
á¹Ç·Ò§¡ÒÃËÒ¤ˆÒàËÁÒÐ·ÕèÊØ´àªÔ§¤Í¹àÇ¡«Œà¾×èÍÍÍ¡áºº¡ÒÃ¤Çº¤ØÁáººàÃÕÂ¹ÃÙ‰Ç¹ÃÍº¤§·¹
ÊíÒËÃÑºÃÐººàªÔ§àÊ‰¹·ÕèÁÕ¤ÇÒÁäÁ̂á¹ˆ¹Í¹àªÔ§¾ÒÃÒÁÔàμÍÃŒ

¹ÒÂ ´Ô§ âÎ àË§ÕÂ¹

ÇÔ·ÂÒ¹Ô¾¹ Œ̧¹Õéà»“¹ÊˆÇ¹Ë¹Öè§¢Í§¡ÒÃÈÖ¡ÉÒμÒÁËÅÑ¡ÊÙμÃ»ÃÔÒÇÔÈÇ¡ÃÃÁÈÒÊμÃÁËÒºÑ³·Ôμ
ÊÒ¢ÒÇÔªÒÇÔÈÇ¡ÃÃÁä¿¿„Ò ÀÒ¤ÇÔªÒÇÔÈÇ¡ÃÃÁä¿¿„Ò
¤³ÐÇÔÈÇ¡ÃÃÁÈÒÊμÃŒ ¨ØÌÒÅ§¡Ã³ŒÁËÒÇÔ·ÂÒÅÑÂ

»•¡ÒÃÈÖ¡ÉÒ ����
ÅÔ¢ÊÔ· Ô̧ì¢Í§¨ØÌÒÅ§¡Ã³ŒÁËÒÇÔ·ÂÒÅÑÂ



A CONVEX OPTIMIZATION APPROACH TOROBUST ITERATIVE LEARNING CONTROL DESIGNFOR LINEAR SYSTEMS WITH PARAMETRIC UNCERTAINTIES

Mr. Dinh Hoa Nguyen

A Thesis Submitted in Partial Ful�llment of the Requirementsfor the Degree of Master of Engineering Program in Eletrial EngineeringDepartment of Eletrial EngineeringFaulty of EngineeringChulalongkorn UniversityAademi Year 2009Copyright of Chulalongkorn University



Thesis Title 

By 

Field of Study 

Thesis Advisor 

A CONVEX OPTIMIZATION APPROACH TO ROBUST 

ITERATIVE LEARNING CONTROL DESIGN FOR 

LINEAR SYSTEMS WITH PARAMETRIC UNCERTAINTIES 

Mr. Dinh Hoa Nguyen 

Electrical Engineering 

Associate Professor David Banjerdpongchai, Ph.D. 

Accepted by the Faculty of Engineering, Chulalongkorn University in 

Partial Fulfillment of the Requirements for the Master's Degree 

................ ~: .. ~ ............ . Dean of the Faculty of Engineering 

(Associate Professor Boonsom Lerdhirunwong, Dr. Ing.) 

THESIS COMMITTEE 

.......... ~~~ .. ~.~~~~.~~............... Chairman 

(Assistant Professor Manop Wongsaisuwan, Ph.D.) 

~ -
.................. ~~... ...... ... . . . . Thesis Advisor 

(Associate Professor David Banjerdpongchai, Ph.D.) 

................... w~h ........... . Examiner 

(Associate Professor Waree Kongprawechnon, Ph.D.) 

............ ~ ... . ~ ................... . Examiner 

(Naebboon Hoonchareon, Ph.D.) 



IV 

~\I tH L'VI~!JU (A CONVEX OPTIMIZATION APPROACH TO ROBUST 

ITERATIVE LEARNING CONTROL DESIGN FOR LINEAR SYSTEMS WITH . 
PARAMETRIC UNCERTAINTIES), tl. -rhJ1n'lf11'Yl!J1UVmITmrn: d~'I.~d. L~l~ 

n1d~ l'lJfI:l-l LL'lJ'lJ L ~ !JU11U dtl'lJ djuna ~.I'Y1ITfl tl Wif1 \11 'VI aJ~,TUWI tlU1IT n1dWl'lJ~:l-lrin tltln 
, '\J' , '\J 

LL'lJ'lJ a1Wr'lJd::'lJ'lJn1d't11\11ULL'lJ'lJJ1 ') L ~ mJf'lJu d\n~:l-l ddrlU::'iJ tl\ld::'lJ'lJ'VI tr\l"llnn1dlU dtl'lJ nld , 
~1'lJ~:l-l LL'lJ'lJ L ~ !JU1'"m 1"tl'lJ ~ trnlflul ~ aruru 1m 'iJ1tltln'iJ tl\l1"::'lJ'lJ a1:l-l11"r1~~Wl1:l-l LL Ullii ~~ tl\ln11" "'U QlQ,I 

m 'Yln~ltl~l\11 u-dd\lLla1ol1n~LLa::~\I~d 5 n..r\l a1:l-l11"r1ri1..r~aruru1m d'lJnlULL'lJ'lJJ1 ') LLa::a~ , ~ ~ 

~an1"::'Yl'lJ L it tl\l"lln~ 11:l-l taJ LL U UtlUL -n\l'V'lld1ij L'it tl~ 

1 Ul'Yl!J1u'V'luITif L 71U 1 LaUtln17tl tln LL'lJ'lJ n1d~d'lJ~:l-l bb'lJ'lJ L ~ !JU11U dtl'lJ~\I'Ylua1'V1f'lJd::'lJ'lJ 
q '\J 

L71 

. ~ 

a..:i .4 .cI " cI cv .:::It. ~ Q,....CII. I ..., 

'it tlU d ii L'V'l tl tl tl n Lb'lJ'lJ n 1 7~ 1'lJ ~:l-l bb 'lJ'lJ L 7!J U 7dU 7tl'lJ ~\I'YlU tl n'Yl\l 'V'l a"l ua:l-l 'lJ 'it n l''Sa L'iJ 1'iJ tl\l 
q '\J '\J '\J 

aruru1m~1'lJ~:l-l'iJ1b -if 1 LLa::aruru1m~11:l-l~a1~ L~~ tlU'iJtl\l1"::'lJ'lJ a~.yh!J L d1ud::!Jn'ii1if,Tu'ittlU 
QlQ,I iii Q,lQI 'I 'I 

lIT1'V1 aJ n'lJ7::'lJ'lJ L ~ tl:l-l t!J\leltlU~l LLa::1"::'lJ'lJ'VI tlnkUfl1!J 1~~ 11:l-l taJ LL U UtlUb -n\l'V'lTnij L'it tl~ nl1 

olla tl\l ~a~h!JfI tl:l-lvh L'it tl~LLa~\l1 ~ L ~UU 1"::a'YlIT~a'iJ tl\l,TU'it tlU1IT~U 1 LaUtl 

.. l~nndd:l-lt~.yh a1'!11'l1f1 ........................... . 

n n1,.~nWl ......... ?:5.5.~ ........... . 



v 

##4970750421: MAJOR ELECTRlCAL ENGINEERlNG 

KEYWORDS: ITERATIVE LEARNING CONTROL / LINEAR SYSTEMS / MIN-MAX 

PROBLEM / PARAMETRlC UNCERTAINTIES / QUADRATIC PERFORMANCE / 

LINEAR MATRIX INEQUALITIES / 

DINH HOA NGUYEN: A CONVEX OPTIMIZATION APPROACH TO ROBUST 

ITERATIVE LEARNING CONTROL DESIGN FOR LINEAR SYSTEMS WITH 

PARAMETRlC UNCERTAINTIES. THESIS ADVISOR: ASSOC. PROF. DAVID 

BANJERDPONGCHAI, Ph.D, 104 pp. 
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proposed algorithms. 
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CHAPTER IINTRODUCTION1.1 Iterative learning ontrolIn many industrial appliations nowadays, the ontrol ommand is exeuted and terminatedafter a �nite time period, and then is repeated over and over. Sine onventional ontrol de-signs annot always give the desired performane, a new ontrol synthesis has been developedfor this kind of repetitively working systems. This opens a new area in the ontrol theoryalled Iterative Learning Control (ILC). Japanese sientists are the �rst ones who studiedit when they onsidered roboti systems, however, the �rst papers about learning ontrolwere published in Japanese, hene, it was not known widely until 1984, Arimoto et al. pre-sented the terminology Iterative Learning Control (ILC) and then the �rst ILC algorithm intheir English paper [1℄. After that, ILC was immediately gained a big onsideration from re-searhers, and has been a very ative researh area until now beause there are many systemsnot only robotis systems operate repetitively whih an be ontrolled using ILC algorithms,suh as rotary systems, hemial engineering, power eletronis. In addition, ILC is provedto be a methodology that an ahieve perfet traking ontrol, thus, it is a very e�etiveontrol methodology for periodially working systems, espeially when it is ombined withtraditional ontrol methods. Suh an example of an ILC system is provided in Figure 1.1.

Painting RestRest Figure 1.1: An example of a system working repetitivelyIn the literature, numerous of de�nitions of ILC have been given [2℄, [3℄, however, theommon point of these de�nitions whih is also the key idea of ILC is that the information



2of previous exeutions suh as the ontrol input and the error between the desired trajetoryand the system output are utilized to make the system performane improved throughoutnext iterations. The struture of an ILC system is illustrated in Figure 1.2.PSfrag replaements uk(t)
uk+1(t)

G(�)
ILC Controller rk(t)ek(t)

yk(t)� +
Figure 1.2: The struture of ILC system.Some advantages of ILC ontrollers are a simple struture and the ability to trak areferene input without having an exat model of the system. ILC ontrollers work on a�xed, �nite time interval and drive the system output to the desired trajetory for all timesamples as the iteration inreases while onventional ontrollers try to onverge to the desiredtrajetory as time goes to in�nity. Figure 1.3 shows a onventional output feedbak ontroller.PSfrag replaements G(�) rk(t)ek(t) yk(t)� +Controller

uk(t) = f(ek(t� 1))
Figure 1.3: Output feedbak ontrol.Looking at Figure 1.2 and Figure 1.3, we an see obviously the di�erene between anILC system and an output feedbak system. An ILC ontroller regulates the system outputfor all samples in eah iteration by employing the system errors and the ontrol inputs at allsamples of previous iterations whereas the onventional output feedbak ontroller only usesthe system error at one sample to modify the system output for the onseutive sample in thetime interval. In addition, when there are parametri unertainties or repeated disturbanes,onventional ontrollers annot always ahieve a desired performane whereas ILC an obtainperfet traking. Thus, ILC has great advantages over onventional ontrollers when dealingwith repetitive operations.



31.2 Literature ReviewWe reommend the survey artiles by Bristow et al. [4℄ and Ahn et al. [5℄ for the thoroughoverview of ILC terminologies and de�nitions, ILC problems and solving tehniques as wellas the up-to-date development of ILC from the starting milestone. Among a wide rangeof ILC researh areas, optimal ILC [6℄, [7{10℄ and robustness of ILC algorithms are themain issues. Suh a well-known optimal ILC method namely norm-optimal ILC proposedby Amann et al. in [8℄ that minimizes a quadrati ost funtion onsisting of N samplesahead urrent sample. This leads to a predition part in the update formula for ontrolinput. Moreover, there are more and more optimization-based methods to design ILC rules,for instane, gradient-based, Newton-based, geneti algorithm [11{13℄. On the other hand,robust ILC is also a well-established area. Numerous types of unertainties, disturbanes,noises have been studied in the literature and many ILC algorithms have been proposed torule out the undesired e�ets of the exogenous signals or unertainties in the system. From theview point of this thesis, we only investigate the parametri unertainties in linear systems.In addition, we ategorize the unertainties into three types: time-invariant, time-varyingand iteration-varying.1.2.1 Time-invariant parametri unertaintiesSome tehniques in robust ontrol theory suh as �-synthesis [14℄, H1 approah [15{17℄,feedbak-based approah [18{20℄ have been applied to design ILC algorithms for linear sys-tems with time-invariant unertainties. Nevertheless, these robust ILC problems are formu-lated in ontinuous-time and frequeny domain, and they impliitly use the assumption thatthe time domain is in�nite whilst in pratie, the systems ontrolled by an ILC algorithmwork on a �nite time interval and the algorithm is implemented in disrete-time domain.1.2.2 Time-varying parametri unertaintiesOtherwise, with time-varying unertainties, many ILC designs have been developed for non-linear time-varying systems, for instane [20{22℄, whereas only some other ILC designs havebeen applied to linear time-varying (LTV) systems, suh as [23{25℄. In [23℄, Arif et al. haveused the error predition method to onstrut the ILC law for LTV systems with unknownbut bounded disturbanes. Thereto, Tan et. al [24℄ have proposed an ILC strategy for LTVsystems with state disturbanes and measurement noise at the output. The ILC algorithmsin [23℄ and [24℄ are appliable to systems perturbed by disturbanes, but parametri uner-tainties have not been onsidered in the dynami system. In [25℄, Hladowski et al. havedeveloped an ILC law for linear systems with time-varying unertainties by solving a gen-eralized eigenvalue problem (GEVP). Their approah applies the linear repetitive proessstability theory to design iterative input updates and the ontrol law is spei�ed by a linearombination of the state hange and the output error. Moreover, an upper bound of the



4time-varying unertainties an be determined by the solution of the GEVP.1.2.3 Iteration-varying parametri unertaintiesWhile numerous artiles on the robust ILC design study systems ontaining time-invariantunertainties and several others investigate the systems with time-varying unertainties, afew papers examine the systems in the presene of iteration-varying unertainties. To thebest of our knowledge, the robust ILC designs with iteration-varying unertainties have beenexplored by Ahn, Moore and Chen in a series of artiles [26{28℄ whih also appear in aresearh monograph [2℄. They formulate the plant models with iteration-varying unertaintyin a super-vetor framework, then onvert the Markov matrix of the plant into a form ofbounded additive model unertainty. As a result, the Markov matrix belongs to an intervalset and all the ILC updates are designed for this lass of unertain interval plants.1.3 Sope of Thesis1. Studying Iterative Learning Control, a relatively new ontrol area.2. Designing eÆient and appliable robust Iterative Learning Control algorithms for linearsystems with various types of parametri unertainties.3. Applying the designed algorithms to some physial models of robotis and industrialproesses.1.4 ContributionsIn this thesis, we expet the following researh outome1. A review of robust Iterative Learning Control for both researhers and engineers whohave some or even no expriene in designing Iterative Learning Control algorithms.2. A uni�ed and systemati approah to design robust Iterative Learning Control algo-rithms for a ertain lass of unertain linear systems in the presene of various types ofparametri unertainties inluding time-invariant, time-varying, iteration-varying un-ertainties using onvex optimization and linear matrix inequalities.3. Appliation of developed robust ILC algorithms to some physial models in robotis,industrial proesses suh as exible link, distillation olumn.



51.5 ConlusionIn Chapter 1, we present a brief overview of ILC and the di�erene between ILC and theonventional ontrol methods. Then, we give a literature review of robust iterative learningontrol for linear systems with di�erent types of unertainties. Lastly, the sope of this thesisis introdued and our ontributions are listed.



CHAPTER IIMATHEMATICS PRELIMINARYThis hapter presents the basi de�nitions and properties of the mathemati tools used inthis thesis. Setion 2.1 introdues the most basi terminologies and their properties in onvexoptimization problems. The Lagrangian duality is presented in Setion 2.2. Finally, Setion2.3 provides a brief review of linear matrix inequalities. The results presented is takenfrom [29℄.2.1 Convex optimization problemsDe�nition 1. (AÆne set)A set C 2 Rn is aÆne if for any points x1; : : : ; xk 2 C, and �1; : : : ; �k 2 R suh that�1 + � � � + �k = 1, the point �1x1 + � � � + �kxk is also belongs to C. Moreover, the point�1x1 + � � �+ �kxk is alled an aÆne ombination of x1; : : : ; xk.De�nition 2. (Convex set)A set C 2 Rn is onvex if for any points x1; x2 2 C, and � 2 R suh that 0 � � � 1, wehave �x1 + (1� �)x2 2 C.Like in the ase of aÆne set, the point �1x1 + � � � + �kxk with 0 � �1; : : : ; �k � 1,�1 + � � � + �k = 1 is refered as a onvex ombination of x1; : : : ; xk. Then, the onvex hull ofthe set C is the set of all onvex ombination of C.De�nition 3. (Convex funtion)A funtion f : Rn ! R is onvex if dom f is a onvex set and for all x; y 2 dom f; 0 �� � 1, we have f (�x+ (1� �)y) � �f(x) + (1� �)f(y) (2.1)When the inequality (2.1) beomes strit with x 6= y and 0 < � < 1, the funtion f isstritly onvex.Theorem 1. (First-order ondition)Suppose that f : Rn ! R is di�entiable, then f is onvex if and only if dom f is onvex andf(y) � f(x) +rf(x)T (y � x) (2.2)holds for all x; y 2 dom f .In addition, we have the following theorem to verify whether a funtion is onvex ornot.



