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CHAPTER I

Introduction

1.1 Introduction 2

The growth of erystalline thin ﬁlms via molecular beam epitaxy (MBE) has
attracted several intesésts expellmentally '1, 2] due to ever growing applications in

many fields, and theopétically 3, 4,.5] due t0 its rich gurface structures. Incoming

[
A ,-

flux of atoms deposit outo a subStrate iri the layer-by-layer fashion generally mak-

ing the film completely fuee of defects. Exbess energy of the adatoms allows them

to diffuse along the surtace away Hon thé’ﬁ" initial landing positions. These atoms
,u

tend to minimize their energv by movm;g—towards sites with high coordination

number such as thoae along island step edges The process produces an instability

in the growth morphology leading to the formation ot %urface structures.

Over the past decades, there have been numerous experimental evidences of
a pyramid-like mound merphology with aswell-defined mound shape, and a selec-
tive slope [6, 7,89, 10, 1d, 12].L.The origin of such alstrugture has mainly been
attributed to the presence of Ehrliéh—-Schwoebel(ES) barrier [18,/14, 15, 16, 17, 18]
which,“according 't Burton-Cabrera-Frank theory [19, 20|, hinders atoms from
moving down a terrace resulting in the tendency for them to prefer to flow “uphill.”
Several investigators have confirmed mound formation due to ES barrier through
their computer simulations [21, 22, 23, 24]. More recently another type of desta-
bilizing ES step-edge current was discovered which causes atoms to flow along a
step edge within the same terrace toward a kink site or over a corner site [25, 26].

The kink ES current, unlike the former kind, can only occur on a surface with



spatial dimension higher than one. Until the past decade, it was believed that ES
barrier was the sole cause of mound morphology. Chatraphorn et al. [27] were able
to obtain a mound-like structure without implementing the ES barrier. Unlike the
ES mechanism which are energy-assisted, this mounding instability is probabilis-
tic and topological in nature. A net current arises via the unbalanced between
atoms diffusing up and down a step edge, hence the name “step-edge diffusion”
(SED) current. On a simple cubic lattige, this type of current only occurs around
a corner or a kink site which is similar t6 s#he kink ES current. The mounding
instability through SED current did not efiiergc spontaneously, and was observed
only after the use of the so-called “nomfse reduetion technique” to suppress the de-
position and nucleationm®ises [v 15 nnclear that SED mechanism, initially studied
in a simple cubic system, always occué‘s, and always leads to mounding structure
in all crystalline lattice structure's“.: Dé fil)ther topological currents exist in other
structurally different crystalline'-'lattice"g? “In this thesis we propose, in addition

to ES barrier, a competiug mechanism for mound formation as a consequence of

probabilistic terrace currents due t6 the.".;g,éometry of a film’s crystalline structure.

df

=i

1.2 Overview of the thééis

We begin, in Chapter 2, by describing the disctete growth models for MBE
and theoretical backgroundeof surface growth. The Ehrlich-Schwoebel barrier and
step-edge diffusioneurrent which are aceepted as causes of mound formation on
the surface are also explained in Chapter 2. Inaddition, several erystal structures
which ‘are used in'our simulation will be shown. 'We also,presént the helical
boundary conditions essential for constructing representations of various crystal
structures. Growth simulations are then performed on each of these structures
according to a set of diffusion rules. In Chapter 3, we begin with simulation
results of critical exponents of each crystal structure obeying two diffusion rules.
The roughness exponent, in particular, implies the existence of mound morphology

on a particular crystalline thin film. The second part of Chapter 3 is the results



of surface morphologies. Some of them have mounds on the surface which is
confirmed by the height-height correlation function of the film surface. We work
out the probabilistic currents of a few crystal structures for an illustrative purpose.
These currents are additional causes of mound formation on the film surfaces in our
simulation results. Here, we identify a new type of uphill topological current. We
discuss, at the end of Chapter 3, the mound formation mechanism in connection
equation, and the summary of our work in

with an underlying continuum grow

Chapter 4.
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CHAPTER II

Theories, models and crystal structures

Molecular beam epitaxy (MBE) is ofiesof the best known methods to fab-
ricate high quality thin films. MBE éjxperiments are, generally, operated in high
vacuum or ultra-high vaettm® (10 'Y torr) to reduce unwanted particles in the
chamber. The advantage ofthis techllllique is the slow deposition rate which al-
lows the film to grow epitaxially (Iéyel‘;bﬁ'}—layer). In the molecular beam epitaxial
growth mechanism, therg are threemai;l microscopic processes which are deposi-
tion process, surface diffuston process arfd desorption process [3]. During the first
stage of growth an atom frem the Vapoﬁ'_klgléam) deposits on to a substrate, then

moves to form bonds with the‘erystal on a é{ibstrate, and sticks. The desorption

process, generally, occurs at.high‘:temperfa‘é}irb- when a deposited atom breaks the

bonds and leaves th_é surface. If the substrate tempe:r;ature is not too high, the
desorption rate is \}éfy low compared to the depositio‘n'-lrate. We assume that, in
our studies, that the desorption process is negligible. “After an atom deposits onto
surface and adlieres to the, substrate, dt. ean break the-honds and diffuses on the
surface to find an ‘energetically ‘most favorable position’ [3]. “This process is named
surface diffusion. The_ length of the diffusion depends on the bending energy and

the temperature of the atomi.

2.1 Discrete growth models for MBE

In this section, we will explain surface growth models that are used in our

simulations. All model are solid-on-solid which no overhang and void defect in



the film. Despite decades of intense investigations both computationally and an-
alytically, Monte-Carlo simulations of thin-film MBE growth have been limited
to various “toy” models; boxes representing atoms are sprinkled down from atop
and subsequently relax to their final atomic positions without any voids or over-
hangs according to a given set of rules. We examine the limit of low substrate
temperatures so that deposition atoms can move atmost to one of the nearest

We use Das Sarma-Tamborenea (DT)

neighboring sites before coming to rest.
model and Wolf-Villain ( T

in our simulations.

number provided that the cu”‘”

o AN T R, L
conditions the ato feic . Figure 2.1 g chematic diagram of the

shaded regions can di e cﬂection specified by arrow(s)

with equal probablhty ‘a

AU INgINGIN3
a8,

DT model

o/

Figure 2.1: One dimensional Das Sarma-Tamborenea model.



2.1.2 Wolf—Villain model

Wolf-Villain model is another surface growth model that we apply to our
simulations. This model was proposed by D. E. Wolf and J. Villain [30] in 1990. In
this model, an atom is deposited on an substrate. After that, the atom can move
to maximize its nearest neighbor bonds. Figure 2.2 gives a schematic diagram of

the WV diffusion rules in a simplified 1 4+ 1 dimensions. An atom drops on one

"/l//CO one of the direction specified by

of the gray regions and immedi

arrow(s) with equal probabili

il

Figure 2.2: Oné d Hal- Wolf-Villain model.
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of surface grow . There are s1mpl§ methods that are used to analyze and describe
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2.2.1 Interface width and critical exponents

A common quantity that is used to characterize the roughness of the film

surface is the interface width. The interface width, the root mean square of the



height fluctuation of the film surface, is defined by

1/2
= [% Zh(f, t) — (h(t))2] , (2.1)

where h(Z,t) is the atomic height at lattice position & and time ¢, and (h(t)) is the
average height of all lattice positions on the substrate of dimension d and lateral
size L. At an early stage of the growth, the interface width in formal growth

models increases with time as a p

~§~, WWZQ(J 22)

J. "
Here 3 is the growth ex ich . evolution of the film surface
roughness with time i arl ' e inter width grows until it reaches

width does not continually

5"r

the interface width begi t ra o ‘; - the saturation time ty [3]. The

saturation value of the i ubstrate size as a power law
(2.3)
where « is the roughness expégeﬁz‘} WI?{} es the roughness of the saturated
interface. From Equ terface width can be written as
W(L t) ~ (2.4)

Lau t> tsat-

e s &JJJ&?{I& 1od I EL VL, B e etation
ARIANITUEFIINGIAY

with theqdynamzcal exponent z, which gives the information about the dependence
of the saturated time and the substrate size. A typical interface width as a function
of time is plotted in Figure 2.3. The different curves correspond to different system

sizes (Ls is the largest and L; is the smallest).

