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CHAPTER I

INTRODUCTION

1.1 Background

In 1940, Ulam, [15], proposed the following problem, which has since been referred

to as a stability problem: let f be a mapping from a group (G1,+) to a metric group

(G2,+) with metric d(·, ·) such that

d(f(x+ y), f(x) + f(y)) ≤ ε. (1.1)

Do there exist a group homomorphism L : G1 → G2 and a constant δε > 0 such that

d(f(x), L(x)) ≤ δε

for all x ∈ G1? This problem was affirmatively solved one year later by Hyers,

[7], under the assumption that G2 is a Banach space with norm ‖·‖. In 1978, a

generalized version of Hyers’ result was proved by Rassias, [14], where f : G1 → G2

satisfies, instead of (1.1), the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (x, y ∈ G1),
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where θ 6= 0 and 0 ≤ p < 1. In 1979, Baker, Lawrence, and Zorzitto, [4], showed that

if f is a function from a vector space to R satisfying

|f(x+ y)− f(x)f(y)| ≤ ε,

for some fixed ε > 0, then either f is bounded or satisfies the exponential Cauchy

functional equation

f(x+ y) = f(x)f(y). (1.2)

Such a result is referred to as the superstability of the functional equation (1.2).

In this dissertation, the stability question about a generalized trigonometric func-

tional equation is investigated. To be systematic, we first list all the functional

equations that are of interest here using the terminology of Kim, [13].

f

(
x+ y

2

)2

− f
(
x− y

2

)2

= f(x)f(y) (sine functional equation), (S)

f(x+ y) + f(x− y) = 2f(x)f(y) (d’Alembert functional equation), (A)

f(x+ y) + f(x− y) = 2f(x)g(y) (Wilson functional equation), (A(fg))

f(x+ y) + f(x− y) = 2g(x)f(y), (A(gf))

f(x+ y) + f(x− y) = 2g(x)g(y), (A(gg))

f(x+ y)− f(x− y) = 2f(x)f(y), (T)

f(x+ y)− f(x− y) = 2g(x)f(y), (T(gf))

f(x+ y)− f(x− y) = 2f(x)g(y), (T(fg))

f(x+ y)− f(x− y) = 2g(x)g(y), (T(gg))

f(x+ y)− f(x− y) = 2g(x)h(y), (T(gh))

f(x+ y)− f(x− y) = 2f(y). (Jy)
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Let us briefly review some relevant earlier works.

Here and throughout, (G,+) always denotes an abelian group. In certain cases,

it may satisfy additional hypothesis of being a abelian 2-divisible group. By an addi-

tive (respectively, exponential) function A (respectively, E) we refer to a function A

(respectively, E) satisfying the additive (respectively, exponential) Cauchy functional

equation

A(x+ y) = A(x) + A(y) (respectively, E(x+ y) = E(x)E(y))

for all x, y belonging to the domain of A (respectively, E).

The superstability of the cosine functional equation (A), was investigated by

Baker, [3], in 1980 with the following result: let δ > 0. If f : G→ C satisfies

|f(x+ y) + f(x− y)− 2f(x)f(y)| ≤ δ, (1.3)

then either

|f(x)| ≤
(

1 +
√

1 + 2δ
)
/2 (x ∈ G)

or f is a solution of the equation (A). In 1983, Cholewa, [6], investigated the su-

perstability of the sine functional equation (S), with the following result: let δ > 0

and let (G,+) be a 2-divisible abelian group. If an unbounded function f : G → C

satisfies

|f(x+ y)f(x− y)− f(x)2 + f(y)2| ≤ δ,

then it satisfies (S). The superstability of the generalized sine functional equation

was treated by Kim, [11], with the following result: let ε > 0. If the functions
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f, g, h : G→ C satisfy

∣∣∣∣∣g(x)h(y)− f
(
x+ y

2

)2

+ f

(
x− y

2

)2
∣∣∣∣∣ ≤ ε,

then either g is bounded or h satisfies (S); moreover, if g satisfies g(0) = 0 or if f

satisfies f(x)2 = f(−x)2, then either h is bounded or g satisfies (S). Later in 2007,

Kim, [12], investigated the superstability related to the d’Alembert and the Wilson

functional equations, with the following results:

Theorem 1.1.1. Let ϕ : G→ R.

I. If f, g : G→ C satisfy

|f(x+ y)− f(x− y)− 2g(x)f(y)| ≤ ϕ(x),

then either f is bounded or g satisfies (A).

II. If f, g : G→ C satisfy

|f(x+ y)− f(x− y)− 2g(x)f(y)| ≤ ϕ(y),

and if g is unbounded, then g satisfies (A), or f and g satisfy (T(gf)), or f and g

satisfy (A(fg)).

In the same work, Kim also considered the superstability of the functional equation

(T(fg)) with the following results:

Theorem 1.1.2. Let ϕ : G→ R.

I. Suppose f, g : G→ C satisfy

|f(x+ y)− f(x− y)− 2f(x)g(y)| ≤ ϕ(y). (1.4)
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If f is unbounded, then

(i) g satisfies (S) when G is a 2-divisible group;

(ii) f satisfies (A) and f, g are solutions of g(x+ y)− g(x− y) = 2f(x)g(y).

II. Suppose f, g : G→ C satisfy

|f(x+ y)− f(x− y)− 2f(x)g(y)| ≤ ϕ(x). (1.5)

If g is unbounded, then

(i) f, g are solutions of (T(fg));

(ii) when G is a 2-divisible group and either f(0) = 0 or f(x) = f(−x), we have f

satisfies (S);

(iii) g satisfies (A) or (T), and f, g are solutions of (A(fg)).

Recently, Kim, [13], investigated the superstability of the pexiderized trigonomet-

ric functional equation (T(gh)) and proved the next theorem.

Theorem 1.1.3. Let ϕ : G→ R.

I. Suppose that f, g, h : G→ C satisfy

|f(x+ y)− f(x− y)− 2g(x)h(y)| ≤ ϕ(y). (1.6)

If g is unbounded, then

(i) h satisfies (S);

(ii) g satisfies (A) and g, h are solutions of (T(gh)).
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II. Suppose f, g, h : G→ C satisfy

|f(x+ y)− f(x− y)− 2g(x)h(y)| ≤ ϕ(x). (1.7)

If h is unbounded, then

(i) g satisfies (S) when g(0) = 0 or f(x) = f(−x);

(ii) h satisfies (A) or (T) and g, h are solutions of (A(fg)).

Our first objective is to investigate the stability of a generalized trigonometric

functional equation

F(x+ y)− G(x− y) = 2H(x)K(y),

where F ,G,H and K are nonzero functions from an abelian group (G,+) to the

complex field C, which encompass all the functional equations elaborated in the above

list.

In another direction, Jung, [8], in 2000 established the stability of the quadratic

functional equation of pexider type

f1(x+ y) + f2(x− y) = f3(x) + f4(y) (1.8)

where f1, f2, f3 and f4 are functions from a norm space E1 to a Banach space E2.

In [10], Kannappan gave the general solution of (1.8) which states that:

Theorem 1.1.4. Let G be a 2-divisible group and F be a field of characteristic differ-

ent from 2. The general solution of (1.8) with fi(x+ y+ z) = fi(x+ z+ y) (i = 1, 2)
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for any x, y, z ∈ G is given by

f1(x) = B(x, x)− (A1 − A2)(x) + b1,

f2(x) = B(x, x)− (A1 + A2)(x) + b2,

f3(x) = 2B(x, x)− 2A1(x) + b3,

f4(x) = 2B(x, x) + 2A2(x) + b4, (1.9)

with b1 + b2 = b3 + b4, where B : G×G→ F is a symmetric biadditive function and

Ai : G→ F (i = 1, 2) are additive.

Our second objective is to investigate the stability of a mixed-type trigonometric

and quadratic functional equation of the form

F(x+ y) + G(x− y) = 2H(x)K(y) + L(x) +M(y),

where F ,G,H,L and M are nonzero functions from an abelian group (G,+) to the

complex field C.

1.2 Objectives and structure of the dissertation

The two objectives of this dissertaion are:

1. to investigate the stability of a generalized trigonometric functional equation

F(x+ y)− G(x− y) = 2H(x)K(y),

where F ,G,H and K are nonzero functions from an abelian group (G,+) to the

complex field C;
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2. to investigate the stability of a mixed-type trigonometric and quadratic func-

tional equation

F(x+ y) + G(x− y) = 2H(x)K(y) + L(x) +M(y),

where F ,G,H,L andM are nonzero functions from an abelian group (G,+) to

the complex field C.

There are two principal tools used in this dissertation. The stability of both types

of functional equations (generalized trigonometric funtional equation and mixed-type

trigonometric and quadratic functional equation) is dealt with by a method due orig-

inally to Kim, [12]. The finding of differentiable solution functions of a mixed-type

trigonometric and quadratic functional equation is based on a classical method due

to Levi-Civita , [1].

We now outline the structure of this dissertation. The stability of the equation

F(x+ y)− G(x− y) = 2H(x)K(y),

which encompass all the functional equations elaborated in the above list is established

in Chapter II. After stating and proving the main theorem in the first section, several

consequences are elaborated and applications to operators in Banach algebra are

derived in the last section. In Chapter III, we solve for differentiable solution functions

of the mixed-type trigonometric and quadratic functional equation

F(x+ y) + G(x− y) = 2H(x)K(y) + L(x) +M(y),

in the first section, while its stability is investigated in the last section.



CHAPTER II

GENERALIZED TRIGONOMETRIC FUNCTIONAL

EQUATIONS

We fix the following terminology throughout Chapter II:

• F ,G,H,K, f, g, h nonzero functions from an abelian group (G,+) to the com-

plex field C;

• ϕ : G→ R+, the set of positive real numbers.

2.1 The main theorem and its proof

The following theorem is our main result.

Theorem 2.1.1. Suppose F ,G,H,K satisfy

|F(x+ y)− G(x− y)− 2H(x)K(y)| ≤ ϕ(x). (2.1)

Then either

(i) K is bounded, or

(ii) there is a sequence {yn} ⊂ G such that

`K(y) := lim
n→∞

K(yn + y) +K(yn − y)

K(yn)
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exists for each y ∈ G, and H satisfies

H(x+ y) +H(x− y) = H(x)`K(y) (x, y ∈ G).

Assume (ii) holds.

(a) If K satisfies the equation (A), then H,K are solutions of the equation (A(fg))

and are given by

K(x) =
E(x) + E∗(x)

2
, H(x) =

k(E(x) + E∗(x))

2
+ c(E(x)− E∗(x)),

where k, c ∈ C, E : G→ C∗ is a homomorphism and E∗(x) = 1/E(x);

(b) If H(0) = 0 and G is a 2-divisible group, then H satisfies (S) and is of the form

H(x) = A(x) or H(x) = c(E(x)− E∗(x)),

where A : G→ C is an additive function, c, E and E∗(x) are as in (a).

Remark 2.1.2. Let us make the following important remarks.

• The result of Theorem 2.1.1 involves only information about the functions H

and K, but is independent of the functions F and G. The possibility (i) where

the function H (or K) is constant has been previously treated by Jung, [8], in

2000, and this explains why our main result deals mostly with possibility (ii).

• Theorem 2.1.1 continues to hold when ϕ(x) = ε, a positive constant, which

includes a number of earlier known results.
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Proof. Assume that K is unbounded. Then there is a sequence {yn} in G such that

0 6= |K(yn)| → ∞ (n→∞).

Substituting yn for y in (2.1) we have

∣∣∣∣F(x+ yn)− G(x− yn)

2K(yn)
−H(x)

∣∣∣∣ ≤ ϕ(x)

2|K(yn)|
→ 0 (n→∞),

i.e.,

lim
n→∞

F(x+ yn)− G(x− yn)

2K(yn)
= H(x). (2.2)

Replacing y by yn + y and yn − y in the equation (2.1), we respectively get

|F(x+ (yn + y))− G(x− (yn + y))− 2H(x)K(yn + y)| ≤ ϕ(x), (2.3)

and

|F(x+ (yn − y))− G(x− (yn − y))− 2H(x)K(yn − y)| ≤ ϕ(x). (2.4)

Using (2.3), (2.4) and the triangle inequality, we have

2ϕ(x) ≥ |F(x+ (yn + y))− G(x− (yn + y))− 2H(x)K(yn + y)| (2.5)

+ |F(x+ (yn − y))− G(x− (yn − y))− 2H(x)K(yn − y)|

≥ |F(x+ (yn + y))− G(x− (yn + y))− 2H(x)K(yn + y)

+ F(x+ (yn − y))− G(x− (yn − y))− 2H(x)K(yn − y)|.
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Thus,

∣∣∣∣F(x+ (yn + y))− G(x− (yn − y))

2K(yn)
+
F(x+ (yn − y))− G(x− (yn + y))

2K(yn)

− 2H(x)
K(yn + y) +K(yn − y)

2K(yn)

∣∣∣∣ ≤ 2ϕ(x)

2|K(yn)|
→ 0 (n→∞).

Combining with (2.2), we get

H(x+ y) +H(x− y) = H(x) lim
n→∞

K(yn + y) +K(yn − y)

K(yn)
, (2.6)

which proves (ii).

Assume now that (ii) holds.

(a) If K satisfies the equation (A), then

lim
n→∞

K(yn + y) +K(yn − y)

K(yn)
= 2K(y).

This relation together with (2.6) show that H,K satisfy

H(x+ y) +H(x− y) = 2H(x)K(y),

which is (A(fg)). The given explicit solutions are taken from [9] and [10, p. 148].

(b) From its definition, we see that `K satisfies

H(x+ y) +H(x− y) = H(x)`K(y). (2.7)

Since H(0) = 0, we have H(y) +H(−y) = 0, i.e., H is an odd function. Observe also
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that

H(x+ y)2 −H(x− y)2 = {H(x+ y) +H(x− y)} {H(x+ y)−H(x− y)}

= H(x) {`K(y)H(x+ y)− `K(y)H(x− y)} = H(x) {H(x+ 2y)−H(x− 2y)}

= H(x) {H(2y + x) +H(2y − x)} = H(x)H(2y)`K(x).

Replacing y by x in (2.7), we have

H(2x) = H(x)`K(x),

and so the last relations become

H(x+ y)2 −H(x− y)2 = H(2x)H(2y), (2.8)

i.e., H satisfies the equation (S) when G is 2-divisible. Appealing to the solutions of

(S) in [10, p. 153], explicit shapes of H are as stated in the statement of the theorem.

This completes the proof of Theorem 2.1.1.

Remark 2.1.3. For later usage, let us mention that in the step of the proof after

the equation (2.2), if we substitute y by y + yn and y − yn in the equation (2.1) and

proceed as before, we end up with

lim
n→∞

{
F((x+ y) + yn)−F((x+ y)− yn)

2K(yn)
+
G((x− y) + yn)− G((x− y)− yn)

2K(yn)

−2H(x)
K(y + yn)−K(y − yn)

2K(yn)

}
= 0.
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2.2 Corollaries

In this section, we apply Theorem 2.1.1 to derive almost all of the above-mentioned

previous results. Since the functions F and G do not appear in the conclusion of The-

orem 2.1.1, interchanging x with y and re-defining the functions F and G accordingly,

we have:

Corollary 2.2.1. If F ,G,H,K satisfy

|F(x+ y)− G(x− y)− 2H(x)K(y)| ≤ ϕ(y), (2.9)

then

(i) H is bounded, or

(ii) there is a sequence {yn} ⊂ G such that

`H(y) := lim
n→∞

H(yn + y) +H(yn − y)

H(yn)

exists for each y ∈ G, and K satisfies

K(x+ y) +K(x− y) = K(x)`H(y) (x, y ∈ G).

Assume (ii) holds.

(a) If H satisfies the equation (A), then H,K are solutions of the equation (A(fg))

and are given by

H(x) =
E(x) + E∗(x)

2
, K(x) =

k(E(x) + E∗(x))

2
+ c(E(x)− E∗(x)),

where k, c ∈ C, E : G→ C∗ is a homomorphism and E∗(x) = 1/E(x);
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(b) If K(0) = 0, and G is a 2-divisible group, then K satisfies the equation (S) and

is given by

K(x) = A(x) or K(x) = c(E(x)− E∗(x)),

where A : G→ C is an additive function, c, E and E∗(x) are as in (a).

Our next corollary is an extension of Kim’s result, [13], corresponding to (1.7).

Corollary 2.2.2. If f, g, h satisfy

|f(x+ y)− f(x− y)− 2g(x)h(y)| ≤ ϕ(x), (2.10)

then

(i) h is bounded, or

(ii) there is a sequence {yn} ⊂ G such that

`h(y) := lim
n→∞

h(yn + y) + h(yn − y)

h(yn)

exists for each y ∈ G, and g satisfies

g(x+ y) + g(x− y) = g(x)`h(y) (x, y ∈ G).

Assume (ii) holds.

(a) If h satisfies the equation (A) or (T), then g, h are solutions of the equation

(A(fg)) and are given by

h(x) =
E(x) + E∗(x)

2
, g(x) =

k(E(x) + E∗(x))

2
+ c(E(x)− E∗(x)),
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where k, c ∈ C, E : G→ C∗ is a homomorphism and E∗(x) = 1/E(x);

(b) If g(0) = 0 or f(x) = f(−x) and G is a 2-divisible group, then g satisfies the

equation (S) and is given by

g(x) = A(x) or g(x) = c(E(x)− E∗(x)),

where c ∈ C, A : G → C is an additive function, E : G → C∗ is a homomor-

phism and E∗(x) = 1/E(x).

Proof. All the resuts, except two places, follow from Theorem 2.1.1 by taking

G(x) = F(x) = f(x), H(x) = g(x), K(y) = h(y).

The first of the two new assertions is in (a) where h is supposed to satisfy (T).

Applying Remark 2.1.3, we get g(x + y) + g(x − y) = 2g(x)h(y), so that g, h are

solutions of the equation (A(fg)). The second of the two new assertions is in (b)

where we assume f(x) = f(−x). To get the desired result, it suffices to show that

g(0) = 0. This is achieved by first putting x = 0 in (2.10) to get

|2g(0)h(y)| = |f(y)− f(−y)− 2g(0)h(y)| ≤ ϕ(x).

Then replacing y by yn, dividing by |2h(yn)| and letting n→∞.

Taking

G(x) = F(x) = f(x), H(x) = g(x), K(y) = h(y),

Corollary 2.2.1 yields the following result, which is an extension of Kim’s result, [13],
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corresponding to (1.6).

Corollary 2.2.3. If f, g, h satisfy

|f(x+ y)− f(x− y)− 2g(x)h(y)| ≤ ϕ(y), (2.11)

then

(i) g is bounded, or

(ii) there is a sequence {yn} ⊂ G such that

`g(y) := lim
n→∞

g(yn + y) + g(yn − y)

g(yn)

exists for each y ∈ G, and h satisfies

h(x+ y) + h(x− y) = h(x)`g(y).

Assume (ii) holds.

(a) If g satisfies the equation (A), then h, g are solutions of the equation (A(fg))

given by

g(x) =
E(x) + E∗(x)

2
, h(x) =

k(E(x) + E∗(x))

2
+ c(E(x)− E∗(x)),

where k, c ∈ C, E : G→ C∗ is a homomorphism and E∗(x) = 1/E(x);

(b) If h(0) = 0 and G is a 2-divisible group, then h satisfies the equation (S) and

is given by

h(x) = A(x) or h(x) = c(E(x)− E∗(x)),
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where c ∈ C, A : G → C is an additive function, E : G → C∗ is a homomor-

phism and E∗(x) = 1/E(x).

The next corollary is an extension of Kim’s result, [12], corresponding to (1.5).

Corollary 2.2.4. If f, g satisfy

|f(x+ y)− f(x− y)− 2f(x)g(y)| ≤ ϕ(x), (2.12)

then

(i) g is bounded, or

(ii) there is a sequence {yn} ⊂ G such that

`g(y) := lim
n→∞

g(yn + y) + g(yn − y)

g(yn)

exists for each y ∈ G, and f satisfies

f(x+ y) + f(x− y) = f(x)`g(y).

Assume (ii) holds.

(a) If g satisfies the equation (A) or (T), then f, g are solutions of the equation

(A(fg)) given by

g(x) =
E(x) + E∗(x)

2
, f(x) =

k(E(x) + E∗(x))

2
+ c(E(x)− E∗(x)),

where k, c ∈ C, E : G→ C∗ is a homomorphism and E∗(x) = 1/E(x);
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(b) If f(0) = 0 or f(x) = f(−x) and G is a 2-divisible group, then f satisfies the

equation (S) and is given by

f(x) = A(x) or f(x) = c(E(x)− E∗(x)),

where c ∈ C, A : G → C is an additive function, E : G → C∗ is a homomor-

phism and E∗(x) = 1/E(x).

(iii) f, g are solutions of the equation (T(fg)).

Proof. All the resuts for Parts (i) and (ii), except one place, follow from Theorem

2.1.1 by taking

G(x) = F(x) = f(x), H(x) = f(x), K(y) = g(y).

The only new assertion is in (a) where g is assumed to satisfy (T), which is dealt with

by making use of Remark 2.1.3 as in the proof of Corollary 2.2.2.

There remains to prove Part (iii). Taking

−G(x) = F(x) = f(x), H(x) = f(x), K(y) = g(y),

in Theorem 2.1.1 and using Remark 2.1.3, we deduce that f(x + y) − f(x − y) =

2g(y)f(x), i.e., f, g are solutions of the equation (T(fg)) as desired.

Taking F(x) = G(x) = H(x) = f(x), K(y) = g(y), Corollary 2.2.1 yields an

extension of Kim’s result, [12], corresponding to (1.4).

Corollary 2.2.5. Let f, g satisfy

|f(x+ y)− f(x− y)− 2f(x)g(y)| ≤ ϕ(y), (2.13)
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then

(i) f is bounded, or

(ii) there is a sequence {yn} ⊂ G such that

`f (y) := lim
n→∞

f(yn + y) + f(yn − y)

f(yn)

exists for each y ∈ G, and g satisfies

g(x+ y) + g(x− y) = g(x)`f (y).

Assume (ii) holds.

(a) If f satisfies the equation (A), then f, g are solutions of the equation (A(fg))

given by

f(x) =
E(x) + E∗(x)

2
, g(x) =

k(E(x) + E∗(x))

2
+ c(E(x)− E∗(x)),

where k, c ∈ C, E : G→ C∗ is a homomorphism and E∗(x) = 1/E(x);

(b) If G is a 2-divisible group, then g satisfies the equation (S) and is given by

g(x) = A(x) or g(x) = c(E(x)− E∗(x)),

where c ∈ C, A : G → C is an additive function, E : G → C∗ is a homomor-

phism and E∗(x) = 1/E(x).

Regarding Baker’s result, [3], corresponding to (1.3), we have:
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Corollary 2.2.6. A. If f satisfies

|f(x+ y)− f(x− y)− 2f(x)f(y)| ≤ ϕ(x), (2.14)

then

(i) f is bounded, or

(ii) there is a sequence {yn} ⊂ G such that

`f (y) := lim
n→∞

f(yn + y) + f(yn − y)

f(yn)

exists for each y ∈ G, and f satisfies

f(x+ y)− f(x− y) = f(x)`f (y).

Assume (ii) holds. If f(0) = 0 and G is a 2-divisible group, then f satisfies the

equation (S) given by

f(x) = A(x) or f(x) = c(E(x)− E∗(x)),

where c ∈ C, A : G → C is an additive function, E : G → C∗ is a homomorphism

and E∗(x) = 1/E(x).

B. Let ε > 0. If f satisfies

|f(x+ y) + f(x− y)− 2f(x)f(y)| ≤ ε. (2.15)
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Then either f is bounded or f satisfies the equation (A) and is given by

f(x) =
E(x) + E∗(x)

2
,

where E : G→ C∗ is a homomorphism and E∗(x) = 1/E(x).

Proof. For the part A, put F = G = H = K = f in Theorem 2.1.1. For the part B,

put F(x) = H(x) = K(x) = f(x) = −G(x) and ϕ(x) = ε in Theorem 2.1.1.

