

CHAPTER VI

RECOMMENDED DESIGN PROCEDURE FOR CONTACT STABILIZATION PROCESS

6.1 Introduction

In this research work, a main parameter which has been found in the operation of contact stabilization process is sludge age (θ_c) . It is also the most importance parameter in design calculation of a contact stabilization treatment plant.

The applications of contact stabilization process for industrial waste treatment has not been adequate kinetic coefficients yet. Therefore the feasibility study using a laboratory scale contact stabilization unit is recommended. The operating conditions and various essential parameters should be determined.

However, the design procedure of a contact stabilization treatment plant should be carefully attended for the optimum conditions and design parameters, as stated by ORHON (1977), "The contact stabilization is a complicated process and its design has been more an art than a science".

The recommended design parameters of the process are shown in Table 6.1.

Parameters	Notations	Units	Values
Sludge age	θc	day	5-20
Specific substrate Utilization rate	U _T	kg COD kg VSS-day	0.2-0.8
Concentration of MLSS in contact tank	x _c	mg/l	1,500-6,000
Concentration of MLSS in stabilization tank	x _s	mg/l	3,000-12,000
Contact time	tc	hr	1-4*
Stabilization time	ts	hr	2–10*
Fraction of biomass in the contact tank	α	%	5-25
Recycle ratio	R	%	50-200

Table 6.1 - Recommended Design Parameters of Contact Stabilization Process

*depending on strength of wastewater

6.2 Design Procedure

The design procedure of contact stabilization process within carbonaceous phase is recommended as following:

- Evaluate the kinetic coefficients: a, a₁^{*}, a₂^{*}, a₁, a₂, a₃, a₄, k₂, (K₀)_{TT}, (K₀)_{CT}, γ_{TT} and γ_{CT} using laboratory scale contact stabilization unit.
- 2. Given values of: Q, x_i and $x_c (\simeq x_c)$. Then, select θ_c , t_c and R from Table 6.1.
- 3. Calculate C_{TT} from equation (3.56).

$$C_{TT} = \frac{\gamma_{TT}(1 + k_2 \theta_c)}{\theta_c \{a(K_o)_T - k_2)\} - 1}$$
(6.1)

4. Calculate M_{TT} from equation (3.25)

$$M_{\rm T} = \frac{Q x_{\rm i}}{C_{\rm TT}}$$
(6.2)

5. Calculate U_{TT} from equation (3.17)

$$U_{\rm TT} = \frac{1 + k_2 \theta_{\rm c}}{a \theta_{\rm c}}$$
(6.3)

6. Calculate η_{TT} from equation (3.39)

$$\eta_{\rm TT} = \frac{U_{\rm TT}}{C_{\rm TT}} \tag{6.4}$$

7. Calculate x_e from equation (3.22)

$$x_e = (1 - \eta_{TT}) x_i$$
 (6.5)

- 8. If x_e is not within desired value, modify θ_c and repeat step 1 to 7. If x_e is satisfactory, continue.
- 9. Calculate n_{CT} from equation (5.14)

$$\eta_{\rm CT} = 1 - a_1 a_1^* \theta_c^{a_2 + a_2^*} (1 - \eta_{\rm TT}) (1 + R)$$
(6.6)

10. Calculate C_{CT} from equation (3.47)

$$C_{CT} = \frac{(K_{o})_{CT} - \gamma_{CT} \eta_{CT}}{\eta_{CT}}$$
(6.7)

11. Calculate α from equation (5.10)

$$\alpha = \frac{1}{a_1 \theta_c^{a_2} \cdot C_{CT}}$$
(6.8)

12. Calculate M_{C} from equation (3.28)

$$M_{\rm C} = \alpha M_{\rm T} \tag{6.9}$$

13. Calculate X_{C} and V_{C} from equation (3.28) and (3.33)

$$X_{C} = \frac{M_{C}}{Qt_{C}}$$
(6.10)

$$V_{\rm C} = Qt_{\rm C} \tag{6.11}$$

If X_{C} is not satisfactory, modify tc, if X_{C} is satisfactory, continue.

14. Calculate M_S , if the fraction of biomass in the sedimentation tank is negligible when compare to M_T :

$$M_{\rm S} = M_{\rm T} - M_{\rm C} \tag{6.12}$$

15. Calculate U_S from equation (5.19)

$$U_{\rm S} = a_3 \theta_{\rm C}^{\rm a_4} \tag{6.13}$$

16. Calculate x_S from equation (5.17)

$$x_{S} = \frac{x_{C}^{RQ} - U_{S}^{M}}{RQ}$$
(6.14)

17. Calculate U_{CT} from equation (3.41)

$$U_{CT} = \frac{Q \left\{ x_{i} + Rx_{S} - (1 + R)x_{C} \right\}}{M_{C}}$$
(6.15)

18. Calculate k_{C} from equation (5.8), a_{C} and $(k_{2})_{C}$ from Table 5.9.

$$k_{\rm C} = a_{\rm C} U_{\rm CT} - (k_2)_{\rm C}$$
 (6.16)

19. Calculate X_{S} from equation (3.4)

$$x_{S} = \frac{X_{C} \left\{ (1 + R) - k_{C} t_{C} \right\}}{R}$$
(6.17)

131

If the term $k_{C}t_{C}$ is negligible when compare to the term (1 + R)

$$X_{S} = \frac{(1 + R)X_{C}}{R}$$
(6.18)

20. Calculate V_s and t_s from equation (3.29) and (3.35):

$$v_{\rm S} = \frac{M_{\rm S}}{X_{\rm S}}$$
(6.19)
$$t_{\rm S} = \frac{V_{\rm S}}{0}$$
(6.20)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย