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CHAPTER I

INTRODUCTION

1.1 Background

ich has since been referred
p (G1,+) to a metric group

to as a stability proble 3 n_ i t\\w\\

(Go,+) with metric d(-

In 1940, Ulam, [15], pr ) ﬁ"‘ﬁ\

(1.1)

Do there exist a group homoma G5 and a constant . > 0 such that

Iy [

for all z € Glﬁ?ﬂ; ﬁﬁwﬂ ﬁ%’wlﬂﬁﬁ year later by Hyers,

o
[7], under the assumption that G/ is a Banach space with norm |[|-||. In 1978, a

et Y QA TSN TN T 7~

satisfies, iistead of (1.1), the inequality

1f(z+y) = f@) = F)l < 0l + lyl") - (2,9 € G,



where 6 # 0 and 0 < p < 1. In 1979, Baker, Lawrence, and Zorzitto, [4], showed that

if f is a function from a vector space to R satisfying

|fx+y) — f@)f(y)] <e

for some fixed € > 0, then either f i ded or satisfies the exponential Cauchy

functional equation

(1.2)

Such a result is referre ¢ functional equation (1.2).

In this dissertation seneralized trigonometric func-

rst list all the functional

s of Kim, [13].

e nctlonal equation), (S)

tional equation is invi

equations that are of in

r+vy 2 Tr—y
(1) (5
f(x+y)+

)+ M

nctlonal equation), (A)
A
flx+y ot

f(x+y)+f(x— )—29 )f(y) @

Il +ﬂ+1fiﬁ THEAINGINT (A(e9)

flonal equation),  (A(fg))

:c+y flx—y) =2f(2)f(y) (T)
VAW IUIIINGINY e
f+y) = flz—y) =2f(z)g(y), (T(fg))
fl@+y) = flz—y) =29(x)g9(y), (T(gg))
fle+y) = flz —y) =29(x)h(y), (T(gh))

flz+y) — fle—y) =2f(y). (Jy)



Let us briefly review some relevant earlier works.

Here and throughout, (G,+) always denotes an abelian group. In certain cases,
it may satisfy additional hypothesis of being a abelian 2-divisible group. By an addi-
tive (respectively, exponential) function A (respectively, E) we refer to a function A

(respectively, E) satisfying the additive (respectively, exponential) Cauchy functional

equation | ””/

(18 pew y) = E(z)E(y))
for all x,y belonging to t ( tively, E ).
i P\ N\

The superstability o 0S1; .4Q ation (A), was investigated by

Alz +y) =

Y

- 0. If f: G — C satisfies

)] <94, (1.3)

then either

or f is a solution of the equa ation (A). 41983, Cholewa, [6], investigated the su-

— B S AT S mo s

and let (G, +) be a 2-divisible abelidn group. If,an unbounded function f : G — C

Samsﬁesﬂ RIANNTFIUANTINENINEY

|flx+y)flx—y) = f2)* + f(©)? <6,

then it satisfies (S). The superstability of the generalized sine functional equation

was treated by Kim, [11], with the following result: let ¢ > 0. If the functions



f,9,h: G — C satisfy

g(a)h(y) — f (x;y)lf (x;y>2

then either g is bounded or h satisfies (S); moreover, if g satisfies g(0) = 0 or if f

satisfies f(z)? = f(—x)?, then either A isthounded or g satisfies (S). Later in 2007,

functional equations, with.the following

Theorem 1.1.1. Let /

L If f,g:G— C sati

then either f is bounded or ¢

II. If f,g : G — C satisfy

e -%.ﬂw,

e 7 V]ﬂ"ﬁ"ﬁ WHANT "> /e

satisfy (A

i thﬂmﬂﬁﬂﬂ 0B AANY DB Bt

(T(fg)) Wlth the following results:

Theorem 1.1.2. Let ¢ : G — R.

1. Suppose f,qg: G — C satisfy

[f(@+y) = flz—y) = 2f(x)g(y)] < @ (y). (1.4)



If f is unbounded, then
(1) g satisfies (S) when G is a 2-diwvisible group;

(i1) f satisfies (A) and f,g are solutions of g(x +y) — g(z —y) = 2f(x)g(y).

I1. Suppose f,g: G — C satisfy

()| < o(2). (15)

(iii) g satisfies (A) or (T), and ;g v (A(fg)).

