectra

UV spectra were recorded on a JASCO V-530 UV spectrophotometer (Department of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University).

2.3.2 Infrared (IR) Absorption Spectra

IR spectra were recorded on a JASCO IR-230E spectrophotometer (Department of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University).

2.3.3 Mass Spectra

Molecular ions were measured by Electron Impact Mass Spectrometry (EIMS). Low-resolution and high-resolution measurements were measured on a JEOL GC-Mate spectrometer (Department of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University).

Pseudo molecular ions were measured by Fast Atom Bombardment Mass Spectrometry (FABMS) or Electrospray Ionization Mass Spectrometry (ESIMS). Low-resolution and high-resolution measurements were measured on JEOL JMS-AX 500 and JEOL JMS-HX 110 spectrometers, respectively (Chemical Analysis Center, Chiba University). High-resolution ESI measurements were measured on Thermo Scientific Exactive (Chemical Analysis Center, Chiba University).

2.3.4 Proton and Carbon-13 Nuclear Magnetic Resonance (¹H- and ¹³C-NMR) Spectra

¹H-NMR (300 MHz) and ¹³C-NMR (75 MHz) spectra were obtained on a Bruker Avance DPX-300 FT-NMR spectrometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University). ¹H-NMR (400 MHz) and ¹³C-NMR (100 MHz) spectra were recorded with a JEOL JNM ECP 400 spectrometer (Graduate School of Pharmaceutical Sciences, Chiba University).

¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded with a JEOL JNM ECP 600 spectrometer (Graduate School of Pharmaceutical Sciences, Chiba University).

Solvents for NMR spectra were deuterated chloroform (CDCl₃), deuterated acetone (acetone- d_6) or deuterated dimethylsulfoxide (DMSO- d_6). Chemical shifts were reported in ppm scale using the chemical shift of the solvent and internal standard (TMS) as the reference signals.

2.4 Physical Property

2.4.1 Melting Points

Melting points were measured on a micromelting point hot-stage apparatus (Yanagimoto) (Department of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University).

2.4.2 Optical Rotations

Optical rotations were recorded on a JASCO P-1020 polarimeter (Graduate School of Pharmaceutical Sciences, Chiba University).

2.4.3 Circular Dichroism Spectra

Circular dichroism spectra were obtained from a JASCO J-715 spectropolarimeter (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.5 Solvents

Throughout this work, all organic solvents used in the extraction and isolation procedure were of commercial grade and were redistilled prior to use.

3. Extraction and Isolation

3.1 Extraction and Isolation of Compounds from *Micromelum hirsutum* **3.1.1 Extraction**

For the first batch of *Micromelum hirsutum*, the dried branches (260 g) were ground and then extracted successively with dichloromethane (CH₂Cl₂, 4×2 L) and methanol (MeOH, 4×2 L) to give, after removal of the organic solvent, a

dichloromethane extract (2.7 g, 1.04% of dried weight) and a methanol extract (17.3 g, 6.65% of dried weight), respectively, as shown in **Scheme 1**.

The dried leaves of *Micromelum hirsutum* (280 g) were ground and then extracted successively with CH_2Cl_2 (4 × 2 L) and MeOH (4 × 2 L) to give, after removal of the organic solvent, a CH_2Cl_2 extract (21.7 g, 7.75% of dried weight) and a MeOH extract (39.6 g, 14.14% of dried weight), respectively, as shown in **Scheme** 2.

For the second batch of *Micromelum hirsutum*, the dried branches (4.5 Kg) were ground and extracted with hexane $(4 \times 12 \text{ L})$, CH₂Cl₂ $(4 \times 12 \text{ L})$ and MeOH $(4 \times 12 \text{ L})$ to give, on evaporation, 14.50 g of hexane extract (0.32% of dried weight), 13.1 g of CH₂Cl₂ extract (0.29% of dried weight) and 171.0 g of MeOH extract (3.80% of dried weight), respectively, as shown in **Scheme 3**.

The dried young branches (0.7 Kg) were ground and extracted with hexane (4 × 3 L), CH_2Cl_2 (4 × 3 L) and MeOH (4 × 3 L) to give, on evaporation, 5.55 g of hexane extract (0.79% of dried weight), 3.17 g of CH_2Cl_2 extract (0.45% of dried weight) and 56.30 g of MeOH extract (8.04% of dried weight), respectively, as shown in **Scheme 4**.

The dried leaves of *Micromelum hirsutum* (1.0 Kg) were ground and extracted with hexane (4×5 L), CH₂Cl₂ (4×5 L) and MeOH (4×5 L) to give, on evaporation, 36.0 g of hexane extract (3.60% of dried weight), 47.1 g of CH₂Cl₂ extract (4.7% of dried weight) and 170.0 g of MeOH extract (17.0% of dried weight), respectively, as shown in **Scheme 5**.

3.1.2 Separation of CH₂Cl₂ Extract of Branches (First Batch)

The CH₂Cl₂ extract (2.7 g) was dissolved in a small amount of CH₂Cl₂, triturated with silica gel 60 (No. 7734) and dried under room temperature. It was then fractionated by vacuum liquid column chromatography using a sintered glass filter column of silica gel (No. 7334). Elution was completed in a polarity gradient manner with mixtures of hexane, acetone and MeOH (0%, 1%, 2%, 4%, 6%, 8%, 10%, 15%, 20%, 25%, 30% and 100% acetone in hexane, 50% MeOH in acetone, and 100% MeOH). The eluate was collected 100 mL per fraction and examined by TLC. Fractions (42 fractions) with similar chromatographic pattern were combined to yield four major fractions: Fractions MBC1-MBC4, as shown in **Scheme 6**.

3.1.2.1 Isolation of Compound MH1 (Scopoletin)

Fraction MBC4 (1.3 g) was further separated on a silica gel column (2% acetone in CH_2Cl_2). Fractions with similar chromatographic pattern were combined to yield six fractions (MBC41-MBC46). Fraction MBC43 (80 mg) was further fractionated on a silica gel column using 4% EtOAc in CH_2Cl_2 to give three fractions (MBC431-MBC433). Fraction MBC432 (65 mg) was subsequently separated by a silica gel (No.9385) column using 4% EtOAc in CH_2Cl_2 to give three fractions (MBC4321-4323). Fraction MBC4321 (50 mg) was further purified on a silica gel column (50% EtOAc in hexane) to give white solid of compound **MH1** (13 mg). This compound was eventually identified as scopoletin [**41**].

3.1.2.2 Isolation of Compound MH2 (Micromelin)

Fraction MBC42 (103 mg) was fractionated on a silica gel column eluted with 4% EtOAc in CH_2Cl_2 to give three fractions (MBC421-MBC423). Fraction MBC422 was repurified by a silica gel column using 4% EtoAc in CH_2Cl_2 again to give compound **MH2** (31 mg). This compound was later identified as micromelin [**5**].

3.1.3 Separation of CH₂Cl₂ Extract of Branches (Second Batch)

The CH₂Cl₂ extract (13.1 g) was dissolved in a small amount of CH₂Cl₂, triturated with silica gel 60 (No. 7734) and dried under room temperature. It was then subjected to vacuum liquid column chromatography using a sintered glass filter column of silica gel (No. 7334) eluted with mixtures of hexane, acetone and MeOH in a polarity gradient manner (0%, 6%, 8%, 12%, 15%, 20%, 30%, 60% and 100% acetone in hexane, 50% MeOH in acetone, and 100% MeOH). Fifty-seven 300-mL fractions were collected and combined according to their TLC patterns into ten combined fractions (MBC(2)1-MBC(2)10) as shown in **Scheme 7**.

3.1.3.1 Isolation of Compound MH3 (1,2-dimethyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid)

Fraction MBC(2)10 (206 mg) was separated by silica gel column chromatography. Elution was performed in a polarity gradient manner with mixtures of CH_2Cl_2 and MeOH to give five fractions (MBC(2)101-MBC(2)105). Fraction MBC(2)102 (43 mg), after drying, was washed with MeOH to give compound MH3 (20 mg) as a white solid. This compound was identified as 1,2-dimethyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid [**262**], a new natural compound.

3.1.4 Separation of CH₂Cl₂ Extract of Leaves (First Batch)

The CH₂Cl₂ extract (21.6 g) was dissolved in a small amount of CH₂Cl₂, triturated with silica gel 60 (No. 7734) and dried under room temperature. It was then separated by vacuum liquid column chromatography using a sintered glass filter column of silica gel (No. 7334). Elution was completed in a polarity gradient manner with mixtures of hexane, EtOAc and MeOH (0%, 1%, 5%, 10%, 15%, 20% and 25% EtOAc in hexane, 30% MeOH in EtOAc, and 100% MeOH). The eluate was collected 200 mL per fraction and examined by TLC. Thirty-seven fractions were combined to yield seven major fractions (MLC1-MLC7) as shown in **Scheme 8** and **9**.

3.1.4.1 Isolation of Compound MH2 (micromelin)

Fraction MLC7 (10.9 g) was fractionated by vacuum liquid column chromatography using sintered glass filter column of silica gel (No. 7334) eluted in a polarity gradient manner with mixtures of hexane, EtOAc, acetone and MeOH to give seven combined fractions (MLC71-MLC77). Fraction MLC74 (8.3 g) was further purified by silica gel column chromatography (2-100% EtOAc in CH₂Cl₂, gradient). Nine combined fractions (MLC741-MLC749) were obtained. Fraction MLC744 (355 mg) was crystallized from CH₂Cl₂-MeOH mixture to yield compound **MH2** (90 mg) as needles. It was identified as micromelin [**5**].

3.1.4.2 Isolation of Compound MH4 ((-)-(2'S, 3'R)-3'-Senecioyloxymarmesin)

Fraction MLC747 (1.3 g) was chromatographed on a silica gel column using 30% EtOAc in hexane to give five combined fractions (MLC7471-MLC7474). Fraction MLC7472 (695 mg) was further fractionated on Sephadex LH20 (50% CH₂Cl₂ in MeOH) to give five combined fractions (MLC74721-74725). The Major fraction MLC 74722 (474 mg) was purified on a silica gel column using 30% EtOAc in hexane to yield five combined fractions (MLC74721-74725). Fraction 747223 (377 mg) was crystallized from CH₂Cl₂-hexane mixture to give a white mixture (203 mg). A part (32 mg) of this mixture (203 mg) was purified by preparative TLC (thickness 0.5 mm; 10 x 20 cm²; 20% EtOAc in toluene) to give compound **MH4** (11 mg). This compound was identified as (–)-(2'S, 3'R)-3'-Senecioyloxy marmesin [**263**].

3.2 Extraction and Isolation of Compounds from *Glycosmis parva* 3.2.1 Extraction

The dried, coarsely powdered branches of *Glycosmis parva* (12.4 Kg) were extracted with MeOH (4 × 30 L) to give, after removal of organic solvent, a syrupy MeOH extract (850.0 g, 6.85% of dried weight). The MeOH extract (850 g) was partitioned with hexane to give a hexane extract (72 g, 0.58% of dried weight). The remaining organic layer was added with water and further partitioned with ethylacetate (EtOAc) to yield an EtOAc extract (321 g, 2.59% of dried weight). The aqueous layer was partitioned with butanol (*n*-BuOH) to give an *n*-BuOH extract (85 g, 0.69% of dried weight). The remaining aqueous layer was dried by lyophilization to yield an aqueous extract (266 g, 2.15% of dried weight), as shown in **Scheme 10**.

The dried, coarsely powdered leaves of *Glycosmis parva* (4.8 Kg) were ground and extracted with MeOH (4×10 L) to give, after removal of organic solvent, a syrupy MeOH extract (650 g, 13.54% of dried weight). The MeOH extract (650 g) was partitioned with hexane to give a hexane extract (135 g, 2.81% of dried weight). The remaining organic layer was added with water and further partitioned with EtOAc to yield an EtOAc extract (100 g, 2.08% of dried weight). The aqueous layer was partitioned with *n*-BuOH to give an *n*-BuOH extract (93 g, 1.94% of dried weight). The remaining aqueous layer was dried by lyophilization to yield an aqueous extract (271 g, 5.65% of dried weight), as shown in **Scheme 11**.

3.2.2 Separation of EtOAc Extract of Branches

The EtOAc extract (29.3 g) of branches was divided into four portions (portion-I 5.1 g, portion-II 9.5 g, portion-III 8.2 g and portion-IV 6.4 g). Each portion was subjected to silica gel column chromatography eluted with a gradient solvent system of MeOH and CHCl₃ (0%, 1%, 2%, 5%, 10%, 20%, 30%, and 100% MeOH in CHCl₃). All fractions from four column chromatographies were combined based on chromatographic pattern to give thirteen combined fractions (GBE1-GBE13) as shown in **Scheme 12 and 13**.

3.2.2.1 Isolation of Compound GP1 (*N*-methylatalaphylline)

Fraction GBE4 (7.0 g) was triturated and washed by Et_2O . After filtration through a kiriyama funnel equipped with a vacuum set, compound **GP1** (850 mg, dried weight) was obtained as a yellow wet cake on a kiriyama filter paper. It was identified as *N*-methylatalaphylline [**258**].

3.2.2.2 Isolation of Compound GP2 (glycofolinine)

The evaporated filtrate (4.0 g) obtained from the filtration of fraction GBE4 was fractionated by silica gel column chromatography using 20-100% acetone in hexane to give ten combined fractions (GBE41-410). Fraction GBE45 (0.4 g) was further purified by silica gel column chromatography eluted with 20% acetone in hexane to furnish compound **GP2** (19 mg) as glycofolinine [**163**].

3.2.2.3 Isolation of Compound GP3 (citramine)

Fraction GBE6 (150 mg) was further purified by silica gel column chromatography using 30-40% acetone in hexane to give compound **GP3** (10.6 mg). This compound was identified as citramine [**264**].

3.2.2.4 Isolation of Compound GP4 (*N*-methylcycloatalaphylline-A)

Fraction GBE43 (300 mg) was washed with Et_2O to afford GP4 (35 mg). This compound was identified as *N*-methylcyclo-atalaphylline-A [265].

3.2.2.5 Isolation of Compound GP5 (glycosparvarine)

Fraction GBE9 (590 mg) was triturated and washed with Et₂O.

The soluble part (280 mg) was subjected to silica gel column chromatography (2% acetone in $CHCl_3$) to yield compound **GP5** (6.8 mg). This compound was newly identified as glycosparvarine [**266**].

3.2.2.6 Isolation of Compound GP6 (limonin) and Mixture GP7 (a mixture of limonexic acid and isolimonexic acid)

Fraction GBE5 (500 mg) was fractionated by silica gel column chromatogramphy using 20-30% acetone in hexane to give twelve combined fractions (GBE51-512). Fraction GBE59 (110 mg) was further purified by silica gel column chromatography eluted with 20-30% acetone in hexane to give compound **GP6** (6.5 mg) and mixture **GP7** (8 mg) which was obtained from later frations. Compound **GP6** was identified as limonin [**267**], while **GP7** was identified as a mixture of limonexic acid [**268**] and isolimonexic acid [**269**].

3.2.3 Separation of EtOAc Extract of Leaves

The syrupy EtOAc extract (11.6 g) of leaves was triturated with CH_2Cl_2 to give the soluble part (5.4 g) and the remaining (6 g). The soluble part was subjected to silica gel column chromatography eluted with a gradient solvent system of MeOH and CHCl₃ (0%, 0.5%, 1%, 2%, 5%, 10%, 20%, 30%, and 100% MeOH in CHCl₃). Fractions (twenty-five fractions) with silimar chromatographic pattern were

combined to afford twelve fractions (GLE1-GLE12) as shown in **Scheme 14**, **15** and **16**.

3.2.3.1 Isolation of Compound GP8 (arborinine)

Fraction GLE3 (1.0 g) was washed with acetone and crystallized from CH_2Cl_2 -acetone mixture to afford compound **GP8** (122.7 mg) as yellow needles. It was identified as arborinine [87].

3.2.3.2 Isolation of Compound GP9 ((+)-Sdeoxydihydroglyparvin) and compound GP13 ((+)tetrahydroglyparvin)

Fraction GLE6 (1.1 g) was separated to nine combined fractions (GLE61-GLE69) by Sephadex LH-20 column chromatography using 50% CHCl₃ in MeOH. Fraction GLE65 (184 mg) was crystallized from $CH_2Cl_2-Et_2O$ mixture to give a solid (60 mg). The solid was subjected to silica gel flash column chromatography (40% Me₂CO/hexane) to give compound **GP9** (28 mg) and compound **GP13** (8 mg) which was obtained from earlier frations. Compound **GP9** was newly identified as (+)-*S*-deoxydihydroglyparvin [**270**], while the compound **GP13** was newly identified as (+)-tetrahydroglyparvin [**272**].

3.2.3.3 Isolation of Compound GP10 ((+)-S-

deoxytetrahydroglyparvin)

A part (357 mg) of GLE7 (669 mg) was separated into six fractions (GLE71-GLE76) by Sephadex LH-20 column chromatography using 50% CHCl₃ in MeOH. GLE73 (255 mg) was further purified by silica gel column chromatography using 2% MeOH in CHCl₃ to afford six fractions (GLE731-GLE736). Also, GLE8 (244 mg) was separated into six fractions (GLE81-GLE86) by Sephadex LH-20 column chromatography using 50% CHCl₃ in MeOH. Fractions GLE734 (70 mg) and GLE84 (187 mg) were combined as GLE0708 (257 mg). Fraction GLE0708 was chromatographed on silica gel column (3%, 4%, 10%, 20%, 30%, and 100% MeOH/CHCl₃) to afford eight combined fractions (GLE07081-07088). Fraction GLE07083 (94 mg) was subjected to recycling preparative HPLC (CHCl₃ as a mobile phase) followed by twice silica gel column chromatography (2% MeOH in CHCl₃) to afford compound **GP10** (15 mg). Compound **GP10** was newly identified as (+)-*S*-deoxytetrahydroglyparvin [**271**].

3.2.3.4 Isolation of Compound GP11 (glyparvin-A) and Compound GP12 ((+)-dihydroglyparvin)

GLE5 (550 mg) was separated into five fractions (GLE51-GLE55) by Sephadex LH-20 column chromatography using 50% CHCl₃ in MeOH. A part (79 mg) of GLE53 (260 mg) was washed with Et₂O and then recrystallized from CH₂Cl₂-Et₂O mixture to afford compound **GP11** (15 mg) as colorless needles. This compound was identified as glyparvin-A [**214**]. The evaporated mother liquor (44 mg) was further purified by repeated column chromatographies using different solvent systems (4% MeOH/CHCl₃, 60-70% EtOAc/hexane, and 45% EtOAc/CHCl₃) to furnish compound **GP12** (8 mg) as (+)-dihydroglyparvin [**213**].

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Dried Micromelum hirsutum branches (0.3 Kg)

Scheme 1 Extraction of *Micromelum hirsutum* branches (first batch)

Scheme 2 Extraction of Micromelum hirsutum leaves (first batch)

Dried Micromelum hirsutum branches (4.5 Kg)

Scheme 3 Extraction of *Micromelum hirsutum* branches (second batch)

Dried Micromelum hirsutum branches (0.7 Kg, young branches)

Scheme 4 Extraction of *Micromelum hirsutum* branches (young branches, second batch)

Scheme 5 Extraction of *Micromelum hirsutum* leaves (second batch)

CH₂Cl₂ extract (2.7 g) from the branches of *Micromelum hirsutum* (first batch)

Micromelum hirsutum

CH₂Cl₂ extract (13.1 g) from the branches of *Micromelum hirsutum* (second batch)

Scheme 7 Separation of CH₂Cl₂ extract (second batch) of the branches of *Micromelum hirsutum*

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CH₂Cl₂ extract (21.6 g) from the leaves of Micromelum hirsutum

Scheme 8 Separation of CH₂Cl₂ extract of the leaves of Micromelum hirsutum

จุฬาลงกรณ่มหาวิทยาลัย

Scheme 9 Separation of fraction MLC 747 from CH₂Cl₂ extract of the leaves of *Micromelum hirsutum*

Dried Glycosmis parva branches (12.4 Kg)

EtOAc extract (29.3 g) from the branches of Glycosmis parva

Scheme 12 Separation of EtOAc extract of the branches of Glycosmis parva

Scheme 13 Separation of fraction GBE5 from EtOAc extract of the branches of *Glycosmis parva*

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Scheme 14 Separation of EtOAc extract of the leaves of Glycosmis parva

Scheme 15 Separation of fraction GLE6 from EtOAc extract of the leaves of

ู ศูนย์วิทยุทรัพยาก

Glycosmis parva

Scheme 16 Separation of fraction GLE7 and GLE8 from EtOAc extract of the leaves of *Glycosmis parva*

4. Physical and Spectral Data of Isolated Compounds

4.1 Compound MH1 (Scopoletin)

Compound **MH1** was obtained as white solid with m.p. 186-190°C, soluble in CHCl₃ (13 mg, 4.33×10^{-3} % based on dried weight of the branches).

FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 193, Figure 3	
UV	: λ_{max} nm (log ϵ), in CHCl ₃ ; 251 (3.77), 259 (3.72), 295 (3.77), 341	
	(4.07), Figure 4	
IR	: v _{max} cm ⁻¹ , ATR; 3332 (board), 1703, 1608, 1436, Figure 5	
¹ H-NMR	: $\delta_{\rm H}$ ppm, 400 MHz, in CDCl ₃ , Table 5 and Figure 6	
¹³ C-NMR	: δ _C ppm, 100 MHz, in CDCl ₃ , Table 5 and Figure 7	
4.2 Compound MH2 (Micromelin)		

Compound **MH2** was obtained as yellowish needles with m.p. 221-224°C, soluble in CHCl₃ (31 mg, 1.0×10^{-2} % based on dried weight of the branches, 90 mg, 3.0×10^{-2} % based on dried weight of the leaves).

FABMS	: [M+H] ⁺ <i>m/z</i> 289, Figure 10
EIMS	: m/z (rel. int.); 287 [M] ⁺ (100), 229 (72.4), 214 (22.2), 213 (55.1), 203
	(20.5), 186 (21.9), Figure 11
$\left[\alpha\right]^{23}{}_{D}$	$:-75.9^{\circ} (c \ 0.04, \text{CHCl}_3)$
UV	: λ_{max} nm (log ϵ), in CHCl ₃ ; 244 (3.82), 251 (3.77), 295 (4.03), 314
	(4.15), Figure 12
IR	: v_{max} cm ⁻¹ , ATR; 3065, 2926, 1767, 1732, 1623, 1568, 1473, 1271,
	923, 820, Figure 13
¹ H-NMR	: $\delta_{\rm H}$ ppm, 600 MHz, in CDCl ₃ , Table 6 and Figure 14
¹³ C-NMR	: $\delta_{\rm C}$ ppm, 150 MHz, in CDCl ₃ , Table 6 and Figure 15
120	

4.3 Compound MH3 (1,2-dimethyl-4-oxo-1,4-dihydroquinoline-3-

carboxylic acid)

Compound **MH3** was obtained as white solid with m.p. 226-227°C with decomposition, soluble in acetonitrile, DMSO, and mixture of CHCl₃ and MeOH (20 mg, 4.4×10^{-4} % based on dried weight of the branches)

FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 218, Figure 20
EIMS	: m/z (rel. int.); 217 [M] ⁺ (13.2), 199 (4.3), 173 (24.6), 83 (100),
	Figure 21

HRESIMS	: $[M-H]^{-} m/z$ 216.0666 (calcd for C ₁₂ H ₁₀ NO ₃ , 216.0661)
UV	: λ_{max} nm (log ϵ), in CH ₃ CN; 253 (4.27), 315 (4.13), 329 (4.02), Figure
	22
IR	: v _{max} cm ⁻¹ , ATR; 3126, 3065,1696, 1600, 1435, Figure 23
¹ H-NMR	: $\delta_{\rm H}$ ppm, 300 MHz, in DMSO- d_6 , Figure 24
	: $\delta_{\rm H}$ ppm, 600 MHz, in DMSO- d_6 , Table 7 and Figure 25
¹³ C-NMR	: δ _C ppm, 150 MHz, in DMSO- <i>d</i> ₆ , Table 7 and Figure 26
4.4 Co	mpound MH4 ((–)-(2'S, 3'R)-3'-Senecioyloxymarmesin)
Compo	ound MH4 was obtained as white substances with m.p. 149-152°C,
soluble in CH	Cl_3 (11 mg, 3.66 × 10 ⁻³ % based on dried weight of the leaves)
FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 345, Figure 29
HRESIMS	: $[M+H]^+ m/z$ 345.1326 (calcd for C ₁₉ H ₂₁ O ₆ , 345.1338)
$\left[\alpha\right]^{23}{}_{D}$	$:-314.1^{\circ}$ (<i>c</i> 0.09, CHCl ₃)
UV	: λ_{max} nm (log ε), in CHCl ₃ ; 243 (3.14), 259 (2.91), 298 (3.23), 327
	(3.45), Figure 30
IR	: v_{max} cm ⁻¹ , ATR; 3494, 3089, 2984, 2924, 1727, 1651, 1631, 1569,
	1485, 144 <mark>3</mark> , 1136, 962, 853, Figure 31
¹ H-NMR	: δ _H ppm <mark>, 600 MHz, in CDCl₃, Table 8 and Figure 32</mark>

¹³C-NMR : δ_C ppm, 150 MHz, in CDCl₃, Table 8 and Figure 33

4.5 Compound GP1 (*N*-methylatalaphylline)

Compound **GP1** was obtained as yellow solid with m.p. 192-194°C, soluble in CHCl₃ and acetone (850 mg, 6.85×10^{-3} % based on dried weight of the branches).

FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 394, Figure 37
EIMS	: m/z (rel. int.); 393 [M] ⁺ (32.4), 350 (14.1), 338 (18.8), 322 (30.2), 294
	(14.9), 282 (19.1), 280 (10.1), 268 (10.2), 207 (34.7), 105 (31.9), 97
	(28.8), 91 (67.8), 83 (34.7), 77 (39.1), 73 (100), 58 (73.4), Figure 38
UV	: λ_{max} nm (log ϵ), in EtOH; 205 (4.23), 273 (4.27), 340 (3.85), 410
	(3.48), Figure 39
IR	: v_{max} cm ⁻¹ , ATR; 3489, 3400-2400 (board), 1603, 1566, 1539, 1441,
	1290, 1223, 1194, 837,744, Figure 40
¹ H-NMR	: $\delta_{\rm H}$ ppm, 600 MHz, in acetone- d_6 , Table 9 and Figure 41
¹³ C-NMR	: $\delta_{\rm C}$ ppm, 150 MHz, in acetone- d_6 , Table 9 and Figure 43

4.6 Compound GP2 (glycofolinine)

Compound **GP2** was obtained as orange solid with m.p. 161-163°C, soluble in CHCl₃ and acetone (19 mg, 1.5×10^{-4} % based on dried weight of the branches).

FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 332, Figure 49
EIMS	: m/z (rel. int.); 332 [M+H] ⁺ (19.1), 331 M ⁺ (89.5), 317 (36.9), 316
	(100), 301 (86.0), 300 (34.2), 286 (12.9), 165 (13.2), 91 (12.5), Figure
	50
UV	: λ_{max} nm (log ε), in MeOH; 201 (4.28), 220 (3.56), 260 (3.96), 268
	(3.95), 332 (3.49), 393 (3.14), Figure 51
IR	: v _{max} cm ⁻¹ , ATR; 3732, 3626, 3383, 1626, 1566, 1495, 1460, 1201,
	1140, 671, Figure 52
¹ H-NMR	: $\delta_{\rm H}$ ppm, 600 MHz, in acetone- d_6 , Table 10 and Figure 53
¹³ C-NMR	: δ _C ppm, 150 MHz, in acetone- <i>d</i> ₆ , Table 10 and Figure 54

4.7 Compound GP3 (citramine)

Compound **GP3** was obtained as yellow amorphous solid, soluble in CHCl₃ and acetone (10.6 mg, 8.0×10^{-5} % based on dried weight of the branches).

EIMS	m/z (rel. int.); 317 [M] ⁺ (64.3), 302 (49.6), 274 (41.7), 259 (32.7), 105
	(16.7), 9 <mark>1 (40.9), 87 (17.3), 77 (22.0), 69</mark> (14.2), 58 (100), Figure 57
UV	: λ_{max} nm (log ϵ), in EtOH; 202 (3.45), 221 (3.39), 273 (3.89), 332
	(3.30), 381 (3.01), Figure 58
IR	: y _{max} cm ⁻¹ , ATR: 3419, 3126, 2935, 1610, 1541, 1483, 1450, Figure

59

¹**H-NMR** : $\delta_{\rm H}$ ppm, 600 MHz, in acetone- d_6 , **Table 11** and **Figure 60**

¹³C-NMR : $\delta_{\rm C}$ ppm, 150 MHz, in acetone- d_6 , Table 11 and Figure 62

4.8 Compound GP4 (N-methylcyclo-atalaphylline-A)

Compound **GP4** was obtained as orange amorphous solid, soluble in $CHCl_3$ and acetone (35 mg, 2.8×10^{-4} % based on dried weight of the branches).

FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 392, [M+Na] ⁺ <i>m</i> / <i>z</i> 414, Figure 66
EIMS	: m/z (rel. int.); 392 [M+H] ⁺ (25.5), 391 [M] ⁺ (92.4), 377 (26.4), 376
	(100.0), 349 (15.5), 348 (61.3), 322 (40.6), 318 (26.1), 91 (23.1),
	Figure 67
T 177	(1 - 1) $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

UV : λ_{max} nm (log ε), in MeOH; 201 (5.12), 229 (4.40), 305 (4.81), 338 (4.28), 420 (3.81), Figure 68

- IR : v_{max} cm⁻¹, ATR; 3627, 3134, 2972, 2918, 1640, 1601, 1564, 1462,1284, 1198, 1140, 752, Figure 69
- ¹**H-NMR** : $\delta_{\rm H}$ ppm, 600 MHz, in acetone- d_6 , **Table 12** and **Figure 70**
- ¹³C-NMR : δ_{C} ppm, 150 MHz, in acetone- d_{6} , Table 12 and Figure 71

4.9 Compound GP5 (glycosparvarine)

Compound **GP5** was obtained as orange amorphous solid, soluble in acetone (6.8 mg, 5.0×10^{-5} % based on dried weight of the branches).

- **FABMS** : $[M+H]^+ m/z$ 288, **Figure 77**
- EIMS : *m/z* (rel. int.); 288 [M+H]⁺ (14.7), 287 [M]⁺ (84.7), 273 (10.3), 272 (62.7), 245 (16.2), 244 (100), 229 (14.1), 130 (24.2), 91(11), 84 (8.1), 77 (12.6), 58 (42.4), Figure 78
- **HREIMS** : $[M]^+ m/z$ 287.0799 (calcd for C₁₅H₁₃NO₅, 287.0793)
- UV : λ_{max} nm (log ε), in MeOH; 204 (4.36), 232 (4.29), 266 (4.60), 286 (4.49), 321 (sh) (4.11), 409 (3.79), Figure 79
- IR : v_{max} cm⁻¹, ATR; 3500-3181 (broad), 1644, 1595, 1557, 1452, 1287, 1223, 1134, 991, 833, Figure 80
- ¹H-NMR : $\delta_{\rm H}$ ppm, 600 MHz, in acetone- d_6 , Table 13 and Figure 81
- ¹³C-NMR : δ_{C} ppm, 150 MHz, in acetone- d_{6} , Table 13 and Figure 82

4.10 Compound GP6 (limonin)

Compound **GP6** was obtained as colorless crystals with m.p. $283-285^{\circ}$ C with decomposition, soluble in CHCl₃ (6.5 mg, 5.0×10^{-5} % based on dried weight of the branches).

FABMS	$: [M+H]^+ m/z 471$, Figure 88
EIMS	: <i>m</i> / <i>z</i> (rel. int.); 391 (22.3), 376 (24.5), 347 (35.1), 207(18.1), 95 (26.2),
	Figure 89
$\left[\alpha\right]^{24}$ _D	$:-75.0^{\circ} (c \ 0.12, acetone)$
UV	: λ_{max} nm (log ϵ), in MeOH; 207 (3.92), 272 (3.57), Figure 90
IR	: v _{max} cm ⁻¹ , ATR; 2972, 1747, 1718, 1286, 1022, 669, Figure 91
¹ H-NMR	: δ_H ppm, 600 MHz, in CDCl ₃ , Table 14 and Figure 92
¹³ C-NMR	: $\delta_{\rm C}$ ppm, 150 MHz, in CDCl ₃ , Table 14 and Figure 94

4.11 Mixture GP7 (a mixture of limonexic acid and isolimonexic acid)

Mixture **GP7** was obtained as white amorphous solid, soluble in MeOH and DMSO (8 mg, 6.5×10^{-5} % based on dried weight of the branches).

FABMS	: $[M+H]^+ m/z 503$, $[M+Na]^+ m/z 525$, $[M+K]^+ m/z 541$, Figure 103	
EIMS	: m/z (rel. int.); 391 (4.7), 376 (4.7), 347 (11.2), 207(14.2), 95 (16.4),	
	Figure 104	
$\left[\alpha\right]^{23}{}_{\mathrm{D}}$: –41.8° (<i>с</i> 0.09, МеОН)	
UV	: λ_{max} nm (log ϵ), in MeOH; 218 (3.55), Figure 105	
IR	: v_{max} cm ⁻¹ , ATR; 3640, 3246, 2966, 1745, 1456,1290, 1014, 679,	
	Figure 106	
¹ H-NMR	: δ _H ppm, 600 MHz, in DMSO- <i>d</i> ₆ , Table 15 and 16 , and Figure 107	
¹³ C-NMR	: δ _C ppm, 150 MHz, in DMSO- <i>d</i> ₆ , Table 15 and 16, and Figure 111	
4.12 C	ompound GP8 (arborinine)	
Compo	ound GP8 was obtained as yellow needles with m.p. 179-181°C, soluble	
in CHCl ₃ (112	$2.7 \text{ mg}, 2.56 \times 10^{-3}\%$ based on dried weight of the leaves).	
FABMS	: [M+H] ⁺ <i>m/z</i> 286, Figure 127	
EIMS	: m/z (rel. int.); 286 [M+H] ⁺ (13.9), 285 [M] ⁺ (74.2), 271 (16.1), 270	
	(100.0), <mark>242 (43.2), 199 (29.5), 117 (10.3</mark>), 59 (25.1), Figure 128	
UV	: λ_{max} nm (log ϵ), in MeOH; 205 (3.94), 229 (3.94), 274 (4.36), 326	
	(3.40), 399 (3.48), Figure 129	
IR	: v_{max} cm ⁻¹ , ATR; 3734, 2936, 1635, 1587, 1555, 1455, 1249, 1105,	
	988, 752, Figure 130	
¹ H-NMR	: $\delta_{\rm H}$ ppm, 600 MHz, in CDCl ₃ , Table 17 and Figure 131	
¹³ C-NMR	: $\delta_{\rm C}$ ppm, 150 MHz, in CDCl ₃ , Table 17 and Figure 132	
4.13 Compound GP9 ((+)-S-deoxydihydroglyparvin)		
Compo	bund GP9 was obtained as colorless amorphous mass, soluble in $CHCl_3$	
(28 mg, 5.83×	10^{-4} % based on dried weight of the leaves).	
FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 420, [M+Na] ⁺ <i>m</i> / <i>z</i> 442, Figure 135	
HRFABMS	: $[M+H]^+ m/z$: 420.1831 (calcd for C ₂₂ H ₃₀ NO ₅ S, 420.1845)	
EIMS	: m/z (rel. int.); 404 (11.7), 386 (18.4), 286 (13.7), 187 (24.6), 167	
	(34.2), 139 (53.7), 103 (86.6), 91 (100.0), 77 (90.5), 64 (70.9), Figure	
	136	
$\left[\alpha\right]^{21}{}_{\mathrm{D}}$: +68.2° (<i>c</i> 0.10, CHCl ₃)	

UV	: λ_{max} nm (log ϵ), in MeOH; 204 (4.31), 225 (4.29), 261 (4.30), Figure	
	137	
CD	: $[\Phi]_{256}$ +6173; (<i>c</i> 1.1 × 10 ⁻³ , MeOH), Figure 138	
IR	: v_{max} cm ⁻¹ , ATR; 3287, 3051, 2930, 1698, 1648, 1616, 1584, 1548,	
	1511, 1456, 1379, 1362, 1328, 1240, 1174, 1039, 984, 803, Figure 139	
¹ H-NMR	: $\delta_{\rm H}$ ppm, 600 MHz, in CDCl ₃ , Table 18 and Figure 140	
¹³ C-NMR	: δ _C ppm, 150 MHz, in CDCl ₃ , Table 18 and Figure 141	
4.14 0	Compound GP10 ((+)-S-deoxytetrahydroglyparvin)	
Comp	ound GP10 was obtained as colorless oil, soluble in CHCl ₃ (15 mg,	
3.13×10^{-4} % based on dried weight of the leaves).		
FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 422, [M+Na] ⁺ <i>m</i> / <i>z</i> 444, [M+K] ⁺ <i>m</i> / <i>z</i> 460, Figure 146	
HRFABMS	: $[M+H]^+ m/z$: 422.1985 (calcd for C ₂₂ H ₃₂ NO ₅ S, 422.2001)	
EIMS	: <i>m/z</i> (rel. int.); <i>m/z</i> : 357 (13.8), 286 (94.8), 167 (65.3), 146 (27.1), 140	
	(22.3), 139 (100), 120 (31.5), 107 (26.9), 69 (24.5), 64 (17.2), Figure	
	147	
$\left[\alpha\right]^{18}_{D}$	$+24.1^{\circ}$ (c 0.04, CHCl ₃)	
UV	: λ_{max} nm (log ε), in MeOH; 205 (4.15), 225 (4.16), 261 (4.16), Figure	
	148	
CD	: $[\Phi]_{260}$ +2272; (<i>c</i> 8.4 × 10 ⁻⁴ , MeOH), Figure 149	
IR	: v_{max} cm ⁻¹ , ATR; 3291, 3075, 2975, 2929, 1695, 1662, 1581, 1511,	
	1457, 1379, 1362, 1300, 1241, 1176, 1035, 933, 806, Figure 150	
¹ H-NMR	: δ_H ppm, 600 MHz, in CDCl ₃ , Table 19 and Figure 151	
¹³ C-NMR	: δ_{C} ppm, 150 MHz, in CDCl ₃ , Table 19 and Figure 152	
4.15 Compound GP11 (glyparvin-A)		
Compound GP11 was obtained as colorless needles with m.p. 136-138 °C,		
soluble in CHCl ₃ (15 mg, 3.13×10^{-4} % based on dried weight of the leaves).		
FABMS	: [M+H] ⁺ <i>m</i> / <i>z</i> 434, Figure 158	
FIMS	m/z (rel int): 135 [M+2] ⁺ (1 1) 133 [M] ⁺ (6 8) 356 (1 5) 286 (11 7)	

EIMS	: m/z (rel. int.); 435 [M+2] ⁺ (1.1), 433 [M] ⁺ (6.8), 356 (4.5), 286 (14.7),
	268 (7.9), 165 (45.2), 139 (23.7), 120 (100), 69 (60.1), Figure 159
UV	: λ_{max} nm (log ϵ), in MeOH; 202 (4.91), 225 (4.48), 246 (4.40), 286
	(4.44), Figure 160
IR	: v_{max} cm ⁻¹ , ATR; 3295, 1671, 1636, 1551, 1512, 1304, 1131, Figure
	161
¹H-NMR : δ_H ppm, 600 MHz, in CDCl₃, Table 20 and Figure 162

¹³C-NMR : δ_C ppm, 150 MHz, in CDCl₃, Table 20 and Figure 163

```
4.16 Compound GP12 ((+)-dihydroglyparvin)
```

Compound **GP12** was obtained as colorless amorphous mass, soluble in CHCl₃ (15 mg, 1.67×10^{-4} % based on dried weight of the leaves).

FABMS	: [M+H] ⁺ <i>m/z</i> 436, Figure 168
EIMS	: m/z (rel. int.); 437 [M+2] ⁺ (0.5), 435 [M] ⁺ (4.2), 356 (33.2), 287
	(12.6), 286 (56.8), 167 (62.0), 146 (19.4), 139 (100), 120 (37.0), 69
	(34.6), Figure 169
$\left[\alpha\right]^{19}_{D}$:+20.7° (c 0.11, CHCl ₃)
UV	: λ_{max} nm (log ϵ), in MeOH; 202 (4.91), 224 (4.36), 261 (4.36), Figure
	170
CD	: $[\Phi]_{262}$ +3397; (<i>c</i> 8.7 × 10 ⁻⁴ , MeOH), Figure 171
IR	: v_{max} cm ⁻¹ , ATR; 3309, 3067, 2977, 2929, 1696, 1655, 1635, 1556,
	1511, 1302, 1130, 967, 826, Figure 172
¹ H-NMR	: δ _H ppm, 600 MHz, in CDCl ₃ , Table 21 and Figure 173
¹³ C-NMR	: $\delta_{\rm C}$ ppm, 150 MHz, in CDCl ₃ , Table 21 and Figure 174
4.17 C	ompound GP13 ((+)-tetrahydroglyparvin)
Compo	ound GP13 was obtained as colorless amorphous mass, soluble in
CHCl ₃ (8 mg,	1.67×10^{-4} % based on dried weight of the leaves).
FABMS	: $[M+H]^+ m/z$ 438, $[M+Na]^+ m/z$ 460, Figure 179
HRFABMS	: $[M+Na]^+ m/z$: 460.1780 (calcd for C ₂₂ H ₃₁ NO ₆ SNa, 460.1770)
$\left[\alpha\right]^{22}{}_{\mathrm{D}}$	$:+43.8^{\circ}$ (<i>c</i> 0.02, CHCl ₃)
UV	: λ _{max} nm (log ε), in CHCl ₃ ; 261 (4.27), Figure 180
CD	: $[\Phi]_{264}$ +1651; (<i>c</i> 1.0 × 10 ⁻³ , MeOH), Figure 181
IR	: $\nu_{max}\ cm^{\text{-1}},\ ATR;\ 3328,\ 3091,\ 2922,\ 1686,\ 1644,\ 1573,\ 1514,\ 1457,$

1294, 1246, 1122, 828, **Figure 182**

- ¹H-NMR : δ_H ppm, 600 MHz, in CDCl₃, Table 22 and Figure 183
- ¹³C-NMR : δ_C ppm, 150 MHz, in CDCl₃, Table 22 and Figure 184

5. Evaluation of Antiviral Activity against Herpes Simplex Virus Type 1 and Type 2

5.1 Viruses and Cells HSV strains used were HSV-1 (KOS) and HSV-2 (Baylor186). Vero cells (ATCC CCL81) were grown and maintained in Eagle's minimum medium supplemented with 10% fetal bovine serum.

5.2 Plaque Reduction Assay Anti-HSV activity of the compound was determined by plaque reduction assay modified from the reported method (Lipipun et al., 2003). Briefly, in post-treatment assay, Vero cells, in 96-well tissue culture plate, were infected with 30 plaque forming units of HSV-1 (KOS) or HSV-2 (Baylor186). After 1 h incubation at room temperature for virus adsorption, the cells were added with overlay media containing various concentrations of the compound. The infected cultures were incubated at 37°C for 2 days. The infected cells were fixed and stained, and then the number of plaques was counted. The 50% effective concentration (EC_{50}) was determined from the curve relating the plaque number to the concentration of the compound. Acyclovir was used as a positive control. In inactivation assay, each of 30 plaque forming units of HSV-1 (KOS) or HSV-2 (Baylor 186) was mixed with various concentrations of compound and incubated for 1 h, then the mixture was added to Vero cells in 96-well tissue culture plate. After 1 h incubation for virus adsorption, the overlay media containing various concentrations of the compound were added. The infected cultures were incubated at 37°C for 2 days. The infected cells were fixed, stained, and the plaques were counted. The 50% effective concentration (EC_{50}) was determined.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER IV

RESULTS AND DISCUSSION

1. Antiviral Activity against Herpes Simplex Virus (HSV) Type 1 and Type 2 of Extracts

Antiviral activities against herpes simplex virus (HSV) type 1 and type 2 of the extracts of *Micromelum hirsutum* and *Glycosmis parva* were examined using plaque reduction assay. The results are shown in **Table 3** and **Table 4**.

Table 3Antiviral activities of the hexane, CH_2Cl_2 and MeOH extracts preparedfrom branches, young branches and leaves of *M. hirsutum* against HSV-1 and HSV-2

	inactivation treatment		I	oost-treatmer	nt	
	final	% inhi	bition ^{b)}	final	% inhi	bition ^{b)}
part/	conc. ^{<i>a</i>)}	3.50	(Omly)	conc. ^{a)}		
extract	(µg/mL)	HSV-1	HSV-2	(µg/mL)	HSV-1	HSV-2
branches/						
hexane	100	0	0	100	0	0
CH_2Cl_2	50	40	40	100	0	0
MeOH	100	0	0	100	0	0
young						
branches/						
hexane	50	40	0	50	30	30
	100	70	50	100	70	60
CH_2Cl_2	12.5	40	40	100	30	0
	25	70	70			
MeOH	100	0	0	100	0	0
leaves/						
hexane	100	0	0	100	0	0
CH_2Cl_2	12.5	50	20	50	50	0
	50	70	70	100	70	60
MeOH	100	0	0	100	0	0

a) concentration of extract that was not toxic to the cells used in assay.

b) no inhibition was given by 0.

	inactivation treatment		P	ost-treatmer	nt	
	final	% inhil	oition ^{b)}	final	% inhi	bition ^{b)}
part/	conc. ^{<i>a</i>)}			$\operatorname{conc.}^{a)}$		
extract	(µg/mL)	HSV-1	HSV-2	(µg/mL)	HSV-1	HSV-2
branches/						
hexane	50	50	20	50	0	0
EtOAC	25	30	0	25	0	0
<i>n</i> -BuOH	100	0	0	100	0	0
aqueous	100	0	0	100	0	0
leaves/						
hexane	12.5	20	20	25	0	0
EtOAC	12.5	50	30	25	70	60
<i>n</i> -BuOH	100	0	0	100	0	0
aqueous	100	0	0	100	0	0

Table 4Antiviral activities of the hexane, EtOAc, *n*-BuOH, and aqueous extractsprepared from branches and leaves of *G. parva* against HSV-1 and HSV-2

a) concentration of extract that was not toxic to the cells used in assay.

b) no inhibition was given by 0.

The CH_2Cl_2 extract of the branches of *M. hirsutum* showed anti-herpes simplex virus activity in the inactivation method, whilst the CH_2Cl_2 extract of the leaves showed the anti-herpes simplex virus activities in both inactivation treatment and post-inhibition. In the young branches, the hexane and CH_2Cl_2 extracts showed anti-herpes simplex virus activities in both inactivation treatment and post-inhibition.

For *G. parva*, the hexane and EtOAc extracts of the branches, and the hexane extract of leaves displayed anti-herpes simplex virus activities in the inactivation inhibition, while the EtOAc extract of leaves exhibited anti-herpes simplex virus activities in both inactivation treatment and post-inhibition.

2. Extracts and Isolated Compounds

The difference of using of solvents in the extraction procedure of *Micromelum hirsutum* between the first and second batch was due to the amount of *Micromelum hirsutum*. The sequential extraction in a polar gradient manner (hexane, CH_2Cl_2 and MeOH) was suitable for large amounts of the second batch of *Micromelum hirsutum* in order to give the good yield of polarity-fractionated extracts. Even though, *Micromelum hirsutum* was collected twice in different month, the chemical constituents of the branches and leaves of these two batch were similar, as evidenced by their TLCs.

Repeated chromatography of the CH_2Cl_2 extracts of *M. hirsutum* using several solvent systems led to the isolation of two coumarins (**MH1** and **MH2**) and a new natural quinolone alkaloid (**MH3**) from the branches and two coumarins (**MH2** and **MH4**) from the leaves. The EtOAc extract of branches of *G. parva* was subjected to separation using several chromatographic techniques to afford a new acridone alkaloid (**GP5**), together with four known acridone alkaloids (**GP1-GP4**) and three known limonoids (**GP6** and **GP7**). In addition, the examination of the EtOAc extract of leaves resulted in the isolation of three new *N*-[(4-monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivatives (**GP9**, **GP10** and **GP13**), together with two known derivatives (**GP11** and **GP12**) and a known acridone alkaloid (**GP8**).

The structures of all of these isolates were determined by interpretation of their UV, IR, NMR and MS data and further confirmed by comparison with literature values. Additionally, their anti-herpes simplex virus activities were also investigated.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

3. Structure Determination of Compounds Isolated from Micromelum hirsutum

3.1 Structure Determination of Compound MH1

Compound MH1 was obtained as white solid with m.p. 186-190°C. The FABMS (Figure 3) showed a pseudo molecular ion peak ($[M+H]^+$) at m/z 193, consistent with its molecular formula $C_{10}H_8O_4$. The UV spectrum (Figure 4) showed absorption maxima at 251, 259, 295 and 341 nm. The IR spectrum (Figure 5) displayed strong absorption bands at 3332 (O-H stretching), 1703 (conjugated C=O stretching), 1608 and 1436 (C=C stretching, aromatic ring) cm⁻¹. The ¹H-NMR spectrum of compound MH1 (Figure 6) showed a pair of doublet signals at $\delta_{\rm H}$ 6.25 and 7.58 (1H each, d, J = 9.6 Hz) assigned to H-3 and H-4 of a coumarin skeleton, respectively. The typical chemical shift of H-4 in compound MH1 suggested the lack of an oxygen substituent at C-5 (Steck and Mazurek, 1972). The two singlet signals at $\delta_{\rm H}$ 6.83 (H-8, s) and 6.90 (H-5, s) suggested that the positions of C-6 and C-7 were substituted with electron donating groups. Signals for a methoxy group ($\delta_{\rm H}$ 3.93) and an exchangeable hydroxyl proton ($\delta_{\rm H}$ 6.15) were also found. The ¹³C-NMR spectrum of compound MH1 (Figure 7) showed characteristic signals of α,β -unsaturated carbonyl at $\delta_{\rm C}$ 161.4, 113.4 and 143.3 attributed to C-2, C-3 and C-4, respectively, on the coumarin nucleus. The HMBC correlation of δ_H 3.93 with δ_C 144.0 pointed that the methoxy group was substituted at C-6 ($\delta_{\rm C}$ 144.0). The ¹H-NMR and ¹³C-NMR data of compound MH1 were completely assigned from HMQC (Figure 8) and HMBC (Figure 9) correlations in comparison with those of the authentic scopoletin. Thus, compound MH1 was identified as scopoletin [41].

[41]

	compound MH1 ^{<i>a</i>)}		scopoletin (authentic) ^{b)}	
position	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)	$\delta_{\rm H}$ (ppm), J (Hz) ^{c)}	$\delta_{\rm C} (\rm ppm)^{c}$
2	-	161.4	-	161.5
3	6.25 (1H, <i>d</i> , 9.6)	113.4	6.25 (1H, <i>d</i> , 9.5)	113.4
4	7.58 (1H, <i>d</i> , 9.6)	143.3	7.58 (1H, <i>d</i> , 9.5)	143.3
4a	-	111.5	-	111.5
5	6.90 (1H, s)	107.5	6.89 (1H, s)	107.5
6	-	144.0	-	144.0
7	- / /	149.7	-	149.7
8	6. <mark>83 (1H, s</mark>)	103.2	6.82 (1H, <i>s</i>)	103.2
8a	- //	150.2	-	150.2
OCH ₃ -6	3. <mark>9</mark> 3(3H, s)	56.4	3.93 (3H, s)	56.4
OH-7	6.15 (1H, s)	1000	6.18 (1H, s)	-

 Table 5 NMR spectral data of compound MH1 and scopoletin

a)¹H-NMR (400 MHz, CDCl₃); ¹³C-NMR (100 MHz, CDCl₃).

b) Authentic scopoletin (m.p. 203-205°C) purchased from Aldrich (Lot No. 06010TP) was available in Department of Medicinal Organic Chemistry, Graduate school of Pharmaceutical Sciences, Chiba University.

c)¹H-NMR (400 MHz, CDCl₃); ¹³C-NMR (100 MHz, CDCl₃).

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

3.2 Structure Determination of Compound MH2

Compound MH2 was obtained as yellowish needles with m.p. 221-224°C (Lit. Kong, et al., 1988; 218-219°C). The FABMS (Figure 10) showed $[M+H]^+$ at m/z 289, consistent with its molecular formula $C_{15}H_{12}O_6$. The UV spectrum (Figure 12) showed absorption maxima at 244, 251, 295 and 314 nm. The IR spectrum (Figure 13) displayed absorption bands at 1732, 1623 and 1568 cm⁻¹ owing to coumarin framework. In addition, other IR absorption bands were found at 1767, 1271, 923 and 820 cm⁻¹. The ¹H-NMR spectrum of compound MH2 (Figure 14) showed a typical pair of doublets at $\delta_{\rm H}$ 6.30 and 7.63 (1H each, d, J = 9.5 Hz) due to the H-3 and H-4 of a coumarin skeleton, respectively. The presence of 6,7-disubstituted coumarin moiety was suggested by two aromatic protons at $\delta_{\rm H}$ 6.85 and 7.35 (each 1H, s), referring to H-8 and H-5, respectively. The position of a methoxy group at $\delta_{\rm H}$ 3.92 (3H, s) should be placed on C-7 according to the upfield carbon chemical shift of C-8 (δ_{C} 99.8). The ¹³C-NMR and DEPT spectra of compound MH2 (Figures 15 and 16) showed four relatively downfield signals for sp³ carbons [two oxygenated methine carbons (δ_c 63.5 and 77.2), one quaternary carbon (δ_c 57.2) and a methoxy group (δ_c 56.5, OCH₃-7)]. The carbon signal at δ_c 172.2 and the IR absorption band at 1767 cm⁻¹ suggested the presence of a γ -lactone ring which was established by detection of HMBC correlations [$\delta_{\rm H}$ 1.65 (3H, s) with $\delta_{\rm C}$ 172.2 (C-4'), $\delta_{\rm C}$ 57.2 (C-3') and δ_C 63.5 (C-2'); δ_H 4.01 with δ_C 77.2 (C-1'); δ_H 5.53 with δ_C 63.5 (C-2')] (Figures 18 and 19). The epoxide ring was pointed on C-2' (δ_C 63.5) and C-3'(δ_C 57.2) of γ -lactone ring. The characteristic IR absorptions (v_{max} 1271, 923 and 820 cm⁻¹) supported the presence of epoxide ring. The HMBC correlations of $\delta_{\rm H}$ 6.30 with $\delta_{\rm C}$ 77.2 (C-1') and of $\delta_{\rm H}$ 5.53 with $\delta_{\rm C}$ 127.5 (C-5) indicated the γ -lactone ring was attached to C-6 ($\delta_{\rm C}$ 120.2). The lack of coupling between two methine protons (δ_H 5.53 (H-1') and 4.01 (H-2')) is consistent with trans relationship between these protons which result in an approximate 90° dihedral angle. Compound MH2 was identified as micromelin [5]. The stereochemistry of chiral carbons was identical with that of micromelin due to the same minus sign of specific rotation.

[5]

 Table 6 NMR spectral data of compound MH2 and micromelin

	compound	d MH2 ^{<i>a</i>)}	micromelin ^{c)}	
position	δ _H (ppm), <i>J</i> (Hz)	δ _C (ppm)	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{C}(ppm)$
2	- / /	160.4	-	160.0
3	6.30 (1H, <i>d</i> , 9.5)	114.2	6.31 (1H, <i>d</i> , 9.6)	114.3
4	7.63 (1H, <i>d</i> , 9.5)	142.9	7.66 (1H, <i>d</i> , 9.6)	142.8
4a	- // //	112.4	-	112.5
5	7.35 (1H, s)	127.5	7.38 (1H, s)	127.5
6	- // ^	120.2	-	120.3
7	- / ,	159.9	-	160.2
8	6.85 (1H, s)	99.8	6.88 (1H, s)	99.9
8a	-	156.5	-	156.6
1'	5.53(1H, s)	77.2 ^{b)}	5.56 (1H, s)	77.2
2'	4.01(1H, <i>s</i>)	63.5	4.04 (1H, s)	63.6
3'		57.2		57.3
4′		172.2	200	172.2
OCH ₃ -7	3.92 (3H, <i>s</i>)	56.5 🕖	3.95 (3H, s)	56.4
CH ₃ -3'	1.65 (3H, s)	11.3	1.67 (3H, s)	11.2

a)¹H-NMR (600 MHz, CDCl₃); ¹³C-NMR (150 MHz, CDCl₃).

b) The signal was overlapped with solvent peak.

c) The ¹H-NMR (90 MHz, CDCl₃) and ¹³C-NMR (22.5 MHz, CDCl₃) data were reported by Kong *et al.*, 1988.

3.3 Structure Determination of Compound MH3

Compound MH3 was obtained as white solid with m.p. 226-227°C (decomposition). The molecular formula $C_{12}H_{11}NO_3$ was established by the HRESIMS $([M-H]^{-}$ at m/z 216.0666, calculated for C₁₂H₁₀NO₃, 216.0661). The UV spectrum (Figure 22) showed absorption maxima at 253, 315 and 329 nm. The IR spectrum (Figure 23) displayed absorption bands at 3126 (=C-H stretching), 3065, 1696 (conjugated C=O stretching), 1600 and 1435 (C=C stretching, aromatic ring) cm⁻¹. The ¹H-NMR spectrum of compound MH3 (Figures 24 and 25) exhibited the presence of Nmethyl ($\delta_{\rm H}$ 3.98) and downfield methyl ($\delta_{\rm H}$ 3.11) groups. In the aromatic region, four protons displayed sequentially mutual coupling [$\delta_{\rm H}$ 7.62 (1H, dd, J = 8.0, 7.1 Hz), 7.95 (1H, ddd, J = 8.8, 7.1, 1.7 Hz), 8.09 (1H, d, J = 8.8 Hz) and 8.37 (1H, dd, J = 8.0, 1.7 Hz)Hz)] assignable to H-6, H-7, H-8 and H-5 of a quinolone skeleton, respectively. A downfield signal at $\delta_{\rm H}$ 16.66 (1H, br s) was assigned as an intramolecularly hydrogenbonded acidic proton to carbonyl oxygen. The ¹³C-NMR spectrum of compound MH3 (Figure 26) showed the methyl carbon at $\delta_{\rm C}$ 19.1 and *N*-methyl carbon at $\delta_{\rm C}$ 36.5. The carbon signals at δ_C 177.4 (C-4) and 167.1 (COOH-3) were assigned as a conjugated carbonyl carbon and carboxylic acid carbon, respectively. Even the lack of evidence for O-H stretching of carboxylic acid in the IR spectrum, the intramolecularly hydrogenbonded signal in ¹H-NMR spectrum and the presence of peak at m/z 173 [M-44]⁺ in EIMS (Scheme 17) supported the existence of carboxylic acid carbon. The HMBC correlations [$\delta_{\rm H}$ 8.37 (H-5) with $\delta_{\rm C}$ 177.4 (C-4); $\delta_{\rm H}$ 3.11 (CH₃-2) with $\delta_{\rm C}$ 108.7 (C-3) and 161.2 (C-2); $\delta_{\rm H}$ 3.98 (N-CH₃) with $\delta_{\rm C}$ 177.4 (C-4), 140.2 (C-8a) and 19.1 (CH₃-2)] sugguested the 2-methyl-3-carboxylic acid substituents (Figure 28). The lower-field shifted signal of methyl protons ($\delta_{\rm H}$ 3.11, CH₃-2) was due to the anisotropic effect of the carboxylic carbonyl group (COOH-3). Compound MH3 was reasonably deduced to be 1,2-dimethyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid [262], as a new natural compound.

Scheme 17 Proposed EIMS fragmentation mechanism of compound MH3

Table 7 NMR spectra	l <mark>da</mark> ta of	f compound	MH3
---------------------	-------------------------	------------	-----

	Compound MH3 ^{<i>a</i>)}				
position	δ _H (ppm), <i>J</i> (Hz)	δ _C (ppm)			
2	A SURVICE IN THE	161.2			
3		108.7			
4	· · ·	177.4			
4a	-	123.8			
5	8.37 (1H, dd, 8.0, 1.7)	125.7			
6	7.62 (1H, dd, 8.0, 7.1)	125.7			
7	7.95 (1H, ddd, 8.8, 7.1, 1.7)	134.2			
8	8.09 (1H, <i>d</i> , 8.8)	117.9			
8a	- 6	140.2			
N-CH ₃	3.98 (3H, s)	36.5			
CH ₃ -2	3.11 (3H, <i>s</i>)	19.1			
COOH-3	16.66 (1H, brs) ^{b)}	167.1			

a) ¹H-NMR (600 MHz, DMSO- d_6); ¹³C-NMR (150 MHz, DMSO- d_6).

b) Exchangeable proton, this signal was observed in ¹H-NMR 300 MHz (DMSO- d_6) spectrum.

3.4 Structure Determination of Compound MH4

Compound MH4, white substance with m.p. 149-152°C (Lit. Jiménez, et al., 2000; 148-149°C), showed $[M+H]^+$ at m/z 345 in the FABMS (Figure 29), suggesting the molecular formula $C_{19}H_{20}O_6$. The UV spectrum (Figure 30) showed absorption maxima at 243, 259, 298 and 327 nm. The IR spectrum (Figure 31) exhibited absorption bands of O-H stretching (3494 cm⁻¹), conjugated C=O stretching (1727 cm⁻¹), alkene C=C stretching (1651 cm⁻¹), and aromatic C=C stretching (1631, 1569 and 1436.cm⁻¹). The ¹H-NMR spectrum of compound **MH4** (Figure 32) showed two signals at $\delta_{\rm H}$ 6.23 (d, J = 9.6 Hz) and 7.60 (d, J = 9.6 Hz) assigned to H-3 and H-4 of a coumarin skeleton, respectively. Two singlet signals at $\delta_{\rm H}$ 7.58 and 6.86 (each 1H, s) were positioned at H-5 and H-8, respectively. The presence of a dihydrofuran ring which is linearly connected with coumarin nucleus at C-6 and C-7 was suggested by the following HMBC correlations: $\delta_{\rm H}$ 7.58 (H-5) with $\delta_{\rm C}$ 163.2 (C-7) and 71.4 (C-3'); $\delta_{\rm H}$ 6.85 (H-8) with $\delta_{\rm C}$ 124.1 (C-6) and 163.2 (C-7); $\delta_{\rm H}$ 6.35 (H-3') with $\delta_{\rm C}$ 91.1 (C-2'), 124.1 (C-6) and 163.2 (C-7) (Figure 36). A pair of doublet signals at $\delta_{\rm H}$ 4.49 and 6.35 (each 1H, J = 6.3 Hz) was assigned to H-2' and H-3', respectively. The HMBC correlations [$\delta_{\rm H}$ 1.44 (6H, H-2" and H-3") with δ_C 71.3 (C-1") and 91.1 (C-2'); δ_H 4.49 (H-2') with δ_C 71.3 (C-1"), 26.7 (C-2") and 26.5 (C-3")] and a downfield sp³ quaternary carbon at C-1" ($\delta_{\rm C}$ 71.3) suggested that 2-hydroxy-2-methyl-propane was substituted at C-2'. The ¹³C-NMR spectrum of compound MH4 (Figure 33) showed a set of signals [$\delta_{\rm C}$ 165.0 (C-1'''), 114.5 (C-2'"), 160.9 (C-3'"), 27.6 (C-4'") and 20.6 (C-5'")] assignable to senecioate (2methyl-2-butenoate) subunit. The proton signals at $\delta_{\rm H}$ 5.57 (1H, br s), 2.21 (3H, br s) 1.90 (3H, br s) were assigned to H-2", H-4" and H-5" in the senecioate subunit, respectively. The HMBC correlation between $\delta_{\rm H}$ 6.35 (H-3') and $\delta_{\rm C}$ 165.0 (C-1''') indicated that senecioate subunit was connected at C-3' of the dihydrofuran ring. The remaining board signal at $\delta_{\rm H}$ 2.72 (1H) was assigned as hydroxyl proton at C-1". For the relative stereochemistry, cis relationship between the C-2' and C-3' substituents was suggested due to the minus sign of specific rotation (Lit. Jiménez, *et al.*, 2000; $[\alpha]_{D}^{20}$ -236° (c 1.3, CHCl₃)). Compound MH4 was identified as (-)-(2'S, 3'R)-3'senecioyloxymarmesin [263].

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Table 8 NMR spectral data of compound MH4 and (-)-(2'S, 3'R)-3'-senecioyloxymarmesin

	Compound MH4 ^{<i>a</i>)}		(-)-(2'S, 3'R)-3'-senecio	yloxymarmesin ^{f)}
position	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	δ _C (ppm)
2	-	161.0 ^{<i>c</i>)}	-	160.8
3	6.23 (1H, <i>d</i> , 9.6)	113.0	6.24 (1H, <i>d</i> , 9.5)	113.0
4	7.60 (1H, <i>d</i> , 9.6)	143.7	7.61 (1H, <i>d</i> , 9.5)	143.6
4a	-	113.5	-	113.4
5	7.58 (1H, s)	126.7	7.59 (1H, <i>s</i>)	126.6
6	- //	12 <mark>4</mark> .1	-	124.1
7	- //	163.2	-	163.2
8	6.8 <mark>5 (1H, s</mark>)	99.1	6.86 (1H, s)	99.1
8a	- 11	157.1	-	157.1
2'	4.49 (1H, <i>d</i> , 6.3)	91.1	4.51 (1H, <i>d</i> , 6.2)	91.0
3'	6.35 (1H, <i>d</i> , 6.3)	71.4 ^{<i>d</i>}	6.37 (1H, <i>d</i> , 6.2)	71.4
1"/OH-1"	2.72 (1 <mark>H, <i>br s</i>) ^{b)}</mark>	71.3 ^{<i>d</i>})	-	71.2
2″	1.44 (3 <mark>H</mark> , <i>s</i>)	26.7 ^{<i>e</i>)}	1.46 (3H, <i>s</i>)	26.6
3″	1.44 (3H, <i>s</i>)	26.5 ^{<i>e</i>)}	1.46 (3H, <i>s</i>)	26.5
1′″	-	165.0		165.0
2'"	5.57 (1H, br s)	114.5	5.69 (1H, br s)	116.0
3'"	Sec.	160.9 ^{<i>c</i>)}	-	159.0
4'"	2.21 (3H, <i>br s</i>)	27.6	2.18 (3H, br s)	27.0
5′″	1.90 (3H, br s)	20.6	1.90 (3H, <i>br s</i>)	20.0

a)¹H-NMR (600 MHz, CDCl₃); ¹³C-NMR (150 MHz, CDCl₃).

b) Exchangeable proton.

(c), (d) and (e) Values with same superscript may be interchanged.

f) The ¹H-NMR and ¹³C-NMR data were reported by Jiménez, et al., 2000.

4. Structure Determination of Compounds Isolated from Glycosmis parva

4.1 Structure Determination of Compound GP1

Compound GP1 was isolated as yellow solid with m.p. 192-194°C (Lit. Govindachari et al., 1970; 192-193°C). The FABMS (Figure 37) demonstrated [M+H]⁺ at m/z 394, harmonizing with the molecular formula C₂₄H₂₇NO₄. The UV spectrum (Figure 39) (λ_{max} 273, 340 and 410 nm) suggested the presence of 1-hydroxy-9-acridone nucleus (Reisch et al., 1971). The IR spectrum (Figure 40) showed absorption at 3488 (hydroxyl group), and 3135, 3074, 2960, 2918, 1603, 1566, 1541, 1507, 1438 and 1417 (aromatic and hydrocarbon system) cm⁻¹. The ¹H-NMR spectrum of compound GP1 (Figure 41) showed a lower-field shifted signal at $\delta_{\rm H}$ 14.56 (OH-1, s, exchangeable) due to the intramolecularly hydrogen-bonded proton to carbonyl oxygen. Two protons at $\delta_{\rm H}$ 9.26 and 7.91 (each 1H, s), which were washed out by D₂O, were assigned to hydroxyl protons (OH-5 and OH-3). In the aromatic region, three protons displayed ABX coupling system [$\delta_{\rm H}$ 7.16 (H-7, t, J = 7.7 Hz), 7.26 (H-6, dd, J = 7.7, 1.1 Hz) and 7.77 (H-8, dd, J = 7.7, 1.1 Hz)]. The doublet of doublet at $\delta_{\rm H}$ 7.77 must belong to H-8 due to the deshielded effect caused by the neighbouring 9-carbonyl group. Two sets of prenyl group were suggested by the signals at $\delta_{\rm H}$ 3.45 (H₂-1', d, J = 6.9 Hz), 5.25 (H-2', br t, J = 6.1 Hz), 1.80 (H₃-4', s) and 1.66 (H₃-5', s) for one group, and $\delta_{\rm H}$ 3.60 (H₂-1", d, J = 5.9 Hz), 5.35 (H-2", br t, J = 7.0 Hz), 1.79 (H₃-4", s) and 1.71 (H₃-5", s) for the other. In addition, *N*-methyl signal was found at $\delta_{\rm H}$ 3.67 (3H, s). The signal at $\delta_{\rm H}$ 14.56 (OH-1) had HMBC correlations with $\delta_{\rm C}$ 107.9, 160.6 and 110.1, assignable to C-9a, C-1 and C-2, respectively (Figures 46-48). The ¹³C-NMR spectrum of compound GP1 (Figure 43) showed a conjugated ketone signal at δ_C 183.4 (C-9), even though, the C=O stretching of conjugated ketone around 1620 cm⁻¹ could not be observed in IR spectrum. Connection of the two prenyl groups at C-2 and C-4 was evidenced by the HMBC correlations [prenyl group attached at C-2: $\delta_{\rm H}$ 3.45 (H-2') with $\delta_{\rm C}$ 160.6 (C-1), 110.1 (C-2) and 162.0 (C-3); prenyl group attached at C-4: $\delta_{\rm H}$ 3.60 (H-2") with $\delta_{\rm C}$ 162.0 (C-3), 108.3 (C-4) and 149.8 (C-4a)]. Thus, compound GP1 was identified as *N*-methylatalaphylline [258].

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

	Compound GP1 ^{<i>a</i>)}		<i>N</i> -methylatalaphylline ^{<i>c</i>)}	
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}({\rm ppm}),J({\rm Hz})$	δ _C (ppm)
1/ OH-1	14.56 (1H, s) ^{b)}	160.6	14.43 (1H, s)	159.1
2		110.1	-	106.6
3/ OH-3	7.91 (1H, s) ^{b,*)}	162.0	-	161.4
4	-	108.3	-	108.3
4a	-	149. <mark>8</mark>	-	148.4
5/ OH-5	$9.26 (1H, s)^{b, *)}$	149.3	9.32 (1H, <i>br s</i>)	148.9
6	7.26 (1H, <i>dd</i> , 7.7, 1.1)	120.3	7.16 (1H, <i>m</i>)	123.9
7	7 <mark>.16 (1H, t, 7.7)</mark>	123.6	7.07 (1H, <i>t</i> , 8)	119.7
8	7.77 (1 <mark>H, dd, 7.7, 1.1</mark>)	117.1	7.78 (1H, br d)	115.5
8a	-	125.8	-	124.4
9	- / · / · · ·	183.4	-	182.1
9a		107.9	-	109.7
10a	- 195	139.0	-	138.0
N-CH ₃	3.67 (3H, s)	48.6	3.61 (3H, s)	47.8
1′	3.45 (2H, <i>d</i> , 6.9)	22.1	3.48 (2H, <i>m</i>)	21.5
2'	5.25 (1H, <i>br t</i> , 6.1)	123.2	5.28 (1H, <i>m</i>)	122.9
3'	Q -	132.2		130.7
4′	1.80 (3H, s)	18.0	1.72 (3H, <i>s</i>)**	18.0
5'	1.66 (3H, s)	25.9	1.77 (3H, s)**	25.6
1″	3.60 (2H, <i>d</i> , 5.9)	27.1	3.48 (2H, <i>m</i>)	26.3
2″	5.37 (1H, br t, 7.0)	124.2	5.36 (1H, <i>m</i>)	123.0
3″	เขาย่าวิจาย	133.4	<u>เยากร</u>	131.2
4″	1.79 (3H, <i>s</i>)	18.1	1.82 (3H, <i>s</i>)**	18.0
5″	1.71 (3H, <i>s</i>)	25.8	1.82 (3H, <i>s</i>)**	25.6

Table 9 NMR spectral data of compound GP1 and N-methylatalaphylline

a) ¹H-NMR (600 MHz, acetone- d_6); ¹³C-NMR (150 MHz, acetone- d_6).

b) Exchangeable proton, they were clearly observed in ¹H-NMR 400 MHz (Figure 42).

c) The ¹H-NMR (100 MHz, CDCl₃) data were reported by Wu, Kuoh and Furukawa, 1982b. The ¹³C-NMR (DMSO- d_6) data were reported by Banerji *et al.*, 1981.

*, ** Values with same superscript may be interchanged.

