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CHAPTER I

PRELIMINARIES

1.1 Introduction

Let Z[i] be the ring of Gaussian integers. Let γ = a + bi be a nonzero element

in Z[i] and Z[i]/(γ) the quotient ring of Z[i] modulo γ. We know that Z[i]/(γ)

is a commutative finite ring with N(γ) = a2 + b2, the norm of γ, elements (see,

Theorem 4 of [3]). We denote its unit group by (Z[i]/(γ))∗ = {[µ]γ : [µ]γ ∈

Z[i]/(γ) and gcd(µ, γ) = 1} whose structure is completely determined by Cross

[2].

Let G
(2)
γ be the digraph whose vertex set is Vγ = Z[i]/(γ) and the edge set is

given by

E(2)
γ = {([µ]γ, [µ

2]γ) : [µ] ∈ Z[i]/(γ)}.

For simplicity, we shall abuse notation by writing µ ∈ Z[i] and considering it

modulo γ. It is obvious that G
(2)
γ has a2 + b2 vertices and exactly a2 + b2 directed

edges.

This digraph is defined by using the idea of Somer and Kř́ıžek [6, 7] who

studied the structure of digraphs G(n) associated with a quadratic congruence

modulo n. Their digraph G(n) has the ring of integers modulo n, Zn, as a vertex

set V and there exists a directed edge from a ∈ V to b ∈ V if b ≡ a2 mod n. An

application of this digraph on elliptic curves can be found in [4].

A component of a digraph is a subdigraph which is a maximal connected sub-

graph. The indegree [resp. outdegree] of a vertex µ ∈ Vγ of G
(2)
γ , is the number

of directed edges entering [resp. leaving] the vertex µ and denoted by indegγ µ

[resp. outdegγ µ]. The definition of G
(2)
γ implies that the outdegree of each vertex
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is equal to 1. This yields the fact that each component has a unique cycle. We

call a cycle of length one a fixed point. For an isolated fixed point, the indegree

and outdegree are both one.

A cycle of length t ≥ 1 is said to be a t-cycle and we assume that all cycles

are oriented counterclockwise. The distance from a vertex µ ∈ Vγ to a cycle is the

length of the directed path from µ to a vertex in the cycle.

It can be shown that every component of G(n) contains a unique cycle (Propo-

sition 1.1 of [7]). In addition, Somer and Kř́ıžek determined the number of fixed

points, the number of cycles and distance from any vertex to the unique cycle in

the component of G(n) in §3 of [7]. Their main tool is the Carmichael λ-function

λ(n), which was first introduced in 1910 (see [1]). It turns out that λ(n) is the

universal order modulo n, i.e., aλ(n) ≡ 1 mod n if and only if gcd(a, n) = 1. Its

properties are recalled in §2 of [7].

The exponent of a finite group G, expG, is the least positive integer n such

that gn = e for all g ∈ G. It plays the role of the universal order for a group.

Note that expG divides |G|. We briefly discuss some properties of the exponent

of a group in our first theorem.

Theorem 1.1.1. Let G be a finite group and H a subgroup of G.

(1) expG = lcm{o(a) : a ∈ G}, where o(a) is the order of a in G.

(2) expH divides expG.

(3) If G = G1 ×G2, then expG = lcm{expG1, expG2}.

(4) If G is abelian, then there exists a g in G such that o(g) = expG.

Proof. (1) – (3) are clear. To prove (4), assume that G is abelian. By the ele-

mentary divisor theorem, there exist positive integers n1, n2, . . . , nt ≥ 1 such that

n1 | n2 | · · · | nt and

G ∼= Zn1 × Zn2 × · · · × Znt .

Thus, expG = nt and (0, 0, . . . , 0, 1) in the rightmost group has order nt.
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Our goal is to replace the Carmichael λ-function with λ(γ) = exp(Z[i]/(γ))∗,

the exponent of the unit group (Z[i]/(γ))∗ and study the digraph G
(2)
γ , defined

above. We obtain results analogous to the work of Somer and Kř́ıžek for the

structure of our new digraphs.

The thesis is organized as follows. The next section recalls some properties of

the quotient rings over the Gaussian integers including the formulas for computing

the Carmichael λ-function (Proposition 1.2.6). Basic structures and semiregular-

ity are presented in Section 2.1. Cycles, components and distances are studied

in Section 2.2. The final chapter gives five examples of square mapping digraphs

demonstrating the results in the previous chapters.

This work will appear in the International Journal of Number Theory [5].

1.2 Quotient Rings over the Gaussian Integers

Consider the meaning of divisibility and congruences in the Gaussian integer.

Recall that in the Gaussian integer γ | β means there is a Gaussian integers α

such that α · γ = β, and α ≡ β mod γ means that γ | (α − β). This congruence

relation is an equivalence relation. Dresden and Dymàček [3] gave representatives

for equivalence classes of the corresponding quotient ring of Z[i] modulo γ in the

following proposition.

Proposition 1.2.1. If d = gcd(a, b) so that γ = d(a1 + b1i), then the equivalence

classes of Z[i]/(γ) are {[x+ yi]γ : 0 ≤ x < d(a2
1 + b21), 0 ≤ y < d}.

Proof. We first show that the equivalence classes are distinct. Let [x1 + y1i]γ and

[x2 + y2i]γ be any equivalence classes of Z[i]/(γ). If [x1 + y1i]γ = [x2 + y2i]γ, then

d | (x1 − x2) + (y1 − y2)i, so d | y2 − y1. But |y2 − y1| < d, hence y1 = y2.

Now γ | x2 − x1; but the least rational integer that γ divides is d (a2
1 + b21) so

either |x2 − x1| ≥ d (a2
1 + b21) or x2 = x1. Since the first of these is impossible

by definition of representation, we have that x1 = x2. Therefore, the equivalence

classes are distinct.
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Finally, we demonstrate that any x + yi falls into one of these equivalence

classes. Now determine q1 and r so that y = dq1 + r, where 0 ≤ r < d. Since

gcd (a, b) = d, there are integers u and v such that av + bu = dq1. Now

x+ yi− (a+ bi) (u+ vi) = x− au+ bv + ri.

Determine q2 and s so that x − au + bv = d (a2
1 + b21) q2 + s, 0 ≤ s < d (a2

1 + b21).

Now

x+ yi− (a+ bi) (u+ vi+ q2 (a1 − b1) i) = s+ ri;

that is x + yi ≡ s + ri mod γ, 0 ≤ s < d (a2
1 + b21) and 0 ≤ r < d. Hence any

Gaussian integer is congruent to an element of these equivalence classes.

The above proposition yields an immediate corollary.

Corollary 1.2.2. The cardinality of the equivalence classes of Z[i]/(γ) is N (γ) =

d2 (a2
1 + b21) = a2 + b2.

Note that there are four units in Z[i], namely ±1 and ±i. Without any loss of

generality, γ can be restricted to being in the first quadrant. For, if u is a unit,

then the ideals (γ) and (uγ) coincide, so Z[i]/(γ) = Z[i]/(uγ).