Recently, Kim, [1 i 0 yofthe pexiderized trigonomet-

y, T Y )
eorem

ric functional equation”(’] .
3 — U
Theorem 1.1.3. Let ¢ : G = R.

© e ol &Jsmtam INYINT
AN MINTUUMINGINY o

If g is unbounded, then
(i) h satisfies (S);

(ii) g satisfies (A) and g,h are solutions of (T(gh)).



I1. Suppose f,g,h : G — C satisfy

[f(x+y) — flz—y) —29(x)h(y)| < o(x). (1.7)

If h is unbounded, then

Our first objective i P 6 the ste [ a generalized trigonometric

functional equation

= J:
where F,G,’H and K ar zeﬁé from an abelian group (G,+) to the
P abdnis, o 4

complex field C, which encompass atl the funetional equations elaborated in the above
DIEIN I

e S

list.

In another directi ] ¢l stability of the quadratic
',fi

functional equation of ﬂ(ider type

quidneminens .
st 10 o) Sk e b Yok L)) B e,

In [10], Kannappan gave the general solution of (1.8) which states that:

Theorem 1.1.4. Let G be a 2-divisible group and F be a field of characteristic differ-

ent from 2. The general solution of (1.8) with fi(x+y+2) = filr+z+vy) (1 =1,2)



for any x,y,z € G is given by

Ja(z) (1.9)
with by + by = by + by, where Dl : Fasua,.s: etric biadditive function and
A G—TF (i=1,2) ae 7

Our second objective i o ifyestit -_*" the stabilit; a mixed-type trigonometric

(z) + M(y),

where F,G,H, L and an abelian group (G, +) to the

complex field C. e ')

y )
| 4
1.2 ObjectFTes anidsstructure of'the dissertation

NINEINT

The two obJectlval of this dlssertaloay are:

=1

 ATRIDIT IR AN

Flz+y) - Gx—y) = 2H(x)K(y),

where F, G, H and K are nonzero functions from an abelian group (G, +) to the

complex field C;



2. to investigate the stability of a mixed-type trigonometric and quadratic func-

tional equation

Flz+y)+G(r —y) =2H(x)K(y) + L(z) + M(y),

where F,G,'H, L and M are nc nctions from an abelian group (G, +) to

the complex field C.

There are two principal to
of functional equations i C fional equation and mixed-type
trigonometric and qua v 12 : ) alt with by a method due orig-
inally to Kim, [12]. T
trigonometric and quad
to Levi-Civita , [1].

We now outline the stru 7 i disseration. The stability of the equation

which encompass all the ng-lctlonal equatlon aborated in the above list is established

o o 1. u@gm@w@w BRIV} S et sction,severa

consequences are elaborated and applications tesoperators in Banach algebra are

derived ﬂhﬁ;{lﬁaﬂ Tl bla i Wk ol 8 Ebution nctions

of the mixed-type trigonometric and quadratic functional equation
Flz+y) +G(x —y) = 2H(z)K(y) + L(z) + M(y),

in the first section, while its stability is investigated in the last section.



CHAPTER 11

GENERALIZED TRIGONOMETRIC FUNCTIONAL

o F.G.H.K, [, g, ions from an abelian group (G,+) to the com-
plex field C;

e v:G — R", the
HAC

[aadaeis %

2.1 The main theore -_—i::_s £
.iu '

The following ,:m

Theorem 2.1.1. Supp

A ummm mm Ebd) o)
Thenezt%r‘lmmﬂ‘im UA1AINYA Y

(1) K is bounded, or

fg

(1) there is a sequence {y,} C G such that

. Ky )+ Kyn —v)
S K )



10

exists for each y € G, and 'H satisfies

H(z +y) + H(z —y) = H(z)lk(y) (z,y € G).

Assume (ii) holds.

(a) If K satisfies the equation / Kgare solutions of the equation (A(fg))

where A : G t;r an additive fu °F (x) are as in (a).

- [:! -
Remark 2.1.2. Let uﬂmke the following important !’J arks.

- %uﬂ@w SIS B St e et

and KC, but is independent of the functionsgE and G. Thewpossibility (i) where
the%?ﬁoaﬁo\ﬂa Z‘jcmaiblfm a%m&a@eﬂy Jung, [8], in

2000, and this explains why our main result deals mostly with possibility (ii).

e Theorem 2.1.1 continues to hold when p(x) = €, a positive constant, which

includes a number of earlier known results.
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Proof. Assume that K is unbounded. Then there is a sequence {y,} in G such that

07 [K(ya)] = 00 (n — o0).

Substituting y,, for y in (2.1) we have

ie.,

and

|f(x+(y -

s T
%W AN jﬁ%wm

> |Flx+ (yn + 1))

+ F(x + (Yn

—y)) —

WA,

G(x — (yn +y)) — 2H(z)K(yn +y)

G(x — (yn —y)) — 2H(2)K(y

(2.3)
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Thus,

Fla+yn+y)—G@—(4—y)  Fl@+(Wn—y)—Gx— (yn +y))

2K y) " 2K (5.
K(yn +y) + K(yn — y) 2p(7)
) o ) ‘ S ok 0 )

Combining with (2.2), we get

This relation together i

V.
w4y Z) = 2H(2)Ky),

e o FUEANNTNEING, 1 v
L REN b g AR
H(x+y) +H(x —y) = H(zx)lx(y). (2.7)

Since H(0) = 0, we have H(y) + H(—y) = 0, i.e., H is an odd function. Observe also
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that
H(z +y)* = H(z —y)* = {H(z +y) + H(z — y)} {H(z +y) — H(z —y)}

=H(x) {{c(WH(z +y) — (Y H(z —y)} = H(z) {H(z + 2y) — H(z — 2y)}

= H(x) {H(2y + ) + H(2y — 2)} = H(2)H(2y)lic(z).

Replacing y by z in (2.7), w

and so the last relations

(2y), (2.8)

i.e., H satisfies the equation visible. Appealing to the solutions of

(S) in [10, p. 153], explici tatement of the theorem.

This completes the prao O

Remark 2.1.3. For later usage let us mentlon that in the step of the proof after

the equation ( 2ﬂ u,%jlﬁ} %EJbW§waE}ﬂ )i the equation (2.1) and

proceed as before we end up with

. ARSSASMI AN

2K (yn) ZIC (Yn)

Kly+y.) —Kly—va) |
2K (yn) } -0

—2H(z)



14

2.2 Corollaries

In this section, we apply Theorem 2.1.1 to derive almost all of the above-mentioned
previous results. Since the functions F and G do not appear in the conclusion of The-
orem 2.1.1, interchanging = with y and re-defining the functions F and G accordingly,

we have:

Corollary 2.2.1. If F,G, ' H

then

(i) H is bounded, or

(13) there is a sequence

{7
exists for each iy .-'-?t-

ﬂﬁﬁ?ﬂ“ﬂmwﬁmmw
e QRANIN T NN NN Y

(a) If H satzsﬁes the equation (A), then H, K are solutions of the equation (A(fg))

and are given by

where k,c € C, E : G — C* is a homomorphism and E*(z) = 1/E(z);
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(b) If K(0) = 0, and G is a 2-divisible group, then K satisfies the equation (S) and
s given by

K(z) = A(z) or K(z) = c(E(z) - E*(x)),

where A : G — C is an additive function, ¢, E and E*(x) are as in (a).

< o(), (2.10)

then

(1) h is bounded, or

exists for each y = , and g satisfies

AU ingnng.,
e STIRNNIUARTINGIR Y

(a) If h satisfies the equation (A) or (T), then g,h are solutions of the equation

(A(fg)) and are given by

W) = ZOTE@ -y T o(E(x) - E*(2),
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where k,c € C, E: G — C* is a homomorphism and E*(x) = 1/E(z);

(b) If g(0) = 0 or f(z) = f(—z) and G is a 2-divisible group, then g satisfies the

equation (S) and is given by

Proof. All the resuts, exc o/ plae l \\ eorem 2.1.1 by taking
ir ) g .‘ ’ » — .

r
The first of the two new assert f:.‘:*.. ’7 ‘in vhere h is supposed to satisfy (T).

