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CHAPTER 1

INTRODUCTION

1.1 TIterative learning control

In many industrial applications nowadays klby irol command is executed and terminated
after a finite time period, and then is rej , / diover. Since conventional control de-
signs cannot always give the desi erformance, rol synthesis has been developed
for this kind of repetitively working ¢ .hi@w area in the control theory
called Iterative Learning Contro nese | tists are the first ones who studied

it when they considered ro ers about learning control

were published in Japanese, il 1984, Arimoto et al. pre-
their English paper [1]. Aft : i ely gained a big consideration from re-

searchers, and has been a very acti ares ] ecause there are many systems

not only robotics systems operat, Qﬁ:} ontrolled using ILC algorithms,

such as rotary systems, chemi i 3 Yo cs. In addition, ILC is proved

to be a methodology that can a ct 4 control, thus, it is a very effective

control methodology for periodically working s especially when it is combined with
gy for p y WOTKIDE 5 pecially

Rest -~ - Painting - - Rest

Figure 1.1: An example of a system working repetitively

In the literature, numerous of definitions of ILC have been given [2], [3], however, the

common point of these definitions which is also the key idea of ILC is that the information



of previous executions such as the control input and the error between the desired trajectory
and the system output are utilized to make the system performance improved throughout

next iterations. The structure of an ILC system is illustrated in Figure 1.2.

up(t) k(1)

Some advantages of IEC con . a simple struct and the ability to track a

reference input without haviag am e Act e ILC controllers work on a
fixed, finite time interval and deive -_s‘ \ desu‘ed trajectory for all time
samples as the iteration increaSes while co }'ﬁ" : . ers try to converge to the desired
trajectory as time goes to infinity. Figure 78 2 co ‘ nal output feedback controller.
}"ﬂ \
.p : }u.,,ﬁ

ui(t) = flex(t2 'gg‘"w,[: w0
"" \

\‘ T (t)

ﬂ‘
Controlkl

m e M
Lookm‘qarwg’ﬂe&@ﬁcgygé %} % }%s&] g die 'Er]ce between an

ILC system and an output feed ntroller regulates the system output

for all samples in each iteration by employing the system errors and the control inputs at all
samples of previous iterations whereas the conventional output feedback controller only uses
the system error at one sample to modify the system output for the consecutive sample in the
time interval. In addition, when there are parametric uncertainties or repeated disturbances,
conventional controllers cannot always achieve a desired performance whereas ILC can obtain
perfect tracking. Thus, ILC has great advantages over conventional controllers when dealing

with repetitive operations.



1.2 Literature Review

We recommend the survey articles by Bristow et al. [4] and Ahn et al. [5] for the thorough
overview of ILC terminologies and definitions, ILC problems and solving techniques as well
as the up-to-date development of ILC from the starting milestone. Among a wide range
of ILC research areas, optimal ILC [6], [7-10] and robustness of ILC algorithms are the
main issues. Such a well-known optimal ILC method namely norm-optimal ILC proposed
by Amann ef al. in [8] that minimizes a quadratic cost function consisting of N samples

ahead current sample. This leads to a ge 1
input. Moreover, there are more an Iﬂor :

art in the update formula for control
based methods to design ILC rules,
1thm [11-13]. On the other hand,

robust ILC is also a well—estw. Mmer_@f uncertainties, disturbances,
noises have been studied in the lit ; 12 “\Whms have been proposed to
\1 - .

for instance, gradient-based, Ne , geneli

rule out the undesired effects
view point of this thesis, we ertainties in linear systems.

In addition, we categorize the types: time-invariant, time-varying

Some techniques in robust contro the%suc - -synthesis [14], Hy, approach [15-17],
feedback-based approach [18-20] T ap design ILC algorithms for linear sys-

tems with time-invariant uncertainties. ,;NJSVe«rthﬁ%se robust ILC problems are formu-

lated in continuous-time a,pd frequency domaln and t_hg‘(#‘i

the time domain is infini in practice,

work on a finite time intervaﬁnd the algorit

use the assumption that
) led by an ILC algorithm
entﬂin discrete-time domain.

1.2.2 Time-varyi ﬁ ﬁan’feﬁc uncertainties

gEJn’g MEJ :nimﬂ ’]hf‘l ﬁen developed for non-

linear time- varymg sy ems, for instance [20-22] wherea&only some othﬁJILC designs have

IR ) M N AR T A 041
used the error predicti d"to"co with unknown
but bounded disturbances. Thereto, Tan et. al [24] have proposed an ILC strategy for LTV

systems with state disturbances and measurement noise at the output. The ILC algorithms

Otherwise, with tim

in [23] and [24] are applicable to systems perturbed by disturbances, but parametric uncer-
tainties have not been considered in the dynamic system. In [25], Hladowski et al. have
developed an ILC law for linear systems with time-varying uncertainties by solving a gen-
eralized eigenvalue problem (GEVP). Their approach applies the linear repetitive process
stability theory to design iterative input updates and the control law is specified by a linear

combination of the state change and the output error. Moreover, an upper bound of the



time-varying uncertainties can be determined by the solution of the GEVP.

1.2.3 Iteration-varying parametric uncertainties

While numerous articles on the robust ILC design study systems containing time-invariant
uncertainties and several others investigate the systems with time-varying uncertainties, a
few papers examine the systems in the presence of iteration-varying uncertainties. To the
best of our knowledge, the robust ILC designs with iteration-varying uncertainties have been

explored by Ahn, Moore and Chen in a s of articles [26—28] which also appear in a

research monograph [2]. They formul els with iteration-varying uncertainty

in a super-vector framework, the atrix of the plant into a form of

, m( matrix belongs to an interval

ain interval plants.

bounded additive model uncer
set and all the ILC updates

1.3 Scope of Thesis

1. Studying Iterative Learni

2. Designing efficient and ap st-Iteta ng Control algorithms for linear

1. A review of robust Iterative Learning Control for both researchers and engineers who

have some or eﬁiﬂ ‘@W ﬁ]lﬂnglw TﬁT i ﬁ-%lcontrol algorithms.

2. A unified and sgutemailc approach to design robus earning Control algo-
rithms for a certain class of uncertaiff linear systemfi@sin th(?gresenc&df various types of

oy O I E LY 3L B B .

certaintiés using convex optimization and linear matrix inequalities.

3. Application of developed robust ILC algorithms to some physical models in robotics,

industrial processes such as flexible link, distillation column.



1.5 Conclusion

In Chapter 1, we present a brief overview of ILC and the difference between ILC and the
conventional control methods. Then, we give a literature review of robust iterative learning
control for linear systems with different types of uncertainties. Lastly, the scope of this thesis

is introduced and our contributions are listed.

AUEINENINYINS
RN TUUMING AT



CHAPTER II

MATHEMATICS PRELIMINARY

This chapter presents the basic definitions and properties of the mathematic tools used in

this thesis. Section 2.1 introduces the most basic terminologies and their properties in convex

ented in Section 2.2. Finally, Section

) The results presented is taken
._d

optimization problems. The Lagrangia
2.3 provides a brief review of li
from [29].

2.1 Convex optimizatio

Definition 1. (Affine set) - NN,
A set C € R" is affine if forgln wreen o ©0Cand on, ..., o € R such that
o) + -+ ap =1, the poi ) to C. Moreover, the point

a1xy + -+ apxy is called an

Definition 2. (Convez set) K

A set C € R" is convez if for an Perh L d o € R such that 0 < o < 1, we
. \

have ax; + (1 — a)xzs € C.

Like in the case of affine s apTp-with 0 < aq,..., 0 < 1,
| o

o + -+ + ap = 1 is referéd -as-a-convex combination ol z o Then, the convex hull of

LY
the set C is the set of all cohye m
Definition 3. (Convez function)
A function f : R" — zs c f aed) ‘ rall x,y € dom f, 0 <
a <1, we have ‘ ﬂiw \

a:E+ (1—-a)y <af (2.1)

o A HARTRHIT IR B e

strictly convexg

Theorem 1. (First-order condition)
Suppose that f : R" — R is diffentiable, then f is convez if and only if dom [ is convex and

fly) > f@) + Vi) (y — =) (2.2)
holds for oll z,y € dom f.

In addition, we have the following theorem to verify whether a function is convex or

not.



Theorem 2. (Second-order condition)
Suppose that f : R™ — R is twice diffentiable, then f is convex if and only if dom f is

convex and its Hessian matriz is positive semidefinite, i.e,
V2f(z) > 0 (2.3)
for all x € dom f.

After considering the definitions of convex sets, convex functions, we now come up with

convex optimization problems. An optimi oblem is denoted by the following form.

(2.4)
where z € R is the optimi
fo(z) is the cost fu
fi(x) <0 are the inequalif ; and fi(z) are the inequality constraint func-
tions, ‘ \ _
gi(x) = 0 are the equ inés andig; : equality constraint functions.
The set of points for whic ol ve and all straint functions are defined,
(2.5)

is called the domain of the opt € D is feasible if it satisfies
all the constraints f;(z) v: ‘ 2 and the set of all feasible
points is called feasible set on co imization problem (2.4) is
Ets at least one feasible point anﬁnfeasible otherwise.

The optimal value of (2.4) issdefined as

U NNT
AR Ei ne e

Now, we A consider a special class of (2.4), namely, convex optimization problems in

said to be feasible if there e

which, the cost function fy(x) must be convex, the inequality constraint functions f;(z), i =
1,...,m must be convex, and the equality constraint functions g;(x), i = 1,...,p must be
affine, i.e, g;(z) = aZTx —b;, i =1,...,p. Therefore, the convex optimization problems have

the following standard form.

st. fi(z) <0,i=1,...,m (2.7)



The advantage of convex optimization problem is that if z* is a local minimizer of the function
fo, then it is also the global minimizer of fy. Since the inequality and equality constraint
functions are convex, the set of inequality constraints and the set of equality constraints are
also convex, hence, the feasible set of convex optimization problem (2.7) is convex. That
means, in a convex optimization problem, we minimize a convex function over a convex set,
and therefore, according to Theorem 1, if we can find a minimizer in the feasible set, it will

be the global solution of (2.7). Moreover, in comparision with other nonlinear optimization

In the next parts, the involved techniq

problems, the convex optimization problems r; fuch easier to solve with efficient algorithms.

/)/econvex optimization problems will be

Z.

presented [29].

ﬁi’
2.2 Lagrangian duality / 1
Consider the optimization p/
and (2.4) need not to be con 1

some constraints, so, in genera

take find a way to elimina
solve. Lagrangian duality is s
the convexity of the dual proble
usually, the dual problem can

We define a Lagrangian L : ( , __ PR ¢/ ciated with (2.4) as follows.

&

T
—_;:j}“::'f‘ % A

L,ﬁ(a:’ A, V) o faré"‘)l‘ﬁ . ’

(2.8)

where \;’s are Lagrange mulbipli y constraints f;(z) <0, i =
1,....,m,

v;'s are Lagrange multipliers associated with the equality constraints g;(z) =0, ¢ =

o AUYINENINENNT
The vectors A = [Al,qd. ,)\mﬂ v=1[Vi,-.,p T are called the dual variables or Lagrange

multiplier vectors of the optimization prolﬁem (2.4). &= /s
o A WA ST A I N YA Y
L(z,\,v) over'’s € R" with A\ € R™, v € RP.

zeD

m p
W\, v) = inf Lz, ),v) = inf (fo(m) + ; Xifi + ; I/Z-gi) (2.9)

Since the dual function is the pointwise infimum of a family of affine functions of (A, v), it is
always concave whether the optimization problem (2.4) is convex or not.
The dual function give us a lower bound of the optimal value y* of (2.4), i.e., for any
A > 0 and any v, we have,
h(A,v) <4~ (2.10)



Therefore, to find the best lower bound or even exact value of v*, we need to come up with

the following optimization problem,

max  h(\, v) (2.11)
st. A>0

This problem is called the Lagrange dual problem of the optimization problem (2.4). Note
that, g(\,v) is concave and the constraint A > 0 is convex, so, the dual problem (2.12) is
always convex. This is a very important propert of Lagranglan duality as mentioned before.

Let &* be the optimal value of then the following inequality always

holds.
(2.12)

The property (2.12) is called we :
duality gap correspondingly. Jonce. Lagrangian duality is applied to an opti-
mization problem, we expect t :
problem and the optimal v -p oble ; e.1 the stro g duality holds or v* = £*.

Nevertheless, the strong duali ' " \ , imization problem, hence, under

what conditions the strong du le question. There are some
constraints qualifications to %?1} bions for strong duality, but we will use one
simple condition, named Slater’ 1 +The S : ; ion states that the there exists

Theorem 3. (Slater’s th

Consider the optimization p ' 2:12). Then, the strong duality

holds whenever the Slater’s condition

In the next part, we provide,the optimalitygondition for the primal problem and the

dual problem throuﬂhuﬂsa(%'gcﬁ @’w “ﬁﬂoﬁ ‘j

Theorem 4. (KKT %ndztwns} Suppose hat x* and X*,v* are przmal and dual optimal

g W“lamﬁfﬂ 1 ) (1Y)

)=0,i=1,.
AZZO,izl,...,m (2.13)
A fi( *)=0 i=1,.
V folz +Z,\*sz +ZVVgZ ) = 0.

=1

Moreover, when the optimization problem (2.4) is convex, the KKT conditions are also

sufficient.
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2.3 Linear matrix inequalities

An LMI has the form [29-32]

m
F(z)=Fy+ Y z;F;>0 (2.14)
i=1
where z € R™ is the variable and the symmetric matrices Fy, Fi,..., F,, € R"™™ are given.

In fact, the variable in the LMI (2.14) can be a matrix instead of a vector since many control

problems lead to functions of matrices.

Theorem 5. (Non-strict Schur co

Let @ and R be symmetric matrice

Q S
ST R

e fo gﬁments are equivalent.

>0,

e R>0, Q— SR'ST >0,

Theorem 6. (Strict Schur
Let the matriz F(zx) in LMI

(2.15)
where Q(z) = Q(z)”, R(z) : _ -'. S{x) depends affinely on x. Then, (2.14) holds if
and only if e i

(2.16)

In addition, (2.14) holds if @j only i,
) >0,28() ) Q) 'S (2.17)

Since F(a) i ﬂfuﬂﬂ %I EJ N3 maﬁmlﬂe‘iy that (2.14) deines

convex set. Therefore an optimization ;‘roblem if the cost function is Uvex and the con-

i the oo o ekih B pANY IR (114
using the tools ed abo roblem now is
much easier to solve.