4.2 Structure Determination of Compound GP2

Compound GP2 was characterized as orange solid with m.p. 161-163°C (Lit. Ono *et al.*, 1995; 161-163°C). The FABMS (**Figure 49**) exhibited $[M+H]^+$ at m/z 332, indicating the molecular formula C₁₇H₁₇NO₆. The presence of 1-hydroxy-9-acridone skeleton in compound **GP2** was suggested by the UV (λ_{max} 220, 260, 268, 332, 393 nm, Figure 51) and IR (3383 (hydroxy group), 1626 (Conjugated carbonyl) cm⁻¹, Figure 52) bands (Reisch *et al.*, 1971), together with a strongly hydrogen-bonded proton signal at $\delta_{\rm H}$ 14.20 in the ¹H-NMR spectrum (Figure 53). In the aromatic region of ¹H-NMR spectrum, the two protons displayed ortho-coupling [$\delta_{\rm H}$ 6.94 (H-7, d, J = 9.2 Hz) and 7.93 (H-8, d, J = 9.2 Hz)] and a remaining signal as singlet was observed at relatively higher field ($\delta_{\rm H}$ 6.39, H-2). In addition, three methoxy groups and one N-methyl group were observed at $\delta_{\rm H}$ 3.78 (6H, s), 3.87 (3H, s) and 3.97 (3H, s). The ¹³C-NMR spectrum (Figure 54) showed a conjugated ketone carbon at $\delta_{\rm C}$ 182.4 (C-9), five oxygenated sp² carbons at δ_C 161.2, 160.7, 131.2, 137.2 and 157.0, four quaternary carbons at δ_C 106.2, 118.2, 142.7 and 143.6, and four methyl groups at $\delta_{\rm C}$ 46.7, 56.6, 60.7 and 60.9. The signal at $\delta_{\rm H}$ 14.20 (OH-1) had HMBC correlations with $\delta_{\rm C}$ 106.3, 161.3 and 94.9, assigned to C-9a, C-1 and C-2, respectively (Figure 56). The HMBC correlations [$\delta_{\rm H}$ 7.93 (H-8) and 6.94 (H-7) with δ_{C} 157.0 (C-6); δ_{H} 6.94 (H-7) with δ_{C} 137.3 (C-5); δ_{H} 3.87 (CH₃-5) with $\delta_{\rm C}$ 137.3 (C-5)] indicated that the hydroxyl group at $\delta_{\rm H}$ 9.03 (1H, s) and a methoxy group at δ_H 3.87 were located at C-6 and C-5, respectively. The signals at $\delta_{\rm H}$ 3.78 (6H) assigned as methoxy and N-methyl groups were evidenced by the HMBC correlations of δ_H 3.78 (δ_C 60.9) with δ_C 131.2 (C-4) and δ_H 6.39 (H-2) with δ_C 131.2 (C-4) for OCH₃-4 and the HMBC correlations of $\delta_{\rm H}$ 3.78 ($\delta_{\rm C}$ 46.7) with $\delta_{\rm C}$ 142.7 (C-4a) and $\delta_{\rm C}$ 143.6 (C-10a) for N-methyl group. The HMBC correlation of $\delta_{\rm H}$ 3.97 with $\delta_{\rm C}$ 160.7 pointed that the remaining methoxy group was substituted at C-3 ($\delta_{\rm C}$ 160.7). Compound GP2 was identified as the known compound glycofolinine [163].

Table 10 NMR spectral data of compound GP2 and glycofolinine

	Compound G	P2 ^{<i>a</i>)}	glycofolinine	<i>c)</i>	
position	δ _H (ppm), J (Hz)	δ _C (ppm)	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C}$ (ppm)	
1/ OH-1	14.20 (1H, <i>s</i>)	161.2	14.20 (1H, s)	161.6	
2	6.39 (1H, <i>s</i>)	94.9	6.37 (1H, s)	95.3	
3	- / / /	160.7	-	161.1	
4	- /- // / 2	131.2	-	131.6	
4a		142.7	-	143.1	
5		137.2	-	137.6	
6 / OH-6	9.03 (1H, s) $^{b)}$	157.0	-	157.4	
7	6.94 (1H, <i>d</i> , 9.2)	113.2	6.92 (1H, <i>d</i> , 8.8)	117.0	
8	7.93 (1H, <i>d</i> , 9.2)	123.2	7.91 (1H, <i>d</i> , 8.8)	123.7	
8a		118.2	-	118.6	
9		182.4		182.8	
9a		106.2	4-1	113.7	
10a	-	143.6	11-	144.0	
N-CH ₃	3.78 (3H, s)	46.7	3.77 (3H, s)	47.1	
OCH ₃ -3	3.97 (3H, s)	56.5	3.97 (3H, s)	57.0	
OCH ₃ -4	3.78 (3H, s)	60.9	3.77 (3H, s)	61.3	
OCH ₃ -5	3.87 (3H, s)	60.7	3.86 (3H, s)	61.1	

a) ¹H-NMR (600 MHz, acetone- d_6); ¹³C-NMR (150 MHz, acetone- d_6).

b) Exchangeable proton.

c) The ¹H-NMR and ¹³C-NMR (acetone- d_6) data were reported by Ono *et al.*, 1995.

4.3 Structure Determination of Compound GP3

Compound GP3 was obtained as yellow amorphous solid. It showed molecular ion $[M]^+$ peak at m/z 317 in the EIMS (Figure 57), corresponding to the molecular formula $C_{16}H_{15}NO_6$. The UV (λ_{max} 221, 273, 332 and 381 nm, Figure 58) and IR spectra (3419, 3126, 1610 and 1541 cm⁻¹ Figure 59) showed the characteristic absorptions of 1hydroxy-9-acridone system (Reisch et al., 1971). The ¹H-NMR spectrum (Figures 60 and 61) exhibited a lower-field shifted signal at $\delta_{\rm H}$ 15.02 (OH-1, s), two exchangeable protons at $\delta_{\rm H}$ 8.96 (2H, br s, overlapped), two ortho-coupled doublets at $\delta_{\rm H}$ 6.95 (H-7, d, J = 9.1 Hz) and 8.05 (H-8, d, J = 9.1 Hz), a lone aromatic proton at $\delta_{\rm H}$ 6.48 (H-4, s), Nmethyl group at $\delta_{\rm H}$ 4.04 (3H, s) and two methoxy groups at 3.78 (OCH₃-5, s) and 3.87 (OCH_3-2, s) . The ¹³C-NMR spectrum (Figure 62) showed a conjugated ketone carbon at $\delta_{\rm C}$ 180.8 (C-9), five oxygenated sp² carbons at $\delta_{\rm C}$ 129.7, 136.0, 156.0, 157.0 and 158.1, four quaternary carbons at δ_C 104.8, 116.7, 139.6 and 143.9, and four methyl group at δ_C 40.1, 60.4 and 61.3. The HMBC correlations between $\delta_{\rm H}$ 15.02 (OH-1, s) and $\delta_{\rm C}$ 104.8, 156.0 and 129.7, and between proton signal at δ_{H} 3.87 and carbon signal at δ_{C} 129.7 suggested the carbon signals at $\delta_{\rm C}$ 104.8, 156.0 and 129.7 as C-9a, C-1 and C-2, respectively. The HMBC correlations of $\delta_{\rm H}$ 6.48 (1H, s) with $\delta_{\rm C}$ 104.8 (C-9a, strong), 129.7 (C-2, strong), 158.1 (C-3, medium), 143.9 (C-4a, weak) and 180.8 (C-9, weak) indicated that the aromatic proton at $\delta_{\rm H}$ 6.48 was positioned at C-4 (Figure 64). The other methoxy proton $\delta_{\rm H}$ 3.78 was located at C-5, as evidenced by the HMBC correlations of protons at $\delta_{\rm H}$ 3.78 and 6.95 (H-7, d, J = 9.1 Hz) with the carbon at $\delta_{\rm C}$ 136.0 (C-5). The position of proton signal ($\delta_{\rm H}$ 6.48) at C-4 was confirmed by NOE experiments which revealed NOE interaction of H-4 ($\delta_{\rm H}$ 6.48) with the N-methyl group $(\delta_{\rm H} 4.04)$ (Figure 65). Thus, compound GP3 was identified as citramine [264].

Table 11 NMR spectral data of compound GP3 and citramine

	Compound GP3 ^{<i>a</i>)}		citramine ^{c)}	
position	δ _H (ppm), <i>J</i> (Hz)	δ _C (ppm)	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C}(\rm ppm)$
1/ OH-1	$15.02 (1H, s)^{b}$	156.0	15.03 (1H, s)	155.3
2	- / / a	129.7	-	129.0
3 /OH-3	8.96 (1H, br s) ^{b)}	158.1	9.04 (1H, <i>s</i>)	157.4
4	6.48 (1H, <i>s</i>)	92.4	6.49 (1H, <i>s</i>)	91.9
4a	- 10	143.9	-	142.6
5	-	136.0	-	135.3
6 / OH-6	8.96 (1H, $br s$) ^{b)}	157.0	8.91 (1H, s)	156.1
7	6.95 (1H, <i>d</i> , 9.1)	113.1	6.95 (1H, <i>d</i> , 8.8)	112.7
8	8.05 (1H, <i>d</i> , 9.1)	123.2	8.05 (1H, <i>d</i> , 8.8)	121.9
8a	Sec	116.7	<u>-</u>	115.3
9	-	180.8	1	179.4
9a		104.8	3	103.7
10a	a 1 a 🗟 an a	139.6		138.6
N-CH ₃	4.04 (3H, <i>s</i>)	40.1	4.04 (3H, <i>s</i>)	39.5
OCH ₃ -2	3.87 (3H, s)	60.4	3.87 (3H, <i>s</i>)	59.8
OCH ₃ -5	3.78 (3H, s)	61.3	3.78 (3H, s)	60.7

a)¹H-NMR (600 MHz, acetone- d_6); ¹³C-NMR (150 MHz, acetone- d_6).

b) Exchangeable proton, they were clearly observed in ¹H-NMR 400 MHz (Figure 61).

c) The ¹H-NMR (acetone- d_6) and ¹³C-NMR (DMSO- d_6) data were reported by Ju-ichi *et al.*, 1988.

4.4 Structure Determination of Compound GP4

Compound **GP4**, orange amorphous solid, showed $[M+H]^+$ at m/z 392 in the FABMS (Figure 66), suggesting the molecular formula $C_{24}H_{25}O_4$. The basic skeleton was characterized to have a 1-hydroxy-9-acridone chromophore by UV (229, 305, 338 and 420 nm, Figure 68) and IR (3627 (O-H stretching), 1640 (conjugated carbonyl) cm⁻¹, **Figure 69**) absorptions, together with a strongly hydrogen-bonded proton signal at $\delta_{\rm H}$ 14.67 in the ¹H-NMR spectrum (Figure 70). The ¹³C-NMR and DEPT spectroscopic data (Figures 71 and 72) exhibited 24 carbons, attributable to five methyl, one methylene, six methine and twelve quaternary carbons. In the aromatic region of the ¹H-NMR spectrum, three mutually coupling ABX signals at $\delta_{\rm H}$ 7.18 (1H, t, J = 7.7 Hz), 7.27 (1H, dd, J = 7.7, 1.1 Hz) and 7.75 (1H, dd, J = 7.7, 1.1 Hz) were attributed to H-7, H-6 and H-8, respectively. The presence of a prenyl group was suggested by the signals at $\delta_{\rm H}$ 3.51 (H₂-1", d, J = 6 Hz), 5.35 (H-2", m), 1.70 (H₃-4", s) and 1.79 (H₃-5", s). A set of signals at $\delta_{\rm H}$ 6.72 (H-1', d, J = 9.9 Hz), 5.70 (H-2', d, J = 9.9 Hz) and 1.47 (6H, s) indicated the presence of a 2,2-dimethylpyrano moiety. The HMBC correlations of $\delta_{\rm H}$ 14.67 (OH-1, s) with $\delta_{\rm C}$ 107.8, 157.9 and 104.2 suggested the carbon signals at $\delta_{\rm C}$ 107.8, 157.9 and 104.2 as C-9a, C-1 and C-2, respectively. The 2,2-dimethylpyrano moiety was linearly attached to the acridone nucleus at C-2 and C-3 by evidence of HMBC correlations [$\delta_{\rm H}$ 6.72 (H-1') with $\delta_{\rm C}$ 157.9 (C-1) and 159.7 (C-3); $\delta_{\rm H}$ 5.70 (H-2') with $\delta_{\rm C}$ 104.2 (C-2)]. The prenyl group at C-4 was suggested by the HMBC correlations of δ_H 3.51 (H-1") with δ_C 159.7 (C-3), 109.3 (C-4) and 151.2 (C-4a). Thus, compound GP4 was identified as Nmethylcyclo-atalaphylline-A [265].

	Compound GP4 ^{<i>a</i>)}		<i>N</i> -methylcyclo-atalaphylline-A ^{<i>c</i>}	
position	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}(\rm ppm)$	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}(\rm ppm)$
1/ OH-1	14.67 (1H, s) ^{b)}	157.9	14.63 (1H, s)	157.5
2		104.2	-	103.4
3	-	159.7	-	158.8
4	-	109.3	-	108.5
4a	-	151.2	-	150.0
5/ OH-5	9.29 (1H, $br s$) ^{b)}	149.3	9.41 (1H, <i>br s</i>)	148.6
6	7.27 (1H, <i>dd</i> , 7.7, 1.1)	120.6	7.29 (1H, br d, 7.5)	119.7
7	7.18 (1H, <i>t</i> , 7.7)	123.9	7.18 (1H, <i>br d</i> , 7.5)	123.1
8	7.75 (1H, dd, 7.7, 1.1)	117.1	7.76 (1H, <i>d</i> , 7.5)	116.1
8a		125.7	-	124.9
9		183.5	-	182.7
9a		107.8	-	106.9
10a	- 3	138.9	-	138.0
N-CH ₃	3.72 (3H, s)	48.6	3.71 (3H, <i>s</i>)	47.7
1'	6.72 (1H, <i>d</i> , 9.9)	116.5	6.73 (1H, <i>d</i> , 9.9)	115.6
2'	5.70 (1H, <i>d</i> , 9.9)	127.8	5.70 (1H, <i>d</i> , 9.9)	126.9
3'	Q -	78.6		77.7
4'	1.47 (3H, s)	28.5	1.48 (3H, s)	27.6
5'	1.47 (3H, s)	28.5	1.48 (3H, s)	27.6
1″	3.51 (2H, <i>d</i> , 6)	26.6	3.51 (2H, <i>br d</i> , 6.3)	25.7
2″	5.35 (1H, <i>m</i>)	124.7	5.36 (1H, <i>m</i>)	123.9
3″	118-118	131.7	NET IN	130.8
4″	1.70 (3H, <i>s</i>)	25.8	1.70 (3H,s)	24.9
5"	1.79 (3H, <i>s</i>)	18.2	1.80 (3H, <i>s</i>)	17.3

Table 12 NMR spectral data of compound GP4 and N-methylcyclo-atalaphylline-A

a) ¹H-NMR (600 MHz, acetone- d_6); ¹³C-NMR (150 MHz, acetone- d_6).

b) Exchangeable proton.

c) The ¹H-NMR (300 MHz, acetone- d_6) and ¹³C-NMR (75 MHz, acetone- d_6) data were reported by Chukaew *et al.*, 2008.

4.5 Structure Determination of Compound GP5

Compound **GP5**, orange amorphous solid, showed the molecular ion peak at m/z287.0799 in the HREIMS, providing evidence for a molecular formula of $C_{15}H_{13}NO_5$ (calculated for C₁₅H₁₃NO₅, 287.0793). The IR spectrum (Figure 80) showed absorption bands at 3500-3181 (broad) and 1644 cm⁻¹ due to hydroxy and carbonyl groups, respectively. Characteristic absorptions of acridone alkaloid were observed in the UV spectrum (266, 286, 321 and 409 nm, Figure 79). The ¹H-NMR spectrum (Figure 81) showed the existence of methoxy ($\delta_{\rm H}$ 3.88) and *N*-methyl ($\delta_{\rm H}$ 4.08) groups. In the aromatic region, the three out of four protons displayed sequentially mutual coupling as ABX pattern [$\delta_{\rm H}$ 7.14 (1H, dd, J = 8.1, 7.7 Hz), 7.29 (1H, dd, J = 7.7, 1.5 Hz) and 7.91 (1H, dd, J = 8.1, 1.5 Hz)] and a remaining signal appeared as singlet at relatively higher field (δ_H 6.50). A lower-field shifted signal at δ_H 14.99 was assigned as an intramolecularly hydrogen-bonded proton to carbonyl oxygen and two signals at $\delta_{\rm H}$ 8.95 and 9.31 as exchangeable protons. The presence of the above intramolecularly hydrogenbonded signal and ABX pattern signals including a deshielded proton ($\delta_{\rm H}$ 7.91) indicated that compound GP5 was constructed based on a 6,7,8-unsubstituted 1-hydroxy-10methylacridone skeleton. In the ¹³C-NMR spectrum (Figure 82) twelve signals were observed as aromatic carbons in addition to methoxy (δ_c 60.5), N-methyl (δ_c 41.3), and carbonyl ($\delta_{\rm C}$ 181.6) functions. In HMBC experiment, significant correlations from the proton at δ_H 14.99 to the carbons at δ_C 105.8, 156.4, and 129.5, and from the proton at δ_H 3.88 to the carbon at $\delta_{\rm C}$ 129.5 indicated the carbon signals at $\delta_{\rm C}$ 105.8, 156.4, and 129.5 as C-9a, C-1, and C-2, respectively (Figures 84-86). O-Quaternary carbons were deduced by HMBC correlations [δ_H 8.95 (3-OH) with δ_C 158.4 (C-3) and 129.5 (C-2); δ_H 9.31 (5-OH) with $\delta_{\rm C}$ 147.8 (C-5) and 134.7 (C-10a)]. The strong HMBC cross-peaks of $\delta_{\rm H}$ 6.50 with $\delta_{\rm C}$ 105.8 (C-9a), 129.5 (C-2) and 158.4 (C-3) assigned the signal at $\delta_{\rm H}$ 6.50 to be H-4. NOE difference experiments revealed NOE correlation of H-4 ($\delta_{\rm H}$ 6.50) with the N-methyl group (δ_H 4.08), and that of H-7 (δ_H 7.14) with H-8 (δ_H 7.91) and H-6 (δ_H 7.29) (Figure 87). These data allowed us to deduce the alignment of 1,3,5-trihydroxy-2methoxy substituents. Thus, compound GP5 was deduced to be 1,3,5-trihydroxy-2methoxy-N-methyl-9-acridone. It was named to be glycosparvarine [266], as a new acridone alkaloid.

glycosparvarine

Table 13 NMR spectral data of compound GP5

	Compound GP5 ^{<i>a</i>)}		
position	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)	
1/ OH-1	14.99 $(1H, s)^{b}$	156.4	
2	1 Stable Provide	129.5	
3 / OH-3	8.95 (1H, s) $^{b)}$	158.4	
4	6.50 (1H, <i>s</i>)	91.8	
4a		144.3	
5/ OH-5	9.31 (1H, s) ^{b)}	147.8	
6	7.29 (1H, <i>dd</i> , 7.7, 1.5)	120.6	
7	7.14 (1H, <i>dd</i> , 8.1, 7.7)	122.8	
8	7.91 (1H, dd, 8.1, 1.5)	117.6	
8a	NDOUDIO	124.1	
9	- 6	181.6	
9a	ลงกรณมห	105.8	
10a	01 111 0 000 01 /1	134.7	
N-CH ₃	4.08 (3H, <i>s</i>)	41.3	
OCH ₃ -2	3.88 (3H, s)	60.5	

a) ¹H-NMR (600 MHz, acetone- d_6); ¹³C-NMR (150 MHz, acetone- d_6).

b) Exchangeable proton.

4.6 Structure Determination of Compound GP6

Compound GP6 was obtained as colorless crystals with m.p. 283-285°C with decomposition (Lit. Breksa III, Dragull and Wong, 2008; 284-294°C with decomposition). It showed $[M+H]^+$ at m/z 471 in the FABMS (Figure 88), corresponding to the molecular formula $C_{26}H_{30}O_8$. The UV spectrum (Figure 90) exhibited the absorption maxima at 207 and 272 nm. The IR spectrum (Figure 91) showed the absorption band at 2972, 1747 (C=O ester group), 1718 (C=O ketone group), 1286, 1022 and 669 cm⁻¹. The signals due to furan ring were shown at $\delta_{\rm H}$ 6.33 (H-22, dd, J = 1.6, 0.8 Hz), 7.39 (H-23, t, J = 1.7 Hz) and 7.41 (H-21, br d, J = 0.8 Hz) in the ¹H NMR spectrum (Figures 92 and 93), and at $\delta_{\rm C}$ 109.6 (C-22), 119.9 (C-20), 141.1 (C-21) and 143.2 (C-23) in the ¹³C-NMR spectrum. Signals attributed to four methyl protons at $\delta_{\rm H}$ 1.06 (H₃-24), 1.16 (H₃-25b) 1.17 (H₃-18) and 1.29 (H-25a), five methylene protons at $\delta_{\rm H}$ 1.74-1.83 (H-12a), 1.74-1.91 (H₂-11), 1.49-1.52 (H-12b), 2.46 (H-6a), 2.67 (H-2a), 2.85 (H-6b), 2.97 (H-2b), 4.45 (H-19b) and 4.76 (H-19a), and five methine protons at $\delta_{\rm H}$ 2.22 (H-5), 2.54 (H-9), 4.02 (H-15), 4.03 (H-1) and 5.46 (H-17) were found. The ¹³C-NMR and DEPT135 spectra (Figures 94-96) showed twenty-six carbon signals, assignable to four methyl carbons at δ_{C} 17.6 (C-24), 20.7 (C-18), 21.3 (C-25b), and 30.1 (C-25a), five methylene carbons at δ_{C} 18.9 (C-11), 35.6 (C-2), 36.4 (C-6), 30.8 (C-12) and 65.3 (C-19), five methine carbons at $\delta_{\rm C}$ 60.5 (C-5), 79.1 (C-1), 48.1 (C-9), 53.8 (C-15) and 77.8 (C-17), eight quaternary carbons at $\delta_{\rm C}$ 37.9 (C-13), 45.9 (C-10), 51.3 (C-8), 65.6 (C-14), 80.3 (C-4), 166.7 (C-16), 169.2 (C-3) and 206.1 (C-7), and four carbons for furan ring. Assignment of signals was made on the basis of 1- and 2-D NMR data acquired for limonin. The fragmentation at m/z 347 and 95 suggested the compound GP6 was a member of limonin-typed limonoids (Scheme 18, Manners and Breksa III, 2004). The ¹H and ¹³C-NMR spectra of limonin and epilimonin, C-17 limonin epimer, showed expected differences in the chemical shift of H-15, H-17 and H-18, and carbon C-17 and C-18 (Breksa III, Dragull and Wong, 2008). In comparison to limonin, the chemical shift of C-17 and C-18 of epilimonin were relatively downfield-shifted at δ_C 88.5 (C-17) and 28.2 (C-18). The melting point of limonin was 284-295°C with decomposition whereas that of epilimonin was 316-318°C. In addition, limonin showed a negative specific rotation whereas that epilimonin showed a positive value. Thus, compound GP6 was identified as limonin [267] by analysis of above spectral data (1- and 2-D NMR experiments, Figures 97-102) and confirmed by the reported physicochemical data of limonin (Breksa III, Dragull and Wong, 2008).

Scheme 18 Proposed EIMS fragmentation mechanism of compound GP6

	Compound GP6 ^{<i>a</i>)}		limonin ^{b)}	
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{C}(ppm)$
1	4.03 (1H, <i>m</i>)	79.1	4.03 (1H, <i>m</i>)	79.2
2a	2.67 (1H, <i>dd</i> , 16.8, 1.9)	35.6	2.67 (1H, dd, 16.8, 2.0)	35.7
2b	2.97 (1H, <i>dd</i> , 16.8, 3.8)	-	2.98 (1H, <i>dd</i> , 16.8, 4.0)	-
3	_	169.2	-	169.0
4	-	80.3	-	80.3
5	2.22 (1H, <i>dd</i> , 15.9, 3.0)	60.5	2.22 (1H, <i>dd</i> , 15.8, 3.4)	60.7
ба	2.46 (1H, <i>dd</i> , 14.5, 3.5),	<mark>36.4</mark>	2.46 (1H, <i>dd</i> , 14.4, 3.2)	36.4
6b	2.85 (1H, <i>dd</i> , 15.9, 14.5)	-	2.85 (1H, <i>dd</i> , 15.8, 14.6)	-
7	-	206.1	-	206.0
8	-///8	51.3	-	51.4
9	2.54 (1H, <i>dd</i> , 12.5, 2.6)	48.1	2.55 (1H, dd, 12.2, 3.0)	48.2
10		45.9	-	46.0
11	1.7 <mark>4-1.91</mark> (2H, <i>m</i>)	18.9	1.72-1.95 (2H, <i>m</i>)	19.0
12a	1.74- <mark>1.8</mark> 3 (1H, <i>m</i>)	30.8	1.46-1.58 (2H, <i>m</i>)	30.9
12b	1.49-1.5 <mark>2 (</mark> 1H, <i>m</i>)	ala h		-
13	- Malle	37.9	-	38.0
14	-	65.6	-	65.7
15	4.02 (1H, <i>s</i>)	53.8	4.05 (1H, s)	53.9
16	A -	166.7		166.5
17	5.46 (1H, <i>s</i>)	77.8	5.47 (1H, s)	77.8
18	1.17 (3H, s)	20.7	1.18 (3H, s)	20.7
19a	4.76 (1H, <i>d</i> , 13.1)	65.3	4.76 (1H, <i>d</i> , 13.0) 65	
19b	4.45 (1H, <i>d</i> , 13.1)	-	4.46 (1H, <i>d</i> , 13.0)	-
20	010120001	119.9		120.1
21	7.41 (1H, <i>br d</i> , 0.8)	141.1	7.40 (1H, <i>m</i>)	143.3
22	6.33 (1H, <i>dd</i> , 1.6, 0.8)	109.6	6.34 (1H, <i>m</i>)	109.7
23	7.39 (1H, <i>t</i> , 1.7)	143.2	7.41 (1H, <i>m</i>)	141.2
24	1.06 (3H, s)	17.6	1.08 (3H, s)	17.7
25a	1.29 (3H, <i>s</i>)	30.1	1.29 (3H, s)	30.2
25b	1.16 (3H, <i>s</i>)	21.3	1.18 (3H, <i>s</i>)	21.4
<i>a</i>) ¹ H NMR (CDCl ₃ , 600 MHz, TMS); ¹³ C NMR (CDCl ₃ , 150 MHz, TMS).				

