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CHAPTER I

Introduction

1.1 Introduction

The growth of crystalline thin films via molecular beam epitaxy (MBE) has

attracted several interests experimentally [1, 2] due to ever growing applications in

many fields, and theoretically [3, 4, 5] due to its rich surface structures. Incoming

flux of atoms deposit onto a substrate in the layer-by-layer fashion generally mak-

ing the film completely free of defects. Excess energy of the adatoms allows them

to diffuse along the surface away from their initial landing positions. These atoms

tend to minimize their energy by moving towards sites with high coordination

number such as those along island step edges. The process produces an instability

in the growth morphology leading to the formation of surface structures.

Over the past decades, there have been numerous experimental evidences of

a pyramid-like mound morphology with a well-defined mound shape, and a selec-

tive slope [6, 7, 8, 9, 10, 11, 12]. The origin of such a structure has mainly been

attributed to the presence of Ehrlich–Schwoebel (ES) barrier [13, 14, 15, 16, 17, 18]

which, according to Burton–Cabrera–Frank theory [19, 20], hinders atoms from

moving down a terrace resulting in the tendency for them to prefer to flow “uphill.”

Several investigators have confirmed mound formation due to ES barrier through

their computer simulations [21, 22, 23, 24]. More recently another type of desta-

bilizing ES step-edge current was discovered which causes atoms to flow along a

step edge within the same terrace toward a kink site or over a corner site [25, 26].

The kink ES current, unlike the former kind, can only occur on a surface with
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spatial dimension higher than one. Until the past decade, it was believed that ES

barrier was the sole cause of mound morphology. Chatraphorn et al. [27] were able

to obtain a mound-like structure without implementing the ES barrier. Unlike the

ES mechanism which are energy-assisted, this mounding instability is probabilis-

tic and topological in nature. A net current arises via the unbalanced between

atoms diffusing up and down a step edge, hence the name “step-edge diffusion”

(SED) current. On a simple cubic lattice, this type of current only occurs around

a corner or a kink site which is similar to the kink ES current. The mounding

instability through SED current did not emerge spontaneously, and was observed

only after the use of the so-called “noise reduction technique” to suppress the de-

position and nucleation noise. It is unclear that SED mechanism, initially studied

in a simple cubic system, always occurs, and always leads to mounding structure

in all crystalline lattice structures. Do other topological currents exist in other

structurally different crystalline lattices? In this thesis we propose, in addition

to ES barrier, a competing mechanism for mound formation as a consequence of

probabilistic terrace currents due to the geometry of a film’s crystalline structure.

1.2 Overview of the thesis

We begin, in Chapter 2, by describing the discrete growth models for MBE

and theoretical background of surface growth. The Ehrlich–Schwoebel barrier and

step-edge diffusion current which are accepted as causes of mound formation on

the surface are also explained in Chapter 2. In addition, several crystal structures

which are used in our simulation will be shown. We also present the helical

boundary conditions essential for constructing representations of various crystal

structures. Growth simulations are then performed on each of these structures

according to a set of diffusion rules. In Chapter 3, we begin with simulation

results of critical exponents of each crystal structure obeying two diffusion rules.

The roughness exponent, in particular, implies the existence of mound morphology

on a particular crystalline thin film. The second part of Chapter 3 is the results
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of surface morphologies. Some of them have mounds on the surface which is

confirmed by the height-height correlation function of the film surface. We work

out the probabilistic currents of a few crystal structures for an illustrative purpose.

These currents are additional causes of mound formation on the film surfaces in our

simulation results. Here, we identify a new type of uphill topological current. We

discuss, at the end of Chapter 3, the mound formation mechanism in connection

with an underlying continuum growth equation, and the summary of our work in

Chapter 4.



CHAPTER II

Theories, models and crystal structures

Molecular beam epitaxy (MBE) is one of the best known methods to fab-

ricate high quality thin films. MBE experiments are, generally, operated in high

vacuum or ultra-high vacuum (10−10 torr) to reduce unwanted particles in the

chamber. The advantage of this technique is the slow deposition rate which al-

lows the film to grow epitaxially (layer-by-layer). In the molecular beam epitaxial

growth mechanism, there are three main microscopic processes which are deposi-

tion process, surface diffusion process and desorption process [3]. During the first

stage of growth an atom from the vapor (beam) deposits on to a substrate, then

moves to form bonds with the crystal on a substrate, and sticks. The desorption

process, generally, occurs at high temperature when a deposited atom breaks the

bonds and leaves the surface. If the substrate temperature is not too high, the

desorption rate is very low compared to the deposition rate. We assume that, in

our studies, that the desorption process is negligible. After an atom deposits onto

surface and adheres to the substrate, it can break the bonds and diffuses on the

surface to find an energetically most favorable position [3]. This process is named

surface diffusion. The length of the diffusion depends on the bonding energy and

the temperature of the atom.

2.1 Discrete growth models for MBE

In this section, we will explain surface growth models that are used in our

simulations. All model are solid-on-solid which no overhang and void defect in



5

the film. Despite decades of intense investigations both computationally and an-

alytically, Monte–Carlo simulations of thin-film MBE growth have been limited

to various “toy” models; boxes representing atoms are sprinkled down from atop

and subsequently relax to their final atomic positions without any voids or over-

hangs according to a given set of rules. We examine the limit of low substrate

temperatures so that deposition atoms can move atmost to one of the nearest

neighboring sites before coming to rest. We use Das Sarma–Tamborenea (DT)

model and Wolf–Villain (WV) model, which are most prominent diffusion rules,

in our simulations.

2.1.1 Das Sarma–Tamborenea model

In 1991 Das Sarma and Tamborenea proposed a simple surface growth model

named after them [28, 29]. During a growth process, an atom is dropped randomly

on an initially flat substrate. The adatom can diffuse immediately to one of

its nearest neighbor positions with equal probability to increase its coordination

number provided that the current number of bond is less than two. Some other

conditions the atom does not move. Figure 2.1 gives a schematic diagram of the

DT diffusion rules in a simplified 1 + 1 dimensions. An atom falls on one of the

shaded regions can diffuse immediately to one of the direction specified by arrow(s)

with equal probability.

DT model

Figure 2.1: One dimensional Das Sarma–Tamborenea model.
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2.1.2 Wolf–Villain model

Wolf–Villain model is another surface growth model that we apply to our

simulations. This model was proposed by D. E. Wolf and J. Villain [30] in 1990. In

this model, an atom is deposited on an substrate. After that, the atom can move

to maximize its nearest neighbor bonds. Figure 2.2 gives a schematic diagram of

the WV diffusion rules in a simplified 1 + 1 dimensions. An atom drops on one

of the gray regions and immediately moves to one of the direction specified by

arrow(s) with equal probability.

WV model

Figure 2.2: One dimensional Wolf–Villain model.

2.2 Theories of surface growth

Generally the aim of our simulations is to understand the kinetic phenomena

of surface growth. There are simple methods that are used to analyze and describe

the growth mechanism. In this section, we will introduce some of them here.

2.2.1 Interface width and critical exponents

A common quantity that is used to characterize the roughness of the film

surface is the interface width. The interface width, the root mean square of the
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height fluctuation of the film surface, is defined by

W (L, t) ≡
[

1

Ld

∑

i

h(~x, t)− 〈h(t)〉2
]1/2

, (2.1)

where h(~x, t) is the atomic height at lattice position ~x and time t, and 〈h(t)〉 is the
average height of all lattice positions on the substrate of dimension d and lateral

size L. At an early stage of the growth, the interface width in formal growth

models increases with time as a power law

W (L, t) ∼ tβ. (2.2)

Here β is the growth exponent which represents the evolution of the film surface

roughness with time in an early stage. The interface width grows until it reaches

a saturation value Wsat. After this point the interface width does not continually

increase with time, but stays at the same value (Wsat) forever. The time at which

the interface width begins to saturate is called the saturation time tsat [3]. The

saturation value of the interface width varies with substrate size as a power law,

W sat(L) ∼ Lα, (2.3)

where α is the roughness exponent which indicates the roughness of the saturated

interface. From Equations 2.2 and 2.3, the interface width can be written as

W (L, t) ∼











tβ , t ≪ tsat,

Lα , t ≫ tsat.