7Theorem 2. (Seond-order ondition)Suppose that f : Rn ! R is twie di�entiable, then f is onvex if and only if dom f isonvex and its Hessian matrix is positive semide�nite, i.e,r2f(x) � 0 (2.3)for all x 2 dom f .After onsidering the de�nitions of onvex sets, onvex funtions, we now ome up withonvex optimization problems. An optimization problem is denoted by the following form.min f0(x)s.t. fi(x) � 0; i = 1; : : : ;m (2.4)gi(x) = 0; i = 1; : : : ; pwhere x 2 Rn is the optimization variable,f0(x) is the ost funtion or objetive funtion,fi(x) � 0 are the inequality onstraints and fi(x) are the inequality onstraint fun-tions, gi(x) = 0 are the equality onstraints and gi(x) are the equality onstraint funtions.The set of points for whih the objetive and all onstraint funtions are de�ned,D = m\i=0dom fi \ p\i=1dom gi (2.5)is alled the domain of the optimization problem (2.4). A point x 2 D is feasible if it satis�esall the onstraints fi(x) � 0; i = 1; : : : ;m; gi(x) = 0; i = 1; : : : ; p, and the set of all feasiblepoints is alled feasible set or onstraint set. Moreover, the optimization problem (2.4) issaid to be feasible if there exists at least one feasible point and infeasible otherwise.The optimal value of (2.4) is de�ned as� = inf ff0(x)j fi(x) � 0; i = 1; : : : ;m; gi(x) = 0; i = 1; : : : ; pg (2.6)Then, if (2.4) is infeasible, � =1, on the other hand, if � = �1, the optimization problem(2.4) is unbounded below.Now, we onsider a speial lass of (2.4), namely, onvex optimization problems inwhih, the ost funtion f0(x) must be onvex, the inequality onstraint funtions fi(x); i =1; : : : ;m must be onvex, and the equality onstraint funtions gi(x); i = 1; : : : ; p must beaÆne, i.e, gi(x) = aTi x� bi; i = 1; : : : ; p. Therefore, the onvex optimization problems havethe following standard form. min f0(x)s.t. fi(x) � 0; i = 1; : : : ;m (2.7)aTi x = bi; i = 1; : : : ; p



8The advantage of onvex optimization problem is that if x� is a loal minimizer of the funtionf0, then it is also the global minimizer of f0. Sine the inequality and equality onstraintfuntions are onvex, the set of inequality onstraints and the set of equality onstraints arealso onvex, hene, the feasible set of onvex optimization problem (2.7) is onvex. Thatmeans, in a onvex optimization problem, we minimize a onvex funtion over a onvex set,and therefore, aording to Theorem 1, if we an �nd a minimizer in the feasible set, it willbe the global solution of (2.7). Moreover, in omparision with other nonlinear optimizationproblems, the onvex optimization problems are muh easier to solve with eÆient algorithms.In the next parts, the involved tehniques to solve the onvex optimization problems will bepresented [29℄.2.2 Lagrangian dualityConsider the optimization problem (2.4) in whih the domain of the problem is non-emptyand (2.4) need not to be onvex. Sine (2.4) is a nonlinear optimization problem and it hassome onstraints, so, in general, it is very hard to solve (2.4) diretly. Therefore, we shouldtake �nd a way to eliminate the onstraints and make the optimization problem easier tosolve. Lagrangian duality is suh this way. The most strong point of Lagrangian duality isthe onvexity of the dual problem regardless of the onvexity of the primal problem. Hene,usually, the dual problem an be solve more favourably.We de�ne a Lagrangian L : Rn �Rm �Rp ! R assoiated with (2.4) as follows.L(x; �; �) = f0(x) + mXi=1 �ifi + pXi=1 �igi (2.8)where �i's are Lagrange multipliers assoiated with the inequality onstraints fi(x) � 0; i =1; : : : ;m,�i's are Lagrange multipliers assoiated with the equality onstraints gi(x) = 0; i =1; : : : ; p.The vetors � = [�1; : : : ; �m℄T ; � = [�1; : : : ; �p℄T are alled the dual variables or Lagrangemultiplier vetors of the optimization problem (2.4).Next, the Lagrange dual funtion h : Rm � Rp ! R is de�ned as the minimum ofL(x; �; �) over x 2 Rn with � 2 Rm; � 2 Rp.h(�; �) = infx2DL(x; �; �) = infx2D f0(x) + mXi=1 �ifi + pXi=1 �igi! (2.9)Sine the dual funtion is the pointwise in�mum of a family of aÆne funtions of (�; �), it isalways onave whether the optimization problem (2.4) is onvex or not.The dual funtion give us a lower bound of the optimal value � of (2.4), i.e., for any� � 0 and any �, we have, h(�; �) � � (2.10)



9Therefore, to �nd the best lower bound or even exat value of �, we need to ome up withthe following optimization problem, max h(�; �) (2.11)s.t. � � 0This problem is alled the Lagrange dual problem of the optimization problem (2.4). Notethat, g(�; �) is onave and the onstraint � � 0 is onvex, so, the dual problem (2.12) isalways onvex. This is a very important property of Lagrangian duality as mentioned before.Let �� be the optimal value of problem (2.12), then the following inequality alwaysholds. �� � � (2.12)The property (2.12) is alled weak duality and the di�erene �� �� is referred to as optimalduality gap orrespondingly. As a nature, one Lagrangian duality is applied to an opti-mization problem, we expet that there is no gap between the optimal value of the primalproblem and the optimal value of the dual problem, i.e., the strong duality holds or � = ��.Nevertheless, the strong duality does not hold for every optimization problem, hene, underwhat onditions the strong duality holds is a very onsiderable question. There are someonstraints quali�ations to establish the onditions for strong duality, but we will use onesimple ondition, named Slater's ondition. The Slater's ondition states that the there existsa feasible point in the interior of domD suh that the equality onstraints in (2.4) satis�edand the inequality onstraints in whih the onstraint funtions are non-aÆne beome strit.It leads to the following theorem.Theorem 3. (Slater's theorem)Consider the optimization problem (2.4) and its dual problem (2.12). Then, the strong dualityholds whenever the Slater's ondition holds.In the next part, we provide the optimality ondition for the primal problem and thedual problem through the Karush-Kuhn-Tuker (KKT) onditions.Theorem 4. (KKT onditions) Suppose that x� and ��; �� are primal and dual optimalpoints with zero duality gap, then, they satisfy following onditions.fi(x�) � 0; i = 1; : : : ;mgi(x�) = 0; i = 1; : : : ; p��i � 0; i = 1; : : : ;m (2.13)��i fi(x�) = 0; i = 1; : : : ;mrf0(x�) + mXi=1 ��irfi(x�) + pXi=1 ��irgi(x�) = 0:Moreover, when the optimization problem (2.4) is onvex, the KKT onditions are alsosuÆient.



102.3 Linear matrix inequalitiesAn LMI has the form [29{32℄ F (x) = F0 + mXi=1 xiFi > 0 (2.14)where x 2 Rm is the variable and the symmetri matries F0; F1; : : : ; Fm 2 Rn�n are given.In fat, the variable in the LMI (2.14) an be a matrix instead of a vetor sine many ontrolproblems lead to funtions of matries.Theorem 5. (Non-strit Shur omplement [32℄)Let Q and R be symmetri matries, then the following statements are equivalent.� " Q SST R# � 0,� R � 0; Q� SRyST � 0; S(I �RRy) = 0,where Ry is the pseudo-inverse of matrix R.Theorem 6. (Strit Shur omplement [29,30℄)Let the matrix F (x) in LMI (2.14) be partitioned as follows.F (x) = " Q(x) S(x)S(x)T R(x)# (2.15)where Q(x) = Q(x)T ; R(x) = R(x)T and S(x) depends aÆnely on x. Then, (2.14) holds ifand only if R(x) > 0; Q(x)� S(x)R(x)�1S(x)T > 0: (2.16)In addition, (2.14) holds if and only ifQ(x) > 0; R(x)� S(x)TQ(x)�1S(x) > 0: (2.17)Sine F (x) is an aÆne funtion of variable x, we an easily verify that (2.14) de�nes aonvex set. Therefore, in an optimization problem, if the ost funtion is onvex and the on-straints an be reformulated as LMIs, we get a onvex optimization problem. Subsequently,using the tools of onvex optimization as mentioned above, the optimization problem now ismuh easier to solve.2.4 Robust ILC for linear systems with parametri unertainties2.4.1 System desription and modelingConsider an unertain disrete-time linear system desribed by the following state-spaemodel ( x(t+ 1) = Ax(t) +Bu(t);y(t) = Cx(t) (2.18)



11where x 2 Rr, u 2 Rq, y 2 Rp are state vetor, ontrol input, and output of system (2.18),A;B;C are system matries with appropriate dimensions,t 2 [0; N ℄ is the time sample, N is the number of samples.When the ontrol task is repeated over and over, the system now works not only ontime domain but also on iteration domain. Consequently, the system model (2.18) beomes( xk(t+ 1) = Axk(t) +Buk(t);yk(t) = Cxk(t) (2.19)where k is the iteration index.Given a referene input r(t), our ontrol objetive is to design the ontrol input uk(t) sothat the system output yk(t) traks the referene input after some iterations with a spei�ederror. The designed ILC algorithm should disard the e�et of the parametri unertainties inthe system, and guarantee the expeted system performane. Among many ontrol strategies,lifting tehnique is an e�etive method that has been widely utilized to design ILC algorithm[2℄, [12℄, [13℄, [6℄, [33℄. All the sample times are taken into aount in a vetor makes it thestrong point of this tehnique sine an ILC system works in a �nite time interval and thedesigned ILC algorithm should drive the system output to the target trajetory at all sampletimes. Thus, in the following part, we will use the lifting tehnique to reformulate the systemin a super-vetor framework and design our ILC algorithm bases on this formulation.De�ne yk = �yk(1)T yk(2)T : : : yk(N)T �Tuk = �uk(0)T uk(1)T : : : uk(N � 1)T �Txk = �xk(1)T xk(2)T : : : xk(N)T �T (2.20)where yk;uk;xk are the orresponding super vetors inluding of the system output, ontrolinput and state vetor at all sample times in the time interval [0; N ℄, in the kthiteration.The system (2.19) now an be reformulated in the super-vetor framework as follows.yk = Guk (2.21)where G is a Markov matrix.Let us denote h(t) as the impulse responses of the system (2.19), namely,h(t) = CAt�1B; t = 1; 2; : : : ; N: (2.22)Without loss of generality, assume that the relative degree of system (2.19) equals to 1. Then,G an be desribed as follows.G = 26664 h(1) 0 0 � � � 0h(2) h(1) 0 � � � 0... ... . . . ...h(N) h(N � 1) � � � � � � h(1)37775 (2.23)



12Suppose that in the system (2.19), there are parametri unertainties whih an bedenoted by �1; �2; : : : ; �m, or simply denoted by a vetor unertainty �. These parametriunertainties an be in any system matries A, B, or C, so, we will use the notation A�; B�; C�to desribe their e�et to the system matries. De�ne a sequene of the impulse responses inthe presene of unertainties as follows.h(t; �) = C�At�1� B�; t = 1; 2; : : : ; N (2.24)As a result, the Markov matrix G is a funtion of these unertainties. Therefore, from nowon, we use the notation G(�) in stead of G.In our approah, we are interested in the systems satisfying the following onditions.A1. � 2 � where � is a set of bounded parametri unertainties. Without loss of generality,� = f� : k�k1 � 1g:A2. The Markov matrix G(�) of system (2.19) is an aÆne funtion of �.Let e be the error between the output y and the referene input r de�ned as e(t) =r(t)� y(t): Thus, we have ek = r� ykwhere r = �r(1)T r(2)T : : : r(N)T �Tek = �ek(1)T ek(2)T : : : ek(N)T �TNote that the referene input is invariant with respet to iterations, so the iteration index kis dropped out from the super-vetor r. Hene, the error update model of the system (2.21)is ek+1 = ek �G(�)�uk+1 (2.25)where �uk+1 = uk+1�uk is the di�erene of the ontrol input between iterations whih alsois de�ned as the ontrol input update of the system.Sine the elements of the Markov matrix are the impulse responses of the disrete-timesystem (2.19) at di�erent samples, we an experimentally analyse these impulse responsesand model them as an aÆne funtion of the unertainties. Hene, the Markov matrix willbe an aÆne funtion of the unertainties. Let G0 is the nominal Markov matrix of thesystem (2.19), G1; G2; : : : ; Gm are the unertainties of Markov matrix orresponding to theparametri unertainties �1; �2; : : : ; �m. We propose the following proedure to determine thematries G0; G1; : : : ; Gm.



13Step 1. Determine the nominal impulse responses h(t; 0).Set � = 0 and alulate a sequene of impulse responsesh(t; 0) = C0At�10 B0; t = 1; 2; : : : ; N:Step 2. Determine the nominal Markov matrix G0.G0 is omputed as follows.G0 = 26664 h(1; 0) 0 0 � � � 0h(2; 0) h(1; 0) 0 � � � 0... ... . . . ...h(N; 0) h(N � 1; 0) � � � � � � h(1; 0)37775 (2.26)Step 3. Determine the unertainties of impulse responses.For eah i = 1; : : : ;m, we disretize the unertainty interval [�1; 1℄ into �i = f�1;�1+d;�1 + 2d; : : : ; 1g where d = 2=n and n + 1 is the number of disretized points. Let�i 2 �i whereas �j = 0; j 6= i; j = 1; 2; : : : ;m. Afterward, we alulate the impulseresponses h(t; �) for all �i 2 �; t = 1; 2; : : : ; N , and de�nehl(t; i) = min�i2�i h(t; �); t = 1; 2; : : : ; N (2.27)hu(t; i) = max�i2�i h(t; �); t = 1; 2; : : : ; N (2.28)Now, the unertainties of impulse responses are omputed as follows.h�(t; i) = 12 [hu(t; i)� hl(t; i)℄; t = 1; 2; : : : ; NStep 4. Determine the unertainties of Markov matries G1; : : : ; Gm.For eah i = 1; : : : ;m, Gi an be expressed in terms of h�(t; i) as follows.Gi = 26664 h�(1; i) 0 0 � � � 0h�(2; i) h�(1; i) 0 � � � 0... ... . . . ...h�(N; i) h�(N � 1; i) � � � � � � h�(1; i)37775 : (2.29)2.4.2 The robust ILC design problemIn real appliations, there are some restritions on the ontrol inputs whih an be desribedby the following onstraints.C1. Bounded magnitude: ul � uk+1 � uh.C2. Bounded rate w.r.t. time index: Æul � Æuk+1 � Æuh.C3. Bounded rate w.r.t. iteration index: �ul � �uk+1 � �uh, �ul � 0;�uh > 0.



14
where Æuk+1 = 26664 uk+1(0)uk+1(1)� uk+1(0)...uk+1(N � 1)� uk+1(N � 2)37775 = Juk+1 with J = 26666664 I 0 � � � 0 0�I I � � � 0 00 �I . . . ... 0... . . . . . . . . . ...0 0 � � � �I I

37777775.Rewrite the onstraints C1{C3 as ��uk+1 � � (2.30)where � = 2664�II�JJ 3775, � = 2664 ��ul�uh�Æul + JukÆuh � Juk 3775, �ul = max ful � uk;�ulg, �uh = min fuh � uk;�uhg.Note that (2.30) is an aÆne inequality of �uk+1. In the ontroller design proedure, normally,a linearized model of a non-linear dynami system is utilized and the system is onsidered towork around an operating point. Therefore, the onstraints on the ontrol input uk+1 and itshange with time Æuk+1 should be employed to fore the system work in a linearized regionaround the operating point. In addition, the onstraint on the ontrol input's hange withiterations �uk+1 guarantee the smooth running of the system throughout exeutions. It isvery important that the sudden hanges should be avoided to ensure the safety in the system.To design the robust ILC algorithm, we use the quadrati performane riterionJk+1 = eTk+1Qek+1 +�uTk+1R�uk+1 (2.31)where Q;R are symmetri, positive de�nite matries. Then, the design of ontrol input isformulated as a min-max problem min�uk+12Uk+1max�2� Jk+1 (2.32)where Uk+1 is a onvex set de�ned by (2.30).Now, substitute (2.25) into Jk+1, we haveJk+1 = �uTk+1 �R+G(�)TQG(�)��uk+1 � 2eTkQG(�)�uk+1 + eTkQekSine ek is known from previous iteration, in the design, we an onsider the ost funtionwithout eTkQek, namely,Jk+1 = �uTk+1 �R+G(�)TQG(�)��uk+1 � 2eTkQG(�)�uk+1 (2.33)2.4.3 MethodologyIn this thesis, we employ a uni�ed approah as desribed in the owhart of Figure 2.1 todesign robust ILC algorithms for unertain linear systems. The initial min-max problem(2.32) is hard to solve diretly. First of all, we �nd an upper bound of the maximizationproblem, then ombine the problem of �nding the least-upper bound of the maximization
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Figure 2.1: The methodology to design robust ILC algorithms for unertain linear systems.problem and the initial minimization problem. As a result, the min-max problem (2.32)beomes a minimization problem. The minimization problem is not a onvex optimization,therefore, its dual problem is onsidered instead. Using Shur omplement [29℄, the dualproblem is reformulated as a onvex optimization problem over linear matrix inequalitieswhose solution is obtained utilizing available onvex optimization solvers. Applying Lagrangeduality, the iterative input update is ahieved as minimizing the Lagrangian. Hene, at eahiteration, the ontrol input update is based on the solution of the dual problem. This makesour ILC ontroller having a dynami struture, not a �xed one as usually seen in manyartiles.2.5 ConlusionIn this hapter, the mathematial tools employed in the thesis are briey introdued. Wepresent the onvex optimization problem and linear matrix inequality with their de�nitionsand main properties utilized in the thesis. Next, the system desription are given. Weonsider disrete-time linear systems with parametri unertainties ontrolled by an ILController. Then, the system is reformulated in a super-vetor framework whih inorporatesthe system information at all samples in the time interval. Afterward, a proedure is proposedto experimentally analyse the impulse responses of the system in the presene of parametriunertainties to obtain an aÆne Markov model of the system. Consequently, the robust ILCdesign problem is formulated as a min-max optimization problem. And �nally, we propose amethodology to derive the ILC ontroller as a sub-optimal solution of the min-max problem.