From Equations (2.2), (2.3), (2.5) imply that z = a/[3, as suggested by the
dynamic scaling theory. If we divide the interface width by the saturation width,
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the interface width will saturate at the same value. Dividing growth time by
saturation time will cause the interface width saturate at the same characteristic
time. This is a simple method to collapse the data onto a single curve [3]. The

data of Figure 2.3 after collapse are shown in Figure 2.4.

In 141 dimensions (one spatial dimension + one time), The «, 5 and z ex-
ponents directly associate a given discrete growth model to a universality class.
Despite impressive success in 1+1 dimensions, the computational results of several
toy models do not conform te the theoretiealpredictions in 2+1 dimensions. The
presence of mound morphology, a migsing featiire in one spatial dimension, sug-
gests that a given modelfmay.belong to a different universality class in a different

dimension, thus rendefing.the univers?lity class concept futile [31, 32, 33].

4 ¥

2.2.2 Ehrlich-Schwdebel barcier
: )
Ehrlich-Schwoebel (ES) barrler [13 14] is an energetic barrier. The ES

barrier prevents an adatoma from alffu%mg oyer a step edge from the upper to the

lower terrace. In figure 2.5, an atom {red Crrde) is deposited on the substrate (gray

circles). At this pObIthIl the atom can bond with its negrest neighbor atoms (atom

A and B). The red'_._atom tries to diffuse to the right _SI_de according to the arrow
which is more stable :c:_han the original position beca‘t_l.se the atom can bond with
three nearest neighborétems (atom B, €;and D). While the red atom diffuses
from the original position, to the new position, the atom inust pass through an
unstable position because the atom has to use its energy to break bond with atom
A to diffuse to the' right side and has only one/bond with atom-B. Every atom
which can diffuse from the upper terrace to the lower terrace must have enough
energy to pass through this energy barrier. An atom which does not have enough
energy cannot diffuse to the lower terrace. The deposited atoms are preferential

to diffuse in the uphill direction.

This mechanism has been confirmed by Ehrlich and Hudda [13] in 1966.

They use field-ion microscopy to observe a motion of a single atom on an atomic
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terrace. They found that the atom favors the diffusion back at the edge of the
terrace. This mechanism is also proposed by Shewoebel and Shipsey [14] at the

same time.

Figure 2.5: Side viewmf the Ehrlich— oebel (ES)ﬂarrier. Gray circles are the

substrate. Red circle isfammadatom. Dashdline is a potential energy plot of the red

sl LI g WA 3
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Step-edge diffusion (SED) current is another cause of mound formation on
the film surface. The SED is not an energetic potential barrier the same way
ES barrier is. The SED current occurs because of the diffusion rule and lattice
structure of the material. On a simple cubic lattice, this type of current only occurs

around a corner or a kink site, that is, local particle currents are proportional to
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the local curvature of the step edge. Figure 2.6 gives a schematic diagram of SED
current of simple cubic lattice under WV diffusion rule. The SED current occurs
from an atom which is deposited near the edge and flows along the edge to kink
site within the same terrace as shown by the white box in figure 2.6. The atom

tends to enlarge the upper terrace, hence, gives rise to a mound.

Figure 2.6: The scheﬁtlc of the step- n‘(ﬁED) current of simple cubic

lattice under WV dlffuséon rule.

ﬂ‘lJEJ’MEJWﬁWEHﬂ'ﬁ

2.2.4 Hel t-height correlation function

ﬂormal mt@uﬂ to charsEBn;eJ mugegmukgogles@ ﬂ film surface is

the height-height correlation function. We use it to prove the existence of mounds

on the surface. The height-height correlation function is defined as

C(r) = (MD)W + 7)), (2.6)

where h(Z) is the surface height at a lattice position # measured with respect to

the average height and 7”is the difference between the position vectors of two sites
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on the substrate. Here (...). denotes the average over lattice positions Z on the

substrate. The correlation function in this work is evaluated in two dimensions.

This function, by definition, expresses a relation between two points on the
surface. Note that the height, the deviation away from the surface height average,
at any positions can be positive, negative or zero. The correlation function has
the maximum value at ¥ = 0 because the product of the same position results in
(R(£))? which is always positive, But for another 7, (7 # 0), the product of two
heights on the substrate can be positive, necgative or zero. The average mound

height, in other words, the root-meanssquare of the surface height is defined by

A4 \/CF=0); (2.7)

)

which is the square root of the co_rrelé;tipn function with = 0. The correlation

at the neighboring pesitions ©f7" = 08 calculated from the average product of

\ #

every two adjacent siteg onithe surface. 'f:Some of them may be positive negative or
zero resulting in the decgease of €'(77). This function continuously decreases with

i ‘s L .
7 to a minimum value. Let us concentrate on the condition at which C(7) = 0.
A !

The average value of zero in this situation can be separated into two cases. First,
4 o

of fiy il S

Pt -
the average zero value results from the average ofithé products of two heights,

one of which has zeio value. The second is the proc_ﬁgs-st of two random heights
which can be positivé_, negative or zero but the avé_rage turns out to be zero.
The products between twoe.uncorrelated positions on the substrate are, in general,
random which tesults in a zero ayerage. So the averageé mound radius is |7] at the
first zero crossing of C'(7). When ghe magnitude of 7" exceeds the average mound
radiusgthe function hegins to be negative: The two paositions (h(#) and h(Z + 7))
in this situation are, on average, negatively correlated. The correlation function
gives the minimum value when |7] is roughly the distance from a mound center to

a trough.

If the surface contains regularly mounded patterns, the correlation goes up
again for |r] greater than the average mound size. The correlation function in

this case will oscillate with a period of about twice the mound radius. This is
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because, in this case, mounds on the surface repeat every twice the mound radius.
We will observe the oscillation of C'(7) as a function of 7. In contrast to mounded
morphologies, if C'(7) continuously decreases with 7 to zero, this signifies that the

film surface is kinetically rough without mound morphology.

2.2.5 Continuum growth equation

The generic non-equilibrium surfage growth where voids and defects are
prevalent has been generally accepteg as belonging to the Kardar—Parisi-Zhang
(KPZ) universality clags |34} originated in thestudy of Eden cluster growth [35]
and diffusion-limited agg@regation |36, 37|, with the dominant growth direction

pointing along the surface moumal, giving rise to a term proportional to ~ (ﬁh)?

The study of kimetighsurface Toughening of non-equilibrium growth models
of the solid-on-solid type rernains“a stbject under much scrutiny (3, 4]. The
continuum growth equagion can”be coiﬁfr’flcted by using symmetry principles.