Taking F(x) = G(x) = H(x) = K(x) = f(x), Corollary 2.2.1 yields another

extension of Baker’s result, [3], corresponding to (1.3), which is

Corollary 2.2.7. If f satisfies

|f(x+ y)− f(x− y)− 2f(x)f(y)| ≤ ϕ(y), (2.16)

then

(i) f is bounded, or

(ii) there is a sequence {yn} ⊂ G such that

`f (y) := lim
n→∞

f(yn + y) + f(yn − y)

f(yn)

exists for each y ∈ G, and f satisfies

f(x+ y) + f(x− y) = f(x)`f (y).

Assume (ii) holds. If G is a 2-divisible group, then f satisfies the equation (S) and
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is given by

f(x) = A(x) or f(x) = c(E(x)− E∗(x)),

where c ∈ C, A : G → C is an additive function, E : G → C∗ is a homomorphism

and E∗(x) = 1/E(x).

2.3 Application to Banach algebra

Applying Theorem 2.1.1 and its corollaries to semisimple commutative Banach alge-

bra, interesting results about operators can be obtained. We illustrate here just one

instance.

Theorem 2.3.1. Let (X, ‖.‖) be a semisimple commutative Banach algebra.

A. Assume that F ,G,H,K : G→ X and ϕ : G→ R+ satisfy

‖F(x+ y)− G(x− y)− 2H(x)K(y)‖ ≤ ϕ(x). (2.17)

Let x∗ ∈ X∗ : X → C be an arbitrary linear multiplicative functional. Suppose that

the x∗ ◦ K is not bounded.

(i) If x∗ ◦K satisfies the equation (A), then H and K are solutions of the equation

(A(fg)).

(ii) If x∗ ◦H(0) = 0 and G is a 2-divisible group, then H satisfies the equation (S).

B. Assume that F ,G,H,K : G→ X and ϕ : G→ R+ satisfy

‖F(x+ y)− G(x− y)− 2H(x)K(y)‖ ≤ ϕ(y). (2.18)

Let x∗ ∈ X∗ : X → C be an arbitrary linear multiplicative functional. Suppose that

the x∗ ◦ H is not bounded.
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(i) If x∗ ◦H satisfies the equation (A), then H and K are solutions of the equation

(A(fg)).

(ii) If x∗ ◦ K(0) = 0 and G is a 2-divisible group, then K satisfies the equation (S).

Proof. We give only the proof of Part A, as that of Part B is similar. For case (i) of

Part A, fix an arbitrary linear multiplicative functional x∗ ∈ X∗. Since ‖x∗‖ = 1, we

claim that

|(x∗ ◦ F)(x+ y)− (x∗ ◦ G)(x− y)− 2(x∗ ◦ H)(x)(x∗ ◦ K)(y)| ≤ ϕ(x).

This follows easily from

ϕ(x) ≥ ‖F(x+ y)− G(x− y)− 2H(x)K(y)‖

= sup‖x∗‖=1|x∗(F(x+ y)− G(x− y)− 2H(x)K(y))|

≥ |x∗(F(x+ y)− G(x− y)− 2H(x)K(y))|

= |(x∗ ◦ F)(x+ y)− (x∗ ◦ G)(x− y)− 2(x∗ ◦ H)(x)(x∗ ◦ K)(y))|.

Supposing x∗ ◦ K is unbounded, Theorem 2.1.1 shows that if x∗ ◦ K satisfies the

equation (A), then x∗ ◦ H and x∗ ◦ K are solutions of

0 = (x∗ ◦ H)(x+ y) + (x∗ ◦ H)(x− y)− 2(x∗ ◦ H)(x)(x∗ ◦ K)(y)

= x∗(H(x+ y) +H(x− y)− 2H(x)K(y)),

i.e., H(x+ y) +H(x− y)− 2H(x)K(y) ∈ Ker(x∗). Since X is semisimple, we have

H(x+ y) +H(x− y)− 2H(x)K(y) ∈
⋂

x∗∈X∗

Ker(x∗) = {0} ,
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i.e., H(x + y) +H(x − y) − 2H(x)K(y) = 0. Since x∗ ◦ K satisfies the equation (A)

and X is semisimple, K also satifies the equation (A).

For case (ii) of Part A, Theorem 2.1.1 shows that if x∗ ◦ H(0) = 0 and G is a

2-divisible group, then x∗ ◦ H satisfies the equation (S), i.e.,

0 = (x∗ ◦ H)

(
x+ y

2

)2

− (x∗ ◦ H)

(
x− y

2

)2

− (x∗ ◦ H)(x)(x∗ ◦ H)(y).

Since x∗ is a linear multiplicative functional, we get

x∗

(
H
(
x+ y

2

)2

−H
(
x− y

2

)2

−H(x)H(y)

)
= 0,

i.e., H
(
x+y

2

)2 −H (x−y
2

)2 −H(x)H(y) ∈ Ker(x∗). Since X is semisimple, we have

H
(
x+ y

2

)2

−H
(
x− y

2

)2

−H(x)H(y) ∈
⋂

x∗∈X∗

Ker(x∗) = {0} ,

i.e., H
(
x+y

2

)2 −H (x−y
2

)2 −H(x)H(y) = 0, showing that H satisfies (S).



CHAPTER III

MIXED-TYPE TRIGONOMETRIC AND QUADRATIC

FUNCTIONAL EQUATIONS

In this chapter, we deal with a mixed-type trigonometric and quadratic functional

equation of the form

F(x+ y) + G(x− y) = 2H(x)K(y) + L(x) +M(y). (3.1)

In order to ascertain the existence of solution, we start by determining its general set

of differentiable solution functions using a method of Levi-Civita as expounded in [1]

in the next section and proceed to consider its stability in the subsequent section.

Observe that solutions of (3.1) are plentiful as seen from the following examples.

Example 3.0.2.

1) If G(x) = 0, H(x)K(y) = 0 and L(x) =M(x) = F(x), the general solution of (3.1)

is F(x) = A(x), additive function.

2) If G(x) = L(x) =M(y) = 0, H(x) = K(x) = F(x)√
2

, the general solution of (3.1) is

F(x) = E(x), exponential function.

3) H(x) = K(x) = ex, F(x) = 2ex, L(x) = −M(x) = x, G(x) = x is a solution of

(3.1).

From such observation, to find a general solution of (3.1) is quite a tedious matter.
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3.1 Levi-Civita’s method

We are content have to use a method due to Levi-Civita in solving a simple case of

(3.1) with additional hypothesis. It is to be noted that solutions of (3.1) are mostly

exponential polynomials.