CHAPTER IIITIME-INVARIANT PARAMETRIC UNCERTAINTIESRobustness is one of the ritial issues in ontrol systems inluding ILC systems. Conse-quently, it is requisite to develop robust algorithms for ILC systems. Some tehniques in ro-bust ontrol suh as �-synthesis [14℄, H1 approah [15℄, [16℄, feedbak-based approah [18{20℄were applied to design ILC algorithms for unertain linear systems. Nevertheless, they usuallyformulate the robust ILC design problems in either in�nite ontinuous time domain or fre-queny domain. In addition, they impliitly assume that the time domain is in�nite, whilst,in pratie, the systems ontrolled by an ILC algorithm work on a �nite time interval andthe algorithm is implemented in disrete-time domain.This hapter aims to design a novel ILC algorithm for linear systems with time-invariantparametri unertainties in a �nite disrete-time domain. Our algorithm is built in a super-vetor framework and the robust ILC design is formulated as a min-max problem usinga quadrati performane. This quadrati performane riterion has been onsidered in anumber of robust ILC designs [33{35℄. In [33℄, Lee et al. have onsidered a robust ILCdesign problem for a lass of onstrained linear systems with parametri unertainty butthey have not presented an expliit ILC algorithm. Reently, we have proposed an approahto the robust ILC design for linear systems with time-invariant parametri unertainty [35℄.However, the approah in [35℄ works for linear systems ontaining a single unertainty andat eah iteration, two onvex optimization problems need to be solved. In this paper, wegeneralize the results in [35℄ to be appliable for linear systems with multiple unertaintiesand redue the number of optimization problems in the design algorithm. An expliit formulafor iterative input update is given and at eah iteration, only one onvex optimization problemis solved. To solve the min-max problem, we �rst determine an upper bound of the worst-ase performane, then onsider the dual problem whih an be transformed into onvexoptimization over linear matrix inequalities (LMIs).In partiular, we investigate linear systems with time-invariant parametri unertain-ties: G(�) = G0 +G1�1 +G2�2 + � � � +Gm�m (3.1)where G0 is the nominal matrix, G1; : : : ; Gm are dynami matries, and �i; i = 1; : : : ;m areparametri unertainties.



173.1 The worst-ase performane analysisUsing the system model (3.1), we getG(�)TQG(�) =  GT0 + mXi=1 GTi �i!Q0�G0 + mXj=1Gj�j1A= mXi=1 mXj=1GTi QGj�i�j + mXi=1 �GTi QG0 +GT0QGi� �i +GT0QG0 (3.2)Moreover, eTkQG(�)�uk+1 = eTkQ G0 + mXi=1 Gi�i!�uk+1 (3.3)= mXi=1 eTkQGi�uk+1�i + eTkQG0�uk+1Substituting (3.2) and (3.3) into (2.33) results inJk+1 = �TP� + 2�T q + r (3.4)whereP = (Pij)i;j=1;m with Pij = �uTk+1GTi QGj�uk+1,q = (qi)i=1;m with qi = �uTk+1 �GTi QG0+GT0 QGi2 ��uk+1 � eTkQGi�uk+1;r = �uTk+1 �GT0QG0 +R��uk+1 � 2eTkQG0�uk+1:Rewrite the maximization problem in (2.32) asmaxz2Z zTHz (3.5)where z = ��1�, H = �P qq r�, Z = �z = ��1����� � 2 ��.If there exists a diagonal matrix T suh that T � H, thenzTHz � zTTz = mXi=1 tiz2i + tm+1 � m+1Xi=1 ti = trae Twhere ti0s; i = 1; 2; : : : ;m+ 1 are elements on the diagonal of matrix T .Consequently, the least upper bound of (3.5) an be found by solving the following minimiza-tion problem min trae T (3.6)s.t. T � HT is diagonal



18Remark 1. When the system (5.1) ontains a single unertainty, an analytial solution of(3.6) has been derived, then the minimization problem in (2.32) is solved to give the iterativeinput update [35,36℄. Nevertheless, for system (5.1) with multiple unertainties, it is diÆultto obtain an analytial solution of (3.6) using the same tehnique. Therefore, a new ILCapproah is proposed in the next setion to deal with multiple unertainties [37℄.3.2 LMI-based ILC algorithmReplaing (3.6) into (2.32) and ombining two minimization problems, the iterative inputupdate �uk+1 an be alulated by solving the following minimization problem.min trae T (3.7)s.t. T � HT is diagonal�uk+1 2 Uk+1This is a minimization problem with variables T and �uk+1. To solve (3.7), we will solve itsdual problem. First, let us reformulate (3.7) as follows. Rewrite T asT = m+1Xi=1 tiFiwhere Fi is a matrix with the same dimension as T having the ith diagonal element equal to1 and the other elements equal to 0, i = 1;m+ 1. Then, (3.7) beomesmin 1T t (3.8)s.t. H � m+1Xi=1 tiFi � 0��uk+1 � �where t = [t1; t2; : : : ; tm+1℄T , 1 is the (m+ 1)� 1 vetor whose elements are all equal to 1.De�ne a LagrangianL(t;�uk+1;W; �) = 1T t+ tr  H � m+1Xi=1 tiFi!W!+ �T (��uk+1 � �) (3.9)whereW 2 Sm+1+ , in whih, Sm+1+ is the set of symmetri semi-de�nite positive matries withdimension (m+ 1)� (m+ 1), � is a vetor.Next, to obtain a dual funtion, we �nd the minimum of the Lagrangian with respet



19to t and �uk+1. It is straightforward to see thatinft;�uk+1 L(t;�uk+1;W; �) = inft (1T t� tr m+1Xi=1 tiFiW!� �T�)+ inf�uk+1 �tr (HW ) + �T��uk+1	= ��T�+ inft (m+1Xi=1 ti(1� tr(FiW )))+ inf�uk+1 �tr (HW ) + �T��uk+1	= ��T�+ inf�uk+1 �tr (HW ) + �T��uk+1	 (3.10)Note that (3.10) is obtained whentr (FiW ) = 1 8 i = 1;m+ 1, wii = 1 8 i = 1;m+ 1with wii0s; i = 1;m+ 1 are elements on the diagonal of matrix W .Moreover, tr (HW ) = m+1Xi=1 m+1Xj=1 hijwij= mXi=1 mXj=1 hijwij + 2 mXi=1 hi;m+1wi;m+1+hm+1;m+1wm+1;m+1where hij ; wij ; i; j = 1; 2; : : : ;m+ 1 are elements of orresponding matries H;W .mXi=1 mXj=1 hijwij = mXi=1 mXj=1�uTk+1GTi QGj�uk+1wijmXi=1 hi;m+1wi;m+1= mXi=1 �uTk+1�GTi QG0 +GT0QGi2 ��uk+1wi;m+1� mXi=1 eTkQGi�uk+1wi;m+1hm+1;m+1wm+1;m+1= �uTk+1 �GT0QG0 +R��uk+1 � 2eTkQG0�uk+1Aordingly, tr (HW ) = �uTk+1 bG�uk+1�2 mXi=1 eTkQGiwi;m+1 + eTkQG0!�uk+1



20where bG = mXi=1 mXj=1GTi QGjwij + mXi=1 (GTi QG0 +GT0QGi)wi;m+1 +GT0QG0 +R (3.11)Therefore, tr (HW ) + �T��uk+1 = �uTk+1 bG�uk+1 + �T�uk+1 (3.12)where � = �T � � 2 mXi=1 GTi Qekwi;m+1 � 2GT0Qek (3.13)Hene, inf�uk+1 �tr (HW ) + �T��uk+1	 = �14�T bG�1� (3.14)with the optimal value of �uk+1 is �u�k+1 = �12 bG�1� (3.15)Thus, inft;�uk+1 L(t;�uk+1;W; �) = ��T�� 14�T bG�1� (3.16)Consequently, the dual problem of (3.7) ismin 4�T�+ �T bG�1� (3.17)s.t. bG � 0W 2 Sm+1+wii = 1; � � 0whih is equivalent to the following optimization problemmin � (3.18)s.t. 4�T�+ �T bG�1� � �bG � 0W 2 Sm+1+wii = 1; � � 0Using Shur omplement [29℄, we an rewrite the dual problem (3.18) as the following LMIproblem min � (3.19)s.t. � bG ��T �� 4�T� � � 0W 2 Sm+1+wii = 1; � � 0



21This problem an be solved using available software suh as vx [38℄. The stoppingriteria for iterative solution proedure are as follows.kekk � � (3.20)k = iter max (3.21)where � is a tolerane hosen by the designer and iter max is the maximum number ofiterations.Finally, we propose the following algorithm for the robust ILC design.Algorithm 1. An LMI algorithm for linear systems with time-invariant parametri uner-tainties (ILC-TI)1. Set k := 0, uk := 0, and measure ek.2. Solve the LMI problem aording to (3.19).3. Calulate �uk+1 aording to (3.15).4. Apply uk+1 to the system and measure ek+1.5. If (3.20) or (3.21) is true, then stop the iteration, else, set k := k+1, return to step 2.Remark 2. There might be a onservatism in the proposed robust ILC design sine an upperbound of the worst-ase performane is used in the maximization problem (3.5). However,the algorithm appears to work well as demonstrated in the numerial example.3.3 Convergene propertiesTheorem 7. Under assumptions A1-A2 and onstraints C1-C3, the ontrol input uk ofsystem (3.1) onverges.Proof. Let V (ek) = min�uk+12Uk+1max�2� Jk+1 (3.22)with Jk+1 is in (2.33). Then, V (ek) � 0 8 k sine Jk+1 � 0 8 k.We have, V (ek) � Jk+1j�uk+1=0 = eTkQekSuppose that ��k is the optimizer of the maximization problem at the kth iteration, hene,eTkQek � eTk (��k)Qek(��k) = V (ek�1)��uTkR�ukTherefore, V (ek) � V (ek�1)��uTkR�uk (3.23)



22Inequality (3.23) leads to V (ek) + kXi=1 �uTi R�ui � V (e0) (3.24)Sine V (ek) � 0, we get kXi=1 �uTi R�ui � V (e0) <1 (3.25)Moreover, beauseR is positive de�nite, �uTi R�ui � 0 8 i and the sequene nPki=1�uTi R�uiois non-dereasing. Combine with (3.25), it dedues that nPki=1�uTi R�uio onverges. A-ordingly, limk!1 �uTkR�uk = limk!1  kXi=1 �uTi R�ui � k�1Xi=1 �uTi R�ui!= limk!1 kXi=1 �uTi R�ui � limk!1 k�1Xi=1 �uTi R�ui= 0:It implies that �uk ! 0 as k !1. Thus, fukg onverges.Theorem 8. Under assumptions A1-A2 and onstraints C1-C3, the error ek of system (3.1)onverges.Proof. We have, kG(�)k = kG0 +G1�1 +G2�2 + � � �+Gm�mk� kG0k+ kG1�1k+ � � �+ kGm�mk� kG0k+ kG1k+ � � �+ kGmkHene, kG(�)k is bounded. It leads toG(�)�uk+1 ! 0 as k !1:Equivalently, (ek � ek+1)! 0 as k !1:This results in the onvergene of fekg.3.4 Numerial exampleConsider the following system with transfer funtionG(s) = 115s2 + 8s+ 1 + �1 0:8e�s5s+ 1 + �2 0:5e�s2s+ 1 (3.26)



23where �1; �2 are the unertain parameters, �1; �2 2 [�1; 1℄ : Sine the design of our ILCalgorithm is built in disrete time domain, in partiular, the super-vetor framework, thesystem model (3.26) should be disretized and rewritten in the form of a Markov matrix as inequation (2.21). In this example, the sampling time is hosen to be 1 seond and the numberof samples is 41. The target referene trajetory isr(t) = 8>><>>: 0; t 2 [0; 5℄ [ [36; 40℄0:1(t� 5); t 2 [6; 15℄1; t 2 [16; 25℄1� 0:1(t � 25); t 2 [26; 35℄ (3.27)The onstraints of ontrol inputs are spei�ed byul = �2;uh = 2; Æul = �3; Æuh = 3;�ul = �2;�uh = 2: (3.28)The design parameters are hosen as follows: Q = I1; R = 0:02I2 where I1; I2 are identitymatries with appropriate dimension. For the stopping riteria, we hoose � = 0:01 anditer max = 20. In the simulation, the parameters �1; �2 are randomly seleted from theunertainty interval and they are time-invariant. In our work, we use the software vx [38℄to solve the LMI problem (3.19).The design results are shown in the Figures 3.1{ 3.5. Figures 3.1, 3.2, and 3.3 show thatthe ontrol input satis�es all input onstraints (3.28). Moreover, Figures 3.2 exhibits thatÆuk(t) tends to onverge whereas �uk(t) tends to deay as illustrated in Figure 3.3. Hene,the ontrol input onverges. Figure 3.4 displays that the output of system (3.26) onvergesto the desired referene trajetory but there are still small errors of the system output atthe 39th{40th samples after exeuting ILC for 20 iterations. The system error onverges asdemonstrated in Figure 3.5.3.5 ConlusionChapter 3 presents the details to design an ILC ontroller for linear systems in the preseneof time-invariant parametri unertainties. The design proedure follows the methodologydesribed in Chapter 2. The �rst step is the worst-ase performane analysis in whih, theaÆne Markov model of the system is introdued and a least upper bound of the maximizationproblem is ahieved. Aordingly, the min-max problem is relaxed to a minimization one.Then, in the seond step, we onsider the dual problem of the minimization problem derivedin the �rst step, and reformulate it as a onvex optimization problem with LMI onstraints.An LMI-based ILC algorithm is given as a result. Next, the onvergene of the ontrolinput and the system error is proved. Lastly, a generi example is provided in setion 3.3 toillustrate the e�etiveness of the proposed ILC algorithm.
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Figure 3.1: Control input of system with parametri time-invariant unertainties.
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Figure 3.2: The di�erene of ontrol input of system with parametri time-invariant uner-tainties w.r.t. time index.
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Figure 3.3: The di�erene of ontrol input of system with parametri time-invariant uner-tainties w.r.t. iteration index.
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Figure 3.4: Output response of system with parametri time-invariant unertainties.
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CHAPTER IVTIME-VARYING PARAMETRIC UNCERTAINTIESThere have been several results under ILC framework for systems in the presene of un-ertainties. Many ILC designs have been developed for nonlinear time-varying systems, forinstane [20{22℄, whereas only some other ILC designs have been applied to linear time-varying (LTV) systems, suh as [23{25℄. In [23℄, Arif et al. have used the error preditionmethod to onstrut the ILC law for LTV systems with unknown but bounded disturbanes.Thereto, Tan et. al [24℄ have proposed an ILC strategy for LTV systems with state dis-turbanes and measurement noise at the output. The ILC algorithms in [23℄ and [24℄ areappliable to systems perturbed by disturbanes, but parametri unertainties have not beenonsidered in the dynami system. In [25℄, Hladowski et al. have developed an ILC law forlinear systems with time-varying unertainties by solving a generalized eigenvalue problem(GEVP). Their approah applies the linear repetitive proess stability theory to design it-erative input updates and the ontrol law is spei�ed by a linear ombination of the statehange and the output error. Moreover, an upper bound of the time-varying unertaintiesan be determined by the solution of the GEVP.On the other hand, in this thesis, we develop another systemati approah to designrobust ILC algorithms for linear systems subjet to parametri time-varying unertainties [39℄.Our algorithm utilize the same quadrati performane index as in [35,36℄. The ontrol designproblem is formulated as a min-max problem subjets to the onstraints of the ontrol input.An upper bound of the maximization problem is obtained �rst to make the initial min-maxproblem beome a minimization problem. Then, applying Lagrange duality, we ahieve a dualproblem of the minimization problem whih an be reformulated as a onvex optimizationproblem over LMIs.Based on the assumptions A1-A2, the input-output matrix of linear systems ontainingadditive time-varying parametri unertainties has the following form.G(�) = G0 +
1G1 +
2G2 + � � �+
mGm (4.1)where G0 is the nominal matrix, G1; : : : ; Gm are dynami matries of unertainties, and
i = 26664�i(1) �i(2) . . . �i(N)377758 i = 1;mwhere �i(j); i = 1;m are parametri unertainties ontained in � at time j, j�i(j)j � 1 8 i =1;m; 8 j = 1; N .