Remark. If γ = a + bi is element of Z[i] its norm N (γ), is defined to be γγ̄ =

|γ|2 = a2 + b2, where γ̄ is the complex-conjugate of γ.

Let γ, γ1 and γ2 be Gaussian integers. The following list contains the funda-

mental properties of the norm.

(1) If γ is in Z as well as in Z[i], then N (γ) = γ2.

(2) N (γ1γ2) = N (γ1)N (γ2).

(3) N (γ) = 1 if and only if γ is a unit.

(4) N (γ)


= 0, if γ = 0;

= 1, if γ = ±1 or ±i;

> 1, otherwise.
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(5) If N (γ) is prime in Z, then γ is prime in Z[i].

Notation. It is convenient in the classification to call two Gaussian integers as-

sociates, written α ∼ β, if α | β and β | α, that is, if α = βε where ε is a

unit.

Lemma 1.2.3. If q is a positive prime in Z of the form 4m+1, then q | (n2 + 1),

where n = (2m)!.

Proof. Consider the two sets of numbers

−1,−2, ...,−2m

4m, 4m− 1, ..., 2m+ 1.

Each element of the lower row is congruent modulo q to the element of the upper

row directly above, since their difference is q. Then

4m (4m− 1) · · · (2m+ 1) ≡ (−1) (−2) · · · (−2m) mod q.

which yields

(4m)! ≡ {(2m)!}2 mod q.

Let n = (2m)!. Since (4m)! = (q − 1)! ≡ −1 mod q by Wilson’s theorem, it

follows that n2 ≡ −1 mod q.

We now identify all primes in the Gaussian integers:

Proposition 1.2.4. Up to multiplication by units, the primes in Z[i] are of three

types:

(1) p, where p is a prime in Z satisfying p ≡ 3 mod 4;

(2) α = 1 + i and

(3) π or π̄, where q = ππ̄ is a prime in Z satisfying q ≡ 1 mod 4.
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Proof. To prove the proposition, we show first that any prime σ in Z[i] divides

exactly one positive rational prime r. For, N (σ) = σσ̄, so σ | N (σ). Let N (σ) =

r1r2 ···rj be the factorization in Z of N (σ) into positive primes. Then σ | r1r2 ···rn,

so σ divides one of the rj. Thus, σ divides at least one rational prime. Suppose σ

divides two distinct rational primes r1 and r2. Then there exist rational integers

x and y such that

r1x+ r2y = 1.

This gives σ | 1, so σ is a unit, not a prime, which is a contradiction.

Hence, we can get each prime in Z[i] once and only once by considering the

factorization of all positive rational primes, treated as elements of Z[i].

Now, let σ be a prime in Z[i], and r the positive rational prime for which

σ | r. Then N (σ) | N (r). But N (r) = r2, since r is a rational integer. Hence,

N (σ) = r or N (σ) = r2. If σ = x+ yi then x2 + y2 = r or x2 + y2 = r2.

Divide r by 4. According to the division algorithm, this leaves a remainder of

1, 2 or 3. We consider the three cases separately.

Case 1. r ≡ 3 mod 4. As stated just above, x2 + y2 = r or x2 + y2 = r2. It

will be shown now that the first of theses two possibilities cannot occur. Since r

is odd, one of x and y, say x, must be even, the other odd; otherwise the sum of

their squares would be even. Let x = 2a, y = 2b+ 1. If x2 + y2 = r,

r = x2 + y2 = a2 + (2b+ 1)2

= 4
(
a2 + b2 + b

)
+ 1 ≡ 1 mod 4,

whereas r ≡ 3 mod 4. Thus, in this case x2 + y2 = r2, and N (σ) = N (r). Since

σ | r, r = στ , where τ ∈ Z[i]. Then N (r) = N (σ)N (τ) , N (τ) = 1, τ is a unit,

and σ ∼ r. This accounts for the first part of Proposition 1.2.4.

Case 2. r ≡ 2 mod 4. In this case r = 2, since this is the only even prime.

But 2 = (1 + i) (1− i), and σ | 2, so σ | (1 + i) or σ | (1− i). Note that

N (1 + i) = 2 = N (1− i), a rational prime. By property of the norm, 1 + i

and 1 − i are prime. Thus, σ ∼ 1 + i or σ ∼ 1 − i. Since (1 + i) / (1− i) = i,
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(1 + i) ∼ (1− i), and hence the second part of the proposition is done.

Case 3. r ≡ 1 mod 4. Since r is the form 1 + 4m, by Lemma 1.2.3, r | n2 + 1

for some rational integer n. But n2 + 1 = (n+ i) (n− i) and σ | r, so σ | n+ i or

σ | n− i. But r does not divide n+ i or n− i, for otherwise one of (n± i) /r would

be a Gaussian integer; this cannot be, for 1/p is not a rational integer. Hence σ

and r are not associated. It follows that N (σ) 6= N (r), so x2 + y2 6= r2. This

leaves only alternative x2 + y2 = r.

Then σσ̄ = r. Now σ = x + yi is a prime by assumption; so is σ̄ = x − yi,

since N (σ̄) = r. They are not associated, for otherwise x + yi = ε (x− yi),

where ε = 1,−1, i or −i. If ε = 1, x = 0, x2 = r, so r is not a prime. If

ε = −1, x = 0, y2 = r, and the same conclusion follows. If ε = ±i, x = ±y and

r is even. All of these eventualities are impossible, so x + yi and x − yi are not

associated.

Let pk and ql be positive primes in Z satisfying pk ≡ 3 mod 4, and ql ≡ 1

mod 4, πl denote a prime factor of ql in Z[i], and α = 1 + i. By the Chinese

remainder theorem, if we factor γ in Z[i] as

γ = idαa
n1∏
k=1

pbkk

n2∏
l=1

πcll , (1.1)

where each α, pk and πl are distinct primes in Z[i], a, d ≥ 0 and bk,cl are positive

integers, then we have

Z[i]/(γ) ∼= Z[i]/(αa)×
n1∏
k=1

Z[i]/(pbkk )×
n2∏
l=1

Z[i]/(πcll ) (1.2)

and

(Z[i]/(γ))∗ ∼= (Z[i]/(αa))∗ ×
n1∏
k=1

(Z[i]/(pbkk ))∗ ×
n2∏
l=1

(Z[i]/(πcll ))∗. (1.3)

Let ω(γ) denote the number of distinct primes in Z[i] dividing γ.

From Cross ’s result [2], the structure for units group of Z[i]/(σn), where σ is

prime in Z[i], was completely solved for all n ∈ N. We record his result in:

Lemma 1.2.5. [2] Let n be a positive integer and π, p and α given in Proposition

1.2.4 Then:
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(1) (Z[i]/(pn))∗ ∼= Zpn−1 × Zpn−1 × Zp2−1.

(2) (Z[i]/(πn))∗ ∼= Zqn−qn−1.

(3) (Z[i]/(α))∗ ∼= {[1]}, (Z[i]/(α2))∗ ∼= Z2, (Z[i]/(α3))∗ ∼= Z4, (Z[i]/(α4))∗ ∼=

Z2 × Z4 and

(Z[i]/(αn))∗ ∼=


Z2m−1 × Z2m−2 × Z4, if n = 2m;

Z2m−1 × Z2m−1 × Z4, if n = 2m+ 1,

when n ≥ 5.

Following the work of Cross, we can explicitly describe the values of the

Carmichael λ-function in the next proposition. Note that λ(uµ) = λ(µ) for all

units u. The following proposition is an immediate application of Theorem 1.1.1

and Lemma 1.2.5.

Proposition 1.2.6. [2] Let p and q be positive primes in Z satisfying p ≡ 3

mod 4, and q ≡ 1 mod 4, π denote a prime factor of q in Z[i], and α = 1 + i.

Then

(1) λ(πn) = |(Z[i]/(πn))∗| = qn−1(q − 1) for all positive integers n.

(2) λ(pn) = 1
pn−1 |(Z[i]/(pn))∗| = pn−1(p2 − 1) for all positive integers n.

(3) λ(αj) = |(Z[i]/(αj))∗| = 2j−1 for j ∈ {1, 2, 3}, λ(α4) = 1
2
|(Z[i]/(α4))∗| = 4,

λ(α5) = 1
4
|(Z[i]/(α5))∗| = 4, and for all n ≥ 6,

λ(αn) =


1

2m
|(Z[i]/(αn))∗| = 2m−1, if n = 2m;

1
2m+1 |(Z[i]/(αn))∗| = 2m−1, if n = 2m+ 1.

(4) λ(σj11 σ
j2
2 . . . σjss ) = lcm{λ(σj11 ), λ(σj22 ), . . . , λ(σjss )}, where σ1, σ2, . . . , σs are

distinct primes in Z[i] for jl ≥ 1 and l ∈ {1, 2, . . . , s}.

In the remainder of the thesis, we shall continue with the following notation:

p and q denote positive primes in Z satisfying p ≡ 3 mod 4 and q ≡ 1 mod 4, π

stands for a prime factor of q in Z[i], and α = 1 + i.



CHAPTER II

STRUCTURES OF THE DIGRAPH G
(2)
γ

2.1 Preliminary Structures

In this section, we present elementary results on our digraph.

Proposition 2.1.1. Each component of the digraph G
(2)
γ has exactly one cycle.

Therefore, the number of components of this digraph is equal to the number of its

cycles.

Proof. Let µ be a vertex in a component C of G
(2)
γ . Consider the path

µ→ µ2 → µ4 → · · · → µ2j → · · ·.

If there is no cycle, then the above path is infinite and so is the order of µ,

which is impossible. Thus, C contains a cycle. Moreover, if C possesses more

than one cycle, then there is a vertex with outdegree greater than one, which is a

contradiction.

The following two propositions tell us about isolated fixed points and isolated

cycles.

Proposition 2.1.2. The zero 0 is an isolated fixed point of G
(2)
γ if and only if γ

is square-free.

Proof. If η2 | γ for some prime η, then γ/η ∈ Z[i] and(
γ

η

)2

= γ · γ
η2
≡ 0 mod γ.

Thus, 0 is not an isolated fixed point. Conversely, assume that γ is square-free. If

x2 ≡ 0 mod γ, then x ≡ 0 mod γ. Hence, 0 is an isolated fixed point of G
(2)
γ .
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Proposition 2.1.3. If gcd(2, γ) = 1, then there are no isolated cycles in G
(2)
γ

except the isolated fixed point 0.

Proof. Assume that α2 - γ and µ is a vertex in an isolated cycle of G
(2)
γ . Let

ν ∈ Z[i] such that ν2 ≡ µ mod γ. Then (−ν)2 ≡ µ mod γ. Since µ is in an

isolated cycle, ν ≡ −ν mod γ, so 2ν ≡ 0 mod γ. Since gcd(α2, γ) = 1, ν ≡ 0

mod γ which implies that ν ≡ 0 mod γ.

A graph is regular if all its vertices have the same degree. The digraph G
(2)
γ is

said to be semiregular if there exists a positive integer d such that each vertex of

G
(2)
γ either has indegree 0 or d.

If γ = idαa
∏n1

k=1 p
bk
k

∏n2

l=1 π
cl
l with a, d ≥ 0 and bk,cl are positive integers,

define

ρ1 =


0, if a 6= 2;

1, if a = 2,

ρ2 =


0, if a 6= 3;

1, if a = 3,

ρ3 =


0, if a is even;

1, if a is odd,

and ρ4 =


0, if a is odd;

1, if a is even.

Next, we consider two disjoint subdigraphs G
(2)
γ,1 and G

(2)
γ,2 of G

(2)
γ induced on

the set of vertices which are in the unit group (Z[i]/(γ))∗ and induced on the

remaining vertices which are not invertible modulo γ, respectively. They are

called the unit subdigraph and the zero divisor subdigraph, respectively. Observe

that there are no edges between G
(2)
γ,1 and G

(2)
γ,2, that is, G

(2)
γ = G

(2)
γ,1 ∪G

(2)
γ,2.

Lemma 2.1.4. Let a, b and c denote positive integers. Then we have the following

statements.

(1) The number of solutions of x2 ≡ µ mod pb is 0 or 2.

(2) The number of solutions of x2 ≡ µ mod πc is 0 or 2.

(3) The number of solutions of x2 ≡ µ mod αa is
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(i) 0 or 2ρ1+ρ2 if 0 ≤ a ≤ 3,

(ii) 0 or 4 if a = 4, and

(iii) 0 or 22ρ3+2ρ4+1 if a > 4.

Proof. By Lemma 1.2.5 (2), (Z[i]/(πc))∗ ∼= Zqc−qc−1 . Multiplication in (Z[i]/(πc))∗

corresponds to addition in Zqc−qc−1 , so x2 corresponds to 2x. The map

ϕ : Zqc−qc−1 → Zqc−qc−1 defined by ϕ (x) = 2x

is a gcd(2, qc − qc−1)-to-one map, so an element in Zqc−qc−1 is either the image of

gcd(2, qc − qc−1) = 2 elements or none.

For modulus pb, Lemma 1.2.5 (1) says (Z[i]/(pb))∗ ∼= Zpb−1 ×Zpb−1 ×Zp2−1. In

Zpb−1×Zpb−1×Zp2−1, the multiplication by 2 map is
(
gcd(2, pb−1)

)2
gcd(2, p2−1)-

to-one, so an element in Zpb−1×Zpb−1×Zp2−1 is either the image of
(
gcd(2, pb−1)

)2
gcd(2, p2 − 1) = 2 elements or none.

Finally, for modulus αa, Lemma 1.2.5 (1) gives

(Z[i]/(αa))∗ ∼=


Zρ1

2 × Zρ2
4 , if 0 ≤ a ≤ 3;

Zρ3

2
a−1
2 −1
× Zρ3

2
a−1
2 −1
× Zρ4

2
a
2−1 × Zρ4

2
a
2−2 × Z4, if a > 3.