Theorem 3.1.1. Let F ,G,H,K,L,M : R→ C be differentiable functions satisfying

(3.1). If L′, H′ are C-multiple of a non-constant function H, then

H(x) = ec1x;

L(x) =
c2
c1
ec1x + α;

K(y) = γ1e
c1y + γ2e

−c1y − c2
2c1

;

M(y) = δ1y + δ2;

F(x) = 2γ1e
c1x +

δ1
2
x+ β1;

G(x) = 2γ2e
c1x − δ1

2
x+ α + δ2 − β1,

where c1(6= 0), c2, γ1, γ2, δ1, δ2, α, β1 ∈ C.

Proof. Differentiating (3.1) with repect to x, we obtain

F ′(x+ y) + G ′(x− y) = 2H′(x)K(y) + L′(x). (3.2)

Differentiating (3.1) with repect to y, we have

F ′(x+ y)− G ′(x− y) = 2H(x)K′(y) +M′(y). (3.3)
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Adding and substracting (3.2) and (3.3), we get

2F ′(x+ y) = 2H′(x)K(y) + 2H(x)K′(y) + L′(x) +M′(y); (3.4)

2G ′(x− y) = 2H′(x)K(y)− 2H(x)K′(y) + L′(x)−M′(y). (3.5)

Let H′(x) = c1H(x) where c1 ∈ C. Then H(x) = ec1x + σ where σ ∈ C. Since H is a

non-constant function, we must have c1 6= 0 and σ = 0. So

H(x) = ec1x

and L′(x) = c2e
c1x where c2 ∈ C. Hence

L(x) =
c2
c1
ec1x + α

for some α ∈ C. Substituting H,H′ and L′ in (3.4), we obtain

2F ′(x+ y) = 2c1e
c1xK(y) + 2ec1xK′(y) + c2e

c1x +M′(y). (3.6)

Differentiating (3.6) with repect to x, we have

2F ′′(x+ y) = 2c21e
c1xK(y) + 2c1e

c1xK′(y) + c2c1e
c1x. (3.7)

Differentiating (3.6) with repect to y, we have

2F ′′(x+ y) = 2c1e
c1xK′(y) + 2ec1xK′′(y) +M′′(y). (3.8)
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From (3.7) and (3.8), we get

2c21e
c1xK(y) + c2c1e

c1x = 2ec1xK′′(y) +M′′(y). (3.9)

Substituting x = 0 and x = 1 into (3.9), we obtain

2c21K(y) + c2c1 = 2K′′(y) +M′′(y); (3.10)

2c21e
c1K(y) + c2c1e

c1 = 2ec1K′′(y) +M′′(y). (3.11)

Substracting (3.10) and (3.11), we have

2(ec1 − 1)K′′(y)− 2c21(e
c1 − 1)K(y) = c2c1(e

c1 − 1).

Since c1 6= 0,

K′′(y)− c21K(y) =
c2c1

2
. (3.12)

By solving a second order differential equation, we obtain

K(y) = γ1e
c1y + γ2e

−c1y − c2
2c1

where γ1, γ2 ∈ C. Putting K′′(y) from (3.12) into (3.10), we obtainM′′(y) = 0. Then

M(y) = δ1y + δ2
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for some δ1, δ2 ∈ C. Substituting K,K′,M′ into (3.6), we get

2F ′(x+ y) = 4c1γ1e
c1xec1y + δ1. (3.13)

Then

F(x+ y) = 2γ1e
c1(x+y) +

δ1
2

(x+ y) + β1

where β1 ∈ C. Substituting H,H′,K,K′,L′ and M′ into (3.5), we have

2G ′(x− y) = 4c1γ2e
c1xe−c1y − δ1. (3.14)

Thus

G(x− y) = 2γ2e
c1(x−y) − δ1

2
(x− y) + β2

where β2 ∈ C. Substituting H,K,L,M,F and G into (3.1), we obtain β2 = α+ δ2 −

β1.

In solving the equation (3.1), we now consider (3.4) by setting f(x) := 2F ′(x).

Then it becomes a equation of the form

f(x+ y) =
n∑
k=1

fk(x)gk(y). (3.15)

After that we follow here the idea of T. Levi-Civita with some modification. It may

obviously be assumed that the functions fk(x) on the one hand and the functions

gk(y) on the other hand are linearly independent. Otherwise, we replace in (3.15)

the linearly dependent functions with their representations as linear combinations

relative to a basis of linearly independent functions, the result of which is an equation

of similar form. If (3.15) is partially differentiated with respect first to x and then to
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y, we obtain

n∑
k=1

f ′k(x)gk(y) = f ′(x+ y) =
n∑
k=1

fk(x)g′k(y). (3.16)

The functions gk(y) being linearly independent, there exist constants y1, . . . , yn

such that the determinant det (gk(m)) 6= 0 (k,m = 1, . . . , n). substituting these

into (3.16), we can express the f ′k(x) with aid of the fj(x) (j, k = 1, . . . , n) :

f ′k(x) =
n∑
j=1

akjfj(x) (k = 1, 2, . . . , n). (3.17)

On the other hand, it follows from (3.15), again with y held constant at 0, that

f(x) =
n∑
k=1

ckfk(x), (d0)

and by successive differentiation of this equation, taking (3.17) into consideration, we

find

f ′(x) =
n∑
k=1

c1kfk(x), (d1)

f ′′(x) =
n∑
k=1

c2kfk(x), (d2)

...

f (n)(x) =
n∑
k=1

cnkfk(x), (dn)

from which the fk(x) can be eliminated. This yield for f(x) a homogeneous linear

differential equation of nth order with constant coefficients. In fact, if det (cmk) =
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0 (m, k = 1, . . . , n), then from (d1), . . ., (dn)

n∑
m=1

amf
(m)(x) = 0.

follows with at least one ak 6= 0, while if det cmk 6= 0, then the fk(x) (k = 1, . . . , n)

can be expressed from these equations as linear combinations of the f (m)(x) (m =

1, . . . , n), which substituted in (d0) give again

f(x) +
n∑

m=1

amf
(m)(x) = 0.

Thus, as a general n-times differrentiable solution of (3.15), we obtain

f(x) =
m∑
k=1

Pk(x) expωkx,

where the Pk(x) are polynomials of (nk − 1)st degree

m∑
k=1

nk = n

and the ωk are, in general, complex constants, namely, the roots of the characteristic

equation. All these functions do satisfy equations of form (3.15), with suitably chosen

fk(x), gk(y) (k = 1, 2, . . . , n). Therefore we obtain that F(x) is an exponential

polynomial. In a similar manner, if we consider (3.5), then we also obtain that G(x)

is an exponential polynomial.

3.2 Stability by Kim’s method

In this section, we use Kim’s method in [12] to study the stability of the mixed-

type trigonometric and quadratic functional equations (3.1). We start with some
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preliminaries.

Lemma 3.2.1. Let H, K, ` : R → C be differentiable functions with K being non-

constant. If K ′(0) 6= 1 and H, K, ` satisfy

H(x+ y) +H(x− y) = H(x)K(y) + `(y) (3.18)

for all x, y ∈ R, then H(x) ≡ h ∈ C.

Moreover,

(i) if h = 0, then `(y) ≡ 0 and K is an arbitrary function;

(ii) if h 6= 0, then `(y) = h(2−K(y)) and K is an arbitrary function.

Proof. Differentiating (3.18) with repect to x and to y, we obtain respectively,

H′(x+ y) +H′(x− y) = H′(x)K(y). (3.19)

H′(x+ y)−H′(x− y) = H(x)K ′(y) + `′(y). (3.20)

Adding and subtracting (3.19) and (3.20), we get respectively

2H′(x+ y) = H′(x)K(y) +H(x)K ′(y) + `′(y). (3.21)

2H′(x− y) = H′(x)K(y)−H(x)K ′(y)− `′(y). (3.22)

Putting y = 0 in (3.21) and (3.22), we respectively get

2H′(x) = H′(x)K(0) +H(x)K ′(0) + `′(0). (3.23)

2H′(x) = H′(x)K(0)−H(x)K ′(0)− `′(0). (3.24)
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Adding (3.23) and (3.24) leads to

4H′(x) = 2H′(x)K(0). (3.25)

We now consider two separate cases. If K(0) 6= 2, then, by (3.25), H′(x) ≡ 0. If

K(0) = 2, then, by (3.23), H(x)K ′(0) = −`′(0). The both cases of K(0) imply that

H is a constant function, namely h ∈ C. By (3.18), if h = 0, then `(y) ≡ 0 and K

is an arbitrarily function. If h 6= 0, then `(y) = h(2 −K(y)) and K is an arbitrary

function.

We shall need the following corollary of Theorem 1.1.4.

Corollary 3.2.2. Let H, ` be functions from a 2-divisible abelian group G to a field

F of characteristic different from 2 and c ∈ F.

If

H(x+ y) +H(x− y) = cH(x) + `(y) (x, y ∈ G),

then (i) for c=2, we have

H(x) = B(x, x) + A(x) + r, `(x) = 2B(x, x),

where B : G × G → F is a symmetric biadditive function, A : G → F is an additive

function and r ∈ F;

(ii) for c 6= 2, we have

H(x) ≡ r, `(x) ≡ r(2− c)

are constant functions, where r ∈ F.

Proof. Substituing f1(x) = f2(x) = H(x), f3(x) = cH(x), f4(x) = `(y) in Theorem
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1.1.4, we get

H(x) = B(x, x)− (A1 − A2)(x) + b1, (3.26)

H(x) = B(x, x)− (A1 + A2)(x) + b2, (3.27)

cH(x) = 2B(x, x)− 2A1(x) + b3, (3.28)

`(x) = 2B(x, x) + 2A2(x) + b4 (3.29)

with b1 + b2 = b3 + b4, where B : G × G → F is a symmetric biadditive function

and A1, A2 : G → F are an additive function. Equating (3.26) and (3.27), we get

2A2(x) = b2 − b1, a contant function. Since A2 is additive, we must have A2(x) ≡ 0

and so b1 = b2. Putting this information back into (3.26), we get

H(x) = B(x, x)− A1(x) + b1,

and multiplying by c to get

cH(x) = cB(x, x)− cA1(x) + cb1. (3.30)

Equating (3.30) and (3.28), and using b3 = 2b1 − b4,

c(B(x, x)− A1(x) + b1) = 2B(x, x)− 2A1(x) + 2b1 − b4. (3.31)

Consider now two distinct cases.

Case 1: c = 2. By (3.31), we have b4 = 0 and so

`(x) = 2B(x, x).
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Case 2: c 6= 2. By (3.31), we obtain

B(x, x)− A1(x) =
b4

2− c
− b1. (3.32)

Thus,

B(x+ y, x+ y)− A1(x+ y) =
b4

2− c
− b1. (3.33)

Since B is symmetric biadditive and A is additve, (3.33) yields

b4
2− c

− b1 = B(x+ y, x+ y)− A1(x+ y)

= B(x, x) + 2B(x, y) +B(y, y)− A1(x)− A1(y)

= (B(x, x)− A1(x)) + (B(y, y)− A1(y)) + 2B(x, y)

=
b4

2− c
− b1 +

b4
2− c

− b1 + 2B(x, y). (3.34)

The relation (3.34) shows that B is a constant function and so B ≡ 0 because B

is symmetric biadditive. Thus, (3.32) shows that A1 is a constant function and so

A1 ≡ 0 because A1 is additive. Consequently, b4 = b1(2 − c) and H(x) = b1, `(x) =

b1(2− c).

We now state and prove our main result in this section.

Theorem 3.2.3. Let G be an abelian group. Assume that F ,G,H,K,L,M : G→ C

satisfy

|F(x+ y) + G(x− y)− 2H(x)K(y)− L(x)−M(y)| ≤ ϕ(x) (3.35)

for all x, y ∈ G, where ϕ : G→ R+.
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If K is unbounded, then there is a sequence {yn} ⊂ G such that

=K,M(x, y) := lim
n→∞

2H(x) (K(yn + y) +K(yn − y)) + (M(yn + y) +M(yn − y)− 2M(yn))

2K(yn)

(3.36)

exists for all x, y ∈ G, and the function H satisfies the functional equation

H(x+ y) +H(x− y) = =K,M(x, y). (3.37)

Moreover, if either the limit

`K(y) := lim
n→∞

K(yn + y) +K(yn − y)

K(yn)

or the limit

`M,K(y) := lim
n→∞

M(yn + y) +M(yn − y)− 2M(yn)

2K(yn)

exists for all y ∈ G, then the functional equation (3.37) simplifies to

H(x+ y) +H(x− y) = H(x)`K(y) + `M,K(y) (3.38)

for all x, y ∈ G.