284.1 The worst-ase performane analysisWe express G(�)TQG(�) as GT0 + mXi=1 GTi 
i!Q0�G0 + mXj=1
jGj1A = GT0QG0 + mXi=1 mXj=1GTi 
iQ
jGj+ mXi=1 GTi 
iQG0 + mXi=1 GT0Q
iGi: (4.2)Moreover, eTkQG(�)�uk+1 is expressed aseTkQ G0 + mXi=1 
iGi!�uk+1 = mXi=1 eTkQ
iGi�uk+1 + eTkQG0�uk+1: (4.3)Substituting (4.2) and (4.3) into (2.33) results inJk+1 = zTPz + r (4.4)wherez = 26664 G1�uk+1...Gm�uk+1QG0�uk+1 �Qek37775, P = 2666664
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3777775,r = �uTk+1 �GT0QG0 +R��uk+1 � 2eTkQG0�uk+1.Let P1 = 26664
1Q
1 : : : 
1Q
m
2Q
1 : : : 
2Q
m... ...
mQ
1 : : : 
mQ
m 37775, P2 = 26664
1
2...
m37775, then P = �P1 P2P T2 0 � and P1 = P2QP T2 .Consider the maximization problem in (2.32)max�2� Jk+1 (4.5)To solve (2.32), we �rst derive the least upper bound  of the maximization problem (4.5),then solve the minimization problem. Suppose that there exists a blok-diagonal matrixT = �T1 00 T2� suh that P � T , �T1 � P1 �P2�P T2 T2 � � 0: (4.6)Hene, Jk+1 is bounded by Jk+1 = zTPz + r � zTTz + r: (4.7)If T2 > 0, then, (4.6) is equivalent toT1 � P1 � P2T�12 P T2 � 0: (4.8)



29Choose T2 = Q�1, then P2T�12 P T2 = P2QP T2 = P1. Thus, (4.8) beomesT1 � 2P1 � 0: (4.9)Let 
 = 26664
1 
2 . . . 
m37775, eQ = 26664Q Q : : : QQ Q : : : Q... ... ...Q Q : : : Q37775, thenP1 = 
 eQ
: (4.10)Therefore, (4.9) an be rewritten as T1 � 2
 eQ
 � 0: (4.11)Sine T2 is hosen to be onstant, the problem of �nding the least upper bound of Jk+1 isequivalent to �nding the \smallest" matrix T1 satisfying (4.11) for all unertainties in theunertainty set. Thus, the worst-ase performane with respet to the unertainties an beformulated as max trae (
 eQ
) (4.12)s.t. �I � 
 � I:On the other hand, it is noted thattrae (
 eQ
) = trae ( eQ
2): (4.13)Sine Q > 0, all the elements in the diagonal of Q are positive. Hene,max�I�
�I trae ( eQ
2) = trae ( eQ): (4.14)The ondition for (4.14) is 
2 = I, that means the worst-ase performane happens when theunertainty reahes the boundary of the unertain interval at eah sample time. Aordingly,the \smallest" matrix T1 is the solution of the following minimization problem.min trae T1 (4.15)s.t. T1 is diagonalT1 � 2
 eQ
 � 0
2 = I:Note that the ongruene transformation preserves the positive de�niteness of a matrix.Therefore, T1 � 2
 eQ
 � 0 , 
(T1 � 2
 eQ
)
 � 0, 
T1
� 2 eQ � 0: (4.16)



30It an be dedued that (4.16) is equivalent toT1 � 2 eQ � 0 (4.17)sine 
2 = I. Therefore, (4.15) beomesmin trae T1 (4.18)s.t. T1 is diagonalT1 � 2 eQ:This problem an be numerially solved using available software that support onvex opti-mization. Moreover, we need to alulate (4.18) for only one and it an be done o�-line,i.e., not in the iteration proess. Now, the least upper bound of (4.5) is = zTTz + r= �uTk+1 bG�uk+1 + �T�uk+1 + eTkQek (4.19)where bG = 264G1...Gm375T T1 264G1...Gm375+ 2GT0QG0 +R� = �4GT0Qek:4.2 LMI-based ILC algorithmAfter obtaining the least upper bound of (4.5), the iterative input update an be found bysolving the following problem min�uk+12Uk+1�uTk+1 bG�uk+1 + �T�uk+1 (4.20)whih is equivalent to min �uTk+1 bG�uk+1 + �T�uk+1 (4.21)s.t. ��uk+1 � �:De�ne a LagrangianL(�uk+1; �) = �uTk+1 bG�uk+1 + �T�uk+1 + �T (��uk+1 � �)= �uTk+1 bG�uk+1 + (� +�T �)T�uk+1 � �T� (4.22)where � 2 <4N is the Lagrange multiplier. It is straightforward to obtain the optimal solutionas �u�k+1 = �12 bG�1(� +�T �): (4.23)



31Then, we ahieve a Lagrange dual funtionf(�) = inf�uk+1 L(�uk+1; �)= �14 n(� +�T �)T bG�1(� +�T �) + 4�T�o :Therefore, the dual problem of (4.21) ismax 4f(�)s.t. � � 0whih is equivalent to min � (4.24)s.t. �4f(�) � �� � 0:Using Shur omplement [29℄, we an rewrite (4.24) as a onvex optimization problem overLMIs. min � (4.25)s.t. � bG � +�T �(� +�T �)T �� 4�T�� � 0� � 0:This problem an be solved using available software suh as vx [38℄. The stopping riteriafor iterative solution proedure are as follows.kekk � � (4.26)k = iter max (4.27)where � is a tolerane hosen by the designer and iter max is the maximum number ofiterations.Here, we summarize the proposed algorithm.Algorithm 2. An LMI algorithm for linear systems with time-varying parametri unertain-ties (ILC-TV)1. Set k := 0, uk := 0. Measure ek.2. Solve the LMI problem aording to (4.25).3. Calulate �uk+1 aording to (4.23).4. Apply uk+1 to the system and measure ek+1.5. If (4.26) or (4.27) is true, then, stop the iteration, else set k := k+1, return to step 2.



32Remark 3. It is noted that the minimization problem (4.21) has a quadrati ost funtionand an aÆne onstraint. When we onsider the dual problem, the strong duality alwaysholds [29℄. As a result, the solutions of (4.21) and (4.25) are equal.Remark 4. There might be a onservatism in our approah sine an upper bound of theworst-ase performane is used in the maximization problem (4.5). Nevertheless, the algo-rithm appears to work well as we will demonstrate in the numerial example.4.3 Convergene propertiesTheorem 9. Under assumptions A1-A2 and onstraints C1-C3, the ontrol input uk ofsystem (4.1) onverges.Proof. Let V (ek) = min�uk+12Uk+1max�2� Jk+1with Jk+1 is in (2.33). Then, V (ek) � 0 8 k sine Jk+1 � 0 8 k. We haveV (ek) � Jk+1j�uk+1=0 = eTkQek:Suppose that ��k is the optimizer of the maximization problem at the kth iteration. Hene,eTkQek � eTk (��k)Qek(��k) = V (ek�1)��uTkR�uk:Therefore, V (ek) � V (ek�1)��uTkR�uk: (4.28)Inequality (4.28) leads to V (ek) + kXi=1 �uTi R�ui � V (e0):Sine V (ek) � 0, we get kXi=1 �uTi R�ui � V (e0) <1: (4.29)Moreover, beauseR is positive de�nite, �uTi R�ui � 0 8 i and the sequene nPki=1�uTi R�uiois non-dereasing. Combine with (4.29), it dedues that nPki=1�uTi R�uio onverges. A-ordingly, limk!1 �uTkR�uk = limk!1  kXi=1 �uTi R�ui � k�1Xi=1 �uTi R�ui!= limk!1 kXi=1 �uTi R�ui � limk!1 k�1Xi=1 �uTi R�ui= 0:It implies that �uk ! 0 as k !1. Thus, fukg onverges.



33Theorem 10. Under assumptions A1-A2 and onstraints C1-C3, the error ek of system(4.1) onverges.Proof. We have kG(�)k = G0 + mXi=1 
iGi� kG0k+ mXi=1 k
iGik� kG0k+ mXi=1 k
ik kGik� kG0k+ mXi=1 kGikHene, kG(�)k is bounded. Sine �uk ! 0 as k !1, it leads toG(�)�uk+1 ! 0 as k !1:Equivalently, (ek � ek+1)! 0 as k !1:This results in the onvergene of fekg.4.4 Numerial exampleConsider a linear system whose output isy(t) = y0(t) + �1(t)y1(t) + �2(t)y2(t) (4.30)where y0; y1; y2 are the orresponding outputs of the systems desribed byG0(s) = 115s2 + 8s+ 1G1(s) = 0:8e�s5s+ 1G2(s) = 0:5e�s2s+ 1where �1; �2 are the unertain parameters over the interval [�1; 1℄, and vary with time. Theonstraints of ontrol input for system (4.30) are spei�ed byul = �3;uh = 3; Æul = �5; Æuh = 5;�ul = �4;�uh = 4: (4.31)The target trajetory isr(t) = 8>><>>: 0; t 2 [0; 5℄ [ [36; 40℄0:1(t� 5); t 2 [6; 15℄1; t 2 [16; 25℄1� 0:1(t � 25); t 2 [26; 35℄



34The design parameters are hosen as follows: Q = 2I1; R = 0:1I2 where I1; I2 areidentity matries with appropriate dimension. For the stopping riteria, we hoose � = 0:01and iter max = 10. To illustrate the time responses of the ILC ontrol system, we hoosesampling time 1 seond and the number of samples N = 41. In our work, we use the softwarevx [38℄ to solve the LMI problem (4.25).The design results are shown in the Figures 4.1{4.5. Figures 4.1, 4.2, 4.3 show that theontrol input onverges and satis�es all onstraints (4.31). Figure 4.2 displays the onvergeneof Æk(t) and Figures 4.3 exhibits the onvergene of �k(t). Moreover, Figure 4.4 demonstratesthat the output of system (4.30) onverges to the desired referene trajetory. A monotonionvergene of the system error is illustrated in Figure 4.5.
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Figure 4.1: Control input of the robust ILC system with time-varying parametri unertain-ties.4.5 ConlusionThis hapter is devoted to reveal the design of robust ILC for linear systems with time-varying parametri unertainties whih inludes of four setions. Setion 1 presents the aÆneMarkov model of the system and the worst-ase performane analysis. Next, in Setion4.2, we obtain an ILC ontroller as the solution of a onvex optimization problem over LMIonstraints. Then, an LMI-based ILC algorithm is proposed. In Setion 4.3, we providethe proof of the onvergene of the ontrol input and the system error. Finally, Setion 4.4exhibits the simulation results of a generi example whih demonstrates the e�etiveness ofthe algorithm.
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Figure 4.2: The di�erene of ontrol input of the robust ILC system with time-varyingparametri unertainties w.r.t. time index.
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Figure 4.3: The di�erene of ontrol input of the robust ILC system with time-varyingparametri unertainties w.r.t. iteration index.
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Figure 4.4: Output response of the robust ILC system with time-varying parametri uner-tainties.
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CHAPTER VITERATION-VARYING PARAMETRIC UNCERTAINTIESWithin a broad range of ILC tehniques, we fous on the robustness of the systems ontrolledunder ILC framework. Among a large number of artiles on the robust ILC design, thesystems are subjeted to time-invariant unertainties or time-varying unertainties. Sinethe systems ontrolled by ILC algorithms work in both time domain and iteration domain,it is also requisite to ensure the robustness of ILC systems in the iteration domain. In thedesign proedure, a dynami model is typially obtained by the identi�ation whih is usuallyan approximation of the real system. When the system operates repetitively, the systemdynami may hange with iterations in whih some parameters vary. To the best of ourknowledge, the robust ILC designs with iteration-varying unertainties have been exploredby Ahn, Moore and Chen in a series of artiles [26{28℄ whih also appear in a researhmonograph [2℄. The plant is desribed by a linear model in a super-vetor framework withiteration-varying unertainty. Then, the Markov matrix is onverted into a form of boundedadditive model unertainty. As a result, the Markov matrix belongs to an interval set and allthe ILC updates are designed for the unertain interval set.In this hapter, we propose a new ILC algorithm for a lass of linear systems whosetransfer funtions are aÆne of parametri unertainties and are subjeted to iteration-varying[40℄. The system model and problem formulation are di�erent from that in the previousworks [26{28℄. Our approah is built in a super-vetor framework and the robust ILC designis formulated as a min-max problem using a quadrati performane riterion whih has beenutilized in [33,34,36℄. Finding the least upper bound of the maximization problem, the initialmin-max problem beomes a minimization problem whih is easier to solve. Next, we derivea dual problem of the minimization problem and reformulate it as a onvex optimizationover linear matrix inequalities (LMIs). Note that the parametri unertainty in our previouswork [36℄ is time-invariant whilst in this paper, the parametri unertainties are iteration-varying. Thus, the problem formulation and the algorithm derivation are di�erent.Now, we onsider linear systems in the presene of iteration-varying unertainties. Dueto assumptions A1-A2, the system model is given byG(�k) = G0 +G1�k;1 +G2�k;2 + � � � +Gm�k;m (5.1)where G0 is the nominal matrix, G1; : : : ; Gm are unertain dynami matries, and �k;i; i =1; : : : ;m are parametri unertainties.



38Hene, the error update model of the system (2.21) isek � ek+1 = yk+1 � yk= G(�k+1)uk+1 �G(�k)uk= G0�uk+1 + mXi=1 Gi(�k+1;iuk+1 � �k;iuk)Moreover, �k+1;iuk+1 � �k;iuk = �k+1;i(uk+1 � uk) + (�k+1;i � �k;i)uk= �k+1;i�uk+1 +��k+1;iukwhere ��k+1;i = �k+1;i � �k;i. Sine j�k;ij � 1 8 i = 1;m, then, j��k+1;ij � 2 8 i = 1;m.Therefore, ek � ek+1 = G0�uk+1 + mXi=1 Gi(�k+1;i�uk+1 +��k+1;iuk) (5.2)5.1 The worst-ase performane analysisLet us de�ne �k+1 = [�k+1;1; : : : ; �k+1;m;��k+1;1; : : : ;��k+1;m℄TeG = [G1�uk+1; : : : ; Gm�uk+1; G1uk; : : : ; Gmuk℄Replaing into (5.2), we get ek+1 = ek �G0�uk+1 � eG�k+1 (5.3)Substituting (5.3) into (2.33) results inJk+1 = (ek �G0�uk+1 � eG�k+1)TQ(ek �G0�uk+1 � eG�k+1) + �uTk+1R�uk+1= (ek �G0�uk+1)TQ(ek �G0�uk+1) + �uTk+1R�uk+1 � 2�Tk+1 eGTQ(ek �G0�uk+1)+�Tk+1 eGTQ eG�k+1= zTHzwhere z = ��k+11 �, H = �H1 H2HT2 H3�, H1 = eGTQ eG, H2 = � eGTQ(ek �G0�uk+1),H3 = (ek �G0�uk+1)TQ(ek �G0�uk+1) + �uTk+1R�uk+1.Hene, the maximization problem in (2.33) an be rewritten asmaxz2Z zTHz (5.4)where Z = �z = ��k+11 ��.



39If there exists a diagonal matrix T suh that T � H, thenzTHz � zTTz = mXi=1 tiz2i + tm+1 � 4m+1Xi=1 ti = 4 trae T (5.5)where ti0s; i = 1; 2; : : : ;m + 1 are elements on the diagonal of matrix T . Aordingly, theleast upper bound of (5.4) an be found by solving the following minimization problemmin trae T (5.6)s.t. T � HT is diagonal5.2 LMI-based ILC algorithmReplaing (5.6) into (2.32), and ombining two minimization problems, the iterative inputupdate �uk+1 an be alulated by solving the following minimization problem.min trae T (5.7)s.t. T � HT is diagonal�uk+1 2 Uk+1This is a minimization problem with variables T and �uk+1. To solve (5.7), we onsider itsdual problem. We �rst reformulate (5.7) as follows. Rewrite T as2m+1Xi=1 tiFi
where Fi = 266666640 � � � 0 � � � 0... . . . ... � � � 00 � � � 1 � � � 00 � � � ... � � � ...0 � � � 0 � � � 0

37777775, with 1 is loated at the ith position on the diagonal ofmatrix Fi.Then, (5.7) beomes min 1T t (5.8)s.t. H � 2m+1Xi=1 tiFi � 0��uk+1 � �where t = [t1; t2; : : : ; t2m+1℄T , 1 is the (2m+ 1)� 1 vetor whose elements are all 1.De�ne a LagrangianL(t;�uk+1;W; �) = 1T t+ tr  H � 2m+1Xi=1 tiFi!W!+ �T (��uk+1 � �) (5.9)



40where W 2 S2m+1+ , in whih, S2m+1+ is the set of symmetri semi-de�nite positive matrieswith dimension (2m+ 1)� (2m+ 1), � is a vetor.Next, to obtain the dual funtion, we �nd the minimum of the Lagrangian with respetto t and �uk+1. We haveinft;�uk+1 L(t;�uk+1;W; �) = inft (1T t� tr 2m+1Xi=1 tiFiW!� �T�)+ inf�uk+1 �tr (HW ) + �T��uk+1	= ��T�+ inft (2m+1Xi=1 ti(1� tr(FiW )))+ inf�uk+1 �tr (HW ) + �T��uk+1	= ��T�+ inf�uk+1 �tr (HW ) + �T��uk+1	 (5.10)Note that (5.10) is obtained when tr (FiW ) = 1 8 i = 1; 2m+ 1 , wii = 1 8 i = 1; 2m+ 1with wii0s; i = 1; 2; : : : ; 2m+ 1 are elements on the diagonal of matrix W .Otherwise,tr (HW ) = 2m+1Xi=1 2m+1Xj=1 hijwij= 2mXi=1 2mXj=1 hijwij + 2 2mXi=1 hi;2m+1wi;2m+1 + h2m+1;2m+1w2m+1;2m+1 (5.11)where hij ; wij ; i; j = 1; 2; : : : ;m+1 are elements of orresponding matries H;W . In addition,2mXi=1 2mXj=1 hijwij = mXi=1 mXj=1 hijwij + 2 2mXi=m+1 mXj=1 hijwij + 2mXi=m+1 2mXj=m+1hijwij= mXi=1 mXj=1�uTk+1GTi QGj�uk+1wij + 2 mXi=1 mXj=1 uTkGTi QGj�uk+1wi+m;j+ mXi=1 mXj=1 uTkGTi QGjukwi+m;j+m2mXi=1 hi;2m+1wi;2m+1 = � mXi=1 �uTk+1GTi Q(ek �G0�uk+1)wi;2m+1� mXi=1 uTkGTi Q(ek �G0�uk+1)wi+m;2m+1h2m+1;2m+1w2m+1;2m+1 = (ek �G0�uk+1)TQ(ek �G0�uk+1) + �uTk+1R�uk+1Therefore, tr (HW ) + �T��uk+1 � �T� = �uTk+1 bG�uk+1 + �T�uk+1 + � (5.12)