) Ly

b’ ¥ ¥
The general form of the growth e_quationv_.[g];i'fior conserved growth model is

where G(h, Z,t) is a:éeneral function which depends Q;i—the surface height h(Z,t),

position Z and time ¢.n(Z, t) 1s the Gaussian noise where (n(Z,t)) = 0, and
QLA A2 S -7 5

Based on symmetry principles, it ®can be showmsthat the growth equation, up to

the fourth order, has'the form

h . 5 =
% =1 V?h — uV*h+ A3V - (VR)? + A VA(VR)? + 1. (2.9)

We want to know the scaling properties in the asymptotic limits, i.e., at large time
(t — oo) and large distance (r — o0). In these limits the higher order terms

are less important compared to the lower order terms. The most relevant term in
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Equation 2.9 is V2h, the Edward-Wilkinson (EW) term [38], which leads to the
EW universality class with continuum growth equation:

oh
i v, V2h + 1. (2.10)

In 1+ 1 dimensions of WV and EW model, where adatom moves to the nearest
neighbor with the minimal local height, both belong to EW universality class
with a =1/2,8 =1/4,z = 2. The WV model in 2 + 1 dimensions is predicted to
produce logarithmically smooth surface with o = 5 = 0 (log), while the dynamical

exponent still obeys power daw scaling with™> =2.

Solid-on-solid growth amedels, }Jeplicating MBE growth, offer much richer
behaviors especially when the spatial‘rldimension is higher than one. It has been
known that a slight changcsdna, diffusxon rule results in an alteration of the uni-
versality class. In 141 dimensions'; DT[T:Hlodel belongs to MBE class with o = 1,
B =1/3, z = 3 [32] despite doser "mprpﬁ_pl(‘)’gical rule to WV than is EW model [3].
The coefficient v = 0 for/ DT mq_del b};:js}}/r;}metry, and the term proportional to
V- (ﬁh)?’ is often neglected (by setting /\";{3?;'0 zero) because it generates the 15, V2h
term upon renormalization. Phﬁs’jeally siié_gléing this term (with A;3 > 0) gives a

dissipative effect similar to the 15N/ 21 term, but.at a shorter length scale.

Provided thé",__v%i,'hdlty of Equation (2.9) with the ?()_:,éfﬁcients having the same

sign as in 141 dimens'i_ons, the DT exponents in 2+1 idimensions are found to be
a=2/3,6=1/5, an& 2=10/3 [3]. A large-scale sim:ﬂation on a SC substrate by
Das Sarma etl., however, givesra contradictory result [32]. They reported that
the DT model behaved as if it were in the EW universality class which suggests
that 14 In‘FEquation (219) isnoflongér zero in this'dimension . THey also observed
mound formation in the WV simulations, instead of logarithmically flat surface,
with @ = 1, f = 1/4, and z = 4 after making use of the noise reduction technique.
This implies that WV model is not in the EW universality class in 241 dimensions.

Moreover, the mounds tend to be of roughly equal size—an apparent deviation

from being scale invariant.

Recently Haselwandter et al. [39, 40] have shown that the unstable growth
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Table 2.1: The critical exponents of the DT and WV models in 1+1 and 2+1

dimensions.

Model Equation d=1+1 d=2+1
a=1 a=2/3

oh 4 2(71)2

DT E:—mv h+ Ao V2(VRh)? +1 g=1/3 g=1/5
z= z=10/3
a=1/2 a =

oh .

WV at_uzv h+77 g=1/4 B8=1/3

z = z =

\
observed in WV model*tfoﬁld be exp_lar_ned using renormalization group approach.
They derived Equatioﬁgy"(?.Q) fromﬁg mééfer equation describing the increment of
height at each lattice sife according tc;,'; the nearest-neighbor sites. By carefully
choosing the regularization palameter &})pn taking a continuum limit, they were
able to obtain the values of the coefﬁmentét -H2, Vg, A\13 and Ag9. Under repeated RG
transformations, these Values ﬂow (hfferenﬂy’ ind=1+1 and 2 + 1 dimensions.
In particular the negat1v1ty 0{“')\-13 leads tb-the change in the sign of the diffusion
coefficient 14 Whlch weﬁt&a}}y—lea&s—to—the—grwﬁh—m&tablhty in the form of an
array of islands of latoral size ~ ZW\/W While thelr analysis gives a satis-
factory account of the origin of mounds, their formulatlon is still appealed to an
atypical regularization proecediiré with seime dimernsional ‘dependency, and is not
so conveniently: extensible to analyze a more complicated lattice. In particular it

is uncleargwhiether<the mechanism thategives, rise gy the growth instability is the

property; of the substrate dimension or of lattice geometry.

2.3 Crystal structures

In many prior computer simulations of thin films, deposited atoms are mod-

eled as a falling blocks. The crystal structures are limited to simple cubic lattice.
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In this work we simulate the growth of 6 crystal structures on 7 planes: simple
cubic, body-centered cubic, face-centered cubic on (001) and (111) planes, simple
hexagonal, hexagonal closed pack, and ideal hexagonal closed pack. The struc-
tures whose substrate plane is not listed are understood to be on the (001) plane.

The detail of each crystal structure and plane will be presented in this section.

2.3.1 Simple Cubic

£ 2

Thin fil ‘ {m \%‘ﬁ CLEY'S ucture, the simplest
structure, haﬁk}ﬂﬂr ‘y i ij[ to i zla}t‘j ﬁichanism of a growth
process. This structure has onl ohe atom andéone layer per uhit cell as is shown
o iy TN 0 Sk 6] e b oo
six atomqs with one atom at the lower and the upper layers and four atoms at the
same layer. This structure has fourfold rotational symmetry which means that
rotation by an angle of /2 with respect to a particular atom does not change the
lattice. Most simulation results of molecular beam epitaxy are performed with

the simple cubic structure so we can confirm the correction of our algorithms by

comparing the simulation results of ours using this crystal structure.
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2.3.2 Body-centered cubic

Figure 2.8; ic erystal structure.

Body-centered cu | ) crystal str which is shown in Figure 2.8,

has two atoms and two lay

vertical direction repeat thega;sgi r’s e;fv y two layers. Each atom can bond with

four nearest neigh SA; at the lower layer a

as Mo, Na, W, Ta jbogf_l_y—centered, re has fourfold rotational
| 4 ;

symimetry.

55 nfUED gmwmm
| ARAASAIAINNA TR e

cell Wlth two different layers. Figure 2.9 represents the FCC(001) structure, the
red atoms and the blue atoms locate at each corners and faces of the cube respec-
tively. Each atom has the maximum nearest neighbors of up to twelve atoms with
four atoms at the lower, the upper and the same layers. The face-centered cubic
structure has fourfold rotational symmetry. The structure of many materials such

as Cu, Ag, Pt, Au, Rh are face-centered cubic.
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cubic

)
S e

Figure 2.9: The crystal structure on the (001) plane.

2.3.4 Face-cente

Layer A

Layer C

Layer B

Figure 2.10: The face-centered cubic crystal structure on the (111) plane.

The (111) plane of the face-centered cubic (FCC(111)) structure is quite



19

different from its (001) plane as shown in Figure 2.10. This plane of the FCC
has nine atoms per unit cell. The atomic layers of the FCC(111) are stacked in
an ABCABC... fashion, that is the fourth layer lies over the first layer, the fifth
layer lies over the second layer, and so on. Each atom has a maximum nearest
neighbors of twelve atoms with three atoms at the lower and the upper layers and
six atoms at the same layer. The lattice constants of the FCC(111) correspond to

|

the ratio ¢/a = /6. The FCC (111)“0”Cture has threefold rotational symmetry.

‘o v
ﬂgﬁﬂw BTN G
A simple hexagonal (SH c‘?‘ystal structtire has three atéms per unit cell
it SRS 13 O SR 1] Bhod BVl e i

9
direction repeat themselves every atomic layer similar to those in Figure 2.11.
Each atom has the maximum nearest neighbors of eight atoms, one atom at the
lower and the upper layers and six atoms at the same layer. The lattice constants

of the simple hexagonal structure are a = ¢. The simple hexagonal structure has

sixfold rotational symmetry.
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2.3.6 Hexagonal closed pack

E
\,

Figure 2.12: The'l Xagonaselosed pack crystal structure.

i mrJ

Hexagonal closed pac (HCP) erystal Stricture has six atoms per unit cell.

Each layer of atoms is stacked i m an ABA‘B?L J.style as is shown in Figure 2.12. The

-...'..

lattice constants ratio c¢/a < \7; SO t’ﬂt cach atom has six nearest neighbor

I_‘__

positions with three _\of them at the lower layer and qhother at the upper layer.
The materials sueb_,z% Zn, Ti, Cd are HCP. This cry_si;éh structure has threefold

rotational symmetry. 13

2.3.7 Ideal hexagonal closed ‘pack

Ideal hiexagonal, closed.pack! (i(HCP) crystal gtructure is'weryl similar to the
HCP structure (see in Figure 2.13) with six atoms per unit cell and the atoms
are stacked in an ABAB... fashion. But the lattice constants ratio of the iHCP
c/a = 4/8/3 which results in an increase the number of its nearest neighbor by
six positions within the same layer. The crystal symmetry of the iHCP is also

threefold rotational symmetry.
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Layer A

Layer B

Layer A

Figure 2.13: @ideal llgxagénﬁ';l closed pack crystal structure.

2.4 Represer;t-*éition _I_of _@rystal lattices

H;t o+
#

Conventionally most modelhng Wgtks are performed on two-dimensional
rectangular lattices makmg them‘ only aLp-l“ﬁable to simple cubic materials. The
periodic boundary conditionJ s é-“(')mpletgfijﬁ‘:édequate for this lattice. However,

for very Comphcatedi attices such as FCC(111} or 1HaOP the periodic boundary

condition does not & good choice due to insufficient speed in simulations.

To overcome complications in representing any crystalline structures, we
adopt the helieal boundary conditions [41] which represents any two-dimensional
lattice using a“one-dimensional chain. This representation of lattice can reduce
a multiplication to to'find éach memory location of alcompuidr which is labelled
with a gingle number. As an example, a site on an M x N rectangular lattice
with coordinates (i,7) is located at the (iN + j)™ element of the chain of length
MN (counting from zero). In the square lattice, its four nearest neighbors at
(1+1,7) and (¢, £1) are mapped to element number (i+1) mod M N and (i£N)
mod M N respectively. Other structures can be constructed in a similar manner.

The main advantage of the use of helical boundary conditions over the conventional
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ones lies in the flexibility in representing any n-dimensional structure using one-
dimensional chain of an arbitrary length (not restricted, e.g., to integer xinteger
in the case of simple cubic crystal) resulting in the simplicity of the simulation

code.
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The triangular lattices with helical boundary condition is shown in Fig-

ure 2.15 with lattice site of 11 elements and width of 4 elements. We can repre-
sent the triangular lattice in the same way as the square lattice. All six nearest
neighbors of site 7 in this case are located at (i +1) mod 11, (i +4) mod 11 and
(i+£ (44 1)) mod 11.
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CHAPTER III

Simulation results of surface growth

In this chapter, we shew the resulls ofsthe critical exponents and surface
morphologies of each crystal structuréé simulated under both DT and WV models.
In all simulations we assume. that atoms on the substrate and the film are of the
same type so that the film’s erystal ori;bntation is the same as that of the substrate
and no stress of any kindds produced aléﬂg the interface. Unlike other conventional
simulations where timne i measured inT'-;uHits of menolayers, here it is measured
in unit-cell layers (UE) since each qfructure viewed from a different plane may
contain a different number of atorm(‘ laye}'s Section 3.1.1 details the calculations

of the critical exponents of each-crystal %@ture obeying DT and WYV diffusion

rules. Data are analyzed and réeported iﬁ_--—Section 3.1.2. The results of surface

morphologies and thfé - descriptions are present-in Sect_-i?n 3.2.

3.1 Ciritical exponents: erystal structures depen-

dent

To investigate both critical’exponents and"surfacesmorphologies of the select
crystal lattices, we perform extensive simulations on chains with 100 to 250,000
elements. Due to the difference in the number of atoms in a unit cell, these
numbers translate to, e.g., the substrate of size 10 x 10 to 500 x 500 in the case
of SC and SH, and roughly 7 x 7 to 353 x 353 cells in the case of BCC, HCP and

iHCP. In all substrate sizes, the simulations are performed until they reach the
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time step beyond the point where the surface roughness W saturates. This value

ranges from 10* UL for 100 elements, up to 107 UL for 250,000 elements.

3.1.1 Results of critical exponents

To find the critical exponents, we need to know saturation time and satu-
ration width of each substrate size and the slopes of interface width as a function
of time at an early stage on a log-log sgale: From the plots of interface width
as a function of time which are shoY}vn i-Figure A.1 to Figure A.21, we want
a systematic method to find the satﬁration time of each substrate size of each
crystal structure. Herestwve hiave Choselln to use the minimum point of the second

derivative of each curye tosdcgignate tﬁle saturation time tg,.. This method gives

4 ¥

quite an accurate valug‘of saturaﬁo_n tfgfe especially for large substrate size. The

dynamical exponent z ig camputed. from the slope of log(tsat) against the log of
lateral substrate size L. vy é

-4 ?

The plot between W/ (L t) versus / o'f e.very crystal structure both DT and
WV model are shown in Appendlx A fro—Flgure A.1 to Figure A.21. Each curve

| Vo

is the result of the average of over 100 different conﬁguratlons for 12800 elements,

up to 5000 dlfferen_t.f configurations for 100 elements_..__‘- From Equation 2.4, the
system size should noﬁ_ have much effect on the value_(.)f the slope of these graphs.
Because of size effect of the growth expoment 3 in different timescales, the value
of 8 changes slightly:” For each substrate size,” we subdivide growth time into
three regions: ' UL < 1 < fgat/3¢ tsar/3 < to < 2tgat/3, and 2tga /3 < t3 < tgay,
where #,: denotes™thie saturation time for that particular substrate size as shown
in Figure 3.1. The value of ( is calculated from the average between [ during t;
and to. The value of § during timescale t5 is disregarded because, according to
Equation (2.4), 8 is defined during the early times. The representative value of
[ for a given crystal structure is obtained from the asymptotic value of the plot
between (L) versus 1/L, the curve can be extrapolated to find the y intercept
where 1/L = 0 or L — oo. This method was used in (141) dimensional DT
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model [42, 43].

The saturation width for a particular substrate size can be calculated from
the average value of interface width at the steady state region. To find the rough-
ness exponent «, we compute the slope of log(Ws,) against the log of lateral
substrate size L. Plot of log(W,t) and log(tsat) against the log of lateral substrate
size L are shown in Appendix A from Figure A.29 to Figure A.42. Results of all
critical exponents for DT and W are summarized in Table 3.1 and 3.2

respectively.

log W
1.0

0.8

0.6

0.4

02* 1

£

0.0:“‘”\““

— logt
7

~0.2"

i ?ﬁ‘i«iﬁmﬂmﬁm fig=n=me
AMIANTUUNIINYIAY

3.1.2 Analyzmg the critical exponents

From the results in Table 3.1 and 3.2, we find that the hyper-scaling relation
z = a/f is not generally respected within the simulation accuracy in both models
when « is either too high or too low (such as HCP). Albeit some small variations,

the values of the growth exponent /5 agree with the predicted value (8 = 1/5) from
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Figure 3.2: The second deri ¢ of interface wid R as a function of time for SC
lattice, DT model. '

all lattice structures, sorted

Table 3.1: The y.r ] ex)

-

Das Sarma—Tamborenea model
f o Qs

according to a.

structure (g : \ z mound

FCC(111) 0.76 £+ 0.04 020:|:OO3 33:1:02 yes(?)
W'\ AN AT INg ;
w LG e VR (PN 1 R
FCC(001) 0.63 £ 0.02 0.23 £0.05 3.24+0.1 no
SC 0.62 + 0.02 0.22 +£0.04 3.1+0.1 no
BCC 0.57 £ 0.02 0.24 + 0.05 3.1+0.2 no

HCP 0.52 £0.02 0.24 £0.04 2.8+0.2 no
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Table 3.2: The critical exponents of the WV model for all lattice structures, sorted

according to a.