(2.4)

The saturation time also scales with substrate size with a power law relation

tsat ∼ Lz, (2.5)

with the dynamical exponent z, which gives the information about the dependence

of the saturated time and the substrate size. A typical interface width as a function

of time is plotted in Figure 2.3. The different curves correspond to different system

sizes (L3 is the largest and L1 is the smallest).

From Equations (2.2), (2.3), (2.5) imply that z = α/β, as suggested by the

dynamic scaling theory. If we divide the interface width by the saturation width,
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Figure 2.3: Interface width as a function of time for three different system sizes.
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Figure 2.4: The data collapse of data points in Figure 2.3
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the interface width will saturate at the same value. Dividing growth time by

saturation time will cause the interface width saturate at the same characteristic

time. This is a simple method to collapse the data onto a single curve [3]. The

data of Figure 2.3 after collapse are shown in Figure 2.4.

In 1+1 dimensions (one spatial dimension + one time), The α, β and z ex-

ponents directly associate a given discrete growth model to a universality class.

Despite impressive success in 1+1 dimensions, the computational results of several

toy models do not conform to the theoretical predictions in 2+1 dimensions. The

presence of mound morphology, a missing feature in one spatial dimension, sug-

gests that a given model may belong to a different universality class in a different

dimension, thus rendering the universality class concept futile [31, 32, 33].

2.2.2 Ehrlich–Schwoebel barrier

Ehrlich–Schwoebel (ES) barrier [13, 14] is an energetic barrier. The ES

barrier prevents an adatom from diffusing over a step edge from the upper to the

lower terrace. In figure 2.5, an atom (red circle) is deposited on the substrate (gray

circles). At this position the atom can bond with its nearest neighbor atoms (atom

A and B). The red atom tries to diffuse to the right side according to the arrow

which is more stable than the original position because the atom can bond with

three nearest neighbor atoms (atom B, C and D). While the red atom diffuses

from the original position to the new position, the atom must pass through an

unstable position because the atom has to use its energy to break bond with atom

A to diffuse to the right side and has only one bond with atom B. Every atom

which can diffuse from the upper terrace to the lower terrace must have enough

energy to pass through this energy barrier. An atom which does not have enough

energy cannot diffuse to the lower terrace. The deposited atoms are preferential

to diffuse in the uphill direction.

This mechanism has been confirmed by Ehrlich and Hudda [13] in 1966.

They use field-ion microscopy to observe a motion of a single atom on an atomic
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terrace. They found that the atom favors the diffusion back at the edge of the

terrace. This mechanism is also proposed by Shcwoebel and Shipsey [14] at the

same time.

A B

C D

Figure 2.5: Side view of the Ehrlich–Schwoebel (ES) barrier. Gray circles are the

substrate. Red circle is an adatom. Dash line is a potential energy plot of the red

atom as a function of lattice positions on the substrate.

2.2.3 Step-edge diffusion current

Step-edge diffusion (SED) current is another cause of mound formation on

the film surface. The SED is not an energetic potential barrier the same way

ES barrier is. The SED current occurs because of the diffusion rule and lattice

structure of the material. On a simple cubic lattice, this type of current only occurs

around a corner or a kink site, that is, local particle currents are proportional to
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the local curvature of the step edge. Figure 2.6 gives a schematic diagram of SED

current of simple cubic lattice under WV diffusion rule. The SED current occurs

from an atom which is deposited near the edge and flows along the edge to kink

site within the same terrace as shown by the white box in figure 2.6. The atom

tends to enlarge the upper terrace, hence, gives rise to a mound.

Figure 2.6: The schematic of the step-edge diffusion (SED) current of simple cubic

lattice under WV diffusion rule.

2.2.4 Height-height correlation function

A formal method to characterize mounded morphologies of the film surface is

the height-height correlation function. We use it to prove the existence of mounds

on the surface. The height-height correlation function is defined as

C(~r) = 〈h(~x)h(~x+ ~r)〉~x , (2.6)

where h(~x) is the surface height at a lattice position ~x measured with respect to

the average height and ~r is the difference between the position vectors of two sites
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on the substrate. Here 〈...〉~x denotes the average over lattice positions ~x on the

substrate. The correlation function in this work is evaluated in two dimensions.

This function, by definition, expresses a relation between two points on the

surface. Note that the height, the deviation away from the surface height average,

at any positions can be positive, negative or zero. The correlation function has

the maximum value at ~r = 0 because the product of the same position results in

(h(~x))2 which is always positive. But for another ~r, (~r 6= 0), the product of two

heights on the substrate can be positive, negative or zero. The average mound

height, in other words, the root-mean-square of the surface height is defined by

H =
√

C(~r = 0), (2.7)

which is the square root of the correlation function with ~r = 0. The correlation

at the neighboring positions of ~r = 0 is calculated from the average product of

every two adjacent sites on the surface. Some of them may be positive negative or

zero resulting in the decrease of C(~r). This function continuously decreases with

~r to a minimum value. Let us concentrate on the condition at which C(~r) = 0.

The average value of zero in this situation can be separated into two cases. First,

the average zero value results from the average of the products of two heights,

one of which has zero value. The second is the product of two random heights

which can be positive, negative or zero but the average turns out to be zero.

The products between two uncorrelated positions on the substrate are, in general,

random which results in a zero average. So the average mound radius is |~r| at the
first zero crossing of C(~r). When the magnitude of ~r exceeds the average mound

radius, the function begins to be negative. The two positions (h(~x) and h(~x+ ~r))

in this situation are, on average, negatively correlated. The correlation function

gives the minimum value when |~r| is roughly the distance from a mound center to

a trough.

If the surface contains regularly mounded patterns, the correlation goes up

again for |~r| greater than the average mound size. The correlation function in

this case will oscillate with a period of about twice the mound radius. This is
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because, in this case, mounds on the surface repeat every twice the mound radius.

We will observe the oscillation of C(~r) as a function of ~r. In contrast to mounded

morphologies, if C(~r) continuously decreases with ~r to zero, this signifies that the

film surface is kinetically rough without mound morphology.

2.2.5 Continuum growth equation

The generic non-equilibrium surface growth where voids and defects are

prevalent has been generally accepted as belonging to the Kardar–Parisi–Zhang

(KPZ) universality class [34], originated in the study of Eden cluster growth [35]

and diffusion-limited aggregation [36, 37], with the dominant growth direction

pointing along the surface normal, giving rise to a term proportional to ∼ (~∇h)2.

The study of kinetic surface roughening of non-equilibrium growth models

of the solid-on-solid type remains a subject under much scrutiny [3, 4]. The

continuum growth equation can be constructed by using symmetry principles.

The general form of the growth equation [3] for conserved growth model is

∂h(~x, t)

∂t
= G(h, ~x, t) + η(~x, t), (2.8)

where G(h, ~x, t) is a general function which depends on the surface height h(~x, t),

position ~x and time t. η(~x, t) is the Gaussian noise where 〈η(~x, t)〉 = 0, and

〈η(~x, t)η(~x′, t′)〉 = 2D δ(~x− ~x′)δ(t− t′).