41wherebG = mXi=1 mXj=1GTi QGjwij + 2 mXi=1 GTi QG0wi;2m+1 +GT0QG0 +R (5.13)� = �T � + 2 mXi=1 mXj=1GTj QGiukwi+m;j + 2 mXi=1 GT0QGiukwi+m;2m+1�2 mXi=1 GTi Qekwi;2m+1 � 2GT0Qek (5.14)� = ��T�+ eTkQek + mXi=1 mXj=1 uTkGTi QGjukwi+m;j+m � 2 mXi=1 uTkGTi Qekwi+m;2m+1(5.15)Consequently, inf�uk+1 �tr (HW ) + �T��uk+1	 = �14�T bG�1� + � (5.16)with the optimal value of �uk+1 is �u�k+1 = �12 bG�1� (5.17)Thus, inft;�uk+1 L(t;�uk+1;W; �) = �14 ��4�+ �T bG�1�� (5.18)Aordingly, the dual problem of (5.7) ismax �14 ��4�+ �T bG�1�� (5.19)s.t. bG > 0W 2 S2m+1+wii = 1; � � 0whih is equivalent to the following optimization problemmin � (5.20)s.t. �4�+ �T bG�1� � �bG > 0W 2 S2m+1+wii = 1; � � 0Using Shur omplement [38℄, we an rewrite the dual problem (5.20) as the following LMIproblem. min � (5.21)s.t. � bG ��T �+ 4� � � 0W 2 S2m+1+wii = 1; � � 0



42The problem (5.21) an be solved using available onvex optimization solvers suh as vx [29℄.The stopping riteria for iterative solution proedure are as follows.kekk � � (5.22)k = iter max (5.23)where � is a tolerane hosen by the designer and iter max is the maximum number ofiterations.Finally, the iterative input design an be summarized in the following algorithm.Algorithm 3. An LMI algorithm for linear systems with iteration-varying parametri un-ertainties (ILC-IV)1. Set k := 0, uk := 0. Measure ek.2. Solve the LMI problem aording to (5.21).3. Calulate �uk+1 aording to (5.17).4. Apply uk+1 to the system and measure ek+1.5. If (5.22) or (5.23) is true, then, stop the iteration, else set k := k+1, return to step 2.Remark 5. The proposed robust ILC design may have onservatism sine an upper boundof the worst-ase performane is used in the maximization problem (5.4). Nevertheless, thealgorithm appears to work well as we will demonstrate in the numerial example.Remark 6. Weighting matries Q;R and the bounds in onstraint spei�ations C1-C3 anbe onsidered as tuning parameters for the proposed method sine their values a�et to thesolution of the LMI problem (5.21). Thus, in the implementation, the designer an vary thesevalues to hoose the �t ones.5.3 Convergene propertiesTheorem 11. Under assumptions A1-A2 and onstraints C1-C3, the ontrol input uk ofsystem (5.1) onverges.Proof. Let V (ek) = min�uk+12Uk+1max�2� Jk+1 (5.24)with Jk+1 is in (2.33). Then, V (ek) � 0 8 k sine Jk+1 � 0 8 k.We have, V (ek) � Jk+1j�uk+1=0 = eTkQek (5.25)Suppose that ��k is the optimizer of the maximization problem at the kth iteration. Hene,eTkQek � eTk (��k)Qek(��k) = V (ek�1)��uTkR�uk (5.26)



43Therefore, V (ek) � V (ek�1)��uTkR�uk (5.27)Inequality (5.27) leads to V (ek) + kXi=1 �uTi R�ui � V (e0) (5.28)Sine V (ek) � 0, we get kXi=1 �uTi R�ui � V (e0) <1 (5.29)Moreover, sine R is positive de�nite, �uTi R�ui � 0 8 i, the sequene nPki=1�uTi R�uiois non-dereasing. Combine with (5.29), it dedues that nPki=1�uTi R�uio onverges. A-ordingly, limk!1 �uTkR�uk = limk!1  kXi=1 �uTi R�ui � k�1Xi=1 �uTi R�ui!= limk!1 kXi=1 �uTi R�ui � limk!1 k�1Xi=1 �uTi R�ui= 0:It implies that �uk ! 0 as k !1. Thus, fukg onverges.Theorem 12. Under assumptions A1-A2 and onstraints C1-C3, the error ek of system(5.1) onverges.Proof. From (5.25) and (5.26), we getV (ek) � eTkQek � V (ek�1)��uTkR�uk (5.30)Moreover, �uTkR�uk � 0 sine R is positive de�nite. Hene,V (ek) � eTkQek � V (ek�1) (5.31)On the other hand, it an be dedued from (5.31) that the sequene fV (ek)g is non-inreasingand V (ek) � 0 8 k. Consequently, fV (ek)g onverges. It leads to the onvergene of feTkQekg.Thus, fekg onverges.5.4 Numerial exampleConsider the following system with transfer funtionG(s) = 115s2 + 8s+ 1 + �k 0:8e�s5s+ 1 (5.32)



44where �k is the unertain parameter: �k 2 [�1; 1℄ : The onstraints of ontrol input for system(5.32) are spei�ed byul = �4;uh = 4; Æul = �5; Æuh = 5;�ul = �6;�uh = 6: (5.33)Target trajetory is r(t) = 8>><>>: 0; t 2 [0; 5℄ [ [36; 40℄0:1(t� 5); t 2 [6; 15℄1; t 2 [16; 25℄1� 0:1(t � 25); t 2 [26; 35℄ (5.34)The design parameters are hosen as follows: Q = I1; R = 0:05I2 where I1; I2 are identitymatries with appropriate dimension. For the stopping riteria, we hoose � = 0:01 anditer max = 14. To illustrate the time responses of the ILC ontrol system, we hoosesampling time 1 seond and the number of samples N = 41. In our work, we use the softwarevx [29℄ to solve the LMI problem (5.21).The design results are shown in the Figures 5.1{5.5. Figures 5.1, 5.2, 5.3 show thatthe ontrol input satis�es all input onstraints (5.33). Moreover, in Figure 5.3, we plotthe iterative input update �uk+1 at the �rst iteration, 5th iteration, 10th iteration and14th iteration to demonstrate that �uk+1 deays. Therefore, the ontrol input of system(5.32) onverges. On the other hand, Figure 5.4 shows that the output of system (5.32)approahes to the desired referene trajetory and Figure 5.5 illustrates the onvergene ofthe system error. It an be seen from Figure 5.5 that the in�nity-norm of error onvergesbut not monotonially. It is due to the variation of the unertainty from one iteration toanother. Note that in Theorem 12, we only prove the onvergene of the system error, butthe monotoni onvergene of error needs to be further investigated.
5.5 Comparison of three proposed ILC algorithmsIn this setion, we aim to ompare the proposed ILC algorithms applied to linear systemssubjet to various types of parametri unertainty. In many pratial systems, sometimeswe do not exatly know the harateristi of the unertainty in the system. Hene, it is noteasy to determine that the unertainty is time-invariant, time-varying or iteration-varying.Aordingly, we an test all the proposed ILC algorithms with the system and selet the onewhih gives the best results. We will simulate three proposed ILC algorithms to the linearsystem (3.26) [33℄ when the unertainty is time-invariant, time-varying, and iteration-varying.Table 5.1 desribes the omparisons and orresponding responses.When the unertainty is time-invariant, Figures 5.6{5.7 show that the ILC-TI (Algo-rithm 1) onverges fastest and traks the referene input best while the ILC-IV (Algorithm 3)gives worst performane. The results are logial sine the ILC-TI is designed for linear sys-tems with time-invariant parametri unertainty. Figure 5.8{5.9 display the best traking



45

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

t

u k(t
)

 

 
1st iteration
5th iteration
10th iteration
14th iteration

Figure 5.1: Control input of the robust ILC system with iteration-varying parametri uner-tainty.
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Figure 5.2: The di�erene of ontrol input of the robust ILC system with iteration-varyingparametri unertainty w.r.t. time index.
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Figure 5.4: Output response of the robust ILC system with iteration-varying parametriunertainty.
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Figure 5.5: In�nity norm of error of the robust ILC system with iteration-varying parametriunertainty vs. the number of iteration.Table 5.1: Comparison of proposed ILC algorithms to linear systems with various types ofparametri unertainty.Type of parametriunertainty ILC-TI ILC-TV ILC-IVTime-invariant Figures 5.6{5.7Time-varying Figures 5.8{5.9Iteration-varying Figures 5.10{5.11of the ILC-TV (Algorithm 2) as the unertainty is time-varying, whereas the ILC-IV (Al-gorithm 3) exhibits poor performane. Finally, the omparison of ILC algorithms when theunertainty is iteration-varying is illustrated in Figure 5.10{5.11. The ILC-IV (Algorithm 3)appears to onverge slowest but gives smallest traking error whilst ILC-TI and ILC-TValgorithms onverge faster but trak the referene input worse.
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Figure 5.6: Output response of system with a time-invariant parametri unertainty usingthree ILCs
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Figure 5.8: Output response of system with a time-varying parametri unertainty usingthree ILCs
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Figure 5.10: Output response of system with a iteration-varying parametri unertainty usingthree ILCs
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515.6 ConlusionThe robust ILC design for linear systems with iteration-varying parametri unertaintiesis introdued in Chapter 5. First, the aÆne Markov model of the system is given andthe worst-ase performane analysis is presented to relax the initial min-max problem to aminimization one. Next, we investigate the dual problem of the minimization problem whihan be desribed as a onvex optimization problem over LMI onstraints. An LMI-based ILCalgorithm is provided afterward. Then, the onvergene of the ontrol input and the systemerror is proved. Consequently, the simulation results of a generi example are displayed toexhibit the e�etiveness of the proposed algorithm. At the end, we show a omparison ofthe three proposed ILC algorithms in Chapter 3, Chapter 4 and Chapter 5 when applied toa same linear system in the presene of a time-invariant, time-varying and iteration-varyingparametri unertainty.



CHAPTER VIAPPLICATION TO PHYSICAL MODELS6.1 Flexible linkFlexible links or exible robot arms have been inreasingly used in industry sine they haveseveral advantages over rigid links suh as lighter weight, less power onsumption, and fasterresponse. In addition, they are enountered in spaeraft where the weight onstraints resultin exible strutures. Flexible links are modeled by highly non-linear and omplex dynamis,and reeive muh attention in ontrol engineering. Moreover, they beome an experimentplatform for researh laboratories. In pratie, a linear model of a exible link is used in theontrol design. However, the linear model is only an approximation to the real system, whoseparameters are subjet to hange due to working onditions [41℄. Therefore, it is neessaryto develop robust ontrol design for industrial exible link.This session aims to develop a robust ILC algorithm to ontrol the deetion of a sin-gle exible link based on Quanser In. [42℄. With the assumption that there is a parametriunertainty in the exible link system, we build a model whih is an aÆne funtion of theunertainty. Then, we develop a robust ILC algorithm whih employs a quadrati perfor-mane riterion and formulates the design as a min-max optimization problem [33, 35, 36℄.An upper-bound of the maximization problem is utilized, then the Lagrange dual problemof the minimization problem is onsidered. This dual problem is reformulated as a onvexoptimization problem over Linear Matrix Inequalities (LMIs) whih an be eÆiently solved.

Figure 6.1: The single exible link system.Consider a single exible link system whih onsists of a exible beam and a servo DC



53Table 6.1: Parameters of a single exible link.Parameter Physial MeaningRm Motor armature resistaneKt Motor torque onstantKm Motor Bak-EMF onstantKg Total gear ratio�g Gearbox eÆieny�m Motor eÆienyBeq Equivalent visous damping oeÆientas seen at the loadM Mass of the exible linkL Length of the exible linkJeq Equivalent inertia as seen at the loadJarm = ML23 Moment of inertia of the exible link! Damped natural frequeny of exible linkmotor as in Figure 6.1. The motion for the exible beam an be preisely desribed as anin�nite-dimensional system. However, in many pratial ontrol designs, the exible link ismodeled as a �nite order state-spae equation (see [42℄ for details)� _x = Ax+Buy = Cx (6.1)where A = 2666640 0 1 00 0 0 10 !2JarmJeq ��m�gKtKmK2g+BeqRmJeqRm 00 �!2(Jarm+Jeq)Jeq �m�gKtKmK2g+BeqRmJeqRm 0
377775 ;B = 26664 00�m�gKtKgJeqRm��m�gKtKgJeqRm 37775 ; C = �0 1 0 0� :The state vetor of a exible link system is de�ned as x = �� d _� _d�T where � is theangular displaement of the servo motor and d is the deetion angle of exible link. Theontrol input is de�ned as u = Vm whih is the voltage supplied to the servo motor. Notethat Eq. (6.1) is a linear model with single input single output where the input is Vm andthe output is d.The parameters of the single exible link are provided in Table 6.1.



54We disretize (6.1) over the time interval [0; T ℄ and the number of samples is N + 1.Thus, the sampling time is T=N . Let k be the iteration index. Using super-vetor notation,the disretized model is desribed as follows [43℄yk = Guk (6.2)where yk = �yk(1)T yk(2)T : : : yk(N)T �T ;uk = �uk(0)T uk(1)T : : : uk(N � 1)T �T ;G = 26664 CB 0 0 0CAB CB 0 0... . . . . . . ...CAN�1B � � � CAB CB37775 :Next, we onsider the mass of the exible link as an unertain parameter of system(6.1). In partiular, M =M0(1 + q�) (6.3)where M0 is the nominal mass, � is a real unertainty, and q is a positive real number. Inthis work, we assume that � 2 � where � = f� : j�j � 1g. Then, q has a physial meaningto be the bound of unertainty. As the exible link model (6.1) is subjeted to parametriunertainty, the disretized model G beomes a funtion of �, i.e., G(�). Afterward, dependon the type of unertainty, we will apply the orresponding designed ILC algorithm to ontrolthe exible link.6.1.1 Time-invariant parametri unertaintyTo apply the designed ILC algorithm to this exible link system, we seek matries G0 andG1 so that, G(�) = G0 + �G1 (6.4)where G0 represents the nominal system and G1 is the unertain dynami matrix.Utilizing the proedure in the Setion 2.4.1, the nominal matrix G0 is determined as in (2.26)by setting the mass of the exible link at its nominal value. Then, the unertainty interval[�1; 1℄ is disretized and the impulse responses of (6.1) orresponding to the disretized valuesof � are alulated. Based on this set of impulse responses, we �nd out the bounds of themand then, obtain G1 as in (2.29).Now, let the system (6.1) be disretized by a sampling time 0:012 seonds, the number ofsamples is 101, i.e., N = 100. The parameters of the exible link are taken from Quanser [42℄.Figure 6.2 show the impulse response of the nominal system as well as the upper bound andthe lower bound of the impulse responses with n = 40.The exible link system is simulated using Algorithm 1 with the following simulationparameters. The mass of exible link is assumed to have �20% unertainty, thus q = 0:2.
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Figure 6.2: Impulse response of the nominal system and the bounds of impulse responses ofsystem with time-invariant unertainty.The weighting matries are Q = I1; R = 0:01I2 where I1; I2 are identity matries withappropriate dimensions. For the stopping riteria, we hoose � = 0:01 and iter max = 30.The desired referene trajetory isr(t) = 8>><>>: 0; t 2 [0; 15℄ [ [86; 100℄125 (t� 15); t 2 [16; 40℄1; t 2 [41; 60℄1� 125(t� 60); t 2 [61; 85℄The onstraints of ontrol inputs are spei�ed byul = �3;uh = 3; Æul = �4; Æuh = 4;�ul = �4;�uh = 4: (6.5)To verify the e�etiveness of the proposed robust ILC algorithm, the dynami model(6.4) is used in steps 2 and 3 of Algorithm 1, whereas the exible link in step 4 is modeledusing the Finite Element Method [44℄. In partiular, the exible beam is partitioned into 3elements and 4 nodes whih result in an 8th order model. Moreover, in the simulation, theunertain parameter � is randomly seleted from the unertainty interval and kept unhangedfor all iterations.In this thesis, we simulate the proposed ILC algorithms to physial models suh as aexible link in this setion and a distillation olumn in next setion using a omputer withthe following on�guration: CPU Core 2 Duo 2.2 GHz, RAM 2Gb, MATLAB 7.4.0 (R2007a).The simulation results are presented in Figures 6.3{6.7. Figures 6.3{6.5 show that the ontrol



56input satis�es all the onstraints C1{C3 spei�ed by (6.5). The onvergene of the ontrolinput is demonstrated in Figure 6.5 where the ontrol input update �uk+1 goes to zerothroughout exeutions. In addition, Figure 6.6 illustrates that the output of the exible linksystem traks the trapezoidal referene input. At the �rst iteration, the traking performaneis very bad when the system output is far di�erent from the target trajetory, nonetheless,the traking performane is improved through exeutions and is aeptable after 30 trials.The onvergene of the system error is illustrated in Figure 6.7.In addition, Figure 6.8 shows the omputational time to solve the LMI problem (3.19)of exible link with a time-invariant parametri unertainty for all iterations. We an see thatthe omputational time grows up as the number of iteration inreases. It an be explainedas follows. The more iterations are run, the better the traking performane is, hene, thesmaller the ontrol input update �uk+1 and the system error ek+1 are. It is onjetured thatthe solution of the LMI problem gets loser to the boundary of the onstraints. As a result,the omputational time is longer. It is noted that the sampling time is 0:012 seond while themaximum omputational time during 30 iterations is about 8:3 seonds, so, the LMI problem(3.19) should be solved o�-line.
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Figure 6.3: Control input of exible link system with time-invariant parametri unertainty.
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Figure 6.4: The di�erene of ontrol input of exible link system with time-invariant para-metri unertainty w.r.t. time index.
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Figure 6.5: The di�erene of ontrol input of exible link system with time-invariant para-metri unertainty w.r.t. iteration index.
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Figure 6.6: Output response of exible link system with time-invariant parametri uner-tainty.
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Figure 6.7: In�nity-norm of error of exible link system with time-invariant parametri un-ertainty.