Wolf—Villain model

structure «Q I6] z mound
SH 1.12 4+ 0.01 0.25 £ 0.03 3.9£0.3 yes
SC 0.94 £0.02 0.23 +0.02 3.6 £0.1 yes
iHCP 0.86 £ 0.02 023 & 0.02 3.0+0.3 yes
FCC(111) 0.83 =0:02 020 2210.04 3.6 £0.3 yes
FCC(001) 0.57 = 0.0s Y 0.3:90 U.UT 3.0£0.2 no
BCC 0.4240.05 | 0,20+ 061 1.9+£0.2 no

HCP 0.7 0708 ! 0.2040.01 2.9+ 0.2 no

a

the continuum equation in the case_of D'Timodel across all lattice structures. The
W

roughness exponent a.and the dyndfnica’l“exponent 2 appear to be slightly less than
those from the continuum predictions ((",X?ppt for avof FCC(111)). The exponents
in the WV case, however; do mot seem to ¢onform to the theoretical prediction

especially the dynamical exponent (ki ﬁ:.w*high ranges from approximately 2 to

4, L sy

The above dié;répancy is removed by noticing tlIe last column of Table 3.2
which indicates the e;istence of mound-like morphoi_{;gies on each substrate. In
the case of BEGC and' HCP sutfaces under WV diffusion rule, the surface front
appears to be Kinetically rough without any growth instability. We find a complete
agreemtentibetweemthe values of thedynamicalexponent) from thessimulations and
that from the prediction of the continuum growth equation (z =2). (FCC(001)
presents an exceptional case. We shall defer its discussion until Chapter 4.) Upon
a closer examination of the last column of Table 3.1 and 3.2, we notice unstable
mound-like morphologies for those structures with a > 0.67 regardless of the
diffusion model. (The reason for the question mark in the case of FCC(111)

under DT model shall become evident at the end of Section 3.2.) The separation
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between mound and kinetically rough surfaces at a certain value of the roughness
exponent has been previously observed in the experiment [44]. The fact that the
critical roughness exponent a. having value greater than 0.67 is consistent with
the absence of mound morphology from the simulations of any stable, linear or
nonlinear continuum growth equations of up to fourth order without ES barrier;
the largest value of « in two spatial dimensions belongs to the MBE universality

class with a = 2/3.

It should be noted that a “rough” surfaee indicates a large value of W (L, t).
Since we quantify “roughness” according to“Equation (2.1), ordered structures
such as mounds or pyramids, tenid to be “rougher™ than scale-invariant, kinetically
rough surfaces becausé theanound regi?ns tend to be much higher, and the troughs
of the hills much lower, than ghe dyerage [£ilm height (h(t)). Tt is likely that a large
value of the roughness exponent (a R 1—) would indicate mound morphology on a
surface. When o = 1, one obtalns mounfds with slope selection, 7.e., mounds scale
the same way as the lateral su'bs'trate d1mens1on For @« > 1 (o < 1), mounds

?

tend to grow (shrink) in size Wlth 2 Iarger substrate Surfaces that contain visible
204

mounds, therefore, have a large Value of-ain —m contrast to kinetically rough surfaces

of small o which appears flat upon takmg the therrnodynarnlc limit (L — o0).

3.2 Surface morphology and mound formation:
crystal structures and diffusion rules depen-

dent

In this section we present our results of surface morphologies of both WV and
DT models. Each morphology results from simulation on a chain with 250,000 ele-
ments at 10° UL. All of the surface morphology pictures are shown in Appendix B
Figure B.1 to Figure B.14.
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3.2.1 Surface morphologies of different crystal structures

In our simulations, we see mounds forming since an early stage of the growth
naturally without any additional efforts for all structures with a > 0.67. As time
progresses, small mounds shift and coalesce into bigger ones, similar to what was
reported from the WV results using the noise reduction technique [27, 32]. The
coarsening behavior with mounds of similar sizes during growth implies that the
growth front is not scale invariant. The merging of mounds ends at t.,; where the
correlation length £(ts.¢) is eomparable to'syStem’s size, and only one mound (and
one trough) remains. 1t'8 intercsting to note that the growth and coarsening of
mounds is not stationary;awhile a large mound subsumes smaller ones in order to
grow, its tip does not stand.still but éhifts sideways in a series of disappearance

. 0

and reemergence of a peak. el

=t

Figure B.1, B.4, B& and/B.7 shov&b the surface morphologies prior to satura-
tion times using WV model on chains W}‘Eh 250,000 elements of SC, FCC(111), SH
and iHCP respectively.” These models fawb.r mounds because atoms tend to flow
toward kink sites which are Hiﬁét likely to__ha’)\;e the highest coordination numbers.
DT model, on the other hand, 1§ more inclined to genergte a rough surface because
adatoms generally stleHe—Eheﬂ—eﬂgrﬂal—laﬂe}mgswhich 'Iéilready have high coordi-
nation numbers. Even within the same models. mouﬁ(i-s do not assume the same
form. Mounds found on SH and FCC(111) simulations exhibit strong geometrical
shape. In particular, FCC(1 1) sinnlations show a striking-eénsemble of triangular
pyramids similar to many kinetic Monte Carlo (kMC) simulation results at low
temperatures [45,46] g Surfaces-of |SE and iIHCP, omthe;othershand, only display
semi-regular hillocks which do not reflect the underlining lattice structure. Three
other lattice structures, namely FCC(001), BCC, and HCP, do not develop visible
mounds within WV model.

We do not see the development of mounds in most of our DT simulations
on the same set of lattices—with a notable exception of FCC(111) as shown

in Figure B.11. While the surfaces of other crystalline structures appear to be
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statistically rough, the surface of FCC(111) show round, hemispherical mound
morphologies, visually very similar to what was observed in DT model with ES
barrier [27] or in high-temperature kMC simulations [23] on simple cubic lattice.
The second highest value of a among all lattices simulated using DT model is
SH structure. Figure B.12 shows the surface of SH prior to saturation without
any apparent mound morphology. The surface of other lattices with a smaller
value of a exhibits a statistically rough interface as traditionally expected from
a standard DT simulation. On a closer gxamination, however, we find that the
development of mounds on FEC(111) surfaeé using DT model is quite different
from the ones using WV _iaedel. Mo—:mds, in this case, do not arise from island
formations and coarsening olsmaller mounds mto larger ones. Initially the surface
appears to be statistically zough: ‘As éime progresses, the regions which are later
to become mounds, deyelop small'{graézéll around them. The cracks then deepen,
forming narrow troughs whi¢h gr’-aduall;f, enlarge, splitting the original surface into
many mounds. The pergéption of mo{fqd,growth 1s in fact the deepening and
broadening of the troughs. Finally at la;’éef-'ti!me& small mounds start to merge by
the progressive disappearancé:'bfftroughsi_i;riﬁ'ch separate them. We suspect that
in this stage, the correlationlength (¢) dafctaates the size of each mound (which is

comparable to the Subena,te—az,e—as—the—éam;cauen—tme is reached).

Figure 3.3 and ?.4. show the logW as a funcfion of logt for chains with
250,000 elements of D'*and WV model zespectively. We can see from the curve
of FCC(111) structure obgying DT modél that; the slope of this curve changes
rapidly at ¢ approximately equal to 10° UL (logt = 5). This is the point in time
that sturface begins te crack which resultsin rapid increase of the slope. For other
structures of DT model at the same region of time, the interface width tends to
saturate at a particular time which corresponds to kinetically rough surfaces. How-
ever, interface width at any time step under WV diffusion rule of SC, FCC(111),
SH and iHCP, which exist mounds on the surfaces, does not increase rapidly as is

the case in FCC(111) under DT model.
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Figure 3.3: The interface #vig | DT model for chains with

250,000 elements.
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Figure 3.4: The interface width as a function of time of WV model for chains with

250,000 elements.



33
3.2.2 Correlation functions

In this section, we discuss the properties of the surface morphologies by
using the height-height correlation functions. The graphs of the correlation func-
tion of each crystal structure of WV and DT models are shown in Figure B.15
to Figure B.28. All of them show the correlation functions C(7) as a function of
7= (z,y) at t = 10° UL. We clip the center of the graphs where the correlation
functions grow up to the maximum value (the red region), to suppress the height
in order to see the oscillations of the funelidus: The positions where the correla-
tion functions are positive (negative) are paintedin red (blue) color. Black lines
indicate zero of the corrglation functlons Each graph is a result of an average
over ten runs. It should"bemoted that the existence of mounds on the surface
results in the oscillationgfof £he ¢otrelation functions. All of them have reflection

— =4
symmetries with respect fo # and y axes. .
: §

Figure B.15 to Figure B.21 repres:é'n,t the correlation functions C'(7) of WV
model corresponding to the surface morpho.logleg of Figure B.1 to Figure B.7. We
can see that the correlation functlonb of t]:uaS‘C FCC(111), SH and iHCP oscillate
with 7 indicating mounded patterns on the Sitfaces. Let us concentrate on the
correlation functlonsef—FGG{—H—H—&ﬂd—SH—sﬂueﬁrfes Wthh display clear oscilla-
tions. The number of peaks (valleys) of the SH in the case of SH (Figure B.19)
is greater than that in FCC(111) (Figure B.18) which implies that the number of
mounds (troughs) dnithe guifacé of SH N Figure Bi19 s also greater than that
of FCC(111) in)Figure B.4. The sizes of the oscillations in FCC(111) and SH
structuresparergreater; thancthat ingSCyandyiHCP sstructuresswhich means that
the SC and THCP lattices have less regularity of size and shape 6f mounds than
FCC(111) and SH structures do. The correlation function of the BCC, FCC(001)
and HCP structures of WV model, on the other hand, do not oscillate with 7 as
shown in Figure B.16, B.17 and B.20 respectively. This confirms the kinetically
rough growth process without mound formation on the surfaces in Figure B.2, B.3

and B.6.
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The correlation functions of the structures obeying DT growth model are
shown in Figure B.22 to Figure B.28. For SC and SH structures, we can see
small oscillations of the correlation in some directions. We, however, do not see
any mound patterns on the surfaces of SC and SH structures in Figure B.8 and
Figure B.12. We believe that the oscillation of the function in this situation occurs

from too much noise on the surfaces.

For the FCC(111) structure; the eorrelation function C'(7) oscillates with 7
which indicates the existence of mounds onthesurface. We focus on the FCC(111)
structure of DT and WV models. By comparing the FCC(111) structure from
WYV model with the FEE(T1Lyfiam DT model, wefind that the amplitude of the
correlation function of the FCE(111) (‘iibeying DT niodel is generally greater than
that of WV model. “Fhis s begapse the,,average mound height of the FCC(111)
from DT model greater than that ﬁrom——VV V' model. We can see from Figure B.11
that the surface in thig'figure hdS vely"deep and narrow troughs compared with
that of WV model. This implies that the ave'rdge mound height (height of mounds
and troughs) of DT modelis glea’cex than ’ﬁhat of WV model.

,u

The correlation functl_QI}_sgf the rem_aim_ng structures of DT model which

are BCC, FCC(OOI_)-,:_HCP and iHCP are very noisy ar;%"' seen in Figure B.23, B.24,

B.27 and B.28. We"’iquspect that the oscillations of the correlation functions in
these stage occur due'to too much noise on the surfaces during growth process

and the number of the ensémble averages is inadequate.

3.2.3~ Mounds and mechanism -of - mound. formation

It was well established that Ehrlich-Schwoebel (ES) barrier, which prevents
an atom on a terrace to hop down, could explain the formation of mound-like
structures observed in many MBE growth experiments [12, 47, 48]. Since then
several authors [27, 49] have proposed a topologically induced probabilistic cur-
rent known as step-edge diffusion (SED) current as an additional cause of mound

formation. SED current arises from the greater likelihood for an atom to move
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along the edge of a terrace toward a kink site. Their analysis, however, was based
on the simple cubic structure. It is very unlikely that SED current is the only type
of probabilistic, topological current in existence. An array of other geometrically

more complicated crystalline structures could give rise to a new class of current.

3.2.4 Terrace current and step edge current

To understand the mechanism of metind formation in both models, one
should examine the area-mearby a te_r}raco edge which separates two flat regions.
One commonly accepted expla‘nationras to why-an island nucleation leads to the
formation of a large meund.like structllure is due to the flow of atoms, on average,
towards the mound region sesulting in{the net “uphill” current [20, 50, 5, 51, 52].
Without appealing to ghe mse of E_S b@:fier, we consider a topologically induced
uphill current in the spirit of SED cull"'jreﬁt. As anticipated, we find that all of
the lattice structures that develop mou;ds ‘appear to have SED current. To our
surprise however, the convontlonal- SED cmr-rent is almost always cancelled by local
downhill current. We also dlscover that SH_a'nd FCC possess yet another type of
geometrically 1nduced curreiity Unlike SED current Whlch flows along an edge of
a terrace towards a kmk—srte—’ﬁhe—new—euﬁeﬁt—ﬂews—m $ho perpendicular direction
towards the edge. VVe believe that the reason why thls “terrace diffusion” (TD)
current has never been observed is because in SC, where most simulations 49,
25] are based{en, an léquall and 6ppesité-curtent Aows downhill. The uphill and
downhill curreritis thus, on average, cancel each other leaving only SED current. It
is worthymentioning that: T R-currentyis analogous tothe edgedsS gurrent, whereas
SED current is to kink ES current. The difference is that the edge ES current may
occur on a one dimensional substrate, while TD current is only present on some

crystalline lattices in two spatial dimensions.

To illustrate the difference between SED and TD, consider a step terrace
lying along the [1000] direction of a SH(001) substrate as shown in Figure 3.5.