Based on symmetry principles, it can be shown that the growth equation, up to

the fourth order, has the form

∂h

∂t
= ν2∇2h− ν4∇4h+ λ13

~∇ · (~∇h)3 + λ22∇2(~∇h)2 + η. (2.9)

We want to know the scaling properties in the asymptotic limits, i.e., at large time

(t → ∞) and large distance (x → ∞). In these limits the higher order terms

are less important compared to the lower order terms. The most relevant term in
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Equation 2.9 is ∇2h, the Edward–Wilkinson (EW) term [38], which leads to the

EW universality class with continuum growth equation:

∂h

∂t
= ν2∇2h+ η. (2.10)

In 1 + 1 dimensions of WV and EW model, where adatom moves to the nearest

neighbor with the minimal local height, both belong to EW universality class

with α = 1/2, β = 1/4, z = 2. The WV model in 2 + 1 dimensions is predicted to

produce logarithmically smooth surface with α = β = 0 (log), while the dynamical

exponent still obeys power law scaling with z = 2.

Solid-on-solid growth models, replicating MBE growth, offer much richer

behaviors especially when the spatial dimension is higher than one. It has been

known that a slight change in a diffusion rule results in an alteration of the uni-

versality class. In 1+1 dimensions, DT model belongs to MBE class with α = 1,

β = 1/3, z = 3 [32] despite closer morphological rule to WV than is EW model [3].

The coefficient ν2 = 0 for DT model by symmetry, and the term proportional to

~∇·(~∇h)3 is often neglected (by setting λ13 to zero) because it generates the ν2∇2h

term upon renormalization. Physically speaking this term (with λ13 > 0) gives a

dissipative effect similar to the ν2∇2h term, but at a shorter length scale.

Provided the validity of Equation (2.9) with the coefficients having the same

sign as in 1+1 dimensions, the DT exponents in 2+1 dimensions are found to be

α = 2/3, β = 1/5, and z = 10/3 [3]. A large-scale simulation on a SC substrate by

Das Sarma et al., however, gives a contradictory result [32]. They reported that

the DT model behaved as if it were in the EW universality class which suggests

that ν2 in Equation (2.9) is no longer zero in this dimension. They also observed

mound formation in the WV simulations, instead of logarithmically flat surface,

with α = 1, β = 1/4, and z = 4 after making use of the noise reduction technique.

This implies that WV model is not in the EW universality class in 2+1 dimensions.

Moreover, the mounds tend to be of roughly equal size—an apparent deviation

from being scale invariant.

Recently Haselwandter et al. [39, 40] have shown that the unstable growth
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Table 2.1: The critical exponents of the DT and WV models in 1+1 and 2+1

dimensions.

Model Equation d = 1 + 1 d = 2 + 1

α = 1 α = 2/3

DT
∂h

∂t
= −ν4∇4h+ λ22∇2(~∇h)2 + η β = 1/3 β = 1/5

z = 3 z = 10/3

α = 1/2 α = 1

WV
∂h

∂t
= ν2∇2h+ η β = 1/4 β = 1/3

z = 2 z = 4

observed in WV model could be explained using renormalization group approach.

They derived Equation (2.9) from a master equation describing the increment of

height at each lattice site according to the nearest-neighbor sites. By carefully

choosing the regularization parameter upon taking a continuum limit, they were

able to obtain the values of the coefficients ν2, ν4, λ13 and λ22. Under repeated RG

transformations, these values flow differently in d = 1 + 1 and 2 + 1 dimensions.

In particular the negativity of λ13 leads to the change in the sign of the diffusion

coefficient ν2 which eventually leads to the growth instability in the form of an

array of islands of lateral size ∼ 2π
√

2|ν4/ν2|. While their analysis gives a satis-

factory account of the origin of mounds, their formulation is still appealed to an

atypical regularization procedure with some dimensional dependency, and is not

so conveniently extensible to analyze a more complicated lattice. In particular it

is unclear whether the mechanism that gives rise to the growth instability is the

property of the substrate dimension or of lattice geometry.

2.3 Crystal structures

In many prior computer simulations of thin films, deposited atoms are mod-

eled as a falling blocks. The crystal structures are limited to simple cubic lattice.
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In this work we simulate the growth of 6 crystal structures on 7 planes: simple

cubic, body-centered cubic, face-centered cubic on (001) and (111) planes, simple

hexagonal, hexagonal closed pack, and ideal hexagonal closed pack. The struc-

tures whose substrate plane is not listed are understood to be on the (001) plane.

The detail of each crystal structure and plane will be presented in this section.

2.3.1 Simple Cubic

Figure 2.7: The simple cubic crystal structure.

Thin film growth using simple cubic (SC) crystal structure, the simplest

structure, has been generally simulated to investigate the mechanism of a growth

process. This structure has only one atom and one layer per unit cell as is shown

in Figure 2.7. Each atom has the maximum number nearest neighbors of up to

six atoms with one atom at the lower and the upper layers and four atoms at the

same layer. This structure has fourfold rotational symmetry which means that

rotation by an angle of π/2 with respect to a particular atom does not change the

lattice. Most simulation results of molecular beam epitaxy are performed with

the simple cubic structure so we can confirm the correction of our algorithms by

comparing the simulation results of ours using this crystal structure.
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2.3.2 Body-centered cubic

Figure 2.8: The body-centered cubic crystal structure.

Body-centered cubic (BCC) crystal structure, which is shown in Figure 2.8,

has two atoms and two layers per unit cell, i.e., the coordinates of the atoms in the

vertical direction repeat themselves every two layers. Each atom can bond with

four nearest neighbors at the lower layer and the upper layer. Many materials such

as Mo, Na, W, Ta are body-centered cubic. This structure has fourfold rotational

symmetry.

2.3.3 Face-centered cubic (001)

Face-centered cubic crystal (FCC(001)) structure has four atoms per unit

cell with two different layers. Figure 2.9 represents the FCC(001) structure, the

red atoms and the blue atoms locate at each corners and faces of the cube respec-

tively. Each atom has the maximum nearest neighbors of up to twelve atoms with

four atoms at the lower, the upper and the same layers. The face-centered cubic

structure has fourfold rotational symmetry. The structure of many materials such

as Cu, Ag, Pt, Au, Rh are face-centered cubic.
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Figure 2.9: The face-centered cubic crystal structure on the (001) plane.

2.3.4 Face-centered cubic (111)

Figure 2.10: The face-centered cubic crystal structure on the (111) plane.

The (111) plane of the face-centered cubic (FCC(111)) structure is quite
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different from its (001) plane as shown in Figure 2.10. This plane of the FCC

has nine atoms per unit cell. The atomic layers of the FCC(111) are stacked in

an ABCABC... fashion, that is the fourth layer lies over the first layer, the fifth

layer lies over the second layer, and so on. Each atom has a maximum nearest

neighbors of twelve atoms with three atoms at the lower and the upper layers and

six atoms at the same layer. The lattice constants of the FCC(111) correspond to

the ratio c/a =
√
6. The FCC (111)structure has threefold rotational symmetry.

2.3.5 Simple hexagonal

Figure 2.11: The simple hexagonal crystal structure.

A simple hexagonal (SH) crystal structure has three atoms per unit cell

and one atomic layer per unit cell, i.e., the locations of the atoms in the vertical

direction repeat themselves every atomic layer similar to those in Figure 2.11.

Each atom has the maximum nearest neighbors of eight atoms, one atom at the

lower and the upper layers and six atoms at the same layer. The lattice constants

of the simple hexagonal structure are a = c. The simple hexagonal structure has

sixfold rotational symmetry.
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2.3.6 Hexagonal closed pack

Figure 2.12: The hexagonal closed pack crystal structure.

Hexagonal closed pack (HCP) crystal structure has six atoms per unit cell.

Each layer of atoms is stacked in an ABAB... style as is shown in Figure 2.12. The

lattice constants ratio c/a <
√

8/3 so that each atom has six nearest neighbor

positions with three of them at the lower layer and another at the upper layer.