If 0 ≤ a ≤ 3, then the multiplication by 2 map is (gcd(2, 2))ρ1 (gcd(2, 4))ρ2-to-one,

so an element in Zρ1
2 ×Zρ2

4 is either the image of (gcd(2, 2))ρ1 (gcd(2, 4))ρ2 = 2ρ1+ρ2

elements or none. If a > 3, then the multiplication by 2 map is 2
(

gcd(2
a−1
2
−1, 2)

)2ρ3

(
gcd(2

a
2
−1, 2)

)ρ4 (gcd(2
a
2
−2, 2)

)ρ4-to-one, establishing our result.

Proposition 2.1.5. For every nonzero element γ ∈ Z[i], we have the digraph

G
(2)
γ,1 is semiregular. More precisely,

(1) if 0 ≤ a ≤ 3 and µ is a vertex of G
(2)
γ,1, then indegγ µ = 0 or indegγ µ =

2ρ1+ρ2+n1+n2,

(2) If a = 4 and µ is a vertex of G
(2)
γ,1, then indegγ µ = 0 or indegγ µ = 2ω(γ)+1,

and
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(3) If a > 4 and µ is a vertex of G
(2)
γ,1, then indegγ µ = 0 or indegγ µ =

22ρ3+2ρ4+ω(γ).

Proof. Let E :=
∏n1

k=1(Z[i]/(pbkk ))∗ ×
∏n2

l=1(Z[i]/(πcll ))∗.

From (1.3) and Lemma 1.2.5 (3),

(Z[i]/(γ))∗ ∼=


Zρ1

2 × Zρ2
4 × E, if 0 ≤ a ≤ 3;

Zρ3

2
a−1
2 −1
× Zρ3

2
a−1
2 −1
× Zρ4

2
a
2−1 × Zρ4

2
a
2−2 × Z4 × E, if a > 3.

For µ ∈ (Z[i]/(γ))∗, x2 ≡ µ mod γ is equivalent to

x2 ≡ µ mod αa,

x2 ≡ µ mod pbkk , (*)

x2 ≡ µ mod πcll .

By Lemma 2.1.4, we know that for k ∈ {1, 2, . . . , n1}, l ∈ {1, 2, . . . , n2}, x2 ≡ µ

mod pbkk and x2 ≡ µ mod πcll have 0 or 2 solutions. For 0 ≤ a ≤ 3, x2 ≡ µ

mod αa has 0 or 2ρ1+ρ2 solutions. The system (*) thus has 0 or 2ρ1+ρ2+n1+n2 .

When a = 4, x2 ≡ µ mod α4 has 0 or 4 solutions which implies that the system

(*) has 0 or 2n1+n2+2 = 2ω(γ)+1. For a > 4, x2 ≡ µ mod αa has 0 or 22ρ3+2ρ4+1

solutions. This again gives 0 or 22ρ3+2ρ4+n1+n2+1 = 22ρ3+2ρ4+ω(γ) solutions for the

system (*).

2.2 Cycles, Components and Distances

We prove the main theorem about the t-cycles for the digraphG
(2)
γ (Theorem 2.2.1)

and derive its consequences in this section. Our main tool is the λ-function given

by λ(γ) = exp(Z[i]/(γ))∗ and their values given in Proposition 1.2.6. Furthermore,

we work on the number of components and study the maximum distance from the

cycle on each component.

Notation. If R is the ring of integers Z or the ring of Gaussian integers Z[i], for
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each µ, γ ∈ R with gcd(µ, γ) = 1, we write ordγ µ = t if t is the least positive

integer such that µt ≡ 1 mod γ.

We also repeatedly use the following two facts.

(i) ordd(ab) = lcm(ordd a, ordd b), and

(ii) ordd a
n =

ord a

gcd(n, ordd a)
for all n ∈ N.

Theorem 2.2.1. Let γ be a nonzero element in Z[i] and have the factorization

given in (1.1). Then we have the following statements.

(1) There exists a t-cycle in the digraph G
(2)
γ if and only if t = ordd 2 for some

odd positive divisor d of λ(γ).

(2) Let η be a prime factor of γ and h be the highest power of η in γ. If µ is an

element of a cycle, then ηh | µ whenever η | µ. Furthermore, if µ and ν lie

on the same cycle, then η | µ if and only if η | ν.

(3) If µ is a vertex of a t-cycle, then ordγ′ µ = d where γ′ = γ/ gcd(µ, γ), d

is odd, and ordd 2 = t. In addition, if ν is on the same t-cycle as µ, then

ordγ′ µ = ordγ′ ν.

Proof. Clearly, G
(2)
γ contains the fixed point 0 and ordd 2 = 1 when d = 1. Next

assume that µ is a fixed point of G
(2)
γ . Then

µ(µ− 1) ≡ µ2 − µ ≡ 0 mod γ.

Since gcd(µ, µ − 1) = 1, η | γ implies ηh | γ. Since gcd(µ, γ) | µ, µ ≡ 1 mod γ′

where γ′ = µ/ gcd(µ, γ). Hence, ordγ′ µ = d = 1 and so ordd 2 = t = 1.

Assume that t > 1 and G
(2)
γ has a t-cycle containing a vertex µ. Then t is the

least positive integer such that

µ2t ≡ µ mod γ.

Thus, we have

µ(µ2t−1 − 1) ≡ µ2t − µ ≡ 0 mod γ.
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Since gcd(µ, µ2t−1 − 1) = 1 and gcd(µ, γ) | µ, t is the least positive integer such

that µ2t−1 ≡ 1 mod γ′ and therefore gcd(gcd(µ, γ), γ′) = 1. Hence, we get ηh | γ

whenever η | γ.

Now, assume that µ and ν are in the same t-cycle of G
(2)
γ . Then there exists

a j ∈ {1, 2, . . . , t} such that

ν ≡ µ2j mod γ and µ ≡ ν2t−j mod γ. (2.1)

It follows that η | µ if and only if η | ν.

Let µ be an element of a t-cycle in G
(2)
γ . Since µ2t−1 ≡ 1 mod γ′, we have

gcd(µ, γ′) = 1. Let d = ordγ′ µ. Then t is the least positive integer such that

d | (2t − 1). Thus, t = ordd 2 and d is odd. Moreover, d | λ(γ′) by the definition

of λ. Since γ′ | γ, λ(γ′) | λ(γ) and so d | λ(γ). Noting that gcd(2j, d) = 1 for all

j ≥ 0, we derive from (2.1) that ordγ′ µ = ordγ′ ν if µ and ν lie on the same cycle

in G
(2)
γ .

It remains to show the necessity part of (1). Let t = ordd 2 for some odd

positive divisor d of λ(γ). By Theorem 1.1.1 (4), there exists a vertex µ ∈ Z[i]/(γ)

such that ordγ µ = λ(γ). Let ν = µλ(γ)/d. Then ordγ ν = d. Since d | 2t − 1 but

d - 2j − 1 if 1 ≤ j < t , we see that t is the least positive integer for which

ν2t−1 ≡ 1 mod γ,

so we finally reach

ν2t = νν2t−1 ≡ ν mod γ.