= j: 'JJ-:'-""

Applying Remark 2.1.3, v “g(r +y) = (:v)h(y), so that g, h are

i new assertions is in (b)

solutions of the equa ir

where we assume f(x E f(—= oct the desired r@ult it suffices to show that

g S
awﬁ%&@‘ﬁi“ P ek i REE

Then replacmg y by Yy, dividing by |2h(y,)| and letting n — oo. O

Taking

Corollary 2.2.1 yields the following result, which is an extension of Kim’s result, [13],
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corresponding to (1.6).

Corollary 2.2.3. If f, g, h satisfy

[f(x+y) — flz—y) —29(x)h(y)| < o(y), (2.11)

then

(1) g is bounded, or

(11) there is a sequence

exists for each y € G

Assume (ii) holds.

(a) If g satisfies the equation then are solutions of the equation (A(fg))

gien by FWEJ’JVIEJVI?WEJ’]ﬂ?'
%WW@W%W%@H at

where k,c € C, E: G — C* is a homomorphism and E*(x) = 1/E(x);

(b) If h(0) = 0 and G is a 2-divisible group, then h satisfies the equation (S) and

15 given by
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where c € C, A : G — C 1is an additive function, E : G — C* is a homomor-

phism and E*(x) = 1/E(z).

The next corollary is an extension of Kim’s result, [12], corresponding to (1.5).

Corollary 2.2.4. If f, g satisfy

2| < o(z), (2.12)

then
(i) g is bounded, or

(11) there is a sequenc

exists for each

x+y —I—fx—

FWEJ’JVIEJVI?WEJ’]ﬂ?

Assume (ii) holds

AR INNNINY8E

(a) If g Satisfies the equation or (T), f,g are solutions of the equation

(A(fg)) given by

where k,c € C, E : G — C* is a homomorphism and E*(z) = 1/E(z);



19

(b) If f(0) =0 or f(z) = f(—z) and G is a 2-divisible group, then [ satisfies the

equation (S) and is given by

f(x) = Az) or [f(z)=c(E(z) - E*(x)),

where ce C, A: G — C isa tiwe function, £ : G — C* is a homomor-

phism and E*(x) = 1/E(x ‘ {/’

——

' place follow from Theorem

Proof. All the resuts

2.1.1 by taking

G(x) =9(y)
The only new assertion is in (a) Wher i ed to satisfy (T), which is dealt with
orollary 2.2.2.

by making use of Remark 2

There remains to iig— T Y )

rﬂ
ﬂ‘lJEJ’J‘VIEJVI’ﬁWEJ’]ﬂ‘i

in Theorem 2.1.1 and using Remark' 2.1.3, we deduce that f(zg4 y) — f(r —y) =
AAVINIUNIINUAAD -

Taking F(z) = G(z) = H(z) = f(z), K(y) = ¢(y), Corollary 2.2.1 yields an

extension of Kim’s result, [12], corresponding to (1.4).

Corollary 2.2.5. Let f, g satisfy

[f(@+y) = flz—y) = 2f(2)g(y)| < »(y), (2.13)
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then
(1) f is bounded, or

(i7) there is a sequence {y,} C G such that

exists for each y €

Assume (ii) holds.

(a) If [ satisfies the equ Y hen oG are solutions of the equation (A(fg))
given by r |
flx) = — ;.J + c(E(z) — E*(2)),

o S ——
o

b, ‘

where k,c € C, E'i G — C* is a homomorphism tnd E*(z) = 1/E(x);

. ﬂubgﬁwy DA WRINRT) ant i s
QR REAIA HHINYARY

where ¢ € C, A : G — C is an additive function, F : G — C* is a homomor-

phism and E*(x) = 1/E(z).

Regarding Baker’s result, [3], corresponding to (1.3), we have:
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Corollary 2.2.6. A. If f satisfies

[f(x+y) — flr—y) = 2f(2) f(y)] < p(2), (2.14)

then

(1) f is bounded, or

(17) there is a sequence {1, |
'l‘h\\. )
\\\‘5\ n y)
3 )

exists for each y

Assume (i) holds. If f(0 wisible group, then f satisfies the

equation (S) given by .;, 7 = ."';J

ll E |y

) or f(z

AULANINSNENNST

where c € C, A "G — C is an additive functzo E:G—-C s a homomorphism

and a:mmnimumaﬂmaﬂ

B. Let e > 0. If f satisfies

lf(z+y)+ fla—y)—2f(x)f(y)| < e (2.15)
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Then either f is bounded or [ satisfies the equation (A) and is given by

o) = P B,

where E : G — C* is a homomorphism and E*(x) = 1/E(z).

in Theorem 2.1.1. For the part B,

put F(z) = H(z) = K(z) = ¢ in Theorem 2.1.1.

O

Taking F(x) = g = ICY: \ orollary 2.2.1 yields another

extension of Baker’s resul 3), which is

Corollary 2.2.7. If f sati

(2.16)

then

(1) f is bounded, or '|

& t’”“”ﬁﬁiiﬁ?fﬂ%%’wmm
ammﬁ‘ﬁﬂiﬁ e

exists for each y € G, and f satisfies
fl@+y)+ fla—y) = fl2)l(y).

Assume (i) holds. If G is a 2-divisible group, then f satisfies the equation (S) and
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s given by

f(x) = A(z) or [f(z)=c(E(z) - E*(2)),

where ¢ € C, A : G — C is an additive function, E : G — C* is a homomorphism

and E*(z) = 1/E(z).

2.3 Application to B 1ach
. )

Applying Theorem 2.1.1 and €0l ollaTies @e commutative Banach alge-

bra, interesting results a

instance.

Theorem 2.3.1. Let e & TS ple. comm ive Banach algebra.
A. Assume that F,G,

o)R)| < e(@). (2.17)

Let v* € X* : X — €sbe_an _arbitrary linear mullzplicative functional. Suppose that
L% AY )

the x* o K is not boun @

) If x* o K satisfies th'i matzmﬁ ifltm H and IC are solutions of the equation

v, AHEANENTHENTS
® ffﬂvwwﬂwuwwm g

B. Assume that F,G,H,K : G — X and ¢ : G — RT satisfy
[F(z+y) =Gz —y) = 2H(@)KW)] < »y). (2.18)

Let z* € X* : X — C be an arbitrary linear multiplicative functional. Suppose that

the x* o H is not bounded.
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(1) If x* o H satisfies the equation (A), then H and KC are solutions of the equation

(A(fg)).
(i7) If x* o K(0) = 0 and G is a 2-divisible group, then K satisfies the equation (S).

Proof. We give only the proof of Part A, as that of Part B is similar. For case (i) of

Part A, fix an arbitrary linear multi unctional z* € X*. Since ||z*|| = 1, we

claim that
[(z" o F)(z +y) —

This follows easily from

= supy o (e 1= Glatay) “RH()K()

> |o* (Flz +y) -

(@ EIE L ) — (" o OY L) () (" o K) (1))
\7
ly J
Supposing z* o K is un ounded Theorem 2.1.1 shows that if x* o K satisfies the

e FEHE BN NN
QRTBLIC I TN

' (H(z +y) + Hz —y) — 2H(2)K(y)),
ie, H(x +y) + H(z —y) — 2H(z)K(y) € Ker(z*). Since X is semisimple, we have

H(z +y) +H(x —y) — 2H(x € ) Ker(z*) ={0},

rreX*
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ie, H(z +vy) + H(x —y) — 2H(x)K(y) = 0. Since z* o K satisfies the equation (A)
and X is semisimple, K also satifies the equation (A).
For case (ii) of Part A, Theorem 2.1.1 shows that if 2* o H(0) = 0 and G is a

2-divisible group, then x* o H satisfies the equation (S), i.e.,

0= (z"oH) (m 5 y>2 -~ (ay

AU INENTNEINS
ARIANTAUNININGIAE



CHAPTER III

MIXED-TYPE TRIGONOMETRIC AND QUADRATIC

FUNCTI ’ }UATIONS

In this chapter, we dea pe trig I‘lC and quadratic functional

equation of the form

In order to ascertain the s __'. \;‘ art by determining its general set
of differentiable solution functions using a 10d of Levi-Civita as expounded in [1]
im-the subsequent section.

in the next section and proc

Observe that solutions ffom the following examples.

Example 3.0.2. m m
ot -0} LR DB WD P et sttt 21

is F(z ), addztwe function. «

y ffgﬁlﬁ’lélt\;ﬂimiwnﬂﬂ'lﬁﬂm s 6

F(x) = E(z), exponential function.

3) H(z) = K(x) = e*, F(x) = 2%, L(x) = —M(z) =z, G(z) = z is a solution of
(3.1).