The materials such as Zn, Ti, Cd are HCP. This crystal structure has threefold

rotational symmetry.

2.3.7 Ideal hexagonal closed pack

Ideal hexagonal closed pack (iHCP) crystal structure is very similar to the

HCP structure (see in Figure 2.13) with six atoms per unit cell and the atoms

are stacked in an ABAB... fashion. But the lattice constants ratio of the iHCP

c/a =
√

8/3 which results in an increase the number of its nearest neighbor by

six positions within the same layer. The crystal symmetry of the iHCP is also

threefold rotational symmetry.
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Figure 2.13: The ideal hexagonal closed pack crystal structure.

2.4 Representation of crystal lattices

Conventionally most modelling works are performed on two-dimensional

rectangular lattices making them only applicable to simple cubic materials. The

periodic boundary condition is completely adequate for this lattice. However,

for very complicated lattices such as FCC(111) or iHCP the periodic boundary

condition does not a good choice due to insufficient speed in simulations.

To overcome complications in representing any crystalline structures, we

adopt the helical boundary conditions [41] which represents any two-dimensional

lattice using a one-dimensional chain. This representation of lattice can reduce

a multiplication to to find each memory location of a computer which is labelled

with a single number. As an example, a site on an M × N rectangular lattice

with coordinates (i, j) is located at the (iN + j)th element of the chain of length

MN (counting from zero). In the square lattice, its four nearest neighbors at

(i±1, j) and (i, j±1) are mapped to element number (i±1) mod MN and (i±N)

mod MN respectively. Other structures can be constructed in a similar manner.

The main advantage of the use of helical boundary conditions over the conventional
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ones lies in the flexibility in representing any n-dimensional structure using one-

dimensional chain of an arbitrary length (not restricted, e.g., to integer×integer

in the case of simple cubic crystal) resulting in the simplicity of the simulation

code.
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Figure 2.14: Square lattice chain.

Figure 2.14 shows an example of square lattice with a chain of 11 sites with

the width of 4 sites. The nearest neighbors of site i are (i± 1) mod 11 and (i± 4)

mod 11. Note that the chain can be adjusted so that each row contains all the

chain elements.

The triangular lattices with helical boundary condition is shown in Fig-

ure 2.15 with lattice site of 11 elements and width of 4 elements. We can repre-

sent the triangular lattice in the same way as the square lattice. All six nearest

neighbors of site i in this case are located at (i± 1) mod 11, (i± 4) mod 11 and

(i± (4 + 1)) mod 11.
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Figure 2.15: Triangular lattice chain.



CHAPTER III

Simulation results of surface growth

In this chapter, we show the results of the critical exponents and surface

morphologies of each crystal structures simulated under both DT and WV models.

In all simulations we assume that atoms on the substrate and the film are of the

same type so that the film’s crystal orientation is the same as that of the substrate

and no stress of any kind is produced along the interface. Unlike other conventional

simulations where time is measured in units of monolayers, here it is measured

in unit-cell layers (UL) since each structure viewed from a different plane may

contain a different number of atomic layers. Section 3.1.1 details the calculations

of the critical exponents of each crystal structure obeying DT and WV diffusion

rules. Data are analyzed and reported in Section 3.1.2. The results of surface

morphologies and the descriptions are present in Section 3.2.

3.1 Critical exponents: crystal structures depen-

dent

To investigate both critical exponents and surface morphologies of the select

crystal lattices, we perform extensive simulations on chains with 100 to 250,000

elements. Due to the difference in the number of atoms in a unit cell, these

numbers translate to, e.g., the substrate of size 10 × 10 to 500 × 500 in the case

of SC and SH, and roughly 7× 7 to 353× 353 cells in the case of BCC, HCP and

iHCP. In all substrate sizes, the simulations are performed until they reach the
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time step beyond the point where the surface roughness W saturates. This value

ranges from 104 UL for 100 elements, up to 107 UL for 250,000 elements.

3.1.1 Results of critical exponents

To find the critical exponents, we need to know saturation time and satu-

ration width of each substrate size and the slopes of interface width as a function

of time at an early stage on a log-log scale. From the plots of interface width

as a function of time which are shown in Figure A.1 to Figure A.21, we want

a systematic method to find the saturation time of each substrate size of each

crystal structure. Here we have chosen to use the minimum point of the second

derivative of each curve to designate the saturation time tsat. This method gives

quite an accurate value of saturation time especially for large substrate size. The

dynamical exponent z is computed from the slope of log(tsat) against the log of

lateral substrate size L.

The plot between W (L, t) versus t of every crystal structure both DT and

WV model are shown in Appendix A from Figure A.1 to Figure A.21. Each curve

is the result of the average of over 100 different configurations for 12800 elements,

up to 5000 different configurations for 100 elements. From Equation 2.4, the

system size should not have much effect on the value of the slope of these graphs.

Because of size effect of the growth exponent β in different timescales, the value

of β changes slightly. For each substrate size, we subdivide growth time into

three regions: 1 UL ≤ t1 ≤ tsat/3, tsat/3 ≤ t2 ≤ 2tsat/3, and 2tsat/3 ≤ t3 ≤ tsat,

where tsat denotes the saturation time for that particular substrate size as shown

in Figure 3.1. The value of β is calculated from the average between β during t1

and t2. The value of β during timescale t3 is disregarded because, according to

Equation (2.4), β is defined during the early times. The representative value of

β for a given crystal structure is obtained from the asymptotic value of the plot

between β(L) versus 1/L, the curve can be extrapolated to find the y intercept

where 1/L = 0 or L → ∞. This method was used in (1+1) dimensional DT
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model [42, 43].

The saturation width for a particular substrate size can be calculated from

the average value of interface width at the steady state region. To find the rough-

ness exponent α, we compute the slope of log(Wsat) against the log of lateral

substrate size L. Plot of log(Wsat) and log(tsat) against the log of lateral substrate

size L are shown in Appendix A from Figure A.29 to Figure A.42. Results of all

critical exponents for DT and WV models are summarized in Table 3.1 and 3.2

respectively.
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0.4

0.6
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t1 t2 t3

tsat
log t

logW

Figure 3.1: Three growth regions: 1 UL ≤ t1 ≤ tsat/3, tsat/3 ≤ t2 ≤ 2tsat/3,

2tsat/3 ≤ t3 ≤ tsat, for SC lattice, DT model.

3.1.2 Analyzing the critical exponents

From the results in Table 3.1 and 3.2, we find that the hyper-scaling relation

z = α/β is not generally respected within the simulation accuracy in both models

when α is either too high or too low (such as HCP). Albeit some small variations,

the values of the growth exponent β agree with the predicted value (β = 1/5) from
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Figure 3.2: The second derivative of interface width as a function of time for SC

lattice, DT model.

Table 3.1: The critical exponents of the DT model for all lattice structures, sorted

according to α.

Das Sarma–Tamborenea model

structure α β z mound

FCC(111) 0.76± 0.04 0.20± 0.03 3.3± 0.2 yes(?)

SH 0.66± 0.01 0.21± 0.05 3.1± 0.1 no

iHCP 0.65± 0.01 0.22± 0.04 3.2± 0.1 no

FCC(001) 0.63± 0.02 0.23± 0.05 3.2± 0.1 no

SC 0.62± 0.02 0.22± 0.04 3.1± 0.1 no

BCC 0.57± 0.02 0.24± 0.05 3.1± 0.2 no

HCP 0.52± 0.02 0.24± 0.04 2.8± 0.2 no
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Table 3.2: The critical exponents of the WV model for all lattice structures, sorted

according to α.