Therefore, ν is a vertex of a t-cycle in G
(2)
γ .

Corollary 2.2.2. (1) If there exists a t-cycle in G
(2)
γ , then there exists a t-cycle

in G
(2)
γ,1.

(2) The unit subdigraph G
(2)
γ,1 contains a t-cycle if and only if there exists a

positive odd integer d such that t = ordd 2 and d | λ(γ).
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Proof. (1) It suffices to assume that there exists a t-cycle in G
(2)
γ,2 and t > 1. Let

µ be a vertex of this t-cycle. As in the proof of Theorem 2.2.1, we obtain

µ ≡ 0 mod gcd(µ, γ) and µ2t−1 ≡ 1 mod γ′. (2.2)

Since gcd(gcd(µ, γ), γ′) = 1, by the Chinese remainder theorem, there exists a

ν ∈ (Z[i]/(γ))∗ such that

ν ≡ 1 mod gcd(µ, γ) and ν ≡ µ mod γ′. (2.3)

It follows from (2.2) and (2.3) that t is the least positive integer such that

ν2t−1 ≡ 1 mod γ.

That is, ν is an element of the t-cycle. This proves (1).

(2) follows from (1) and Theorem 2.2.1 (1).

The numbers of fixed points in G
(2)
γ,1 and G

(2)
γ,2 are studied in:

Corollary 2.2.3. Let Ct
γ,1 and Ct

γ,2 denote the number of t-cycles in G
(2)
γ,1 and

G
(2)
γ,2, respectively. Then

C1
γ,1 = 1 and C1

γ,2 = 2ω(γ) − 1.

Proof. Let γ be a nonzero element in Z[i] and have the factorization given in (1.1).

We shall first show that C1
γ = 2n1+n2+1 = 2ω(γ). It is easy to see that 0 and 1

are the only fixed points modulo ηh for any prime factor η of γ, where h is the

highest power of η in γ. If µ is a fixed point modulo γ, then certainly µ is a fixed

point modulo ηh for any prime factor η of γ, so for each η we know that µ ≡ 0

mod ηh or µ ≡ 1 mod ηh. Conversely, by the Chinese remainder theorem, for

each ε, εk, εl ∈ {0, 1} there is a unique µ ∈ Z[i] such that

µ ≡ ε mod αa,

for k ∈ {1, . . . , n1},

µ ≡ εk mod pbkk ,
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and for l ∈ {1, . . . , n2},

µ ≡ εl mod πcll .

Thus, µ is a fixed point modulo γ. Since there are 2n1+n2+1 distinct ways to choose

the ε, εk and εl, G
(2)
γ has exactly 2n1+n2+1 fixed points.

Next, we shall prove that C1
γ,1 = 1. Let µ be a fixed point in G

(2)
γ,1. Then we

have

0 ≡ µ2 − µ ≡ µ(µ− 1) mod γ.

Since gcd(µ, γ) = 1, µ ≡ 1 mod γ, so C1
γ,1 = 1. Finally, C1

γ,2 = C1
γ − C1

γ,1 =

2ω(γ) − 1.

Corollary 2.2.4. Let γ be a nonzero element in Z[i] and have the factorization

given in (1.1). The zero divisor subdigraph G
(2)
γ,2 contains a t-cycle if and only if

there exist a positive odd integer d and a prime factor η of γ such that t = ordd 2

and d | λ(γ/ηh), where h is the highest power of η in γ.

Proof. It is clear for t = 1. Assume that t > 1 and let µ be a vertex of a t-cycle in

G
(2)
γ,2. Then gcd(µ, γ) > 1. Since gcd(gcd(µ, γ), γ′) = 1, there exists a prime factor

η of γ such that γ′ | (γ/ηh), where h is the highest power of η in γ. By Theorem

1.1.1 (2), λ(γ′) | λ(γ/ηh). Let d = ordγ′ µ. It directly follows from Theorem 2.2.1

(3) that d is odd, t = ordd 2 and d | λ(γ′) which implies that d | λ(γ/ηh).

Conversely, suppose that there exist a positive odd integer d and a prime factor

η of γ such that t = ordd 2 and d | λ(γ/ηh), where h is the highest power of η in

γ. Let γ′′ = γ/ηh. By Theorem 1.1.1 (4), there exists a ν ∈ (Z[i]/(γ′′))∗ such that

ordγ′′ ν = λ(γ′′). Then ordγ′′ ν
λ(γ′′)/d = d. Since d | 2t − 1 but d - 2j − 1 whenever

1 ≤ j < t, t is the least positive integer for which

ν(λ(γ′′)/d)2
t−1

≡ 1 mod γ′′.

By the Chinese remainder theorem, we have µ ∈ Z[i] such that

µ ≡ 0 mod ηh and µ ≡ νλ(γ′′)/d mod γ′′
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since gcd(ηh, γ′′) = 1. Thus,

µ2t − µ ≡ µ(µ2t−1 − 1) ≡ 0 mod γ.

Since t is the least positive integer for which µ2t−1 ≡ 1 mod γ′′ and ηh | µ, µ is a

vertex of a t-cycle in G
(2)
γ,2.

Recall that a Fermat prime is a prime number of the form 22m + 1 for some

nonnegative integer m.

Corollary 2.2.5. Suppose that γ is a prime power. Suppose further that for each

positive integer t, G
(2)
γ,1 has a t-cycle if and only if G

(2)
γ,2 has a t-cycle. Then γ = αa

for a ≥ 1 or γ = π, where π is a prime factor of a Fermat prime q.

Proof. Since 0 and 1 are fixed points of G
(2)
γ , both G

(2)
γ,1 and G

(2)
γ,2 have a cycle of

length 1. By Corollary 2.2.4 and the fact that γ is a prime power, the only cycle

in G
(2)
γ,2 is the fixed point 0.

Now suppose that γ is not a number of the form αa for a ≥ 1 or q a Fermat

prime. If γ = πj and j ≥ 2, then by Proposition 1.2.6 (1), λ(γ) = qj−1(q− 1) and

so q | λ(γ). Let t = ordq 2. Thus, t > 1 and G
(2)
γ,1 has a t-cycle by Corollary 2.2.2

(2). If γ = pj and j ≥ 1, then by Proposition 1.2.6 (2), λ(γ) = pj−1(p2 − 1) and

so (p − 1) | λ(γ). Since p ≡ 3 mod 4, p is not a Fermat prime. Thus, p − 1 has

an odd prime divisor r. Let t = ordr 2. Hence, t > 1 and G
(2)
γ,1 again has a t-cycle

which is not in G
(2)
γ,2.

We finally suppose that γ = αa for a ≥ 1 or γ = π, where π is a prime factor

of a Fermat prime q. Then λ(γ) = 2j, where j ≥ 0. By Corollary 2.2.2, the only

cycles in G
(2)
γ,1 are of length 1. The result now follows.

Remark. For γ = 3 + 4i = (2 + i)2, the digraph G
(2)
γ,1 has a 4-cycle but G

(2)
γ,2 does

not have a 4-cycle. Since 1 + 2i is a prime, G
(2)
1+2i provides an example in which

both G
(2)
γ,1 and G

(2)
γ,2 only have one fixed point.