From such observation, to find a general solution of (3.1) is quite a tedious matter.
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3.1 Levi-Civita’s method

We are content have to use a method due to Levi-Civita in solving a simple case of
(3.1) with additional hypothesis. It is to be noted that solutions of (3.1) are mostly

exponential polynomials.

where ex(# 0), c2,71, 4, :

Proof. Differentiating (3.%) awith repect to a, we obtaln

ﬂ‘NEJ’JVIEJVIﬁWEJ’]ﬂi

f’x—l-y + G (ze-y) = 2H (@) K(y) + L' (z (3.2)

Qﬂﬂﬁ@ﬂ‘iﬂmi’l’]’m&ﬂaﬂ

Differentla%mg (3.1) with repect to y, we have

Flx+y) —G'(x —y) =2H(x)K (y) + M'(y). (3.3)
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Adding and substracting (3.2) and (3.3), we get

2F (x4 y) = 2H'(2)K(y) + 2H(2)K' (y) + L'(xz) + M'(y); (3.4)

2G'(z —y) = 2H'(2)K(y) — 2H(2)K' (y) + L(z) — M'(y). (3.5)

Let H'(x) = cyH(x) where ¢; € C. Tl = €9 4+ ¢ where 0 € C. Since H is a

non-constant function, we must
and L'(x) = cpe®

for some o € C. Substituting H;H an : 4), we obtain
27 (x +ip ' el + M(y). (3.6)

Differentiating (3.6) Wlth‘e ect to x, we h ave

FWEJ’JVIEJVI?WEJ’]ﬂ?

(:c +y) = 265 EK(y) + 2cle°1xlC’( )+ c2cq e‘J (3.7)

ARIAINIUNRIINGIAY

Diﬂ?erentia%ing (3.6) with repect to y, we have

2F"(x +y) = 2¢1e"K (y) + 2e*K" (y) + M" (y). (3.8)
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From (3.7) and (3.8), we get
22K (y) 4 cacre” = 2K (y) + M (y). (3.9)
Substituting = 0 and « = 1 into (3.9), we obtain

W) + M"(y); (3.10)

@M"@» (3.11)

Since ¢; # 0,

(3.12)

By solving a second orde
W

SURETEVEEE A
e QYRR 1 VAT YR B0 -0 e

M(y) = oy + 02
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for some 41,9, € C. Substituting IC, ', M’ into (3.6), we get

2F (x4 y) = deymr e + 6y. (3.13)

Then

(3.14)
Thus
y) + B2
where 3, € C. Substituti 7 1 F 0 (3.1), we obtain 3 = a + dy —
0. O

In solving the equ setting f(x) := 2F'(x).

f._.g_—

| -ll

ﬂua?Wﬁﬂﬁﬁﬂmﬂi 619
s ey gy 463 wwwmﬁﬂm ey

obviously Be assumed that the functions fi(z) on the one hand and the functions

Then it becomes a equ

gk(y) on the other hand are linearly independent. Otherwise, we replace in (3.15)
the linearly dependent functions with their representations as linear combinations
relative to a basis of linearly independent functions, the result of which is an equation

of similar form. If (3.15) is partially differentiated with respect first to = and then to
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Yy, we obtain

F@ae(y) = F@+y) =Y ful@)gh(y). (3.16)
k=1 k=1
The functions gi(y) being linearly independent, there exist constants yi, ..., y,

such that the determinant det (g ..,n). substituting these

On the other hand, it foll L 15) n wi \ eld constant at 0, that
(d0)
and by successive differentiatio LS o taking (3.17) into consideration, we
find
X
, il (d1)

ﬂum Wﬂﬁ%ﬁ]’lﬂi @

AN IR0

ke S1 (T (dn)

from which the fi(z) can be eliminated. This yield for f(x) a homogeneous linear

differential equation of nth order with constant coefficients. In fact, if det (¢x) =
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0 (m, k=1, ..., n), then from (d1), ..., (dn)

an anm f7 () =
m=1

follows with at least one aj # 0, while if det ¢,,x # 0, then the fi(x) (k=1, ..., n)

can be expressed from these equati inear combinations of the f™(x) (m =

1, ..., n), which substituted

Thus, as a general n-times [5), we obtain

e -

<

0

and the wy are, in general complex constants namely, the roots of the characteristic

equation. All thﬁ} u Ej ’}%@ﬂ % w (Ejo']nﬂ @ with suitably chosen

fi(x), gr(y) (k = 1 2, ..., n). Therefore we gbtain that F(),is an exponential

polynomﬂ Wbl hag S dd el (o hied W Blofbran tat

is an exponentlal polynomial.

3.2 Stability by Kim’s method

In this section, we use Kim’s method in [12] to study the stability of the mixed-

type trigonometric and quadratic functional equations (3.1). We start with some
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preliminaries.

Lemma 3.2.1. Let H,K,l : R — C be differentiable functions with K being non-

constant. If K'(0) # 1 and H, K, ¢ satisfy

H(r +y) + H(r — y) = H(x)K(y) + £(y) (3.18)

Moreover,
(i) if h =0, then {(y) =
(i) if h # 0, then {(y)

itrary function.

Proof. Differentiating Y we obtain respectively,

(3.19)

(y). (3.20)

Adding and subtracti Y '

'Bﬁ Viiémﬁ‘wmfﬁ;# -
i ngwl NN 2R E

YH' () = H'(2) K (0) + H(x)K'(0) + £(0). (3.23)

oM (z) = H'(2) K (0) — H(x)K'(0) — £(0). (3.24)
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Adding (3.23) and (3.24) leads to
4H' () = 2H'(2) K (0). (3.25)
We now consider two separate cases. If K(0) # 2, then, by (3.25), H'(x) = 0. If

(

H is a constant function, namely h & C. ] 18), if h = 0, then ¢(y) = 0 and K

0). The both cases of K(0) imply that

is an arbitrarily function. f./; c ~ K(y)) and K is an arbitrary

function.
O
We shall need the f i C . R\.\\
Corollary 3.2.2. Let !

A ."\ ble abelian group G to a field

If

y_
then (i) for c=2, we haﬂ

U

At IR RS
e SRR APV EU-LIAABANRI ) B B & v o

function aad r e [F;
(i) for ¢ # 2, we have
H(z)=r, l(z)=r(2—2c)

are constant functions, where r € F.

Proof. Substituing fi(z) = fa(z) = H(z), f3(x) = ¢cH(x), fi(x) = {(y) in Theorem
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1.1.4, we get

H(z) = B(x,z) — (A1 — Ag)(x) + by, (3.26)
H(z) = B(x,z) — (A1 + As)(x) + b, (3.27)
cH(z) = 2B(x,z) — 2A;1(z) + bs, (3.28)

4 (3.29)

mmetric biadditive function
and A;, A, : G — F a miction N ting (3.26) and (3.27), we get
2A5(x) = by — by, a co e, we must have Ay(x) =0

and so b; = by. Puttin

and multiplying by ¢ to get

‘ (3.30)

|
1

|
J'. iF |

Equating (3'30)@:‘”'@ %‘wsﬁ ﬁbw EJ’] ﬂ j’
IR TImTIng TRy o

Consider now two distinct cases.

Case 1: ¢ = 2. By (3.31), we have b, = 0 and so
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Case 2: ¢ # 2. By (3.31), we obtain

B(z,x) — Ay(x) = 2b_4 e by. (3.32)
Thus,
— by (3.33)
Since B is symmetric bi yields
2b—4 —h
() = Ai(y)

(3.34)

The relation (3.34) show oi.and so B = 0 because B

-

\,
. . . ., i o .
is symmetric biadditive. 18 a4 constant function and so

) J

'

Ay = 0 because A4, is additive. Consequently, by = b1(2'— ¢) and H(z) = by, {(z) =

e fUEINENTNGING D

We now %?teand prove our maifi result in this.section. @
Theorem®3.2.3. Let G be an abelian group. Assume that F,G, H, K, LM : G — C

satisfy

[Fle+y) + Gz —y) = 2H(2)K(y) — L(z) - M(y)] < ¢(x) (3.35)

for all z,y € G, where p : G — R*.
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If K is unbounded, then there is a sequence {y,} C G such that

2H(2) (K(Yn +y) + K(Yn — y)) + (MYn +y) + M(yn —y) — 2M(yn))

