Total thyroxine levels in serum or plasma have long been recognized as an important indicator of thyroid status. Therefore, some important modifications of the sensitive radioimmunoassay of total serum thyroxine were performed to estajlish the optimum methods. The labelled compounds were found to be the most unstable reagents in RIA, so the ${ }^{125} I-T 4$ using in this study was repurified by colums chrom matography in order to remove radioactive iodide and damaged componnas. The degree of interference depends on the proportion of binding proteins in each serum sample. In this investigation, the reaction medium has been formulated to minimize the interference by the combination of an appropriate buffer (barbital buffer, pH 8.5) anc a TBG blocking agent (ANS). Thus, various concentrations of ANS were tested to exist the response standard curve as illustrated in Fig.3, page 28. The results indicated that optimun concentration of ANS at 600 ug per assay tuve was chosen and used throughout of these aporiments. Moreover, separating technique of the antibody-bound and iree fractions in RIA is an essential part, and polyethylene glycol (FEG) is now
very useful in thyroic hormone assays. For these reasons; the optimum concentrations of PEG in the incubation mixtrre were determined and
found that 15% of PEG in final volume was preferabie, as shown in Fig. 4, page 29. In addition, incubation time and temperature of the reaction mixture were made and compared, as shown in Fig.5, page 30. The results revealed that only one hour at $37^{\circ} \mathrm{C}$ of incubation was optimum conditions giving the best typical standard curve (see Fig. 6, page 31.

The reproducioility of intra-and inter-assay variations in 15 replications of $T_{4} R I F$ has been evaluated using control standard T_{4} diluted in T_{4}-free serum at luw, medium and high concentrations. The coefficients of intra-assay variations wore 7.3% et $1.25 u g T_{4} /$ $100 \mathrm{ml}, 8.7 \%$ at $7.5 \mathrm{ugT}_{4} / 100 \mathrm{ml}$ and 6.4% at $15 \mathrm{ugT}_{4} / 100 \mathrm{ml}$, as summarized in Table 1 , page 32. Greater coefficients of variations were obtained in inter-assay variations which illustrated in Table 2 , page $32,9.5 \%$ at $1.25 \operatorname{ugT}_{4} / 100 \mathrm{ml}, 9.7 \%$ at $7.5 \mathrm{ug}_{4} / 100 \mathrm{ml}$ ana 8.3% at $15 \mathrm{ugT}_{4} / 100 \mathrm{ml}$, respectively.

Cross-reactivity between T_{4} watibody (from rabbit plasme) to MIT, DIT and Im $_{3}$ (at physiological concentration) were determined to assess specificity of the assay. No cross-reaction ocoured with these analogue compounds but $I-T 3$ could cross react with ting T_{4}-antibody when the concentrations of T_{3} mere increased, as shown in Fig 7, page 33.
 subjects and it was established that normal values lay within the
range $4-$-Il ugT $4 / 100 \mathrm{ml}$ serum with the mean \pm S.D. of $7.4 \pm 1.6 \mathrm{ug}_{4} \mathrm{~A}_{4} /$ 100 ml . Good discrimination between 25 hypothyroids $\left(2.2 \pm 1.3 \mathrm{ug}^{\prime} \mathrm{I}_{4} /\right.$ $100 \mathrm{ml})$, 219 euthyroids $\left(7.4 \pm 1.6 \mathrm{ugT}_{4} / 1.00 \mathrm{ml}\right)$ and 42 hyperthyroids $\left(17.6 \pm 4.2 \operatorname{ugT}_{4} / 100 \mathrm{ml}\right)$ was obtained, as slrown in Fig. 8, paga 34.

Moreover, the effects of acetaminophen, diazepam and norm diol on total T_{4}, T_{3} uptake and free thyxoxine inder (FTI) in serum were analysed and compared to each control group. All results were expressed into the mean \pm S.D.

Experiment No 1: The results showed that acetaminophen did not influence any of the thyroid function test studied detween control and treated group because the value of total $T_{4}\left(7.7 \pm 1.9\right.$ ef: $7.5 \pm 2 . \operatorname{sugT}_{4}$ $/ 100 \mathrm{ml}), \mathrm{T}_{3}$-uptake test $(1.04 \pm 6.0 \mathrm{cf}: 103 \pm 7.4)$ anci $\mathrm{FTE}(7.4 \pm 1.9$ cf: $7.4 \pm 1.7 \%$) were unaffected, as summarized in Toble 3, page 35 :

Experiment No 2: The results indicated that only the levels of : serum \mathbb{T}_{4} before and after diazepam therapy were significantly decreased (from 7.6 ± 2.1 to $5.7 \pm 1.5 \mathrm{ugT}_{4} / 100 \mathrm{ml}$, $\mathrm{F}<0.001$), respectively. No change was found on the values of T_{3}-uptake test $!107 \pm 7.6 \mathrm{cf}$: $108 \pm 7.6)$ and of $\operatorname{ETI}(6.7 \pm 1.6 \mathrm{cf}: 6.6 \pm 1.8 \%)$, as illustratad in

Experiment No 3: Nordiol treated sera in 51 out-patiencs were analysed and the results revealed that two tested values were sisni-
ficanty increased in total serum T_{4} (from 8.0 ± 2.0 to 9.2 ± 2.2 $\mathrm{ugT}_{\underline{4}} / 100 \mathrm{ml}, \mathrm{P}<0.01$) and T_{3}-uptake test (from 108 ± 3.3 to $112 \pm$
7.1. $P<0.005$), but the values of FTI (from 7.5 ± 2.0 to $8.2 \pm 1.8 \%$) were not significantly elevated from the control group ($\mathrm{E}<0.1$) as shown in Table 3, page 35.

ศูนย์วิทยทรัพยากร
 จุหาลงกรณ์มหาวิทยาลัย

Fig.3. Percent radioactivity in bound fraction $\left(\%_{0}\right)$ using various 9 ,
concentrations of ANS.

(Fig. 4. Percent ${ }^{125} 1-T_{4}$ bound to T_{4} antibody in various concentrations
of PEG in final volume.

Table 1. Coefficient of variation [\%] of intra- assay with 15 replications by $T_{4}-$ RIA.

T4 CONCENTRATIONS	$\overline{\mathrm{X}} \pm$ S.D.	\% C.V.
Low [1.25]	1.3 ± 0.1	7.3
Medium [7.5]	7.4 ± 0.6	8.7
High [15]	14.9 ± 0.9	6.4

Table 2. Coefficient of variation [\%] of inter-assay with

15 replications by $\mathrm{T}_{4}-$ RIA.

O. 90 Rig.7. Cross-reactivity of T_{4}-antibody with MIT, DIT and $\mathrm{L}-\mathrm{T}_{3}$
[γ at biological concentration]

Fig. 8. Scatter diagram of total serum $T_{4}-$ RIA in various thyroid conditions.

Table 3. The effects of Acetaminophen, Diazepam and Nordiol on total serum T_{4}, T_{3}-uptake and FTI between control and treatment groups.

${ }_{N}$ pair t-test George W. Snedecor, Statistical Methods, 5 ed. (lowa, The Iowa State University Press. Ames. 1966). p 60-62.