2.4 Robust ILC for linear systems with parametric uncertainties

2.4.1 System description and modeling
Consider an uncertain discrete-time linear system described by the following state-space

model

{m(t+1) = Ax(t) + Bu(t), (2.18)

y(t) = Cu(t)
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where z € R", u € RY, y € R? are state vector, control input, and output of system (2.18),
A, B, C are system matrices with appropriate dimensions,
t € [0, N] is the time sample, N is the number of samples.

When the control task is repeated over and over, the system now works not only on

time domain but also on iteration domain. Consequently, the system model (2.18) becomes

{ :L‘k(t + 1) = A:Ek(t) + B’U,k(t),
yk(t) = C:Ek(t)
where k is the iteration index. \ 1

Given a reference input r(¢), o ““-’Q’*“ obietiive: Eo design the control input u(t) so

" some iterations with a specified

(2.19)

that the system output yi(t) tra Lic reference 1
error. The designed ILC algorithm should d iscfd tﬂ he parametric uncertainties in
the system, and guarantee the expeeted&ys erforn; Among many control strategies,
lifting technique is an effective of' / 4 béen wi tilized to design ILC algorithm
[2], [12], [13], [6], [33]. All thé'sanablgtitues are taken nt in a vector makes it the
strong point of this techniquegsing - tem works finite time interval and the
designed ILC algorithm should drive the system output to the ta get trajectory at all sample

times. Thus, in the following p

in a super-vector framework and desi ﬂic;ﬁgJ; Isorithm bases on this formulation.
Define Jl-f** -
r (2.20)
]

where 7y, u,x) are the cortesy it o ofthe system output, control
input and state vecto C ' e time -_Tmerval [0, N], in the kth
iteration.

The system (2.19) ﬂ uwﬂ%ﬁ ﬂl’?Wﬁﬂ?‘ ﬁrﬁvork as follows.

Vi = Guy (2.21)

we s QAN TN AN ANYA Y

Let us denote Ai(t) as the impulse responses of the system (2.19), namely,
h(t) =CA~'B, t=1,2,...,N. (2.22)

Without loss of generality, assume that the relative degree of system (2.19) equals to 1. Then,

G can be described as follows.

G=1| . _ o (2.23)
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Suppose that in the system (2.19), there are parametric uncertainties which can be
denoted by 641,60s,...,60,,, or simply denoted by a vector uncertainty #. These parametric
uncertainties can be in any system matrices A, B, or C, so, we will use the notation Ay, By, Cy
to describe their effect to the system matrices. Define a sequence of the impulse responses in

the presence of uncertainties as follows.
h(t,0) = CoAL ' By, t =1,2,...,N (2.24)

As a result, the Markov matrix G is a fu

i these uncertainties. Therefore, from now
on, we use the notation G(#) in stead @ ,

In our approach, we are intere 1sfy1ng the following conditions.

Al. 6 € © where O is a set of bou ncertainties. Without loss of generality,

A2. The Markov matrix \ c ion of 6.
Let e be the error be “.\ e input r defined as e(t) =

r(t) — y(¢). Thus, we have

where

Note that the reference i 1nps invariant with respect to 1tera&ns so the iteration index k
is dropped out from the super-¥eetor r. Hence, the.error update model of the system (2.21)

ﬂﬂﬁ’l’ﬂﬂ'ﬂ}ﬂﬂﬂﬂ‘ﬁ

€r11 = € Aug g (2.25)

N mmmmwwm O i

Since the elements of the Markov matrix are the impulse responses of the discrete-time
system (2.19) at different samples, we can experimentally analyse these impulse responses
and model them as an affine function of the uncertainties. Hence, the Markov matrix will
be an affine function of the uncertainties. Let G is the nominal Markov matrix of the
system (2.19), G1,Go,...,Gy, are the uncertainties of Markov matrix corresponding to the
parametric uncertainties 01, 6s,...,0,,. We propose the following procedure to determine the

matrices Gy, G1,...,Gp.
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Step 1. Determine the nominal impulse responses h(t,0).

Set @ = 0 and calculate a sequence of impulse responses

h(t,0) = CoAy ' By, t =1,2,...,N.

Step 2. Determine the nominal Markov matrix Gj.

" SO (2.26)
&. h(10)

~1,1] into ©; = {—1,—

'!‘ v Vv
\ \ mber of discretized points. Let

\ r we calculate the impulse

1 9) '\\\ N (2.27)
\‘ N

G is computed as follows.

Step 3. Determine the uncertau&(

Foreachi =1,.
d,—1 —|—2d,...,1} Wher
0; € ©; whereas 0; =

responses h(t,6) for al

‘r' (2.28)
I i
Now, the uncertainties of 1mpul" {pOn

omputed as follows.

Step 4. Determine the uncer .1--1- o LG

For each 7 = 1,...,m, {; can be expressed in terms of i t,i) as follows.

@u Wnpwaneang | ..
o ARSI AN R

In real applications, there are some restrictions on the control inputs which can be described

by the following constraints.
C1l. Bounded magnitude: u; < ugyy < uy.
C2. Bounded rate w.r.t. time index: du; < dugy; < duy,.

C3. Bounded rate w.r.t. iteration index: Au; < Augiq < Auy, Ay <0, Auy, > 0.



I o0 --- 0 0
ug+1(0) -1 I -+ 0 0
up+1(1) — ug41(0) . :
where dJug 1 = - . - =Jugy; with J=|0 —-I . : 0.
gt (N = 1) — g (N — 2
AV = 1)~ ur (N - 2) P
Rewrite the constraints C1-C3 as
MAug 1 < ¢ (2.30)
-1 —Aul
where IT = I P = Auy I u;, Aw}, Auy, = min {up — ug, Auy}.
—Jl’ —5111+Jllk \ /J ks AU h = h k> AUp
J
Note that (2.30) is an affine inequality \ - nmr design procedure, normally,
a linearized model of a non-linear d aile system is ut and the system is considered to
work around an operating point. ‘bh ] \ straints o e control input ug,q and its

change with time duy; sho m work in a linearized region

w\ control input’s change with

A

0
quadratic performance criterion

iterations Aug1 guarantee throughout executions. It is

very important that the sudde ure the safety in the system.

W1 (2.31)

where (@), R are symmetric, positive defiliite F . hen, the design of control input is

formulated as a min-max probl
-

- )

ED i . m (2.32)

where U1 is a convex set def'qie&by (2.30).

o i o4 AR ) TN 11T

Teon = AU (R+GO)TQG) dugyy - 261 QG(0)Auy 4 ef Qe

s o1 i bl GEAE bl URAINYAR B o e

without e Qek, namely,

Ty = Aufyy (R+G(0)"QG(0)) Augry — 2ef QG(0) Augyy (2.33)

2.4.3 Methodology

In this thesis, we employ a unified approach as described in the flowchart of Figure 2.1 to
design robust ILC algorithms for uncertain linear systems. The initial min-max problem
(2.32) is hard to solve directly. First of all, we find an upper bound of the maximization

problem, then combine the problem of finding the least-upper bound of the maximization
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Original problem Dual problem
non-convex convex

Convex optimization
over LMls

Min—max problem

Find least-upper bound of
maximization problem

rive dual problem

Minimi

to desig .pbi(st", % oorithms for uncertain linear systems.

Figure 2.1: The methodolog
problem and the initial minimi esult, the min-max problem (2.32)
becomes a minimization problem. | finiis problem is not a convex optimization,
therefore, its dual problem is corx 1dé'i‘q_‘§(§f__~1;hét€'_ 4. Using Schur complement [29], the dual
problem is reformulated as a convex

. . OO o =+ AN . .
whose solution is obta,lnedL ilizing available convex oy ongolvers. Applying Lagrange

ol PR

duality, the iterative inpuli dpdate-is-achies ved-as minimizing th {’ grangian. Hence, at each
ji‘ e sed of the dual problem. This makes
|

ynamic structure, not a fixed ‘one as usually seen in many

iteration, the control input

our ILC controller having

AUEINENINYINg
e VSRl 1 21

and main properties utilized in the thesis. Next, the system description are given. We

articles.

2.5 Conclusion

consider discrete-time linear systems with parametric uncertainties controlled by an ILC
controller. Then, the system is reformulated in a super-vector framework which incorporates
the system information at all samples in the time interval. Afterward, a procedure is proposed
to experimentally analyse the impulse responses of the system in the presence of parametric
uncertainties to obtain an affine Markov model of the system. Consequently, the robust ILC
design problem is formulated as a min-max optimization problem. And finally, we propose a

methodology to derive the ILC controller as a sub-optimal solution of the min-max problem.



CHAPTER III

TIME-INVARIANT PARAMETRIC UNCERTAINTIES

Robustness is one of the critical issues in control systems including ILC systems. Conse-
s for ILC systems. Some techniques in ro-
[16], feedback-based approach [18—-20]

were applied to design ILC algorith stems. Nevertheless, they usually
formulate the robust TLC demg&k contlnuous time domain or fre-

quency domain. In addition, t

quently, it is requisite to develop robust algo it

bust control such as p-synthesis [14],

me domain is infinite, whilst,
in practice, the systems contro ‘ ! k on a finite time interval and

This chapter aims to ystems with time-invariant
parametric uncertainties in a . lgorithm is built in a super-
vector framework and the robust desi o I as a min-max problem using
: n has been considered in a

have considered a robust ILC

o
and s
they have not presented an explicit IL&@ icently, we have proposed an approach
to the robust ILC design for linear systddgsfw?fh_,— ime-invariant parametric uncertainty [35].

However, the approach i a single uncertainty and

at each iteration, two co optimization solved. In this paper, we
generalize the results in [35] ¢ be ic ystems with multiple uncertainties
and reduce the number of optlmlzatlon problems in the design algorithm. An explicit formula
for iterative input up % optimization problem
is solved. To solve tﬁﬂlﬂgmﬁﬂs ﬁrﬂjﬂﬁ bound of the worst-

case performance, thgf‘l consider the dua]‘problem Wthh can be transfo med into convex

e RS R A0 A0 Q 4 —

ties:
G(0) = Go + G101 + Gaby + -+ + Gy (3.1)

where G is the nominal matrix, G, ..., G, are dynamic matrices, and 0;, s = 1,...,m are

parametric uncertainties.
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3.1 The worst-case performance analysis

Using the system model (3.1), we get

m m
G(0) QGO) = (GOT +> G%) Q| Go+> G0
i=1 j=1
= Z Z GTQaG,0:0; + Z (GTQGy +GTQG;) 0; + GTQGy  (3.2)
Moreover,
el QG (3.3)
\\ ‘:,\:‘b.‘ QGoAugq
Substituting (3.2) and (3.3)
(3.4)
where
P = (Pij); j=1,m with Pjj = A
q= () i=tm with ¢ =Aul, (TS50 11— e QGiAuyy,
iz ¢ .‘ '
r = Aul,, (GFQGo + R) Ay, —26F QG Aty
Rewrite the maximi v-"":""_""'_'"!""""‘-'i}‘
“] (3.5)

I LTy e

If there ex1sts a diagofial matrix T' such that T>H, then

q W%@@ﬂiﬂdﬁiw@ NEIa Y

where t;'s,7 =1,2,...,m + 1 are elements on the diagonal of matrix T.
Consequently, the least upper bound of (3.5) can be found by solving the following minimiza-

tion problem

min trace T (3.6)
s.t. T>H

T is diagonal



18

Remark 1. When the system (5.1) contains a single uncertainty, an analytical solution of
(3.6) has been derived, then the minimization problem in (2.32) is solved to give the iterative
input update [35,36]. Nevertheless, for system (5.1) with multiple uncertainties, it is difficult
to obtain an analytical solution of (3.6) using the same technique. Therefore, a new ILC

approach is proposed in the next section to deal with multiple uncertainties [37].

3.2 LMlI-based ILC algorithm

olve (3.7), we will solve its

dual problem. First, let us ref Ty asfollows. Rewrite T as

where Fj is a matrix with the same dir aving the 7th diagonal element equal to

1 and the other elements equal . be somes

Laes

Vi =" (3.8)

m .t. H — t;F; <0 'm

Ay ﬂ?ﬂﬁ%ﬁﬂﬂ?ﬂi

where t = [t1,t,. .. ,tm+ , 1 is the (m —I— 1) x1 vector whose elements are all equal to 1.
IRTANNT um MNYINY
L(t, AﬁkH, W,v) = 17t + tr ( H — Z t; F; W) (HAukH — ) (3.9)
i=1

where W € STH, in which, STH is the set of symmetric semi-definite positive matrices with
dimension (m + 1) x (m + 1), v is a vector.

Next, to obtain a dual function, we find the minimum of the Lagrangian with respect
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to t and Aug. It is straightforward to see that

m+1
inf L(t, Aupy, Wyv) = irtlf{th—tr (Z tz-FZ-W> — uqu} + inf {tr (HW)+ v TIAug1}

t,Aupyq i1 Augyq

m+1
= T+ iI}f { Z ti(1 — tr(EW))} + inf {tr (HW)+ v " TTAuy }

Au
i=1 ket

= T+ Inf {tr (HW) + v TIAuy, } (3.10)

uk+1

Moreover,

where hij, Wiy, i,j =

’QW] ﬁ@ﬂ@iﬂ‘d HMANYIAY

hm+1,m+1wm+1,m+1
= Auj, (GTQGy + R) Augy1 — 2ef QGoAuy

Accordingly,
tr (HW) = Au;‘fﬂaAukH

m
-2 (Z el QGiw;mi1 + efQGo) Augyq

1=1
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where
m m m
- Z Z GT QGjwi; + Z (GTQGo + GTQG ) wims1 + GEQGy + R (3.11)
i=1 j=1 i=1
Therefore,
tr (HW) + v TIAu, = Auﬂ_l@AukH + 6T Auyyy (3.12)
where .

(3.13)

. 3 = _— T
Hence, Wi/ L
inf {tr (# : émlﬂ (3.14)
Augqg ; '

with the optimal value of Au;

(3.15)
Thus,
) A'Uk_H ~1p (3.16)
Consequently, the dual prob
(3.17)
Z
which is equivalent to the fo ;E ing op
(3.18)
F’TUEJ’JW%WG’?WEHW?
G ? 0
QW’] ﬂﬁﬂ?ﬁ;@eﬁﬁﬂﬂﬁﬂﬂ d

Using Schur complement [29], we can rewrite the dual problem (3.18) as the following LMI

problem
min  p (3.19)
G B
.t. >
s g,y |20
m—+1
W e SsTt

wy =1, v>0
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This problem can be solved using available software such as cvx [38]. The stopping

criteria for iterative solution procedure are as follows.
lexll <€ (3.20)

k = iter max (3.21)

where € is a tolerance chosen by the designer and iter max is the maximum number of

iterations.

Finally, we propose the following the robust ILC design.

Algorithm 1. An LMI algorith
tainties (ILC-TI)

1. Setk:=0, uw, :=0, aW

2. Solve the LMI problem a

time-invariant parametric uncer-

5. If (3.20) or (3.21) is true, th ,'.:. swation, else, set k :=k+1, return to step 2.
Remark 2. There might be a co Sf-in 4 bsed robust ILC design since an upper
bound of the worst-case performance. is aximization problem (3.5). However,

the algorithm appears to we

erical example.

3.3 Convergence prope

Theorem 7. Under assumptzgns A1-A2 and constmmts C1-C8, the control input wg of

system (3.1) ngﬂ 118 fJ Y ﬁ]‘ﬂiw BN

Proof. Let

nmﬁ%mmﬁmmﬂ

We have

(3.22)

V(er) < Jorilaug, =0 = e Qex

Suppose that 0 is the optimizer of the maximization problem at the kth iteration, hence,
T T ( p* *\ T
€ Qek S €. (Hk)Qek(Ok) = V(ekfl) — Auk RAuk;
Therefore,

V(ex) < V(ex_1) — Au] RAu, (3.23)
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Inequality (3.23) leads to

k
Vier) + Y AufRAu; < V(ep) (3.24)
=1
Since V(eg) > 0, we get
k
> AulRAuy; < V(e < oo (3.25)
i=1
Moreover, because R is positive defi V.7 and the sequence {ZZ 1 Au RAuZ}
is non-decreasing. Combine with (3.25), i es G > le AuiTRAu,-} converges. Ac-

cordingly,

lim AufRA s,"\:' “\ uTRAu,>

—1
ZAu RAu;

It implies that Aug — 0 as k —e0. /1] O

Theorem 8. Under assumptions 2 -C3, the error ey of system (3.1)

CONVETGES.

Proof. We have, . ' —
Ny ’ J ]
”G( = mm”

1) ; Tl
‘I |Goll + |G161 || + -+ + |Gmi 4 I

Mmghm@uﬂgﬂﬂﬂswﬁﬁni
’QW’INﬂ?ﬂd‘ﬂ“ﬁWﬂme’m

Equivalently, ¥
(e —err1) — 0 as k — oo.

This results in the convergence of {e;}. O

3.4 Numerical example

Consider the following system with transfer function

1 n 0.86*3+0 0.5e™*
1552 + 85+ 1 « 'Bs+1 ' 22541

G(s) = (3.26)
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where 61,60, are the uncertain parameters, 61,02 € [—1,1]. Since the design of our ILC
algorithm is built in discrete time domain, in particular, the super-vector framework, the
system model (3.26) should be discretized and rewritten in the form of a Markov matrix as in
equation (2.21). In this example, the sampling time is chosen to be 1 second and the number

of samples is 41. The target reference trajectory is

0, £ € [0,5] U [36, 40]
r(t) = [1);1“ —9), < &1;]5] (3.27)

1—0.1(t

The constraints of control inputs ﬁ beci
w = 2,0 T e
The design parameters are /

matrices with appropriate di si

uncertainty interval and th
to solve the LMI problem (3.1

The design results are shown in'the | _ ¥ ] ures 3.1, 3.2, and 3.3 show that
the control input satisfies all i ver, Figures 3.2 exhibits that
duy(t) tends to converge whereas ds 1 , illustrated in Figure 3.3. Hence,
the control input converges. Figure 3. ,ﬂﬁl‘a‘ e output of system (3.26) converges
to the desired reference trfiectory buit fﬁ"re ér'é '
the 39th—40th samples afi

demonstrated in Figure 3.5: j
||

of the system output at

“System error converges as

3.5 Conclusion

Ohapier 3 presens tﬂ b &l AN UATHEIND T e e

of time-invariant para etrlc uncertalntles‘- The design arocedure follo s _the methodology

e it o O Ll e TRYE

problem is achieved. Accordingly, the min-max problem is relaxed to a minimization one.
Then, in the second step, we consider the dual problem of the minimization problem derived
in the first step, and reformulate it as a convex optimization problem with LMI constraints.
An LMlI-based ILC algorithm is given as a result. Next, the convergence of the control
input and the system error is proved. Lastly, a generic example is provided in section 3.3 to

illustrate the effectiveness of the proposed ILC algorithm.
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CHAPTER IV

TIME-VARYING PARAMETRIC UNCERTAINTIES

There have been several results under ILC framework for systems in the presence of un-

certainties. Many ILC designs have been de ed for nonlinear time-varying systems, for

| igns have been applied to linear time-
;ﬁ)ﬂ have used the error prediction

varying (LTV) systems, such as [ﬁ
method to construct the ILC law sys@ms with ifiknown but bounded disturbances.
| — -

instance [20-22], whereas only some

Thereto, Tan et. al [24] have prepeséd.-an ILC s - LTV systems with state dis-
turbances and measurement ngise™ iethe o lgorithms in [23] and [24] are
applicable to systems perturbed by digtuuhs ‘r trlc uncertainties have not been

considered in the dynamic s developed an ILC law for

linear systems with time-varyi " eralized eigenvalue problem
(GEVP). Their approach applig > linéar ¢ Jeti cess stability theory to design it-
erative input updates and t i ar combination of the state

change and the output error. the time-varying uncertainties

robust ILC algorithms for linear systems‘éﬁf)jec? 0 parametric time-varying uncertainties [39].

Our algorithm utilize the 5,36]. The control design

aints of the control input.

me quadratic performan

problem is formulated as in-1 _
An upper bound of the maxi iz-atl first to make the initial min-max
problem become a minimization roblem Then, applying Lagrange duality, we achieve a dual
problem of the mini q? r% convex optimization
problem over LMIs. Ffﬁrg WW W qu] ﬁa?

Based on the aséﬂmptlons Al-A2, thg- input- output matrix of hneaUS‘uems containing

e “m’ﬂa‘iﬂﬂaﬁﬁ‘ﬂ‘ﬁem RELIEGE

=Go+ NG+ DGo + - + QG (4.1)
where Gy is the nominal matrix, Gy, ..., G, are dynamic matrices of uncertainties, and
0i(1)
Q; = b(2) Vi=T,m
0:(N)

where 0;(7), i
Lm, Vj=1,

,m are parametric uncertainties contained in 0 at time j, |6;(j)| <1V i =
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4.1 The worst-case performance analysis
We express G(0)TQG(9) as
(GOT +y G{Q,-) QGo+> 9,G; | = GIQGy+> > GF0,Q9,G,
i=1 j=1 i=1 j=1
+Z GT QG + ZGO QG;. (4.2)

T
Q #‘i‘ er QGoAuy 1. (4.3)
\-5

Moreover, e] QG (0)Aug is expresse
- :
el Q (Gg +) %G,

i=1

Substituting (4.2) and (4.3) into.(2
(4.4)

where

G’lAukH

GmAllk+1
QGoAug 1 — Qe v
r= Auf_l_1 (GEQGO + R) Auk+1 — _‘
000 ... MQS g

2Q91 o 'Mdﬁ_ﬁ_ﬁ- 3

Y i ) 1;2] and P, = P,QPL.
: 2
0, Q0 QEQm J

Consider the maximization problem i in (2.32)

HUEI’JMLMWHWI‘]‘E s
e tﬂﬁ’iﬁ“& ARV ek Lo ] A

Let P1 =

[ 0 T2 ch that
n—-P —P
P<T(:)[ _pr T2:|20. (4.6)
Hence, Ji1 is bounded by
Jep1 =2 Pz +r <2TTz+r. (4.7)

If T, > 0, then, (4.6) is equivalent to

T, — P — RT, 'P] > 0. (4.8)
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Choose Ty = Q! then P2T271P2T‘ = P,QPJ] = P,. Thus, (4.8) becomes

T, — 2P, > 0. (4.9)
M Q Q ... Q
Let Q = 0 . ,é: Q Q ?,then
o, QQ .. Q
P - (4.10)
Therefore, (4.9) can be rewritten as
(4.11)

Since T4 is chosen to be const he least upper bound of Jiq is

“S

equivalent to finding the 11 for all uncertainties in the

uncertainty set. Thus, the o the uncertainties can be

formulated as

(4.12)
On the other hand, it is noted th
(4.13)
Since @ > 0, all the elem -in-the diagon: ; \:; ce,
ace (Q) ='trace (Q 4.14
I<Q<I r race (Q)m (4.14)

The condition for ( ﬁ ﬁ‘ ﬁmmw ﬂ ce happens when the
uncertainty reaches ﬂ Hﬂf 3; le time. Accordingly,
the “smallest” matrlx 1 is the solution of the followmg inimization pr

AR tl UR1INYY & EJ s

s.t. Ty is diagonal
T, — 2QQ0 > 0
Q=1

Note that the congruence transformation preserves the positive definiteness of a matrix.

Therefore,

T, —20Q0 >0 < Q(T, —22Q0)Q >0
& Q0 —2Q >0. (4.16)
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It can be deduced that (4.16) is equivalent to
Ty —2Q >0 (4.17)
since Q? = I. Therefore, (4.15) becomes

min  trace T} (4.18)

s.t. Ty is diagonal

This problem can be numerically solw . oftware that support convex opti-

snce and it can be done off-line,

i.e., not in the iteration process. Nowsthe i pbound of (4.5) is

(4.19)

where

4.2 LMlI-based ILC &

After obtaining the least lvl'\ update can be found by

solving the following proble E

6 136i% ﬁ“ﬂﬁ“ﬁ’wﬁﬁ“ a5 "

which is equivalent tof]

AMIAENIRANVINGAY o

Augyq <
Define a Lagrangian
L(Aupyy,v) = Aufy GAugyy + T Augyy + 07 (MAugy — ¢)
= Auf ,GAug + (B+TT0) Ay — 079 (4.22)

where v € R*V is the Lagrange multiplier. It is straightforward to obtain the optimal solution

as
1 ~
Auj,, = —EG*I(ﬁ +1Tw). (4.23)
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Then, we achieve a Lagrange dual function

fv) = inf L(Augy1,v)

AuIc+1

1

which is equivalent to

(4.24)

Using Schur complement
LMIs.

—

optimization problem over

(4.25)
This problem can be solved using availahie solts ch as cvx [38]. The stopping criteria
for iterative solution proce e A :
f"
X (4.26)
Tl
|
k= 1ter_max (4.27)

where € is a toleraﬁ ﬁﬁb{}Wﬁﬂ Qﬁﬂeﬁ\ﬂ ﬂlﬁmaxnnum number of
iterations.

Here, we summarlze the proposed algorithm.

s AIA RV SA VDI B

ties ([LC’—TV)q

1. Set k:=0, u, := 0. Measure e,.
2. Solve the LMI problem according to (4.25).

3. Calculate Awyi1 according to (4.23).

B

. Apply ug,q to the system and measure ey 1.

&

If (4.26) or (4.27) is true, then, stop the iteration, else set k := k+ 1, return to step 2.
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Remark 3. Tt is noted that the minimization problem (4.21) has a quadratic cost function
and an affine constraint. When we consider the dual problem, the strong duality always
holds [29]. As a result, the solutions of (4.21) and (4.25) are equal.

Remark 4. There might be a conservatism in our approach since an upper bound of the
worst-case performance is used in the maximization problem (4.5). Nevertheless, the algo-

rithm appears to work well as we will demonstrate in the numerical example.

4.3 Convergence properties

A
Theorem 9. Under assumptions / ints C1-C83, the control input wuy of
system (4.1) converges. : &

Proof. Let (
i & ,
with Jiq is in (2.33). / f sitdce Jiiy 0%k, We have
Suppose that 0} is the optimizegof fhe . OT0ob \ at the kth iteration. Hence,
el Qe < el 0 .;_.‘,c'_" -l Viex- u, RAuy.
Therefore,

(4.28)

Inequality (4.28) leads to

Y
i

Since V' (ex) > 0, we get ‘a

AUEANEMINEINT

| o v
e QFVRART RN TN 2 o)
is non-decreasiig. Combine with (4.29), it deduces that {Zle Aul RAu; ¢ converges. Ac-
cordingly,

k k—1
lim AulRA = 1 Aul'RAuw; — S Aul RAu;
ki)rgo u; uy m (; u; u; Z u; u;

k—00 :
=1

k k—1
= 1 T i T .
= kll>Hc>lo ; Au; RAu; k:ll)r{.lo ; Au; RAu;

= 0.

It implies that Au; — 0 as k — oo. Thus, {u} converges. O
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Theorem 10. Under assumptions A1-A2 and constraints C1-C3, the error ey of system
(4.1) converges.

Proof. We have

Go + Z er

=1

m
I1Goll + > 112G
i—1

1G@)]

IN

Hence, [|G(0)|| is bounded. Sin

Equivalently,

This results in the convergence O
4.4 Numerical example
Consider a linear system w ,,

\ " Y

Vi oy (430)

- T
where yo, y1, 4> are the corresp onding outputs of the systems ”J cribed by
G1(
i ‘ 53 +1
where 61, 6 are the uncertain parameters over the interval [—1, 1], and vary with time. The
constraints of control input for system (4.30) are specified by
u = —3, up = 3, 6ul = —5, 6uh = 5, Aul = —4, Auh = 4. (4.31)

The target trajectory is

0, € [0,5] U [36, 40]
) 01(t—5), € [6,15]
) =1 1, € [16,25]
1—0.1(t —25), t€ [26,35]
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The design parameters are chosen as follows: ) = 2I1, R = 0.11, where Iy, 5 are
identity matrices with appropriate dimension. For the stopping criteria, we choose ¢ = 0.01
and iter max = 10. To illustrate the time responses of the ILC control system, we choose
sampling time 1 second and the number of samples N = 41. In our work, we use the software
cvx [38] to solve the LMI problem (4.25).