Wolf–Villain model

structure α β z mound

SH 1.12± 0.01 0.25± 0.03 3.9± 0.3 yes

SC 0.94± 0.02 0.23± 0.02 3.6± 0.1 yes

iHCP 0.86± 0.02 0.23± 0.02 3.5± 0.3 yes

FCC(111) 0.83± 0.02 0.20± 0.04 3.6± 0.3 yes

FCC(001) 0.57± 0.03 0.19± 0.01 3.0± 0.2 no

BCC 0.42± 0.03 0.20± 0.01 1.9± 0.2 no

HCP 0.37± 0.03 0.20± 0.01 2.2± 0.2 no

the continuum equation in the case of DT model across all lattice structures. The

roughness exponent α and the dynamical exponent z appear to be slightly less than

those from the continuum predictions (except for α of FCC(111)). The exponents

in the WV case, however, do not seem to conform to the theoretical prediction

especially the dynamical exponent (z = 2) which ranges from approximately 2 to

4.

The above discrepancy is removed by noticing the last column of Table 3.2

which indicates the existence of mound-like morphologies on each substrate. In

the case of BCC and HCP surfaces under WV diffusion rule, the surface front

appears to be kinetically rough without any growth instability. We find a complete

agreement between the values of the dynamical exponent from the simulations and

that from the prediction of the continuum growth equation (z = 2). (FCC(001)

presents an exceptional case. We shall defer its discussion until Chapter 4.) Upon

a closer examination of the last column of Table 3.1 and 3.2, we notice unstable

mound-like morphologies for those structures with α > 0.67 regardless of the

diffusion model. (The reason for the question mark in the case of FCC(111)

under DT model shall become evident at the end of Section 3.2.) The separation



29

between mound and kinetically rough surfaces at a certain value of the roughness

exponent has been previously observed in the experiment [44]. The fact that the

critical roughness exponent αc having value greater than 0.67 is consistent with

the absence of mound morphology from the simulations of any stable, linear or

nonlinear continuum growth equations of up to fourth order without ES barrier;

the largest value of α in two spatial dimensions belongs to the MBE universality

class with α = 2/3.

It should be noted that a “rough” surface indicates a large value of W (L, t).

Since we quantify “roughness” according to Equation (2.1), ordered structures

such as mounds or pyramids, tend to be “rougher” than scale-invariant, kinetically

rough surfaces because the mound regions tend to be much higher, and the troughs

of the hills much lower, than the average film height 〈h(t)〉. It is likely that a large

value of the roughness exponent (α ≈ 1) would indicate mound morphology on a

surface. When α = 1, one obtains mounds with slope selection, i.e., mounds scale

the same way as the lateral substrate dimension. For α > 1 (α < 1), mounds

tend to grow (shrink) in size with a larger substrate. Surfaces that contain visible

mounds, therefore, have a large value of α, in contrast to kinetically rough surfaces

of small α which appears flat upon taking the thermodynamic limit (L → ∞).

3.2 Surface morphology and mound formation:

crystal structures and diffusion rules depen-

dent

In this section we present our results of surface morphologies of both WV and

DT models. Each morphology results from simulation on a chain with 250,000 ele-

ments at 105 UL. All of the surface morphology pictures are shown in Appendix B

Figure B.1 to Figure B.14.
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3.2.1 Surface morphologies of different crystal structures

In our simulations, we see mounds forming since an early stage of the growth

naturally without any additional efforts for all structures with α > 0.67. As time

progresses, small mounds shift and coalesce into bigger ones, similar to what was

reported from the WV results using the noise reduction technique [27, 32]. The

coarsening behavior with mounds of similar sizes during growth implies that the

growth front is not scale invariant. The merging of mounds ends at tsat where the

correlation length ξ(tsat) is comparable to system’s size, and only one mound (and

one trough) remains. It is interesting to note that the growth and coarsening of

mounds is not stationary; while a large mound subsumes smaller ones in order to

grow, its tip does not stand still but shifts sideways in a series of disappearance

and reemergence of a peak.

Figure B.1, B.4, B.5 and B.7 show the surface morphologies prior to satura-

tion times using WV model on chains with 250,000 elements of SC, FCC(111), SH

and iHCP respectively. These models favor mounds because atoms tend to flow

toward kink sites which are most likely to have the highest coordination numbers.

DT model, on the other hand, is more inclined to generate a rough surface because

adatoms generally stick to their original landings which already have high coordi-

nation numbers. Even within the same models, mounds do not assume the same

form. Mounds found on SH and FCC(111) simulations exhibit strong geometrical

shape. In particular, FCC(111) simulations show a striking ensemble of triangular

pyramids similar to many kinetic Monte Carlo (kMC) simulation results at low

temperatures [45, 46]. Surfaces of SC and iHCP, on the other hand, only display

semi-regular hillocks which do not reflect the underlining lattice structure. Three

other lattice structures, namely FCC(001), BCC, and HCP, do not develop visible

mounds within WV model.

We do not see the development of mounds in most of our DT simulations

on the same set of lattices—with a notable exception of FCC(111) as shown

in Figure B.11. While the surfaces of other crystalline structures appear to be
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statistically rough, the surface of FCC(111) show round, hemispherical mound

morphologies, visually very similar to what was observed in DT model with ES

barrier [27] or in high-temperature kMC simulations [23] on simple cubic lattice.

The second highest value of α among all lattices simulated using DT model is

SH structure. Figure B.12 shows the surface of SH prior to saturation without

any apparent mound morphology. The surface of other lattices with a smaller

value of α exhibits a statistically rough interface as traditionally expected from

a standard DT simulation. On a closer examination, however, we find that the

development of mounds on FCC(111) surface using DT model is quite different

from the ones using WV model. Mounds, in this case, do not arise from island

formations and coarsening of smaller mounds into larger ones. Initially the surface

appears to be statistically rough. As time progresses, the regions which are later

to become mounds, develop small cracks around them. The cracks then deepen,

forming narrow troughs which gradually enlarge, splitting the original surface into

many mounds. The perception of mound growth is in fact the deepening and

broadening of the troughs. Finally at late times, small mounds start to merge by

the progressive disappearance of troughs which separate them. We suspect that

in this stage, the correlation length ξ(t) dictates the size of each mound (which is

comparable to the substrate size as the saturation time is reached).

Figure 3.3 and 3.4. show the logW as a function of log t for chains with

250,000 elements of DT and WV model respectively. We can see from the curve

of FCC(111) structure obeying DT model that, the slope of this curve changes

rapidly at t approximately equal to 105 UL (log t ≈ 5). This is the point in time

that surface begins to crack which results in rapid increase of the slope. For other

structures of DT model at the same region of time, the interface width tends to

saturate at a particular time which corresponds to kinetically rough surfaces. How-

ever, interface width at any time step under WV diffusion rule of SC, FCC(111),

SH and iHCP, which exist mounds on the surfaces, does not increase rapidly as is

the case in FCC(111) under DT model.
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Figure 3.3: The interface width as a function of time of DT model for chains with

250,000 elements.
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Figure 3.4: The interface width as a function of time of WV model for chains with

250,000 elements.
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3.2.2 Correlation functions

In this section, we discuss the properties of the surface morphologies by

using the height-height correlation functions. The graphs of the correlation func-

tion of each crystal structure of WV and DT models are shown in Figure B.15

to Figure B.28. All of them show the correlation functions C(~r) as a function of

~r = (x, y) at t = 105 UL. We clip the center of the graphs where the correlation

functions grow up to the maximum value (the red region), to suppress the height

in order to see the oscillations of the functions. The positions where the correla-

tion functions are positive (negative) are painted in red (blue) color. Black lines

indicate zero of the correlation functions. Each graph is a result of an average

over ten runs. It should be noted that the existence of mounds on the surface

results in the oscillations of the correlation functions. All of them have reflection

symmetries with respect to x and y axes.