Atoms on the upper terrace are denoted by empty circles while those on the
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Figure 3.5: Local probabilistic€urrents near a step edge along [1000] direction of
SH(0001) with a step dent. Shaded Clircles represent atoms on the lower terrace
while light circles depici#these on'the upper terrace. An atom dropping on any

lattice site will move;‘accordingto WV mﬂ&, to one of sites along the corresponding
J
arrow. An atom will ot move if4it falls on a site without an arrow. An atom

A ¥

falling on site A, in particular, W1H be dmven towards a kink site B producing a

il

small SED current. This ctirrént is however -ngcelled by another downhill current

from C to A. Global net currents are deng;?g,_e_(_.l_by thick arrows.

lower terrace are ré_pfesented by shaded circles. Accoraﬁﬁg to WV model, a newly
deposited atom WhiCh-_ falls far from the edge of the ferrace will not move. The
one that falls within tThe proximity of the.edge will acivance along the direction(s)
as shown by thie arrow(s) in order to' maximize its bondings. A site with two or
more arrows indicates that there is an equal probability for an atom dropping on
it to move in ‘one-of fhé allowéd! directions: Along /the flati region away from the
kink, atéms tend to move uphill as much as they move downhill resulting in a net
zero flux. Near the kink site, we find that an uphill flux tends to occur more often.
Note in particular that if an atom falls onto position A which situates on the edge,
it will be attracted toward the kink position B creating a small SED current. Since
WYV diffusion rule only allows an atom to move to one of the nearest neighbors, the

SED current only extends a distance of one atomic position. On average, however,



37

a particle does not tend to move uphill as a result of this current because there

is another current flowing downhill in the opposite direction (from C to B) with

the same strength. Nevertheless there is a net current in the uphill direction near

the corner of the terrace edge at position E and F. It is not a SED current in the

traditional sense since the direction of the flow is not along the edge but at an

angle towards the corner. For the lack of a better word, we shall still refer to it as

step-edge diffusion current because

of a kink site and has a com

current still appears in the neighborhood

T%/ terrace edge.

O
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Figure 3 6: Local probabilistic currents near a step edge along [1200] direction

of SH(0001).

The upper terrace is on the left side while the lower terrace on

the right. There is a net uphill terrace current acting along the [1000] direction.

Noncancelling currents are indicated by thick arrows.

The situation is even more perplexing for a step terrace along another high-
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symmetry direction, the [1200] direction, as shown in Fig. 3.6. Notice that an
atom falling onto position A next to the kink site does not move toward the site.
No (traditional) SED current exists along this direction. We, however, find a
net a noncancelling flux of currents (thick arrows) flowing perpendicular to the
terrace edge in the uphill direction. This flux would serve to extend the base of the
terrace in a future time step. (We shall discuss, in Chapter 4, a notable exception
of FCC(001) where a non-zero current, does not lead to the formation of mounds.)
To our knowledge, this type of topologigalscurrent has never been reported in
the literature. Near the corner, there alsg.exists. a SED current similar to those
in Figure 3.5. Table 3.3 gives a sun;;nary of the type of currents along a given
direction during the growth efi SH: SC, iHCP, FCG(111), and FCC(001) surfaces.
The upper terrace resides on the 1n51dé of the geometrical figures. It is interesting
to note that FCC(111) gimulagions §h0\wzz ‘\I/ery strong triangular pyramidal mounds
oriented in the same direction, and n"gv’e'r an inverted triangular version. We
believe that this is du¢ to fha'difference 'Bgtween the symmetry of the two types of
currents; TD current is only thre¢-fold égfﬁupetric while TD current has a six-fold
symmetry. The preferred face"é;:ar'o orionté& 'T}Sl;'erpendicular to the directions of the
TD currents, formmg an_upright trlangular pyramld The other structures whose

surface has irregular. IHQH—Hdé—Hé&H%l—}—S@—&Hd—I—H—@P—&EQ dev01d of the TD currents.

In addition to the edge ES current, TD current should-cause an instability forming

equilibrium faceting along some vicinal surfaces.

For BC€ and HCP, mounds are not ‘observed and! neither type of cur-
rent is present.” Consider as an example the current consideration in the case
of BCE(00L), obeying WV maodel. ‘Figure 3.7 shows three layers of atoms. Full
circles signify occupied lattice sites. If an atom falls on one of these positions, it
would have to move along a direction designated by one of the arrows towards an
unoccupied site (dashed circle). Not only does a net current not exist, locally it
flows perpendicularly away from the terrace edge in both directions. Any atom
deposits near the edge will likely be pushed away from it which implies that had

an island been formed, its territory would not have been extended by this process.
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—_— SH SC iHCP FCC(111) FCC(001)
TD
SED I
Table 3.3: Edges of Sk 1 ) an 1 2(001) are shown where the
corresponding terrace di ). al - iffusion (SED) currents are
nonzero, calculated bas 7 iffisie . Upper terraces are shown in gray.

A e
= wid

iHCP, and [110] direction for%ﬁé@lllﬂ—'

site. In fact, if an-afom falls exact ( ‘ion, it will diffuse away

i S ‘
from the kink. This nter-intuitive behavior arises“from the fact that, for BCC,

lattice sites a. at rﬂ' e tme rdination numbers. Moving
towards theseﬁjlﬂﬁlﬁﬁﬁn tyﬁﬁnﬁrrace would therefore
cost more energy. A closer inspectfon shows thétatoms at the®oéttom of the edge
alreadﬂjm W, ta:lr&nt‘ﬁhmpuman,}m Eallg])aitﬁjr of these two
TOWS adjlcent to the edge can only roll away from the edge. The step edge in this

case serves as a topological barrier preventing an atom to cross side. The same

situation also happens in a HCP lattice whose surface is also mound-free.

We end this section by giving a brief account of the DT simulation results.

As discussed at the end of Section 3.2.1, no island formations are observed on
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Figure 3.7: A step ed A H dire \' ~ parates the lower region (on
the bottom of the fig % the top). Three atomic layers
are present with a light sig j f' ayer. Occupied lattice sites are

represented by full circle gé_ ¢ '.. de ~\ ote unoccupied ones. Locally

atoms tend to move away

the surface of these lattice_ C e of FCC(111) where mounds are

present. This is consis ent with th -_;_._._-;-,f find any non-zero uphill
TD or SED curren V Other than FCC(111), all
surfaces appear to be [ netlcally rough wit early-tmﬂbehavmr following a power
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law.



CHAPTER IV

Conclusions

Through large-scale Monte Carlo sinutlations, we have analyzed MBE growth
of thin films on several lattice struct{lres based on WV and DT models in 241
dimensions. We discoverssthaeas the roughness exponent of around 0.67-0.76, the
surface morphology of ghe fil Changés from being kinetically rough with power
law scaling to quasi-regtilazs nioumd-like structuress. Without ES barrier, we at-
tribute the morphological differe-nc_e to?the appearance of topologically induced,
probabilistic particle etrrgnts. Theso cdz‘f_{@qts not only arise from the line tension
along the step edges Separating. Siejyferal té;:-;gces of each mound in the form of SED
current, they can also emergé-pézpendicﬁ_ljéd;:lj‘:‘to flat straight terrace edges in the

uphill direction in the form ofFD curreﬂfi;—-—'ﬁhe latter only manifests itself in SH

and FCC lattices artébn;z several others that we have c{lbserved.

ol

It is clear that-the evolution of surface morpholdgy depends not only on lat-
tice dimension but al‘;o on material’s crystal structu;e. In describing the growth
of a lattice stmicture obeying a particular ‘diffusion rule, the values (and signs)
of the parameters (v, v4, A13, Aoz and D) in the associated continuum growth
equation fieed to e ddjusted dceordingly. The growth morphslogy are primarily
categorized into two classes: kinetically rough scale-invariant or unstable mound-
ing surface. We find that the separation between these two growth regimes occurs
at the roughness exponent « of around 0.66 regardless of the prescribed diffusion
rule. Further analytical study is needed to explain the origin of this magic num-

ber. For kinetically rough surfaces, the dynamical scaling theory seems to give

an accurate description of the behavior of the growth interface using power laws.
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On the contrary, for destabilized mounding morphologies, the growth needs to be
described in terms of island nucleation and island coarsening. We shall leave the
analysis of the dynamics of mound coarsening in limited mobility diffusion models

for future work.