Assume that (3.38) holds.

I. When G = R and H, `K, `M,K are differentiable, if `K is a non-constant function

and `′K(0) 6= 0, then H(x) ≡ h ∈ C is a constant function. Furthermore,

(Ia) if h = 0, then `M,K(y) ≡ 0 and `K is an arbitrary function;

(Ib) if h 6= 0, then `M,K(y) = h(2− `K(y)) and `K is an arbitrary function.

II. When G is a 2-divisible abelian group, if `K(y) ≡ c ∈ C is a constant function,
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then

(IIa) for c = 2, we have

H(x) = B(x, x) + A(x) + r, `M,K(x) = 2B(x, x),

where B : G× G → C is a symmetric biadditive function, A : G → C is an additive

function and r ∈ C;

(IIb) for c 6= 2, we have

H(x) ≡ r, `M,K(x) ≡ r(2− c)

are constant functions, where r ∈ C.

Proof. Assume that K is unbounded. Then there is a sequence {yn} ⊂ G such that

0 6= |K(yn)| → ∞ (n→∞).

Substituing y = yn in (3.35) and dividing by |K(yn)| we get

∣∣∣∣F(x+ yn) + G(x− yn)−M(yn)

2K(yn)
− L(x)

2K(yn)
−H(x)

∣∣∣∣ ≤ ϕ(x)

|2K(yn)|
.

Thus,

lim
n→∞

F(x+ yn) + G(x− yn)−M(yn)

2K(yn)
= H(x). (3.39)
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Put y = yn ± y in (3.35), we respectively obtain

|F((x+ y) + yn) + G((x− y)− yn)− 2H(x)K(yn + y)− L(x)−M(yn + y)| ≤ ϕ(x).

(3.40)

|F((x− y) + yn) + G((x+ y)− yn)− 2H(x)K(yn − y)− L(x)−M(yn − y)| ≤ ϕ(x).

(3.41)

From (3.40) and (3.41), we have

∣∣∣∣F((x+ y) + yn) + G((x+ y)− yn)−M(yn)

2K(yn)

+
F((x− y) + yn) + G((x− y)− yn)−M(yn)

2K(yn)

− 2H(x) (K(yn + y) +K(yn − y)) + (M(yn + y) +M(yn − y)− 2M(yn))

2K(yn)

− L(x)

K(yn)

∣∣∣∣ ≤ ϕ(x)

|K(yn)|
(3.42)

and so

=K,M(x, y) :=

lim
n→∞

2H(x) (K(yn + y) +K(yn − y)) + (M(yn + y) +M(yn − y)− 2M(yn))

2K(yn)

exists, and by (3.39) we deduce that

=K,M(x, y) = H(x+ y) +H(x− y). (3.43)

Because =K,M(x, y) exists, we note that if the existence of either

`K(y) := lim
n→∞

K(yn + y) +K(yn − y)

K(yn)
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or

`M,K(y) := lim
n→∞

M(yn + y) +M(yn − y)− 2M(yn)

2K(yn)

implies that of the other and yields at once

H(x+ y) +H(x− y) = H(x)`K(y) + `M,K(y). (3.44)

Taking G = R, K = `K, ` = `M,K in Lemma 3.2.1, we obtain Part I. Similarly, Part II

follows from taking ` = `M,K, K ≡ c and G a 2-divisible abelian group in Corollary

3.2.2.

Since the functions F and G do not appear in the conclusion of Theorem 3.2.3,

interchanging x with y and re-defining the functions F and G accordingly, we have:

Corollary 3.2.4. Let G be an abelian group. Assume that F ,G,H,K,L,M : G→ C

satisfy

|F(x+ y) + G(x− y)− 2H(x)K(y)− L(x)−M(y)| ≤ ϕ(y) (3.45)

for all x, y ∈ G and where ϕ : G→ R+.

If H is unbounded, then there is a sequence {yn} ⊂ G such that

=H,L(x, y) := lim
n→∞

2K(x) (H(yn + y) +H(yn − y)) + (L(yn + y) + L(yn − y)− 2L(yn))

2H(yn)

(3.46)

exists for all x, y ∈ G, and the function K satisfies the functional equation

K(x+ y) +K(x− y) = =H,L(x, y). (3.47)
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Moreover, if either the limit

`H(y) := lim
n→∞

H(yn + y) +H(yn − y)

H(yn)

or the limit

`L,H(y) := lim
n→∞

L(yn + y) + L(yn − y)− 2L(yn)

2H(yn)

exists for all y ∈ G, then the functional equation (3.47) simplifies to

K(x+ y) +K(x− y) = K(x)`H(y) + `L,H(y) (3.48)

for all x, y ∈ G.

Assume that (3.48) holds.

I. When G = R and K, `H, `L,H are differentiable, if `H is a non-constant function and

`′H(0) 6= 0, then K(x) ≡ k ∈ C is a constant function. Furthermore,

(Ia) if k = 0, then `L,H(y) ≡ 0 and `H is an arbitrary function;

(Ib) if k 6= 0, then `L,H(y) = k(2− `H(y)) and `H is an arbitary function.

II. When G is a 2-divisible abelian group, if `H(y) ≡ c ∈ C is a constant function,

then

(IIa) for c = 2, we have

K(x) = B(x, x) + A(x) + r, `L,H(x) = 2B(x, x),

where B : G× G → C is a symmetric biadditive function, A : G → C is an additive

function and r ∈ C,
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(IIb) for c 6= 2, we have

K(x) ≡ r, `L,H(x) ≡ r(2− c)

are constant functions, where r ∈ C.

Remark 3.2.5. Theorem 3.2.3 and Corollary 3.2.4 continue to hold when ϕ(x), re-

spectively ϕ(y), are replaced by a positive constant.
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