CEAPTER IV

Results

Series I

Tha investigation of minimal Ietral dose (MiD)

In the first scries of the experiment, the rate of suxvival of the dogs imjected diffexent doses of Russell's viper is shown in the table. It is foum that dogs injected at the dose of 0.40 and $0.50 \mathrm{mg} / \mathrm{kg}$.bw. died 100% whereas at the dose of $0.20,0.25$ and $0.35 \mathrm{mg} . / \mathrm{kg}$. bw. died omly 50%. Therefore; the minimal lethal dose is in the range of $0.20-0.35$ mg*/kg.bw.

After verom injection, some dogs had nystagmus during the intitial period. There was camtraction of the abdominal muscle immedfately, followed by doffeation and uxination, Then the dog had vomitime and salivation. Delayed blood clot also started at, 30 mimutes arter envenomation. $\|_{\|} \cap ? \backsim$

After half an howr the dog showed signs of depression and hyperthermia. There was usually bloody discharge/ from gumy arrus and incision wound on the skim due to defect of blood clot. At this period, it was found that packed cell volume and haemoglobin increased, whereas heart rate and respiratory rate were irregular. The clinical signs during the first hour after envenomatiom was shown fn table 2.

Table 1 Survival xate of the dogs after injection of different doses of Russell's viper venom.

Doses of the venom	Numbers of the	Numbers of the	Numbers of the	Rate of survivals
(mg./kg。bw. $)$	dogs	surviva	deaths	(\%)
0.20		1	1.	50
0.25	4		2	50
0.35		?		50
0:40				0
0.50				0

Table 2 The clinical signs of the dogs after injection of Russell 's viper vemono
time after injection clinical sigms: $\dot{0}$ - 30 minutes. Avdominal muscle contraction Defication

Urination
Vomiting and salivation
Nystagnus ($0-1.0$ minutes)
6 D Delayed blood clot

Series II

Chanses in cardiovascular function

In the first 10 mimutes after envenomation, both systolic and diastolic blood prassume deczeased significantly (P 〈 0.001) , as shown in the figure 1. Mean arterial Blood pressure and pulse pressure decreased significantly from $133 \pm$ 22. to $74 \pm 22 \mathrm{~mm}$. H 5 . and $\mathrm{from} 47 \pm 11$ to $25 \pm 8 \mathrm{~mm}$. Mg. (mean \pm S.D.) respectively ($P(0.01$). After a perio of 10 mimutes, mean arterial blood pressure started to increase gradually, until 1-2: hours they retumed to the control level at 138 ± 22 mm .Hg. At 24 hoursi after envenomation, systolic blood pressure decreased slightiy, and little increased at 48 hours after envenomation. Dlastolic blood pressure decreased significantly to $88 \pm 16 \mathrm{~mm} . \mathrm{HE}_{\mathrm{g}} .(\mathrm{P}\langle 0.05)$ at 24 hours. It gradually incrensed again at 48 houxs, howower, it was still lower than the control level. These changes of systolic and diastolic Blood pressures caused the significant increase in pulse pressure during 24 and 48 hours after enveromation (figure 1). Whereas meam arterital blood pressure decreased to $110 \pm 15 \mathrm{~mm}$. Hg." "tim 24 hours But increased back to $1.27 \pm 17 \mathrm{~mm}$. Hg. In 48 hours.

($P<0.05$) in the first 10 minutes after venom injection. Howewer, it gradually increased and returned to the control level within 2 hours and no further change till the end of the

Table 3 Effect of Ruesell'a viper venom on cerdiovascular parameters in dogs. (Mean \pm S.D. for 8 doga)

Figure 1. Effect of Russell's viper venom on arterial blood pressure. (mean of 8 dogs) MABP $=$ Mean Arterial Blood Prespure, $S B P=$ Systolic Blood Pressure, $D B P$ = Diastolic Blood Pressure, *** $P(0.001, \quad * * P<0.01, \quad * P(0.05$

Ffgure 3 Effect of Russel1"s viper venom on cardiac output, stroke volume, blood volume and plasma volume. (Mean and S.D. of 8 dogs$) * P(0.05$

Figure_生 Effect of Rubsell'g viper venom on packed cell volume, haemoglobin, total peripheral resistance and renal vascular
 ** P < 0.001
experiment. Cardiac output showed a tendency to fall in the first 2 hours after wenom injection but statistically imsignificamt. At 24 and 48 hours after envenomation, cardiac output imoreased slightly as compared with the control period whereas stroke volume increased sigmificantly during the secomd day. No sigmificant change in plasma volume was shown during the period of the experiment (figure 3).

The packed cell wolume fincreased signiffcantiy from. 33
± 4 to $38 \pm 5 \%$ at 2 hours after ervenomation. At 24 hours, It decreased lowar than the control level and still decreased sugnificantiy to $25 \pm 6 \%(P(0.001)$ at the end of the experiment. Haemoglobin increased sligtuly by: apyroximately 2% at the first period of the experiment, then decreased signiffecantiy at 24 and 48 hours of the experimental period (figure 4).

As shown in the figure 4 , the total peripheral resistance increased at the first period of the experiment. After 24 hours it decreased significantly, but increased again at the final period. Renal vascular resistance increased almost 3 rolds at 2: hours after envenomationd and returned to the control ramge around 24 to: 48 hours.
 due to the effect of the venom, renal fraction decreased siemificantly from $17 \pm 4 \%$ to $17 \pm 5 \%(P$ (0.05) at 2 hours. after envenomation (table 4), and contimue decreased
stignificamtly untif the and of the experiment (P 人 0.0 .1). The effective renal blood flow decreased significantly from 267 \# $75 \mathrm{mi} . / \mathrm{min}$, to $173 \pm 94 \mathrm{ml} . / \mathrm{min}$. ($\mathrm{p}\langle 0.05$) at the first 2 hours - then increased to $182 \pm 33 \mathrm{ml} . / \mathrm{min}$ and $212 \pm 88 \mathrm{mI} / \mathrm{min}$. at 24 and 48 hours after envenomation respectively. The similar changes in effective renal plasma flow were observed after venom injection (figuze 5).

The glomerular filtration rate (GFR) decreased from $43 \pm 7 \mathrm{ml} . / \mathrm{min}$. to $37 \pm 16 \mathrm{ml}$./酶. at 2 hours after venom infection, and forther cecreased significantiy to $30 \pm 12 \mathrm{mI} . /$ min. ($\mathrm{P}(0.05$) at 24 hours. Durieg the second day of venom injectiom GFR increased slightiy to $40 \pm 13 \mathrm{mI} / \mathrm{mfn}$. as compared with the control letel. The decrease of effective renal plasma fiow was more than tite decrease of GFR, therefores the filtration fraction ancreased sifeminicantly (P (0.01) after envenomation (figure 5).

Owing to the determination of the tubular activities (table 4 and figure 6), it was found that transport of PAH decreased imsigmificantly at 2 to 24 hours of the experimental period, ard returned to the control level agaim at the end of the experimert. There was no significant difference in plasma creatinine comecntrations between thefcontrol apt the?
experimental periods, as shown in figure 8. Plasma osmolaity experimental periods, as shown in ifgure 8. Plasma osmolaily increased from 295 ± 9 to: $299 \pm 7 \mathrm{m0sm} / 1$. at 2 hours after venom injection. At 24 hours after envenomation $f t$ increased to 310 ± 14 mosm. $/ 1$. and decreased again to $301 \pm 14 \mathrm{mosm} . / 1$. at the secomd day of the experiment. Osmolar clearance

[^0]

Figure 6 Effect of fuseell'g viper venom on traneport of PAF, plasea osmolality, urine ogmolality, osmolar clearance and
froe water clearance. (Mean and S.D. of 8 doge).

* $\mathrm{P}<0.05 \ldots * \geqslant 0.01, * * * p<0.001$

decreased sigmificantly at the first period from 1.3 ± 0.3 to $0.9 \pm 0.4 \mathrm{ml} . / \mathrm{min} .(P\langle 0.001)$, and then graduaily increased to $1.3 \pm 0.6 \mathrm{ml} . / \mathrm{min}$. at the end of the experiment. The free water clearamee increased slightly at the first period whereas it decreased significantly $(P$ 人 0.01) at 24 hours till the end of the experiment.

Effects: of 路ssell's yriper venom on plasma and urinary electrolyte concentrations are shown in table 5. Filtered load of these electrolytes cecreased throughout the experiment, as compared with the contro 1. However they decreased sigmificantly $(P<0.05$ and $P(0.01)$ (table 5) at 24 hours after venom imjection. At the end of the experiment, they had a terrdency to increase to the control level. It was found that
 3 to $1 / 41 \pm 2 \mathrm{mEq} . / 1$. $(\mathrm{P}(0.05)$ at 24 hours after anvenomation. The urinary excretion of sodium decreased significantly from 125 ± 39 to $39 \pm 26 \mathrm{uEq} . / \mathrm{min} .(\mathrm{P}\langle 0.001)$ at 2 hours after venom injections then gradually increased to the control level at the end of the experiment. The: fractional excretion of sodium altered inf the similar pattern as/its excretion. Plasma potassium concentration was constart throughout the experiment, while urimary potassium concentration increased after envenomation. Orinary excretion amd fractional excretion of potassfum decreased at 2 hours after envenomation, but were not signifficantly eifferent when compared with the control period. The plasma chloride concentration changed insigmificamtly after envenomation, but its excretion and