The following example gives an instance in which G
(2)
γ,1 has a t-cycle but G

(2)
γ,2

does not have a t-cycle when ω(γ) = 2.
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Example 2.2.6. By inspection, we find that a nonzero Gaussian integer γ for

which ω(γ) ≥ 2 and there exists a positive t for which G
(2)
γ,1 has a t-cycle but G

(2)
γ,2

does not have a t-cycle, is γ = 147 + 196i = 72(2 + i)2. In this case G
(2)
147+196i,1

has a 12-cycle, whereas G
(2)
147+196i,2 does not have a 12-cycle. Note that λ(147 +

196i) = 24 · 3 · 5 · 7 and 35 | λ(147 + 196i). However, 35 - λ(72) = 24 · 3 · 7 and

35 - λ((2 + i)2) = 22 · 5. Moreover, ord35 2 = 12, whereas ord3 2 = 2, ord5 2 = 4

and ord7 2 = 3.

We know from Proposition 2.1.1 that the number of components is the same

as the number of cycles. Theorem 2.2.7 given below counts the number of t-cycles

in G
(2)
γ,1 and G

(2)
γ,2 and yields hence the number of components.

Theorem 2.2.7. Let S be the complete system of residues of Z[i]/(γ) given as in

Proposition 1.2.1. Let Nd
γ be the number of Gaussian integers µ in S such that

d = ordγ µ. Then

Ct
γ,1 =

1

t

∑
d

Nd
γ , (2.4)

where d runs over all positive odd integers such that d | λ(γ) and t = ordd 2, and

Ct
γ,2 =

1

t

∑
Nd′

γ′ , (2.5)

where the summation is taken over all nonzero Gaussian integers γ′ such that

γ′ ∈ S, γ′ | γ and gcd(γ/γ′, γ′) = 1, and for a given γ′ the number d′ varies over

all positive odd integers for which d′ | λ(γ′) and t = ordd′ 2.

Proof. (2.4): Observe that it suffices to show that

⋃
d

{µ ∈ (Z[i]/(γ))∗ : ordγ µ = d}

= {µ ∈ Z[i]/(γ) : µ is a vertex in a t-cycle of G
(2)
γ,1},

where d runs over all positive odd integers such that d | λ(γ) and t = ordd 2.

Assume that there exists an odd integer d with d | λ(γ) and t = ordd 2. By

Corollary 2.2.2 (2), G
(2)
γ,1 contains a t-cycle. Let µ ∈ (Z[i]/(γ))∗ be such that
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ordγ µ = d. Then µd ≡ 1 mod γ. Since t = ordd 2, t is the least positive integer

such that µ2t−1 ≡ 1 mod γ, and hence µ2t ≡ µ mod γ which implies that µ is a

vertex of a t-cycle. Theorem 2.2.1 (3) gives the converse.

(2.5): Similar to (2.4), it suffices to prove that

⋃
{µ ∈ Z[i]/(γ) : ordγ′ µ = d′}

= {µ ∈ Z[i]/(γ) : µ is a vertex in a t-cycle of G
(2)
γ,2},

where the union is taken over all nonzero Gaussian integers γ′ such that γ′ ∈

S, γ′ | γ and gcd(γ/γ′, γ′) = 1, and for a given γ′ the number d′ varies over all

positive odd integers for which d′ | λ(γ′) and t = ordd′ 2. Assume that there exists

a nonzero Gaussian integer γ′ ∈ S, γ′ | γ and gcd(γ/γ′, γ′) = 1, and let d′ be

a positive odd integer for which d′ | λ(γ′), t = ordd′ 2 and ordγ′ µ = d′. Then

µd
′ ≡ 1 mod γ′. Thus, t is the least positive integer such that µ2t−1 − 1 ≡ 0

mod γ′. Since gcd(γ′, γ/γ′) = 1, by the Chinese remainder theorem, we have

ν ∈ Z[i] which satisfies

ν ≡ 0 mod γ′ and ν ≡ µ mod γ/γ′,

and hence

ν2t − ν ≡ ν(ν2t−1 − 1) ≡ 0 mod γ.

Since t is the least positive integer for which ν2t−1 ≡ 1 mod γ/γ′ and γ′ | µ,

µ is a vertex of a t-cycle in G
(2)
γ,2. Again, Theorem 2.2.1 (3) yields the converse.

Therefore, we have the theorem.

Theorem 2.2.8 determines the distance from any vertex in G
(2)
γ to the unique

cycle in its component.

Theorem 2.2.8. Let S be the complete system of residues of Z[i]/(γ) given as in

Proposition 1.2.1. Let µ ∈ S be such that

µ = βαa1

n1∏
k=1

pfkk

n2∏
l=1

πgll ,
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where the primes α, pk and πl are given in (1.1), gcd(β, γ) = 1 and a1, fk, gl are

nonnegative integers. For a1, we define the nonnegative integer Aa1 by

Aa1 =


0, if a1 = 0;

a, if 1 ≤ a1 ≤ a;

a1, if a1 > a,

for k = 1, . . . , n1, the nonnegative integer Bk by

Bk =


0, if fk = 0;

bk, if 1 ≤ fk ≤ bk;

fk, if fk > bk,

and for l = 1, . . . , n2, the nonnegative integer Cl by

Cl =


0, if gl = 0;

cl, if 1 ≤ gl ≤ cl;

gl, if gl > cl.

Let

γ′ = αa−min(Aa1 ,a)

n1∏
k=1

p
bk−min(Bk,bk)
k

n2∏
l=1

π
cl−min(Cl,cl)
l .

Suppose that ordγ′ µ = 2ed, where d is odd. Let t = ordd 2. Then the component

of G
(2)
γ containing the vertex µ has a unique t-cycle. Moreover, the distance from

the vertex µ to this t-cycle is equal to

max

(
max

1≤k≤n1

⌈
log2

Bk

fk

⌉
, max
1≤l≤n2

⌈
log2

Cl
gl

⌉
,

⌈
log2

Aa1

a1

⌉
, e

)
,

where Aa1/a1 = Bk/fk = Cl/gl = 1 if Aa1 = a1 = Bk = fk = Cl = gl = 0.

Proof. Let C be the component of G
(2)
γ containing the vertex µ. Let ν be the

vertex in the unique cycle of C which is of least distance s ≥ 0 from µ. Then

ν ≡ µ2s ≡ β2sαa12s
n1∏
k=1

pfk2
s

k

n2∏
l=1

πgl2
s

l mod γ.
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By Theorem 2.2.1 (2), ηh | ν whenever η | µ, where η is a prime factor of γ and h

is the highest power of η in γ. Thus, for each k ∈ {1, . . . , n1} such that pk | µ, we

have

fk2
s ≥ bk.

Similarly, for each l ∈ {1, . . . , n2} such that πl | µ, for a1 such that α | µ, we also

have

gl2
s ≥ cl and a12

s ≥ a.