Figure B.15 to Figure B.21 represent the correlation functions C(~r) of WV

model corresponding to the surface morphologies of Figure B.1 to Figure B.7. We

can see that the correlation functions of the SC, FCC(111), SH and iHCP oscillate

with ~r indicating mounded patterns on the surfaces. Let us concentrate on the

correlation functions of FCC(111) and SH structures which display clear oscilla-

tions. The number of peaks (valleys) of the SH in the case of SH (Figure B.19)

is greater than that in FCC(111) (Figure B.18) which implies that the number of

mounds (troughs) on the surface of SH in Figure B.19 is also greater than that

of FCC(111) in Figure B.4. The sizes of the oscillations in FCC(111) and SH

structures are greater than that in SC and iHCP structures which means that

the SC and iHCP lattices have less regularity of size and shape of mounds than

FCC(111) and SH structures do. The correlation function of the BCC, FCC(001)

and HCP structures of WV model, on the other hand, do not oscillate with ~r as

shown in Figure B.16, B.17 and B.20 respectively. This confirms the kinetically

rough growth process without mound formation on the surfaces in Figure B.2, B.3

and B.6.
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The correlation functions of the structures obeying DT growth model are

shown in Figure B.22 to Figure B.28. For SC and SH structures, we can see

small oscillations of the correlation in some directions. We, however, do not see

any mound patterns on the surfaces of SC and SH structures in Figure B.8 and

Figure B.12. We believe that the oscillation of the function in this situation occurs

from too much noise on the surfaces.

For the FCC(111) structure, the correlation function C(~r) oscillates with ~r

which indicates the existence of mounds on the surface. We focus on the FCC(111)

structure of DT and WV models. By comparing the FCC(111) structure from

WV model with the FCC(111) from DT model, we find that the amplitude of the

correlation function of the FCC(111) obeying DT model is generally greater than

that of WV model. This is because the average mound height of the FCC(111)

from DT model greater than that from WV model. We can see from Figure B.11

that the surface in this figure has very deep and narrow troughs compared with

that of WV model. This implies that the average mound height (height of mounds

and troughs) of DT model is greater than that of WV model.

The correlation functions of the remaining structures of DT model which

are BCC, FCC(001), HCP and iHCP are very noisy as seen in Figure B.23, B.24,

B.27 and B.28. We suspect that the oscillations of the correlation functions in

these stage occur due to too much noise on the surfaces during growth process

and the number of the ensemble averages is inadequate.

3.2.3 Mounds and mechanism of mound formation

It was well established that Ehrlich–Schwoebel (ES) barrier, which prevents

an atom on a terrace to hop down, could explain the formation of mound-like

structures observed in many MBE growth experiments [12, 47, 48]. Since then

several authors [27, 49] have proposed a topologically induced probabilistic cur-

rent known as step-edge diffusion (SED) current as an additional cause of mound

formation. SED current arises from the greater likelihood for an atom to move
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along the edge of a terrace toward a kink site. Their analysis, however, was based

on the simple cubic structure. It is very unlikely that SED current is the only type

of probabilistic, topological current in existence. An array of other geometrically

more complicated crystalline structures could give rise to a new class of current.

3.2.4 Terrace current and step edge current

To understand the mechanism of mound formation in both models, one

should examine the area nearby a terrace edge which separates two flat regions.

One commonly accepted explanation as to why an island nucleation leads to the

formation of a large mound-like structure is due to the flow of atoms, on average,

towards the mound region resulting in the net “uphill” current [20, 50, 5, 51, 52].

Without appealing to the use of ES barrier, we consider a topologically induced

uphill current in the spirit of SED current. As anticipated, we find that all of

the lattice structures that develop mounds appear to have SED current. To our

surprise however, the conventional SED current is almost always cancelled by local

downhill current. We also discover that SH and FCC possess yet another type of

geometrically induced current. Unlike SED current which flows along an edge of

a terrace towards a kink site, the new current flows in the perpendicular direction

towards the edge. We believe that the reason why this “terrace diffusion” (TD)

current has never been observed is because in SC, where most simulations [49,

25] are based on, an equal and opposite current flows downhill. The uphill and

downhill currents thus, on average, cancel each other leaving only SED current. It

is worth mentioning that TD current is analogous to the edge ES current, whereas

SED current is to kink ES current. The difference is that the edge ES current may

occur on a one dimensional substrate, while TD current is only present on some

crystalline lattices in two spatial dimensions.

To illustrate the difference between SED and TD, consider a step terrace

lying along the [1000] direction of a SH(001) substrate as shown in Figure 3.5.

Atoms on the upper terrace are denoted by empty circles while those on the
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@1000D

@0100D

A B C

E F

Figure 3.5: Local probabilistic currents near a step edge along [1000] direction of

SH(0001) with a step dent. Shaded circles represent atoms on the lower terrace

while light circles depict those on the upper terrace. An atom dropping on any

lattice site will move, according to WV rule, to one of sites along the corresponding

arrow. An atom will not move if it falls on a site without an arrow. An atom

falling on site A, in particular, will be driven towards a kink site B producing a

small SED current. This current is however cancelled by another downhill current

from C to A. Global net currents are denoted by thick arrows.

lower terrace are represented by shaded circles. According to WV model, a newly

deposited atom which falls far from the edge of the terrace will not move. The

one that falls within the proximity of the edge will advance along the direction(s)

as shown by the arrow(s) in order to maximize its bondings. A site with two or

more arrows indicates that there is an equal probability for an atom dropping on

it to move in one of the allowed directions. Along the flat region away from the

kink, atoms tend to move uphill as much as they move downhill resulting in a net

zero flux. Near the kink site, we find that an uphill flux tends to occur more often.

Note in particular that if an atom falls onto position A which situates on the edge,

it will be attracted toward the kink position B creating a small SED current. Since

WV diffusion rule only allows an atom to move to one of the nearest neighbors, the

SED current only extends a distance of one atomic position. On average, however,
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a particle does not tend to move uphill as a result of this current because there

is another current flowing downhill in the opposite direction (from C to B) with

the same strength. Nevertheless there is a net current in the uphill direction near

the corner of the terrace edge at position E and F. It is not a SED current in the

traditional sense since the direction of the flow is not along the edge but at an

angle towards the corner. For the lack of a better word, we shall still refer to it as

step-edge diffusion current because the current still appears in the neighborhood

of a kink site and has a component parallel to a terrace edge.

@1000D

@0100D

@1200D

A

Figure 3.6: Local probabilistic currents near a step edge along [1200] direction

of SH(0001). The upper terrace is on the left side while the lower terrace on

the right. There is a net uphill terrace current acting along the [1̄000] direction.

Noncancelling currents are indicated by thick arrows.

The situation is even more perplexing for a step terrace along another high-
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symmetry direction, the [1200] direction, as shown in Fig. 3.6. Notice that an

atom falling onto position A next to the kink site does not move toward the site.

No (traditional) SED current exists along this direction. We, however, find a

net a noncancelling flux of currents (thick arrows) flowing perpendicular to the

terrace edge in the uphill direction. This flux would serve to extend the base of the

terrace in a future time step. (We shall discuss, in Chapter 4, a notable exception

of FCC(001) where a non-zero current does not lead to the formation of mounds.)

To our knowledge, this type of topological current has never been reported in

the literature. Near the corner, there also exists a SED current similar to those

in Figure 3.5. Table 3.3 gives a summary of the type of currents along a given

direction during the growth on SH, SC, iHCP, FCC(111), and FCC(001) surfaces.

The upper terrace resides on the inside of the geometrical figures. It is interesting

to note that FCC(111) simulations show very strong triangular pyramidal mounds

oriented in the same direction, and never an inverted triangular version. We

believe that this is due to the difference between the symmetry of the two types of

currents; TD current is only three-fold symmetric while TD current has a six-fold

symmetry. The preferred faces are oriented perpendicular to the directions of the

TD currents, forming an upright triangular pyramid. The other structures whose

surface has irregular mounds, namely SC and iHCP, are devoid of the TD currents.