59

5 10 15 20 25 30
4.5

5

5.5

6

6.5

7

7.5

8

8.5

k

LM
I−

so
lv

ed
 ti

m
e 

(s
) 

Figure 6.8: Computational time of exible link system with time-invariant parametri uner-tainty vs. the number of iterations.6.1.2 Time-varying parametri unertaintyIn this part, the sampling time is set to be 0:012 se. and the number of samples is 101. Theparameters of the exible link are taken from [42℄ and we onsider the mass of exible linkhas �20% unertainty, i.e., q = 0:2. Now, we further assume that the mass of exible linkan be varied with time by piking up or dropping some weight on it during eah iterationorresponding to the referene trajetory. The desired referene trajetory isr(t) = 8>><>>: 0; t 2 [0; 15℄ [ [86; 100℄125 (t� 15); t 2 [16; 40℄1; t 2 [41; 60℄1� 125(t� 60); t 2 [61; 85℄In eah iteration, the mass of exible link is hanged two times at the beginning of theiteration and at the sampling time 41. Hene, the unertainty � is time-varying respetivelywith the mass of exible link. Figure 6.9 illustrates the mass of exible link as a time-varyingparameter.Now, we still use the proedure in the Setion 2.4.1 to determine the nominal Makovmatrix G0 and the unertain Markov matrix G1. Sine the unertainty is time-varying, theMarkov matrix is di�erent from the ase of time-invariant unertainty, hene, the impulseresponses will be di�erent, too. Following is Figure 6.10 whih shows the impulse response of
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Figure 6.9: Mass of exible link as a time-varying parameter.the nominal system as well as the upper bound and the lower bound of the impulse responseswith n = 40 in eah hange of the unertainty.
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Figure 6.10: Impulse response of the nominal system and the bounds of impulse responses ofsystem with time-varying unertainty.



61The onstraints of ontrol inputs are spei�ed byul = �3;uh = 3; Æul = �4; Æuh = 4;�ul = �4;�uh = 4: (6.6)The design parameters are hosen as follows: Q = I1; R = 0:01I2 where I1; I2 are identitymatries with appropriate dimension. Applying the proposed robust ILC design to the exiblelink system, the 4th order model is used in steps 2 and 3 of the algorithm, whereas the exiblelink in step 4 is modeled using the Finite Element Method [44℄. In partiular, the exiblebeam is partitioned into 3 elements and 4 nodes whih result in an 8th order model. Inthe simulation, the parameter � is randomly seleted from the unertainty interval and ishanged with time as desribed above. For the stopping riteria, we hoose � = 0:01 anditer max = 30.The simulation results are presented in Figures 6.11{6.15. Figures 6.11{6.13 showthat the ontrol input onverges and satis�es all the onstraints C1{C3 spei�ed by (6.6).Figure 6.14 illustrates that the output of the exible link system traks the trapezoidalreferene input. Moreover, the system error in Figure 6.15 is utuated but tends to derease. It is the hange of the mass of exible link as a time-varying parameter that leads to thevariation of the system error. Figure 6.16 demonstrates the omputational time to solvethe LMI problem (4.25) of exible link with a time-varying parametri unertainty. Theomputational time inreases throughout iterations. The explanation for this phenomenon islike in the ase of time-invariant parametri unertainty.
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Figure 6.11: Control input of exible link system with time-varying parametri unertainty.
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Figure 6.12: The di�erene of ontrol input of exible link system with time-varying para-metri unertainty w.r.t. time index.
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Figure 6.13: The di�erene of ontrol input of exible link system with time-varying para-metri unertainty w.r.t. iteration index.
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Figure 6.14: Output response of exible link system with time-varying parametri unertainty.
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Figure 6.15: In�nity-norm of error of exible link system with time-varying parametri un-ertainty vs. the number of iterations.
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Figure 6.16: Computational time of exible link system with time-varying parametri uner-tainty vs. the number of iterations.6.1.3 Iteration-varying parametri unertaintyIn our experiment, the sampling time is 0:012 se. and the number of samples is 101. Theparameters of the exible link are taken from [42℄ and we assume the mass of exible linkhas �20% unertainty, i.e., q = 0:2. Following is Figure 6.17 whih demonstrates the massof exible link as an iteration-varying parameter.The desired referene trajetory isr(t) = 8>><>>: 0; t 2 [0; 15℄ [ [86; 100℄125 (t� 15); t 2 [16; 40℄1; t 2 [41; 60℄1� 125(t� 60); t 2 [61; 85℄The onstraints of ontrol inputs are spei�ed byul = �3;uh = 3; Æul = �4; Æuh = 4;�ul = �4;�uh = 4: (6.7)The design parameters are hosen as follows: Q = 0:9I1; R = 0:01I2 where I1; I2 are identitymatries with appropriate dimension. Applying the proposed robust ILC design to the exiblelink system, the 4th order model is used in steps 2 and 3 of the algorithm, whereas the exiblelink in step 4 is modeled using the Finite Element Method [44℄. In partiular, the exiblebeam is partitioned into 3 elements and 4 nodes whih result in an 8th order model. In thesimulation, the parameter � is randomly seleted from the unertainty interval and is hangedwith iterations. For the stopping riteria, we hoose � = 0:01 and iter max = 30.



65

5 10 15 20 25 30
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

k

M
as

s 
of

 fl
ex

ib
le

 li
nk

 

 

Nominal value
Iteration−varying value
Upper bound
Lower bound

Figure 6.17: Mass of exible link as an iteration-varying parameter.The simulation results are presented in Figures 6.18{6.22. Figures 6.18{6.20 illustratethat the ontrol input satis�es all the onstraints C1{C3 spei�ed by (6.7). In addition,the ontrol input update �uk+1 tends to deay as shown in Figures 6.20 whih shows theonvergene of the ontrol input. On the other hand, Figure 6.21 demonstrates that theoutput of the exible link system traks the trapezoidal referene input. The onvergeneof the system error is displayed in Figure 6.22. It seems that the onvergene of the systemerror in this ase is worse than in the ase when the mass of exible link is time-invariant,but better than in the ase when the mass of exible link is hanged as a time-varyingparameter. Moreover, Figure 6.23 displays the omputational time to solve the LMI problem(5.21) of exible link with an iteration-varying parametri unertainty. The omputationaltime inreases as more trials are exeuted. It an be explained as in the previous setions.6.2 Distillation olumnConsider a distillation olumn system whih has the following LV-on�guration�xDxB� = H(s) �LV � (6.8)where xD is the distillate produt omposition [mole fration℄,xB is the bottom produt omposition [mole fration℄,L is the reux ow [kmol/min℄,V is the boilup ow [kmol/min℄.
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Figure 6.18: Control input of exible link system with iteration-varying parametri uner-tainty.
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Figure 6.19: The di�erene of ontrol input of exible link system with iteration-varyingparametri unertainty w.r.t. time index.
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Figure 6.20: The di�erene of ontrol input of exible link system with iteration-varyingparametri unertainty w.r.t. iteration index.
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Figure 6.21: Output response of exible link system with iteration-varying parametri un-ertainty.
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Figure 6.22: In�nity-norm of error of exible link system with iteration-varying parametriunertainty vs. the number of iterations.
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Figure 6.23: Computational time of exible link system with iteration-varying parametriunertainty vs. the number of iterations.
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Figure 6.24: A 2-produt distillation olumn system.H(s) = "h11(s) h12(s)h21(s) h22(s)# (6.9)inwhih h11(s), h12(s), h21(s), h22(s) are �rst-order with time-delay systems,hij(s) = kije��ijsTijs+ 1 ; i; j = 1; 2:Suppose that Kp is the steady-state gain matrix of (6.8), then the Relative Gain Array(RGA) of this system is de�ned byijth element of RGA = (ijth element ofKp)(jith element ofK�1p ) (6.10)When studying MIMO systems, we have to onsider the interation between the inputs andoutputs of the system, otherwise, the ontrol performane will not be as expeted. The RGAmatrix is one of the riteria to evaluate these interations. The larger the elements of RGAmatrix are, the more interations in the system happen. Besides, if the values of elements ofRGA matrix are around 0:5, the interations in the system are muh signi�ant. In addition,the RGA matrix is useful for the deoupling of the ontrol inputs or system outputs to avoidthe interations.6.2.1 Time-invariant parametri unertaintyTo apply the designed ILC algorithm to this type of distillation olumn system, we assumethat the time onstant and time-delay onstant of eah blok transfer funtion h11(s), h12(s),



70h21(s), h22(s) are perturbed and these unertain parameters an be represented by a para-metri unertainty vetor � = [�1; �2; �3; �4; �5; �6; �7; �8℄T , i.e.,T11 = T 11(1 + q�1); T12 = T 12(1 + q�2); T21 = T 21(1 + q�3); T22 = T 22(1 + q�4)�11 = �11(1 + q�5); �12 = �12(1 + q�6); �21 = �21(1 + q�7); �22 = � 22(1 + q�8)where q is a positive real onstant whih has the meaning as the bound of unertainty,� 2 � = f� : k�k1 � 1g.The system (6.8) is disretized and reformulated in the super-vetor framework. Then, theMarkov matrix G of the system (6.8) is analysed to be an aÆne funtion of the unertainty�, G(�) = G0 + 8Xi=1 �iGi (6.11)where G0 represents the nominal system and Gi's; i = 1; 8 represent the unertain dynamimatries. Like in the previous example, eah matrie Gi; i = 1; 8 is found by (2.29) in whih�j 's; j 6= i; j = 1;m is kept at their nominal values whereas �i is varied in the unertaintyinterval to alulate the orresponding impulse responses and obtain the upper bound as wellas the lower bound of these impulse responses. Next, the aÆne model (6.11) is used in thestep 2 and 3 of the Algorithm 1 whereas the linearized model (6.8) is the validating model inthe step 4.In this part, the Luyben-Vinante model of distillation olumn [45℄ is utilized where theblok transfer funtions in (6.9) areh11(s) = �2:16e�s8s+ 1 ; h12(s) = 1:26e�0:3s9:5s+ 1 (6.12)h21(s) = �2:75e�1:8s9:5s+ 1 ; h22(s) = 4:28e�0:35s9:2s+ 1The steady-state gain matrix of Luyben-Vinante distillation olumn isKp = ��2:16 1:26�2:75 4:28�Hene, RGA of Luyben-Vinante distillation olumn an be alulated by (6.10)RGA = � 1:5995 �0:5995�0:5995 1:5995 �Look at the elements in the anti-diagonal of RGA matrix of Luyben-Vinante distillationolumn, we an see there are some interations in the systems.The distillation olumn is onsidered to work around the operating point in whihxD = 0:98; xB = 0:01. Let the sample time be 0:5 minute, the number of samples is 101. Weassume that the time onstant and the time-delay onstant in eah blok transfer funtion



71of G(s) has �15% unertainty, thus q = 0:15. The design parameters are hosen as follows:Q = I1; R = 0:01I2 where I1; I2 are identity matries with appropriate dimension.The desired referene trajetory isr(t) = 8<: (0; 0)T ; t 2 [0; 8℄(0:005; 0)T ; t 2 [9; 25℄(0:005; 0:002)T ; t 2 [26; 50℄The onstraints of ontrol inputs are spei�ed byul = �0:05;uh = 0:05; Æul = �3; Æuh = 3;�ul = �0:1;�uh = 0:1: (6.13)In the simulation, the parameter � is randomly seleted from the unertainty interval and keptunhanged for all iterations. For the stopping riteria, we hoose � = 10�5 and iter max = 10.The simulation results are presented in Figures 6.25{6.29. Figures 6.25{6.27 show thatthe ontrol input onverges and satis�es all the onstraints C1{C3 spei�ed by (6.13). Figure6.28 illustrates that the outputs of the distillation olumn system trak the step refereneinputs. We observe that there are abrupt hanges of the output responses in Figure 6.28.They are due to the interation between the inputs and outputs of the distillation olumnsystem as mentioned above. When the �rst output hanges to a new set point at t = 8, autuation ours in the seond output. It is interesting to note that this output utuationis dereased in the subsequent iterations. A similar phenomenon happens at t = 25 whenthe seond output hanges to a di�erent set point. Moreover, a monotoni onvergene ofthe system error is illustrated in Figure 6.29. On the other hand, Figure 6.30 shows theomputational time to solve the LMI problem (3.19) of the distillation olumn with time-invariant parametri unertainties. The omputational time inreases as more iterations areexeuted. Although the omputational time in this ase is large, it is aeptable sine thedistillation olumn has a slow dynami.6.2.2 Iteration-varying parametri unertaintyWe hoose the Luyben-Vinante model of distillation olumn (6.12) to illustrate the e�etive-ness of the Algorithm 3. The distillation olumn is onsidered to work around the operatingpoint in whih xD = 0:98; xB = 0:01. The time delays and time onstants of the four bloktransfer funtions are assumed to have �15% unertainty, thus q = 0:15. Let the sample timebe 0:5 minute, the number of samples is 101. Then, like in the previous part, the Markovmatrix G of the system (6.12) is analysed to be an aÆne funtion of the unertainty �k,G(�) = G0 + 8Xi=1 �k;iGi (6.14)where G0 represents the nominal system and Gi's; i = 1; 8 represent the unertain dynamimatries. The matries G0; Gi's; i = 1; 8 are the same with the ase of time-invariant para-metri unertainties.
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Figure 6.25: Control inputs of the distillation olumn system with time-invariant parametriunertainty.
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Figure 6.26: The di�erene of ontrol inputs of the distillation olumn system with time-invariant parametri unertainty w.r.t. time index.
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Figure 6.27: The di�erene of ontrol inputs of the distillation olumn system with time-invariant parametri unertainty w.r.t. iteration index.
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Figure 6.28: Output responses of the distillation olumn system with time-invariant para-metri unertainty.
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Figure 6.29: In�nity-norm of the error of the distillation olumn system with time-invariantparametri unertainty.
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Figure 6.30: Computational time of the distillation olumn system with time-invariant para-metri unertainty.



75The desired referene trajetory isr(t) = 8<: (0; 0)T ; t 2 [0; 8℄(0:005; 0)T ; t 2 [9; 25℄(0:005; 0:002)T ; t 2 [26; 50℄The onstraints of ontrol inputs are spei�ed byul = �0:05;uh = 0:05; Æul = �3; Æuh = 3;�ul = �0:1;�uh = 0:1: (6.15)The design parameters are hosen as follows: Q = 0:085I1; R = 0:012I2 where I1; I2 areidentity matries with appropriate dimension. In the simulation, the parameter � is randomlyseleted from the unertainty interval and varied eah iteration. For the stopping riteria, wehoose � = 10�5 and iter max = 10.The simulation results are presented in Figures 6.31{6.35. Figures 6.31{6.33 show thatthe ontrol inputs satisfy all the onstraints C1{C3 spei�ed by (6.15). In addition, theonvergene of the ontrol inputs is exhibited in Figure 6.33 where the ontrol input update�uk+1 omes to zero. On the other hand, Figure 6.34 illustrates that the outputs of thedistillation olumn system trak the step referene inputs but there are some abrupt hangesof the output responses. They are due to the interation between the inputs and outputs ofthe distillation olumn system. When the �rst output hanges to a new set point at t = 8,a utuation ours in the seond output. It is worth noting that this output utuationis diminished in the next iterations. A similar phenomenon happens at t = 25 when theseond output hanges to a di�erent set point. A monotoni onvergene of the system erroris demonstrated in Figure 6.35. Figure 6.36 shows the omputational time to solve the LMIproblem (5.21) of the distillation olumn with iteration-varying parametri unertainties. Theomputational time inreases as the number of iterations inreases.6.3 ConlusionChapter 6 prolaims the appliation of the proposed ILC algorithms to a exible link anda distillation olumn. The exible link is a SISO system whereas the distillation olumn inthis setion is a MIMO system. Setion 6.1 shows the simulation results of exible link inwhih, the mass of exible link is onsidered as the unertain parameter. Three ases ofparametri unertainty are onsidered, namely, time-invariant, time-varying and iteration-varying. In eah ase, we demonstrate how to experimentally analyse the impulse responsesto derive an aÆne Markov model of exible link using the proposed proedure, then, weapply the orresponding ILC algorithm to the exible link. The omputational time for eahase of unertainty is also investigated. On the other hand, in Setion 6.2, we illustrate theappliation of proposed ILC algorithms to a distillation olumn where the time onstants andtime delays of the given transfer funtions are onsidered to be time-invariant and iteration-varying unertainties. The analysis of the impulse responses are introdued. Consequently,
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Figure 6.35: In�nity-norm of the error of the distillation olumn system with iteration-varyingparametri unertainty.
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Figure 6.36: Computational time of the distillation olumn system with iteration-varyingparametri unertainty.



79the simulation results and the omputational time are displayed. The simulation results forboth exible link and distillation olumn reveal that the proposed ILC algorithm work quitewell.



CHAPTER VIICONCLUSIONS AND FUTURE WORKS7.1 ConlusionsThis thesis has proposed three new Iterative Learning Control algorithms for linear systems inthe presene of parametri unertainties. A uni�ed, systemati and appliable methodologyhas been introdued to design those robust algorithms. Then, the e�etiveness of the proposedILCs has been demonstrated through some generi examples as well as appliations to physialmodels. Next is the summary of the main points in eah hapter to highlight the ontentspresented in the thesis.Chapter 1 briey introdues ILC, its de�nition, its key idea and the omparison betweenILC with onventional feedbak ontrol. Next, the literature review is given to over anoverview of ILC as well as the state of the art of robust ILC design tehniques. Afterward,we present the sope of our thesis and our ontribution.In Chapter 2, the �rst three setions are devoted to the mathematial tools suh asonvex optimization, Lagrangian duality, linear matrix inequalities whih are used in thedevelopment of our algorithms. The remaining setion inludes a formulation of the robustILC design problem, the system desription and modeling, and the methodology to determinethe solution.Consequently, Chapter 3 presents the detail steps in the design of a robust ILC al-gorithm for linear systems with time-invariant parametri unertainties. An upper boundof the worst-ase performane is derived, then, the min-max problem is relaxed to a mini-mization problem. Employing Lagrangian duality, the dual problem of this minimization oneis onsidered whih then  an be reformulated as a onvex optimization problem with LMIonstraints utilizing Shur omplement. The onvergene of the ontrol input and the systemerror is proved. Finally, a generi example is provided to demonstrate the e�etiveness of theproposed algorithm.Chapter 4 and Chapter 5 propose other two robust ILC algorithms for linear systems inthe presene of time-varying and iteration-varying parametri unertainties relatively. Likein Chapter 3, the design proedures in these hapters are based on the general methodologypresented in Chapter 2. Due to the di�erene on the type of parametri unertainties, thedetails of the system desriptions as well as the solutions of the optimization problems are notthe same. However, the main steps in the designs are similar as desribed in the methodology.In addition, the onvergene of the ontrol inputs and the system errors is also proved in eahhapter. , we introdue one generi example in eah hapter to show the eÆieny of the



81designed algorithms.Chapter 6 presents the simulation results of some physial plants suh as exible linkand distillation olumn ontrolled by the proposed ILC algorithms. Given the linearizedmodels of the plants, we �rst assume that there are some parametri unertainties in thesemodels, then, we disretize the ontinuous models and analyse the impulse responses of thedisretized systems to obtain the Markov matries as aÆne funtions of the unertainties.Then, these aÆne Markov matries are inorporated in the robust ILC algorithms. Onthe other hand, the parametri unertainties are hanged to be time-invariant, time-varyingor iteration-varying to verify the orresponding ILC algorithms. The simulations exhibitaeptable results whih are reliable resoures for real implementation in the future.7.2 Future worksAs remarked in the designs of the three ILC algorithms, there are some onservatism orlimitations in our thesis. Therefore, they ould be the issues for the future improvements.First of all, the system errors are proved to onverge, but not monotonially. It isnotied that the monotoni onvergene is an advane to ensure the ILC algorithms onvergefaster and the system error deays [5℄, [34℄. Thus, the subsequent work should aim to derivea monotoni onvergene of the system error.Next, the design of robust ILC algorithms in this thesis is based on the assumption ofthe aÆne Markov matrix, hene, the design appliations might be limited. The future workshould fous on a larger lass of linear systems and perhaps nonlinear systems.In this thesis, we onsider the unertainty with bounded magnitude, but the rate ofhange of the unertainty is not employed. In numerous pratial systems, the bounds of rateof hange of unertainty are sometimes available [46℄, [47℄. Hene, in the future researh, thisinformation of unertainty should be inorporated in the ontroller design, so that the robustontroller an handle with the unertainty better.The proposed algorithms seem to work well with the input-output delay as demon-strated in the numerial examples, but in our problem formulation, the time delay has notbeen expliitly onsidered. Atually, the advantage of ILC lies in the utilization of thesystem information of previous iterations, so, ILC algorithm an handle the delay in thesystem [48℄, [49℄. Therefore, the future work should onsider the time delay in the systemsuh as input-delay and state-delay, and design the orresponding ILC.
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AppendixSoure Code of ILC algorithms Implemented in MATLABIn this appendix, we will provide some soure �les of the simulations presented in thethesis. The following table give the desription of the soure �les.File name DesriptionAÆneModel.m System modeling to obtain an aÆne Markov model ofunertaintyFigureDisplay.m Plot the system responses after running the simulationFlexibleLink TI.m Simulation of exible link with a time-invariant para-metri unertainty using ILC-TI Algorithm 1FlexibleLink TV.m Simulation of exible link with a time-varying para-metri unertainty using proposed ILC-TV Algorithm2FlexibleLink IV.m Simulation of exible link with an iteration-varyingparametri unertainty using proposed ILC-IV Algo-rithm 3Initialization.m Initializing the systemplantFEM.m System modeling to obtain a high order model of ex-ible link using Finite Element Method



87AÆneModel.m%==========================================================================%System modeling to obtain the affine Markov model of unertainty%Inputs:%Outputs: G0, G1: Matries of Affine Markov model%==========================================================================%--------------------------------------------------------------------------%Author | Nguyen Dinh Hoa%Date | 13/7/2009%Work | Control System Researh Laboratory, Chulalongkorn University%--------------------------------------------------------------------------N=101; %number of samplestheta_l=-.2; theta_u=.2;theta=(theta_u-theta_l)*rand+theta_l;h=.01;m=round((theta_u-theta_l)/h);%Flexible link parametersFlexibleLink_para;% State-spae modelA( 1, 1 ) = 0; A( 1, 2 ) = 0; A( 1, 3 ) = 1; A( 1, 4 ) = 0;A( 2, 1 ) = 0; A( 2, 2 ) = 0; A( 2, 3 ) = 0; A( 2, 4 ) = 1;A( 3, 1 ) = 0; A( 3, 2 ) = K_Stiff/Jeq; A( 3, 3 ) = -(Eff_M*Eff_G*Kt*Kg^2*Km+Beq*Rm)/Jeq/Rm; A( 3, 4 ) = 0;A( 4, 1 ) = 0; A( 4, 2 ) = -K_Stiff*(Jeq+Jarm)/Jeq/Jarm; A( 4, 3 ) = (Eff_M*Eff_G*Kt*Kg^2*Km+Beq*Rm)/Jeq/Rm; A( 4, 4 ) = 0;B( 1, 1 ) = 0; B( 2, 1 ) = 0; B( 3, 1 ) = Eff_M*Eff_G*Kt*Kg/Jeq/Rm; B( 4, 1 ) = -Eff_M*Eff_G*Kt*Kg/Jeq/Rm;C( 1, 1 ) = 1; C( 1, 2 ) = 0; C( 1, 3 ) = 0; C( 1, 4 ) = 0;D = 0;Jarm = Link_M_0 * Link_L ^ 2 / 3;K_Stiff = W^2 * Jarm;A( 3, 2 ) = K_Stiff/Jeq; A( 4, 2 ) = -K_Stiff*(Jeq+Jarm)/Jeq/Jarm;sys=2d(ss(A,B,C,D),.012);G0=zeros(N);for i=1:Nfor k=1:iG0(i,k)=sys.*sys.a^(i-k)*sys.b;endendt=0:N;y0=impulse(sys,.012*N);stairs(t,y0,'r','LineWidth',2);hold on;y=zeros(m+1,N+1);for j=0:mtheta=theta_l+j*h;Link_M = Link_M_0*(1+theta);Jarm = Link_M * Link_L ^ 2 / 3;K_Stiff = W^2 * Jarm;A( 3, 2 ) = K_Stiff/Jeq;A( 4, 2 ) = -K_Stiff*(Jeq+Jarm)/Jeq/Jarm;sysm=2d(ss(A,B,C,D),.012);



88y(j+1,:)=impulse(sysm,.012*N);endupper=max(y); lower=min(y);stairs(t,upper,'--k','LineWidth',2); hold on;stairs(t,lower,'-.k','LineWidth',2); hold off;h=legend('Nominal system','Upper bound','Lower bound');xlabel('Samples','FontSize',12);ylabel('Impulse responses','FontSize',12);upper_bound=max(y(:,2:N+1));lower_bound=min(y(:,2:N+1));G_l=zeros(N); G_u=zeros(N);G_u(:,1)=upper_bound(1:N)';G_l(:,1)=lower_bound(1:N)';for i=2:NG_u(:,i)=[zeros(i-1,1);upper_bound(1:N-i+1)'℄;G_l(:,i)=[zeros(i-1,1);lower_bound(1:N-i+1)'℄;endG1=(G_u-G_l)/2;save G0.mat G0save G1.mat G1%**************************************************************************%End of program%**************************************************************************
FigureDisplay.m%=========================================================================================%Plot the results after running the simulation%Inputs: indis: Control input in all iterations% outdis: System output in all iterations% TimeIndex: Control input rate w.r.t. time index in all iterations% IterIndex: Control input rate w.r.t. iteration index in all iterations% e: Infinity norm of system error in all iterations% ee: Q-norm of system error of all iterations% theta: The unertainty in all iterations%Outputs: Figures of Control input, System output, Control input rate w.r.t. time index% Control input rate w.r.t. iteration index, Infinity norm of system error,% Q-norm of system error in all iterations.%==========================================================================================%--------------------------------------------------------------------------%Author | Nguyen Dinh Hoa%Date | 25/2/2009%Work | Control System Researh Laboratory, Chulalongkorn University%--------------------------------------------------------------------------



89%Plot the output at iteration 1, 2, 5 & lastfigure%subplot(2,1,1);plot((0:N-1)',outdis(:,1),(0:N-1)',outdis(:,2),'--',(0:N-1)',outdis(:,6),':',(0:N-1)',outdis(:,16),'-.',(0:N-1)',outdis(:,31),'+-',(0:N-1)',ref,'k');h=legend('Initial state','1st iteration','5th iteration','15th iteration','30th iteration','Referene');set(h,'Box','off');xlabel('t','FontSize',16);ylabel('y_k(t)','FontSize',16);%Plot the input at iteration 1, 2, 5 & lastfigure%subplot(2,1,2);plot((0:N-1)',indis(:,1),(0:N-1)',indis(:,2),'--',(0:N-1)',indis(:,6),':',(0:N-1)',indis(:,16),'-.',(0:N-1)',indis(:,31),'+-');h=legend('Initial state','1st iteration','5th iteration','15th iteration','30th iteration');set(h,'Box','off');xlabel('t','FontSize',16);ylabel('u_k(t)','FontSize',16);%Plot the onstraint of the input w.r.t. time indexfigureplot((0:N-1)',TimeIndex(:,1),(0:N-1)',TimeIndex(:,2),'--',(0:N-1)',TimeIndex(:,6),':',(0:N-1)',TimeIndex(:,16),'-.',(0:N-1)',TimeIndex(:,31),'+-');h=legend('Initial state','1st iteration','5th iteration','15th iteration','30th iteration');set(h,'Box','off');xlabel('t','FontSize',16);ylabel('\delta u_k(t)','FontSize',16);%Plot the onstraint of the input w.r.t. iteration indexfigureplot((0:N-1)',IterIndex(:,1),(0:N-1)',IterIndex(:,2),'--',(0:N-1)',IterIndex(:,6),':',(0:N-1)',IterIndex(:,16),'-.',(0:N-1)',IterIndex(:,31),'+-');h=legend('Initial state','1st iteration','5th iteration','15th iteration','30th iteration');set(h,'Box','off');xlabel('t','FontSize',16);ylabel('\Delta u_k(t)','FontSize',16);%Plot the Infinity-norm of error versus iterative proessfiguresemilogy(0:k,e(1:k+1));xlabel('k','FontSize',16);ylabel('|| e_k ||_{\infty}','FontSize',16);%Plot the Q-norm of error versus iterative proessfiguresemilogy(0:k,ee(1:k+1));xlabel('k','FontSize',16);ylabel('|| e_k ||_{Q}','FontSize',16);%**************************************************************************%End of program%**************************************************************************



90FlexibleLink TI.m%===================================================================================%Design Robust ILC algorithm for Flexible Link robot with time-invariant unertainty%Inputs: plantFEM.m Higher model of flexible link using FEM% G0, G1: Matries of Affine Markov model%Outputs: indis: Control input in all iterations% outdis: System output in all iterations% TimeIndex: Control input rate w.r.t. time index in all iterations% IterIndex: Control input rate w.r.t. iteration index in all iterations% e: Infinity norm of system error in all iterations% ee: Q-norm of system error of all iterations% theta: The unertainty in all iterations%===================================================================================%--------------------------------------------------------------------------%Author | Nguyen Dinh Hoa%Date | 25/2/2009%Work | Control System Researh Laboratory, Chulalongkorn University%--------------------------------------------------------------------------lear;lload G0.matload G1.mattheta1=-.2; theta2=.2;G1=.2*G1;theta=(theta2-theta1)*rand+theta1;% Length of the LinkLink_L = 0.0254 * 15;% Mass of the LinkLink_M = (1+theta)*0.065/.8;%Pertubed model of system using FEM method[A,B,C,D℄=plantFEM(3,Link_L,Link_M);sys=2d(ss(A,B,C,D),.012);G=zeros(N);for i=1:Nfor k=1:iG(i,k)=sys.*sys.a^(i-k)*sys.b;endend%**************************************************************************%Initialize the system%**************************************************************************Initialization;%**************************************************************************%Iterative proess%**************************************************************************iter_max=30; %Maximum number of iterationtime=zeros(iter_num,1); %Computational timefor k=1:iter_max



91%Current iteration%------------------------------------------------------------------%Step 1: solve SDP problemsl=[-max(u_low-u,de_u_low);min(u_high-u,de_u_high);-du_low+J*u;du_high-J*u℄;tivx_begin sdpvariables rho z12variable ld(4*N)minimize (rho)[(G0'*Q*G1+G1'*Q*G0)*z12+G1'*Q*G1+G0'*Q*G0+R,F'*ld-2*(G1'*Q*error*z12+G0'*Q*error);(F'*ld-2*(G1'*Q*error*z12+G0'*Q*error))',-4*ld'*l+rho℄ >= 0;[1 z12;z12 1℄ >= 0;ld >= 0;vx_endtodelta_u=-1/2*inv((G0'*Q*G1+G1'*Q*G0)*z12+G1'*Q*G1+G0'*Q*G0+R)*(F'*ld-2*(G1'*Q*error*z12+G0'*Q*error));%Calulate the derivative of the input w.r.t iteration indexIterIndex(:,k+1)=delta_u;%------------------------------------------------------------------%Next iterationu=delta_u+u;indis(:,k+1)=u;y=G*u;y=[0;y(1:N-1)℄;outdis(:,k+1)=y;error=ref-y;e(k+1)=norm(error,inf);ee(k+1)=sqrt(error'*Q*error);%Calulate the derivative of the input w.r.t time indexTimeIndex(1,k+1)=u(1);for i=2:NTimeIndex(i,k+1)=u(i)-u(i-1);endif norm(error,inf) <= epsilonbreak;endend%**************************************************************************%Save the results%**************************************************************************save FL_input.mat indissave FL_output.mat outdissave FL_TimeConstraint.mat TimeIndexsave FL_IterConstraint.mat IterIndexsave FL_H_Error.mat esave FL_Q_Error.mat eesavefile= 'FL_unertainty.mat';save(savefile, 'theta');savefile='omputational_time.mat';save(savefile,'time');%**************************************************************************%Display the results%**************************************************************************



92disp('Number of iteration is:');disp(k);FigureDisplay%**************************************************************************%End of program%**************************************************************************



93FlexibleLink TV.m%======================================================================================%Design Robust ILC algorithm for Flexible Link robot with time-varying unertainty%Inputs: plantFEM.m Higher model of flexible link using FEM% G0, G1: Matries of Affine Markov model%Outputs: indis: Control input in all iterations% outdis: System output in all iterations% TimeIndex: Control input rate w.r.t. time index in all iterations% IterIndex: Control input rate w.r.t. iteration index in all iterations% e: Infinity norm of system error in all iterations% ee: Q-norm of system error of all iterations% theta: The unertainty in all iterations%======================================================================================%--------------------------------------------------------------------------%Author | Nguyen Dinh Hoa%Date | 25/2/2009%Work | Control System Researh Laboratory, Chulalongkorn University%--------------------------------------------------------------------------lear;l;load G0.matload G1.mattheta_l=-.2; theta_u=.2; % size of unertaintyG1=.2*G1;% Length of the LinkLink_L = 0.0254 * 15;% Nominal mass of the linkLink_M_0 = 0.065/.8;% The first unertain mass of the Linktheta1=(theta_u-theta_l)*rand+theta_l;Link_M_1 = (1+theta1)*Link_M_0;% The seond unertain mass of the Linktheta2=(theta_u-theta_l)*rand+theta_l;Link_M_2 = (1+theta2)*Link_M_0;%Time-varying model of flexible link using FEM method[A1,B1,C1,D1℄=plantFEM(3,Link_L,Link_M_1);sys1=2d(ss(A1,B1,C1,D1),.012);[A2,B2,C2,D2℄=plantFEM(3,Link_L,Link_M_2);sys2=2d(ss(A2,B2,C2,D2),.012);yy=zeros(N,1);for i=0:40yy(i+1)=sys1.*sys1.a^i*sys1.b;endfor i=1:60yy(i+41)=sys2.*sys2.a^i*sys1.a^40*sys2.b;endG=zeros(N);for i=1:Nfor k=1:i