Table 14 NMR spectral data of compound GP6 and limonin

b) The ¹H-NMR (CDCl₃, 400 MHz, TMS) and ¹³C NMR (CDCl₃, 100 MHz, TMS) data were reported by Breksa III, Dragull and Wong, 2008.

4.7 Structure Determination of Mixture GP7

Mixture GP7, white amorphous solid, was obtained as a mixture of isomers (compounds **GP7-I** and **GP7-II**). The FABMS (Figure 103) demonstrated [M+H]⁺ ion at m/z 503, corresponding to the molecular formula C₂₆H₃₀O₁₀. The UV spectrum showed the absorption maxima at 218 nm. The EIMS and IR spectra were quite similar to limonin, a common limonoid compound among plants in the family Rutaceae. The EI mass spectrum (Figure 104) showed prominent fragment ions at m/z 347 and 95, which also suggested the limonin-type limonoids (Scheme 18, Manners and Breksa III, 2004). The IR spectrum (Figure 106) showed strong absorption bands at 3640 cm⁻¹ and 1745 cm⁻¹ due to free O-H stretching and C=O stretching, respectively. In the ¹H- and ¹³C-NMR spectra (Figures 107-116), sixty protons and fifty-two carbons were found and could be divided into two sets (compounds GP7-I and GP7-II) by ¹H-¹H COSY, HMQC and HMBC correlations (Figures 117-126). The signals due to *y*-hydroxybutenolide ring were shown at $\delta_{\rm H}$ 6.29 (1H, br s, overlapping), 7.48 (1H, br s) and 8.02 (1H, br s) in the ¹H-NMR spectrum, and at δ_{C} 98.4, 131.4, 152.2, and 169.0 in the ¹³C-NMR spectrum for compound GP7-I. For the compound GP7-II, The signals due to γ -hydroxybutenolide ring were observed at $\delta_{\rm H}$ 6.10 (1H, s), 6.29 (1H, br s) and 8.02 (1H, br s) in the ¹H-NMR spectrum, and at $\delta_{\rm C}$ 98.4, 122.1, 163.6, and 169.7 in the ¹³C-NMR spectrum. In comparison with the ¹H- and ¹³C-NMR data of limonexic acid and isolimonexic acid (Lee et al., 1999), the signals of mixture GP7 consisted of those of limonexic acid [268] (compound GP7-I) and isolimonexic acid [269] (compound GP7-II). Thus, mixture GP7 was identified as a mixture of limonexic acid and isolimonexic acid. Although, limonexic acid and isolimonexic acid had their epimers at C-23 and C-21, respectively, the stereochemistry of mixture GP7 at C-23 for limonexic and C-21 for isolimonexic acid remained to be undetermined. The mixture GP7 showed the minus sign of specific rotation ($[\alpha]^{18}_{D}$ –41.8° (MeOH)), which was the same as those of limonexic acid ($[\alpha]_{D}$ -65° (MeOH)) and isolimonexic acid ($[\alpha]_{D}$ -140° (MeOH)).

149

isolimonexic acid [269]

	Compound GP7-I ^{<i>a</i>)}		limonexic acid ^{c)}	
position	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}$ (ppm)
1	4.12 (1H, <i>d</i> , 4.8)	78.4	4.13 (1H, <i>d</i> , 3.5)	78.4
2a	2.67 (1H, dd, 16.2, 4.8)	35.6	2.65 (1H, dd, 3.5, 15.8)	35.5
2b	2.81 (1H, <i>d</i> , 16.2)	- / /	2.78 (1H, <i>d</i> , 15.8)	-
3	-	170.1		169.8
4	-	79.5	- 79	
5	2.53 (1H, <i>dd</i> , 15.1, 3.1)	57.3	2.52 (1H , <i>dd</i> , 3.3 , 15.1) 5 ⁻	
6α	2.26 (1H, <i>dd</i> , 15.1, 3.1)	36.1	2.29 (1H, dd, 3.3, 15.1)	36.0
6β	3.08 (1H, <i>t</i> , 15.1)	-	3.08 (1H, <i>t</i> , 15.1)	-
7	- ///	207.8	-	207.6
8		49.8	-	49.8
9	2.60 (1H, dd, 12.4, 3.4)	45.8	2.62 (1H, dd, 3.4, 12.4)	45.8
10	- // // 6	45.1	-	45.1
11α	1.63-1.80 (1H, <i>m</i>)	17.1	1.74 (1H, <i>m</i>)	17.0
11 <i>β</i>	1.87-1.95 (1H, <i>m</i>)	-	1.93 (1H, <i>m</i>)	-
12α	1.28-1.31 (1H, <i>m</i>)	27.1	1.32 (1H, <i>m</i>)	27.1
12β	1.63 - 1.80 (1H, <i>m</i>)	622-11	1.79 (1H, <i>m</i>)	-
13		38.6	_	
14	- 2014	67.1	-	66.9
15	4.24 (1H, <i>s</i>)	54.2	4.25 (1H, s) 5	
16	-	166.8	-	166.5
17	5.26 (1H, <i>s</i>)	75.1	5.27 (1H, s) 74.	
			75.0 ^{<i>d</i>}	
18	1.16 (3H, <i>s</i>)	18.6	1.19 (3H, <i>s</i>)	18.5
19 a	4.49 (1H, <i>d</i> , 13.7)	64.6	4.51 (1H, <i>d</i> , 13.1)	64.5
19b	4.90 (1H, <i>d</i> , 13.7)	-	4.88 (1H, <i>d</i> , 13.1)	-
20	-	131.4	-	130.6
21		169.0		169.4
22	7.48 (1H, <i>br s</i>)	152.2	7.51 (1H, <i>s</i>)	152.2
				152.9^{d}
23	6.29(1H, <i>br s</i> ,	98.4	6.19 (1H, <i>br s</i>)	97.4
	overlapping))	0000	Maio Se	$97.8^{d)}$
28	1.19 (3H, <i>s</i>)	29.6	1.21 (3H, s)	29.6
29	1.02 (3H, <i>s</i>)	21.4	1.05 (3H, <i>s</i>)	21.2
30	1.02 (3H, <i>s</i>)	17.5	1.05 (3H, <i>s</i>)	17.4
OH-23	$8.02 (1H, br s)^{b}$		7.79 (1H, <i>br s</i>)	

Table 15 NMR spectral data of compound GP7-I and limonexic acid

a) ¹H NMR (DMSO- d_6 , 600 MHz); ¹³C NMR (DMSO- d_6 , 150 MHz).

b) Exchangeable proton.

c) The ¹H-NMR (DMSO- d_6 , 400 MHz at 320 K) and ¹³C NMR (DMSO- d_6 , 100 MHz, at 320 K) data were reported by Lee et al., 1999.

d) Pair signals was considered to be 23R-limonexic acid. Accordingly, limonexic acid was obtained as a mixture of 23S and 23R compounds (Lee et al., 1999).

	Compound GP7-II ^{<i>a</i>)}		isolimonexic acid ^{c)}	
position	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{C}(ppm)$
1	4.11 (1H, <i>d</i> , 4.5)	78.5	4.12 (1H, <i>d</i> , 3.8)	78.8
2a	2.63 (1H, <i>dd</i> , 16.5, 4.5)	35.6	2.67 (1H, dd, 16.5, 3.8)	36.1
2b	2.77 (1H, <i>d</i> , 16.5)	11-77	2.82 (1H, <i>d</i> , 16.5)	-
3	-	170.1	-	169.5
4	-	79.6	-	80.0
5	2.47 (1H, <i>dd</i> , 15.1, 3.1)	58.2	2.48 (1H, dd, 2.9, 15.1)	58.7
6α	2.29 (1H, <i>dd</i> , 15.1, 3.1)	36.1	2.28 (1H, dd, 2.9, 15.1)	36.6
6β	3.14 (1H, <i>t</i> , 15.1)		3.16 (1H, <i>t</i> , 15.1)	-
7	- ///	207.9	-	208.3
8	/ ///	50.6	-	51.1
9	2.54 (1H, <i>dd</i> , 10.3, 3.2)	46.4	2.54 (1H, br d, 11.6)	46.8
10	-	45.2	-	45.7
11α	1.63-1.85 (2H, <i>m</i>)	17.6	1.69-1.77 (2H, <i>m</i>)	18.1
11 <i>β</i>	-///	-	-	-
12α	1.63-1.85 (2H, <i>m</i>)	28.7	1.69-1.77 (2H, <i>m</i>)	29.1
12β		22. A.	-	-
13		37.8	-	38.3
14	- 3.42	66.1	-	66.5
15	4.07 (1H, s)	53.1	4 .06 (1H, <i>s</i>)	53.5
16		166.1	-	166.6
17	5.19 (1 <mark>H</mark> , <i>br s</i>)	77.7	5.18 (1H, <i>s</i>)	78.2
18	1.12 (3H, <i>s</i>)	19.7	1.10 (3H, <i>s</i>)	20.2
19a	4.46 (1H, <i>d</i> , 13.1)	64.8	4.47 (1H, <i>d</i> , 13.0)	65.3
19b	4.94 (1H, <i>d</i> , 13.1)	Arra	4.95 (1H, <i>d</i> , 13.0) -	
20	-	163.6	-	164.2
21	6.10 (1H, <i>s</i>)	98.4	6.08 (1H, <i>s</i>)	98.6
22	6.29 (1H, <i>br s</i>)	122.1	6.29 (1H, <i>s</i>)	122.4
23	-	169.7		170.6
28	1.20 (3H, s)	29.7	1.19 (3H, <i>s</i>)	30.1
29	1.04 (3H, <i>s</i>)	21.4	1.03 (3H, <i>s</i>)	21.9
30	0.99 (3H, s)	16.5	0.98 (3H, s)	16.9
OH-21	$8.02 (1H, br s)^{b}$	9759	1ยากร	-

Table 16 NMR spectral data of compound GP7-II and isolimonexic acid

a) ¹H NMR (DMSO- d_6 , 600 MHz); ¹³C NMR (DMSO- d_6 , 150 MHz).

b) Exchangeable proton.

c) The ¹H-NMR (DMSO- d_6 , 400 MHz at 320 K) and ¹³C NMR (DMSO- d_6 , 100 MHz, at 320 K) data were reported by Lee *et al.*, 1999.

d) The three pair carbon signals observed in the NMR spectrum of limonexic acid were not observed in isolimonexic acid, but isolimonexic acid was considered to be a mixture of 21R and 21S from the reason related to limonexic acid (Lee *et al.*, 1999).

4.8 Structure Determination of Compound GP8

Compound GP8 was isolated as yellow needles with m.p. 179-181°C (Lit. Banerjee *et al.*, 1961; 175°C). It showed $[M+H]^+$ at m/z 286 in the FABMS (Figure 127), suggesting the molecular formula C₁₆H₁₅NO₄. The UV (229, 274, 326 and 399 nm, Figure 129) and IR (3734 and 1635 cm⁻¹, Figure 130) absorption bands, in addition to proton signal at $\delta_{\rm H}$ 14.74 in ¹H-NMR spectrum (Figure 131) indicated the presence of 1hydroxy-9-acridone nucleus. In the aromatic region of ¹H-NMR spectrum, the four among five protons mutaully coupled signals at $\delta_{\rm H}$ 7.23 (1H, dd, J = 8.3, 7.3 Hz), 7.44 (1H, d, J = 8.3 Hz), 7.67 (1H, dd, J = 8.2, 7.3 Hz) and 8.33 (1H, d, J = 8.2 Hz) wereattributed to H-7, H-5, H-6 and H-8, respectively. One N-methyl and two methoxy signals were found at $\delta_{\rm H}$ 3.76 (3H, s), 3.90 (3H, s) and 3.98 (3H, s), respectively. The conjugated ketone signal was detected at $\delta_{\rm C}$ 180.6 (C-9) in the ¹³C-NMR spectrum (Figure 132). The HMBC correlations of the proton at $\delta_{\rm H}$ 14.74 (OH-1, s) with the carbons at δ_C 105.6, 156.0 and 130.0, and the methyl protons at δ_H 3.90 (δ_C 60.7) with the carbon at $\delta_{\rm C}$ 130.0 suggested that the carbon signals at $\delta_{\rm C}$ 105.6, 156.0, 130.0 and 60.8 should be assigned to C-9a, C-1, C-2 and OCH₃-2, respectively (Figure 132). The other methoxy group at $\delta_{\rm H}$ 3.98 ($\delta_{\rm C}$ 55.9) was located at C-3 by the evidence of HMBC correlation between δ_H 3.98 and δ_C 159.2 (C-3). The aromatic proton singlet at δ_H 6.17 (1H, s) was assigned to H-4 by HMBC correlations of $\delta_{\rm H}$ 6.17 (H-4) with $\delta_{\rm C}$ 105.6 (C-9a, strong), 130.0 (C-2, strong), 159.2 (C-3, medium), 140.3 (C-4a, weak) and 180.6 (C-9, weak). Thus, compound GP8 was identified as arborinine [87].

	Compound GP8 ^{<i>a</i>)}		arborinine ^{b)}
position	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)	$\delta_{\rm C}$ (ppm)
1/ OH-1	14.74 (1H, s)	156.0	155.7
2	-	130.0	129.9
3	-	159.2	159.1
4	6.17 (1H, <i>s</i>)	86.6	86.7
4a	-	140.3	140.1
5	7.44 (1H, <i>d</i> , 8.3)	114.6	114.5
6	7.67 (1H, <i>dd</i> , 8.2, 7.3)	133.9	133.7
7	7.23 (1H, <i>dd</i> , 8.3, 7.3)	121.4	121.2
8	8.33 (1H, <i>d</i> , 8.2)	126.4	126.0
8a	-///.5	120.5	120.3
9		180.6	180.4
9a	- a ha	105.6	105.3
10a	- 10.2	141.8	141.6
N-CH ₃	3.76 (3H, s)	34.0	33.8
OCH ₃ -2	3.90 (3H, <i>s</i>)	60.8	60.6
OCH ₃ -3	3.98 (3H, s)	55.9	55.8

Table 17 NMR spectral data of compound GP8 and arborinine

a) ¹H NMR (CDCl₃, 600 MHz, TMS); ¹³C NMR (CDCl₃, 150 MHz, TMS).

b) The ¹³C-NMR (CDCl₃, TMS) data were reported by Bergenthal *et al.*, 1979.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

4.9 Structure Determination of Compound GP9

Compound GP9 was obtained as colorless amorphous mass. The pseudo molecular ion ($[M+H]^+$) peak at m/z 420.1831 in the HRFABMS of compound **GP9** suggested the molecular formula C₂₂H₂₉NO₅S (calculated for C₂₂H₃₀NO₅S, 420.1845). The optical rotation was positive, $[\alpha]_{D}^{21}$ +68.2° (*c* 0.10, CHCl₃). The UV spectrum (Figure 137) showed three absorption maxima at 204, 225 and 261 nm. In the IR spectrum (Figure **139**) conjugated amide (3287 and 1648 cm⁻¹) and α,β -unsaturated ketone (1698 cm⁻¹) functions were observed in addition to a strong absorption due to sulfoxide stretching at 1039 cm⁻¹. The ¹H-NMR spectrum (Figure 140) showed three tertiary and one secondary methyl groups, and two ethylene units, one of which was connected to the root of the secondary methyl group, in the aliphatic proton region. In the lower field, the spectrum showed seven protons, six of which were assignable to 1,4-disubstituted benzene [$\delta_{\rm H}$ 6.80 (2H, d, J = 8.8 Hz) and 7.09 (2H, d, J = 8.5 Hz)] and trans- α , β -unsaturated carbonyl $[\delta_{\rm H} 6.69 (1\text{H}, dd, J = 14.5, 1.6 \text{ Hz}) \text{ and } 7.52 (1\text{H}, d, J = 14.5 \text{ Hz})]$ systems. The ¹³C-NMR spectrum (Figure 141) supported the above assignments and showed the presence of one additional quaternary carbon ($\delta_{\rm C}$ 88.6). These spectral data were similar to those of a known dihydroglyparvin (Hofer, Vajrodaya and Greger, 1998) which was formally composed of monoterpene, p-hydroxyphenethylamine, and trans- β -methylsulfonylacrylic acid subunits, except the surrounding of sulfur atom. The presence of 5-(1methylpropyl)-3(2H)-furanone system as a monoterpene unit was suggested by HMBC correlations [δ_H 1.35 (H₃-9') and 1.36 (H₃-10') with δ_C 88.6 (C-8') and 207.6 (C-7'); δ_H 5.35 (H-6') with δ_C 32.7 (C-3'), 195.0 (C-5'), 207.6 (C-7'), and 88.6 (C-8'); δ_H 2.14 (H-2'a), 2.96 (H-3'), and 1.28 (H₃-4') with $\delta_{\rm C}$ 195.0 (C-5'); $\delta_{\rm H}$ 2.96 (H-3') with $\delta_{\rm C}$ 100.3 (C-6')] (Figure 145). Additional HMBC correlations of $\delta_{\rm H}$ 3.99 (H-1'a) with $\delta_{\rm C}$ 157.6 (C-12), and $\delta_{\rm H}$ 7.52 (H-3), 6.69 (H-4), 6.80 (N-H signal overlapped with the aromatic proton signal at $\delta_{\rm H}$ 6.80 (H-11)), and 3.55 (H₂-7) with $\delta_{\rm C}$ 162.6 (C-5) indicated the connection of the monoterpene part with *trans-\beta*-methylsulfinylacrylic acid one through *p*hydroxyphenethylamine one. Thus, this could be deduced to be S-deoxydihydroglyparvin [270], a new N-[(4-monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivative, which was supported by the appearances of characteristic fragment ions at m/z 64 and 167 in the EIMS due to methylsulfide (H₃CSOH) and monoterpene ($C_{10}H_{15}O_2$) functions, respectively (Scheme 19).

Scheme 19 Proposed EIMS fragmentation mechanism of compound GP9

position	compound GP9 ^{<i>a</i>)}			
	$\delta_{\rm H}$ (ppm), J (Hz)	δ _C (ppm)		
1	2.63 (3H, <i>s</i>)	39.9		
3	7.52 (1H, <i>d</i> , 14.5)	146.3		
4	6.69 (1H, <i>dd</i> , 14.5, 1.6)	128.6		
5		162.6		
6	6.80 (1H, overlapped signal) ^{b)} -			
7	3.55 (2H, <i>dt</i> , 6.8, 6.5) 41.2			
8	2.79 (2H, <i>t</i> , 6.9)	34.6		
9		131.0		
10	7.09 (2H, <i>d</i> , 8.5)	129.6		
11	6.80 (2H, <i>d</i> , 8.8)	114.8		
12		157.6		
1′a	3.99 (1H, <i>ddd</i> , 9.5, 6.3, 6.1)	65.3		
1′b	3.95 (1H, <i>ddd</i> , 9.5, 6.3, 6.1)			
2′a	2.14 (1H, <i>m</i>) 33.5			
2′b	1.96 (1H, <i>m</i>) -			
3'	2.96 (1H, sextet, 7.2)	32.7		
4'	1.28 (3H, <i>d</i> , 7.2)	17.7		
5'		195.0		
6′	5.35 (1H, <i>s</i>)	100.3		
7′		207.6		
8′	<u> </u>	88.6		
9′	1.35 (3H, <i>s</i>)	23.0		
10′	1.36 (3H, <i>s</i>)	23.0		

Table 18 NMR spectral data of compound GP9

a) ¹H-NMR(600 MHz, CDCl₃, TMS); ¹³C-NMR (150 MHz, CDCl₃, TMS).

b) Exchangeable proton.

4.10 Structure Determination of Compound GP10

Compound GP10 was obtained as colorless oil. It possessed the molecular formula $C_{22}H_{29}NO_5S$, as established from the HREIMS, m/z 422.1985 [M+H]⁺ (calcd 422.2001), revealing 2 mass units more than compound **GP9** (S-deoxydihydroglyparvin). The optical rotation was positive, $[\alpha]_{D}^{18} + 24.1^{\circ}$ (c 0.04, CHCl₃). The UV spectrum (Figure 148) revealed absorption maxima at λ_{max} 205, 225 and 261 nm. The IR spectrum (Figure 150) showed absorption bands at v_{max} 3291 and 1662 (amide) 1695 (α,β unsaturated ketone) and 1035 (sulfoxide group) cm⁻¹. The ¹H-NMR (Figure 151) and ¹³C-NMR (Figure 152) spectral data were similar to those of compound GP9 except for the signals for the acid subunit. Compound GP10 was reasonably supposed to be Sdeoxytetrahydroglyparvin [271], a new N-[(4-monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivative, carrying a methylsulfinylpropanoic acid subunit instead of *trans-\beta*-methylsulfinylacrylic acid subunit in compound **GP9** by the following data: $\delta_{\rm H}$ 2.57 (3H, s, SMe), 2.64-2.66 (2H, m, H₂-4), 2.85 (1H, ddd, J = 13.2, 6.6, 6.6 Hz, H-3b), and 3.11 (1H, ddd, J = 13.2, 7.7, 7.7 Hz, H-3a) in the ¹H-NMR spectrum; δ_c 38.6 (SMe), 28.8 (C-4), and 49.3 (C-3) in the ¹³C-NMR spectrum. The ¹H-¹H COSY and HMBC correlations were shown below (Figures 154 and 156-157).

compound GP10 ^{<i>a</i>)}			
$\delta_{\rm H}({\rm ppm}),J({\rm Hz})$	δ _C (ppm)		
2.57 (3H, s)	38.6		
3.11 (1H, <i>ddd</i> , 13.2, 7.7, 7.7)	49.3		
2.85 (1H, <i>ddd</i> , 13.2, 6.6, 6.6)			
2.64-2.66 (2H, <i>m</i>)	28.8		
	169.9		
6.13 (1H, $br s$) ^{b)}	-		
3.46-3.48 (2H, <i>m</i>)	41.0		
2.75 (2H, <i>t</i> , 6.9)	34.6		
	130.9		
7.08 (2H, <i>d</i> , 8.5)	129.7		
6.80 (2H, <i>d</i> , 8.5)	114.6		
102302	157.4		
3.98 (1H, <i>ddd</i> , 9.4, 6.3, 6.3)	65.2		
3.96 (1H, <i>ddd</i> , 9.4, 6.3, 6.3)			
2.14 (1H, <i>m</i>)	33.4		
1.97 (1H, <i>m</i>)	-		
2.96 (1H, sextet, 7.1) 32.5			
1.29 (3H, <i>d</i> , 7.2) 17.6			
	194.8		
5.35 (1H, <i>s</i>)	100.1		
	207.5		
	88.5		
1.36 (3H, <i>s</i>)	22.8		
1.36 (3H, <i>s</i>)	22.8		
	$\frac{\text{compound GP10}^{a)}}{\delta_{\text{H}}(\text{ppm}), J (\text{Hz})}$ 2.57 (3H, s) 3.11 (1H, ddd, 13.2, 7.7, 7.7) 2.85 (1H, ddd, 13.2, 6.6, 6.6) 2.64-2.66 (2H, m) 6.13 (1H, br s) ^{b)} 3.46-3.48 (2H, m) 2.75 (2H, t, 6.9) - 7.08 (2H, d, 8.5) 6.80 (2H, d, 8.5) 3.98 (1H, ddd, 9.4, 6.3, 6.3) 3.96 (1H, ddd, 9.4, 6.3, 6.3) 2.14 (1H, m) 1.97 (1H, m) 2.96 (1H, sextet, 7.1) 1.29 (3H, d, 7.2) - 5.35 (1H, s) - 1.36 (3H, s) 1.36 (3H, s)		

Table 19 NMR spectral data of compound GP10

a) ¹H-NMR (600 MHz, CDCl₃, TMS);¹³C-NMR (150 MHz, CDCl₃, TMS). *b*) Exchangeable proton.