In addition to the edge ES current, TD current should cause an instability forming

equilibrium faceting along some vicinal surfaces.

For BCC and HCP, mounds are not observed and neither type of cur-

rent is present. Consider as an example the current consideration in the case

of BCC(001), obeying WV model. Figure 3.7 shows three layers of atoms. Full

circles signify occupied lattice sites. If an atom falls on one of these positions, it

would have to move along a direction designated by one of the arrows towards an

unoccupied site (dashed circle). Not only does a net current not exist, locally it

flows perpendicularly away from the terrace edge in both directions. Any atom

deposits near the edge will likely be pushed away from it which implies that had

an island been formed, its territory would not have been extended by this process.
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SH SC iHCP FCCH111L FCCH001L

TD

SED

Table 3.3: Edges of SH, SC, iHCP, FCC(111) and FCC(001) are shown where the

corresponding terrace diffusion (TD) and step-edge diffusion (SED) currents are

nonzero, calculated based on WV diffusion rule. Upper terraces are shown in gray.

The horizontal direction, indicated by the arrow on the upper left hand corner,

designates the [100] direction for SC and FCC(001), [1000] direction for SH and

iHCP, and [11̄0] direction for FCC(111).

In addition, we also do not find any current flowing along the edge towards a kink

site. In fact, if an atom falls exactly at the kink position, it will diffuse away

from the kink. This counter-intuitive behavior arises from the fact that, for BCC,

lattice sites along a terrace edge have the lowest coordination numbers. Moving

towards these sites in the uphill direction from the bottom terrace would therefore

cost more energy. A closer inspection shows that atoms at the bottom of the edge

already bond with those at the top. An atom which falls on either of these two

rows adjacent to the edge can only roll away from the edge. The step edge in this

case serves as a topological barrier preventing an atom to cross side. The same

situation also happens in a HCP lattice whose surface is also mound-free.

We end this section by giving a brief account of the DT simulation results.

As discussed at the end of Section 3.2.1, no island formations are observed on
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Figure 3.7: A step edge along the [100] direction separates the lower region (on

the bottom of the figure) and the upper region (on the top). Three atomic layers

are present with a lighter shade signifies a higher layer. Occupied lattice sites are

represented by full circles while dashed circles denote unoccupied ones. Locally

atoms tend to move away from the terrace edge.

the surface of these lattices, even in the case of FCC(111) where mounds are

present. This is consistent with the fact that we do not find any non-zero uphill

TD or SED currents on any structure in any direction. Other than FCC(111), all

surfaces appear to be kinetically rough with early-time behavior following a power

law.



CHAPTER IV

Conclusions

Through large-scale Monte Carlo simulations, we have analyzed MBE growth

of thin films on several lattice structures based on WV and DT models in 2+1

dimensions. We discovers that at the roughness exponent of around 0.67-0.76, the

surface morphology of the film changes from being kinetically rough with power

law scaling to quasi-regular mound-like structures. Without ES barrier, we at-

tribute the morphological difference to the appearance of topologically induced,

probabilistic particle currents. These currents not only arise from the line tension

along the step edges separating several terraces of each mound in the form of SED

current, they can also emerge perpendicular to flat straight terrace edges in the

uphill direction in the form of TD current. The latter only manifests itself in SH

and FCC lattices among several others that we have observed.

It is clear that the evolution of surface morphology depends not only on lat-

tice dimension but also on material’s crystal structure. In describing the growth

of a lattice structure obeying a particular diffusion rule, the values (and signs)

of the parameters (ν2, ν4, λ13, λ22 and D) in the associated continuum growth

equation need to be adjusted accordingly. The growth morphology are primarily

categorized into two classes: kinetically rough scale-invariant or unstable mound-

ing surface. We find that the separation between these two growth regimes occurs

at the roughness exponent α of around 0.66 regardless of the prescribed diffusion

rule. Further analytical study is needed to explain the origin of this magic num-

ber. For kinetically rough surfaces, the dynamical scaling theory seems to give

an accurate description of the behavior of the growth interface using power laws.
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On the contrary, for destabilized mounding morphologies, the growth needs to be

described in terms of island nucleation and island coarsening. We shall leave the

analysis of the dynamics of mound coarsening in limited mobility diffusion models

for future work.

Contrary to Ref. [27], we are able to obtain mound morphology without any

noise reduction technique. In our simulations we find that mounds are recogniz-

able after its lateral size reaches about 100 atomic units. We do not see mounds

comparable in size to theirs. Our supposition is that since we expect the parame-

ters of the corresponding continuum growth equation to be substrate dependent,

the uphill diffusion term −|ν2|∇2h may overcome the Mullin-type diffusion term

−|ν4|∇4h, which tends to suppress small fluctuations, at the length scale given by

lc ∼
√

|ν4/ν2|. This length scale lc, in some crystal structure, may be larger than

the attempted substrate simulation scale, thus, mounds may never be observed.

In addition our mounds are much more irregular than the ones obtained using the

noise reduced scheme. Our value of α for SC is very close to one which implies

that mounds have a selective slope in agreement with Ref. [32]. We believe that

the noise reduction technique, in most cases, serves to amplify the mound shape

and is not a necessary scheme to produce mounds.

A few remarks are in order regarding the topological currents. Our obser-

vation leads us to believe that the mechanism of mound formation within our

framework is due to both the kink SED current and the straight TD current. The

latter serves as an extra role in enhancing the faceted structure of mounds on

the surface where it exists. It is true that other, more complicated, edge shapes

exist which could cause other geometrical currents. In a certain coarse-graining

sense, dimples and pits can be generated by one kink/corner step similar to the

ones in Figure 3.5, 3.6 and 3.7. We still believe that these currents can be largely

categorized into curvature-dependent versus straight terrace edge type of current.

In his review article,[20] Krug argued that SED current induces ~JSED ∼ ~∇κ(h),

where κ is the local curvature of h(~x, t) on the plane of the substrate. This results

in ∼ ∇4h in Equation (2.9). Physically this term emerges as a result of the line
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tension due to the curvature of terrace edge. The TD current, on the other hand,

appears even when the radius of curvature is infinite. Given m ≡ |n̂ · ~∇h| where
n̂ defines the direction along which the current is active, TD current gives rise

to the anti-diffusive flow along the uphill direction ~JTD ∼ n̂m/(1 +m2) which is

approximately ∼ n̂m for a small surface slope [3]. Our findings suggest that both

~JSED and ~JTD only act along certain preferred directions according to the underly-

ing lattice structure. (In the case of FCC(111), for example, the TD current may

point along one of the following three directions: [112], [2̄11̄] or [12̄1̄].)

Our simulations also suggest that, in most structures with surface growth

instability, local current tends to flow towards the bottom of a terrace edge both

from the upper and lower terraces. (See, e.g., Figure 3.5 and 3.6.) On a kineti-

cally rough surface such as that of BCC and HCP, we observe the local current

which flows away from the bottom of a terrace edge, similar to what is seen in

Figure 3.7. Although the effect of this current tends to average out on a larger

scale, its existence gives rise to the current of the form ~Jlocal ∼ ±n̂(n̂ · ~∇)2h This

translates to a new term proportional to (n̂ · ~∇)3h in the continuum equation. (On

a one dimensional substrate, this is simply ∂3h/∂x3.) This term has been previ-

ously neglected based on the rotation and inversion symmetry about the growth

direction. Given an anisotropy of each lattice structure, we do not believe that

the new term should be discarded from future investigations.