These imply that s ≥
⌈
log2

bk
fk

⌉
, s ≥

⌈
log2

cl
gl

⌉
and s ≥

⌈
log2

a
a1

⌉
for these values

of k, l, a1. If η - µ then η - ν. It now follows that

s ≥ max
1≤k≤n1

⌈
log2

Bk

fk

⌉
, s ≥ max

1≤l≤n2

⌈
log2

Cl
gl

⌉
and s ≥

⌈
log2

Aa1

a1

⌉
.

From the observations that ηh | ν whenever η | µ and η - ν implies η - µ, we

obtain that γ′ = γ/ gcd(ν, γ) and gcd(γ/γ′, γ′) = 1 = gcd(ν, γ′). Let m = ordγ′ ν.

Since ν is on a t-cycle, it follows from Theorem 2.2.1 (3) that m is odd and

t = ordm 2. Note that if 0 ≤ j < e, then ordγ′ µ
2j = 2e−jd. Since gcd(2j, d) = 1

for j ≥ 0, we see that if j ≥ e, then ordγ′ µ
2j = d. Thus, s ≥ e, m = ordγ′ ν =

ordγ′ µ
2s = d and t = ordd 2. Recall that ν is the vertex on the t-cycle closest to

µ, our result now follows from above.

We have an immediate corollary of Theorem 2.2.8.

Corollary 2.2.9. If µ is a vertex in the subdigraph G
(2)
γ,1, then the distance from

µ to the cycle in its component is equal to ν2(ordγ µ), where ν2(m) stands for the

integer j such that 2j‖m. In particular, if µ ∈ (Z[i]/(γ))∗, then µ is on a cycle if

and only if ordγ µ is odd.

The next theorem tells us that each vertex on a cycle of G
(2)
γ,1 has a directed

path of length v, where 2v‖λ(γ) terminating at this vertex. Somer and Kř́ıžek also

had this result for their quadratic digraph. Their proof in [6] used the existence

of a primitive root modulo pn which is not the case for Z[i]/(ηh). However, we
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found that only the existence of an element of order 2v in (Z[i]/(γ))∗ obtaining

from Theorem 1.1.1 (4) is enough.

Theorem 2.2.10. For each component of G
(2)
γ,1, the maximum distance from a

vertex in the component to the unique cycle of the component is equal to ν2(λ(γ)).

Proof. Let v = ν2(λ(γ)). From Theorem 1.1.1 (4), there exists a µ ∈ (Z[i]/(γ))∗

such that ordγ µ = λ(γ) = 2vm, where m is odd. Choose ν = µm. Then

ordγ ν = ordγ µ
m =

ordγ µ

gcd(m, ordγ µ)
= 2v.

Let ω ∈ (Z[i]/(γ))∗ be such that ordγ ω is odd. By Corollary 2.2.9, ω is on a

t-cycle for some t = ord2 d and d | m. We shall find a vertex in the component

to ω of distance v. Observe that ordγ ω
2j = ordγ ω, ordγ νω

2j = 2v ordγ ω and

(νω2j)2v = ν2vω2j+v = ω2j+v for all nonnegative integers j. Write −v mod t for

the remainder when t divides −v. Hence, νω2−v mod t
is the initial vertex of a

directed path of length v to ω, so the maximum distance from a vertex in the

component to its unique cycle is equal to v.

Remark. Let µ be an element of G
(2)
γ,1 of maximum distance v to the cycle in its

component. By Theorem 2.2.10, if γ = ±1, ±i or α, then v = 0 and µ is the

fixed point 1 of indegree 1. If N(γ) > 2, then µ lies outside of the cycle in C, and

consequently has indegree 0.

Let

T = {µ ∈ (Z[i]/(γ))∗ : µ2j = 1 for some j ∈ {0, . . . , v}},

where v = ν2(λ(γ)). We know that 1 is a fixed point and every vertex in T is

pointing to 1. Hence, we have the following result.

Theorem 2.2.11. If ν2(λ(γ)) = v, then

T = {µ ∈ (Z[i]/(γ))∗ : µ2j = 1 for some j ∈ {0, . . . , v}}

consists of all vertices of the component containing 1. Moreover, every vertex in

T is on the tree attached to the fixed point 1.
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If ω ∈ (Z[i]/(γ))∗ is of odd order and is on a t-cycle, the proof of Theorem

2.2.10 shows that

Tω = {νω2−ν2(ordγ ν)

: ν ∈ T}

is a vertex on the tree attached to ω. Furthermore, a simple calculation shows

that |Tω| = |T |. On the other hand, let µ ∈ (Z[i]/(γ))∗ be a vertex on this tree

pointing to ω. Then µ2j = ω for some j ∈ {0, . . . , l}. Note that ξ ∈ (Z[i]/(γ))∗ is

a root x2j = ω if and only if ξµ−1 is a root of x2j = 1. Hence, we have a one-to-one

correspondence between T and Tω preserving the tree structure. Therefore, we

have shown:

Theorem 2.2.12. Let ω ∈ (Z[i]/(γ))∗ be a vertex on a t-cycle. Then the tree

attached to ω is isomorphic to the tree attached to 1.

Our final result is on the maximum distance from a vertex in G
(2)
γ,2.

Let w be the maximum value of ν2(λ(γ′)), where N(γ′) < N(γ), γ′ | γ and

gcd(γ/γ′, γ′) = 1.

Theorem 2.2.13. Let δ be the maximum distance from a vertex in G
(2)
γ,2 to the

cycle in its component. Then

δ = max

(
max

1≤k≤n1

(dlog2 bke), max
1≤l≤n2

(dlog2 cle), dlog2 ae, w
)
.

Proof. Let µ ∈ Z[i]/(γ) be a vertex in a component C of G
(2)
γ,2 and let s be the

distance from µ to the cycle in C. Let

µ = βαa1

n1∏
k=1

pfkk

n2∏
l=1

πgll ,

where the primes α, pk and πl are given in (1.1), gcd(β, γ) = 1 and a1, fk, gl are

nonnegative integers. But for at least one j ∈ {a1, fk, gl}, j ≥ 1. Let Aa1 , Bk,

Cl and γ′ be defined as in Theorem 2.2.8. Then γ′ | γ and gcd(γ/γ′, γ′) = 1 =

gcd(µ, γ). Let ordγ′ µ = 2ed, where gcd(2, d) = 1. Then by Theorem 2.2.8,

s = max

(
max

1≤k≤n1

⌈
log2

Bk

fk

⌉
, max
1≤l≤n2

⌈
log2

Cl
gl

⌉
,

⌈
log2

Aa1

a1

⌉
, e

)
.
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From the definition of Bk, Cl and Aa1 , we have

max
1≤k≤n1

⌈
log2

Bk

fk

⌉
≤ max

1≤l≤n2

(log2 bk),

max
1≤l≤n2

⌈
log2

Cl
gl

⌉
≤ max

1≤l≤n2

(log2 cl) and

⌈
log2

Aa1

a1

⌉
≤ log2 a.

It follows from the definition of γ′ and from the definition of λ that

e ≤ w.