4.11 Structure Determination of Compound GP11

Compound GP11 was obtained as colorless needles with m.p. 136-138 °C (Lit. Hofer, Vajrodaya and Greger, 1998; 134-137 °C). The pseudo molecular ion ([M+H]⁺) peak at m/z 434 in the FABMS (Figure 158) of the compound GP11 corresponded to be the molecular formula of C₂₂H₂₇NO₆S. The UV spectrum exhibited absorption maxima at λ_{max} 202, 225, 246 and 286 nm (Figure 160). The IR spectrum showed the absorption bands at v_{max} at 3295 and 1636 (conjugated amide), 1671 (α,β -unsaturated ketone), and 1304 and 1131 (sulfonyl group) cm⁻¹ (Figure 161). The ¹H-NMR spectrum (Figure 162) showed the signals of a AA'BB' coupling pattern at $\delta_{\rm H}$ 6.88 and 7.13 (each 2H, d, J = 8.5 Hz, H₂-10 and H₂-11, respectively) attributed to 1,4-disubstituted benzene. Ethylamine and (Z)-1-methyl-1-propene fragments were established from the ¹H-¹H COSY crosspeaks between $\delta_{\rm H}$ 2.83 (2H, t, J = 6.9 Hz), 3.61 (2H, dt, J = 6.8, 6.6 Hz) and 6.12 (1H, br t, J = 5.8 Hz), and between $\delta_{\rm H} 2.00$ (3H, br s), 6.79 (1H, br t, J = 5.8 Hz) and 4.75 (2H, d, J = 6.0 Hz), respectively (Figure 165). The monoterpene subunit which was formed by the extension of (Z)-1-methyl-1-propene fragment with 3(2H)-furanone system was evidenced by the HMBC correlations [$\delta_{\rm H}$ 2.00 (H-4') with $\delta_{\rm C}$ 183.3 (C-5'); $\delta_{\rm H}$ 5.59 (H-6') with $\delta_{\rm C}$ 183.3 (C-5') and 207.4 (C-7'); $\delta_{\rm H}$ 1.40 (H-9' and H-10') with $\delta_{\rm C}$ 23.1 (C-9' and C-10'), 88.6 (C-8') and 207.4 (C-7')] (Figure 167). The connection of the monoterpene unit with C-12 via ether linkage was suggested by the HMBC correlation between $\delta_{\rm H}$ 4.75 (H-1') with δ_C 157.2 (C-12) and the chemical shifts of C-10 (δ_C 114.8), C-12 (δ_C 157.2) and C-1' ($\delta_{\rm C}$ 64.8). The presence of amide group was suggested by the evidence of carbonyl amide signal at δ_C 161.5 (C-4), N-H signal at δ_H 6.12 (H-5) and IR absorption. Two remaining coupled olefinic protons at $\delta_{\rm H}$ 6.83 and 7.36 (each 1H, d, J = 14.6 Hz, H-4 and H-3, respectively) were linked with carbonyl carbon at δ_{C} 161.5 (C-4) [HMBC correlations of $\delta_{\rm H}$ 6.83 and 7.36 with carbonyl amide signal at $\delta_{\rm C}$ 161.5 (C-4)] and sulforyl methyl protons at $\delta_{\rm H}$ 2.99 (H₃-1) [HMBC correlations of $\delta_{\rm H}$ 2.99 (H₃-1) with $\delta_{\rm C}$ 138.9 (C-2) and 135.4 (C-3)]. These signals revealed that the acid component of amide was (E)-3-(methylsulfonyl)propenoic acid. The ethylamine fragment was connected the carbonyl signal at $\delta_{\rm C}$ 161.5 (C-4) and 1,4-disubstituted benzene was suggested by HMBC correlations [δ_H 3.61 (H₂-7) with δ_C 161.5 (C-4); δ_H 2.83 (H₂-8) with δ_C 129.8 (C-10); δ_H 7.13 (H-10) with $\delta_{\rm C}$ 34.3 (C-8)]. Thus, compound **GP11** was identified as a glyparvin-A [214].

12 11 10 $H_{3}C_{S}^{2} \xrightarrow{3}_{4} \xrightarrow{5} N^{7}_{H}$ | CH₃ ₄′ H₃C、 Ó́ ¹H-¹H COSY нмвс [214]

^{10'} CH₃

position	compound GP11 ^{<i>a</i>)}		glyparvin-A ^{c)}		
	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}(\rm ppm)$	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{C}(ppm)$	
1	2.99 (3H, s)	42.5	2.99 (3H, s)	42.5	
3	7.36 (1H, <i>d</i> , 14.6)	138.9	7.36 (1H, <i>d</i> , 14.7)	139.0	
4	6.83 (1H, <i>d</i> , 14.6)	135.4	6.80 (1H, <i>d</i> , 14.7)	135.4	
5	-	161.5	-	161.5	
6	$6.12 (1H, br t, 5.8)^{b}$	-	5.92 (1H, <i>br t</i> , 6.0)	-	
7	3.61 (2H, <i>dt</i> , 6.8, 6.6)	41.3	3.61 (2H, <i>dt</i> , 6.9, 6.0)	41.3	
8	2.83 (2H, <i>t</i> , 6.9)	34.3	2.82 (2H, <i>t</i> , 6.9)	34.3	
9	-	130.7	-	130.7	
10	7.13 (2H, <i>d</i> , 8.5)	129.8	7.12 (2H, <i>d</i> , 8.5)	129.8	
11	6.88 (2H, <i>d</i> , 8.5)	114.8	6.88 (2H, <i>d</i> , 8.5)	114.9	
12	- 3.0	157.2	-	157.2	
1'	4.75 (2H, <i>d</i> , 6.0)	64.8	4.75 (2H, <i>d</i> , 5.9)	64.8	
2'	6.79 (1H, <i>br t</i> , 5.8)	132.0	6.78 (1H, br t, 5.9)	132.0	
3'	- 200	127.9	-	127.9	
4′	2.00 (3H, <i>br s</i>)	13.7	2.00 (3H, <i>br s</i>)	13.7	
5'	-	183.3	-	183.3	
6′	5.59 (1H, s)	100.0	5.59 (1H, s)	100.0	
7′	-	207.4		207.4	
8′	-	88.6		88.6	
9′	1.40 (3H, s)	23.1	1.40 (3H, <i>s</i>)	23.1	
10′	1.40 (3H, <i>s</i>)	23.1	1.40 (3H, <i>s</i>)	23.1	

Table 20 NMR spectral data of compound GP11 and glyparvin-A

a) ¹H-NMR (600 MHz, CDCl₃, TMS); ¹³C-NMR (150 MHz, CDCl₃, TMS).

b) Exchangeable proton.

c) The ¹H-NMR (400 MHz, CDCl₃, TMS) and ¹³C-NMR (100 MHz, CDCl₃, TMS) data were reported by Hofer, Vajrodaya and Greger, 1998.

4.12 Structure Determination of Compound GP12

Compound **GP12** was obtained as colorless amorphous mass. It possessed the molecular formula $C_{22}H_{29}NO_6S$, as determined by the FABMS (**Figure 168**), $[M+H]^+$ at m/z 436, revealing 2 mass units more than compound **GP11**. Compound **GP12** is optically active with an $[\alpha]^{19}{}_{D}$ of +20.7° (*c* 0.11, CHCl₃). The UV spectrum (**Figure 170**) showed absorption maxima at 202, 224 and 261 nm. The IR spectrum (**Figure 172**) exhibited absorption bands due to conjugated amide (3309 and 1655 cm⁻¹), α,β -unsaturated ketone (1696 cm⁻¹) and sulfone (1302 and 1130 cm⁻¹) functions. By comparing the ¹H-NMR and ¹³C-NMR spectra (**Figures 173** and **174**) with those of compound **GP11**, it was found that the structures of these two compounds were closely related. The only difference was observed around C-2' and C-3'. The proton signals at $\delta_{\rm H}$ 4.01 (H-1'a), 3.96 (H-1'b), 2.14 (H-2'a), 1.98 (H-2'b) and 2.97 (H-3') and their ¹H-¹H COSY correlations (**Figure 176**), in addition to carbon signals at $\delta_{\rm C}$ 33.4 (C-2) and 32.6 (C-3) indicated that the bond between C-2' and C-3' was a saturated one comparing with those of compound **GP11**. Thus, compound **GP12** was reasonably deduced to be dihydroglyparvin [**213**].

position	compound GP12 ^{<i>a</i>)}		dihydroglyparvin ^{d)}	
	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}$ (ppm)	$\delta_{\rm H}({\rm ppm}), J({\rm Hz})$	$\delta_{\rm C}$ (ppm)
1	2.99 (3H, s)	42.5	2.99 (3H, s)	42.5
3	7.36 (1H, <i>d</i> , 14.7)	138.8	7.37 (1H, <i>d</i> , 14.7)	139.0
4	6.88 (1H, <i>d</i> , 14.7)	135.6	6.82 (1H, <i>d</i> , 14.7)	135.4
5	-	161.6	-	161.5
6	6.41 (1H, <i>br t</i> , 5.7) ^{<i>b</i>)}	-	6.08 (1H, <i>br t</i> , 6.0)	-
7	3.58 (2H, q, 6.6)	41.4	3.60 (2H, dt, 6.8, 6.0)	41.4
8	2.80 (2H, <i>t</i> , 6.9)	34.3	2.81 (2H, <i>t</i> , 6.8)	34.3
9	-	130.5	-	130.4
10	7.08 (2H, <i>d</i> , 8.6)	129.7	7.08 (2H, <i>d</i> , 8.6)	129.7
11	6.81 (2H, <i>d</i> , 8.6)	114.8	6.82 (2H, <i>d</i> , 8.6)	114.9
12		157.7	-	157.8
1′a	$4.01 (1H, ddd)^{c}$	65.3	$4.01 (1H, ddd)^{e}$	65.3
1′b	$3.96 (1H, ddd)^{c}$	22	$3.98 (1H, ddd)^{e}$	
2′a	2.14 (1H, <i>m</i>)	33.4	2.14 (1H, $dddd)^{e}$	33.5
2′b	1.98 (1H, <i>m</i>)	(1)-	2.00 (1H, <i>dddd</i>) ^{<i>e</i>)}	-
3'	2.97 (1H, overlapped signal)	32.6	2.98 (1H, sextet)	32.6
4'	1.29 (3H, <i>d</i> , 7.2)	17.6	1.30 (3H, <i>d</i> , 7.0)	17.6
5'	- 19 - 19 - 19	194.9		*
6′	5.30 (1H, s)	100.2	5.29 (1H, <i>s</i>)	100.3
7′	· ·	207.6		*
8'	-	88.6		88.5
9'	1.36 (3H, <i>s</i>)	22.8	1.37 (3H, s)	22.8
10′	(3H, <i>s</i>)	22.8	1.37 (3H, s)	22.8

Table 21 NMR spectral data of compound GP12 and dihydroglyparvin

a) ¹H-NMR (600 MHz, CDCl₃, TMS); ¹³C-NMR (150 MHz, CDCl₃, TMS)

b) Exchangeable proton.

c) The ¹H-NMR (400 MHz, CDCl₃, TMS) and ¹³C-NMR (100 MHz, CDCl₃, TMS) data were reported by Hofer, Vajrodaya and Greger, 1998.

d) proton 1'a at $\delta_{\rm H}$ 4.01 (1H, *ddd*, J = 9.5, 6.1, 6.1 Hz), proton 1'b at $\delta_{\rm H}$ 3.96 (1H, *ddd*, J = 9.5, 7.1, 5.7 Hz).

e) Precise assignment of coupling constant; $J_{(1'a, 1'b)} = 9.6$ Hz, $J_{(1'a, 2'a)} = 5.9$ Hz, $J_{(1'a, 2'b)} = 5.8$ Hz, $J_{(1'b, 2'a)} = 5.6$ Hz, $J_{(1'b, 2'b)} = 7.0$ Hz, $J_{(2'a, 2'b)} = 14.0$ Hz, $J_{(2'a, 3')} = 7.3$ Hz, $J_{(2'b, 3')} = 6.8$ Hz, $J_{(3', 4')} = 7.0$ Hz (Hofer, Vajrodaya and Greger, 1998).

* The literature did not report the chemical shift of these signals.

4.13 Structure Determination of Compound GP13

Compound GP13 was obtained as colorless amorphous mass. It was shown to have the molecular formula $C_{22}H_{31}NO_6S$, as deduced from the observed $[M+Na]^+$ at m/z460.1780 (calculated for C₂₂H₃₁NO₆SNa, 460.1770) in the HRFABMS, revealing 2 mass units more than compound GP12. The UV spectrum (Figure 180) showed absorption maximum at 261 nm. The IR spectrum (Figure 182) exhibited the absorption bands due to amide (3328 and 1644 cm⁻¹), α,β -unsaturated ketone (1686 cm⁻¹) and sulfone (1294 and 1122 cm⁻¹) functions. Compound **GP13** is optically active with an $[\alpha]_{D}^{22}$ of +43.8° (c 0.02, CHCl₃). By comparing the ¹H-NMR and ¹³C-NMR spectra (Figures 183 and 184) with those of compound GP12, it was found that the structures of these two compounds are closely related. However, the signals of proton and carbon around C-3 and C-4 were different. The coupled proton signals at δ_H 3.38 (H₂-3) and 2.67 (H₂-4) and carbon signals at $\delta_{\rm C}$ 50.3 (C-3) and 28.8 (C-4) indicated that a bond between C-3 and C-4 was saturated. Thus, compound GP13 was reasonably deduced to be tetrahydroglyparvin *N*-[(4-monoterpenyloxy)phenylethyl]-substituted [272], sulfur-containing а new propanamide derivative.

	compound GP13 ^{a)}			
position	$\delta_{\rm H}$ (ppm), J (Hz)	$\delta_{\rm C}$ (ppm)		
1	2.92 (3H, <i>s</i>)	41.5		
3	3.38 (2H, <i>t</i> , 7.2)	50.3		
4	2.67 (2H, <i>t</i> , 7.2)	28.8		
5		168.7		
6	$5.76 (1H, br t, 5.4)^{b}$	-		
7	3.50 (2H, <i>dt</i> , 6.9, 6.1)	41.1		
8	2.75 (2H, <i>t</i> , 6.9)	34.6		
9		130.7		
10	7.08 (2H, <i>d</i> , 8.7)	129.7		
11	6.81 (2H, <i>d</i> , 8.7)	114.7		
12		157.5		
1′a	4.01 (1H, <i>ddd</i> , 9.7, 6.0, 6.0)	65.2		
1′b	3.95 (1H, <i>ddd</i> , 9.7, 6.9, 5.5)			
2′a	2.15 (1H, <i>m</i>)	33.4		
2′b	1.98 (1H, <i>m</i>)	-		
3'	2.97 (1H, sextet, 7.1)	32.5		
4'	1.29 (3H, <i>d</i> , 6.9)	17.6		
5'	-	194.8		
6′	5.34 (1H, <i>s</i>)	100.2		
7′		207.5		
8′		88.5		
9′	1.36 (3H, <i>s</i>)	22.9		
10′	1.37 (3H, <i>s</i>)	22.9		

Table 22 NMR spectral data of compound GP13

a) ¹H-NMR (600 MHz, CDCl₃, TMS); ¹³C-NMR (150 MHz, CDCl₃, TMS).

b) Exchangeable proton.

5. Aspect of Stereochemistry of *N*-[(4-Monoterpenyloxy)phenylethyl]-Substituted Sulfur-Containing Propanamide Derivatives

Regarding the stereochemistry of compound GP9 (S-deoxydihydroglyparvin) [270], and GP10 (S-deoxytetrahydroglyparvin) [271], there are two chiral centers which were a sulfur chiral center and a carbon chiral center at C-3'. For compound GP12 (dihydroglyparvin) [213] and GP13 (tetrahydroglyparvin) [272], there is a carbon chiral center at C-3'. Compound GP9, GP10 and GP13 were isolated as optically active compounds with the same positive sign of specific rotation; $[\alpha]^{21}_{D}$ +68.2° (CHCl₃) in compound **GP9**, $[\alpha]_{D}^{18} + 24.1^{\circ}$ (CHCl₃) in compound **GP10** and $[\alpha]_{D}^{22} + 43.8^{\circ}$ (CHCl₃) in compound GP13. Co-isolation of a known (+)-dihydroglyparvin (compound GP12, $\left[\alpha\right]_{D}^{19}$ +20.7° (CHCl₃)), lacking the sulfur chiral center, suggested that the carbon chiral center of the monoterpene units in these four might be the same absolute stereochemistry, even remaining unknown. (+)-Entadamide C [273] had been isolated from Entada phaseoloides as a related and simple β -methylsufinylcarboxyamide derivative, and the absolute configuration of the sulfur atom had been reported to be an R configuration (Ikegami *et al.*, 1989). Thus, the positive sign of $[\alpha]_D$ in compound **GP9** and compound GP10 could suggest the same R-configuration of the sulfur chiral center which is in (+)entadamide C. To support this proposal, the circular dichroism (CD) spectra of compound GP9, GP10, GP12 and GP13 were examined and compared with the molar ellipticity of (+)-entadamide C, $[\Phi]_{252}$ +6500 (MeOH), reported by Ikegami *et al.*, 1989. Compound GP9, GP10, GP12 and GP13 exhibited the positive cotton effect; $[\Phi]_{256}$ +6173 in compound **GP9** (Figure 138), [Φ]₂₆₀ +2272 in compound **GP10** (Figure 149), $[\Phi]_{262}$ +3397 in compound **GP12** (Figure 171) and $[\Phi]_{264}$ +1651 in compound **GP13** (Figure 181). All four compounds showed the positive cotton effect at the wavelength near the absorption maxima in UV spectrum. Even though the compound GP12 and GP13 lacked the sulfur chiral atom, they exhibited the positive maxima at the wavelength near those of compound GP9 and GP10. This finding suggested that the positive maxima due to the sulfur chiral center and the carbon chiral center were quite close together. These results supported the proposal that the absolute configuration of the sulfur atom of compound GP9 and GP10 could be R-configuration and the absolute configuration of carbon chiral center in compound GP9, GP10, GP12 and GP13 might be the same absolute stereochemistry, even hitherto unknown.

6. Antiviral Activity against Herpes Simplex Virus (HSV) Type 1 and Type 2 of the Isolated Compounds

Isolated compounds were subjected to antiviral activity tests using HSV-1 and HSV-2 and results are shown in **Table 23**.

Table 23Antiviral activities of isolated compounds against HSV-1 and HSV-2determined by plaque reduction assay

compound	final conc.	EC_{50}^{a} (µg/mL, ((µM)) inactivation treatment		$EC_{50}^{a)}$ (µg/mL, ((µM))		$CC_{50}^{b)}$
	(µg/mL)	HSV-1	HSV-2	HSV-1	HSV-2	((µM))
MH1	100	0	0	0	0	
MH2	100	0	0	0	0	
MH3	100	0	0	0	0	
MH4	100	0	0	0	0	
GP1	100	0	0	0	0	
GP2	- /	50	50	50	50	150
		(151)	(151)	(151)	(151)	(453)
GP3	100	0	0	0	0	
GP4	100	0	0	0	0	
GP5	-	100	>100	100	>100	>100
		(348)	(348)	(348)	(348)	(348)
GP6	100	0	0	0	0	
GP7	100	0	0	0	0	
GP8	100	0	0	0	0	
GP9		12.5	18.7	12.5	18.7	37.5
		(29.8)	(44.6)	(29.8)	(44.6)	(89.4)
GP10	100	0	0	0	0	
GP11	1.56	0	0	0	0	3.12
						(7.2)
GP12	6.25	0	0	0	0	12.5
						(28.7)
GP13		100	>100	0	0	>100
		(229)	(>229)			(>229)
		0 0 10	01/1	0110	J 161 1	

a) EC_{50} (50% effective concentration, $\mu g/mL$, (μM)) was determined from three independent assays. Maximum concentration tested were 100 $\mu g/mL$. The EC_{50} of acyclovir against HSV-1 was 0.5 $\mu g/mL$ and 0.63 $\mu g/mL$ in post-treatment and inactivation treatment, used as positive control.

b) CC_{50} (50% cytotoxic concentration), the concentration that was 50% cytotoxic to the cells used in assay, was determined from three independent assays.

Anti-HSV activities against HSV-1 and HSV-2 of the isolates were assessed (**Table 23**). Coumarins (compound **MH1**, **MH2** and **MH4**) and a 4-quinolone (compound **MH3**) showed no activity against HSV-1 and HSV-2. Compound **GP2** (glycofolinine) [**163**] exhibited moderate activity with EC₅₀ of 151 μ M against both HSV-1 and HSV-2 in inactivation treatment and post-treatment, and the 50% cytotoxic concentration (CC₅₀) to the cells used in assay was 453 μ M. A new alkaloid, compound **GP5** (glycosparvarine) [**266**] also exhibited activity even with higher EC₅₀ (348 μ M). In 3-methoxyacridone series, structure-activity relationship (SAR) for anti-herpes simplex virus activity has been suggested the responsibility of the hydroxyl group at either the C-5 or C-6 positions such as citpressine-I [**274**] and citrusinine-I [**275**] (Yamamoto *et al.*, 1989). Furthermore, potential anti-herpes simplex virus activity has been observed in the 2,2-dimethylpyranoacridones (Yamamoto *et al.*, 1989). These studies showed that oxygen-substituted acridones could act as an additional acridone potential for anti-HSV activity. The limonoid-type compounds (compound **GP6** and mixture **GP7**) showed no activity against HSV-1 and HSV-2.

In addition to N-[(4-monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivatives, compound GP9 (S-deoxydihydroglyparvin) [270] exhibited antiviral activities against HSV-1 and HSV-2 with EC_{50} of 29.8 and 44.6 μM in activation treatment and post-treatment, respectively. However, the EC₅₀ of compound **GP9** was close to the CC_{50} (89.4 μ M). Compound **GP13** (tetrahydroglyparvin) [272] showed moderate activity with EC₅₀ of 229 µM against both HSV-1 and HSV-2 in inactivation treatment. Compound GP10 (S-Deoxytetrahydroglyparvin) [271] showed no activity at concentration tested (100 μ g/mL) in inactivation treatment and post-treatment. In contrast, compound **GP11** (glyparvin-A) and compound **GP12** (dihydroglyparvin) showed no activity at the non-toxic concentration. The cytotoxicity against Vero cell of *N*-[(4-monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivatives could result from the presence of 2,2-dimethyl-3(2H)-furanone system which possesses antitumor activity in natural product antitumor agents such as geiparvarin [276] (Smith III et al., 1981).

CHAPTER V

CONCLUSION

This is the first report on anti-herpes simplex virus activity of extracts of *M*. *hirsutum* and *G. parva*. There was no mention of anti-herpes simplex virus activity of plants in *Micromelum* spp. and *Glycosmis* spp. that have been used in Thai traditional medicine.

In this investigation, from the branches of *Micromelum hirsutum* Oliv., a new natural product, namely 1,2-dimethyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid [**262**] was isolated along with two known compounds, scopoletin [**41**] and micromelin [**5**]. For the leaves of *Micromelum hirsutum* Oliv., two known compounds, micromelin [**5**] and (-)-(2'S, 3'R)-3'-senecioyloxymarmesin [**263**] were isolated.

Chemical examination of the branches of *Glycosmis parva* Craib led to the isolation of a new acridone alkaloid, namely glycosparvarine (1,3,5-trihydroxy-2methoxy-*N*-methyl-9-acridone) [266], together with four known acridone alkaloids and three limonoids. Known compounds were *N*-methylatalaphylline [258], glycofolinine [163], citramine [264], N-methylcyclo-atalaphylline-A [265], limonin [267], and a mixture of limonexic acid [268] and isolimonexic acid [269]. From the leaves of *Glycosmis parva* Craib, three new N-[(4-monoterpenyloxy)phenylethyl]substituted sulfur-containing propanamide derivatives. namely (+)-Sdeoxydihydroglyparvin [270], (+)-S-deoxytetrahydroglyparvin [271] and (+)tetrahydroglyparvin [272] were isolated along with two known derivatives [glyparvin-A [214] and (+)-dihydroglyparvin [213]] and a known acridone alkaloid, arborinine [87].

Isolated compounds were evaluated the anti-herpes simplex virus activity. Glycosparvarine [266], glycofolinine [163] and (+)-tetrahydroglyparvin [272] exhibited moderate activities against both HSV-1 and HSV-2 with EC₅₀ of 151 μ M, 348 μ M and 229 μ M, respectively. On the other hand, (+)-*S*-deoxydihydroglyparvin [270] exhibited more potent activities with lower EC₅₀ of 29.8 and 44.6 μ M against HSV-1 and HSV-2, respectively. (+)-*S*-Deoxydihydroglyparvin [270] is interesting to investigate the anti-herpes simplex virus mechanism.