We see a different mound formation process on FCC(111) plane under DT

diffusion rule. The traditional picture of island nucleation, followed by particle

accretion and mound coarsening may not give an accurate description of the DT

structural formation. Without any net uphill currents, we expect a completely

different mechanism at work. Visually, mounds on FCC(111) plane do not possess

up-down symmetry as the ones obtained using WV diffusion rule. This is, however,

typical of DT growth morphology. We therefore still expect the DT terms (−ν4∇4h

and λ22∇2(~∇h)2) to still be effective in the continuum growth equation. In light

of the supposed anisotropy term that might be present, a complete understanding

demands a more thorough theoretical investigation of the growth equation.
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Finally we study the height-height correlation function to confirm the exis-

tence of mounds on the surfaces. The correlation function of FCC(111) and SH

structures under WV model and FCC(111) under DT model display clear oscilla-

tion which agrees with regular mound pattern on the film surfaces. In the cases

of SC and iHCP structures obeying WV diffusion rule, the correlation functions

also oscillate but a smaller amplitude. This result suggests that, there are mounds

on the surfaces with less regular pattern compared to that of FCC(111) and SH

structures because the SC and iHCP do not have TD current. Other structures

of DT and WV diffusion rules, which contain no mound on their surfaces, will

produce a correlation function without oscillation. The surfaces of the BCC and

HCP structures under WV model and every structure of DT model (except for

FCC(111)) are kinetically rough because these structures have neither SED or TD

current on the film surfaces.
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APPENDICES



Appendix A

The plots of the critical exponents
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Figure A.1: The interface width as a function of time of SC structure of DT model.
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Figure A.2: The interface width as a function of time of BCC structure of DT

model.
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Figure A.3: The interface width as a function of time of FCC(001) structure of

DT model.
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Figure A.4: The interface width as a function of time of FCC(111) structure of

DT model.
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Figure A.5: The interface width as a function of time of SH structure of DT model.
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Figure A.6: The interface width as a function of time of HCP structure of DT

model.
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Figure A.7: The interface width as a function of time of iHCP structure of DT

model.
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Figure A.8: The scaling collapse of the SC structure of DT model.
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Figure A.9: The scaling collapse of the BCC structure of DT model.
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Figure A.10: The scaling collapse of the FCC(001) structure of DT model.
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Figure A.11: The scaling collapse of the FCC(111) structure of DT model.
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Figure A.12: The scaling collapse of the SH structure of DT model.
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Figure A.13: The scaling collapse of the HCP structure of DT model.
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Figure A.14: The scaling collapse of the iHCP structure of DT model.
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Figure A.15: The interface width as a function of time of SC structure of WV

model.
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Figure A.16: The interface width as a function of time of BCC structure of WV

model.
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Figure A.17: The interface width as a function of time of FCC(001) structure of

WV model.
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Figure A.18: The interface width as a function of time of FCC(111) structure of

WV model.
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Figure A.19: The interface width as a function of time of SH structure of WV

model.
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Figure A.20: The interface width as a function of time of HCP structure of WV

model.
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Figure A.21: The interface width as a function of time of iHCP structure of WV

model.
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Figure A.22: The scaling collapse of the SC structure of WV model.

-4 -2 0 2
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

100

200

400

800

1600

3200

6400

12800

L2

BCC, WV

log (t/tsat)

log (W/Wsat)

Figure A.23: The scaling collapse of the BCC structure of WV model.
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Figure A.24: The scaling collapse of the FCC(001) structure of WV model.
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Figure A.25: The scaling collapse of the FCC(111) structure of WV model.
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Figure A.26: The scaling collapse of the SH structure of WV model.

-4 -2 0 2
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

100

200

400

800

1600

3200

6400

12800

L2

HCP, WV

log (t/tsat)

log (W/Wsat)

Figure A.27: The scaling collapse of the HCP structure of WV model.
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Figure A.28: The scaling collapse of the iHCP structure of WV model.
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Figure A.29: The roughness and dynamical exponents α and z of SC structure of

DT model.
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Figure A.30: The roughness and dynamical exponents α and z of BCC structure

of DT model.
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Figure A.31: The roughness and dynamical exponents α and z of FCC structure

of DT model.
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Figure A.32: The roughness and dynamical exponents α and z of FCC(111) struc-

ture of DT model.

1.0 1.5 2.0 2.5
-0.2

0.2

0.4

0.6

0.8

1.0

logL

logWsat

α = 0.66

SH, DT

1.0 1.5 2.0 2.5

1

2

3

4

5

6

logL

log tsat

z = 3.1

SH, DT

(a) (b)

Figure A.33: The roughness and dynamical exponents α and z of SH structure of

DT model.
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Figure A.34: The roughness and dynamical exponents α and z of HCP structure

of DT model.
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Figure A.35: The roughness and dynamical exponents α and z of iHCP structure

of DT model.
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Figure A.36: The roughness and dynamical exponents α and z of SC structure of

WV model.
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Figure A.37: The roughness and dynamical exponents α and z of BCC structure

of WV model.
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Figure A.38: The roughness and dynamical exponents α and z of FCC structure

of WV model.
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Figure A.39: The roughness and dynamical exponents α and z of FCC(111) struc-

ture of WV model.
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Figure A.40: The roughness and dynamical exponents α and z of SH structure of

WV model.
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Figure A.41: The roughness and dynamical exponents α and z of HCP structure

of WV model.
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Figure A.42: The roughness and dynamical exponents α and z of iHCP structure

of WV model.



Appendix B

The plots of surface morphologies and

the correlation functions

Figure B.1: Surface morphology of the SC structure of WV model at t = 105 UL.
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Figure B.2: Surface morphology of the BCC structure of WV model at t = 105 UL.

Figure B.3: Surface morphology of the FCC(001) structure of WV model at t =

105 UL.
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Figure B.4: Surface morphology of the FCC(111) structure of WV model at t =

105 UL.

Figure B.5: Surface morphology of the SH structure of WV model at t = 105 UL.
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Figure B.6: Surface morphology of the HCP structure of WV model at t = 105 UL.

Figure B.7: Surface morphology of the iHCP structure of WVmodel at t = 105 UL.
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Figure B.8: Surface morphology of the SC structure of DT model at t = 105 UL.

Figure B.9: Surface morphology of the BCC structure of DT model at t = 105 UL.
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Figure B.10: Surface morphology of the FCC(001) structure of DT model at

t = 105 UL.

Figure B.11: Surface morphology of the FCC(111) structure of DT model at

t = 105 UL.
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Figure B.12: Surface morphology of the SH structure of DT model at t = 105 UL.

Figure B.13: Surface morphology of the HCP structure of DT model at t = 105 UL.
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Figure B.14: Surface morphology of the iHCP structure of DT model at t =

105 UL.
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Figure B.15: The correlation function of the SC structure of WV model at t =

105 UL.

Figure B.16: The correlation function of the BCC structure of WV model at

t = 105 UL.
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Figure B.17: The correlation function of the FCC(001) structure of WV model at

t = 105 UL.

Figure B.18: The correlation function of the FCC(111) structure of WV model at

t = 105 UL.
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Figure B.19: The correlation function of the SH structure of WV model at t =

105 UL.

Figure B.20: The correlation function of the HCP structure of WV model at

t = 105 UL.
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Figure B.21: The correlation function of the iHCP structure of WV model at

t = 105 UL.

Figure B.22: The correlation function of the SC structure of DT model at t =

105 UL.
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Figure B.23: The correlation function of the BCC structure of DT model at t =

105 UL.

Figure B.24: The correlation function of the FCC(001) structure of DT model at

t = 105 UL.
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Figure B.25: The correlation function of the FCC(111) structure of DT model at

t = 105 UL.

Figure B.26: The correlation function of the SH structure of DT model at t =

105 UL.
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Figure B.27: The correlation function of the HCP structure of DT model at t =

105 UL.

Figure B.28: The correlation function of the iHCP structure of DT model at

t = 105 UL.
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