Contrary to Ref. [27], we are able to obtain mound morphology without any
noise reduction technique. In our simulations we find that mounds are recogniz-
able after its lateral size reaches about 100 atomic units. We do not see mounds
comparable in size to theirs. Our suppositiousis that since we expect the parame-
ters of the corresponding continuum growth equation to be substrate dependent,
the uphill diffusion term™=|5{7*h may overcome the Mullin-type diffusion term
—|v4|V*h, which tend§ o sipptess sm'ﬁdl fluctuations, at the length scale given by
le ~ \/m . This dengthscale /., in 'sogne crystal structure, may be larger than

the attempted substrate simulation seale, thus, mounds may never be observed.

| #

In addition our moundgfargmach more':fgregular than the ones obtained using the
noise reduced scheme. Qur walue of a ﬁor SC is very close to one which implies

that mounds have a selective sloﬁe in aéﬁ%ment with Ref. [32]. We believe that
I - - e g -'_:IlJ
the noise reduction technique, i inost cases, serves to amplify the mound shape

. == -
and is not a necessagy scheme to produce mounds:

- -

A few remarl;{s""[are in order regarding the topological currents. Our obser-
vation leads us to believe that the mechanism of mound formation within our
framework is due to both'the kink SED ctirrent and.the. straight TD current. The
latter serves as'anm‘extra tole in-enhancing the-faceted'stiucture of mounds on
the surface where it exists. It is true that other, more complicated, edge shapes
exist which ‘couldycause other geemetrical currents. | In a certain_coarse-graining
sense, dimples and pits can be generated by one kink/corner step similar to the
ones in Figure 3.5, 3.6 and 3.7. We still believe that these currents can be largely
categorized into curvature-dependent versus straight terrace edge type of current.
In his review article,[20] Krug argued that SED current induces Jsgp ~ Vi (h),
where « is the local curvature of h(Z,t) on the plane of the substrate. This results

in ~ V*h in Equation (2.9). Physically this term emerges as a result of the line
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tension due to the curvature of terrace edge. The TD current, on the other hand,
appears even when the radius of curvature is infinite. Given m = | - 6h| where
n defines the direction along which the current is active, TD current gives rise
to the anti-diffusive flow along the uphill direction Jrp ~ fm/(1 + m?2) which is
approximately ~ nm for a small surface slope [3]. Our findings suggest that both
Jsep and Jrp only act along certain preferred directions according to the underly-
ing lattice structure. (In the case of ECC(111), for example, the TD current may
point along one of the following three dirgctions: [112], [211] or [121].)

Our simulations also sugeest that, in-most structures with surface growth
instability, local current*tendstoflow towards the bottom of a terrace edge both
from the upper and lower terraces: (Slee, e.g., Figure 3.5 and 3.6.) On a kineti-
cally rough surface such as that Qf BCQ and HCP, we observe the local current

which flows away fromi” the hotfom-of & terrace edge, similar to what is seen in

\ #

Figure 3.7. Although ghe effect of thisf qu'rrent tends to average out on a larger

scale, its existence gives #ise to the cxlrféﬁt of the form Jea ~ +n(n - ﬁ)zh This

translates to a new term proporfional to C’ffﬁ )?h in the continuum equation. (On
J J i s dd

a one dimensional substrate, this-is simply 0°h/0z3.) This term has been previ-

ously neglected based on the rotation and inversion syinmetry about the growth

direction. Given a'nf;anisotropy of each lattice Structt-i'r_-e, we do not believe that

the new term should be discarded from futurc investigations.

We see a.different mound formation process on ECC(111) plane under DT
diffusion rule! The'traditional’ pieture of island-nucleatiofi, followed by particle
accretion and mound coarsening may not givesam accurate desSeription of the DT
structural formation. s Witheuty any net uphill gurrents; we expect a completely
different mechanism at work. Visually, mounds on FCC(111) plane do not possess
up-down symmetry as the ones obtained using WV diffusion rule. This is, however,
typical of DT growth morphology. We therefore still expect the DT terms (—v4,V*h
and Ay V2(Vh)?) to still be effective in the continuum growth equation. In light
of the supposed anisotropy term that might be present, a complete understanding

demands a more thorough theoretical investigation of the growth equation.
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Finally we study the height-height correlation function to confirm the exis-
tence of mounds on the surfaces. The correlation function of FCC(111) and SH
structures under WV model and FCC(111) under DT model display clear oscilla-
tion which agrees with regular mound pattern on the film surfaces. In the cases
of SC and iHCP structures obeying WV diffusion rule, the correlation functions
also oscillate but a smaller amplitude. This result suggests that, there are mounds

on the surfaces with less regular pe compared to that of FCC(111) and SH

structures because the SC ve TD current. Other structures

of DT and WV diffusio mound on their surfaces, will
produce a correlation functi ' n. The surfaces of the BCC and

HCP structures unde eV \‘f\- e of DT model (except for
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Appendix A

The plots of the critical exponents

Figure A.1: The 1nter ce Wldth as a functlon of time of SC structure of DT model.
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Figure A.3: The interface width as a function of time of FCC(001) structure of
DT model.
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Figure A.5: The interface width as a function of time of SH structure of DT model.
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Appendix B

The plots of surface morphologies and

the corr ion functions
N7

— '_? )
N

:”._'.:I-
- e .
S~
SRR |

AuLIne
U Nl



72

% (73

Figure B.2: Surface morphelogy of:'@fé 'i‘ﬁ structure of WV model at ¢ = 10° UL.
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Figure B.3: Surface morphology of the FCC(001) structure of WV model at ¢ =
10° UL.
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Figure B.5: Surface morphology of the SH structure of WV model at ¢ = 10° UL.
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300

Figure B.6: Surface merp 'y _ P structure of WV model at ¢ = 10° UL.

Figure B.7: Surface morphology of the iHCP structure of WV model at ¢t = 10° UL.
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Figure B.9: Surface morphology of the BCC structure of DT model at t = 10° UL.
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Figure B.10: Surface mor structure of DT model at

t =10° UL.

Figure B.11: Surface morphology of the FCC(111) structure of DT model at
t =10° UL.
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Figure B.12: Surface morphology of th ,jt cture of DT model at ¢ = 105 UL.

Figure B.13: Surface morphology of the HCP structure of DT model at ¢ = 10° UL.
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200

Figure B.15: The correlatia i 1 i« fthe S ucture of WV model at ¢t =
10° UL. |

Figure B.16: The correlation function of the BCC structure of WV model at
t =10° UL.
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Figure B.17: The correlation f ietidn of the 001) structure of WV model at
t =10° UL.
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Figure B.18: The correlation function of the FCC(111) structure of WV model at
t =10° UL.
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Figure B.20: The correlation function of the HCP structure of WV model at
t =10° UL.
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100

Figure B.21: The correlation function! of the iHCP structure of WV model at
t =10° UL.
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Figure B.22: The correlation function of the SC structure of DT model at ¢ =
10° UL.
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Figure B.24: The correlation function of the FCC(001) structure of DT model at
t =10° UL.
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Figure B.26: The correlation function of the SH structure of DT model at ¢ =
10° UL.
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Figure B.27: The correl: trcture of DT model at t =
105 UL. \\

Figure B.28: The correlation function of the iHCP structure of DT model at
t =10° UL.
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