Table 5 Effect of Ruseell's viper venom on urinary electrolyteo excretion of doga. (Kean \pm S.D. for e dogs)

	plasma concentration ($\mathbb{E E q}+/ 11 t_{\text {. }}$)	$\underset{\left(a E q . / 21 t_{0}\right)}{\text { urine concentration filtered load }}$	$\begin{gathered} \text { excretion } \\ \left(u^{3} q . / \text { min. }\right) \end{gathered}$	excretion fraction (\%)
Sir ${ }^{+}$control	139.37 ± 3.96	$132.37 \pm 45.70 \quad 6.00 \pm 0.91$	125.25 ± 39.71	2.16 ± 0.82
2 hours	139.62 ± 3.42	$88.62 \pm 42.65^{*} \quad 5.19 \pm 2.35$.	39.83 ± 26.34 **	$0.89 \pm 0.58^{* *}$
24 hours	$141.75 \pm 2.19^{*}$	$147.87 \pm 70.31 \quad 4.33 \pm 1.75 *$	78.13 ± 53.25	1.97 ± 1.24
48 hours	137.50 ± 4.31	$204.87 \pm 87.90 \quad 5.51 \pm 1.77$	119.57 + 82.59	2.42 ± 1.77
K^{*} contral	3.70 ± 0.41	$26.25 \pm 12.15 \quad 0.16 \pm 0.03$	25.03 ± 10.70	15.69 ± 5.99
.2. hours	3.30 ± 0.34	43.37 ± 25.02 \# 0.12 ± 0.06	16.93 ± 8.76	14.83 ± 4.48
24 hours	3.70 ± 0.49	$60.25 \pm 40.62-0.11 \pm 0.05 * *$	27.17 ± 12.62	27.54 ± 15.65
48 hours	3.60 ± 0.40	$44.62 \pm 19.51 \quad 0.14 \pm 0.04$	24.42 ± 12.51	18.16 ± 9.94
Cl^{-}control	119.62 ± 2.20	174.75 ± 54.47	164.53 ± 46.66	3.31 ± 1.16
2 hours	121.75 ± 3.01	$68.36 \pm 48.20 * * \quad 4.50 \pm 1.98$	30.27 ± 23.57 ***	0.82 ± 0.70 **
24 bours	123.87 ± 4.64	$158.50 \pm 112.88 \rightarrow 3.8$	87.13 ± 65.56 \#	2.28 ± 2.05
48 houre	119.62 ± 13.15	232.12 ± 117.40 4.72	148.23 ± 132.91	3.33 ± 2.79
Ca^{++}control	5.09 ± 0.71	$2.34 \pm 0.95 \quad 0.22 \pm 0.04$	2.21 ± 0.97	1.06 ± 0.54
2 hours	4.83 ± 0.61	$2.22 \pm 2.06-0.18 \pm 0.08$	$0.82 \pm 0.27^{* *}$	0.59 ± 0.4
24 hours	4.93 ± 0.37	$2.82 \pm 2.20-0.15 \pm 0.06$	$1.31 \pm 0.67 *$	1.02 ± 0.68
48 hours	4.72 ± 0.46	$3.11 \pm 2.19 \quad 0.19 \pm 0.07$	1.91 ± 1.21	1.13 ± 0.80
Pi control	3.83 ± 0.57	$18.32 \pm 15.45 \quad 1.66 \pm 0.42$	0.16 ± 0.10	9.44 ± 5.15
2 hours	3.51 ± 1.15	18.91 ± 3.37 1.29 ± 0.64	$0.06 \pm=0.08$	4.34 ± 5.20
- 24 hours	3.85 ± 1.02	$51.15 \pm 27.81 * \quad 1.09 \pm 0.28 * *$	0.25 ± 0.15	$23.74 \pm 13.1 \mathrm{~A}^{*}$
48 hours	3.74 ± 0.84	33.90 ± 35.96 1.49 ± 0.51	0.17 ± 0.15	18.42 ± 12.68

Values were gtatiatically significantly different from the control, $P(0.05, * * P(0.01, * * * P(0.001$

Figure 8 Effect of Rtesell's viper venom on plasma concentration of eleotrolytes. (Mean and S.D. of a dogs)

* $\mathrm{P}<0.05$

Figure 2 Effect of Russell's viper venion on urine conoentration of

Figure 10 Effect of Russell's viper venon on filtered load of electrolytes. (Mean and S.D. of a doga) * P (0.05 . ** $p<0.01$

Figure 12 Effeot of Rusill's Wiper venom on fraotional exaretion of electrelytea. (Mean and S.D. of 8 doga);

* P 0.05 , ** P(0.01 , *** P $(0.001$
fractional excretion decreased signifficantly (P (0.001) at 2 hours after envenomation, from 1.64 ± 46 to $30 \pm 23 \mathrm{uEq} . / \mathrm{min}$. and from 3.3 ± 1.1 to $0.8 \pm 0.7 \%$ respectively. After these decrement, the urinary excretion and fractional excretion of chloricie increased gradually at 24 and 48 hours of the experiment. Plasme calcium concemtration increased slightly throughout the experiment. The urimary excretion of calcium decreased significantly from 2.2 ± 0.9 to $0.8 \pm 0.2 \mathrm{mEq} . / \mathrm{min}$. ($P(0.01$) at 2 hours after weriom injection. Changes of fractional excretion of calcium was also observed after envenomation. After venom injection plasma phosphorus concentration was constant, even though urinary phosphorus cocentration was significantiy increased at 24 hours, while its excretion also increased nearly 75% of control. Therefore fractional excretion of phosphorus at 24 hours increased significantly from 4.3 ± 5 to $23.7 \pm 13 \%$

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

[^0]: Values were statistically gignificantly different from the control. * $\mathrm{P}\langle 0.05, * \mathrm{P}$ (0.01,***P<0.001