The design results are shown in the Figures 4.1-4.5. Figures 4.1, 4.2, 4.3 show that the
control input converges and satisfies all constraints (4.31). Figure 4.2 displays the convergence

of 05,(t) and Figures 4.3 exhibits the convergence of Ay (t). Moreover, Figure 4.4 demonstrates

that the output of system (4.30) converg ired reference trajectory. A monotonic

convergence of the system error is il

1 -
Initial iteration
— st iteration
0.8} . hiteration

— 10th iteration

0.6

0.4

(0

0.2

40

Elg;lre 4.1: Control Jﬂ;]uu Ef iﬁ;lﬂlﬁ w%’ W Mﬂﬁparametric uncertain-
s cnARAINTUNIIINYINY

This chapter is devoted to reveal the design of robust ILC for linear systems with time-
varying parametric uncertainties which includes of four sections. Section 1 presents the affine
Markov model of the system and the worst-case performance analysis. Next, in Section
4.2, we obtain an ILC controller as the solution of a convex optimization problem over LMI
constraints. Then, an LMI-based ILC algorithm is proposed. In Section 4.3, we provide
the proof of the convergence of the control input and the system error. Finally, Section 4.4
exhibits the simulation results of a generic example which demonstrates the effectiveness of

the algorithm.
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CHAPTER V

ITERATION-VARYING PARAMETRIC UNCERTAINTIES

Within a broad range of ILC techniques, we focus on the robustness of the systems controlled
er of articles on the robust ILC design, the
l‘ or time-varying uncertainties. Since

e domain and iteration domain,

under ILC framework. Among a large nu

systems are subjected to time- 1nvar1ar\
the systems controlled by ILC alg

it is also requisite to ensure the mghs 0 'JIL in the iteration domain. In the

Mldentiﬁcation which is usually
':Ntes repetitively, the system

dynamic may change with itera . i e parameters vary. To the best of our

monograph [2]. The plant 1s degeril b alli i super-vector framework with
iteration-varying uncertainty. : rted into a form of bounded
additive model uncertainty. As longs to an interval set and all

for a class of linear systems whose

transfer functions are aﬂine of paramétmé,ﬁ'ﬁ'ce?t’ g are subjected to iteration-varying
[40]. The system model | a&i problem formulati

works [26-28]. Our appro

om that in the previous
nd the robust ILC design

rformance criterion which has been

is formulated as a min-max pi ble

utilized in [33,34,36]. Finding the least upper bound of the maximization problem, the initial

min-max problem b S A, H olve. Next, we derive
a dual problem of mgzt‘j m‘ﬁ ﬁ a’;j ﬂﬁs convex optimization

over linear matrix 1ne&!1aht1es LMIs). NoLe that the parametrlc uncertaUy in our prev1ous

i, Tl b Bk e YAVELTREL
varying. Thus ro e ‘algorithm derivation'a rent.

Now, we conmder linear systems in the presence of iteration-varying uncertainties. Due

to assumptions A1-A2, the system model is given by
G(Qk) =Gy + G19k,1 + Gg@m + e+ Gmgk:,m (5.1)

where G is the nominal matrix, G, ..., Gy, are uncertain dynamic matrices, and 0y ;, i =

1,...,m are parametric uncertainties.
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Hence, the error update model of the system (2.21) is

€ — €41 = Y1 — Yk
= G(Op41)upr1 — G(Or)uy

m
= GoAug + Z Gi(Op41,i0511 — O 5uy)

i=1
Moreover,
Ort1,i0p41 — Opur = 6 ‘ + (Op+1,i — Ori)uy
where A0k+1,i = 9k+1,i — Ok,i. C_ Ll 1V na |A0k+l,i| <2Vi= 1am-
Therefore, i \ : ,
€ —€pyt1 = A0k+1,iuk) (5 2)

5.1 The worst-case pe

Let us define

T
Op41 = iy A0t 1,m]

G =
Replacing into (5.2), we ge

II
|
i

Substituting (5.3) into (2.3 esults in

Sy Eik_?iﬂmﬁ'z AR s
) Wﬁmnmummmaﬂ

where = [ ’“1“], H = [52% g;] Hy, = GTQG, Hy = ~GTQ(e), — GoAugy),

Hj = (e, — GoAugy1)TQ(e, — GoAuyyr) + Auf RAuy;.

Hence, the maximization problem in (2.33) can be rewritten as

max 2’ Hz (5.4)
2€7

where Z = {z = [Uklﬂ] }
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If there exists a diagonal matrix 7" such that T" > H, then

m—+1
2THz < 2TTz = thz +tmy <4 Z t; =4 trace T (5.5)
=1 =1
where t;'s,7 = 1,2,...,m + 1 are elements on the diagonal of matrix T. Accordingly, the

least upper bound of (5.4) can be found by solving the following minimization problem

min trace T (5.6)

5.2 LMlI-based ILC algo:

Replacing (5.6) into (2.32), and

update Aug1 can be calcu

where F; =

Swith 1 is locatéd at the ith ﬁsmon on the diagonal of

'JVIEJVI?WEI’]

ﬁ: :
I

matrix Fj.

o 07 wammmummmaﬂ

min 17t (5.8)
2m—+1
st. H— Y tF<0
=1
HAug < ¢

where t = [t1,to,... ,tami1]”, 1 is the (2m + 1) x 1 vector whose elements are all 1.

Define a Lagrangian

2m+1
L(t,Aupyq, W,v) =17t + tr ((H -> tF) W) + v (MAu 1 — @) (5.9)
=1
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where W € Simﬂ, in which, Sz_mﬂ is the set of symmetric semi-definite positive matrices
with dimension (2m + 1) x (2m + 1), v is a vector.

Next, to obtain the dual function, we find the minimum of the Lagrangian with respect
to t and Auyy1. We have

t Auk+1 Auk+1

2m—+1
inf L(t,Aupp, W,v) = irtlf{th—tr ( > t,-F,-W) — uqu} + inf {tr (HW)+ v " TTAug, 1}
i=1

Augqg

'(l—tr(FiW))}—i- inf {tr (HW) + v TTAug4 }

U "TAug41 } (5.10)

Note that (5.10) is obtained when / p=12n+1 w; =1Vi=12m+1

with w;;’s, i =1,2,...,2m + 1 arc.e matrix W.

LS \
Otherwise, \
2m+1
tr (HW) = Z
=1
2m 2m Mo, \
- ZZ g s 2mAins L+ Pomi1 2mi 1 womt1 2mir (5.11)
i=1 j=1 . .
where h;j, w;j,1,5 = 1,2,..., clerme s o g ding matrices H, W. In addition,
2m 2m 2m
DD hiwij > hijwi
i=1 j=1 =1 =1 i=m4] = : m+1j=m+1
T ufG QG Auk:+1wz+m,j
;] i=1 j=1
" ﬂ ‘L! El NG
> higmarwi, 2m+ = Z Aui G Qey, — GoQUk+1)Wi2me1

T AMANEINARINENAE

k+1 wz+m 2m+1
T T
hom+41,2m+1W2m+12m1 = (ek — GoAuyy1)" Qe — GoAugyq) + Auy RAug
Therefore,

tr (HW) + v TTAw — v = Auf_l_l@Au;H_l + T Augy g + « (5.12)
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where
G = Y Y GIQGw;+2) " Gl QGowigm1 +Gi QG+ R (5.13)
=1 j=1 i=1
,6 = HTV +2 Z Z G?QGiukwi+m,j + 2 Z GEQGiukwi+m,2m+1
i=1j=1 i=1
m
—2 Z G;TFQekw,-,zmH — QGngk (5.14)

1=1

m

a = —vTp+efQep+ )

i=1j

2Zuka Qe Wi ym,2m{3.15)
=1
Consequently,
A1
B+« (5.16)

At A

with the optimal value of A

(5.17)
Thus, . N
inf LAl 4 Wy (4051 G'p) 5.18
t,Auk+1 i ﬁ ( )
Accordingly, the dual problem
(5.19)
'I T
which is equivalent to the following optimization problem b
(5.20)

f U BNUNINENNT

G0

’QWWNT]‘EM%&WTAWH’]&B

wy; =1, v>0

Using Schur complement [38], we can rewrite the dual problem (5.20) as the following LMI

problem.
min  p (5.21)
G 5
.t. >
. [ BT p+ida ] =0
2m+1
W e simt

wi; =1, v>0
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The problem (5.21) can be solved using available convex optimization solvers such as cvx [29].

The stopping criteria for iterative solution procedure are as follows.
lexll <€ (5.22)

k = iter max (5.23)

where € is a tolerance chosen by the designer and iter max is the maximum number of
iterations.

Finally, the iterative input design arized in the following algorithm.

Algorithm 3. An LMI algorith
certainties (ILC-1V)

1. Setk:=0, w, :=0. My

iteration-varying parametric un-

‘ spec1ﬁcat10ns C1-C3 can
be considered as tuning pa At 1 sinee their values affect to the
solution of the LMI problem (5.21). ion, the designer can vary these

values to choose the fit ones.

s c(,wgen@ummmwa'mﬂﬁ
b W [N [ P11 nRTITE TRy

Proof. Let

.24
Vieg) = Ao iR, X i (5.24)

with Jg11 is in (2.33). Then, V(ex) > 0V k since Jy41 >0V k.
We have,

Vier) < Jitilaug, =0 = ef Qey, (5.25)

Suppose that 6 is the optimizer of the maximization problem at the kth iteration. Hence,

el Qe < el (07)Qer(0;) = V(er_1) — Aul RAuy (5.26)
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Therefore,
Vier) < V(ex_1)— Aul RAu, (5.27)
Inequality (5.27) leads to
k
Vier) + > Au/RAu; < V(e (5.28)
=1

Since V(eg) > 0, we get

(5.29)

equence {Zle Au;fFRAui}
AuTRAu,} converges. Ac-

Moreover, since R is positive

is non-decreasing. Combine

cordingly,
Rl ¥ \
lim Auj RAu 2 b AN TRAu;
k—o00 o
> Auf RAu;
It implies that Auy — 0 as k — oo..Thu h O

(=3, the error ey of system

Theorem 12. Under -mm\

Proof. From (5.25) and (5.'9 we get ' | m ‘
A 18 TR AR T

Moreover, Auy, RAukﬂ 0 since R is posm?e definite. Hence

AR RIRTRUUBIINYINY

On the other hand it can be deduced from (5.31) that the sequence {V (ey)} is non-increasing

(5.1) converges.

and V (eg) > 0V k. Consequently, {V (ej)} converges. It leads to the convergence of {ef Qe }.
Thus, {e,} converges. O

5.4 Numerical example

Consider the following system with transfer function

1 0.8¢7°

G(s) =
(5) 1532+83—|—1+ ks +1

(5.32)
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where 6y, is the uncertain parameter: 0y € [—1, 1]. The constraints of control input for system
(5.32) are specified by

u = —4, up = 4, 511; = —5, 6uh = 5, Alll = —6, Allh = 6. (533)

Target trajectory is

0, e [0,5] U [36, 40]
r(t) = [l);l(t —5) %?61215] (5.34)
1—01(t—25 [26 35]

= 0.051> where I, Iy are identity
matrices with appropriate dimensN the crlterla we choose ¢ = 0.01 and
itermax = 14. To 111ustratem respﬁnses-&HLC control system, we choose
sampling time 1 second and t
cvx [29] to solve the LMI pr

The design results are

ur work, we use the software

igures 5.1, 5.2, 5.3 show that
the control input satisfies all i eover, in Figure 5.3, we plot
the iterative input update i ration, 10th iteration and
the control input of system
t the output of system (5.32)

illustrates the convergence of

14th iteration to demonstrate
(5.32) converges. On the other
approaches to the desired refer
the system error. It can be seen infinity-norm of error converges
another. Note that in Theﬂem 12, G Sﬁfy'pr'ov

the monotonlc Convergen e 0 ‘.-m-m-nv.n-i--v-inn-.n\.-n\unu-'

5.5 Comparisorﬁfﬂrﬁ ﬁoﬁs ﬁ(?wﬂ ‘j
In this section, we aifil to compare the proposed ILC algorithms applied to linear systems
subject to v. es of p c_uncertaint al ems, sometimes
A ot Fatot U ETL) TaVa KL YA T
easy to deternfine that the uncertainty is time-invariant, time-varying or iteration-varying.
Accordingly, we can test all the proposed ILC algorithms with the system and select the one
which gives the best results. We will simulate three proposed ILC algorithms to the linear
system (3.26) [33] when the uncertainty is time-invariant, time-varying, and iteration-varying.
Table 5.1 describes the comparisons and corresponding responses.

When the uncertainty is time-invariant, Figures 5.6-5.7 show that the ILC-TT (Algo-
rithm 1) converges fastest and tracks the reference input best while the ILC-IV (Algorithm 3)

gives worst performance. The results are logical since the ILC-TT is designed for linear sys-

tems with time-invariant parametric uncertainty. Figure 5.8-5.9 display the best tracking
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Table 5.1: Comparison of proposed eal systems with various types of

parametric uncertainty.

T f tric.
ype of parametri LIV

U e Ay
Time-inva V_ : 5 4 5.7

Time-varyii "fs : gure rv 8-5.9
Flgures 5.10-5.11

ﬂ‘UEl’J'VIEWI?WEI']ﬂ‘i

of the ILC-TV Algoalhm 2) as the unce?talnty is time- varymg, whereas the ILC-IV (Al-
e o/ i (A TR (NN (12 F 43 P
uncertainty is ion \ﬁ re'd (Algorithm 3)

appears to converge slowest but gives smallest tracking error whilst ILC-TT and ILC-TV

Iteratlon—varyln

algorithms converge faster but track the reference input worse.
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5.6 Conclusion

The robust ILC design for linear systems with iteration-varying parametric uncertainties
is introduced in Chapter 5. First, the affine Markov model of the system is given and
the worst-case performance analysis is presented to relax the initial min-max problem to a
minimization one. Next, we investigate the dual problem of the minimization problem which
can be described as a convex optimization problem over LMI constraints. An LMI-based ILC

algorithm is provided afterward. Then, the convergence of the control input and the system

——
a same linear system in the pre

time 1nv@arying and iteration-varying

parametric uncertainty.

4

AULINENINYINT
PAIATUAMINYAE



CHAPTER VI

APPLICATION TO PHYSICAL MODELS

6.1 Flexible link

Flexible links or flexible robot arms hawv en i singly used in industry since they have
several advantages over rigid links sug as ligl i less power consumption, and faster
response. In addition, they are engountered i ¢ ere the weight constraints result
in flexible structures. Flexible Ii ;linear and complex dynamics,
and receive much attention in co over, they become an experiment
platform for research laboratéries theat. K a flexible link is used in the

control design. However, the li n to the real system, whose

ch is an affine function of the
ich employs a quadratic perfor-
mance criterion and formulates theﬂ_‘j{%ﬁj%
An upper-bound of the ne%imization problerg is ut

. . . . -
of the minimization problemgis-considered=—Thisdual-prob! reformulated as a convex

max optimization problem [33, 35, 36].

e Lagrange dual problem

optimization problem over Linear Matri which can be efficiently solved.

Figure 6.1: The single flexible link system.

Consider a single flexible link system which consists of a flexible beam and a servo DC
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Table 6.1: Parameters of a single flexible link.

Parameter Physical Meaning
R,, Motor armature resistance
K; Motor torque constant
K, Motor Back-EMF constant
K, Total gear ratio
N Gearbox efficiency
Nm efficiency
Beq nping coefficient

- as seen”at*the lead

M ~Mass of tHe™ ble link
L

the load

arm = Mom \ the flexible link
We ) " -_ ! \s ﬂex1ble link

motor as in Figure 6.1. The mo ' flexible be an be precisely described as an

infinite-dimensional system. Hon oy rol designs, the flexible link is

modeled as a finite order state-space e details)

(6.1)

 -—_— =
- e
where W v
4 o
1
-ﬁ Jarm mKthK +B9qu

Ll ﬂmmmi
c;mg{»m 1IN Y

s,
JeqBom
The state vector of a flexible link system is defined as z = [a d & d]T where « is the
angular displacement of the servo motor and d is the deflection angle of flexible link. The
control input is defined as u = V;;, which is the voltage supplied to the servo motor. Note
that Eq. (6.1) is a linear model with single input single output where the input is V,,, and
the output is d.

The parameters of the single flexible link are provided in Table 6.1.
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We discretize (6.1) over the time interval [0,7] and the number of samples is N + 1.
Thus, the sampling time is T'/N. Let k be the iteration index. Using super-vector notation,

the discretized model is described as follows [43]

Yi = Guy (6.2)
where
T
e = " w2 . oy(N)T]
u, = : T7
G =

Next, we consider the uncertain parameter of system

(6.1). In particular,

(6.3)
where My is the nominal mass is a positive real number. In
this work, we assume that 0 e O ={050| - n, ¢ has a physical meaning
to be the bound of uncertainty. > flexible dink 1 1 (6.1) is subjected to parametric

: 2 f
uncertainty, the discretized model c: nctic .e., G(0). Afterward, depend

the flexible link.

6.1.1 Time-invariant ymetric u

e link sys@, we seek matrices Gy and

UM NGNS "

where Gy represents the nominal system and (G1 is the uncertain dynamic matrix.

Utilizing the e Sectio ni al ined as in (2.26)
by setting thﬁﬂ ﬁ a ﬁ s rﬁ ﬁ j]] nee tainty interval

[—1,1] is discrétized and the impulse responses of (6.1) corresponding to the discretized values

To apply the designed ILC &orithm 0
(G1 so that,

of @ are calculated. Based on this set of impulse responses, we find out the bounds of them
and then, obtain G as in (2.29).

Now, let the system (6.1) be discretized by a sampling time 0.012 seconds, the number of
samples is 101, i.e., N = 100. The parameters of the flexible link are taken from Quanser [42].
Figure 6.2 show the impulse response of the nominal system as well as the upper bound and
the lower bound of the impulse responses with n = 40.

The flexible link system is simulated using Algorithm 1 with the following simulation

parameters. The mass of flexible link is assumed to have £20% uncertainty, thus ¢ = 0.2.
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0.025

0.015- q

= Nominal system
= = = Upper bound
----- Lower bound

Impulse responses
o
o
=
T

Figure 6.2: Tmpulse response of e bounds of impulse responses of

system with time-invariant uncerga

The weighting matrices are @ I, I are identity matrices with

appropriate dimensions. For the stopp g-criteria, hoose € = 0.01 and iter max = 30.
n- -“".“r.i

The desired reference trajec

te [61 85]

2 25( 60),
The constralntﬂfuxﬂ ?%HW?W 8‘ ’] ﬂ i
u; = 3uh—35ul—‘45uh—4Au— 4Auh— (6.5)

o v A EERT b B A 'l%&llfﬁwﬂhﬂymmm ol

(6.4) is used ilsteps 2 and 3 of Algorithm 1, whereas the flexible link in step 4 is modeled
using the Finite Element Method [44]. In particular, the flexible beam is partitioned into 3
elements and 4 nodes which result in an 8th order model. Moreover, in the simulation, the
uncertain parameter ¢ is randomly selected from the uncertainty interval and kept unchanged
for all iterations.

In this thesis, we simulate the proposed ILC algorithms to physical models such as a
flexible link in this section and a distillation column in next section using a computer with
the following configuration: CPU Core 2 Duo 2.2 GHz, RAM 2Gb, MATLAB 7.4.0 (R2007a).

The simulation results are presented in Figures 6.3-6.7. Figures 6.3-6.5 show that the control
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input satisfies all the constraints C1-C3 specified by (6.5). The convergence of the control
input is demonstrated in Figure 6.5 where the control input update Augy; goes to zero
throughout executions. In addition, Figure 6.6 illustrates that the output of the flexible link
system tracks the trapezoidal reference input. At the first iteration, the tracking performance
is very bad when the system output is far different from the target trajectory, nonetheless,
the tracking performance is improved through executions and is acceptable after 30 trials.
The convergence of the system error is illustrated in Figure 6.7.

tional time to solve the LMI problem (3.19)

of flexible link with a time-invariant para x ainty for all iterations. We can see that

In addition, Figure 6.8 shows the compu

ion increases. It can be explained

as follows. The more iterations are acking performance is, hence, the

smaller the control input update Augery s d the sy r+1 are. It is conjectured that
the solution of the LMI problen.g 0 t w y of the constraints. As a result,
the computational time is longe ' \\] ing time is 0.012 second while the
maximum computational time duging of0

(3.19) should be solved off-ling

onds, so, the LMI problem

Initial state
— — 1st iteration
4r e AR T Sth iteration

- i ——15th iteration
—+— 30th iteration

0 10 20 30 40 50 60 70 80 90 100

Figure 6.3: Control input of flexible link system with time-invariant parametric uncertainty.
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4.5

Figure 6.8: Computational time e-invariant parametric uncer-

tainty vs. the number of iterations

In this part, the sampling time is set to be 0.012 sec. and the nuinber of samples is 101. The
parameters of the flexible h{ - ’ the mass of flexible link
has +20% uncertainty, i.e. B: 0.2."Ne her assum at the mass of flexible link

can be varied with time by p1c 1ng up or dropplnasome weight on it during each iteration

oo g ‘LI?J AV

aw‘?a NIAARTI N Y

In each iteratlon, the mass of flexible link is changed two times at the beginning of the

iteration and at the sampling time 41. Hence, the uncertainty 6 is time-varying respectively
with the mass of flexible link. Figure 6.9 illustrates the mass of flexible link as a time-varying
parameter.

Now, we still use the procedure in the Section 2.4.1 to determine the nominal Makov
matrix Gy and the uncertain Markov matrix G;. Since the uncertainty is time-varying, the
Markov matrix is different from the case of time-invariant uncertainty, hence, the impulse

responses will be different, too. Following is Figure 6.10 which shows the impulse response of
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Figure 6.10: Impulse response of the nominal system and the bounds of impulse responses of

system with time-varying uncertainty.
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The constraints of control inputs are specified by
u = —3, up = 3, 6ul = —4, 6uh = 4, Aul = —4, Auh = 4. (6.6)

The design parameters are chosen as follows: @ = I, R = 0.0115 where Iy, Is are identity
matrices with appropriate dimension. Applying the proposed robust ILC design to the flexible
link system, the 4th order model is used in steps 2 and 3 of the algorithm, whereas the flexible
link in step 4 is modeled using the Finite Element Method [44]. In particular, the flexible

s which result in an 8th order model. In
ﬂ from the uncertainty interval and is
criteria, we choose ¢ = 0.01 and

The simulation results a ¢ i ares 6 15.

\ Figures 6.11-6.13 show

‘ »‘\ ‘?t aints C1-C3 specified by (6.6).
\"} &

\\

beam is partitioned into 3 elements and

the simulation, the parameter 6 is raic
changed with time as described a

iter_max = 30.

S43 ]
e ik system tracks the trapezoidal
* -\ s fluctuated but tends to decrease

¥ i B
. It is the change of the mass fexible li L time-varying parameter that leads to the
variation of the system error. JFigure 0. cmor s, the computational time to solve
o parametric uncertainty. The

computational time increases throug ou‘t.}ﬁt‘g"‘ S planation for this phenomenon is

4 ’ ——— T
v nitial state

— e g 0 CEU]

5th iteration

3k H- - » é iteration

iteration

_____

Figure 6.11: Control input of flexible link system with time-varying parametric uncertainty.
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6.1.3 Iteration-varying parametric un
e

In our experiment, the sampling tim__ d the number of samples is 101. The
parameters of the ﬂexible- i k taken from [42] ugne » the mass of flexible link
has +20% uncertainty, i.¢:, =-0:2Folowing-is W J h demonstrates the mass

of flexible link as an iteratio .‘}r,,, m

A1 ngﬂniﬁﬁW

— = (t— t € [61,85),

heconten®) W 'armm@wmn MINYIRY

—3 up = 3 6ul = —4 6uh = 4 Aul = —4 Auh = 4. (67)

The desired reference 1

Ajectory is

The design parameters are chosen as follows: Q = 0.91;, R = 0.0115 where I, I> are identity
matrices with appropriate dimension. Applying the proposed robust ILC design to the flexible
link system, the 4th order model is used in steps 2 and 3 of the algorithm, whereas the flexible
link in step 4 is modeled using the Finite Element Method [44]. In particular, the flexible
beam is partitioned into 3 elements and 4 nodes which result in an 8th order model. In the
simulation, the parameter @ is randomly selected from the uncertainty interval and is changed

with iterations. For the stopping criteria, we choose € = 0.01 and iter max = 30.



65

0.1

NNNNNNNNNNNNNNNNNNNNNNNNNNNN
vvvvvvvvvvvvvvvvvvvvvvvvvvvv

0.095 7

0.09 - q

0.085 - q

0.075 7

0.07

Mass of flexible link

0.06

0.055

0.05

Figure 6.17: Mass ¢ varying parameter.

e 25 4 |
The simulation results are presente Fign .18-6.22. Figures 6.18-6.20 illustrate
‘specified by (6.7). In addition,

shown in Figures 6.20 which shows the

that the control input satisfies all"the-eon:
the control input update Auyyq tends”
o

e - —~ .

convergence of the control input. On the « sure 6.21 demonstrates that the

output of the flexible link-svstem tracks the trapezoidal reference input. The convergence
of the system error is displayed Jie“convergence of the system
error in this case is worse t L!‘ in the case whe ¢ mass of xible link is time-invariant,
but better than in the case v@le& the mass of f&:}ible link is changed as a time-varying
parameter. Moreover,, ki i quoj) i ime}té-solve the LMI problem
(5.21) of flexible lin@iuﬁﬂmﬁi g'p aﬂﬂﬂﬂiﬁn The computational
time increases as more trials are executed.€It can be explained as in the gprevious sections.

ARIANNITUAR1INETAE

6.2 Distlllqtlon column

Consider a distillation column system which has the following LV-configuration

[ig] = H(s) [‘L/] (6.8)

where zp is the distillate product composition [mole fraction],
xp is the bottom product composition [mole fraction],
L is the reflux flow [kmol/min],
V' is the boilup flow [kmol/min].
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Figure 6.21: Output response of flexible link system with iteration-varying parametric un-

certainty.
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L
Condenser holdup
| LI
Distillate product
= Reflux
Feed
Bottom product
Figure 6.2447A 2-1. - distillat amn system.
¥ - \ \ \
(6.9)
inwhich hy1(s), hia(s), hoi(s), hes(s) are first-or th fime-delay systems,
o
‘ LY . .
Suppose that K, is V: t ‘ the Relative Gain Array

(RGA) of this system is deﬁgd by i .m

ijth ele ﬁ?ﬁt l%eg ) 'rﬁ]el ent opr_l) (6.10)
When studying Mlﬁ:;fg‘ems, we haveg consi erﬁh; ﬂeracf;jrllgetween the inputs and
outputs of the system, otherwise, the contr®l performane@will not be as éxpected. The RGA
i s onioQt ) ) P Bl ek Wb ) fhdments of RGA
matrix are, thé/more interactions in the system happen. Besides, if the values of elements of
RGA matrix are around 0.5, the interactions in the system are much significant. In addition,

the RGA matrix is useful for the decoupling of the control inputs or system outputs to avoid

the interactions.