94G(i,k)=yy(i-k+1);endendtt1=zeros(50,1); tt1(1)=theta1;tt2=zeros(50,1); tt2(1)=theta2;%**************************************************************************%Initialize the system%**************************************************************************Initialization;A=2*G1'*Q*G1+2*G0'*Q*G0+R;%**************************************************************************%Iterative proess%**************************************************************************iter_max=30; %Maximum number of iterationtime=zeros(iter_num,1); %Computational timefor k=1:iter_max%Current iteration%------------------------------------------------------------------%Step 1: solve SDP problemsb=-4*G0'*Q*error;l=[-max(u_low-u,de_u_low);min(u_high-u,de_u_high);-du_low+J*u;du_high-J*u℄;tivx_begin sdpvariable gmvariable ld(4*N)minimize (gm)[A,b+F'*ld;(b+F'*ld)',-4*ld'*l+gm℄ >= 0;ld >= 0;vx_endtime(k)=to;%Step 2: alulate the value of delta_u(k+1)delta_u=-1/2*inv(A)*(b+F'*ld);%Calulate the derivative of the input w.r.t iteration indexIterIndex(:,k+1)=delta_u;%------------------------------------------------------------------%Next iterationtheta_next1=(theta_u-theta_l)*rand+theta_l;while (theta_next1-theta1 > 0.04)||(theta_next1-theta1 < -0.04)theta_next1=(theta_u-theta_l)*rand+theta_l;endtheta_next2=(theta_u-theta_l)*rand+theta_l;while (theta_next2-theta2 > 0.04)||(theta_next2-theta2 < -0.04)theta_next2=(theta_u-theta_l)*rand+theta_l;end% Length of the LinkLink_L = 0.0254 * 15;% Mass 1 of the LinkLink_M_1 = (1+theta_next1)*0.065/.8;% Mass 2 of the LinkLink_M_2 = (1+theta_next2)*0.065/.8;



95%Pertubed model of system using FEM method[A1,B1,C1,D1℄=plantFEM(3,Link_L,Link_M_1);sys1=2d(ss(A1,B1,C1,D1),.012);[A2,B2,C2,D2℄=plantFEM(3,Link_L,Link_M_2);sys2=2d(ss(A2,B2,C2,D2),.012);for i=0:40yy(i+1)=sys1.*sys1.a^i*sys1.b;endfor i=1:60yy(i+41)=sys2.*sys2.a^i*sys1.a^40*sys2.b;endG=zeros(N);for i=1:Nfor l=1:iG(i,l)=yy(i-l+1);endendu=delta_u+u;indis(:,k+1)=u;y=G*u;y=[0;y(1:N-1)℄;outdis(:,k+1)=y;error=ref-y;e(k+1)=norm(error,inf);ee(k+1)=sqrt(error'*Q*error);theta1=theta_next1;tt1(k+1)=theta1;theta2=theta_next2;tt2(k+1)=theta2;%Calulate the derivative of the input w.r.t time indexTimeIndex(1,k+1)=u(1);for i=2:NTimeIndex(i,k+1)=u(i)-u(i-1);endif norm(error,inf) <= epsilonbreak;endend%**************************************************************************%Save the results%**************************************************************************save FL_input1.mat indissave FL_output1.mat outdissave FL_TimeConstraint1.mat TimeIndexsave FL_IterConstraint1.mat IterIndexsave FL_H_Error1.mat esave FL_Q_Error1.mat eesavefile= 'FL_unertainty11.mat';save(savefile, 'tt1');savefile= 'FL_unertainty12.mat';save(savefile, 'tt2');



96savefile='omputational_time.mat';save(savefile,'time');%**************************************************************************%Display the results%**************************************************************************disp('Number of iteration is:'); disp(k);FigureDisplay%**************************************************************************%End of program%**************************************************************************



97FlexibleLink IV.m%======================================================================================%Design Robust ILC algorithm for Flexible Link robot with iteration-varying unertainty%Inputs: plantFEM.m Higher model of flexible link using FEM% G0, G1: Matries of Affine Markov model%Outputs: indis: Control input in all iterations% outdis: System output in all iterations% TimeIndex: Control input rate w.r.t. time index in all iterations% IterIndex: Control input rate w.r.t. iteration index in all iterations% e: Infinity norm of system error in all iterations% ee: Q-norm of system error of all iterations% theta: The unertainty in all iterations%============================================================================%--------------------------------------------------------------------------%Author | Nguyen Dinh Hoa%Date | 25/2/2009%Work | Control System Researh Laboratory, Chulalongkorn University%--------------------------------------------------------------------------lear;lload G0.matload G1.mattheta1=-.2; theta2=.2;G1=.2*G1;theta=(theta2-theta1)*rand+theta1;tt=zeros(50,1); tt(1)=theta;% Length of the LinkLink_L = 0.0254 * 15;% Mass of the LinkLink_M = (1+theta)*0.065/.8;%Pertubed model of system using FEM method[A,B,C,D℄=plantFEM(3,Link_L,Link_M);sys=2d(ss(A,B,C,D),.012);G=zeros(N);for i=1:Nfor k=1:iG(i,k)=sys.*sys.a^(i-k)*sys.b;endend%**************************************************************************%Initialize the system%**************************************************************************Initialization;%**************************************************************************%Iterative proess%**************************************************************************iter_max=30; %Maximum number of iterationtime=zeros(iter_num,1); %Computational time



98for k=1:iter_max%Current iteration%------------------------------------------------------------------%Step 1: solve SDP problemsl=[-max(u_low-u,de_u_low);min(u_high-u,de_u_high);-du_low+J*u;du_high-J*u℄;tivx_begin sdpvariables rho z12 z13 z23variable ld(4*N)minimize (rho)[(G1'*Q*G0+G0'*Q*G1)*z13+G1'*Q*G1+G0'*Q*G0+R,F'*ld-2*G1'*Q*error*z13-2*G0'*Q*error...+2*G1'*Q*G1*u*z12+2*G0'*Q*G1*u*z23;(F'*ld-2*G1'*Q*error*z13-2*G0'*Q*error+2*G1'*Q*G1*u*z12+2*G0'*Q*G1*u*z23)',...-4*ld'*l-8*u'*G1'*Q*error*z23+rho℄ >= 0;[1 z12 z13;z12 1 z23;z13 z23 1℄ >= 0;ld >= 0;vx_endtime(k)=to;%Step 2: alulate the value of delta_u(k+1)delta_u=-1/2*inv((G1'*Q*G0+G0'*Q*G1)*z13+G1'*Q*G1+G0'*Q*G0+R)*...(F'*ld-2*G1'*Q*error*z13-2*G0'*Q*error+2*G1'*Q*G1*u*z12+2*G0'*Q*G1*u*z23);%Calulate the derivative of the input w.r.t iteration indexIterIndex(:,k+1)=delta_u;%------------------------------------------------------------------%Next iterationtheta_next=(theta2-theta1)*rand+theta1;while (theta_next-theta > 0.04)||(theta_next-theta < -0.04)theta_next=(theta2-theta1)*rand+theta1;end% Length of the LinkLink_L = 0.0254 * 15;% Mass of the LinkLink_M = (1+theta_next)*0.065/.8;%Pertubed model of system using FEM method[A,B,C,D℄=plantFEM(3,Link_L,Link_M);sys=2d(ss(A,B,C,D),.012);G=zeros(N);for i=1:Nfor l=1:iG(i,l)=sys.*sys.a^(i-l)*sys.b;endendu=delta_u+u;indis(:,k+1)=u;y=G*u;y=[0;y(1:N-1)℄;outdis(:,k+1)=y;error=ref-y;e(k+1)=norm(error,inf);



99ee(k+1)=sqrt(error'*Q*error);theta=theta_next;tt(k+1)=theta;%Calulate the derivative of the input w.r.t time indexTimeIndex(1,k+1)=u(1);for i=2:NTimeIndex(i,k+1)=u(i)-u(i-1);endif norm(error,inf) <= epsilonbreak;endend%**************************************************************************%Save the results%**************************************************************************save FL_IV_input.mat indissave FL_IV_output.mat outdissave FL_IV_TimeConstraint.mat TimeIndexsave FL_IV_IterConstraint.mat IterIndexsave FL_IV_H_Error.mat esave FL_IV_Q_Error.mat eesavefile= 'FL_IV_unertainty.mat';save(savefile, 'tt');savefile='omputational_time.mat';save(savefile,'time');%**************************************************************************%Display the results%**************************************************************************disp('Number of iteration is:');disp(k);FigureDisplay%**************************************************************************%End of program%**************************************************************************



100FlexibleLink Para.m%==========================================================================%File ontains the physial parameters of a flexible link%Inputs:%Outputs: parameters of flexible link%==========================================================================%--------------------------------------------------------------------------%Author | Nguyen Dinh Hoa%Date | 22/9/2009%Work | Control System Researh Laboratory, Chulalongkorn University%--------------------------------------------------------------------------% Armature Resistane (Ohm)Rm = 2.6;% Motor Torque Constant (N.m/A)Kt = .00767;% Motor Bak-EMF Constant (V.s/rd)Km = .00767;% Internal Gear Ratio (of the Planetary Gearbox)Kgi = 14;% Gearbox EffiienyEff_G =0.9;% Motor EletroMehanial EffiienyEff_M =0.69;% J24: 24-tooth Gear Inertia (on the Motor Shaft)m24 = .005; % mass (kg)r24 = 0.5 / 2 * 0.0254; % radius (m)J24 = m24 * r24^2 / 2;% J72: 72-tooth Gear Inertia (on the Potentiometer Shaft)m72 = .030; % mass (kg)r72 = 1.5 / 2 * 0.0254; % radius (m)J72 = m72 * r72^2 / 2;% J120: 120-tooth Gear Inertia (on the Load Shaft)m120 = .083; % mass (kg)r120 = 2.5 / 2 * 0.0254; % radius (m)J120 = m120 * r120^2 / 2;% Rotor Inertia (kg.m^2)Jm = 3.9e-7;% High Gear Configuration: (1x) 24-tooth gear, (2x) 72-tooth gear, (1x) 120-tooth gearKge = 5;Kg = Kgi * Kge;Jeq = J24 + 2 * J72 + J120 + Kg^2 * Jm * Eff_G;% Equivalent Visous Damping Coeffiient as seen at the Load (N.m.s/rd)Beq = 4e-3;% Length of the Link is 15 inhesLink_L = 0.0254 * 15;% Unertain weight of the LinkLink_M = (1+theta)*0.065/.8;% Nominal weight of the LinkLink_M_0 = 0.065/.8;% Calulte the Moment of Inertia of a Link (Assumed Rigid)Jarm = Link_M * Link_L ^ 2 / 3;% Natural Frequeny was experimentally determined to be 3 HzW = 2 * pi * 3;% Estimate the Stiffness of the simplified Link ModelK_Stiff = W^2 * Jarm;



101Initialization.mN=101; %number of samplesref=zeros(N,1); %Target trajetoryfor k=17:41ref(k)=1/25*(k-16);endfor k=42:60ref(k)=1;endfor k=61:85ref(k)=1-1/25*(k-60);endu=zeros(N,1); %Zero initial inputy=G*u; %Initial outputy=[0;y(1:N-1)℄;error=ref-y;u_low=-3*ones(N,1); u_high=3*ones(N,1); %Constrains of the input magnitudedu_low=-4*ones(N,1); du_high=4*ones(N,1); %Constrains of the input ratede_u_low=-4*ones(N,1); de_u_high=4*ones(N,1); %Constrains of the input hanges between iterationsQ=.9*eye(N); R=.01*eye(N);J=eye(N);for k=2:NJ(k,k-1)=-1;endF=[-eye(N);eye(N);-J;J℄;indis=zeros(N,1000);indis(:,1)=u;outdis=zeros(N,1000);outdis(:,1)=y;IterIndex=zeros(N,1000);TimeIndex=zeros(N,1000);e=zeros(1000,1);ee=zeros(1000,1);e(1)=norm(error,inf);ee(1)=sqrt(error'*Q*error);epsilon=1e-2; %Tolerane%**************************************************************************%End of program%**************************************************************************



102plantFEM.m%==========================================================================% Perturbed plant transfer funtion using finite element model% [A,B,C,D℄=plantFEM(N,M_tip_po,M_tip);% M_tip_po is the M_tip position (not neessary to be equal to the length% of the beam), M_tip is the weight of the Flexible Link% Example:% [A,B,C,D℄=plantFEM(1,0.45,0.05);%==========================================================================%--------------------------------------------------------------------------%Author | Nguyen Dinh Hoa%Date | 25/2/2009%Work | Control System Researh Laboratory, Chulalongkorn University%Version | Modified version of previous plantFEM.m%--------------------------------------------------------------------------funtion [A,B,C,D℄=plantFEM(n,M_tip_po,M_tip)%--------------------Physial Parameters--------------------------FlexibleLink_para;%---------------------------Finite Element Method-------------------------li = Link_L/n; %length of element%Stiffness matrix of one elementKi = E*I/li^3* [12 6*li -12 6*li; 6*li 4*li^2 -6*li 2*li^2; -12 -6*li 12 -6*li; 6*li 2*li^2 -6*li 4*li^2℄;%Mass matrix of one elementMi = Link_M_0/(n*420)* [156 22*li 54 -13*li; 22*li 4*li^2 13*li -3*li^2; 54 13*li 156 -22*li;-13*li -3*li^2 -22*li 4*li^2℄;Mhat = zeros(2*n+2, 2*n+2);Khat = zeros(2*n+2, 2*n+2);for i = 1:nMhat(2*i-1:2*i+2, 2*i-1:2*i+2) = Mhat(2*i-1:2*i+2, 2*i-1:2*i+2) + Mi;Khat(2*i-1:2*i+2, 2*i-1:2*i+2) = Khat(2*i-1:2*i+2, 2*i-1:2*i+2) + Ki;endep=eil(M_tip_po*n/Link_L);xp=M_tip_po-(ep-1)*Link_L/n;%The displaement of the elementsA1=1-3*xp^2/li^2+2*xp^3/li^3;A2=li*(xp/li-2*xp^2/li^2+xp^3/li^3);A3=3*xp^2/li^2-2*xp^3/li^3;A4=li*(-xp^2/li^2+xp^3/li^3);AA=[A1 A2 A3 A4℄;Mhat(2*ep-1:2*ep+2, 2*ep-1:2*ep+2)=Mhat(2*ep-1:2*ep+2, 2*ep-1:2*ep+2)+M_tip*AA'*AA;Maa = Mhat(3:2*n+2, 3:2*n+2);Kaa = Khat(3:2*n+2, 3:2*n+2);M11 = Maa(1:2:2*n-1, 1:2:2*n-1);M12 = Maa(1:2:2*n-1, 2:2:2*n);



103M21 = Maa(2:2:2*n, 1:2:2*n-1);M22 = Maa(2:2:2*n, 2:2:2*n);K11 = Kaa(1:2:2*n-1, 1:2:2*n-1);K12 = Kaa(1:2:2*n-1, 2:2:2*n);K21 = Kaa(2:2:2*n, 1:2:2*n-1);K22 = Kaa(2:2:2*n, 2:2:2*n);M = M11 - K21'*inv(K22)*M21 - M12*inv(K22)*K21 + K21'*inv(K22)*M22*inv(K22)*K21;K = K11 - K12*inv(K22)*K21;Q = [eye(n,n);-inv(K22)*K21℄;lhat = li:li:Link_L; lhat=lhat';Ie = Ih+lhat'*M*lhat;M1 = M*lhat;temp1 = (1/Ie)*M1'*inv(M-M1*M1'/Ie)*K;temp2 = -inv(M-M1*M1'/Ie)*K;temp = [temp1; temp2℄;%SISO modelAt = [zeros(n+1,n+1) eye(n+1,n+1); zeros(n+1,1) temp zeros(n+1,n+1)℄;Bt = [zeros(n+1,1); (1/Ie^2)*M1'*inv(M-M1*M1'/Ie)*M1+1/Ie; -(1/Ie)*inv(M-M1*M1'/Ie)*M1℄;B=zeros(size(Bt,1),1);A=At;for I=1:size(Bt,1),B(I,1)=Bt(I,1)*Eff_M*Eff_G*Kt*Kg/Jeq/Rm;A(I,n+2)=At(I,n+2)-Bt(I,1)*(Eff_M*Eff_G*Kt*Kg^2*Km+Beq*Rm)/Jeq/Rm;endC = zeros(1,2*n+2);C(1,2*ep-1:2*ep+2)=AA;C=C(1,3:2*n+2);C1=C(1,1:2:2*n-1);C2=C(1,2:2:2*n);C=[C1 C2℄;C=C*Q;C=[1 C/M_tip_po zeros(1,n+1)℄;D=0;return%**************************************************************************%End of program%**************************************************************************
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