%’C,M(x7y) = lim

n—00 2K (yn)
(3.36)
exists for all x,y € G, and the function H satisfies the functional equation
, : (3.37)
Moreover, if either the/
or the limait
...... - - 2M n
Carc(y) = ) ()
exists for ally € G, then plz’ﬁes to
[l
H(EF y) +H(x —y) =H(x)l(y) £l (y) (3.38)

fmmegﬂ‘u&l’a‘lfltw ’a‘WEJ”ﬂ‘i
oy i ﬁﬁ,ﬁm UYRANYINY .

and lj-(0) # 0, then H(x) = h € C is a constant function. Furthermore,

(Ia) if h=0, then Ly c(y) =0 and Uk is an arbitrary function;
(1) if h # 0, then Ly ic(y) = (2 — lx(y)) and Uk is an arbitrary function.

I1. When G is a 2-divisible abelian group, if lx(y) = ¢ € C is a constant function,
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then

(I1a) for c=2, we have
H(x) = B(x,z) + A(x) +r, lymx(r) =2B(z,x),

where B : G x G — C is a symmetric biadditive function, A : G — C is an additive

function and r € C;

(11b) for ¢ # 2, we have

are constant functions, w

Proof. Assume that IC is ed ‘7 he e is asequence {y,} C G such that

- L
‘m <yn iﬁ%’ﬁ ) < |23£c7(<2>|'

. QRIANNTUNMINYAE

i 2 &+ Yn) + G2 — ya) — M(yn)
n—o0 2K (yn)

Substituing y = y, in

= H(z). (3.39)
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Put y =y, £y in (3.35), we respectively obtain

[F((z+y) +yn) +G((x —y) = yn) — 2H(2)K(yn + y) — L(x) = M(yn +y)| < ().
(3.40)

|F((z = y) +yn) + G((x +Y) = yn) — 2H(2)K(yn — y) — L(2) = M(yn — y)| < (2).

(3.42)

and so

%]C,M(x y) | i
IC%er )+ Ky —, MY + 1) + My — y) — 2M(y))

“*ﬂumwﬂmwmm

AR Inen

Skm(z,y) = H(z +y) + H(z —y). (3.43)

Because S m(x,y) exists, we note that if the existence of either

e Klyn +y) + Kyn — y)
bely) = Jim K (yn)
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or

o My +y) + My — y) — 2M(y)
Cm(y) = lim 2K ()

implies that of the other and yields at once

H(x +y) + H(x —y) = H(x)le(y) + Lax(y). (3.44)

Taking G =R, K = lic,{ = 0, , obtain Part I. Similarly, Part II
follows from taking ¢ = ¢ ; G a 2=divisible abelian group in Corollary

3.2.2. O

Since the functions F \ Conclus10n of Theorem 3.2.3,

interchanging x with y an and G accordingly, we have:

Corollary 3.2.4. Let G balanfabelini ?. . Assignesthat F,G, H, K, L, M: G — C

satisfy

for all v,y € G and where cp G — RT.

IfH is unboﬂdﬁﬂ m&w ﬁ WWW that

exists for all x,y € G, and the function IC satisfies the functional equation

Kz +vy) + K(x —y) = Sn.e(z,y). (3.47)
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Moreover, if either the limit

or the limit

Wt Len(y) (3.48)

1. When G =R and IC, {4, 15 a non-constant function and

04,(0) # 0, then K(z) = §Ca-tonstar tion. Furthermore,
ction,

'.d

(Ia) if k=0, then {; 5

tary function.

(Ib) if k %0, then (o)

'|
i
II. When G is a 2-divisib ‘¢ abelian group, if @H( ) = c € C is a constant function,

e ﬂ‘UEJ’JVIEJVIﬁWEJ’]ﬂi

(I1a) forc=2, we have

Q‘W?Mﬂ‘i&lﬂﬂﬂ’]’m&ﬂﬁ&l

K(z) = B(z,z) + Ax) +r, len(w)=2B(z, ),

where B : G x G — C is a symmetric biadditive function, A : G — C is an additive

function and r € C,
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(I1b) for c # 2, we have

Kz)=r, len(x)=r(2—c)

are constant functions, where r € C.

Remark 3.2.5. Theorem 3.2.3 3.2.4 continue to hold when p(x), re-

spectively p(y), are replaced

Al
(]

AULINYNINYINT
ARIAATAUIM TN
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