6.2.1 Time-invariant parametric uncertainty

To apply the designed ILC algorithm to this type of distillation column system, we assume

that the time constant and time-delay constant of each block transfer function hq11(s), hi2(s),
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ho1(8), hoo(s) are perturbed and these uncertain parameters can be represented by a para-

metric uncertainty vector 6 = [0y, 6,03, 04,05, 06, 07,08]", i.e.,

T =T (1 +q01), Tia =Tia(1 + qb2), Tor =T (1 + qb3), Too = Tao(1 + qb4)

711 =T11(1 + ¢05), Ti2 = T12(1 4+ qbs), 21 = To1(1 + qb7), Toz = Toa(1 + qbs)

where ¢ is a positive real constant which has the meaning as the bound of uncertainty,

0e0=1{0:0<1}
/ super-vector framework. Then, the
affine function of the uncertainty

The system (6.8) is discretized and r
Markov matrix G of the system (6.8
0,

(6.11)
where G represents the nomii epresent the uncertain dynamic
matrices. Like in the previous g is found by (2.29) in which
0;’s,j #i,5 = 1,m is kept. @ ) inal va ficg Wht eas 0;is varied in the uncertainty
interval to calculate the corresp ng 0 168 6s 2 btain the upper bound as well
as the lower bound of these impulse ) s, ] ne model (6.11) is used in the
step 2 and 3 of the Algorithm 1 “line fs odel (6.8) is the validating model in
the step 4. 155 ¥ 4 '

In this part, the Luyben—Vinan‘gP 7 : stillation column [45] is utilized where the
block transfer functions 1n:_(‘§ are ol
€
hi1 ;
(6.12)
e 2.T5e” 4.28¢70-35

e AnEy ST

The steady-state gain@atrlx of Luyben- 1nant istillation column 1s

AR ANNSEE A INYA Y

9
Hence, RGA of Luyben-Vinante distillation column can be calculated by (6.10)

ROA — [ 1.5995 —0.5995]

—-0.5995  1.5995

Look at the elements in the anti-diagonal of RGA matrix of Luyben-Vinante distillation
column, we can see there are some interactions in the systems.

The distillation column is considered to work around the operating point in which
zp = 0.98, zp = 0.01. Let the sample time be 0.5 minute, the number of samples is 101. We

assume that the time constant and the time-delay constant in each block transfer function
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of G(s) has £15% uncertainty, thus ¢ = 0.15. The design parameters are chosen as follows:
@ = I;, R = 0.0115 where Iy, I> are identity matrices with appropriate dimension.
The desired reference trajectory is
(0,0)7, t €[0,8]

r(t) =< (0.005,0)7, t € 19,25
(0.005,0.002)", t € [26,50]

The constraints of control inputs are specified by

3,Au; = —0.1, Auy, = 0.1. (6.13)

y se & the uncertainty interval and kept

unchanged for all iterations. Fo ng oﬁtertws-hse e = 1075 and itermax = 10.
e . Figures 6.25-6.27 show that

specified by (6.13). Figure

stem track the step reference

The simulation results
the control input converges
6.28 illustrates that the outp
inputs. We observe that there put responses in Figure 6.28.
They are due to the intera of the distillation column
system as mentioned above. a new set point at ¢t = §, a
fluctuation occurs in the second o __, ‘ ng to note that this output fluctuation
is decreased in the subsequent i ; r non happens at ¢ = 25 when
the second output changes to a el p. =\ ver, a monotonic convergence of
the system error is illustrated in Flgu@&)
computational time to Soulf.ithe LMI"pT'GBlerﬁ (3719) "¢ o, di lation column with time-

invariant parametric uncey

;,‘pnl-I_L_-lra-lllilll.‘llvl-llilvl--lllla-ln CA eS as more iterations are
executed. Although the compntational time § large] it is acceptable since the

distillation column has a slow dynamic.

6.2.2 Iteration-v ﬂﬁ B‘?%WW EJ ’] ﬂ j

We choose the Luyben+Vinante model of distillation column (6.12) to illustrate the effective-
ness of the Algor illation c the operating
point in Whiﬁ ﬁl}i&ﬁﬁ % Waﬁﬁ ﬁﬂﬁﬁﬁ gthe four block
transfer functidns are assumed to have £15% uncertainty, thus ¢ = 0.15. Let the sample time

be 0.5 minute, the number of samples is 101. Then, like in the previous part, the Markov

matrix G of the system (6.12) is analysed to be an affine function of the uncertainty 6,

8
=Go+ Y 0hGi (6.14)

where G represents the nominal system and G;’s,i = 1,8 represent the uncertain dynamic
matrices. The matrices G, G;’s,i = 1,8 are the same with the case of time-invariant para-

metric uncertainties.
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The desired reference trajectory is

(07 0)T7 t e [07 8]
r(t) =< (0.005,0)7, t €19,25]
(0.005,0.002)", t € [26,50]

The constraints of control inputs are specified by
u; = —0.05,u; = 0.05,0u; = —3,0uy = 3, Au; = —0.1, Auy, = 0.1. (6.15)
The design parameters are chosen as
identity matrices with appropriate di

selected from the uncertainty 1nte&v&rled e

choose ¢ = 107° and iter max !_l'U'_"

The simulation results are

= 0.08511, R = 0.0121, where I, I5 are

lation, the parameter 6 is randomly

— O

ion. For the stopping criteria, we

. Figures 6.31-6.33 show that
y (6.15). In addition, the

re the control input update

the control inputs satisfy a
convergence of the control i ted 1
Auyy1 comes to zero. On th a,; . 34 luét.rates that the outputs of the
distillation column system track T : renge j t&re are some abrupt changes
> o] I en the inputs and outputs of

es to a new set point at £t = 8,
a fluctuation occurs in the second utp,ntr’"tt W ti g that this output fluctuation

is diminished in the next iterati lar phenomenon happens at ¢ = 25 when the

second output changes to a different set )mrnt ] onic convergence of the system error

x: ""‘“’ oot
is demonstrated in Figure %5 Figure 6. 36 s}{ows t_hg‘ g:‘ onal time to solve the LMI

problem (5.21) of the distillationeotumn wit th iteration-varying t darametric uncertainties. The

computational time increasefjs the number c

6.3 Conclusion

Chaptr ¢ o Mﬁl ADYNINEINT. s

a distillation column. he flexible link is & SISO system,whereas the digtillation column in

this section Qam @sﬁuﬂﬁ m %jéwn si EIl {T‘ﬁ iﬁ exible link in
which, the mags o flexible link is considered as the uncertain parameter hree cases of

parametric uncertainty are considered, namely, time-invariant, time-varying and iteration-
varying. In each case, we demonstrate how to experimentally analyse the impulse responses
to derive an affine Markov model of flexible link using the proposed procedure, then, we
apply the corresponding ILC algorithm to the flexible link. The computational time for each
case of uncertainty is also investigated. On the other hand, in Section 6.2, we illustrate the
application of proposed ILC algorithms to a distillation column where the time constants and
time delays of the given transfer functions are considered to be time-invariant and iteration-

varying uncertainties. The analysis of the impulse responses are introduced. Consequently,
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the simulation results and the computational time are displayed. The simulation results for
both flexible link and distillation column reveal that the proposed ILC algorithm work quite

well.

AULINENINYINT
IR TN TN



CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

This thesis has proposed three new Iterativ: ing Control algorithms for linear systems in
the presence of parametric uncertai &‘;\\;ﬁt ematic and applicable methodology
has been introduced to design tho&lgorith the effectiveness of the proposed
ILCs has been demonstrated throngh Some generic e@ell as applications to physical
models. Next is the summaryo(Qme /i Wer to highlight the contents

presented in the thesis.

Chapter 1 briefly intro

convex optimization, Lagrangian

development of our algorithms.

ILC design problem, the system descrimﬁgpd modeling, and the methodology to determine
e S e —
the solution. ‘_‘_f)‘ /

Consequently, Chapfer3 nts th ail steps in the adesign of a robust ILC al-

gorithm for linear systems \_:j _ certainties. An upper bound
of the worst-case performa is derived, then, the mm—maxrﬁoblem is relaxed to a mini-
mization problem. Employing Bagsangian duality,&lie dual problem of this minimization one

is considered which nﬂaﬂe’aﬂ%nﬁdt%ﬁ va(J ﬂiﬂzzﬁon problem with LMI

constraints utilizing S¢hur complement. The convergence of the control input and the system
error is proved. Finally, a_generic ex e is provided.t rate t tiveness of the
st i ERRPIR (BN (HRE)

Chapter 1 and Chapter 5 propose other two robust ILC algorithms for linear systems in
the presence of time-varying and iteration-varying parametric uncertainties relatively. Like
in Chapter 3, the design procedures in these chapters are based on the general methodology
presented in Chapter 2. Due to the difference on the type of parametric uncertainties, the
details of the system descriptions as well as the solutions of the optimization problems are not
the same. However, the main steps in the designs are similar as described in the methodology.

In addition, the convergence of the control inputs and the system errors is also proved in each

chapter. , we introduce one generic example in each chapter to show the efficiency of the
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designed algorithms.

Chapter 6 presents the simulation results of some physical plants such as flexible link
and distillation column controlled by the proposed ILC algorithms. Given the linearized
models of the plants, we first assume that there are some parametric uncertainties in these
models, then, we discretize the continuous models and analyse the impulse responses of the
discretized systems to obtain the Markov matrices as affine functions of the uncertainties.
Then, these affine Markov matrices are incorporated in the robust ILC algorithms. On

the other hand, the parametric uncertainties changed to be time-invariant, time-varying

or iteration-varying to verify the correspondi C_algorithms. The simulations exhibit

lementation in the future.

7.2 Future works

As remarked in the design

limitations in our thesis. Th oul ] the future improvements.

a monotonic convergence of the
Next, the design of robu )
the affine Markov matrix, hence, :-_ ight be limited. The future work

should focus on a larger class of llnea;rs haps nonlinear systems
In this thesis, we cogilder the uncertal agnitude, but the rate of
change of the uncertainty is algystems, the bounds of rate

of change of uncertainty are meti wai ce, 1n the future research, this

information of uncertainty s yuld be incorporated in the contreller design, so that the robust

controller can handle with the dineertainty better.g s

The proposed ﬂ%g {31’% ijqng f]l[ﬂ ‘Eput delay as demon-
strated in the numerlqgl examples, but in our problem formulation, the time delay has not
been explicitl conmdered Actuall the‘ advantage of*IL.C lies in the<utilization of the
system informati ’]@'@ﬂ ‘iw %wa'ik{)g %q %’r}@ %ﬁ‘ delay in the
system [48], [49]. Therefore, the future work should consider the time delay in the system
such as input-delay and state-delay, and design the corresponding ILC.
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Appendix

Source Code of ILC algorithms Implemented in MATLAB

In this appendix, we will provide some source files of the simulations presented in the

thesis. The following table give the description of the source files.

Ny

File name \\M cription

AffineModel.m : Systens deling to obtain an affine Markov model of
N | O
FigureDisplay.m : .‘r’#’, »@u}%‘w fer running the simulation
F foxible i

FlexibleLink_TT.m St ati : \\ th a time-invariant para-
fain LC-TT Algorithm 1

ati i \\\\ ink wi h a time-varying para-
Cert \ {\;\\ posed ILC-TV Algorithm

ot “of - - ibl k with an iteration-varying
¢ un 1ty using proposed ILC-IV Algo-

FlexibleLink_TV.m

FlexibleLink TV.m

Initialization.m
plantFEM.m

i

&= System modelins toobtatmahigh order model of flex-
v e Method

AULINENINYINT
ARIAINTUNRIINYINY
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AffineModel.m

%

%System modeling to obtain the affine Markov model of uncertainty

%Inputs:

%0utputs: GO, Gl: Matrices of Affine Markov model

%Author |  Nguyen Dinh Hoa
%Date | 13/7/2009
JWork |  Control System Research Laborator

N=101; %number of samples
theta_1=-.2; theta_u=.2;
theta=(theta_u-theta_l)*rand+thet
h=.01;
m=round((theta_u-theta_1)/h);

%Flexible link parameters
FlexibleLink_para;

% State-space model

AC1,1)=0; AC1, 2) =0;

AC2, 1) =0; AC2, 2) =0; A(

AC3,1)=0; AC3,2) = i g~ 2*Km+Beq*Rm) /Jeq/Rm; A( 3, 4 ) = 0;

AC4, 1) =0; AC 4, 2) = Eff_M+Eff_G*Kt*Kg~2*Km+Beq*Rm)/Jeq/Rm; A( 4, 4 ) =

B(1, 1) =0; B(2,1)= q/Rm; B( 4, 1 ) = -Eff_M+«Eff_G+Kt*Kg/Jeq/Rm;

cCi1,1)=1;¢€C1,2) =
D = 0;

Jarm = Link_ M_O0 * Link L =~ 2 / 3
K_Stiff = Wc™2 * Jarm; !

AC 3, 2 ) = K_Stiff/Jeq; A( 4, 2 )? -K Stlff*(Jeq+Jarm)/Jeq/Jarm,
sys=c2d(ss(4,B,C,D),.01

. ﬁ UHIN BVI?W 81173

Tl Ingn e

yO=impulse(sys, .012*N) ;
stairs(t,y0,’r’, ’LineWidth’,2);hold on;
y=zeros (m+1,N+1) ;
for j=0O:m
theta=theta_l+j*h;
Link_M = Link_M_O*(1+theta);
Jarm = Link_M * Link L =~ 2 / 3;
K_Stiff = Wc™2 * Jarm;
AC 3, 2 ) = K_Stiff/Jeq;
AC 4, 2 ) = -K_Stiff*(Jeq+Jarm)/Jeq/Jarm;
sysm=c2d(ss(A,B,C,D),.012);
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y(j+1, :)=impulse(sysm, .012%N);

end

upper=max(y); lower=min(y);
stairs(t,upper,’--k’,’LineWidth’,2); hold on;
stairs(t,lower,’-.k’,’LineWidth’,2); hold off;
h=legend(’Nominal system’,’Upper bound’,’Lower bound’);
xlabel(’Samples’, ’FontSize’,12);

ylabel(’Impulse responses’,’FontSize’,12);

upper_bound=max(y(:,2:N+1));

lower_bound=min(y(:,2:N+1));

G_l=zeros(N); G_u=zeros(N);
G_u(:,1)=upper_bound(1:N)’;
G_1(:,1)=lower_bound(1:N)’;
for i=2:N
G_u(:,i)=[zeros(i-1,1) ;upper_
G_1(:,i)=[zeros(i-1,1);lower_bo
end
G1=(G_u-G_1)/2;

save GO.mat GO
save Gl.mat G1

'/.********************************

%End of program
Yok sk ok ok sk sk ok ok sk ok ok ok sk ok ok ok ok o

FigureDisplay.m

%

%Plot the results after running thanlatlon

o e b 61 ENINYINT

% outdis: tem output in all iterations

% TimeIndex: Control input rate w.r. 1‘ time index ingall iterationms

A ati
WS MRRATTRY
% Q-norm of system error of all iterations

% theta The uncertainty in all iterations

%0utputs: Figures of Control input, System output, Control input rate w.r.t. time index
% Control input rate w.r.t. iteration index, Infinity norm of system error,

% Q-norm of system error in all iterations.