REFERENCES

- ชยันต์ พิเชียรสุนทร, แม้นมาส ชวลิต และวิเซียร จีรวงส์. 2548. <u>คำอธิบายตำราพระโอสถพระนารายณ์</u>. พิมพ์ครั้งที่ 2. กรุงเทพมหานคร: สำนักพิมพ์อมรินทร์.
- นิจศิริ เรื่องรังษี และธวัชชัย มังคละคุปต์. 2547. <u>สมุนไพรไทย เล่ม 1</u>. พิมพ์ครั้งที่ 1. กรุงเทพมหานคร: ฐานการ พิมพ์.
- วุฒิ วุฒิธรรมเวช และธนศักดิ์ วุฒิธรรมเวช. 2540. <u>สารานุกรมสมุนไพร รวมหลักเภสัชกรรมไทย</u>. พิมพ์ครั้งที่ 1. กรุงเทพมหานคร: สำนักพิมพ์โอเดียนสโตร์.
- Anwer, M. F., Kapil, R. S. and Popli, S. P. 1972. Identity of glycozolidine. Indian J. Chem. 10: 959.
- Banerjee, S. K., Chakravarti, D., Chakravarti, R. N., Fales, H. M. and Klayman, D. L. 1961. Alkaloids of *Glycosmis arborea*-III: Structure of arborinine. <u>Tetrahedron</u> 16: 251-254.
- Banerji, J., Das, A. K., Ghoshal, N. and Das, B. 1988. Studies on Rutaceae. Part VIII. Chemical investigation on the constituents of *Atalantia wightii* Tanaka, *Aegle marmelos* Correa ex Koen, *Ruta graveolens* Linn. and *Micromelum pubescens* Blume. Indian J. Chem., Sect. B 27B: 594-596.
- Banerji, J., Ghoshal, N., Sarkar, S., Patra, A., Abraham, K. and Shoolery, J. N. 1981. Studies on Rutaceae: Part I–Carbon-13 NMR studies on acridone bases & structure of an alkaloid from *Atalantia wightii*. <u>Indian J. Chem., Sect. B</u> 20B: 835-838.
- Bergenthal, D., Mester, I., Rózsa, Z. and Reisch, J. 1979. ¹³C-NMR-spektren einiger acridon-alkaloide. <u>Phytochemistry</u> 18: 161-163.
- Bhakuni, D. S., Gupta, N. C., Satish, S., Sharma, S. C., Shukla, Y. N. and Tandon, J. S. 1971. Medicinal plants. III. Ericaceae and other families. Chemical constituents of Actinodaphne augustifolia, Croton sparsiflorus, Duabanga sonneratiodes, Glycosmis mauritiana, Hedyotis auricularia, Lyonia ovalifolia, Micromelum pubescens, Pyrus pashia and Rhododendron niveum. Phytochemistry 10: 2247-2249.
- Bhattacharyya, P., Chakrabartty, P. K. and Chowdhury, B. K. 1985. Glycozolidol, an antibacterial carbazole alkaloid from *Glycosmis pentaphylla*. <u>Phytochemistry</u> 24: 882-883.

- Bhattacharyya, P. and Chowdhury, B. K. 1984. Glycophylone: a new quinolone alkaloid from *Glycosmis pentaphylla* (Retz) DC. <u>Chem. Ind.</u> 352.
- Bhattacharyya, P. and Chowdhury, B. K. 1985. Glycozolidal, a new carbazole alkaloid from *Glycosmis pentaphylla*. J. Nat. Prod. 48: 465-466.
- Bhattacharyya, P. and Chowdhury, B. K. 1985. Glycolone, a quinolone alkaloid from *Glycosmis pentaphylla*. <u>Phytochemistry</u> 24: 634-635.
- Bhattacharyya, P., Sarkar, T., Chakraborty, A. and Chowdhury, B. K. 1984. Structure and synthesis of glycozolinol, a new carbazole alkaloid from *Glycosmis pentaphylla* (Retz) DC. Indian J. Chem., Sect. B 23B: 49-51.
- Bowen, I. H. and Perera, K. 1982. Alkaloids, coumarins and flavonoids of *Micromelum zeylanicum*. <u>Phytochemistry</u> 21: 433-437.
- Bowen, I. H., Perera, K. and Lewis, J. R. 1980. Alkaloids from the stem of *Glycosmis* bilocularis (Rutaceae). <u>Phytochemistry</u> 19: 1566-1568.
- Bowen, I. H., Perera, K. P. W. C. and Lewis, J. R. 1978. Alkaloids of the leaves of *Glycosmis bilocularis*. <u>Phytochemistry</u> 17: 2125-2127.
- Breksa III A. P., Dragull K. and Wong R. Y. 2008. Isolation and identification of the first C-17 limonin epimer, epilimonin. J. Agric. Food. Chem. 56: 5595-5598.
- Cassady, J. M., Ojima, N., Chang, C. and McLaughlin, J. L. 1979. An investigation of the antitumor activity of *Micromelum integerrimum* (Rutaceae). J Nat Prod. 42: 274-278.
- Chakraborty, D. P. 1966. Chemical taxonomy. V. Glycozoline, a carbazole derivative from *Glycosmis pentaphylla*. <u>Tetrahedron Lett.</u> 661-664.
- Chakraborty, D. P. 1969. Chemical taxonomy. XII. Glycozoline, a carbazole derivative, from *Glycosmis pentaphylla*. <u>Phytochemistry</u> 8: 769-772.
- Chakraborty, K., Roy, S. and Chakraborty, D. P. 1989. Mupamine from *Glycosmis pentaphylla*. <u>Phytochemistry</u> 28: 677-678.
- Chakravarti, D., Chakravarti, R. N., Cohen, L. A., Dasgupta, B., Datta, S. and Miller,
 H. K. 1961. Alkaloids of *Glycosmis arborea* [*G. pentaphylla*]. II. Structure of arborine. <u>Tetrahedron</u> 16: 224-250.
- Chakravarty, A. K., Das, B., Masuda, K. and Ageta, H. 1996. Tetracyclic triterpenoids from *Glycosmis arborea*. <u>Phytochemistry</u> 42: 1109-1113.
- Chakravarty, A. K., Sarkar, T., Masuda, K. and Shiojima, K. 1999. Carbazole alkaloids from roots of *Glycosmis arborea*. <u>Phytochemistry</u> 50: 1263-1266.

- Chatterjee, A., Dutta, C. P. and Bhattacharyya, S. 1967. Micromelumin and micropubescin two new coumarins from *Micromelum pubescens*. <u>Sci. Cult.</u> (<u>Calcutta</u>) 33: 371-373.
- Chatterjee, A. and Majumdar, S. G. 1954. Alkaloids of *Glycosmis pentaphylla* I. J. Am. Chem. Soc. 76: 2459-2463.
- Choi, H., Gwak, J., Cho, M., Ryu, M.-J., Lee, J.-H., Kim, S. K., Kim, Y. H., Lee, G. W., Yun, M.-Y., Cuong, N. M., Shin, J.-G., Song, G.-Y. and Oh, S. 2010. Murrayafoline A attenuates the Wnt/β-catenin pathway by promoting the degradation of intracellular β-catenin proteins. <u>Biochem. Biophys. Res.</u> <u>Commun.</u> 391: 915-920.
- Chowdhury, B. K., Mustapha, A., Garba, M. and Bhattacharyya, P. 1987. Carbazole and 3-methylcarbazole from *Glycosmis pentaphylla*. <u>Phytochemistry</u> 26: 2138-2139.
- Chukaew A., Ponglimanont C., Karalai C. and Tewtrakul S. 2008. Potential antiallergic acridone alkaloids from the roots of *Alantia monophylla*. <u>Phytochemistry</u> 69: 2616-2620.
- Croft, K. D. and Toia, R. F. 1989. Coumarins from *Micromelum minutum*. <u>Planta Med.</u> 55: 401.
- Cuong, N. M., Hung, T. Q., Van Sung, T. and Taylor, W. C. 2004. A new dimeric carbazole alkaloid from *Glycosmis stenocarpa* roots. <u>Chem. Pharm. Bull.</u> 52: 1175-1178.
- Cuong, N. M., Taylor, W. C. and Sung, T. V. 1999. Glypetelotine, a sulphur-containing indole alkaloid from *Glycosmis petelotii*. <u>Phytochemistry</u> 52: 1711-1714.
- Das, B. P., Chowdhury, D. N., Choudhury, B. and Mester, I. 1982. Isolation and structure of glycosolone, a new 2-quinolone alkaloid from *Glycosmis pentaphylla* (Retz) DC. Indian J. Chem., Sect. B 21B: 176-178.
- Das, S., Baruah, R. H., Sharma, R. P., Barua, J. N., Kulanthaivel, P. and Herz, W. 1984.
 7-Methoxycoumarins from *Micromelum minutum*. <u>Phytochemistry</u> 23: 2317-2321.
- De Silva, L. B., De Silva, U. L. L., Mahendran, M. and Jennings, R. C. 1980. Isolation of 7-[4'-(4"-methyl-5"-oxo-2",5"-dihydro-2"-furyl)-3'-methyl-2'butenyloxy]coumarin from *Micromelum ceylanicum* Swingle. <u>Indian J. Chem.</u>, <u>Sect. B</u> 19B: 820-821.

- Diep, P. T. M., Pawlowska, A. M., Cioni, P. L., Nghi, D. H., Huong, L. M., Van Minh, C. and Braca, A. 2007. Chemical and biological studies of the essential oils of *Micromelum hirsutum*. <u>Nat. Prod. Commun.</u> 2: 691-694.
- Fujioka, H., Nishiyama, Y., Furukawa, H. and Kumada, N. 1989. In vitro and in vivo activities of atalaphillinine and related acridone alkaloids against rodent malaria. <u>Antimicrob. Agents Chemother.</u> 33: 6-9.
- Furukawa, H., Ito, C., Ono, T., Wu, T. S. and Kuoh, C. S. 1993. Spectroscopic elucidation of glycobismines, first naturally occurring binary acridone alkaloids containing a carbon-carbon linkage. <u>J. Chem. Soc., Perkin Trans. 1</u> 471-475.
- Furukawa, H., Wu, T. S., Kuoh, C. S., Sato, T., Nagai, Y. and Kagei, K. 1984. Acridone alkaloids. Part XII. The structure of glycobismine-A, the first naturally occurring "binary" acridone alkaloid containing a carbon-carbon linkage. <u>Chem.</u> Pharm. Bull. 32: 1647-1649.
- Govindachari T. R., Viswanathan N., Pai B. R., Ramachandran V. N. and Subramaniam
 P. S. 1970. Alkaloids of *Alantia monophylla* Correa. <u>Tetrahedron</u> 26: 2905-2910.
- Greger, H., Hadacek, F., Hofer, O., Wurz, G. and Zechner, G. 1993. Different types of sulfur-containing amides from *Glycosmis cf. chlorosperma*. <u>Phytochemistry</u> 32: 933-936.
- Greger, H., Hofer, O., Kaehlig, H. and Wurz, G. 1992. Sulfur containing cinnamides with antifungal activity from *Glycosmis cyanocarpa*. <u>Tetrahedron</u> 48: 1209-1218.
- Greger, H., Hofer, O., Zechner, G., Hadacek, F. and Wurz, G. 1994. Sulfones derived from methylthiopropenoic acid amides from *Glycosmis angustifolia*. <u>Phytochemistry</u> 37: 1305-1310.
- Greger, H., Zechner, G., Hofer, O., Hadacek, F. and Wurz, G. 1993. Sulfur-containing amides from *Glycosmis* species with different antifungal activity. <u>Phytochemistry</u> 34: 175-179.
- Greger, H., Zechner, G., Hofer, O. and Vajrodaya, S. 1996. Bioactive amides from *Glycosmis* species. J. Nat. Prod. 59: 1163-1168.
- Hinterberger, S., Hofer, O. and Greger, H. 1994. Synthesis and corrected structures of sulphur-containing amides from *Glycosmis* species: Sinharines, penimides, and. <u>Tetrahedron</u> 50: 6279-6286.

- Hofer, O., Greger, H., Lukaseder, B., Vajrodaya, S. and Bacher, M. 2000. Prenylated sulfonyl amides from *Glycosmis* species. <u>Phytochemistry</u> 54: 207-213.
- Hofer, O., Vajrodaya, S. and Greger, H. 1998. Phenethylamides with an unusual 4-oxo-2-oxolenyl terpenoid side chain from *Glycosmis* species. <u>Monatsh. Chem.</u> 129: 213-219.
- Hofer, O., Zechner, G., Vajrodaya, S., Lutz, G. and Greger, H. 1995. New anthranilic and methylsulfonylpropenoic acid amides from Thai *Glycosmis* species. <u>Liebigs</u> <u>Ann.</u> 1789-1794.
- Hofer, O., Zechner, G., Wurz, G., Hadacek, F. and Greger, H. 1995. Ritigalin, a new thiocarbonic acid imide from *Glycosmis* species. <u>Monatsh. Chem.</u> 126: 365-368.
- Hooker, J. D. 1875. <u>The Flora of British India Vol. Ranunculaceae to Sapindaceae</u>. 501-502.
- Humbert, H. 1945. Supplément à la flore générale de l'Indo-Chine. 616-618.
- Ikegami, F., Sekine, T., Duangteraprecha, S., Matsushita, N., Matsuda, N., Ruangrungsi, N. and Murakoshi, I. 1989. Entadamide C, a sulphur-containing amide from *Entada phaseoloides*. <u>Phytochemistry</u> 28: 881-882.
- Itharat, A., Houghton, P. J., Eno-Amooquaye, E., Burke, P. J., Sampson, J. H. and Raman, A. 2004. In vitro cytotoxic activity of Thai medicinal plants used traditionally to treat cancer. J. Ethnopharmacol. 90: 33-38.
- Ito, C. and Furukawa, H. 1987. Constituents of *Murraya exotica* L. Structure elucidation of new coumarins. <u>Chem. Pharm. Bull.</u> 35: 4277-4285.
- Ito, C., Itoigawa, M., Sato, A., Hasan, C. M., Rashid, M. A., Tokuda, H., Mukainaka, T., Nishino, H. and Furukawa, H. 2004. Chemical constituents of *Glycosmis arborea*: three new carbazole alkaloids and their biological activity. <u>J. Nat.</u> <u>Prod.</u> 67: 1488-1491.
- Ito, C., Kondo, Y., Rao, K. S., Tokuda, H., Nishino, H. and Furukawa, H. 1999. Chemical constituents of *Glycosmis pentaphylla*. Isolation of a novel naphthoquinone and a new acridone alkaloid. <u>Chem. Pharm. Bull.</u> 47: 1579-1581.
- Ito, C., Kondo, Y., Wu, T.-S. and Furukawa, H. 2000. Chemical constituents of *Glycosmis citrifolia* (Willd.) Lindl. Structures of four new acridones and three new quinolone alkaloids. <u>Chem. Pharm. Bull.</u> 48: 65-70.

- Ito, C., Otsuka, T., Ruangrungsi, N. and Furukawa, H. 2000. Chemical constituents of *Micromelum minutum*. Isolation and structural elucidation of new coumarins. <u>Chem. Pharm. Bull.</u> 48: 334-338.
- Itoigawa, M., Ito, C., Wu, T. S., Enjo, F., Tokuda, H., Nishino, H. and Furukawa, H. 2003. Cancer chemopreventive activity of acridone alkaloids on Epstein-Barr virus activation and two-stage mouse skin. <u>Cancer Lett.</u> 193: 133-138.
- Jash, S. S., Biswas, G. K., Bhattacharyya, S. K., Bhattacharyya, P., Chakraborty, A. and Chowdhury, B. K. 1992. Carbazole alkaloids from *Glycosmis pentaphylla*. <u>Phytochemistry</u> 31: 2503-2505.
- Jiménez, B., Grande, M. C., Anaya, J., Torres, P. and Grande, M. 2000. Coumarins from *Ferulago capillaris* and *F. brachyloba*. <u>Phytochemistry</u> 53: 1025-1031.
- Joshi, P. P., Shukla, Y. N., Bhakuni, D. S. and Dhar, M. M. 1975. 6-(2,3-Dihydroxy-3methylbutyl)-7-methoxycoumarin, a new coumarin from *Micromelum pubescens*. Indian J. Chem. 13: 772-774.
- Ju-ichi M., Kaga H., Muraguchi M., Inoue M., Kajiura I., Omura M. and Furukawa H.
 1988. New acridone alkaloid and coumarin from *Citrus* plants. <u>Heterocycles</u> 27: 2197-2200.
- Kamperdick, C., Phuong, N. M., Van Sung, T., Schmidt, J. and Adam, G. 1999. Coumarins and dihydrocinnamic acid derivatives from *Micromelum falcatum*. <u>Phytochemistry</u> 52: 1671-1676.
- Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M., Takemura, Y., Ju-ichi, M., Ito, C. and Furukawa, H. 1999. Acridones as inducers of HL-60 cell differentiation. <u>Leukemia Res.</u> 23: 263-269.
- Kawaii S., Tomono Y., Katase E., Ogawa K., Yano M., Takemura Y., Ju-ichi M., Ito C., Furukawa H. 1999. The Antiproliferative Effect of Acridone Alkaloids on Several Cancer Cell Lines. J. Nat. Prod. 62: 587-589.
- Kennard, O., di Sanseverino, L. R., Vorbrueggen, H. and Djerassi, C. 1965. Terpenoids. LVI. Complete structure of the triterpene arborinol. <u>Tetrahedron Lett.</u> 3433-3438.
- Kong, Y. C., But, P. P. H., Ng, K. H., Li, Q., Cheng, K. F. and Waterman, P. G. 1988. *Micromelum*: a key genus in the chemosystematics of the Clauseneae. <u>Biochem.</u> <u>Syst. Ecol.</u> 16: 485-489.
- Kumar, P., Das, B. P. and Sinha, S. K. P. 1986. Homo-glycosolone: a new quinolone alkaloid from *Glycosmis pentaphylla* (Retz) DC. <u>Chem. Ind.</u> 669-670.

- Kumar, V., Reisch, J. and Wickramasinghe, A. 1989. Glycomaurin and glycomaurrol, new carbazole alkaloids from *Glycosmis mauritiana* (Rutaceae) bark. <u>Aust. J.</u> Chem. 42: 1375-1379.
- Lamberton, J. A., Price, J. R. and Redcliffe, A. H. 1967. Micromelin, a new coumarin from *Micromelum minutum*. <u>Aust. J. Chem.</u> 20: 973-979.
- Lee S.-Y., Morita H., Takeya K., Itokawa H., and Fukaya H. 1999. Limonoids from *Citrus nippokoreana*. <u>Nat. Med.</u> 53: 255-258.
- Leu, Y.-L., Chan, Y.-Y., Wu, T.-S., Teng, C.-M. and Chen, K.-T. 1998. Antiplatelet aggregation principles from *Glycosmis citrifolia*. Phytother. Res. 12: S77-S79.
- Lipipun V., Kurokawa M., Suttisri R., Taweechotipatr P., Pramyothin P., Hattori M. and Shiraki K. 2003. Efficacy of Thai medicine plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. <u>Antiviral Res.</u> 60: 175-180.
- Lukaseder, B., Vajrodaya, S., Hehenberger, T., Seger, C., Nagl, M., Lutz-Kutschera, G., Robien, W., Greger, H. and Hofer, O. 2009. Prenylated flavanones and flavanonols as chemical markers in *Glycosmis* species (Rutaceae). <u>Phytochemistry</u> 70: 1030-1037.
- Luo, X., Qi, S., Yin, H., Xiao, Z. and Zhang, S. 2009. Micromelosides A-D, four new coumarins from the stem bark of *Micromelum falcatum*. <u>Magn. Reson. Chem.</u> 47: 1110-1114.
- Luo, X. M., Qi, S. H., Yin, H., Gao, C. H. and Zhang, S. 2009. Alkaloids from the stem bark of *Micromelum falcatum*. <u>Chem. Pharm. Bull.</u> 57: 600-602.
- Ma, C., Case Ryan, J., Wang, Y., Zhang, H.-J., Tan Ghee, T., Van Hung, N., Cuong Nguyen, M., Franzblau Scott, G., Soejarto Djaja, D., Fong Harry, H. and Pauli Guido, F. 2005. Anti-tuberculosis constituents from the stem bark of *Micromelum hirsutum*. <u>Planta Med.</u> 71: 261-267.
- Manners G. D. and Breksa III A. P. 2004. Identifying *Citrus* limonoid aglycones by HPLC-EI/MS and HPLC-APCI/MS techniques. <u>Phytochem. Anal.</u> 15: 372-381.
- McClatchey, W. 1996. The ethnopharmacopoeia of Rotuma. <u>J. Ethnopharmacol.</u> 50: 147-156.
- Merrill, E. D. 1968. <u>A flora of Manila</u>. first Edition. pp. 268-269. Manila: Department of the interior, Bureau of Science.
- Mou, F. J. and Zhang, D. X. 2009. *Glycosmis longipetala* F. J. Mou & D. X. Zhang, a new species of Rutaceae from China. <u>J. Syst. Evol.</u> 47: 162-167.

- Mukherjee, S., Mukherjee, M. and Ganguly, S. N. 1983. Glycozolinine, a carbazole derivative from *Glycosmis pentaphylla*. Phytochemistry 22: 1064-1065.
- Muthukrishnan, J., Seifert, K., Hoffmann, K. H. and Lorenz, M. W. 1998. Inhibition of juvenile hormone biosynthesis in *Gryllus bimaculatus* by *Glycosmis pentaphylla* leaf compounds. <u>Phytochemistry</u> 50: 249-254.
- Nakahara, K., Trakoontivakorn, G., Alzoreky, N. S., Ono, H., Onishi-Kameyama, M. and Yoshida, M. 2002. Antimutagenicity of Some Edible Thai Plants, and a Bioactive Carbazole Alkaloid, Mahanine, Isolated from *Micromelum minutum*. J. Agric. Food Chem. 50: 4796-4802.
- Negi, N., Jinguji, Y., Ushijima, K., Ikeda, S., Takemura, Y., Ju-ichi, M., Wu, T.-S., Ito, C. and Furukawa, H. 2004. Two new dimeric acridone alkaloids from *Glycosmis citrifolia*. <u>Chem. Pharm. Bull.</u> 52: 362-364.
- Ono, T., Ito, C., Furukawa, H., Wu, T.-S., Kuoh, C.-S. and Hsu, K.-S. 1995. Two new acridone alkaloids from *Glycosmis* species. J. Nat. Prod. 58: 1629-1631.
- Pacher, T., Bacher, M., Hofer, O. and Greger, H. 2001. Stress induced carbazole phytoalexins in *Glycosmis* species. <u>Phytochemistry</u> 58: 129-135.
- Pakrashi, S. C., Bhattacharyya, J., Johnson, L. F. and Budzikiewicz, H. 1963. Studies on indian medicinal plants-VI. Structures of glycosmicine, glycorine and glycosminine, the minor alkaloids from *Glycosmis arborea* (roxb.) DC. <u>Tetrahedron</u> 19: 1011-1026.
- Pakrashi, S. C. and Samanta, T. B. 1967. Indian medicinal plants. XVI. Acid induced epimerization and rearrangements of arborinol, the novel triterpene from *Glycosmic arborea*. <u>Tetrahedron Lett.</u> 3679-3684.
- Panthong, A., Kanjanapothi, D., and Taylor, W. C. 1986. Ethnobotanical review of medicinal plants from Thai traditional books, Part I: Plants with antiinflammatory, anti-asthmatic and antihypertensive properties. <u>J.</u> <u>Ethnopharmacol.</u> 18: 213-228.
- Rahmani, M., Hin Taufiq-Yap, Y., Ismail, H. B. M., Sukari, A. and Waterman, P. G. 1994. New coumarin and dihydrocinnamic acid derivatives from two malaysian populations of *Micromelum minutum*. <u>Phytochemistry</u> 37: 561-564.
- Rahmani, M., Hin, T. Y., Ismail, H. B., Sukari, M. A. and Manas, A. R. 1993. Microminutinin: A Novel Coumarin from *Micromelum minutum*. <u>Planta Med.</u> 59: 93-94.

- Rahmani, M., Leng, K. W., Ismail, H. B. M., Hin, T.-Y. Y., Sukari, M. A., Ali, A. M. and Kulip, J. 2004. A new flavonoid and sulphur-containing amides from *Glycosmis chlorosperma*. <u>Nat. Prod. Res.</u> 18: 85-88.
- Rahmani, M., Ling, C. Y., Sukari, M. A., Ismail, H. B., Meon, S. and Aimi, N. 1998. 7-Methoxyglycomaurin: a new carbazole alkaloid from *Glycosmis rupestris*. <u>Planta Med.</u> 64: 780.
- Rahmani, M., Susidarti, R. A., Ismail, H. B. M., Sukari, M. A., Hin, T. Y. Y., Lian, G.
 E. C., Ali, A. M., Kulip, J. and Waterman, P. G. 2003. Coumarins from Malaysian *Micromelum minutum*. <u>Phytochemistry</u> 64: 873-877.
- Rastogi, K., Kapil, R. S. and Poli, S. P. 1980. New alkaloids from *Glycosmis mauritiana*. <u>Phytochemistry</u> 19: 945-948.
- Reisch J., Szendrei K., Minker E. and Novak I. 1971. Spektroskopische methoden zur strukturermittlung von acridon-alkaloiden. <u>Pharmazie</u> 26: 108-216.
- <u>Réthy, B., Zupkó, I., Minorics, R., Hohmann, J., Ocsovszki, I</u>. and <u>Falkay, G</u>. 2007. Investigation of cytotoxic activity on human cancer cell lines of arborinine and furanoacridones isolated from Ruta graveolens. <u>Planta Med.</u> 73: 41-48.
- Ridley, H. N. 1922. <u>The flora of the Malay Peninsula</u>. Vol. I, first Edition., pp. 348-351. London: L. Reeve & Co., Ltd.
- Roy, M. K., Thalang, V. N., Trakoontivakorn, G. and Nakahara, K. 2004. Mechanism of mahanine-induced apoptosis in human leukemia cells (HL-60). <u>Biochem.</u> <u>Pharmacol.</u> 67: 41-51.
- Sarkar, M. and Chakraborty, D. P. 1977. Chemical taxonomy (molecular taxonomy). Part 40. Some minor constituents from *Glycosmis pentaphylla*. <u>Phytochemistry</u> 16: 2007-2008.
- Sarkar, M. and Chakraborty, D. P. 1979. Chemical taxonomy. Part 45. Glycophymoline, a new minor quinazoline alkaloid from *Glycosmis pentaphylla*. <u>Phytochemistry</u> 18: 694-695.
- Sarkar, M., Kundu, S. and Chakraborty, D. P. 1978. Chemical taxonomy. Part 42. Glycarpine, a new alkaloid from *Glycosmis cyanocarpa*. <u>Phytochemistry</u> 17: 2145-2146.
- Seger, C., Vajrodaya, S., Greger, H. and Hofer, O. 1998. Structure elucidation and synthesis of a new bioactive quinazolone derivative obtained from *Glycosmis cf. chlorosperma*. <u>Chem. Pharm. Bull.</u> 46: 1926-1928.

- Shapiro, J. P., Bowman, K. D. and Lapointe, S. L. 2000. Dehydrothalebanin: A Source of Resistance from *Glycosmis pentaphylla* against the Citrus Root Weevil *Diaprepes abbreviatus*. J. Agric. Food Chem. 48: 4404-4409.
- Sinha, S., Pal, B. C., Jagadeesh, S., Banerjee, P. P., Bandyopadhaya, A. and Bhattacharya, S. 2006. Mahanine inhibits growth and induces apoptosis in prostate cancer cells through the deactivation of Akt and activation of caspases. <u>The Prostate</u> 66: 1257-1265.
- Sinha, S. K. P. and Kumar, P. 1988. Glycolone: a new 2-quinolone alkaloid from *Glycosmis pentaphylla* (Retz) DC. <u>Indian J. Chem., Sect. B</u> 27B: 460-461.
- Smith III, A. B., Levenberg, P. A., Jerris, P. J., Scarborough Jr., R. M. and Wovkulich,
 P. M. 1981. Synthesis and reactions of simple 3(2H)-furanones. J. Am. Chem.
 <u>Soc.</u> 103: 1501-1513.
- Smitinand, T. 2001. <u>Thai Plant Names (Botanical Names Vernacular Names)</u>. revised Edition. Bangkok: The Forest Herbarium, Royal Forest Department.
- Sohrab, M. H., Chowdhury, R., Hasan, C. M. and Rashid, M. A. 2004. Chemotaxonomic significance of polyoxygenated flavonoids from the leaves of *Micromelum minutum*. <u>Biochem. Syst. Ecol.</u> 32: 829-831.
- Sohrab, M. H., Hasan, C. M. and Rashid, M. A. 1999. 6-Substituted-7-oxygenated coumarins from the leaves of *Micromelum minutum*. <u>Biochem. Syst. Ecol.</u> 27: 535-537.
- Su, T. L., Dziewiszek, K. and Wu, T. S. 1991. Synthesis of glyfoline, a constituent of *Glycosmis citrifolia* (Willd.) Lindl. and a potential anticancer agent. <u>Tetrahedron Lett.</u> 32: 1541-1544.
- Su, T. L., Huang, H. M., Wang, C. K., Wu, H. C. and Lin, C. T. 2005. Cytochrome c release induces apoptosis of nasopharyngeal carcinoma (NPC) by antitumor glyfoline. <u>Planta Med.</u> 71: 28-32.
- Susidarti, R. A., Rahmani, M., Ismail, H. B. M., Sukari, M. A., Hin, T. Y. Y., Lian, G.
 E. C., Ali, A. M., Kulip, J. and Waterman, P. G. 2006. A new coumarin and triterpenes from Malaysian *Micromelum minutum*. <u>Nat. Prod. Res.</u> 20: 145-151.
- Steck, W. and Mazurek, M. 1972. Identification of Natural Coumarins by NMR Spectroscopy. <u>Lloydia</u> 35: 418-439.
- Stone, B. C. 1985. A conspectus of the genus *Glycosmis* Correa: studies in Malesian Rutaceae, III. <u>Proc. Acad. Nat. Sci. Phila.</u> 137: 1–27.

- Tantishaiyakul, V., Pummangura, S., Chaichantipyuth, C., Ma, W. W. and McLaughlin, J. L. 1986. Phebalosin from the bark of *Micromelum minutum*. <u>J. Nat. Prod.</u> 49: 180-181.
- Tantivatana, P., Ruangrungsi, N., Vaisiriroj, V., Lankin, D. C., Bhacca, N. S., Borris, R.
 P., Cordell, G. A. and Johnson, L. F. 1983. Microminutin, a novel cytotoxic coumarin from *Micromelum minutum* (Rutaceae). J. Org. Chem. 48: 268-270.
- Trinh, T. T., Tran, V. S. and Adam, G. 2004. Study on chemical constituents of *Micromelum hirsutum*. <u>Tap Chi Hoa Hoc</u> 42: 177-181.
- Varisara Vaisiriroj, "Alkaloid(s) from *Micromelum minutum* leaves," (Master's thesis, Pharmaceutical Botany, Graduate School, Chulalongkorn University, 1980), p. 71.
- Vajrodaya, S., Bacher, M., Greger, H. and Hofer, O. 1998. Organ-specific chemical differences in *Glycosmis trichanthera*. <u>Phytochemistry</u> 48: 897-902.
- Wang, J., Di, Y., Yang, X., Li, S., Wang, Y. and Hao, X. 2006. Hydroquinone diglycoside acyl esters from the stems of *Glycosmis pentaphylla*. <u>Phytochemistry</u> 67: 486-491.
- Wang, J., He, H., Shen, Y. and Hao, X. 2004. Sulfur-containing and dimeric flavanols from *Glycosmis montana*. <u>Tetrahedron Lett.</u> 46: 169-172.
- Wang, J., Yang, X., Di, Y., Wang, Y., Shen, Y. and Hao, X. 2006. Isoflavone diglycosides from *Glycosmis pentaphylla*. J. Nat. Prod. 69: 778-782.
- Wang, J., Zheng, Y., Efferth, T., Wang, R., Shen, Y. and Hao, X. 2005. Indole and carbazole alkaloids from *Glycosmis montana* with weak anti-HIV and cytotoxic activities. <u>Phytochemistry</u> 66: 697-701.
- Whistler, W. A. 1991. Herbal medicine in the Kingdom of Tonga. J. Ethnopharmacol. 31: 339-372.
- Wu, T.-S., Chang, F.-C. and Wu, P.-L. 1995. Flavonoids, amidosulfoxides and an alkaloid from the leaves of *Glycosmis citrifolia*. <u>Phytochemistry</u> 39: 1453-1457.
- Wu, T. S. and Furukawa, H. 1982. Acridone alkaloids. III. Structure of glycofoline, a new monoterpenoid acridone alkaloid from *Glycosmis citrifolia* (Willd.) Lindl. <u>Heterocycles</u> 19: 825-827.
- Wu, T. S., Furukawa, H. and Hsu, K. S. 1982. Acridone alkaloids. V. New furo- and pyranoacridone alkaloids from *Glycosmis citrifolia* (Willd.) Lindl. <u>Heterocycles</u> 19: 1227-1231.

- Wu, T. S., Furukawa, H. and Kuoh, C. S. 1982. Acridone alkaloids. IV. Structures of four new acridone alkaloids from *Glycosmis citrifolia* (Willd.) Lindl. <u>Heterocycles</u> 19: 1047-1051.
- Wu, T. S., Furukawa, H., Kuoh, C. S. and Hsu, K. S. 1983. Acridone alkaloids. Part 9. Chemical constituents of *Glycosmis citrifolia* (Willd.) Lindl. Structures of novel linear pyranoacridones, furoacridones, and other new acridone alkaloids. <u>J.</u> <u>Chem. Soc., Perkin Trans. 1</u> 1681-1688.
- Wu T.-S., Kuoh C.-S. and Furukawa H. 1982. Acridone alkaloids from Severinia buxifolia. Phytochemistry 21: 1771-1773.
- Yamamoto, N., Furukawa, H., Ito, Y., Yoshida, S., Maeno, K. and Nishiyama, Y. 1989. Anti-herpesvirus activity of citrusinine-I, a new acridone alkaloid, and related compounds. <u>Antiviral Res.</u> 12: 21-36.
- Yang, X.-L., Xie, Z.-H., Jiang, X.-J., Huang, Y.-B. and Liu, J.-K. 2009. A new acridone alkaloid from *Micromelum integerrimum*. <u>Chem. Pharm. Bull.</u> 57: 734-735.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX

Figure 3 FABMS of compound MH1.

Figure 4 UV spectrum of compound MH1 (CHCl₃).

Figure 5 IR spectrum of compound MH1 (ATR).

Figure 6 ¹H-NMR spectrum of compound **MH1** (400 MHz, CDCl₃).

Figure 9 HMBC spectrum of compound MH1 (CDCl₃).

Figure 10 FABMS of compound MH2.

Figure 11 EIMS of compound MH2.

Figure 13 IR spectrum of compound MH2 (ATR).

Figure 14 ¹H-NMR spectrum of compound MH2 (600 MHz, CDCl₃).

Figure 16 DEPT135 spectrum of compound MH2 (75 MHz, CDCl₃).

Figure 19 Expanded HMBC spectrum of compound MH2 (CDCl₃).

Figure 20 FABMS of compound MH3.

Figure 21 EIMS of compound MH3.

Figure 22 UV spectrum of compound MH3 (CH₃CN).

Figure 24 ¹H-NMR spectrum of compound **MH3** (300 MHz, DMSO- d_6).

Figure 25 ¹H-NMR spectrum of compound MH3 (600 MHz, DMSO-*d*₆).

Figure 26 13 C-NMR spectrum of compound MH3 (150 MHz, DMSO- d_6).

Figure 27 HMQC spectrum of compound MH3 (DMSO-*d*₆).

Figure 28 HMBC spectrum of compound MH3 (DMSO-*d*₆).

Figure 29 FABMS of compound MH4.

Figure 30 UV spectrum of compound MH4 (CHCl₃).

Figure 31 IR spectrum of compound MH4 (ATR).

Figure 32 ¹H-NMR spectrum of compound MH4 (600 MHz, CDCl₃).

Figure 33 ¹³C-NMR spectrum of compound MH4 (150 MHz, CDCl₃).

Figure 34 ¹H-¹H COSY spectrum of compound **MH4** (CDCl₃).

Figure 35 HMQC spectrum of compound MH4 (CDCl₃).

Figure 36 HMBC spectrum of compound MH4 (CDCl₃).

Figure 37 FABMS of compound GP1.

Figure 39 UV spectrum of compound GP1 (EtOH).

Figure 40 IR spectrum of compound GP1 (ATR).

Figure 41 ¹H-NMR spectrum of compound **GP1** (600 MHz, acetone- d_6).

Figure 42 ¹H-NMR spectrum of compound **GP1** (400 MHz, acetone- d_6).

Figure 43 ¹³C-NMR spectrum of compound **GP1** (150 MHz, acetone- d_6).

Figure 44 DEPT135 spectrum of compound GP1 (100 MHz, acetone- d_6).

Figure 45 HMQC spectrum of compound GP1 (acetone- d_6).

Figure 46 HMBC spectrum of compound **GP1** (acetone-*d*₆).

Figure 47 Expanded HMBC spectrum of compound GP1 (acetone- d_6).

Figure 48 Expanded HMBC spectrum of compound **GP1** (acetone-*d*₆).

Figure 49 FABMS of compound GP2.

Figure 50 EIMS of compound GP2.

Figure 52 IR spectrum of compoundGP2 (ATR).

Figure 53 ¹H-NMR spectrum of compound **GP2** (600 MHz, acetone- d_6).

Figure 54 ¹³C-NMR spectrum of compound **GP2** (150 MHz, acetone- d_6).

Figure 56 HMBC spectrum of compound GP2 (acetone-*d*₆).

Figure 57 EIMS of compound GP3.

Figure 58 UV spectrum of compound GP3 (EtOH).

Figure 60 ¹H-NMR spectrum of compound **GP3** (600 MHz, acetone- d_6).

Figure 61 ¹H-NMR spectrum of compound **GP3** (400 MHz, acetone- d_6).

Figure 62 ¹³C-NMR spectrum of compound **GP3** (150 MHz, acetone- d_6).

Figure 63 HMQC spectrum of compound GP3 (acetone- d_6).

Figure 64 HMBC spectrum of compound GP3 (acetone-*d*₆).

Figure 65 NOE experiments of compound GP3 (acetone- d_6).

Figure 66 FABMS of compound GP4.

Figure 67 EIMS of compound GP4.

Figure 68 UV spectrum of compound GP4 (MeOH).

Figure 69 IR spectrum of compound GP4 (ATR).

Figure 70 ¹H-NMR spectrum of compound **GP4** (600 MHz, acetone- d_6).

Figure 71 ¹³C-NMR spectrum of compound GP4 (150 MHz, acetone- d_6).

Figure 72 DEPT135 spectrum of compound GP4 (100 MHz, acetone- d_6).

Figure 73 HMQC spectrum of compound GP4 (acetone- d_6).

Figure 74 HMBC spectrum of compound GP4 (acetone-*d*₆).

Figure 75 Expanded HMBC spectrum of compound GP4 (acetone- d_6).

Figure 76 Expanded HMBC spectrum of compound **GP4** (acetone-*d*₆).

Figure 78 EIMS of compound GP5.

Figure 79 UV spectrum of compound GP5 (MeOH).

Figure 80 IR spectrum of compound GP5 (ATR).

Figure 81 ¹H-NMR spectrum of compound **GP5** (600 MHz, acetone- d_6).

Figure 82 ¹³C-NMR spectrum of compound **GP5** (150 MHz, acetone- d_6).

Figure 83 HMQC spectrum of compound GP5 (CDCl₃+CD₃OD).

Figure 84 HMBC spectrum of compound **GP5** (acetone-*d*₆).

Figure 85 Expanded HMBC spectrum of compound GP5 (acetone- d_6).

Figure 86 Expanded HMBC spectrum of compound **GP5** (acetone-*d*₆).

Figure 87 NOE experiments of compound GP5 (acetone- d_6).

Figure 88 FABMS of compound GP6.

Figure 89 EIMS of compound GP6.

Figure 90 UV spectrum of compound GP6 (MeOH).

(The peak at 2280 cm⁻¹ is an artifact produced by the process of subtraction the absorption owing to the CO_2 .)

Figure 92 ¹H-NMR spectrum of compound GP6 (600 MHz, CDCl₃).

Figure 93 Expanded ¹H-NMR spectrum of compound GP6 (600 MHz, CDCl₃).

Figure 94 ¹³C-NMR spectrum of compound GP6 (150 MHz, CDCl₃).

Figure 95 Expanded ¹³C-NMR spectrum of compound **GP6** (150 MHz, CDCl₃).

Figure 96 DEPT135 spectrum of compound GP6 (100 MHz, CDCl₃).

Figure 98 HMQC spectrum of compound GP6 (CDCl₃).

Figure 99 Expanded HMQC spectrum of compound GP6 (CDCl₃).

Figure 100 Expanded HMQC spectrum of compound GP6 (CDCl₃).

Figure 101 Expanded HMBC spectrum of compound GP6 (CDCl₃).

Figure 102 Expanded HMBC spectrum of compound GP6 (CDCl₃).

Figure 103 FABMS of mixture GP7.

Figure 104 EIMS of mixture GP7.

Figure 106 IR spectrum of mixture GP7 (ATR).

(The peak at 2280 cm⁻¹ is an artifact produced by the process of subtraction the absorption owing to the CO_2 .)

Figure 107 ¹H-NMR spectrum of mixture **GP7** (600 MHz, DMSO- d_6).

Figure 108 Expanded ¹H-NMR spectrum of mixture **GP7** (600 MHz, DMSO-*d*₆).

Figure 109 Expanded ¹H-NMR spectrum of mixture GP7 (600 MHz, DMSO-*d*₆).

Figure 110 Expanded ¹H-NMR spectrum of mixture **GP7** (600 MHz, DMSO-*d*₆).

Figure 111 ¹³C-NMR spectrum of mixture GP7 (150 MHz, DMSO- d_6).

Figure 112 Expanded ¹³C-NMR spectrum of mixture GP7 (150 MHz, DMSO- d_6).

Figure 113 Expanded ¹³C-NMR spectrum of mixture GP7 (150 MHz, DMSO- d_6).

Figure 114 Expanded ¹³C-NMR spectrum of mixture **GP7** (150 MHz, DMSO- d_6).

Figure 115 Expanded ¹³C-NMR spectrum of mixture GP7 (150 MHz DMSO-*d*₆).

Figure 116 DEPT135 spectrum of mixture GP7 (150 MHz, DMSO-*d*₆).

Figure 117 HMQC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 118 Expanded HMQC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 119 Expanded HMQC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 120 Expanded HMQC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 121 Expanded HMQC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 122 HMBC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 123 Expanded HMBC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 124 Expanded HMBC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 125 Expanded HMBC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 126 Expanded HMBC spectrum of mixture GP7 (DMSO-*d*₆).

Figure 127 FABMS of compound GP8.

Figure 128 EIMS of compound GP8.

Figure 129 UV spectrum of compound GP8 (MeOH).

Figure 130 IR spectrum of compound GP8 (ATR).

Figure 131 ¹H-NMR spectrum of compound **GP8** (600 MHz, CDCl₃).

Figure 132 ¹³C-NMR spectrum of compound GP8 (150 MHz, CDCl₃).

Figure 133 HMQC spectrum of compound GP8 (CDCl₃).

Figure 134 HMBC spectrum of compound GP8 (CDCl₃).

Figure 135 FABMS of compound GP9.

Figure 136 EIMS of compound GP9.

Figure 137 UV spectrum of compound GP9 (MeOH).

Figure 138 CD spectrum of compound GP9 (MeOH).

Figure 139 IR spectrum of compound GP9 (ATR).

Figure 140 ¹H-NMR spectrum of compound GP9 (600 MHz, CDCl₃).

Figure 141 ¹³C-NMR spectrum of compound GP9 (150 MHz, CDCl₃).

Figure 142 DEPT135 spectrum of compound GP9 (100 MHz, CDCl₃).

Figure 143 ¹H-¹H COSY spectrum of compound **GP9** (CDCl₃).

Figure 144 HMQC spectrum of compound GP9 (CDCl₃).

Figure 146 FABMS of compound GP10.

Figure 147 EIMS of compound GP10.

Figure 149 CD spectrum of compound GP10 (MeOH).

Figure 150 IR spectrum of compound GP10 (ATR).

Figure 151 ¹H-NMR spectrum of compound **GP10** (600 MHz, CDCl₃).

Figure 152 ¹³C-NMR spectrum of compound GP10 (150 MHz, CDCl₃).

Figure 153 DEPT135 spectrum of compound GP10 (100 MHz, CDCl₃).

Figure 154 ¹H-¹H COSY spectrum of compound GP10 (CDCl₃).

Figure 155 HMQC spectrum of compound GP10 (CDCl₃).

Figure 156 HMBC spectrum of compound GP10 (CDCl₃).

Figure 157 Expanded HMBC spectrum of compound GP10 (CDCl₃).

Figure 158 FABMS compound GP11.

Figure 159 EIMS compound GP11.

Figure 160 UV spectrum of compound GP11 (MeOH).

Figure 161 IR spectrum of compound GP11 (ATR).

Figure 162 ¹H-NMR spectrum of compound GP11 (600 MHz, CDCl₃).

Figure 163¹³C-NMR spectrum of compound **GP11** (150 MHz, CDCl₃).

Figure 164 DEPT135 spectrum of compound GP11 (100 MHz, CDCl₃).

Figure 165 ¹H-¹H COSY spectrum of compound **GP11** (CDCl₃).

Figure 166 HMQC spectrum of compound GP11 (CDCl₃).

Figure 167 HMBC spectrum of compound GP11 (CDCl₃).

Figure 168 FABMS of compound GP12.

Figure 169 EIMS of compound GP12.

Figure 170 UV spectrum of compound GP12 (MeOH).

Figure 171 CD spectrum of compound GP12 (MeOH).

Figure 172 IR spectrum of compound GP12 (ATR).

Figure 173 ¹H-NMR spectrum of compound **GP12** (600 MHz, CDCl₃).

Figure 174 ¹³C-NMR spectrum of compound GP12 (150 MHz, CDCl₃).

Figure 175 DEPT135 spectrum of compound GP12 (100 MHz, CDCl₃).

Figure 176 ¹H-¹H COSY spectrum of compound **GP12** (CDCl₃).

Figure 177 HMQC spectrum of compound GP12 (CDCl₃).

Figure 178 HMBC spectrum of compound GP12 (CDCl₃).

Figure 180 UV spectrum of compound GP13 (CHCl₃).

Figure 182 IR spectrum of compound GP13 (ATR).

Figure 183 ¹H-NMR spectrum of compound **GP13** (600 MHz, CDCl₃).

Figure 184 ¹³C-NMR spectrum of compound **GP13** (150 MHz, CDCl₃).

Figure 185 ¹H-¹H COSY spectrum of compound **GP13** (CDCl₃).

Figure 186 HMQC spectrum of compound GP13 (CDCl₃).

Figure 187 HMBC spectrum of compound GP13 (CDCl₃).

Figure 188 Overlay of CD spectrum of compound GP9 - GP13 (MeOH).

VITA

Mr. Chaisak Chansriniyom was born on July 6, 1982 in Bangkok, Thailand. He received his Bachelor's degree of Pharmaceutical Sciences (1st class honor) from the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand in 2004. He was granted a 2005 Royal Golden Jubilee Ph.D. Scholarship from Thailand Research Fund (TRF).

Publication

 Chansriniyom, C., Ruangrungsi, N., Lipipun, V., Kumamoto, T., and Ishikawa, T. 2009. Isolation of acridone alkaloids and *N*-[(4monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivatives from *Glycosmis parva* and their anti-herpes simplex virus activity. <u>Chem. Pharm. Bull.</u> 57: 1246-1250.

Proceedings from the meeting

- Chumseng, S., Itthipanichpong, C., Ruangrungsi, N., Chansriniyom, C., and Limpanasithikul, W. Effects of the Hexane Extract from *Glycosmis parva* on LPS-InducedMacrophage Activation. <u>Proceedings of the 32nd Pharmacological</u> and <u>Therapeutic Society of Thailand Meeting</u>, pp. 184-187. Bangkok, 2010.
- Rodphukdeekul, S., Sueblinvong, T., Ruangrungsi, N., Chansriniyom, C., and Limpanasithikul, W. Anti-tumor activity of *Micromelum hirsutum* extract. <u>Proceedings of the 32nd Pharmacological and Therapeutic Society of Thailand</u> <u>Meeting</u>, pp. 106-110. Bangkok, 2010.

Oral presentations

- 1. Chansriniyom, C., Ruangrungsi, N., Lipipun, V., Kumamoto, T., and Ishikawa, T. 2010. Chemical constituents of *Glycosmis parva* and their antiherpes simplex virus activities. RGJ-Ph.D. Congress XI, April, 1-3, 2010, Pattaya, Chonburi, Thailand.
- Chansriniyom, C., Ruangrungsi, N., Lipipun, V., Kumamoto, T., and Ishikawa, T. 2009. Chemical constituents of *Glycosmis parva* and their antiherpes simplex virus activities. JSPS-NRCT Graduated Student Seminar in Natural Medicine Research, December, 14, 2009, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.

Poster presentation

1. Chansriniyom, C., Ruangrungsi, N., Kumamoto, T., and Ishikawa. 2008. Chemical constituents of *Glycosmis parva*. Joint Seminar between Department of Medicinal Organic Chemistry, Graduate School of Pharmaceutical Sciences of Chiba University, Kobe University and Toho University. August, 18-20, 2008, Chiba, Japan.