Thus,

s ≤ max

(
max

1≤k≤n1

dlog2 bke , max
1≤l≤n2

dlog2 cle , dlog2 ae , w
)
.

Next, we shall show that we can find vertices in G
(2)
γ,2 such that the distances

are equal to max (max1≤k≤n1 dlog2 bke ,max1≤l≤n2 dlog2 cle , dlog2 ae) and w, respec-

tively.

Consider the cycle containing the fixed point 0. Then α
∏n1

k=1 pk
∏n2

l=1 πl is in

the same component as 0 and the distances from 0 is equal to

max

(
max

1≤k≤n1

dlog2 bke , max
1≤l≤n2

dlog2 cle , dlog2 ae
)
.

Let γ′ ∈ Z[i]/(γ) be such that γ′ | γ and gcd(γ/γ′, γ′) = 1. By Theorem 1.1.1,

there exists a µ ∈ Z[i]/(γ) such that

ν2(ordγ′ µ) = ν2(λ(γ′)).

By the Chinese remainder theorem, we can find ω ∈ G(2)
γ,2 such that

ω ≡ 0 mod γ/γ′ and ω ≡ µ mod γ′.

Hence, we see that the distance from ω to the cycle in its component is

ν2(ordγ′ ω) = ν2(λ(γ′)).

Since the number of γ′ for which γ′ | γ is finite, we can find such γ′ for which

ν2(λ(γ′)) is a maximum and this value is w.
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The above theorem yields an immediate corollary.

Corollary 2.2.14. Let µ ∈ G(2)
γ,2 be of the maximum possible distance δ from the

cycle in its component. The following statements hold.

(1) if γ = ηh, where η is a prime in Z[i] and h > 1, then δ = dlog2 he.

(2) If γ is square-free, then δ = w.

(3) if γ is a prime in Z[i], then µ is the fixed point 0 of indegree 1 and δ = 0.

(4) If γ is not a prime in Z[i], then µ lies outside the cycle in its component

and µ has indegree 0.



CHAPTER III

EXAMPLES

We illustrate the results of the previous chapters by the following examples.

1. Let γ = 7. Note that 7 is a prime in Z[i] and N(7) = 49. Then ω(γ) = 1 and

by Lemma 1.2.1, |Z[i]/(γ)| = |{[x+ yi]γ : 0 ≤ x < 7(12 + 02), 0 ≤ y < 7}| =

N(7) = 49. Since ω(γ) = 1, by Corollary 2.2.3, the number of fixed points

is C1
γ = 2ω(γ) = 2. Observe that γ is square-free, and Proposition 2.1.2

implies that 0 is an isolated fixed point. By Proposition 1.2.6, λ(γ) = 3 · 24,

so v = ν2(λ(γ)) = 4 and the odd numbers dividing λ(γ) are 1 and 3 which

give t = 1 and t = 2, respectively. Thus, G
(2)
γ,2 has only 0 as an isolated

fixed point but G
(2)
γ,1 contains one fixed point and one 2-cycle. We display

the digraph G
(2)
γ below.
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2. Let γ = 3+4i = (2+i)2. By Corollary 2.2.14 (1), δ = dlog2 2e = 1. Note that

|Z[i]/(γ)| = |{[x+ yi]γ : 0 ≤ x < 1(32 + 42), 0 ≤ y < 1}| = N(3 + 4i) = 25.

Since ω(γ) = 1, by Corollary 2.2.3, the number of fixed points is C1
γ =

2ω(γ) = 2. By Proposition 1.2.6, λ(γ) = 5 · 22, so v = ν2(λ(γ)) = 2 and the

odd numbers dividing λ(γ) are 1 and 5 which yield t = 1 and 4, respectively.

Thus, the number of 4-cycles is 1 and the trees attached to 6, 11, 16 and 21

are isomorphic to the tree attached to 1. The digraph G
(2)
γ is shown below.
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3. Let γ = 2 + 4i = (2− i)α2. Since ω(γ) = 2, by Corollary 2.2.3, the number

of fixed points is C1
γ = 2ω(γ) = 4. By Proposition 1.2.6, we have that λ(γ) =

lcm{λ(α2), λ(2 − i)} = 22, so v = ν2(λ(γ)) = 2 and the only odd number

dividing λ(γ) is 1, which yields t = 1. Also, for each η ∈ {α, 2− i}, the only

odd number dividing λ(γ/ηh) is 1. Then both G
(2)
γ,1 and G

(2)
γ,2 contain only 1-

cycles. Let w be the maximum value of ν2(λ(γ′)), where γ′ | γ,N(γ′) < N(γ)

and gcd(γ/γ′, γ′) = 1. Thus, w = max (ν2(λ(1)), ν2(λ(α2)), ν2(λ(2− i))) =

2. We know that |Z[i]/(γ)| = |{[x+ yi]γ : 0 ≤ x < 2(12 + 22), 0 ≤ y < 2}| =

N(2 + 4i) = 20. By Theorem 2.2.13, δ = max (dlog2 1e, dlog2 2e, w) = 2. We

display the digraph G
(2)
γ below.
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4. Let γ = 9 + 6i = 3(3 + 2i). Then ω(γ) = 2, γ is square-free and so 0 is

an isolated fixed point. Since ω(γ) = 2, by Corollary 2.2.3, the number of

fixed points is C1
γ = 2ω(γ) = 4. It follows that from Proposition 1.2.6 (4),

λ(γ) = lcm{λ(3), λ(3 + 2i)} = 3 · 23. Thus, v = ν2(λ(γ)) = 3 and the odd

numbers dividing λ(γ) are 1 and 5 which provide t = 1 and 2, respectively.

By Corollary 2.2.14 (2), δ = w = max (ν2(λ(1)), ν2(λ(3)), ν2(λ(3 + 2i))) = 3.

Note that |Z[i]/(γ)| = |{[x+ yi]γ : 0 ≤ x < 3(32 + 22), 0 ≤ y < 3}| = N(9 +

6i) = 117, and hence the number of 2-cycles is 2. The digraph G
(2)
γ is shown

below.
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5. Let γ = 12+6i = 3(1−2i)α2. Then λ(γ) = lcm{λ(3), λ(1−2i), λ(α2)} = 23,

so v = ν2(λ(γ)) = 3 and the only odd number dividing λ(γ) is 1, which

yields t = 1. Since ω(γ) = 3, by Corollary 2.2.3, C1
γ,2 = 2ω(γ) − 1 = 7

and C1
γ,1 = 1. This implies that G

(2)
γ,1 has only one component and G

(2)
γ,2

has seven components. Let w be the maximum value of ν2(λ(γ′)), where

γ′ | γ,N(γ′) < N(γ) and gcd(γ/γ′, γ′) = 1. Thus, w = 3. By Theo-

rem 2.2.13, we have that δ = max (dlog2 1e, dlog2 1e, dlog2 2e, w) = 3. Also,

|Z[i]/(γ)| = |{[x+ yi]γ : 0 ≤ x < 6(22 + 12), 0 ≤ y < 6}| = N(12 + 6i) =

180. The digraph G
(2)
γ is displayed below.
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