%

Y =

%Author |  Nguyen Dinh Hoa

%Date |  25/2/2009

%Work | Control System Research Laboratory, Chulalongkorn University
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%Plot the output at iteration 1, 2, 5 & last

figure

%subplot(2,1,1);

plot((0:N-1)’,outdis(:,1),(0:N-1)’,outdis(:,2),’--?,(0:N-1)’ ,outdis(:,6),’:’,(0:N-1)’,outdis(:,16),’-.>,(0:N-1)’,
outdis(:,31),’+-?,(0:N-1)’,ref,’k’);

h=legend(’Initial state’,’1st iteration’,’5th iteration’,’15th iteration’,’30th iteration’,’Reference’);
set(h,’Box’,’0off’);

xlabel(’t’,’FontSize’,16);

ylabel(’y_k(t)’,’FontSize’,16);

%Plot the input at iteration 1, 2, 5 & last

figure
%subplot(2,1,2);
plot((0:N-1)’,indis(:,1),(0:N-1)’,indis(:
indis(:,31),’+-);

h=legend(’Initial state’,’1st iterati
set(h,’Box’,’off’);
xlabel(’t’,’FontSize’,16);
ylabel(’u_k(t)’,’FontSize’,16);

y(:,s),’:’,(O:N—l)’,indis(:,16),’—.’,(0:N—1)’,

on’ , iion’,’30th iteration’);

%Plot the constraint of the input
figure . 1
plot((0:N-1)’,TimeIndex(:,1), (0:N- i e 2 I ndex(: ,7:7,(0:N-1)’,TimeIndex(:,16),’-
(0:N-1)’,TimeIndex(:,31),%+-7);
h=legend(’Initial state’,’1lst itera
set(h,’Box’,’off’);

xlabel(’t’,’FontSize’,16);
ylabel(’\delta u_k(t)’,’FontSize’,1

,’30th iteration’);

%Plot the constraint of the input w.r.g
figure
plot((0:N-1)’,IterIndex(:,1),(0:N-1)’,Iter
(0:N-1)’,IterIndex(:,31),’+-") 7
h=legend(’Initial state’,’1st, -
set(h,’Box’,’off’);
xlabel(’t’,’FontSize’,16);
ylabel(’\Delta u_k(t)’,’FontSiz

>, IterIndex(:,6),’:’,(0:N-1)’,IterIndex(:,16),’ -

30th iteration’);

ae

R

7P10t the Infinity-norm of error vq‘% iterative proces

e Y 8] ) El NINYINT

xlabel(’k’,’FontSize’,1 m
ylabel(’ || e_k ||_{\infty}’,’FontSize’,16);

o ARARIRTRANTN TN A

figure

semilogy(0:k, ee(l k+1));
xlabel(’k’,’FontSize’,16);

ylabel(’|| e_k |I1_{Q}’,’FontSize’,16);

Yk sk ok ok ko sk ok ok ok ok sk ok o ook K o oK KK oo KKK o o K Ko oo Kok K oo KoK K o sk K o ok ko o
%End of program
Yokt sk ok ks sk ok ok ks sk ok ks sk ok ok ks sk ok ok sk sk ok ok sk sk ok ks ok ok ks ok ok sk sk ok ok ks sk sk ok ok ok



FlexibleLink_TI.m

%

%Design Robust ILC algorithm for Flexible Link robot with time-invariant uncertainty

%Inputs: plantFEM.m Higher model of flexible link using FEM

% GO, G1i: Matrices of Affine Markov model

%0utputs: indis: Control input in all iterations

% outdis: System output in all iterations

% TimeIndex: Control input rate w.r.t. time index in all iterations

% IterIndex: Control input rate w.r teration index in all iterations
% e: all iterations

A ee:

pA theta

VA ===========
M B WS

%Author |  Nguyen Dinh Hoa

sDate | 25/2/2009

#Work |  Control System Rese

clear;clc

load GO.mat
load G1.mat

thetal=-.2; theta2=.2;
G1=.2%G1;

theta=(theta2-thetal)*rand+thetal;

% Length of the Link
Link_L = 0.0254 * 15;
% Mass of the Link

Link_M = (1+theta)*0.065/.8;

%Pertubed model of system usingﬂ me
[A,B,C,D]=plantFEM(3,Link_L,Lin

ﬁumﬂﬂmwmm

sys=c2d(ss(4,B,C,D), .01
G=zeros(N);
for i=1:N

for k=1:i

“”‘”ifﬁ““"dﬂifuum'mmaa

Z**************************************************************************

%Initialize the system

Z**************************************************************************

Initialization;

Z**************************************************************************

%Iterative process

%**************************************************************************

iter_max=30; %Maximum number of iteration

time=zeros(iter_num,1);

for k=1:iter_max

%Computational time



end

if norm(error,inf) <= epsil
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%Current iteration

%Step 1: solve SDP problems
1=[-max(u_low-u,de_u_low);min(u_high-u,de_u_high) ;-du_low+J*u;du_high-J*ul;

tic

cvx_begin sdp
variables rho z12
variable 1d(4#*N)
minimize (rho)
[(GO’*Q*G1+G1’>*Q*G0) *z12+G1 > *Q*G1+G0’ *Q*GO+R,F’ *1d-2* (G1’*Q*error*z12+G0’ *Q*error) ;
(F?*1d-2%(G1’ *Q*error*z12+G0’ *Q*error) ’x1+rho] >= 0;
[1 z12;z12 1] >= 0; \
1d >= 0;

cvx_end

toc
’%1d-2%(G1’*Q*error*z12+G0’ *Q*error)) ;

¥ CO %[
%Calculate the derivati S8 t
IterIndex(:,k+1)=delta_u; = \\ \\\\

fymm === F-4 T -
%Next iteration AR
u=delta_u+u;
indis(:,k+1)=u;
y=G*u;
y=00;y(1:N-1)];
outdis(:,k+1)=y;
error=ref-y;
e(k+1)=norm(error,inf);
ee(k+1)=sqrt(error’*Q*error) ;
%Calculate the derivative of the i
TimeIndex(1,k+1)=u(1); :
for i=2:N

TimeIndex(i,k+1)=
end

ﬂ‘UEI’J‘VlEJ'VIiWEI’]ﬂi

end

Z*********************** 3k 3k 3k ok 3k sk 3k 3k 3k 3k ok 3k ok sk ok 3k sk ok sk ok sk ok sk 5k ok 5k ok sk ok 3k 3k ok 3k ok 3k ok 3k ok %k ok >k x>k xk ok k ok

%Save the results

save

save

save

save

save

save

e AR T TITE8 Y

FL_output.mat outdis
FL_TimeConstraint.mat TimeIndex
FL_IterConstraint.mat IterIndex
FL_H_Error.mat e

FL_Q_Error.mat ee

savefile= ’FL_uncertainty.mat’;

save(savefile, ’theta’);

savefile=’computational_time.mat’;

save(savefile,’time’);

%**************************************************************************

%Display the results

Z**************************************************************************



disp(’Number of iteration is:’);
disp(k);

FigureDisplay
Tk ks ok sk sk ko ok sk ok s sk ok sk ke sk ok s ko sk ks ok sk ke sk ok s ko sk ks ok sk sk ks ko sk ks ok stk sk ks ko sk ok

%End of program
Yy sk ok ok ko sk ok ok ok ok sk ok o ook K oK KK oo KKK o R Ko o KoK K oo KoK K sk sk K ok ko o

1]
|
W

AULINENINYINT
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FlexibleLink _TV.m

%

%Design Robust ILC algorithm for Flexible Link robot with time-varying uncertainty

%Inputs: plantFEM.m Higher model of flexible link using FEM

% GO, Gi: Matrices of Affine Markov model

%0utputs: indis: Control input in all iterations

% outdis: System output in all iterations

A TimeIndex: Control input rate w.r.t. time index in all iterations

% IterIndex: Control input rate w.r teration index in all iterations

% e: Infinity norm all iterations
h ee: Q-norm of sy
pA theta: The uncerta

%Author |  Nguyen Dinh Hoa
%Date | 25/2/2009
#Work |  Control System Rese

clear;clc;

load GO.mat
load G1.mat

theta_l=-.2; theta_u=.2; % size of u
G1=.2%G1;

% Length of the Link
Link_L = 0.0254 * 15;

% Nominal mass of the link
Link_ M_0 = 0.065/.8;

% The first uncertain mass ofi
theta1=(theta_u—theta_l)*randu
Link_M_1 = (1+thetal)*Link_M_O; ’l

% The second uncertain mass of the Link
theta2=(theta_u-theta_ l)*rand+theta'i
Link_M_2 = (1+theta2)#*Li

e DA ANENINGINT

[Al B1,C1,D1]=plantFEM(3,Link_L,Link_M_1);
sysi=c2d(ss(A1,B1,

e m-’o]fiﬁ'lﬁ,\iﬂ‘im YR1INY1A Y

sys2=c2d(ss(A2, B €2,D2),.012);

yy=zeros(N,1);

for i=0:40
yy(i+1)=sysl.c*sysl.a"i*sysl.b;

end

for i=1:60
yy(i+41)=sys2.cxsys2.a"i*sysl.a"40*sys2.b;

end

G=zeros(N);
for i=1:N
for k=1:i
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G(i,k)=yy(i-k+1);
end

end

ttl=zeros(50,1); ttl(1)=thetal;
tt2=zeros(50,1); tt2(1)=theta2;

Yk ok ko ok ok oK ok KK o KK ok KK o KKK KK o KK K Kok Ko KKK KK kK ok Kok Kok K Kok K ok KK K K
%Initialize the system

%**************************************************************************

Initialization;

A=2xG1’*Q*G1+2*GO’ *Q*GO+R ;
Yk sk sk sk ok sk ok sk ok sk ok sk sk ok sk sk sk ok sk ok sk sk ok sk sk ok sk sk ok ok sk ok

/*********

%Iterative process .
O ks ok ok o kK ok ok ok o K K ok ok o K K Kok ok ok o o K K Kok ok ok : *k % * kKKK
iter_max=30; %Maximum number of i

time=zeros(iter_num,1); Y%Computatio

for k=1:iter_max
%Current iteration 4 f ;
A ) AN  _. \\___
%Step 1: solve SDP prob ‘
b=-4%G0’*Q*error;
1=[-max(u_low-u,de_u_low); i ,desu k ; ¢ _high-J*ul;
tic \\\
cvx_begin sdp I
variable gm
variable 1d(4#*N)
minimize (gm)
[A,b+F’%1d; (b+F’ %14
1d >= 0;
cvx_end
time(k)=toc;

%Step 2: calculate the value of delta_u(k+1)
delta u——1/2*1nv(A)*(b+F’*1p

ot R ] ANYNINEINT

%Next iteration

% mmmmm 13RI Y

thetq

theta_next2=(theta_u—theta_l)*rand+theta_1;

while (theta_next2-theta2 > 0.04)|]|(theta_next2-theta2 < -0.04)
theta_next2=(theta_u-theta_l)*rand+theta_1;

end

% Length of the Link

Link_L = 0.0254 * 15;

% Mass 1 of the Link

Link_M_1 = (1+theta_next1)*0.065/.8;

% Mass 2 of the Link

Link_M_2 = (1+theta_next2)*0.065/.8;



%Pertubed model of system using FEM method
[A1,B1,C1,D1]=plantFEM(3,Link_L,Link_M_1);
sysi=c2d(ss(A1,B1,C1,D1),.012);

[A2,B2,C2,D2]=plantFEM(3,Link_L,Link_M_2);
sys2=c2d(ss(A2,B2,C2,D2),.012);

for i=0:40
yy(i+1)=sysl.c*sysl.a"i*sysl.b;

end

for i=1:60
yy(i+41)=sys2.c*sys2.a"i*sysl.a"40%

end

G=zeros(N);
for i=1:N
for 1=1:i
G(i,D)=yy(i-1+1);
end

end

u=delta_u+u;
indis(:,k+1)=u;
y=G*u;
y=[0;y(1:N-1)];
outdis(:,k+1)=y;
error=ref-y;
e(k+1)=norm(error,inf);

ee(k+1)=sqrt(error’*Q*error);

thetal=theta_nextl;
ttl(k+1)=thetal;
theta2=theta_next2;
tt2(k+1)=theta2;

YCalculate the derivative c
TimeIndex(1,k+1)=u(1); .“‘
for i=2:N u

T1meIndex(1 k+1)=u(i)- q‘i-

< e B8] W El\ NINYINT

end

ﬁ NERE
%*************** * %Kk g*ﬁ*ﬂn*ﬁm u!m*jg** * *ﬂ

%Save the results

O ks ok ok o kK sk ok ok o K K ok ok o K KK ok ok ok o o K KK oK ok o o K K Kok ok ok o o K Kok ok ok o o K K K ok ok ok o K K Kok ok ok o o K Kok
save FL_inputl.mat indis

save FL_outputl.mat outdis

save FL_TimeConstraintl.mat TimeIndex
save FL_IterConstraintl.mat IterIndex
save FL_H_Errorl.mat e

save FL_Q_Errorl.mat ee

savefile= ’FL_uncertaintyll.mat’;
save(savefile, ’ttl’);

savefile= ’FL_uncertaintyl2.mat’;

save(savefile, ’tt2’);



savefile=’computational_time.mat’;

save(savefile,’time’);

'/.**************************************************************************

%Display the results
Yotk sk ok ke sk ok ok ks sk ok ok sk sk ok ks sk ok ok sk sk ok ok sk sk ok ks ok ks ok ok sk sk ok ks sk ok ok ok

disp(’Number of iteration is:’); disp(k);

FigureDisplay

Yok sk sk sk ok sk ok sk ok sk sk ok skt sk sk ok sk ok sk sk s ks ok skt sk sk sk ok sk sk ks ok skt sk sk sk ok sk sk s ks ok skt sk sk sk ok sk sk kok ok
%End of program

Yk sk sk sk sk ok sk ok sk ok sk ok sk ok sk ok sk sk sk sk ok sk sk s ks ok skt sk sk sk ok sk sk kok ok ok sokoskokskokskokok ok ok ok ok ko sk ok

AULINENINYINT
IR TN TN
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FlexibleLink _IV.m

%

%Design Robust ILC algorithm for Flexible Link robot with iteration-varying uncertainty

%Inputs: plantFEM.m Higher model of flexible link using FEM

% GO, G1i: Matrices of Affine Markov model

%0utputs: indis: Control input in all iterations

% outdis: System output in all iterations

% TimeIndex: Control input rate w.r.t. time index in all iterations
% IterIndex: Control input rate w.r teration index in all iterations
% e: all iterations

A ee:

pA theta

VA ====
M B WS
%Author |  Nguyen Dinh Hoa

%Date | 25/2/2009

#Work |  Control System Rese

clear;clc

load GO.mat
load G1.mat

thetal=-.2; theta2=.2;
G1=.2%G1;

theta=(theta2-thetal)*rand+thetal;
tt=zeros(50,1); tt(l)=theta;

% Length of the Link
Link_L = 0.0254 * 15;
% Mass of the Link .
Link_M = (1+theta)*0.065/.8; E

%Pertubed model of system using FE%‘method
[A,B,C,D]=plantFEM(3,Li

FT T8 El NINYINT

G=zeros(N);
for i=1:N

" ;ﬁ?&lﬁﬁﬂ‘im UNIINYAY

end

'/.**************************************************************************

%Initialize the system
Yokt sk ok ks sk ok ok ok ks sk ok ok sk sk sk ok ks sk ok ok sk sk ok ks sk ok ok ks ok sk ok ok sk sk ok ok ks sk ok ok ok ok

Initialization;

Yk sk ok ok sk ok sk ok o Kok ok ok o Kok ok ok ok o ok ok ok ok sk ok ok Kok ok sk ok sk ok sk ok o K sk ok ok ok o ok sk ok ok ok ok K Kok ok ok sk ok Kok o Kk ok ok
%Iterative process

Ok sk sk ok sk ok sk ok sk ok sk ok o sk ok o sk ok o ok sk ok sk sk o ok ok sk ok ok ok sk ok o ok sk ok ok ok ok ok sk ok sk sk ok sk sk ok ok ok sk ok o ok ko ok
iter_max=30; %Maximum number of iteration

time=zeros(iter_num,1); %Computational time
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for k=1:

iter_max

%Current iteration

%Step 1: solve SDP problems
1=[-max(u_low-u,de_u_low);min(u_high-u,de_u_high) ;-du_low+J*u;du_high-J*ul;

tic

cvx_begin sdp
variables rho z12 z13 z23
variable 1d(4#*N)
minimize (rho)
[(G1’*Q*GO+G0’ *Q*G1) *z13+G1 > *Q*
+2%G1 2 *Q*xG1xuxz12+2%G0* *Q*G1%n
(F’*ld—2*G1’*Q*error*zl3j2*«
-4%1d°’*1-8%u’*G1’*Q*error*z
[1 z12 z13;z12 1 z23;z1
1d >= 0;

cvx_end

time(k)=toc;

+2xG0’ *Q*G1l*u*xz23)’,

%Step 2: calculate the
delta_u=-1/2*inv((G1’*Q*GO

(F?x1d-2*G1’*Q*error*zi *u*xz23) ;

IterIndex(:,k+1)=delta_u;
%Next iteration

theta_next=(theta2-thetal)*rand+thet
while (theta_next-theta > 0.04)||“325 11

theta_next=(theta eta {+th
end

% Length of the Link
Link_L = 0.0254 * 15;
% Mass of the Link
Link_M = (1+theta_next)*0. Q‘B/

AN NGNS

[A,B,C,D]=plant Link

W’Tﬂﬁ\ﬂ‘im UNIINYAY

=1:i
G(i,1)=sys.c*sys.a"(i-1)*sys.b;

end

end

u=delta_u+u;
indis(:,k+1)=u;
y=G*u;
y=[0;y(1:N-1)]1;
outdis(:,k+1)=y;
error=ref-y;

e (k+1)=norm(error,inf);

d-2xG1’*Q*error*z13-2*G0’*Q*error. ..
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ee(k+1)=sqrt(error’*Q*error);

theta=theta_next;
tt(k+1)=theta;

%Calculate the derivative of the input w.r.t time index
TimeIndex(1,k+1)=u(1);
for i=2:N
TimeIndex(i,k+1)=u(i)-u(i-1);
end
if norm(error,inf) <= epsilon
break;
end

end

%,k ek sk sk sk o ok k sk ok sk o kK Kok ok o ok K Kok ok ok o ok ok K Kok ok ok K
%Save the results

%k ek sk sk o ok ks ok ok o ok Kok ok o ok K Kok ok ok o o oKk K K
save FL_IV_input.mat indis
save FL_IV_output.mat outdis
save FL_IV_TimeConstraint.mat Time
save FL_IV_IterConstraint.mat I
save FL_IV_H_Error.mat e
save FL_IV_Q_Error.mat ee
savefile= ’FL_IV_uncertainty.maf’;
save(savefile, ’tt’);
savefile=’computational_time.mat
save(savefile,’time’);
Z************************************J EETTTTTS
%Display the results
O ks ok ok o ok ok ok ok o kK Kok ok o K K Kok ok ok o o K K Kok ok o o K K K £ 4> kK K Kok ok ok ok K
disp(’Number of iteration is:’ ks :
disp(k);

k

.'

FigureDisplay

i¥
%, sk sk sk sk sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok 3k 3k ok K 3 K K ok 3 o SRR o o ok ok ok ok ok ok ok sk ok ok kK kK ke ks o s ok sk ok ok ok sk ok K Kok 3k kK Kk ok

%End of program

F’TTJEJ Fa EWI Arprern
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FlexibleLink_Para.m

3
%File contains the physical parameters of a flexible link
%Inputs:

%0utputs: parameters of flexible link

%Author |  Nguyen Dinh Hoa
%Date | 22/9/2009
%Work | Control System Research Laboratory,

% Armature Resistance (0Ohm)

Rm = 2.6;

% Motor Torque Constant (N.m/A)
Kt = .00767;

% Motor Back-EMF Constant (V.s/rd)
Km = .00767;
% Internal Gear Ratio (of the Plan
Kgi = 14;

% Gearbox Efficiency
Eff_G =0.9;

% Motor ElectroMechanical Efficiency
Eff_M =0.69;

% J24: 24-tooth Gear Inertia (on
m24 = .005; % mass (kg)

r24 = 0.5 / 2 * 0.0254; % radius
J24 m24 *x r24~2 / 2;

% J72: T7T2-tooth Gear Inertia (on the
m72 = .030; % mass (kg)

r72 1.5 / 2 * 0.0254; % radius
J72 m72 * r72°2 / 2;
% J120: 120-tooth Gear Inerti_
mi20 = .083; % mass (kg) -
ri20 = 2.5 / 2 % 0.0254; % radiumm)
J120 mi20 * r120°2 / 2;

% Rotor Inertia (kg.m"2)

Jm = 3.9e-7

in e B W BHSHEA R

Kg = Kgi * Kge;

O S IR d

% Length of the Elnk is 15 inches

Link_L = 0.0254 * 15;

% Uncertain weight of the Link

Link_M = (1+theta)*0.065/.8;

% Nominal weight of the Link

Link_M_0 = 0.065/.8;

% Calculte the Moment of Inertia of a Link (Assumed Rigid)
Jarm = Link_M * Link_L ~ 2 / 3;

% Natural Frequency was experimentally determined to be 3 Hz
We = 2 % pi * 3;

% Estimate the Stiffness of the simplified Link Model
K_Stiff = Wc™2 * Jarm;

100



101

Initialization.m

N=101; %number of samples

ref=zeros(N,1); %Target trajectory

for k=17:41
ref(k)=1/25%(k-16) ;

end

for k=42:60
ref(k)=1;

end

for k=61:85
ref(k)=1-1/25%(k-60) ;

end

u=zeros(N,1);
y=G*u;
y=[0;y(1:N-1)];
error=ref-y;

u_low=-3%ones(N,1); u_high=3%ones
du_low=-4*ones(N,1); du_high=4*one
de_u_low=-4%ones(N,1); de_u_hig

nput magnitude
e input rate
input changes between iterations

Q=.9%eye(N); R=.01xeye(N);

J=eye(N);
for k=2:N
J(k,k-1)=-1;
end
F=[-eye(l) ;eye(N);-J;J];

indis=zeros(N,1000);
indis(:,1)=u;
outdis=zeros(N,1000);
outdis(:,1)=y;
IterIndex=zeros(N,1000);
TimeIndex=zeros(N,1000);

EE%%ESEE,E?EE&Z%M AuL? NNINEINT

ee(1)= sqrt(error’*ﬂ*error ;

-l ANNIUNAIINYIAY

'/.**************** >k 3k ok 3k 3k 3k ok >k 3k ok sk sk 5k sk ok 3k ok 3k ok sk ok >k 3k >k sk ok sk ok 3k 5k 3k 5k >k 3k >k 5k k 5k 3k ok 3k ok %k ok %k ok >k 3k >k 5k %k >k %k *k >k *k kK

%End of program
Yy sk ok ok ko sk ok ok o ok sk ok o ook K o oK KK oo K KoK ok R KK o Kok oK oo KoK K sk sk K o ok ko o
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plantFEM.m

3
% Perturbed plant transfer function using finite element model

% [A,B,C,D]=plantFEM(N,M_tip_po,M_tip);

% M_tip_po is the M_tip position (not necessary to be equal to the length
% of the beam), M_tip is the weight of the Flexible Link

% Example:

pA [4,B,C,D]=plantFEM(1,0.45,0.05) ;

A
S S S
%Author |  Nguyen Dinh Hoa \

%Date | 25/2/2009

%Work | Control System Researc

%Version |

Modified version of

%Stiffness matrix of one element
Ki = ExI/1i~3% [12 6%1i -12 6%1i; 12 -6%1i; 6%1i 2*1i~2 -6%1i 4*1i~2];
%Mass matrix of one element f
Mi = Link_M_0/(n*420)* [156 22*1i 54 —'3*1

-13%1i -3*%1i~2 -22%1i 4x1i~2];

-3%x1i"2; 54 13%1i 156 -22%1i;

Mhat
Khat

zeros (2xn+2, 2*n+2);

zeros (2%n+2, 2%n+2); v

for i = 1:n =!Hl JEI
Mhat (2*i-1:2%i+2, 2%i-1:2%i+2) at(2*i-1:2%i+2, 2%i-1:2%i+2) + Mi; J
Khat (2%i-1:2*%i+2, 2%i-1:2%i+2) = Khid:(zn 1:2%i+2, 2%i-1: 2*1+2) + Ki;
end

1 M El NINYINT

xp=M_ t1p po- (ep 1)*Link_ L

s ﬂ&"xﬁ*ﬂﬂ‘im YRIANYIAY

A2—11*(xp/11—2*x 2/1i"2+xp~3/1i"3);
A3=3%xp~2/1i"2-2%xp~3/1i"3;
A4=1i*(-xp~2/1i~2+xp~3/1i"3);

AA=[A1 A2 A3 A4];

Mhat (2xep-1:2%ep+2, 2%ep-1:2%ep+2)=Mhat(2%ep-1:2%ep+2, 2%ep-1:2%ep+2)+M_tip*AA’*AA;

Maa = Mhat(3:2*n+2, 3:2%n+2);
Kaa = Khat(3:2*n+2, 3:2*n+2);
M1i1 = Maa(1:2:2%n-1, 1:2:2%n-1);
M12 = Maa(1:2:2%n-1, 2:2:2%n);



M21 = Maa(2:2:2*%n, 1:2:2%xn-1);
M22 = Maa(2:2:2%n, 2:2:2%n);

K11 = Kaa(1:2:2%n-1, 1:2:2%n-1);
K12 = Kaa(1:2:2%n-1, 2:2:2%n);
K21 = Kaa(2:2:2%n, 1:2:2%n-1);
K22 = Kaa(2:2:2%n, 2:2:2%n);

M = M1l - K21’*inv(K22)*M21 - M12xinv(K22)*K21 + K21’*inv(K22)*M22*inv(K22)*K21;
K = K11 - Ki12xinv(K22)*K21;
Q = [eye(n,n);-inv(K22)*K21];

lhat = li:li:Link_L; lhat=lhat’;

Ie Th+lhat’*M*lhat;
M1 = Mxlhat;

templ = (1/Ie)*M1’*inv(M—Ml*Ml’/Ie)*i'
temp2 = -inv(M-M1*M1’/Ie)*K;
temp = [templ; temp2];

%SIS0 model
At
Bt

[zeros(n+1,n+1) eye(n+l,n 1 6
[zeros(n+1,1); (1/Ie”~2)*M1’x*i Y «H1- X g) * \\,—Ml*Ml’/Ie)*Ml];

B=zeros(size(Bt,1),1);

A=At;

for I=1:size(Bt,1),
B(I,1)=Bt(I,1)*Eff_M+Eff_G*Kt*Kg/
A(T,n+2)=At (I,n+2)-Bt(I,1)*(Eff_M+Eff

end

C = zeros(1,2*n+2);

C(1,2%ep-1:2%ep+2)=AA;

C=C(1,3:2%n+2);

C1=C(1,1:2:2%n-1);

€2=C(1,2:2:2%n);

c=[C1 C2];

C=C*Q;

C=[1 C/M_tip_po zeros(1,n+1)];

D=0;

ﬂUEJ’JVIEWI?WEJ’]ﬂ‘i

%************************ *********************‘k************** 3k sk k ok ok k ok kk

TR AR SHHRITAYINY
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